Print this page
12195 acpidump failed under EFI
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/i86pc/os/fakebop.c
+++ new/usr/src/uts/i86pc/os/fakebop.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
↓ open down ↓ |
18 lines elided |
↑ open up ↑ |
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 24 * Use is subject to license terms.
25 25 *
26 26 * Copyright (c) 2010, Intel Corporation.
27 27 * All rights reserved.
28 28 *
29 - * Copyright (c) 2019, Joyent, Inc.
29 + * Copyright 2020 Joyent, Inc.
30 30 */
31 31
32 32 /*
33 33 * This file contains the functionality that mimics the boot operations
34 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 35 * The x86 kernel now does everything on its own.
36 36 */
37 37
38 38 #include <sys/types.h>
39 39 #include <sys/bootconf.h>
40 40 #include <sys/bootsvcs.h>
41 41 #include <sys/bootinfo.h>
42 42 #include <sys/multiboot.h>
43 43 #include <sys/multiboot2.h>
44 44 #include <sys/multiboot2_impl.h>
45 45 #include <sys/bootvfs.h>
46 46 #include <sys/bootprops.h>
47 47 #include <sys/varargs.h>
48 48 #include <sys/param.h>
49 49 #include <sys/machparam.h>
50 50 #include <sys/machsystm.h>
51 51 #include <sys/archsystm.h>
52 52 #include <sys/boot_console.h>
53 53 #include <sys/framebuffer.h>
54 54 #include <sys/cmn_err.h>
55 55 #include <sys/systm.h>
56 56 #include <sys/promif.h>
57 57 #include <sys/archsystm.h>
58 58 #include <sys/x86_archext.h>
59 59 #include <sys/kobj.h>
60 60 #include <sys/privregs.h>
61 61 #include <sys/sysmacros.h>
62 62 #include <sys/ctype.h>
63 63 #include <sys/fastboot.h>
64 64 #ifdef __xpv
65 65 #include <sys/hypervisor.h>
66 66 #include <net/if.h>
67 67 #endif
68 68 #include <vm/kboot_mmu.h>
69 69 #include <vm/hat_pte.h>
70 70 #include <sys/kobj.h>
71 71 #include <sys/kobj_lex.h>
72 72 #include <sys/pci_cfgspace_impl.h>
73 73 #include <sys/fastboot_impl.h>
74 74 #include <sys/acpi/acconfig.h>
75 75 #include <sys/acpi/acpi.h>
76 76 #include <sys/ddipropdefs.h> /* For DDI prop types */
77 77
78 78 static int have_console = 0; /* set once primitive console is initialized */
79 79 static char *boot_args = "";
80 80
81 81 /*
82 82 * Debugging macros
83 83 */
84 84 static uint_t kbm_debug = 0;
85 85 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
86 86 #define DBG(x) { if (kbm_debug) \
87 87 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
88 88 }
89 89
90 90 #define PUT_STRING(s) { \
91 91 char *cp; \
92 92 for (cp = (s); *cp; ++cp) \
93 93 bcons_putchar(*cp); \
94 94 }
95 95
96 96 /* callback to boot_fb to set shadow frame buffer */
97 97 extern void boot_fb_shadow_init(bootops_t *);
98 98
99 99 bootops_t bootop; /* simple bootops we'll pass on to kernel */
100 100 struct bsys_mem bm;
101 101
102 102 /*
103 103 * Boot info from "glue" code in low memory. xbootp is used by:
104 104 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
105 105 */
106 106 static struct xboot_info *xbootp;
107 107 static uintptr_t next_virt; /* next available virtual address */
108 108 static paddr_t next_phys; /* next available physical address from dboot */
109 109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
110 110
111 111 /*
112 112 * buffer for vsnprintf for console I/O
113 113 */
114 114 #define BUFFERSIZE 512
115 115 static char buffer[BUFFERSIZE];
116 116
117 117 /*
118 118 * stuff to store/report/manipulate boot property settings.
119 119 */
120 120 typedef struct bootprop {
121 121 struct bootprop *bp_next;
122 122 char *bp_name;
123 123 int bp_flags; /* DDI prop type */
124 124 uint_t bp_vlen; /* 0 for boolean */
125 125 char *bp_value;
126 126 } bootprop_t;
127 127
128 128 static bootprop_t *bprops = NULL;
129 129 static char *curr_page = NULL; /* ptr to avail bprop memory */
130 130 static int curr_space = 0; /* amount of memory at curr_page */
131 131
132 132 #ifdef __xpv
133 133 start_info_t *xen_info;
134 134 shared_info_t *HYPERVISOR_shared_info;
135 135 #endif
136 136
137 137 /*
138 138 * some allocator statistics
139 139 */
140 140 static ulong_t total_bop_alloc_scratch = 0;
141 141 static ulong_t total_bop_alloc_kernel = 0;
142 142
143 143 static void build_firmware_properties(struct xboot_info *);
144 144
145 145 static int early_allocation = 1;
146 146
147 147 int force_fastreboot = 0;
148 148 volatile int fastreboot_onpanic = 0;
149 149 int post_fastreboot = 0;
150 150 #ifdef __xpv
151 151 volatile int fastreboot_capable = 0;
152 152 #else
153 153 volatile int fastreboot_capable = 1;
154 154 #endif
155 155
156 156 /*
157 157 * Information saved from current boot for fast reboot.
158 158 * If the information size exceeds what we have allocated, fast reboot
159 159 * will not be supported.
160 160 */
161 161 multiboot_info_t saved_mbi;
162 162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
163 163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
164 164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
165 165 int saved_cmdline_len = 0;
166 166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
167 167
168 168 /*
169 169 * Turn off fastreboot_onpanic to avoid panic loop.
170 170 */
171 171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
172 172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
173 173
174 174 /*
175 175 * Pointers to where System Resource Affinity Table (SRAT), System Locality
176 176 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
177 177 * are mapped into virtual memory
178 178 */
179 179 ACPI_TABLE_SRAT *srat_ptr = NULL;
180 180 ACPI_TABLE_SLIT *slit_ptr = NULL;
181 181 ACPI_TABLE_MSCT *msct_ptr = NULL;
182 182
183 183 /*
184 184 * Arbitrary limit on number of localities we handle; if
185 185 * this limit is raised to more than UINT16_MAX, make sure
186 186 * process_slit() knows how to handle it.
187 187 */
188 188 #define SLIT_LOCALITIES_MAX (4096)
189 189
190 190 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
191 191 #define SLIT_PROPNAME "acpi-slit"
192 192
193 193 /*
194 194 * Allocate aligned physical memory at boot time. This allocator allocates
195 195 * from the highest possible addresses. This avoids exhausting memory that
196 196 * would be useful for DMA buffers.
197 197 */
198 198 paddr_t
199 199 do_bop_phys_alloc(uint64_t size, uint64_t align)
200 200 {
201 201 paddr_t pa = 0;
202 202 paddr_t start;
203 203 paddr_t end;
204 204 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
205 205
206 206 /*
207 207 * Be careful if high memory usage is limited in startup.c
208 208 * Since there are holes in the low part of the physical address
209 209 * space we can treat physmem as a pfn (not just a pgcnt) and
210 210 * get a conservative upper limit.
211 211 */
212 212 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
213 213 high_phys = pfn_to_pa(physmem);
214 214
215 215 /*
216 216 * find the highest available memory in physinstalled
217 217 */
218 218 size = P2ROUNDUP(size, align);
219 219 for (; ml; ml = ml->ml_next) {
220 220 start = P2ROUNDUP(ml->ml_address, align);
221 221 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
222 222 if (start < next_phys)
223 223 start = P2ROUNDUP(next_phys, align);
224 224 if (end > high_phys)
225 225 end = P2ALIGN(high_phys, align);
226 226
227 227 if (end <= start)
228 228 continue;
229 229 if (end - start < size)
230 230 continue;
231 231
232 232 /*
233 233 * Early allocations need to use low memory, since
234 234 * physmem might be further limited by bootenv.rc
235 235 */
236 236 if (early_allocation) {
237 237 if (pa == 0 || start < pa)
238 238 pa = start;
239 239 } else {
240 240 if (end - size > pa)
241 241 pa = end - size;
242 242 }
243 243 }
244 244 if (pa != 0) {
245 245 if (early_allocation)
246 246 next_phys = pa + size;
247 247 else
248 248 high_phys = pa;
249 249 return (pa);
250 250 }
251 251 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
252 252 ") Out of memory\n", size, align);
253 253 /*NOTREACHED*/
254 254 }
255 255
256 256 uintptr_t
257 257 alloc_vaddr(size_t size, paddr_t align)
258 258 {
259 259 uintptr_t rv;
260 260
261 261 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
262 262 rv = (uintptr_t)next_virt;
263 263 next_virt += size;
264 264 return (rv);
265 265 }
266 266
267 267 /*
268 268 * Allocate virtual memory. The size is always rounded up to a multiple
269 269 * of base pagesize.
270 270 */
271 271
272 272 /*ARGSUSED*/
273 273 static caddr_t
274 274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
275 275 {
276 276 paddr_t a = align; /* same type as pa for masking */
277 277 uint_t pgsize;
278 278 paddr_t pa;
279 279 uintptr_t va;
280 280 ssize_t s; /* the aligned size */
281 281 uint_t level;
282 282 uint_t is_kernel = (virthint != 0);
283 283
284 284 if (a < MMU_PAGESIZE)
285 285 a = MMU_PAGESIZE;
286 286 else if (!ISP2(a))
287 287 prom_panic("do_bsys_alloc() incorrect alignment");
288 288 size = P2ROUNDUP(size, MMU_PAGESIZE);
289 289
290 290 /*
291 291 * Use the next aligned virtual address if we weren't given one.
292 292 */
293 293 if (virthint == NULL) {
294 294 virthint = (caddr_t)alloc_vaddr(size, a);
295 295 total_bop_alloc_scratch += size;
296 296 } else {
297 297 total_bop_alloc_kernel += size;
298 298 }
299 299
300 300 /*
301 301 * allocate the physical memory
302 302 */
303 303 pa = do_bop_phys_alloc(size, a);
304 304
305 305 /*
306 306 * Add the mappings to the page tables, try large pages first.
307 307 */
308 308 va = (uintptr_t)virthint;
309 309 s = size;
310 310 level = 1;
311 311 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
312 312 if (xbootp->bi_use_largepage && a == pgsize) {
313 313 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
314 314 s >= pgsize) {
315 315 kbm_map(va, pa, level, is_kernel);
316 316 va += pgsize;
317 317 pa += pgsize;
318 318 s -= pgsize;
319 319 }
320 320 }
321 321
322 322 /*
323 323 * Map remaining pages use small mappings
324 324 */
325 325 level = 0;
326 326 pgsize = MMU_PAGESIZE;
327 327 while (s > 0) {
328 328 kbm_map(va, pa, level, is_kernel);
329 329 va += pgsize;
330 330 pa += pgsize;
331 331 s -= pgsize;
332 332 }
333 333 return (virthint);
334 334 }
335 335
336 336 /*
337 337 * Free virtual memory - we'll just ignore these.
