1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 *
29 * Copyright 2020 Joyent, Inc.
30 */
31
32 /*
33 * This file contains the functionality that mimics the boot operations
34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 * The x86 kernel now does everything on its own.
36 */
37
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/framebuffer.h>
54 #include <sys/cmn_err.h>
55 #include <sys/systm.h>
56 #include <sys/promif.h>
57 #include <sys/archsystm.h>
58 #include <sys/x86_archext.h>
59 #include <sys/kobj.h>
60 #include <sys/privregs.h>
61 #include <sys/sysmacros.h>
62 #include <sys/ctype.h>
63 #include <sys/fastboot.h>
64 #ifdef __xpv
65 #include <sys/hypervisor.h>
66 #include <net/if.h>
67 #endif
68 #include <vm/kboot_mmu.h>
69 #include <vm/hat_pte.h>
70 #include <sys/kobj.h>
71 #include <sys/kobj_lex.h>
72 #include <sys/pci_cfgspace_impl.h>
73 #include <sys/fastboot_impl.h>
74 #include <sys/acpi/acconfig.h>
75 #include <sys/acpi/acpi.h>
76 #include <sys/ddipropdefs.h> /* For DDI prop types */
77
78 static int have_console = 0; /* set once primitive console is initialized */
79 static char *boot_args = "";
80
81 /*
82 * Debugging macros
83 */
84 static uint_t kbm_debug = 0;
85 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
86 #define DBG(x) { if (kbm_debug) \
87 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
88 }
89
90 #define PUT_STRING(s) { \
91 char *cp; \
92 for (cp = (s); *cp; ++cp) \
93 bcons_putchar(*cp); \
94 }
95
96 /* callback to boot_fb to set shadow frame buffer */
97 extern void boot_fb_shadow_init(bootops_t *);
98
99 bootops_t bootop; /* simple bootops we'll pass on to kernel */
100 struct bsys_mem bm;
101
102 /*
103 * Boot info from "glue" code in low memory. xbootp is used by:
104 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
105 */
106 static struct xboot_info *xbootp;
107 static uintptr_t next_virt; /* next available virtual address */
108 static paddr_t next_phys; /* next available physical address from dboot */
109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
110
111 /*
112 * buffer for vsnprintf for console I/O
113 */
114 #define BUFFERSIZE 512
115 static char buffer[BUFFERSIZE];
116
117 /*
118 * stuff to store/report/manipulate boot property settings.
119 */
120 typedef struct bootprop {
121 struct bootprop *bp_next;
122 char *bp_name;
123 int bp_flags; /* DDI prop type */
124 uint_t bp_vlen; /* 0 for boolean */
125 char *bp_value;
126 } bootprop_t;
127
128 static bootprop_t *bprops = NULL;
129 static char *curr_page = NULL; /* ptr to avail bprop memory */
130 static int curr_space = 0; /* amount of memory at curr_page */
131
132 #ifdef __xpv
133 start_info_t *xen_info;
134 shared_info_t *HYPERVISOR_shared_info;
135 #endif
136
137 /*
138 * some allocator statistics
139 */
140 static ulong_t total_bop_alloc_scratch = 0;
141 static ulong_t total_bop_alloc_kernel = 0;
142
143 static void build_firmware_properties(struct xboot_info *);
144
145 static int early_allocation = 1;
146
147 int force_fastreboot = 0;
148 volatile int fastreboot_onpanic = 0;
149 int post_fastreboot = 0;
150 #ifdef __xpv
151 volatile int fastreboot_capable = 0;
152 #else
153 volatile int fastreboot_capable = 1;
154 #endif
155
156 /*
157 * Information saved from current boot for fast reboot.
158 * If the information size exceeds what we have allocated, fast reboot
159 * will not be supported.
160 */
161 multiboot_info_t saved_mbi;
162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
165 int saved_cmdline_len = 0;
166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
167
168 /*
169 * Turn off fastreboot_onpanic to avoid panic loop.
170 */
171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
173
174 /*
175 * Pointers to where System Resource Affinity Table (SRAT), System Locality
176 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
177 * are mapped into virtual memory
178 */
179 ACPI_TABLE_SRAT *srat_ptr = NULL;
180 ACPI_TABLE_SLIT *slit_ptr = NULL;
181 ACPI_TABLE_MSCT *msct_ptr = NULL;
182
183 /*
184 * Arbitrary limit on number of localities we handle; if
185 * this limit is raised to more than UINT16_MAX, make sure
186 * process_slit() knows how to handle it.
187 */
188 #define SLIT_LOCALITIES_MAX (4096)
189
190 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
191 #define SLIT_PROPNAME "acpi-slit"
192
193 /*
194 * Allocate aligned physical memory at boot time. This allocator allocates
195 * from the highest possible addresses. This avoids exhausting memory that
196 * would be useful for DMA buffers.
197 */
198 paddr_t
199 do_bop_phys_alloc(uint64_t size, uint64_t align)
200 {
201 paddr_t pa = 0;
202 paddr_t start;
203 paddr_t end;
204 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
205
206 /*
207 * Be careful if high memory usage is limited in startup.c
208 * Since there are holes in the low part of the physical address
209 * space we can treat physmem as a pfn (not just a pgcnt) and
210 * get a conservative upper limit.
211 */
212 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
213 high_phys = pfn_to_pa(physmem);
214
215 /*
216 * find the highest available memory in physinstalled
217 */
218 size = P2ROUNDUP(size, align);
219 for (; ml; ml = ml->ml_next) {
220 start = P2ROUNDUP(ml->ml_address, align);
221 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
222 if (start < next_phys)
223 start = P2ROUNDUP(next_phys, align);
224 if (end > high_phys)
225 end = P2ALIGN(high_phys, align);
226
227 if (end <= start)
228 continue;
229 if (end - start < size)
230 continue;
231
232 /*
233 * Early allocations need to use low memory, since
234 * physmem might be further limited by bootenv.rc
235 */
236 if (early_allocation) {
237 if (pa == 0 || start < pa)
238 pa = start;
239 } else {
240 if (end - size > pa)
241 pa = end - size;
242 }
243 }
244 if (pa != 0) {
245 if (early_allocation)
246 next_phys = pa + size;
247 else
248 high_phys = pa;
249 return (pa);
250 }
251 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
252 ") Out of memory\n", size, align);
253 /*NOTREACHED*/
254 }
255
256 uintptr_t
257 alloc_vaddr(size_t size, paddr_t align)
258 {
259 uintptr_t rv;
260
261 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
262 rv = (uintptr_t)next_virt;
263 next_virt += size;
264 return (rv);
265 }
266
267 /*
268 * Allocate virtual memory. The size is always rounded up to a multiple
269 * of base pagesize.
270 */
271
272 /*ARGSUSED*/
273 static caddr_t
274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
275 {
276 paddr_t a = align; /* same type as pa for masking */
277 uint_t pgsize;
278 paddr_t pa;
279 uintptr_t va;
280 ssize_t s; /* the aligned size */
281 uint_t level;
282 uint_t is_kernel = (virthint != 0);
283
284 if (a < MMU_PAGESIZE)
285 a = MMU_PAGESIZE;
286 else if (!ISP2(a))
287 prom_panic("do_bsys_alloc() incorrect alignment");
288 size = P2ROUNDUP(size, MMU_PAGESIZE);
289
290 /*
291 * Use the next aligned virtual address if we weren't given one.
292 */
293 if (virthint == NULL) {
294 virthint = (caddr_t)alloc_vaddr(size, a);
295 total_bop_alloc_scratch += size;
296 } else {
297 total_bop_alloc_kernel += size;
298 }
299
300 /*
301 * allocate the physical memory
302 */
303 pa = do_bop_phys_alloc(size, a);
304
305 /*
306 * Add the mappings to the page tables, try large pages first.
307 */
308 va = (uintptr_t)virthint;
309 s = size;
310 level = 1;
311 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
312 if (xbootp->bi_use_largepage && a == pgsize) {
313 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
314 s >= pgsize) {
315 kbm_map(va, pa, level, is_kernel);
316 va += pgsize;
317 pa += pgsize;
318 s -= pgsize;
319 }
320 }
321
322 /*
323 * Map remaining pages use small mappings
324 */
325 level = 0;
326 pgsize = MMU_PAGESIZE;
327 while (s > 0) {
328 kbm_map(va, pa, level, is_kernel);
329 va += pgsize;
330 pa += pgsize;
331 s -= pgsize;
332 }
333 return (virthint);
334 }
335
336 /*
337 * Free virtual memory - we'll just ignore these.
338 */
339 /*ARGSUSED*/
340 static void
341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
342 {
343 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
344 (void *)virt, size);
345 }
346
347 /*
348 * Old interface
349 */
350 /*ARGSUSED*/
351 static caddr_t
352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
353 int align, int flags)
354 {
355 prom_panic("unsupported call to BOP_EALLOC()\n");
356 return (0);
357 }
358
359
360 static void
361 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
362 {
363 uint_t size;
364 uint_t need_size;
365 bootprop_t *b;
366
367 /*
368 * align the size to 16 byte boundary
369 */
370 size = sizeof (bootprop_t) + nlen + 1 + vlen;
371 size = (size + 0xf) & ~0xf;
372 if (size > curr_space) {
373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
375 curr_space = need_size;
376 }
377
378 /*
379 * use a bootprop_t at curr_page and link into list
380 */
381 b = (bootprop_t *)curr_page;
382 curr_page += sizeof (bootprop_t);
383 curr_space -= sizeof (bootprop_t);
384 b->bp_next = bprops;
385 bprops = b;
386
387 /*
388 * follow by name and ending zero byte
389 */
390 b->bp_name = curr_page;
391 bcopy(name, curr_page, nlen);
392 curr_page += nlen;
393 *curr_page++ = 0;
394 curr_space -= nlen + 1;
395
396 /*
397 * set the property type
398 */
399 b->bp_flags = flags & DDI_PROP_TYPE_MASK;
400
401 /*
402 * copy in value, but no ending zero byte
403 */
404 b->bp_value = curr_page;
405 b->bp_vlen = vlen;
406 if (vlen > 0) {
407 bcopy(value, curr_page, vlen);
408 curr_page += vlen;
409 curr_space -= vlen;
410 }
411
412 /*
413 * align new values of curr_page, curr_space
414 */
415 while (curr_space & 0xf) {
416 ++curr_page;
417 --curr_space;
418 }
419 }
420
421 static void
422 bsetprops(char *name, char *value)
423 {
424 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
425 value, strlen(value) + 1);
426 }
427
428 static void
429 bsetprop32(char *name, uint32_t value)
430 {