338 338 */
339 339 /*ARGSUSED*/
340 340 static void
341 341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
342 342 {
343 343 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
344 344 (void *)virt, size);
345 345 }
346 346
347 347 /*
348 348 * Old interface
349 349 */
350 350 /*ARGSUSED*/
351 351 static caddr_t
352 352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
353 353 int align, int flags)
354 354 {
355 355 prom_panic("unsupported call to BOP_EALLOC()\n");
356 356 return (0);
357 357 }
358 358
359 359
360 360 static void
361 361 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
362 362 {
363 363 uint_t size;
364 364 uint_t need_size;
365 365 bootprop_t *b;
366 366
367 367 /*
368 368 * align the size to 16 byte boundary
369 369 */
370 370 size = sizeof (bootprop_t) + nlen + 1 + vlen;
371 371 size = (size + 0xf) & ~0xf;
372 372 if (size > curr_space) {
373 373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
374 374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
375 375 curr_space = need_size;
376 376 }
377 377
378 378 /*
379 379 * use a bootprop_t at curr_page and link into list
380 380 */
381 381 b = (bootprop_t *)curr_page;
382 382 curr_page += sizeof (bootprop_t);
383 383 curr_space -= sizeof (bootprop_t);
384 384 b->bp_next = bprops;
385 385 bprops = b;
386 386
387 387 /*
388 388 * follow by name and ending zero byte
389 389 */
390 390 b->bp_name = curr_page;
391 391 bcopy(name, curr_page, nlen);
392 392 curr_page += nlen;
393 393 *curr_page++ = 0;
394 394 curr_space -= nlen + 1;
395 395
396 396 /*
397 397 * set the property type
398 398 */
399 399 b->bp_flags = flags & DDI_PROP_TYPE_MASK;
400 400
401 401 /*
402 402 * copy in value, but no ending zero byte
403 403 */
404 404 b->bp_value = curr_page;
405 405 b->bp_vlen = vlen;
406 406 if (vlen > 0) {
407 407 bcopy(value, curr_page, vlen);
408 408 curr_page += vlen;
409 409 curr_space -= vlen;
410 410 }
411 411
412 412 /*
413 413 * align new values of curr_page, curr_space
414 414 */
415 415 while (curr_space & 0xf) {
416 416 ++curr_page;
417 417 --curr_space;
418 418 }
419 419 }
420 420
421 421 static void
422 422 bsetprops(char *name, char *value)
423 423 {
424 424 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
425 425 value, strlen(value) + 1);
426 426 }
427 427
428 428 static void
429 429 bsetprop32(char *name, uint32_t value)
430 430 {
431 431 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
432 432 (void *)&value, sizeof (value));
433 433 }
434 434
435 435 static void
436 436 bsetprop64(char *name, uint64_t value)
437 437 {
438 438 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
439 439 (void *)&value, sizeof (value));
440 440 }
441 441
442 442 static void
443 443 bsetpropsi(char *name, int value)
444 444 {
445 445 char prop_val[32];
446 446
447 447 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
448 448 bsetprops(name, prop_val);
449 449 }
450 450
451 451 /*
452 452 * to find the type of the value associated with this name
453 453 */
454 454 /*ARGSUSED*/
455 455 int
456 456 do_bsys_getproptype(bootops_t *bop, const char *name)
457 457 {
458 458 bootprop_t *b;
459 459
460 460 for (b = bprops; b != NULL; b = b->bp_next) {
461 461 if (strcmp(name, b->bp_name) != 0)
462 462 continue;
463 463 return (b->bp_flags);
464 464 }
465 465 return (-1);
466 466 }
467 467
468 468 /*
469 469 * to find the size of the buffer to allocate
470 470 */
471 471 /*ARGSUSED*/
472 472 int
473 473 do_bsys_getproplen(bootops_t *bop, const char *name)
474 474 {
475 475 bootprop_t *b;
476 476
477 477 for (b = bprops; b; b = b->bp_next) {
478 478 if (strcmp(name, b->bp_name) != 0)
479 479 continue;
480 480 return (b->bp_vlen);
481 481 }
482 482 return (-1);
483 483 }
484 484
485 485 /*
486 486 * get the value associated with this name
487 487 */
488 488 /*ARGSUSED*/
489 489 int
490 490 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
491 491 {
492 492 bootprop_t *b;
493 493
494 494 for (b = bprops; b; b = b->bp_next) {
495 495 if (strcmp(name, b->bp_name) != 0)
496 496 continue;
497 497 bcopy(b->bp_value, value, b->bp_vlen);
498 498 return (0);
499 499 }
500 500 return (-1);
501 501 }
502 502
503 503 /*
504 504 * get the name of the next property in succession from the standalone
505 505 */
506 506 /*ARGSUSED*/
507 507 static char *
508 508 do_bsys_nextprop(bootops_t *bop, char *name)
509 509 {
510 510 bootprop_t *b;
511 511
512 512 /*
513 513 * A null name is a special signal for the 1st boot property
514 514 */
515 515 if (name == NULL || strlen(name) == 0) {
516 516 if (bprops == NULL)
517 517 return (NULL);
518 518 return (bprops->bp_name);
519 519 }
520 520
521 521 for (b = bprops; b; b = b->bp_next) {
522 522 if (name != b->bp_name)
523 523 continue;
524 524 b = b->bp_next;
525 525 if (b == NULL)
526 526 return (NULL);
527 527 return (b->bp_name);
528 528 }
529 529 return (NULL);
530 530 }
531 531
532 532 /*
533 533 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
534 534 */
535 535 static int
536 536 parse_value(char *p, uint64_t *retval)
537 537 {
538 538 int adjust = 0;
539 539 uint64_t tmp = 0;
540 540 int digit;
541 541 int radix = 10;
542 542
543 543 *retval = 0;
544 544 if (*p == '-' || *p == '~')
545 545 adjust = *p++;
546 546
547 547 if (*p == '0') {
548 548 ++p;
549 549 if (*p == 0)
550 550 return (0);
551 551 if (*p == 'x' || *p == 'X') {
552 552 radix = 16;
553 553 ++p;
554 554 } else {
555 555 radix = 8;
556 556 ++p;
557 557 }
558 558 }
559 559 while (*p) {
560 560 if ('0' <= *p && *p <= '9')
561 561 digit = *p - '0';
562 562 else if ('a' <= *p && *p <= 'f')
563 563 digit = 10 + *p - 'a';
564 564 else if ('A' <= *p && *p <= 'F')
565 565 digit = 10 + *p - 'A';
566 566 else
567 567 return (-1);
568 568 if (digit >= radix)
569 569 return (-1);
570 570 tmp = tmp * radix + digit;
571 571 ++p;
572 572 }
573 573 if (adjust == '-')
574 574 tmp = -tmp;
575 575 else if (adjust == '~')
576 576 tmp = ~tmp;
577 577 *retval = tmp;
578 578 return (0);
579 579 }
580 580
581 581 static boolean_t
582 582 unprintable(char *value, int size)
583 583 {
584 584 int i;
585 585
586 586 if (size <= 0 || value[0] == '\0')
587 587 return (B_TRUE);
588 588
589 589 for (i = 0; i < size; i++) {
590 590 if (value[i] == '\0')
591 591 return (i != (size - 1));
592 592
593 593 if (!isprint(value[i]))
594 594 return (B_TRUE);
595 595 }
596 596 return (B_FALSE);
597 597 }
598 598
599 599 /*
600 600 * Print out information about all boot properties.
601 601 * buffer is pointer to pre-allocated space to be used as temporary
602 602 * space for property values.
603 603 */
604 604 static void
605 605 boot_prop_display(char *buffer)
606 606 {
607 607 char *name = "";
608 608 int i, len, flags, *buf32;
609 609 int64_t *buf64;
610 610
611 611 bop_printf(NULL, "\nBoot properties:\n");
612 612
613 613 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
614 614 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
615 615 (void) do_bsys_getprop(NULL, name, buffer);
616 616 len = do_bsys_getproplen(NULL, name);
617 617 flags = do_bsys_getproptype(NULL, name);
618 618 bop_printf(NULL, "len=%d ", len);
619 619
620 620 switch (flags) {
621 621 case DDI_PROP_TYPE_INT:
622 622 len = len / sizeof (int);
623 623 buf32 = (int *)buffer;
624 624 for (i = 0; i < len; i++) {
625 625 bop_printf(NULL, "%08x", buf32[i]);
626 626 if (i < len - 1)
627 627 bop_printf(NULL, ".");
628 628 }
629 629 break;
630 630 case DDI_PROP_TYPE_STRING:
631 631 bop_printf(NULL, "%s", buffer);
632 632 break;
633 633 case DDI_PROP_TYPE_INT64:
634 634 len = len / sizeof (int64_t);
635 635 buf64 = (int64_t *)buffer;
636 636 for (i = 0; i < len; i++) {
637 637 bop_printf(NULL, "%016" PRIx64, buf64[i]);
638 638 if (i < len - 1)
639 639 bop_printf(NULL, ".");
640 640 }
641 641 break;
642 642 default:
643 643 if (!unprintable(buffer, len)) {
644 644 buffer[len] = 0;
645 645 bop_printf(NULL, "%s", buffer);
646 646 break;
647 647 }
648 648 for (i = 0; i < len; i++) {
649 649 bop_printf(NULL, "%02x", buffer[i] & 0xff);
650 650 if (i < len - 1)
651 651 bop_printf(NULL, ".");
652 652 }
653 653 break;
654 654 }
655 655 bop_printf(NULL, "\n");
656 656 }
657 657 }
658 658
659 659 /*
660 660 * 2nd part of building the table of boot properties. This includes:
661 661 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
662 662 *
663 663 * lines look like one of:
664 664 * ^$
665 665 * ^# comment till end of line
666 666 * setprop name 'value'
667 667 * setprop name value
668 668 * setprop name "value"
669 669 *
670 670 * we do single character I/O since this is really just looking at memory
671 671 */
672 672 void
673 673 boot_prop_finish(void)
674 674 {
675 675 int fd;
676 676 char *line;
677 677 int c;
678 678 int bytes_read;
679 679 char *name;
680 680 int n_len;
681 681 char *value;
682 682 int v_len;
683 683 char *inputdev; /* these override the command line if serial ports */
684 684 char *outputdev;
685 685 char *consoledev;
686 686 uint64_t lvalue;
687 687 int use_xencons = 0;
688 688 extern int bootrd_debug;
689 689
690 690 #ifdef __xpv
691 691 if (!DOMAIN_IS_INITDOMAIN(xen_info))
692 692 use_xencons = 1;
693 693 #endif /* __xpv */
694 694
695 695 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
696 696 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
697 697 DBG(fd);
698 698
699 699 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
700 700 while (fd >= 0) {
701 701
702 702 /*
703 703 * get a line
704 704 */
705 705 for (c = 0; ; ++c) {
706 706 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
707 707 if (bytes_read == 0) {
708 708 if (c == 0)
709 709 goto done;
710 710 break;
711 711 }
712 712 if (line[c] == '\n')
713 713 break;
714 714 }
715 715 line[c] = 0;
716 716
717 717 /*
718 718 * ignore comment lines
719 719 */
720 720 c = 0;
721 721 while (ISSPACE(line[c]))
722 722 ++c;
723 723 if (line[c] == '#' || line[c] == 0)
724 724 continue;
725 725
726 726 /*
727 727 * must have "setprop " or "setprop\t"
728 728 */
729 729 if (strncmp(line + c, "setprop ", 8) != 0 &&
730 730 strncmp(line + c, "setprop\t", 8) != 0)
731 731 continue;
732 732 c += 8;
733 733 while (ISSPACE(line[c]))
734 734 ++c;
735 735 if (line[c] == 0)
736 736 continue;
737 737
738 738 /*
739 739 * gather up the property name
740 740 */
741 741 name = line + c;
742 742 n_len = 0;
743 743 while (line[c] && !ISSPACE(line[c]))
744 744 ++n_len, ++c;
745 745
746 746 /*
747 747 * gather up the value, if any
748 748 */
749 749 value = "";
750 750 v_len = 0;
751 751 while (ISSPACE(line[c]))
752 752 ++c;
753 753 if (line[c] != 0) {
754 754 value = line + c;
755 755 while (line[c] && !ISSPACE(line[c]))
756 756 ++v_len, ++c;
757 757 }
758 758
759 759 if (v_len >= 2 && value[0] == value[v_len - 1] &&
760 760 (value[0] == '\'' || value[0] == '"')) {
761 761 ++value;
762 762 v_len -= 2;
763 763 }
764 764 name[n_len] = 0;
765 765 if (v_len > 0)
766 766 value[v_len] = 0;
767 767 else
768 768 continue;
769 769
770 770 /*
771 771 * ignore "boot-file" property, it's now meaningless
772 772 */
773 773 if (strcmp(name, "boot-file") == 0)
774 774 continue;
775 775 if (strcmp(name, "boot-args") == 0 &&
776 776 strlen(boot_args) > 0)
777 777 continue;
778 778
779 779 /*
780 780 * If a property was explicitly set on the command line
781 781 * it will override a setting in bootenv.rc
782 782 */
783 783 if (do_bsys_getproplen(NULL, name) >= 0)
784 784 continue;
785 785
786 786 bsetprops(name, value);
787 787 }
788 788 done:
789 789 if (fd >= 0)
790 790 (void) BRD_CLOSE(bfs_ops, fd);
791 791
792 792 /*
793 793 * Check if we have to limit the boot time allocator
794 794 */
795 795 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
796 796 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
797 797 parse_value(line, &lvalue) != -1) {
798 798 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
799 799 physmem = (pgcnt_t)lvalue;
800 800 DBG(physmem);
801 801 }
802 802 }
803 803 early_allocation = 0;
804 804
805 805 /*
806 806 * Check for bootrd_debug.
807 807 */
808 808 if (find_boot_prop("bootrd_debug"))
809 809 bootrd_debug = 1;
810 810
811 811 /*
812 812 * check to see if we have to override the default value of the console
813 813 */
814 814 if (!use_xencons) {
815 815 inputdev = line;
816 816 v_len = do_bsys_getproplen(NULL, "input-device");
817 817 if (v_len > 0)
818 818 (void) do_bsys_getprop(NULL, "input-device", inputdev);
819 819 else
820 820 v_len = 0;
821 821 inputdev[v_len] = 0;
822 822
823 823 outputdev = inputdev + v_len + 1;
824 824 v_len = do_bsys_getproplen(NULL, "output-device");
825 825 if (v_len > 0)
826 826 (void) do_bsys_getprop(NULL, "output-device",
827 827 outputdev);
828 828 else
829 829 v_len = 0;
830 830 outputdev[v_len] = 0;
831 831
832 832 consoledev = outputdev + v_len + 1;
833 833 v_len = do_bsys_getproplen(NULL, "console");
834 834 if (v_len > 0) {
835 835 (void) do_bsys_getprop(NULL, "console", consoledev);
836 836 if (post_fastreboot &&
837 837 strcmp(consoledev, "graphics") == 0) {
838 838 bsetprops("console", "text");
839 839 v_len = strlen("text");
840 840 bcopy("text", consoledev, v_len);
841 841 }
842 842 } else {
843 843 v_len = 0;
844 844 }
845 845 consoledev[v_len] = 0;
846 846 bcons_init2(inputdev, outputdev, consoledev);
847 847 } else {
848 848 /*
849 849 * Ensure console property exists
850 850 * If not create it as "hypervisor"
851 851 */
852 852 v_len = do_bsys_getproplen(NULL, "console");
853 853 if (v_len < 0)
854 854 bsetprops("console", "hypervisor");
855 855 inputdev = outputdev = consoledev = "hypervisor";
856 856 bcons_init2(inputdev, outputdev, consoledev);
857 857 }
858 858
859 859 if (find_boot_prop("prom_debug") || kbm_debug)
860 860 boot_prop_display(line);
861 861 }
862 862
863 863 /*
864 864 * print formatted output
865 865 */
866 866 /*ARGSUSED*/
867 867 void
868 868 vbop_printf(void *ptr, const char *fmt, va_list ap)
869 869 {
870 870 if (have_console == 0)
871 871 return;
872 872
873 873 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
874 874 PUT_STRING(buffer);
875 875 }
876 876
877 877 /*PRINTFLIKE2*/
878 878 void
879 879 bop_printf(void *bop, const char *fmt, ...)