431 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
432 (void *)&value, sizeof (value));
433 }
434
435 static void
436 bsetprop64(char *name, uint64_t value)
437 {
438 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
439 (void *)&value, sizeof (value));
440 }
441
442 static void
443 bsetpropsi(char *name, int value)
444 {
445 char prop_val[32];
446
447 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
448 bsetprops(name, prop_val);
449 }
450
451 /*
452 * to find the type of the value associated with this name
453 */
454 /*ARGSUSED*/
455 int
456 do_bsys_getproptype(bootops_t *bop, const char *name)
457 {
458 bootprop_t *b;
459
460 for (b = bprops; b != NULL; b = b->bp_next) {
461 if (strcmp(name, b->bp_name) != 0)
462 continue;
463 return (b->bp_flags);
464 }
465 return (-1);
466 }
467
468 /*
469 * to find the size of the buffer to allocate
470 */
471 /*ARGSUSED*/
472 int
473 do_bsys_getproplen(bootops_t *bop, const char *name)
474 {
475 bootprop_t *b;
476
477 for (b = bprops; b; b = b->bp_next) {
478 if (strcmp(name, b->bp_name) != 0)
479 continue;
480 return (b->bp_vlen);
481 }
482 return (-1);
483 }
484
485 /*
486 * get the value associated with this name
487 */
488 /*ARGSUSED*/
489 int
490 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
491 {
492 bootprop_t *b;
493
494 for (b = bprops; b; b = b->bp_next) {
495 if (strcmp(name, b->bp_name) != 0)
496 continue;
497 bcopy(b->bp_value, value, b->bp_vlen);
498 return (0);
499 }
500 return (-1);
501 }
502
503 /*
504 * get the name of the next property in succession from the standalone
505 */
506 /*ARGSUSED*/
507 static char *
508 do_bsys_nextprop(bootops_t *bop, char *name)
509 {
510 bootprop_t *b;
511
512 /*
513 * A null name is a special signal for the 1st boot property
514 */
515 if (name == NULL || strlen(name) == 0) {
516 if (bprops == NULL)
517 return (NULL);
518 return (bprops->bp_name);
519 }
520
521 for (b = bprops; b; b = b->bp_next) {
522 if (name != b->bp_name)
523 continue;
524 b = b->bp_next;
525 if (b == NULL)
526 return (NULL);
527 return (b->bp_name);
528 }
529 return (NULL);
530 }
531
532 /*
533 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
534 */
535 static int
536 parse_value(char *p, uint64_t *retval)
537 {
538 int adjust = 0;
539 uint64_t tmp = 0;
540 int digit;
541 int radix = 10;
542
543 *retval = 0;
544 if (*p == '-' || *p == '~')
545 adjust = *p++;
546
547 if (*p == '0') {
548 ++p;
549 if (*p == 0)
550 return (0);
551 if (*p == 'x' || *p == 'X') {
552 radix = 16;
553 ++p;
554 } else {
555 radix = 8;
556 ++p;
557 }
558 }
559 while (*p) {
560 if ('0' <= *p && *p <= '9')
561 digit = *p - '0';
562 else if ('a' <= *p && *p <= 'f')
563 digit = 10 + *p - 'a';
564 else if ('A' <= *p && *p <= 'F')
565 digit = 10 + *p - 'A';
566 else
567 return (-1);
568 if (digit >= radix)
569 return (-1);
570 tmp = tmp * radix + digit;
571 ++p;
572 }
573 if (adjust == '-')
574 tmp = -tmp;
575 else if (adjust == '~')
576 tmp = ~tmp;
577 *retval = tmp;
578 return (0);
579 }
580
581 static boolean_t
582 unprintable(char *value, int size)
583 {
584 int i;
585
586 if (size <= 0 || value[0] == '\0')
587 return (B_TRUE);
588
589 for (i = 0; i < size; i++) {
590 if (value[i] == '\0')
591 return (i != (size - 1));
592
593 if (!isprint(value[i]))
594 return (B_TRUE);
595 }
596 return (B_FALSE);
597 }
598
599 /*
600 * Print out information about all boot properties.
601 * buffer is pointer to pre-allocated space to be used as temporary
602 * space for property values.
603 */
604 static void
605 boot_prop_display(char *buffer)
606 {
607 char *name = "";
608 int i, len, flags, *buf32;
609 int64_t *buf64;
610
611 bop_printf(NULL, "\nBoot properties:\n");
612
613 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
614 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
615 (void) do_bsys_getprop(NULL, name, buffer);
616 len = do_bsys_getproplen(NULL, name);
617 flags = do_bsys_getproptype(NULL, name);
618 bop_printf(NULL, "len=%d ", len);
619
620 switch (flags) {
621 case DDI_PROP_TYPE_INT:
622 len = len / sizeof (int);
623 buf32 = (int *)buffer;
624 for (i = 0; i < len; i++) {
625 bop_printf(NULL, "%08x", buf32[i]);
626 if (i < len - 1)
627 bop_printf(NULL, ".");
628 }
629 break;
630 case DDI_PROP_TYPE_STRING:
631 bop_printf(NULL, "%s", buffer);
632 break;
633 case DDI_PROP_TYPE_INT64:
634 len = len / sizeof (int64_t);
635 buf64 = (int64_t *)buffer;
636 for (i = 0; i < len; i++) {
637 bop_printf(NULL, "%016" PRIx64, buf64[i]);
638 if (i < len - 1)
639 bop_printf(NULL, ".");
640 }
641 break;
642 default:
643 if (!unprintable(buffer, len)) {
644 buffer[len] = 0;
645 bop_printf(NULL, "%s", buffer);
646 break;
647 }
648 for (i = 0; i < len; i++) {
649 bop_printf(NULL, "%02x", buffer[i] & 0xff);
650 if (i < len - 1)
651 bop_printf(NULL, ".");
652 }
653 break;
654 }
655 bop_printf(NULL, "\n");
656 }
657 }
658
659 /*
660 * 2nd part of building the table of boot properties. This includes:
661 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
662 *
663 * lines look like one of:
664 * ^$
665 * ^# comment till end of line
666 * setprop name 'value'
667 * setprop name value
668 * setprop name "value"
669 *
670 * we do single character I/O since this is really just looking at memory
671 */
672 void
673 boot_prop_finish(void)
674 {
675 int fd;
676 char *line;
677 int c;
678 int bytes_read;
679 char *name;
680 int n_len;
681 char *value;
682 int v_len;
683 char *inputdev; /* these override the command line if serial ports */
684 char *outputdev;
685 char *consoledev;
686 uint64_t lvalue;
687 int use_xencons = 0;
688 extern int bootrd_debug;
689
690 #ifdef __xpv
691 if (!DOMAIN_IS_INITDOMAIN(xen_info))
692 use_xencons = 1;
693 #endif /* __xpv */
694
695 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
696 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
697 DBG(fd);
698
699 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
700 while (fd >= 0) {
701
702 /*
703 * get a line
704 */
705 for (c = 0; ; ++c) {
706 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
707 if (bytes_read == 0) {
708 if (c == 0)
709 goto done;
710 break;
711 }
712 if (line[c] == '\n')
713 break;
714 }
715 line[c] = 0;
716
717 /*
718 * ignore comment lines
719 */
720 c = 0;
721 while (ISSPACE(line[c]))
722 ++c;
723 if (line[c] == '#' || line[c] == 0)
724 continue;
725
726 /*
727 * must have "setprop " or "setprop\t"
728 */
729 if (strncmp(line + c, "setprop ", 8) != 0 &&
730 strncmp(line + c, "setprop\t", 8) != 0)
731 continue;
732 c += 8;
733 while (ISSPACE(line[c]))
734 ++c;
735 if (line[c] == 0)
736 continue;
737
738 /*
739 * gather up the property name
740 */
741 name = line + c;
742 n_len = 0;
743 while (line[c] && !ISSPACE(line[c]))
744 ++n_len, ++c;
745
746 /*
747 * gather up the value, if any
748 */
749 value = "";
750 v_len = 0;
751 while (ISSPACE(line[c]))
752 ++c;
753 if (line[c] != 0) {
754 value = line + c;
755 while (line[c] && !ISSPACE(line[c]))
756 ++v_len, ++c;
757 }
758
759 if (v_len >= 2 && value[0] == value[v_len - 1] &&
760 (value[0] == '\'' || value[0] == '"')) {
761 ++value;
762 v_len -= 2;
763 }
764 name[n_len] = 0;
765 if (v_len > 0)
766 value[v_len] = 0;
767 else
768 continue;
769
770 /*
771 * ignore "boot-file" property, it's now meaningless
772 */
773 if (strcmp(name, "boot-file") == 0)
774 continue;
775 if (strcmp(name, "boot-args") == 0 &&
776 strlen(boot_args) > 0)
777 continue;
778
779 /*
780 * If a property was explicitly set on the command line
781 * it will override a setting in bootenv.rc
782 */
783 if (do_bsys_getproplen(NULL, name) >= 0)
784 continue;
785
786 bsetprops(name, value);
787 }
788 done:
789 if (fd >= 0)
790 (void) BRD_CLOSE(bfs_ops, fd);
791
792 /*
793 * Check if we have to limit the boot time allocator
794 */
795 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
796 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
797 parse_value(line, &lvalue) != -1) {
798 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
799 physmem = (pgcnt_t)lvalue;
800 DBG(physmem);
801 }
802 }
803 early_allocation = 0;
804
805 /*
806 * Check for bootrd_debug.
807 */
808 if (find_boot_prop("bootrd_debug"))
809 bootrd_debug = 1;
810
811 /*
812 * check to see if we have to override the default value of the console
813 */
814 if (!use_xencons) {
815 inputdev = line;
816 v_len = do_bsys_getproplen(NULL, "input-device");
817 if (v_len > 0)
818 (void) do_bsys_getprop(NULL, "input-device", inputdev);
819 else
820 v_len = 0;
821 inputdev[v_len] = 0;
822
823 outputdev = inputdev + v_len + 1;
824 v_len = do_bsys_getproplen(NULL, "output-device");
825 if (v_len > 0)
826 (void) do_bsys_getprop(NULL, "output-device",
827 outputdev);
828 else
829 v_len = 0;
830 outputdev[v_len] = 0;
831
832 consoledev = outputdev + v_len + 1;
833 v_len = do_bsys_getproplen(NULL, "console");
834 if (v_len > 0) {
835 (void) do_bsys_getprop(NULL, "console", consoledev);
836 if (post_fastreboot &&
837 strcmp(consoledev, "graphics") == 0) {
838 bsetprops("console", "text");
839 v_len = strlen("text");
840 bcopy("text", consoledev, v_len);
841 }
842 } else {
843 v_len = 0;
844 }
845 consoledev[v_len] = 0;
846 bcons_init2(inputdev, outputdev, consoledev);
847 } else {
848 /*
849 * Ensure console property exists
850 * If not create it as "hypervisor"
851 */
852 v_len = do_bsys_getproplen(NULL, "console");
853 if (v_len < 0)
854 bsetprops("console", "hypervisor");
855 inputdev = outputdev = consoledev = "hypervisor";
856 bcons_init2(inputdev, outputdev, consoledev);
857 }
858
859 if (find_boot_prop("prom_debug") || kbm_debug)
860 boot_prop_display(line);
861 }
862
863 /*
864 * print formatted output
865 */
866 /*ARGSUSED*/
867 void
868 vbop_printf(void *ptr, const char *fmt, va_list ap)
869 {
870 if (have_console == 0)
871 return;
872
873 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
874 PUT_STRING(buffer);
875 }
876
877 /*PRINTFLIKE2*/
878 void
879 bop_printf(void *bop, const char *fmt, ...)