880 880 {
881 881 va_list ap;
882 882
883 883 va_start(ap, fmt);
884 884 vbop_printf(bop, fmt, ap);
885 885 va_end(ap);
886 886 }
887 887
888 888 /*
889 889 * Another panic() variant; this one can be used even earlier during boot than
890 890 * prom_panic().
891 891 */
892 892 /*PRINTFLIKE1*/
893 893 void
894 894 bop_panic(const char *fmt, ...)
895 895 {
896 896 va_list ap;
897 897
898 898 va_start(ap, fmt);
899 899 bop_printf(NULL, fmt, ap);
900 900 va_end(ap);
901 901
902 902 bop_printf(NULL, "\nPress any key to reboot.\n");
903 903 (void) bcons_getchar();
904 904 bop_printf(NULL, "Resetting...\n");
905 905 pc_reset();
906 906 }
907 907
908 908 /*
909 909 * Do a real mode interrupt BIOS call
910 910 */
911 911 typedef struct bios_regs {
912 912 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
913 913 } bios_regs_t;
914 914 typedef int (*bios_func_t)(int, bios_regs_t *);
915 915
916 916 /*ARGSUSED*/
917 917 static void
918 918 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
919 919 {
920 920 #if defined(__xpv)
921 921 prom_panic("unsupported call to BOP_DOINT()\n");
922 922 #else /* __xpv */
923 923 static int firsttime = 1;
924 924 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
925 925 bios_regs_t br;
926 926
927 927 /*
928 928 * We're about to disable paging; we shouldn't be PCID enabled.
929 929 */
930 930 if (getcr4() & CR4_PCIDE)
931 931 prom_panic("do_bsys_doint() with PCID enabled\n");
932 932
933 933 /*
934 934 * The first time we do this, we have to copy the pre-packaged
935 935 * low memory bios call code image into place.
936 936 */
937 937 if (firsttime) {
938 938 extern char bios_image[];
939 939 extern uint32_t bios_size;
940 940
941 941 bcopy(bios_image, (void *)bios_func, bios_size);
942 942 firsttime = 0;
943 943 }
944 944
945 945 br.ax = rp->eax.word.ax;
946 946 br.bx = rp->ebx.word.bx;
947 947 br.cx = rp->ecx.word.cx;
948 948 br.dx = rp->edx.word.dx;
949 949 br.bp = rp->ebp.word.bp;
950 950 br.si = rp->esi.word.si;
951 951 br.di = rp->edi.word.di;
952 952 br.ds = rp->ds;
953 953 br.es = rp->es;
954 954
955 955 DBG_MSG("Doing BIOS call...");
956 956 DBG(br.ax);
957 957 DBG(br.bx);
958 958 DBG(br.dx);
959 959 rp->eflags = bios_func(intnum, &br);
960 960 DBG_MSG("done\n");
961 961
962 962 rp->eax.word.ax = br.ax;
963 963 rp->ebx.word.bx = br.bx;
964 964 rp->ecx.word.cx = br.cx;
965 965 rp->edx.word.dx = br.dx;
966 966 rp->ebp.word.bp = br.bp;
967 967 rp->esi.word.si = br.si;
968 968 rp->edi.word.di = br.di;
969 969 rp->ds = br.ds;
970 970 rp->es = br.es;
971 971 #endif /* __xpv */
972 972 }
973 973
974 974 static struct boot_syscalls bop_sysp = {
975 975 bcons_getchar,
976 976 bcons_putchar,
977 977 bcons_ischar,
978 978 };
979 979
980 980 static char *whoami;
981 981
982 982 #define BUFLEN 64
983 983
984 984 #if defined(__xpv)
985 985
986 986 static char namebuf[32];
987 987
988 988 static void
989 989 xen_parse_props(char *s, char *prop_map[], int n_prop)
990 990 {
991 991 char **prop_name = prop_map;
992 992 char *cp = s, *scp;
993 993
994 994 do {
995 995 scp = cp;
996 996 while ((*cp != '\0') && (*cp != ':'))
997 997 cp++;
998 998
999 999 if ((scp != cp) && (*prop_name != NULL)) {
1000 1000 *cp = '\0';
1001 1001 bsetprops(*prop_name, scp);
1002 1002 }
1003 1003
1004 1004 cp++;
1005 1005 prop_name++;
1006 1006 n_prop--;
1007 1007 } while (n_prop > 0);
1008 1008 }
1009 1009
1010 1010 #define VBDPATHLEN 64
1011 1011
1012 1012 /*
1013 1013 * parse the 'xpv-root' property to create properties used by
1014 1014 * ufs_mountroot.
1015 1015 */
1016 1016 static void
1017 1017 xen_vbdroot_props(char *s)
1018 1018 {
1019 1019 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1020 1020 const char lnamefix[] = "/dev/dsk/c0d";
1021 1021 char *pnp;
1022 1022 char *prop_p;
1023 1023 char mi;
1024 1024 short minor;
1025 1025 long addr = 0;
1026 1026
1027 1027 pnp = vbdpath + strlen(vbdpath);
1028 1028 prop_p = s + strlen(lnamefix);
1029 1029 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1030 1030 addr = addr * 10 + *prop_p++ - '0';
1031 1031 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1032 1032 pnp = vbdpath + strlen(vbdpath);
1033 1033 if (*prop_p == 's')
1034 1034 mi = 'a';
1035 1035 else if (*prop_p == 'p')
1036 1036 mi = 'q';
1037 1037 else
1038 1038 ASSERT(0); /* shouldn't be here */
1039 1039 prop_p++;
1040 1040 ASSERT(*prop_p != '\0');
1041 1041 if (ISDIGIT(*prop_p)) {
1042 1042 minor = *prop_p - '0';
1043 1043 prop_p++;
1044 1044 if (ISDIGIT(*prop_p)) {
1045 1045 minor = minor * 10 + *prop_p - '0';
1046 1046 }
1047 1047 } else {
1048 1048 /* malformed root path, use 0 as default */
1049 1049 minor = 0;
1050 1050 }
1051 1051 ASSERT(minor < 16); /* at most 16 partitions */
1052 1052 mi += minor;
1053 1053 *pnp++ = ':';
1054 1054 *pnp++ = mi;
1055 1055 *pnp++ = '\0';
1056 1056 bsetprops("fstype", "ufs");
1057 1057 bsetprops("bootpath", vbdpath);
1058 1058
1059 1059 DBG_MSG("VBD bootpath set to ");
1060 1060 DBG_MSG(vbdpath);
1061 1061 DBG_MSG("\n");
1062 1062 }
1063 1063
1064 1064 /*
1065 1065 * parse the xpv-nfsroot property to create properties used by
1066 1066 * nfs_mountroot.
1067 1067 */
1068 1068 static void
1069 1069 xen_nfsroot_props(char *s)
1070 1070 {
1071 1071 char *prop_map[] = {
1072 1072 BP_SERVER_IP, /* server IP address */
1073 1073 BP_SERVER_NAME, /* server hostname */
1074 1074 BP_SERVER_PATH, /* root path */
1075 1075 };
1076 1076 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1077 1077
1078 1078 bsetprops("fstype", "nfs");
1079 1079
1080 1080 xen_parse_props(s, prop_map, n_prop);
1081 1081
1082 1082 /*
1083 1083 * If a server name wasn't specified, use a default.
1084 1084 */
1085 1085 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1086 1086 bsetprops(BP_SERVER_NAME, "unknown");
1087 1087 }
1088 1088
1089 1089 /*
1090 1090 * Extract our IP address, etc. from the "xpv-ip" property.
1091 1091 */
1092 1092 static void
1093 1093 xen_ip_props(char *s)
1094 1094 {
1095 1095 char *prop_map[] = {
1096 1096 BP_HOST_IP, /* IP address */
1097 1097 NULL, /* NFS server IP address (ignored in */
1098 1098 /* favour of xpv-nfsroot) */
1099 1099 BP_ROUTER_IP, /* IP gateway */
1100 1100 BP_SUBNET_MASK, /* IP subnet mask */
1101 1101 "xpv-hostname", /* hostname (ignored) */
1102 1102 BP_NETWORK_INTERFACE, /* interface name */
1103 1103 "xpv-hcp", /* host configuration protocol */
1104 1104 };
1105 1105 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1106 1106 char ifname[IFNAMSIZ];
1107 1107
1108 1108 xen_parse_props(s, prop_map, n_prop);
1109 1109
1110 1110 /*
1111 1111 * A Linux dom0 administrator expects all interfaces to be
1112 1112 * called "ethX", which is not the case here.
1113 1113 *
1114 1114 * If the interface name specified is "eth0", presume that
1115 1115 * this is really intended to be "xnf0" (the first domU ->
1116 1116 * dom0 interface for this domain).
1117 1117 */
1118 1118 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1119 1119 (strcmp("eth0", ifname) == 0)) {
1120 1120 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1121 1121 bop_printf(NULL,
1122 1122 "network interface name 'eth0' replaced with 'xnf0'\n");
1123 1123 }
1124 1124 }
1125 1125
1126 1126 #else /* __xpv */
1127 1127
1128 1128 static void
1129 1129 setup_rarp_props(struct sol_netinfo *sip)
1130 1130 {
1131 1131 char buf[BUFLEN]; /* to hold ip/mac addrs */
1132 1132 uint8_t *val;
1133 1133
1134 1134 val = (uint8_t *)&sip->sn_ciaddr;
1135 1135 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1136 1136 val[0], val[1], val[2], val[3]);
1137 1137 bsetprops(BP_HOST_IP, buf);
1138 1138
1139 1139 val = (uint8_t *)&sip->sn_siaddr;
1140 1140 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1141 1141 val[0], val[1], val[2], val[3]);
1142 1142 bsetprops(BP_SERVER_IP, buf);
1143 1143
1144 1144 if (sip->sn_giaddr != 0) {
1145 1145 val = (uint8_t *)&sip->sn_giaddr;
1146 1146 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1147 1147 val[0], val[1], val[2], val[3]);
1148 1148 bsetprops(BP_ROUTER_IP, buf);
1149 1149 }
1150 1150
1151 1151 if (sip->sn_netmask != 0) {
1152 1152 val = (uint8_t *)&sip->sn_netmask;
1153 1153 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1154 1154 val[0], val[1], val[2], val[3]);
1155 1155 bsetprops(BP_SUBNET_MASK, buf);
1156 1156 }
1157 1157
1158 1158 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1159 1159 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1160 1160 sip->sn_mactype, sip->sn_maclen);
1161 1161 } else {
1162 1162 val = sip->sn_macaddr;
1163 1163 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1164 1164 val[0], val[1], val[2], val[3], val[4], val[5]);
1165 1165 bsetprops(BP_BOOT_MAC, buf);
1166 1166 }
1167 1167 }
1168 1168
1169 1169 #endif /* __xpv */
1170 1170
1171 1171 static void
1172 1172 build_panic_cmdline(const char *cmd, int cmdlen)
1173 1173 {
1174 1174 int proplen;
1175 1175 size_t arglen;
1176 1176
1177 1177 arglen = sizeof (fastreboot_onpanic_args);
1178 1178 /*
1179 1179 * If we allready have fastreboot-onpanic set to zero,
1180 1180 * don't add them again.
1181 1181 */
1182 1182 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1183 1183 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1184 1184 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1185 1185 fastreboot_onpanic_cmdline);
1186 1186 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1187 1187 arglen = 1;
1188 1188 }
1189 1189
1190 1190 /*
1191 1191 * construct fastreboot_onpanic_cmdline
1192 1192 */
1193 1193 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1194 1194 DBG_MSG("Command line too long: clearing "
1195 1195 FASTREBOOT_ONPANIC "\n");
1196 1196 fastreboot_onpanic = 0;
1197 1197 } else {
1198 1198 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1199 1199 if (arglen != 1)
1200 1200 bcopy(fastreboot_onpanic_args,
1201 1201 fastreboot_onpanic_cmdline + cmdlen, arglen);
1202 1202 else
1203 1203 fastreboot_onpanic_cmdline[cmdlen] = 0;
1204 1204 }
1205 1205 }
1206 1206
1207 1207
1208 1208 #ifndef __xpv
1209 1209 /*
1210 1210 * Construct boot command line for Fast Reboot. The saved_cmdline
1211 1211 * is also reported by "eeprom bootcmd".
1212 1212 */
1213 1213 static void
1214 1214 build_fastboot_cmdline(struct xboot_info *xbp)
1215 1215 {
1216 1216 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1;
1217 1217 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1218 1218 DBG(saved_cmdline_len);
1219 1219 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1220 1220 fastreboot_capable = 0;
1221 1221 } else {
1222 1222 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1223 1223 saved_cmdline_len);
1224 1224 saved_cmdline[saved_cmdline_len - 1] = '\0';
1225 1225 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1226 1226 }
1227 1227 }
1228 1228
1229 1229 /*
1230 1230 * Save memory layout, disk drive information, unix and boot archive sizes for
1231 1231 * Fast Reboot.
1232 1232 */
1233 1233 static void
1234 1234 save_boot_info(struct xboot_info *xbi)
1235 1235 {
1236 1236 multiboot_info_t *mbi = xbi->bi_mb_info;
1237 1237 struct boot_modules *modp;
1238 1238 int i;
1239 1239
1240 1240 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1241 1241 if (mbi->mmap_length > sizeof (saved_mmap)) {
1242 1242 DBG_MSG("mbi->mmap_length too big: clearing "
1243 1243 "fastreboot_capable\n");
1244 1244 fastreboot_capable = 0;
1245 1245 } else {
1246 1246 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1247 1247 mbi->mmap_length);
1248 1248 }
1249 1249
1250 1250 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1251 1251 if (mbi->drives_length > sizeof (saved_drives)) {
1252 1252 DBG(mbi->drives_length);
1253 1253 DBG_MSG("mbi->drives_length too big: clearing "
1254 1254 "fastreboot_capable\n");
1255 1255 fastreboot_capable = 0;
1256 1256 } else {
1257 1257 bcopy((void *)(uintptr_t)mbi->drives_addr,
1258 1258 (void *)saved_drives, mbi->drives_length);
1259 1259 }
1260 1260 } else {
1261 1261 saved_mbi.drives_length = 0;
1262 1262 saved_mbi.drives_addr = 0;
1263 1263 }
1264 1264
1265 1265 /*
1266 1266 * Current file sizes. Used by fastboot.c to figure out how much
1267 1267 * memory to reserve for panic reboot.