880 {
881 va_list ap;
882
883 va_start(ap, fmt);
884 vbop_printf(bop, fmt, ap);
885 va_end(ap);
886 }
887
888 /*
889 * Another panic() variant; this one can be used even earlier during boot than
890 * prom_panic().
891 */
892 /*PRINTFLIKE1*/
893 void
894 bop_panic(const char *fmt, ...)
895 {
896 va_list ap;
897
898 va_start(ap, fmt);
899 bop_printf(NULL, fmt, ap);
900 va_end(ap);
901
902 bop_printf(NULL, "\nPress any key to reboot.\n");
903 (void) bcons_getchar();
904 bop_printf(NULL, "Resetting...\n");
905 pc_reset();
906 }
907
908 /*
909 * Do a real mode interrupt BIOS call
910 */
911 typedef struct bios_regs {
912 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
913 } bios_regs_t;
914 typedef int (*bios_func_t)(int, bios_regs_t *);
915
916 /*ARGSUSED*/
917 static void
918 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
919 {
920 #if defined(__xpv)
921 prom_panic("unsupported call to BOP_DOINT()\n");
922 #else /* __xpv */
923 static int firsttime = 1;
924 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
925 bios_regs_t br;
926
927 /*
928 * We're about to disable paging; we shouldn't be PCID enabled.
929 */
930 if (getcr4() & CR4_PCIDE)
931 prom_panic("do_bsys_doint() with PCID enabled\n");
932
933 /*
934 * The first time we do this, we have to copy the pre-packaged
935 * low memory bios call code image into place.
936 */
937 if (firsttime) {
938 extern char bios_image[];
939 extern uint32_t bios_size;
940
941 bcopy(bios_image, (void *)bios_func, bios_size);
942 firsttime = 0;
943 }
944
945 br.ax = rp->eax.word.ax;
946 br.bx = rp->ebx.word.bx;
947 br.cx = rp->ecx.word.cx;
948 br.dx = rp->edx.word.dx;
949 br.bp = rp->ebp.word.bp;
950 br.si = rp->esi.word.si;
951 br.di = rp->edi.word.di;
952 br.ds = rp->ds;
953 br.es = rp->es;
954
955 DBG_MSG("Doing BIOS call...");
956 DBG(br.ax);
957 DBG(br.bx);
958 DBG(br.dx);
959 rp->eflags = bios_func(intnum, &br);
960 DBG_MSG("done\n");
961
962 rp->eax.word.ax = br.ax;
963 rp->ebx.word.bx = br.bx;
964 rp->ecx.word.cx = br.cx;
965 rp->edx.word.dx = br.dx;
966 rp->ebp.word.bp = br.bp;
967 rp->esi.word.si = br.si;
968 rp->edi.word.di = br.di;
969 rp->ds = br.ds;
970 rp->es = br.es;
971 #endif /* __xpv */
972 }
973
974 static struct boot_syscalls bop_sysp = {
975 bcons_getchar,
976 bcons_putchar,
977 bcons_ischar,
978 };
979
980 static char *whoami;
981
982 #define BUFLEN 64
983
984 #if defined(__xpv)
985
986 static char namebuf[32];
987
988 static void
989 xen_parse_props(char *s, char *prop_map[], int n_prop)
990 {
991 char **prop_name = prop_map;
992 char *cp = s, *scp;
993
994 do {
995 scp = cp;
996 while ((*cp != '\0') && (*cp != ':'))
997 cp++;
998
999 if ((scp != cp) && (*prop_name != NULL)) {
1000 *cp = '\0';
1001 bsetprops(*prop_name, scp);
1002 }
1003
1004 cp++;
1005 prop_name++;
1006 n_prop--;
1007 } while (n_prop > 0);
1008 }
1009
1010 #define VBDPATHLEN 64
1011
1012 /*
1013 * parse the 'xpv-root' property to create properties used by
1014 * ufs_mountroot.
1015 */
1016 static void
1017 xen_vbdroot_props(char *s)
1018 {
1019 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1020 const char lnamefix[] = "/dev/dsk/c0d";
1021 char *pnp;
1022 char *prop_p;
1023 char mi;
1024 short minor;
1025 long addr = 0;
1026
1027 pnp = vbdpath + strlen(vbdpath);
1028 prop_p = s + strlen(lnamefix);
1029 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1030 addr = addr * 10 + *prop_p++ - '0';
1031 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1032 pnp = vbdpath + strlen(vbdpath);
1033 if (*prop_p == 's')
1034 mi = 'a';
1035 else if (*prop_p == 'p')
1036 mi = 'q';
1037 else
1038 ASSERT(0); /* shouldn't be here */
1039 prop_p++;
1040 ASSERT(*prop_p != '\0');
1041 if (ISDIGIT(*prop_p)) {
1042 minor = *prop_p - '0';
1043 prop_p++;
1044 if (ISDIGIT(*prop_p)) {
1045 minor = minor * 10 + *prop_p - '0';
1046 }
1047 } else {
1048 /* malformed root path, use 0 as default */
1049 minor = 0;
1050 }
1051 ASSERT(minor < 16); /* at most 16 partitions */
1052 mi += minor;
1053 *pnp++ = ':';
1054 *pnp++ = mi;
1055 *pnp++ = '\0';
1056 bsetprops("fstype", "ufs");
1057 bsetprops("bootpath", vbdpath);
1058
1059 DBG_MSG("VBD bootpath set to ");
1060 DBG_MSG(vbdpath);
1061 DBG_MSG("\n");
1062 }
1063
1064 /*
1065 * parse the xpv-nfsroot property to create properties used by
1066 * nfs_mountroot.