1268 1268 * Use the module list from the dboot-constructed xboot_info
1269 1269 * instead of the list referenced by the multiboot structure
1270 1270 * because that structure may not be addressable now.
1271 1271 */
1272 1272 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1273 1273 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1274 1274 i < xbi->bi_module_cnt; i++, modp++) {
1275 1275 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1276 1276 }
1277 1277 }
1278 1278 #endif /* __xpv */
1279 1279
1280 1280 /*
1281 1281 * Import boot environment module variables as properties, applying
1282 1282 * blacklist filter for variables we know we will not use.
1283 1283 *
1284 1284 * Since the environment can be relatively large, containing many variables
1285 1285 * used only for boot loader purposes, we will use a blacklist based filter.
1286 1286 * To keep the blacklist from growing too large, we use prefix based filtering.
1287 1287 * This is possible because in many cases, the loader variable names are
1288 1288 * using a structured layout.
1289 1289 *
1290 1290 * We will not overwrite already set properties.
1291 1291 *
1292 1292 * Note that the menu items in particular can contain characters not
1293 1293 * well-handled as bootparams, such as spaces, brackets, and the like, so that's
1294 1294 * another reason.
1295 1295 */
1296 1296 static struct bop_blacklist {
1297 1297 const char *bl_name;
1298 1298 int bl_name_len;
1299 1299 } bop_prop_blacklist[] = {
1300 1300 { "ISADIR", sizeof ("ISADIR") },
1301 1301 { "acpi", sizeof ("acpi") },
1302 1302 { "autoboot_delay", sizeof ("autoboot_delay") },
1303 1303 { "beansi_", sizeof ("beansi_") },
1304 1304 { "beastie", sizeof ("beastie") },
1305 1305 { "bemenu", sizeof ("bemenu") },
1306 1306 { "boot.", sizeof ("boot.") },
1307 1307 { "bootenv", sizeof ("bootenv") },
1308 1308 { "currdev", sizeof ("currdev") },
1309 1309 { "dhcp.", sizeof ("dhcp.") },
1310 1310 { "interpret", sizeof ("interpret") },
1311 1311 { "kernel", sizeof ("kernel") },
1312 1312 { "loaddev", sizeof ("loaddev") },
1313 1313 { "loader_", sizeof ("loader_") },
1314 1314 { "mainansi_", sizeof ("mainansi_") },
1315 1315 { "mainmenu_", sizeof ("mainmenu_") },
1316 1316 { "maintoggled_", sizeof ("maintoggled_") },
1317 1317 { "menu_timeout_command", sizeof ("menu_timeout_command") },
1318 1318 { "menuset_", sizeof ("menuset_") },
1319 1319 { "module_path", sizeof ("module_path") },
1320 1320 { "nfs.", sizeof ("nfs.") },
1321 1321 { "optionsansi_", sizeof ("optionsansi_") },
1322 1322 { "optionsmenu_", sizeof ("optionsmenu_") },
1323 1323 { "optionstoggled_", sizeof ("optionstoggled_") },
1324 1324 { "pcibios", sizeof ("pcibios") },
1325 1325 { "prompt", sizeof ("prompt") },
1326 1326 { "smbios", sizeof ("smbios") },
1327 1327 { "tem", sizeof ("tem") },
1328 1328 { "twiddle_divisor", sizeof ("twiddle_divisor") },
1329 1329 { "zfs_be", sizeof ("zfs_be") },
1330 1330 };
1331 1331
1332 1332 /*
1333 1333 * Match the name against prefixes in above blacklist. If the match was
1334 1334 * found, this name is blacklisted.
1335 1335 */
1336 1336 static boolean_t
1337 1337 name_is_blacklisted(const char *name)
1338 1338 {
1339 1339 int i, n;
1340 1340
1341 1341 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1342 1342 for (i = 0; i < n; i++) {
1343 1343 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1344 1344 bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1345 1345 return (B_TRUE);
1346 1346 }
1347 1347 }
1348 1348 return (B_FALSE);
1349 1349 }
1350 1350
1351 1351 static void
1352 1352 process_boot_environment(struct boot_modules *benv)
1353 1353 {
1354 1354 char *env, *ptr, *name, *value;
1355 1355 uint32_t size, name_len, value_len;
1356 1356
1357 1357 if (benv == NULL || benv->bm_type != BMT_ENV)
1358 1358 return;
1359 1359 ptr = env = benv->bm_addr;
1360 1360 size = benv->bm_size;
1361 1361 do {
1362 1362 name = ptr;
1363 1363 /* find '=' */
1364 1364 while (*ptr != '=') {
1365 1365 ptr++;
1366 1366 if (ptr > env + size) /* Something is very wrong. */
1367 1367 return;
1368 1368 }
1369 1369 name_len = ptr - name;
1370 1370 if (sizeof (buffer) <= name_len)
1371 1371 continue;
1372 1372
1373 1373 (void) strncpy(buffer, name, sizeof (buffer));
1374 1374 buffer[name_len] = '\0';
1375 1375 name = buffer;
1376 1376
1377 1377 value_len = 0;
1378 1378 value = ++ptr;
1379 1379 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1380 1380 if (*ptr == '\0') {
1381 1381 ptr++;
1382 1382 value_len = (uintptr_t)ptr - (uintptr_t)env;
1383 1383 break;
1384 1384 }
1385 1385 ptr++;
1386 1386 }
1387 1387
1388 1388 /* Did we reach the end of the module? */
1389 1389 if (value_len == 0)
1390 1390 return;
1391 1391
1392 1392 if (*value == '\0')
1393 1393 continue;
1394 1394
1395 1395 /* Is this property already set? */
1396 1396 if (do_bsys_getproplen(NULL, name) >= 0)
1397 1397 continue;
1398 1398
1399 1399 /* Translate netboot variables */
1400 1400 if (strcmp(name, "boot.netif.gateway") == 0) {
1401 1401 bsetprops(BP_ROUTER_IP, value);
1402 1402 continue;
1403 1403 }
1404 1404 if (strcmp(name, "boot.netif.hwaddr") == 0) {
1405 1405 bsetprops(BP_BOOT_MAC, value);
1406 1406 continue;
1407 1407 }
1408 1408 if (strcmp(name, "boot.netif.ip") == 0) {
1409 1409 bsetprops(BP_HOST_IP, value);
1410 1410 continue;
1411 1411 }
1412 1412 if (strcmp(name, "boot.netif.netmask") == 0) {
1413 1413 bsetprops(BP_SUBNET_MASK, value);
1414 1414 continue;
1415 1415 }
1416 1416 if (strcmp(name, "boot.netif.server") == 0) {
1417 1417 bsetprops(BP_SERVER_IP, value);
1418 1418 continue;
1419 1419 }
1420 1420 if (strcmp(name, "boot.netif.server") == 0) {
1421 1421 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1422 1422 bsetprops(BP_SERVER_IP, value);
1423 1423 continue;
1424 1424 }
1425 1425 if (strcmp(name, "boot.nfsroot.server") == 0) {
1426 1426 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1427 1427 bsetprops(BP_SERVER_IP, value);
1428 1428 continue;
1429 1429 }
1430 1430 if (strcmp(name, "boot.nfsroot.path") == 0) {
1431 1431 bsetprops(BP_SERVER_PATH, value);
1432 1432 continue;
1433 1433 }
1434 1434
1435 1435 if (name_is_blacklisted(name) == B_TRUE)
1436 1436 continue;
1437 1437
1438 1438 /* Create new property. */
1439 1439 bsetprops(name, value);
1440 1440
1441 1441 /* Avoid reading past the module end. */
1442 1442 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1443 1443 return;
1444 1444 } while (*ptr != '\0');
1445 1445 }
1446 1446
1447 1447 /*
1448 1448 * 1st pass at building the table of boot properties. This includes:
1449 1449 * - values set on the command line: -B a=x,b=y,c=z ....
1450 1450 * - known values we just compute (ie. from xbp)
1451 1451 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1452 1452 *
1453 1453 * the grub command line looked like:
1454 1454 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1455 1455 *
1456 1456 * whoami is the same as boot-file
1457 1457 */
1458 1458 static void
1459 1459 build_boot_properties(struct xboot_info *xbp)
1460 1460 {
1461 1461 char *name;
1462 1462 int name_len;
1463 1463 char *value;
1464 1464 int value_len;
1465 1465 struct boot_modules *bm, *rdbm, *benv = NULL;
1466 1466 char *propbuf;
1467 1467 int quoted = 0;
1468 1468 int boot_arg_len;
1469 1469 uint_t i, midx;
1470 1470 char modid[32];
1471 1471 #ifndef __xpv
1472 1472 static int stdout_val = 0;
1473 1473 uchar_t boot_device;
1474 1474 char str[3];
1475 1475 #endif
1476 1476
1477 1477 /*
1478 1478 * These have to be done first, so that kobj_mount_root() works
1479 1479 */
1480 1480 DBG_MSG("Building boot properties\n");
1481 1481 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1482 1482 DBG((uintptr_t)propbuf);
1483 1483 if (xbp->bi_module_cnt > 0) {
1484 1484 bm = xbp->bi_modules;
1485 1485 rdbm = NULL;
1486 1486 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1487 1487 if (bm[i].bm_type == BMT_ROOTFS) {
1488 1488 rdbm = &bm[i];
1489 1489 continue;
1490 1490 }
1491 1491 if (bm[i].bm_type == BMT_HASH ||
1492 1492 bm[i].bm_type == BMT_FONT ||
1493 1493 bm[i].bm_name == NULL)
1494 1494 continue;
1495 1495
1496 1496 if (bm[i].bm_type == BMT_ENV) {
1497 1497 if (benv == NULL)
1498 1498 benv = &bm[i];
1499 1499 else
1500 1500 continue;
1501 1501 }
1502 1502
1503 1503 (void) snprintf(modid, sizeof (modid),
1504 1504 "module-name-%u", midx);
1505 1505 bsetprops(modid, (char *)bm[i].bm_name);
1506 1506 (void) snprintf(modid, sizeof (modid),
1507 1507 "module-addr-%u", midx);
1508 1508 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1509 1509 (void) snprintf(modid, sizeof (modid),
1510 1510 "module-size-%u", midx);
1511 1511 bsetprop64(modid, (uint64_t)bm[i].bm_size);
1512 1512 ++midx;
1513 1513 }
1514 1514 if (rdbm != NULL) {
1515 1515 bsetprop64("ramdisk_start",
1516 1516 (uint64_t)(uintptr_t)rdbm->bm_addr);
1517 1517 bsetprop64("ramdisk_end",
1518 1518 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1519 1519 }
1520 1520 }
1521 1521
1522 1522 /*
1523 1523 * If there are any boot time modules or hashes present, then disable
1524 1524 * fast reboot.
1525 1525 */
1526 1526 if (xbp->bi_module_cnt > 1) {
1527 1527 fastreboot_disable(FBNS_BOOTMOD);
1528 1528 }
1529 1529
1530 1530 #ifndef __xpv
1531 1531 /*
1532 1532 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1533 1533 * since we don't currently support MB2 info and module relocation.
1534 1534 * Note that fast reboot will have already been disabled if multiple
1535 1535 * modules are present, since the current implementation assumes that
1536 1536 * we only have a single module, the boot_archive.
1537 1537 */
1538 1538 if (xbp->bi_mb_version != 1) {
1539 1539 fastreboot_disable(FBNS_MULTIBOOT2);
1540 1540 }
1541 1541 #endif
1542 1542
1543 1543 DBG_MSG("Parsing command line for boot properties\n");
1544 1544 value = xbp->bi_cmdline;
1545 1545
1546 1546 /*
1547 1547 * allocate memory to collect boot_args into
1548 1548 */
1549 1549 boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1550 1550 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1551 1551 boot_args[0] = 0;
1552 1552 boot_arg_len = 0;
1553 1553
1554 1554 #ifdef __xpv
1555 1555 /*
1556 1556 * Xen puts a lot of device information in front of the kernel name
1557 1557 * let's grab them and make them boot properties. The first
1558 1558 * string w/o an "=" in it will be the boot-file property.
1559 1559 */
1560 1560 (void) strcpy(namebuf, "xpv-");
1561 1561 for (;;) {
1562 1562 /*
1563 1563 * get to next property
1564 1564 */
1565 1565 while (ISSPACE(*value))
1566 1566 ++value;
1567 1567 name = value;
1568 1568 /*
1569 1569 * look for an "="
1570 1570 */
1571 1571 while (*value && !ISSPACE(*value) && *value != '=') {
1572 1572 value++;
1573 1573 }
1574 1574 if (*value != '=') { /* no "=" in the property */
1575 1575 value = name;
1576 1576 break;
1577 1577 }
1578 1578 name_len = value - name;
1579 1579 value_len = 0;
1580 1580 /*
1581 1581 * skip over the "="
1582 1582 */
1583 1583 value++;
1584 1584 while (value[value_len] && !ISSPACE(value[value_len])) {
1585 1585 ++value_len;
1586 1586 }
1587 1587 /*
1588 1588 * build property name with "xpv-" prefix
1589 1589 */
1590 1590 if (name_len + 4 > 32) { /* skip if name too long */
1591 1591 value += value_len;
1592 1592 continue;
1593 1593 }
1594 1594 bcopy(name, &namebuf[4], name_len);
1595 1595 name_len += 4;
1596 1596 namebuf[name_len] = 0;
1597 1597 bcopy(value, propbuf, value_len);
1598 1598 propbuf[value_len] = 0;
1599 1599 bsetprops(namebuf, propbuf);
1600 1600
1601 1601 /*
1602 1602 * xpv-root is set to the logical disk name of the xen
1603 1603 * VBD when booting from a disk-based filesystem.
1604 1604 */
1605 1605 if (strcmp(namebuf, "xpv-root") == 0)
1606 1606 xen_vbdroot_props(propbuf);
1607 1607 /*
1608 1608 * While we're here, if we have a "xpv-nfsroot" property
1609 1609 * then we need to set "fstype" to "nfs" so we mount
1610 1610 * our root from the nfs server. Also parse the xpv-nfsroot
1611 1611 * property to create the properties that nfs_mountroot will
1612 1612 * need to find the root and mount it.
1613 1613 */
1614 1614 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1615 1615 xen_nfsroot_props(propbuf);
1616 1616
1617 1617 if (strcmp(namebuf, "xpv-ip") == 0)
1618 1618 xen_ip_props(propbuf);
1619 1619 value += value_len;
1620 1620 }
1621 1621 #endif
1622 1622
1623 1623 while (ISSPACE(*value))
1624 1624 ++value;
1625 1625 /*
1626 1626 * value now points at the boot-file
1627 1627 */
1628 1628 value_len = 0;
1629 1629 while (value[value_len] && !ISSPACE(value[value_len]))
1630 1630 ++value_len;
1631 1631 if (value_len > 0) {
1632 1632 whoami = propbuf;
1633 1633 bcopy(value, whoami, value_len);
1634 1634 whoami[value_len] = 0;
1635 1635 bsetprops("boot-file", whoami);
1636 1636 /*
1637 1637 * strip leading path stuff from whoami, so running from
1638 1638 * PXE/miniroot makes sense.
1639 1639 */
1640 1640 if (strstr(whoami, "/platform/") != NULL)
1641 1641 whoami = strstr(whoami, "/platform/");
1642 1642 bsetprops("whoami", whoami);
1643 1643 }
1644 1644
1645 1645 /*
1646 1646 * Values forcibly set boot properties on the command line via -B.
1647 1647 * Allow use of quotes in values. Other stuff goes on kernel
1648 1648 * command line.
1649 1649 */
1650 1650 name = value + value_len;
1651 1651 while (*name != 0) {
1652 1652 /*
1653 1653 * anything not " -B" is copied to the command line
1654 1654 */
1655 1655 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1656 1656 boot_args[boot_arg_len++] = *name;
1657 1657 boot_args[boot_arg_len] = 0;
1658 1658 ++name;
1659 1659 continue;
1660 1660 }
1661 1661
1662 1662 /*
1663 1663 * skip the " -B" and following white space
1664 1664 */
1665 1665 name += 3;
1666 1666 while (ISSPACE(*name))
1667 1667 ++name;
1668 1668 while (*name && !ISSPACE(*name)) {
1669 1669 value = strstr(name, "=");
1670 1670 if (value == NULL)
1671 1671 break;
1672 1672 name_len = value - name;
1673 1673 ++value;
1674 1674 value_len = 0;
1675 1675 quoted = 0;
1676 1676 for (; ; ++value_len) {
1677 1677 if (!value[value_len])
1678 1678 break;
1679 1679
1680 1680 /*
1681 1681 * is this value quoted?
1682 1682 */
1683 1683 if (value_len == 0 &&
1684 1684 (value[0] == '\'' || value[0] == '"')) {
1685 1685 quoted = value[0];
1686 1686 ++value_len;
1687 1687 }
1688 1688
1689 1689 /*
1690 1690 * In the quote accept any character,
1691 1691 * but look for ending quote.
1692 1692 */
1693 1693 if (quoted) {
1694 1694 if (value[value_len] == quoted)
1695 1695 quoted = 0;
1696 1696 continue;
1697 1697 }
1698 1698
1699 1699 /*
1700 1700 * a comma or white space ends the value
1701 1701 */
1702 1702 if (value[value_len] == ',' ||
1703 1703 ISSPACE(value[value_len]))
1704 1704 break;
1705 1705 }
1706 1706
1707 1707 if (value_len == 0) {
1708 1708 bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1709 1709 NULL, 0);
1710 1710 } else {
1711 1711 char *v = value;
1712 1712 int l = value_len;
1713 1713 if (v[0] == v[l - 1] &&
1714 1714 (v[0] == '\'' || v[0] == '"')) {
1715 1715 ++v;
1716 1716 l -= 2;
1717 1717 }
1718 1718 bcopy(v, propbuf, l);
1719 1719 propbuf[l] = '\0';
1720 1720 bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1721 1721 propbuf, l + 1);
1722 1722 }
1723 1723 name = value + value_len;
1724 1724 while (*name == ',')
1725 1725 ++name;
1726 1726 }
1727 1727 }
1728 1728
1729 1729 /*
1730 1730 * set boot-args property
1731 1731 * 1275 name is bootargs, so set
1732 1732 * that too
1733 1733 */
1734 1734 bsetprops("boot-args", boot_args);
1735 1735 bsetprops("bootargs", boot_args);
1736 1736
1737 1737 process_boot_environment(benv);
1738 1738
1739 1739 #ifndef __xpv
1740 1740 /*
1741 1741 * Build boot command line for Fast Reboot
1742 1742 */
1743 1743 build_fastboot_cmdline(xbp);
1744 1744
1745 1745 if (xbp->bi_mb_version == 1) {
1746 1746 multiboot_info_t *mbi = xbp->bi_mb_info;
1747 1747 int netboot;
1748 1748 struct sol_netinfo *sip;
1749 1749
1750 1750 /*
1751 1751 * set the BIOS boot device from GRUB
1752 1752 */
1753 1753 netboot = 0;
1754 1754
1755 1755 /*
1756 1756 * Save various boot information for Fast Reboot
1757 1757 */
1758 1758 save_boot_info(xbp);
1759 1759
1760 1760 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1761 1761 boot_device = mbi->boot_device >> 24;
1762 1762 if (boot_device == 0x20)
1763 1763 netboot++;
1764 1764 str[0] = (boot_device >> 4) + '0';
1765 1765 str[1] = (boot_device & 0xf) + '0';
1766 1766 str[2] = 0;
1767 1767 bsetprops("bios-boot-device", str);
1768 1768 } else {
1769 1769 netboot = 1;
1770 1770 }
1771 1771
1772 1772 /*
1773 1773 * In the netboot case, drives_info is overloaded with the
1774 1774 * dhcp ack. This is not multiboot compliant and requires
1775 1775 * special pxegrub!
1776 1776 */
1777 1777 if (netboot && mbi->drives_length != 0) {
1778 1778 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1779 1779 if (sip->sn_infotype == SN_TYPE_BOOTP)
1780 1780 bsetprop(DDI_PROP_TYPE_BYTE,
1781 1781 "bootp-response",
1782 1782 sizeof ("bootp-response"),
1783 1783 (void *)(uintptr_t)mbi->drives_addr,
1784 1784 mbi->drives_length);
1785 1785 else if (sip->sn_infotype == SN_TYPE_RARP)
1786 1786 setup_rarp_props(sip);
1787 1787 }
1788 1788 } else {
1789 1789 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1790 1790 multiboot_tag_bootdev_t *bootdev = NULL;
1791 1791 multiboot_tag_network_t *netdev = NULL;
1792 1792
1793 1793 if (mbi != NULL) {
1794 1794 bootdev = dboot_multiboot2_find_tag(mbi,
1795 1795 MULTIBOOT_TAG_TYPE_BOOTDEV);
1796 1796 netdev = dboot_multiboot2_find_tag(mbi,
1797 1797 MULTIBOOT_TAG_TYPE_NETWORK);
1798 1798 }
1799 1799 if (bootdev != NULL) {
1800 1800 DBG(bootdev->mb_biosdev);
1801 1801 boot_device = bootdev->mb_biosdev;
1802 1802 str[0] = (boot_device >> 4) + '0';
1803 1803 str[1] = (boot_device & 0xf) + '0';
1804 1804 str[2] = 0;
1805 1805 bsetprops("bios-boot-device", str);
1806 1806 }
1807 1807 if (netdev != NULL) {
1808 1808 bsetprop(DDI_PROP_TYPE_BYTE,
1809 1809 "bootp-response", sizeof ("bootp-response"),
1810 1810 (void *)(uintptr_t)netdev->mb_dhcpack,
1811 1811 netdev->mb_size -
1812 1812 sizeof (multiboot_tag_network_t));
1813 1813 }
1814 1814 }
1815 1815
1816 1816 bsetprop32("stdout", stdout_val);
1817 1817 #endif /* __xpv */
1818 1818
1819 1819 /*
1820 1820 * more conjured up values for made up things....
1821 1821 */
1822 1822 #if defined(__xpv)
1823 1823 bsetprops("mfg-name", "i86xpv");
1824 1824 bsetprops("impl-arch-name", "i86xpv");
1825 1825 #else
1826 1826 bsetprops("mfg-name", "i86pc");
1827 1827 bsetprops("impl-arch-name", "i86pc");
1828 1828 #endif
1829 1829
1830 1830 /*
1831 1831 * Build firmware-provided system properties
1832 1832 */
1833 1833 build_firmware_properties(xbp);
1834 1834
1835 1835 /*
1836 1836 * XXPV
1837 1837 *
1838 1838 * Find out what these are:
1839 1839 * - cpuid_feature_ecx_include
1840 1840 * - cpuid_feature_ecx_exclude
1841 1841 * - cpuid_feature_edx_include
1842 1842 * - cpuid_feature_edx_exclude
1843 1843 *
1844 1844 * Find out what these are in multiboot:
1845 1845 * - netdev-path
1846 1846 * - fstype
1847 1847 */
1848 1848 }
1849 1849
1850 1850 #ifdef __xpv
1851 1851 /*
1852 1852 * Under the Hypervisor, memory usable for DMA may be scarce. One
1853 1853 * very likely large pool of DMA friendly memory is occupied by
1854 1854 * the boot_archive, as it was loaded by grub into low MFNs.
1855 1855 *
1856 1856 * Here we free up that memory by copying the boot archive to what are
1857 1857 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1858 1858 */
1859 1859 #define PFN_2GIG 0x80000
1860 1860 static void
1861 1861 relocate_boot_archive(struct xboot_info *xbp)
1862 1862 {
1863 1863 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1864 1864 struct boot_modules *bm = xbp->bi_modules;
1865 1865 uintptr_t va;
1866 1866 pfn_t va_pfn;
1867 1867 mfn_t va_mfn;
1868 1868 caddr_t copy;
1869 1869 pfn_t copy_pfn;
1870 1870 mfn_t copy_mfn;
1871 1871 size_t len;
1872 1872 int slop;
1873 1873 int total = 0;
1874 1874 int relocated = 0;
1875 1875 int mmu_update_return;
1876 1876 mmu_update_t t[2];
1877 1877 x86pte_t pte;
1878 1878
1879 1879 /*
1880 1880 * If all MFN's are below 2Gig, don't bother doing this.
1881 1881 */
1882 1882 if (max_mfn < PFN_2GIG)
1883 1883 return;
1884 1884 if (xbp->bi_module_cnt < 1) {
1885 1885 DBG_MSG("no boot_archive!");
1886 1886 return;
1887 1887 }
1888 1888
1889 1889 DBG_MSG("moving boot_archive to high MFN memory\n");
1890 1890 va = (uintptr_t)bm->bm_addr;
1891 1891 len = bm->bm_size;
1892 1892 slop = va & MMU_PAGEOFFSET;
1893 1893 if (slop) {
1894 1894 va += MMU_PAGESIZE - slop;
1895 1895 len -= MMU_PAGESIZE - slop;
1896 1896 }
1897 1897 len = P2ALIGN(len, MMU_PAGESIZE);
1898 1898
1899 1899 /*
1900 1900 * Go through all boot_archive pages, swapping any low MFN pages
1901 1901 * with memory at next_phys.