1067 */
1068 static void
1069 xen_nfsroot_props(char *s)
1070 {
1071 char *prop_map[] = {
1072 BP_SERVER_IP, /* server IP address */
1073 BP_SERVER_NAME, /* server hostname */
1074 BP_SERVER_PATH, /* root path */
1075 };
1076 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1077
1078 bsetprops("fstype", "nfs");
1079
1080 xen_parse_props(s, prop_map, n_prop);
1081
1082 /*
1083 * If a server name wasn't specified, use a default.
1084 */
1085 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1086 bsetprops(BP_SERVER_NAME, "unknown");
1087 }
1088
1089 /*
1090 * Extract our IP address, etc. from the "xpv-ip" property.
1091 */
1092 static void
1093 xen_ip_props(char *s)
1094 {
1095 char *prop_map[] = {
1096 BP_HOST_IP, /* IP address */
1097 NULL, /* NFS server IP address (ignored in */
1098 /* favour of xpv-nfsroot) */
1099 BP_ROUTER_IP, /* IP gateway */
1100 BP_SUBNET_MASK, /* IP subnet mask */
1101 "xpv-hostname", /* hostname (ignored) */
1102 BP_NETWORK_INTERFACE, /* interface name */
1103 "xpv-hcp", /* host configuration protocol */
1104 };
1105 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1106 char ifname[IFNAMSIZ];
1107
1108 xen_parse_props(s, prop_map, n_prop);
1109
1110 /*
1111 * A Linux dom0 administrator expects all interfaces to be
1112 * called "ethX", which is not the case here.
1113 *
1114 * If the interface name specified is "eth0", presume that
1115 * this is really intended to be "xnf0" (the first domU ->
1116 * dom0 interface for this domain).
1117 */
1118 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1119 (strcmp("eth0", ifname) == 0)) {
1120 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1121 bop_printf(NULL,
1122 "network interface name 'eth0' replaced with 'xnf0'\n");
1123 }
1124 }
1125
1126 #else /* __xpv */
1127
1128 static void
1129 setup_rarp_props(struct sol_netinfo *sip)
1130 {
1131 char buf[BUFLEN]; /* to hold ip/mac addrs */
1132 uint8_t *val;
1133
1134 val = (uint8_t *)&sip->sn_ciaddr;
1135 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1136 val[0], val[1], val[2], val[3]);
1137 bsetprops(BP_HOST_IP, buf);
1138
1139 val = (uint8_t *)&sip->sn_siaddr;
1140 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1141 val[0], val[1], val[2], val[3]);
1142 bsetprops(BP_SERVER_IP, buf);
1143
1144 if (sip->sn_giaddr != 0) {
1145 val = (uint8_t *)&sip->sn_giaddr;
1146 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1147 val[0], val[1], val[2], val[3]);
1148 bsetprops(BP_ROUTER_IP, buf);
1149 }
1150
1151 if (sip->sn_netmask != 0) {
1152 val = (uint8_t *)&sip->sn_netmask;
1153 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1154 val[0], val[1], val[2], val[3]);
1155 bsetprops(BP_SUBNET_MASK, buf);
1156 }
1157
1158 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1159 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1160 sip->sn_mactype, sip->sn_maclen);
1161 } else {
1162 val = sip->sn_macaddr;
1163 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1164 val[0], val[1], val[2], val[3], val[4], val[5]);
1165 bsetprops(BP_BOOT_MAC, buf);
1166 }
1167 }
1168
1169 #endif /* __xpv */
1170
1171 static void
1172 build_panic_cmdline(const char *cmd, int cmdlen)
1173 {
1174 int proplen;
1175 size_t arglen;
1176
1177 arglen = sizeof (fastreboot_onpanic_args);
1178 /*
1179 * If we allready have fastreboot-onpanic set to zero,
1180 * don't add them again.
1181 */
1182 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1183 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1184 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1185 fastreboot_onpanic_cmdline);
1186 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1187 arglen = 1;
1188 }
1189
1190 /*
1191 * construct fastreboot_onpanic_cmdline
1192 */
1193 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1194 DBG_MSG("Command line too long: clearing "
1195 FASTREBOOT_ONPANIC "\n");
1196 fastreboot_onpanic = 0;
1197 } else {
1198 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1199 if (arglen != 1)
1200 bcopy(fastreboot_onpanic_args,
1201 fastreboot_onpanic_cmdline + cmdlen, arglen);
1202 else
1203 fastreboot_onpanic_cmdline[cmdlen] = 0;
1204 }
1205 }
1206
1207
1208 #ifndef __xpv
1209 /*
1210 * Construct boot command line for Fast Reboot. The saved_cmdline
1211 * is also reported by "eeprom bootcmd".
1212 */
1213 static void
1214 build_fastboot_cmdline(struct xboot_info *xbp)
1215 {
1216 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1;
1217 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1218 DBG(saved_cmdline_len);
1219 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1220 fastreboot_capable = 0;
1221 } else {
1222 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1223 saved_cmdline_len);
1224 saved_cmdline[saved_cmdline_len - 1] = '\0';
1225 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1226 }
1227 }
1228
1229 /*
1230 * Save memory layout, disk drive information, unix and boot archive sizes for
1231 * Fast Reboot.
1232 */
1233 static void
1234 save_boot_info(struct xboot_info *xbi)
1235 {
1236 multiboot_info_t *mbi = xbi->bi_mb_info;
1237 struct boot_modules *modp;
1238 int i;
1239
1240 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1241 if (mbi->mmap_length > sizeof (saved_mmap)) {
1242 DBG_MSG("mbi->mmap_length too big: clearing "
1243 "fastreboot_capable\n");
1244 fastreboot_capable = 0;
1245 } else {
1246 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1247 mbi->mmap_length);
1248 }
1249
1250 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1251 if (mbi->drives_length > sizeof (saved_drives)) {
1252 DBG(mbi->drives_length);
1253 DBG_MSG("mbi->drives_length too big: clearing "
1254 "fastreboot_capable\n");
1255 fastreboot_capable = 0;
1256 } else {
1257 bcopy((void *)(uintptr_t)mbi->drives_addr,
1258 (void *)saved_drives, mbi->drives_length);
1259 }
1260 } else {
1261 saved_mbi.drives_length = 0;
1262 saved_mbi.drives_addr = 0;
1263 }
1264
1265 /*
1266 * Current file sizes. Used by fastboot.c to figure out how much
1267 * memory to reserve for panic reboot.
1268 * Use the module list from the dboot-constructed xboot_info
1269 * instead of the list referenced by the multiboot structure
1270 * because that structure may not be addressable now.
1271 */
1272 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1273 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1274 i < xbi->bi_module_cnt; i++, modp++) {
1275 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1276 }
1277 }
1278 #endif /* __xpv */
1279
1280 /*
1281 * Import boot environment module variables as properties, applying
1282 * blacklist filter for variables we know we will not use.
1283 *
1284 * Since the environment can be relatively large, containing many variables
1285 * used only for boot loader purposes, we will use a blacklist based filter.
1286 * To keep the blacklist from growing too large, we use prefix based filtering.
1287 * This is possible because in many cases, the loader variable names are
1288 * using a structured layout.
1289 *
1290 * We will not overwrite already set properties.
1291 *
1292 * Note that the menu items in particular can contain characters not
1293 * well-handled as bootparams, such as spaces, brackets, and the like, so that's
1294 * another reason.
1295 */
1296 static struct bop_blacklist {
1297 const char *bl_name;
1298 int bl_name_len;
1299 } bop_prop_blacklist[] = {
1300 { "ISADIR", sizeof ("ISADIR") },
1301 { "acpi", sizeof ("acpi") },
1302 { "autoboot_delay", sizeof ("autoboot_delay") },
1303 { "beansi_", sizeof ("beansi_") },
1304 { "beastie", sizeof ("beastie") },
1305 { "bemenu", sizeof ("bemenu") },
1306 { "boot.", sizeof ("boot.") },
1307 { "bootenv", sizeof ("bootenv") },
1308 { "currdev", sizeof ("currdev") },
1309 { "dhcp.", sizeof ("dhcp.") },
1310 { "interpret", sizeof ("interpret") },
1311 { "kernel", sizeof ("kernel") },
1312 { "loaddev", sizeof ("loaddev") },
1313 { "loader_", sizeof ("loader_") },
1314 { "mainansi_", sizeof ("mainansi_") },
1315 { "mainmenu_", sizeof ("mainmenu_") },
1316 { "maintoggled_", sizeof ("maintoggled_") },
1317 { "menu_timeout_command", sizeof ("menu_timeout_command") },
1318 { "menuset_", sizeof ("menuset_") },
1319 { "module_path", sizeof ("module_path") },
1320 { "nfs.", sizeof ("nfs.") },
1321 { "optionsansi_", sizeof ("optionsansi_") },
1322 { "optionsmenu_", sizeof ("optionsmenu_") },
1323 { "optionstoggled_", sizeof ("optionstoggled_") },
1324 { "pcibios", sizeof ("pcibios") },
1325 { "prompt", sizeof ("prompt") },
1326 { "smbios", sizeof ("smbios") },
1327 { "tem", sizeof ("tem") },
1328 { "twiddle_divisor", sizeof ("twiddle_divisor") },
1329 { "zfs_be", sizeof ("zfs_be") },
1330 };
1331
1332 /*
1333 * Match the name against prefixes in above blacklist. If the match was
1334 * found, this name is blacklisted.
1335 */
1336 static boolean_t
1337 name_is_blacklisted(const char *name)
1338 {
1339 int i, n;
1340
1341 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1342 for (i = 0; i < n; i++) {
1343 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1344 bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1345 return (B_TRUE);
1346 }
1347 }
1348 return (B_FALSE);
1349 }
1350
1351 static void
1352 process_boot_environment(struct boot_modules *benv)
1353 {
1354 char *env, *ptr, *name, *value;
1355 uint32_t size, name_len, value_len;
1356
1357 if (benv == NULL || benv->bm_type != BMT_ENV)
1358 return;
1359 ptr = env = benv->bm_addr;
1360 size = benv->bm_size;
1361 do {
1362 name = ptr;
1363 /* find '=' */
1364 while (*ptr != '=') {
1365 ptr++;
1366 if (ptr > env + size) /* Something is very wrong. */
1367 return;
1368 }
1369 name_len = ptr - name;
1370 if (sizeof (buffer) <= name_len)
1371 continue;
1372
1373 (void) strncpy(buffer, name, sizeof (buffer));
1374 buffer[name_len] = '\0';
1375 name = buffer;
1376
1377 value_len = 0;
1378 value = ++ptr;
1379 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1380 if (*ptr == '\0') {
1381 ptr++;
1382 value_len = (uintptr_t)ptr - (uintptr_t)env;
1383 break;
1384 }
1385 ptr++;
1386 }
1387
1388 /* Did we reach the end of the module? */
1389 if (value_len == 0)
1390 return;
1391
1392 if (*value == '\0')
1393 continue;
1394
1395 /* Is this property already set? */
1396 if (do_bsys_getproplen(NULL, name) >= 0)
1397 continue;
1398
1399 /* Translate netboot variables */
1400 if (strcmp(name, "boot.netif.gateway") == 0) {
1401 bsetprops(BP_ROUTER_IP, value);
1402 continue;
1403 }
1404 if (strcmp(name, "boot.netif.hwaddr") == 0) {
1405 bsetprops(BP_BOOT_MAC, value);
1406 continue;
1407 }
1408 if (strcmp(name, "boot.netif.ip") == 0) {
1409 bsetprops(BP_HOST_IP, value);
1410 continue;
1411 }
1412 if (strcmp(name, "boot.netif.netmask") == 0) {
1413 bsetprops(BP_SUBNET_MASK, value);
1414 continue;
1415 }
1416 if (strcmp(name, "boot.netif.server") == 0) {
1417 bsetprops(BP_SERVER_IP, value);
1418 continue;
1419 }
1420 if (strcmp(name, "boot.netif.server") == 0) {
1421 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1422 bsetprops(BP_SERVER_IP, value);
1423 continue;
1424 }
1425 if (strcmp(name, "boot.nfsroot.server") == 0) {
1426 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1427 bsetprops(BP_SERVER_IP, value);
1428 continue;
1429 }
1430 if (strcmp(name, "boot.nfsroot.path") == 0) {
1431 bsetprops(BP_SERVER_PATH, value);
1432 continue;
1433 }
1434
1435 if (name_is_blacklisted(name) == B_TRUE)
1436 continue;
1437
1438 /* Create new property. */
1439 bsetprops(name, value);
1440
1441 /* Avoid reading past the module end. */
1442 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1443 return;
1444 } while (*ptr != '\0');
1445 }
1446
1447 /*
1448 * 1st pass at building the table of boot properties. This includes:
1449 * - values set on the command line: -B a=x,b=y,c=z ....