1902 1902 */
1903 1903 while (len != 0) {
1904 1904 ++total;
1905 1905 va_pfn = mmu_btop(va - ONE_GIG);
1906 1906 va_mfn = mfn_list[va_pfn];
1907 1907 if (mfn_list[va_pfn] < PFN_2GIG) {
1908 1908 copy = kbm_remap_window(next_phys, 1);
1909 1909 bcopy((void *)va, copy, MMU_PAGESIZE);
1910 1910 copy_pfn = mmu_btop(next_phys);
1911 1911 copy_mfn = mfn_list[copy_pfn];
1912 1912
1913 1913 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1914 1914 if (HYPERVISOR_update_va_mapping(va, pte,
1915 1915 UVMF_INVLPG | UVMF_LOCAL))
1916 1916 bop_panic("relocate_boot_archive(): "
1917 1917 "HYPERVISOR_update_va_mapping() failed");
1918 1918
1919 1919 mfn_list[va_pfn] = copy_mfn;
1920 1920 mfn_list[copy_pfn] = va_mfn;
1921 1921
1922 1922 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1923 1923 t[0].val = va_pfn;
1924 1924 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1925 1925 t[1].val = copy_pfn;
1926 1926 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1927 1927 DOMID_SELF) != 0 || mmu_update_return != 2)
1928 1928 bop_panic("relocate_boot_archive(): "
1929 1929 "HYPERVISOR_mmu_update() failed");
1930 1930
1931 1931 next_phys += MMU_PAGESIZE;
1932 1932 ++relocated;
1933 1933 }
1934 1934 len -= MMU_PAGESIZE;
1935 1935 va += MMU_PAGESIZE;
1936 1936 }
1937 1937 DBG_MSG("Relocated pages:\n");
1938 1938 DBG(relocated);
1939 1939 DBG_MSG("Out of total pages:\n");
1940 1940 DBG(total);
1941 1941 }
1942 1942 #endif /* __xpv */
1943 1943
1944 1944 #if !defined(__xpv)
1945 1945 /*
1946 1946 * simple description of a stack frame (args are 32 bit only currently)
1947 1947 */
1948 1948 typedef struct bop_frame {
1949 1949 struct bop_frame *old_frame;
1950 1950 pc_t retaddr;
1951 1951 long arg[1];
1952 1952 } bop_frame_t;
1953 1953
1954 1954 void
1955 1955 bop_traceback(bop_frame_t *frame)
1956 1956 {
1957 1957 pc_t pc;
1958 1958 int cnt;
1959 1959 char *ksym;
1960 1960 ulong_t off;
1961 1961
1962 1962 bop_printf(NULL, "Stack traceback:\n");
1963 1963 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
1964 1964 pc = frame->retaddr;
1965 1965 if (pc == 0)
1966 1966 break;
1967 1967 ksym = kobj_getsymname(pc, &off);
1968 1968 if (ksym)
1969 1969 bop_printf(NULL, " %s+%lx", ksym, off);
1970 1970 else
1971 1971 bop_printf(NULL, " 0x%lx", pc);
1972 1972
1973 1973 frame = frame->old_frame;
1974 1974 if (frame == 0) {
1975 1975 bop_printf(NULL, "\n");
1976 1976 break;
1977 1977 }
1978 1978 bop_printf(NULL, "\n");
1979 1979 }
1980 1980 }
1981 1981
1982 1982 struct trapframe {
1983 1983 ulong_t error_code; /* optional */
1984 1984 ulong_t inst_ptr;
1985 1985 ulong_t code_seg;
1986 1986 ulong_t flags_reg;
1987 1987 ulong_t stk_ptr;
1988 1988 ulong_t stk_seg;
1989 1989 };
1990 1990
1991 1991 void
1992 1992 bop_trap(ulong_t *tfp)
1993 1993 {
1994 1994 struct trapframe *tf = (struct trapframe *)tfp;
1995 1995 bop_frame_t fakeframe;
1996 1996 static int depth = 0;
1997 1997
1998 1998 /*
1999 1999 * Check for an infinite loop of traps.
2000 2000 */
2001 2001 if (++depth > 2)
2002 2002 bop_panic("Nested trap");
2003 2003
2004 2004 bop_printf(NULL, "Unexpected trap\n");
2005 2005
2006 2006 /*
2007 2007 * adjust the tf for optional error_code by detecting the code selector
2008 2008 */
2009 2009 if (tf->code_seg != B64CODE_SEL)
2010 2010 tf = (struct trapframe *)(tfp - 1);
2011 2011 else
2012 2012 bop_printf(NULL, "error code 0x%lx\n",
2013 2013 tf->error_code & 0xffffffff);
2014 2014
2015 2015 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
2016 2016 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
2017 2017 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
2018 2018 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
2019 2019 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
2020 2020 bop_printf(NULL, "%%cr2 0x%lx\n", getcr2());
2021 2021
2022 2022 /* grab %[er]bp pushed by our code from the stack */
2023 2023 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
2024 2024 fakeframe.retaddr = (pc_t)tf->inst_ptr;
2025 2025 bop_printf(NULL, "Attempting stack backtrace:\n");
2026 2026 bop_traceback(&fakeframe);
2027 2027 bop_panic("unexpected trap in early boot");
2028 2028 }
2029 2029
2030 2030 extern void bop_trap_handler(void);
2031 2031
2032 2032 static gate_desc_t *bop_idt;
2033 2033
2034 2034 static desctbr_t bop_idt_info;
2035 2035
2036 2036 /*
2037 2037 * Install a temporary IDT that lets us catch errors in the boot time code.
2038 2038 * We shouldn't get any faults at all while this is installed, so we'll
2039 2039 * just generate a traceback and exit.
2040 2040 */
2041 2041 static void
2042 2042 bop_idt_init(void)
2043 2043 {
2044 2044 int t;
2045 2045
2046 2046 bop_idt = (gate_desc_t *)
2047 2047 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2048 2048 bzero(bop_idt, MMU_PAGESIZE);
2049 2049 for (t = 0; t < NIDT; ++t) {
2050 2050 /*
2051 2051 * Note that since boot runs without a TSS, the
2052 2052 * double fault handler cannot use an alternate stack (64-bit).
2053 2053 */
2054 2054 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
2055 2055 SDT_SYSIGT, TRP_KPL, 0);
2056 2056 }
2057 2057 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
2058 2058 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
2059 2059 wr_idtr(&bop_idt_info);
2060 2060 }
2061 2061 #endif /* !defined(__xpv) */
2062 2062
2063 2063 /*
2064 2064 * This is where we enter the kernel. It dummies up the boot_ops and
2065 2065 * boot_syscalls vectors and jumps off to _kobj_boot()
2066 2066 */
2067 2067 void
2068 2068 _start(struct xboot_info *xbp)
2069 2069 {
2070 2070 bootops_t *bops = &bootop;
2071 2071 extern void _kobj_boot();
2072 2072
2073 2073 /*
2074 2074 * 1st off - initialize the console for any error messages
2075 2075 */
2076 2076 xbootp = xbp;
2077 2077 #ifdef __xpv
2078 2078 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2079 2079 xen_info = xbp->bi_xen_start_info;
2080 2080 #endif
2081 2081
2082 2082 #ifndef __xpv
2083 2083 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2084 2084 FASTBOOT_MAGIC) {
2085 2085 post_fastreboot = 1;
2086 2086 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2087 2087 }
2088 2088 #endif
2089 2089
2090 2090 bcons_init(xbp);
2091 2091 have_console = 1;
2092 2092
2093 2093 /*
2094 2094 * enable debugging
2095 2095 */
2096 2096 if (find_boot_prop("kbm_debug") != NULL)
2097 2097 kbm_debug = 1;
2098 2098
2099 2099 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
2100 2100 DBG_MSG((char *)xbp->bi_cmdline);
2101 2101 DBG_MSG("\n\n\n");
2102 2102
2103 2103 /*
2104 2104 * physavail is no longer used by startup
2105 2105 */
2106 2106 bm.physinstalled = xbp->bi_phys_install;
2107 2107 bm.pcimem = xbp->bi_pcimem;
2108 2108 bm.rsvdmem = xbp->bi_rsvdmem;
2109 2109 bm.physavail = NULL;
2110 2110
2111 2111 /*
2112 2112 * initialize the boot time allocator
2113 2113 */
2114 2114 next_phys = xbp->bi_next_paddr;
2115 2115 DBG(next_phys);
2116 2116 next_virt = (uintptr_t)xbp->bi_next_vaddr;
2117 2117 DBG(next_virt);
2118 2118 DBG_MSG("Initializing boot time memory management...");
2119 2119 #ifdef __xpv
2120 2120 {
2121 2121 xen_platform_parameters_t p;
2122 2122
2123 2123 /* This call shouldn't fail, dboot already did it once. */
2124 2124 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2125 2125 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2126 2126 DBG(xen_virt_start);
2127 2127 }
2128 2128 #endif
2129 2129 kbm_init(xbp);
2130 2130 DBG_MSG("done\n");
2131 2131
2132 2132 /*
2133 2133 * Fill in the bootops vector
2134 2134 */
2135 2135 bops->bsys_version = BO_VERSION;
2136 2136 bops->boot_mem = &bm;
2137 2137 bops->bsys_alloc = do_bsys_alloc;
2138 2138 bops->bsys_free = do_bsys_free;
2139 2139 bops->bsys_getproplen = do_bsys_getproplen;
2140 2140 bops->bsys_getprop = do_bsys_getprop;
2141 2141 bops->bsys_nextprop = do_bsys_nextprop;
2142 2142 bops->bsys_printf = bop_printf;
2143 2143 bops->bsys_doint = do_bsys_doint;
2144 2144
2145 2145 /*
2146 2146 * BOP_EALLOC() is no longer needed
2147 2147 */
2148 2148 bops->bsys_ealloc = do_bsys_ealloc;
2149 2149
2150 2150 #ifdef __xpv
2151 2151 /*
2152 2152 * On domain 0 we need to free up some physical memory that is
2153 2153 * usable for DMA. Since GRUB loaded the boot_archive, it is
2154 2154 * sitting in low MFN memory. We'll relocated the boot archive
2155 2155 * pages to high PFN memory.
2156 2156 */
2157 2157 if (DOMAIN_IS_INITDOMAIN(xen_info))
2158 2158 relocate_boot_archive(xbp);
2159 2159 #endif
2160 2160
2161 2161 #ifndef __xpv
2162 2162 /*
2163 2163 * Install an IDT to catch early pagefaults (shouldn't have any).
2164 2164 * Also needed for kmdb.
2165 2165 */
2166 2166 bop_idt_init();
2167 2167 #endif
2168 2168 /* Set up the shadow fb for framebuffer console */
2169 2169 boot_fb_shadow_init(bops);
2170 2170
2171 2171 /*
2172 2172 * Start building the boot properties from the command line
2173 2173 */
2174 2174 DBG_MSG("Initializing boot properties:\n");
2175 2175 build_boot_properties(xbp);
2176 2176
2177 2177 if (find_boot_prop("prom_debug") || kbm_debug) {
2178 2178 char *value;
2179 2179
2180 2180 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2181 2181 boot_prop_display(value);
2182 2182 }
2183 2183
2184 2184 /*
2185 2185 * jump into krtld...
2186 2186 */
2187 2187 _kobj_boot(&bop_sysp, NULL, bops, NULL);
2188 2188 }
2189 2189
2190 2190
2191 2191 /*ARGSUSED*/
2192 2192 static caddr_t
2193 2193 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2194 2194 {
2195 2195 panic("Attempt to bsys_alloc() too late\n");
2196 2196 return (NULL);
2197 2197 }
2198 2198
2199 2199 /*ARGSUSED*/
2200 2200 static void
2201 2201 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2202 2202 {
2203 2203 panic("Attempt to bsys_free() too late\n");
2204 2204 }
2205 2205
2206 2206 void
2207 2207 bop_no_more_mem(void)
2208 2208 {
2209 2209 DBG(total_bop_alloc_scratch);
2210 2210 DBG(total_bop_alloc_kernel);
2211 2211 bootops->bsys_alloc = no_more_alloc;
2212 2212 bootops->bsys_free = no_more_free;
2213 2213 }
2214 2214
2215 2215
2216 2216 /*
2217 2217 * Set ACPI firmware properties
2218 2218 */
2219 2219
2220 2220 static caddr_t
2221 2221 vmap_phys(size_t length, paddr_t pa)
2222 2222 {
2223 2223 paddr_t start, end;
2224 2224 caddr_t va;
2225 2225 size_t len, page;
2226 2226
2227 2227 #ifdef __xpv
2228 2228 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2229 2229 #endif
2230 2230 start = P2ALIGN(pa, MMU_PAGESIZE);
2231 2231 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2232 2232 len = end - start;
2233 2233 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2234 2234 for (page = 0; page < len; page += MMU_PAGESIZE)
2235 2235 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2236 2236 return (va + (pa & MMU_PAGEOFFSET));
2237 2237 }
2238 2238
2239 2239 static uint8_t
2240 2240 checksum_table(uint8_t *tp, size_t len)
2241 2241 {
2242 2242 uint8_t sum = 0;
2243 2243
2244 2244 while (len-- > 0)
2245 2245 sum += *tp++;
2246 2246
2247 2247 return (sum);
2248 2248 }
2249 2249
2250 2250 static int
2251 2251 valid_rsdp(ACPI_TABLE_RSDP *rp)
2252 2252 {
2253 2253
2254 2254 /* validate the V1.x checksum */
2255 2255 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2256 2256 return (0);
2257 2257
2258 2258 /* If pre-ACPI 2.0, this is a valid RSDP */
2259 2259 if (rp->Revision < 2)
2260 2260 return (1);
2261 2261
2262 2262 /* validate the V2.x checksum */
2263 2263 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
↓ open down ↓ |
2224 lines elided |
↑ open up ↑ |
2264 2264 return (0);
2265 2265
2266 2266 return (1);
2267 2267 }
2268 2268
2269 2269 /*
2270 2270 * Scan memory range for an RSDP;
2271 2271 * see ACPI 3.0 Spec, 5.2.5.1
2272 2272 */
2273 2273 static ACPI_TABLE_RSDP *
2274 -scan_rsdp(paddr_t start, paddr_t end)
2274 +scan_rsdp(paddr_t *paddrp, size_t len)
2275 2275 {
2276 - ssize_t len = end - start;
2276 + paddr_t paddr = *paddrp;
2277 2277 caddr_t ptr;
2278 2278
2279 - ptr = vmap_phys(len, start);
2279 + ptr = vmap_phys(len, paddr);
2280 +
2280 2281 while (len > 0) {
2281 2282 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2282 - valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2283 + valid_rsdp((ACPI_TABLE_RSDP *)ptr)) {
2284 + *paddrp = paddr;
2283 2285 return ((ACPI_TABLE_RSDP *)ptr);
2286 + }
2284 2287
2285 2288 ptr += ACPI_RSDP_SCAN_STEP;
2289 + paddr += ACPI_RSDP_SCAN_STEP;
2286 2290 len -= ACPI_RSDP_SCAN_STEP;
2287 2291 }
2288 2292
2289 2293 return (NULL);
2290 2294 }
2291 2295
2292 2296 /*
2293 - * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2297 + * Locate the ACPI RSDP. We search in a particular order:
2298 + *
2299 + * - If the bootloader told us the location of the RSDP (via the EFI system
2300 + * table), try that first.
2301 + * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy
2302 + * case).
2303 + * - Finally, our bootloader may have a copy of the RSDP in its info: this might
2304 + * get freed after boot, so we always prefer to find the original RSDP first.
2305 + *
2306 + * Once found, we set acpi-root-tab property (a physical address) for the
2307 + * benefit of acpica, acpidump etc.
2294 2308 */
2309 +
2295 2310 static ACPI_TABLE_RSDP *
2296 -find_rsdp()
2311 +find_rsdp(struct xboot_info *xbp)
2297 2312 {
2298 - ACPI_TABLE_RSDP *rsdp;
2299 - uint64_t rsdp_val = 0;
2300 - uint16_t *ebda_seg;
2301 - paddr_t ebda_addr;
2313 + ACPI_TABLE_RSDP *rsdp = NULL;
2314 + paddr_t paddr = 0;
2302 2315
2303 - /* check for "acpi-root-tab" property */
2304 2316 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2305 - (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2306 - if (rsdp_val != 0) {
2307 - rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2308 - if (rsdp != NULL) {
2309 - if (kbm_debug) {
2310 - bop_printf(NULL,
2311 - "Using RSDP from bootloader: "
2312 - "0x%p\n", (void *)rsdp);
2313 - }
2314 - return (rsdp);
2315 - }
2316 - }
2317 + (void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr);
2318 + rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2317 2319 }
2318 2320
2319 - /*
2320 - * Get the EBDA segment and scan the first 1K
2321 - */
2322 - ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2323 - ACPI_EBDA_PTR_LOCATION);
2324 - ebda_addr = *ebda_seg << 4;
2325 - rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2326 - if (rsdp == NULL)
2327 - /* if EBDA doesn't contain RSDP, look in BIOS memory */
2328 - rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2329 - ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2321 +#ifndef __xpv
2322 + if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) {
2323 + paddr = (uintptr_t)xbp->bi_acpi_rsdp;
2324 + rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2325 + }
2326 +#endif
2327 +
2328 + if (rsdp == NULL) {
2329 + uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2330 + ACPI_EBDA_PTR_LOCATION);
2331 + paddr = *ebda_seg << 4;
2332 + rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE);
2333 + }
2334 +
2335 + if (rsdp == NULL) {
2336 + paddr = ACPI_HI_RSDP_WINDOW_BASE;
2337 + rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE);
2338 + }
2339 +
2340 +#ifndef __xpv
2341 + if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) {
2342 + paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy;
2343 + rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2344 + }
2345 +#endif
2346 +
2347 + if (rsdp == NULL) {
2348 + bop_printf(NULL, "no RSDP found!\n");
2349 + return (NULL);
2350 + }
2351 +
2352 + if (kbm_debug)
2353 + bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr);
2354 +
2355 + if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t))
2356 + bsetprop64("acpi-root-tab", paddr);
2357 +
2330 2358 return (rsdp);
2331 2359 }
2332 2360
2333 2361 static ACPI_TABLE_HEADER *
2334 2362 map_fw_table(paddr_t table_addr)
2335 2363 {
2336 2364 ACPI_TABLE_HEADER *tp;
2337 2365 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2338 2366
2339 2367 /*
2340 2368 * Map at least a page; if the table is larger than this, remap it
2341 2369 */
2342 2370 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2343 2371 if (tp->Length > len)
2344 2372 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2345 2373 return (tp);
2346 2374 }
2347 2375
2348 2376 static ACPI_TABLE_HEADER *
2349 -find_fw_table(char *signature)
2377 +find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature)
2350 2378 {
2351 2379 static int revision = 0;
2352 2380 static ACPI_TABLE_XSDT *xsdt;
2353 2381 static int len;
2354 2382 paddr_t xsdt_addr;
2355 - ACPI_TABLE_RSDP *rsdp;
2356 2383 ACPI_TABLE_HEADER *tp;
2357 2384 paddr_t table_addr;
2358 2385 int n;
2359 2386
2360 2387 if (strlen(signature) != ACPI_NAME_SIZE)
2361 2388 return (NULL);
2362 2389
2363 2390 /*
2364 2391 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2365 2392 * understand this code. If we haven't already found the RSDT/XSDT,
2366 2393 * revision will be 0. Find the RSDP and check the revision
2367 2394 * to find out whether to use the RSDT or XSDT. If revision is
2368 2395 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2369 2396 * use the XSDT. If the XSDT address is 0, though, fall back to
2370 2397 * revision 1 and use the RSDT.
2371 2398 */
2372 2399 if (revision == 0) {
2373 - if ((rsdp = find_rsdp()) != NULL) {
2374 - revision = rsdp->Revision;
2400 + if (rsdp == NULL)
2401 + return (NULL);
2402 +
2403 + revision = rsdp->Revision;
2404 + /*
2405 + * ACPI 6.0 states that current revision is 2
2406 + * from acpi_table_rsdp definition:
2407 + * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2408 + */
2409 + if (revision > 2)
2410 + revision = 2;
2411 + switch (revision) {
2412 + case 2:
2375 2413 /*
2376 - * ACPI 6.0 states that current revision is 2
2377 - * from acpi_table_rsdp definition:
2378 - * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2414 + * Use the XSDT unless BIOS is buggy and
2415 + * claims to be rev 2 but has a null XSDT
2416 + * address
2379 2417 */
2380 - if (revision > 2)
2381 - revision = 2;
2382 - switch (revision) {
2383 - case 2:
2384 - /*
2385 - * Use the XSDT unless BIOS is buggy and
2386 - * claims to be rev 2 but has a null XSDT
2387 - * address
2388 - */
2389 - xsdt_addr = rsdp->XsdtPhysicalAddress;
2390 - if (xsdt_addr != 0)
2391 - break;
2392 - /* FALLTHROUGH */
2393 - case 0:
2394 - /* treat RSDP rev 0 as revision 1 internally */
2395 - revision = 1;
2396 - /* FALLTHROUGH */
2397 - case 1:
2398 - /* use the RSDT for rev 0/1 */
2399 - xsdt_addr = rsdp->RsdtPhysicalAddress;
2418 + xsdt_addr = rsdp->XsdtPhysicalAddress;
2419 + if (xsdt_addr != 0)
2400 2420 break;
2401 - default:
2402 - /* unknown revision */
2403 - revision = 0;
2404 - break;
2405 - }
2421 + /* FALLTHROUGH */
2422 + case 0:
2423 + /* treat RSDP rev 0 as revision 1 internally */
2424 + revision = 1;
2425 + /* FALLTHROUGH */
2426 + case 1:
2427 + /* use the RSDT for rev 0/1 */
2428 + xsdt_addr = rsdp->RsdtPhysicalAddress;
2429 + break;
2430 + default:
2431 + /* unknown revision */
2432 + revision = 0;
2433 + break;
2406 2434 }
2435 +
2407 2436 if (revision == 0)
2408 2437 return (NULL);
2409 2438
2410 2439 /* cache the XSDT info */
2411 2440 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2412 2441 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2413 2442 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2414 2443 }
2415 2444
2416 2445 /*
2417 2446 * Scan the table headers looking for a signature match
2418 2447 */
2419 2448 for (n = 0; n < len; n++) {
2420 2449 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2421 2450 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2422 2451 xsdt->TableOffsetEntry[n];
2423 2452
2424 2453 if (table_addr == 0)
2425 2454 continue;
2426 2455 tp = map_fw_table(table_addr);
2427 2456 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2428 2457 return (tp);
2429 2458 }
2430 2459 }
2431 2460 return (NULL);
2432 2461 }
2433 2462
2434 2463 static void
2435 2464 process_mcfg(ACPI_TABLE_MCFG *tp)
2436 2465 {
2437 2466 ACPI_MCFG_ALLOCATION *cfg_baap;
2438 2467 char *cfg_baa_endp;
2439 2468 int64_t ecfginfo[4];
2440 2469
2441 2470 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2442 2471 cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2443 2472 while ((char *)cfg_baap < cfg_baa_endp) {
2444 2473 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2445 2474 ecfginfo[0] = cfg_baap->Address;
2446 2475 ecfginfo[1] = cfg_baap->PciSegment;
2447 2476 ecfginfo[2] = cfg_baap->StartBusNumber;
2448 2477 ecfginfo[3] = cfg_baap->EndBusNumber;
2449 2478 bsetprop(DDI_PROP_TYPE_INT64,
2450 2479 MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2451 2480 ecfginfo, sizeof (ecfginfo));
2452 2481 break;
2453 2482 }
2454 2483 cfg_baap++;
2455 2484 }
2456 2485 }
2457 2486
2458 2487 #ifndef __xpv
2459 2488 static void
2460 2489 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2461 2490 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2462 2491 {
2463 2492 ACPI_SUBTABLE_HEADER *item, *end;
2464 2493 uint32_t cpu_count = 0;
2465 2494 uint32_t cpu_possible_count = 0;
2466 2495
2467 2496 /*
2468 2497 * Determine number of CPUs and keep track of "final" APIC ID
2469 2498 * for each CPU by walking through ACPI MADT processor list
2470 2499 */
2471 2500 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2472 2501 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2473 2502
2474 2503 while (item < end) {
2475 2504 switch (item->Type) {
2476 2505 case ACPI_MADT_TYPE_LOCAL_APIC: {
2477 2506 ACPI_MADT_LOCAL_APIC *cpu =
2478 2507 (ACPI_MADT_LOCAL_APIC *) item;
2479 2508
2480 2509 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2481 2510 if (cpu_apicid_array != NULL)
2482 2511 cpu_apicid_array[cpu_count] = cpu->Id;
2483 2512 cpu_count++;
2484 2513 }
2485 2514 cpu_possible_count++;
2486 2515 break;
2487 2516 }
2488 2517 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2489 2518 ACPI_MADT_LOCAL_X2APIC *cpu =
2490 2519 (ACPI_MADT_LOCAL_X2APIC *) item;
2491 2520
2492 2521 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2493 2522 if (cpu_apicid_array != NULL)
2494 2523 cpu_apicid_array[cpu_count] =
2495 2524 cpu->LocalApicId;
2496 2525 cpu_count++;
2497 2526 }
2498 2527 cpu_possible_count++;
2499 2528 break;
2500 2529 }
2501 2530 default:
2502 2531 if (kbm_debug)
2503 2532 bop_printf(NULL, "MADT type %d\n", item->Type);
2504 2533 break;
2505 2534 }
2506 2535
2507 2536 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2508 2537 }
2509 2538 if (cpu_countp)
2510 2539 *cpu_countp = cpu_count;
2511 2540 if (cpu_possible_countp)
2512 2541 *cpu_possible_countp = cpu_possible_count;
2513 2542 }
2514 2543
2515 2544 static void
2516 2545 process_madt(ACPI_TABLE_MADT *tp)
2517 2546 {
2518 2547 uint32_t cpu_count = 0;
2519 2548 uint32_t cpu_possible_count = 0;
2520 2549 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2521 2550
2522 2551 if (tp != NULL) {
2523 2552 /* count cpu's */
2524 2553 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2525 2554
2526 2555 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2527 2556 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2528 2557 if (cpu_apicid_array == NULL)
2529 2558 bop_panic("Not enough memory for APIC ID array");
2530 2559
2531 2560 /* copy IDs */
2532 2561 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2533 2562
2534 2563 /*
2535 2564 * Make boot property for array of "final" APIC IDs for each
2536 2565 * CPU
2537 2566 */
2538 2567 bsetprop(DDI_PROP_TYPE_INT,
2539 2568 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2540 2569 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2541 2570 }
2542 2571
2543 2572 /*
2544 2573 * Check whether property plat-max-ncpus is already set.
2545 2574 */
2546 2575 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2547 2576 /*
2548 2577 * Set plat-max-ncpus to number of maximum possible CPUs given
2549 2578 * in MADT if it hasn't been set.
2550 2579 * There's no formal way to detect max possible CPUs supported
2551 2580 * by platform according to ACPI spec3.0b. So current CPU
2552 2581 * hotplug implementation expects that all possible CPUs will
2553 2582 * have an entry in MADT table and set plat-max-ncpus to number
2554 2583 * of entries in MADT.
2555 2584 * With introducing of ACPI4.0, Maximum System Capability Table
2556 2585 * (MSCT) provides maximum number of CPUs supported by platform.
2557 2586 * If MSCT is unavailable, fall back to old way.
2558 2587 */
2559 2588 if (tp != NULL)
2560 2589 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2561 2590 }
2562 2591
2563 2592 /*
2564 2593 * Set boot property boot-max-ncpus to number of CPUs existing at
2565 2594 * boot time. boot-max-ncpus is mainly used for optimization.
2566 2595 */
2567 2596 if (tp != NULL)
2568 2597 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2569 2598
2570 2599 /*
2571 2600 * User-set boot-ncpus overrides firmware count
2572 2601 */
2573 2602 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2574 2603 return;
2575 2604
2576 2605 /*
2577 2606 * Set boot property boot-ncpus to number of active CPUs given in MADT
2578 2607 * if it hasn't been set yet.