1450 * - known values we just compute (ie. from xbp)
1451 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1452 *
1453 * the grub command line looked like:
1454 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1455 *
1456 * whoami is the same as boot-file
1457 */
1458 static void
1459 build_boot_properties(struct xboot_info *xbp)
1460 {
1461 char *name;
1462 int name_len;
1463 char *value;
1464 int value_len;
1465 struct boot_modules *bm, *rdbm, *benv = NULL;
1466 char *propbuf;
1467 int quoted = 0;
1468 int boot_arg_len;
1469 uint_t i, midx;
1470 char modid[32];
1471 #ifndef __xpv
1472 static int stdout_val = 0;
1473 uchar_t boot_device;
1474 char str[3];
1475 #endif
1476
1477 /*
1478 * These have to be done first, so that kobj_mount_root() works
1479 */
1480 DBG_MSG("Building boot properties\n");
1481 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1482 DBG((uintptr_t)propbuf);
1483 if (xbp->bi_module_cnt > 0) {
1484 bm = xbp->bi_modules;
1485 rdbm = NULL;
1486 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1487 if (bm[i].bm_type == BMT_ROOTFS) {
1488 rdbm = &bm[i];
1489 continue;
1490 }
1491 if (bm[i].bm_type == BMT_HASH ||
1492 bm[i].bm_type == BMT_FONT ||
1493 bm[i].bm_name == NULL)
1494 continue;
1495
1496 if (bm[i].bm_type == BMT_ENV) {
1497 if (benv == NULL)
1498 benv = &bm[i];
1499 else
1500 continue;
1501 }
1502
1503 (void) snprintf(modid, sizeof (modid),
1504 "module-name-%u", midx);
1505 bsetprops(modid, (char *)bm[i].bm_name);
1506 (void) snprintf(modid, sizeof (modid),
1507 "module-addr-%u", midx);
1508 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1509 (void) snprintf(modid, sizeof (modid),
1510 "module-size-%u", midx);
1511 bsetprop64(modid, (uint64_t)bm[i].bm_size);
1512 ++midx;
1513 }
1514 if (rdbm != NULL) {
1515 bsetprop64("ramdisk_start",
1516 (uint64_t)(uintptr_t)rdbm->bm_addr);
1517 bsetprop64("ramdisk_end",
1518 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1519 }
1520 }
1521
1522 /*
1523 * If there are any boot time modules or hashes present, then disable
1524 * fast reboot.
1525 */
1526 if (xbp->bi_module_cnt > 1) {
1527 fastreboot_disable(FBNS_BOOTMOD);
1528 }
1529
1530 #ifndef __xpv
1531 /*
1532 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1533 * since we don't currently support MB2 info and module relocation.
1534 * Note that fast reboot will have already been disabled if multiple
1535 * modules are present, since the current implementation assumes that
1536 * we only have a single module, the boot_archive.
1537 */
1538 if (xbp->bi_mb_version != 1) {
1539 fastreboot_disable(FBNS_MULTIBOOT2);
1540 }
1541 #endif
1542
1543 DBG_MSG("Parsing command line for boot properties\n");
1544 value = xbp->bi_cmdline;
1545
1546 /*
1547 * allocate memory to collect boot_args into
1548 */
1549 boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1550 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1551 boot_args[0] = 0;
1552 boot_arg_len = 0;
1553
1554 #ifdef __xpv
1555 /*
1556 * Xen puts a lot of device information in front of the kernel name
1557 * let's grab them and make them boot properties. The first
1558 * string w/o an "=" in it will be the boot-file property.
1559 */
1560 (void) strcpy(namebuf, "xpv-");
1561 for (;;) {
1562 /*
1563 * get to next property
1564 */
1565 while (ISSPACE(*value))
1566 ++value;
1567 name = value;
1568 /*
1569 * look for an "="
1570 */
1571 while (*value && !ISSPACE(*value) && *value != '=') {
1572 value++;
1573 }
1574 if (*value != '=') { /* no "=" in the property */
1575 value = name;
1576 break;
1577 