2579 2608 */
2580 2609 if (tp != NULL)
2581 2610 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2582 2611 }
2583 2612
2584 2613 static void
2585 2614 process_srat(ACPI_TABLE_SRAT *tp)
2586 2615 {
2587 2616 ACPI_SUBTABLE_HEADER *item, *end;
2588 2617 int i;
2589 2618 int proc_num, mem_num;
2590 2619 #pragma pack(1)
2591 2620 struct {
2592 2621 uint32_t domain;
2593 2622 uint32_t apic_id;
2594 2623 uint32_t sapic_id;
2595 2624 } processor;
2596 2625 struct {
2597 2626 uint32_t domain;
2598 2627 uint32_t x2apic_id;
2599 2628 } x2apic;
2600 2629 struct {
2601 2630 uint32_t domain;
2602 2631 uint64_t addr;
2603 2632 uint64_t length;
2604 2633 uint32_t flags;
2605 2634 } memory;
2606 2635 #pragma pack()
2607 2636 char prop_name[30];
2608 2637 uint64_t maxmem = 0;
2609 2638
2610 2639 if (tp == NULL)
2611 2640 return;
2612 2641
2613 2642 proc_num = mem_num = 0;
2614 2643 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2615 2644 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2616 2645 while (item < end) {
2617 2646 switch (item->Type) {
2618 2647 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2619 2648 ACPI_SRAT_CPU_AFFINITY *cpu =
2620 2649 (ACPI_SRAT_CPU_AFFINITY *) item;
2621 2650
2622 2651 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2623 2652 break;
2624 2653 processor.domain = cpu->ProximityDomainLo;
2625 2654 for (i = 0; i < 3; i++)
2626 2655 processor.domain +=
2627 2656 cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2628 2657 processor.apic_id = cpu->ApicId;
2629 2658 processor.sapic_id = cpu->LocalSapicEid;
2630 2659 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2631 2660 proc_num);
2632 2661 bsetprop(DDI_PROP_TYPE_INT,
2633 2662 prop_name, strlen(prop_name), &processor,
2634 2663 sizeof (processor));
2635 2664 proc_num++;
2636 2665 break;
2637 2666 }
2638 2667 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2639 2668 ACPI_SRAT_MEM_AFFINITY *mem =
2640 2669 (ACPI_SRAT_MEM_AFFINITY *)item;
2641 2670
2642 2671 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2643 2672 break;
2644 2673 memory.domain = mem->ProximityDomain;
2645 2674 memory.addr = mem->BaseAddress;
2646 2675 memory.length = mem->Length;
2647 2676 memory.flags = mem->Flags;
2648 2677 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2649 2678 mem_num);
2650 2679 bsetprop(DDI_PROP_TYPE_INT,
2651 2680 prop_name, strlen(prop_name), &memory,
2652 2681 sizeof (memory));
2653 2682 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2654 2683 (memory.addr + memory.length > maxmem)) {
2655 2684 maxmem = memory.addr + memory.length;
2656 2685 }
2657 2686 mem_num++;
2658 2687 break;
2659 2688 }
2660 2689 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2661 2690 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2662 2691 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2663 2692
2664 2693 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2665 2694 break;
2666 2695 x2apic.domain = x2cpu->ProximityDomain;
2667 2696 x2apic.x2apic_id = x2cpu->ApicId;
2668 2697 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2669 2698 proc_num);
2670 2699 bsetprop(DDI_PROP_TYPE_INT,
2671 2700 prop_name, strlen(prop_name), &x2apic,
2672 2701 sizeof (x2apic));
2673 2702 proc_num++;
2674 2703 break;
2675 2704 }
2676 2705 default:
2677 2706 if (kbm_debug)
2678 2707 bop_printf(NULL, "SRAT type %d\n", item->Type);
2679 2708 break;
2680 2709 }
2681 2710
2682 2711 item = (ACPI_SUBTABLE_HEADER *)
2683 2712 (item->Length + (uintptr_t)item);
2684 2713 }
2685 2714
2686 2715 /*
2687 2716 * The maximum physical address calculated from the SRAT table is more
2688 2717 * accurate than that calculated from the MSCT table.
2689 2718 */
2690 2719 if (maxmem != 0) {
2691 2720 plat_dr_physmax = btop(maxmem);
2692 2721 }
2693 2722 }
2694 2723
2695 2724 static void
2696 2725 process_slit(ACPI_TABLE_SLIT *tp)
2697 2726 {
2698 2727
2699 2728 /*
2700 2729 * Check the number of localities; if it's too huge, we just
2701 2730 * return and locality enumeration code will handle this later,
2702 2731 * if possible.
2703 2732 *
2704 2733 * Note that the size of the table is the square of the
2705 2734 * number of localities; if the number of localities exceeds
2706 2735 * UINT16_MAX, the table size may overflow an int when being
2707 2736 * passed to bsetprop() below.
2708 2737 */
2709 2738 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2710 2739 return;
2711 2740
2712 2741 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2713 2742 bsetprop(DDI_PROP_TYPE_BYTE,
2714 2743 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2715 2744 tp->LocalityCount * tp->LocalityCount);
2716 2745 }
2717 2746
2718 2747 static ACPI_TABLE_MSCT *
2719 2748 process_msct(ACPI_TABLE_MSCT *tp)
2720 2749 {
2721 2750 int last_seen = 0;
2722 2751 int proc_num = 0;
2723 2752 ACPI_MSCT_PROXIMITY *item, *end;
2724 2753 extern uint64_t plat_dr_options;
2725 2754
2726 2755 ASSERT(tp != NULL);
2727 2756
2728 2757 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2729 2758 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2730 2759 item < end;
2731 2760 item = (void *)(item->Length + (uintptr_t)item)) {
2732 2761 /*
2733 2762 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2734 2763 * Revision 1
2735 2764 * Length 22
2736 2765 */
2737 2766 if (item->Revision != 1 || item->Length != 22) {
2738 2767 cmn_err(CE_CONT,
2739 2768 "?boot: unknown proximity domain structure in MSCT "
2740 2769 "with Revision(%d), Length(%d).\n",
2741 2770 (int)item->Revision, (int)item->Length);
2742 2771 return (NULL);
2743 2772 } else if (item->RangeStart > item->RangeEnd) {
2744 2773 cmn_err(CE_CONT,
2745 2774 "?boot: invalid proximity domain structure in MSCT "
2746 2775 "with RangeStart(%u), RangeEnd(%u).\n",
2747 2776 item->RangeStart, item->RangeEnd);
2748 2777 return (NULL);
2749 2778 } else if (item->RangeStart != last_seen) {
2750 2779 /*
2751 2780 * Items must be organized in ascending order of the
2752 2781 * proximity domain enumerations.
2753 2782 */
2754 2783 cmn_err(CE_CONT,
2755 2784 "?boot: invalid proximity domain structure in MSCT,"
2756 2785 " items are not orginized in ascending order.\n");
2757 2786 return (NULL);
2758 2787 }
2759 2788
2760 2789 /*
2761 2790 * If ProcessorCapacity is 0 then there would be no CPUs in this
2762 2791 * domain.
2763 2792 */
2764 2793 if (item->ProcessorCapacity != 0) {
2765 2794 proc_num += (item->RangeEnd - item->RangeStart + 1) *
2766 2795 item->ProcessorCapacity;
2767 2796 }
2768 2797
2769 2798 last_seen = item->RangeEnd - item->RangeStart + 1;
2770 2799 /*
2771 2800 * Break out if all proximity domains have been processed.
2772 2801 * Some BIOSes may have unused items at the end of MSCT table.
2773 2802 */
2774 2803 if (last_seen > tp->MaxProximityDomains) {
2775 2804 break;
2776 2805 }
2777 2806 }
2778 2807 if (last_seen != tp->MaxProximityDomains + 1) {
2779 2808 cmn_err(CE_CONT,
2780 2809 "?boot: invalid proximity domain structure in MSCT, "
2781 2810 "proximity domain count doesn't match.\n");
2782 2811 return (NULL);
2783 2812 }
2784 2813
2785 2814 /*
2786 2815 * Set plat-max-ncpus property if it hasn't been set yet.
2787 2816 */
2788 2817 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2789 2818 if (proc_num != 0) {
2790 2819 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2791 2820 }
2792 2821 }
2793 2822
2794 2823 /*
2795 2824 * Use Maximum Physical Address from the MSCT table as upper limit for
2796 2825 * memory hot-adding by default. It may be overridden by value from
2797 2826 * the SRAT table or the "plat-dr-physmax" boot option.
2798 2827 */
2799 2828 plat_dr_physmax = btop(tp->MaxAddress + 1);
2800 2829
2801 2830 /*
2802 2831 * Existence of MSCT implies CPU/memory hotplug-capability for the
2803 2832 * platform.
2804 2833 */
2805 2834 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2806 2835 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2807 2836
2808 2837 return (tp);
2809 2838 }
2810 2839
2811 2840 #else /* __xpv */
2812 2841 static void
2813 2842 enumerate_xen_cpus()
2814 2843 {
2815 2844 processorid_t id, max_id;
2816 2845
2817 2846 /*
2818 2847 * User-set boot-ncpus overrides enumeration
2819 2848 */
2820 2849 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2821 2850 return;
2822 2851
2823 2852 /*
2824 2853 * Probe every possible virtual CPU id and remember the
2825 2854 * highest id present; the count of CPUs is one greater
2826 2855 * than this. This tacitly assumes at least cpu 0 is present.
2827 2856 */
2828 2857 max_id = 0;
2829 2858 for (id = 0; id < MAX_VIRT_CPUS; id++)
2830 2859 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2831 2860 max_id = id;
2832 2861
↓ open down ↓ |
416 lines elided |
↑ open up ↑ |
2833 2862 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2834 2863
2835 2864 }
2836 2865 #endif /* __xpv */
2837 2866
2838 2867 /*ARGSUSED*/
2839 2868 static void
2840 2869 build_firmware_properties(struct xboot_info *xbp)
2841 2870 {
2842 2871 ACPI_TABLE_HEADER *tp = NULL;
2872 + ACPI_TABLE_RSDP *rsdp;
2843 2873
2844 2874 #ifndef __xpv
2845 2875 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2846 2876 bsetprops("efi-systype", "64");
2847 2877 bsetprop64("efi-systab",
2848 2878 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2849 2879 if (kbm_debug)
2850 2880 bop_printf(NULL, "64-bit UEFI detected.\n");
2851 2881 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2852 2882 bsetprops("efi-systype", "32");
2853 2883 bsetprop64("efi-systab",
2854 2884 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2855 2885 if (kbm_debug)
2856 2886 bop_printf(NULL, "32-bit UEFI detected.\n");
2857 2887 }
2858 2888
2859 - if (xbp->bi_acpi_rsdp != NULL) {
2860 - bsetprop64("acpi-root-tab",
2861 - (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2862 - }
2863 -
2864 2889 if (xbp->bi_smbios != NULL) {
2865 2890 bsetprop64("smbios-address",
2866 2891 (uint64_t)(uintptr_t)xbp->bi_smbios);
2867 2892 }
2868 2893
2869 - if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2894 + rsdp = find_rsdp(xbp);
2895 +
2896 + if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL)
2870 2897 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2871 2898 else
2872 2899 msct_ptr = NULL;
2873 2900
2874 - if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2901 + if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL)
2875 2902 process_madt((ACPI_TABLE_MADT *)tp);
2876 2903
2877 2904 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2878 - find_fw_table(ACPI_SIG_SRAT)) != NULL)
2905 + find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL)
2879 2906 process_srat(srat_ptr);
2880 2907
2881 - if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2908 + if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp, ACPI_SIG_SLIT))
2882 2909 process_slit(slit_ptr);
2883 2910
2884 - tp = find_fw_table(ACPI_SIG_MCFG);
2911 + tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2885 2912 #else /* __xpv */
2886 2913 enumerate_xen_cpus();
2887 2914 if (DOMAIN_IS_INITDOMAIN(xen_info))
2888 - tp = find_fw_table(ACPI_SIG_MCFG);
2915 + tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2889 2916 #endif /* __xpv */
2890 2917 if (tp != NULL)
2891 2918 process_mcfg((ACPI_TABLE_MCFG *)tp);
2892 2919 }
2893 2920
2894 2921 /*
2895 2922 * fake up a boot property for deferred early console output
2896 2923 * this is used by both graphical boot and the (developer only)
2897 2924 * USB serial console
2898 2925 */
2899 2926 void *
2900 2927 defcons_init(size_t size)
2901 2928 {
2902 2929 static char *p = NULL;
2903 2930
2904 2931 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2905 2932 *p = 0;
2906 2933 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2907 2934 return (p);
2908 2935 }
2909 2936
2910 2937 /*ARGSUSED*/
2911 2938 int
2912 2939 boot_compinfo(int fd, struct compinfo *cbp)
2913 2940 {
2914 2941 cbp->iscmp = 0;
2915 2942 cbp->blksize = MAXBSIZE;
2916 2943 return (0);
2917 2944 }
2918 2945
2919 2946 /*
2920 2947 * Get an integer value for given boot property
2921 2948 */
2922 2949 int
2923 2950 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2924 2951 {
2925 2952 int boot_prop_len;
2926 2953 char str[BP_MAX_STRLEN];
2927 2954 u_longlong_t value;
2928 2955
2929 2956 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2930 2957 if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) ||
2931 2958 BOP_GETPROP(bootops, prop_name, str) < 0 ||
2932 2959 kobj_getvalue(str, &value) == -1)
2933 2960 return (-1);
2934 2961
2935 2962 if (prop_value)
2936 2963 *prop_value = value;
2937 2964
2938 2965 return (0);
2939 2966 }
2940 2967
2941 2968 int
2942 2969 bootprop_getstr(const char *prop_name, char *buf, size_t buflen)
2943 2970 {
2944 2971 int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2945 2972
2946 2973 if (boot_prop_len < 0 || boot_prop_len >= buflen ||
2947 2974 BOP_GETPROP(bootops, prop_name, buf) < 0)
2948 2975 return (-1);
2949 2976
2950 2977 return (0);
2951 2978 }
↓ open down ↓ |
53 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX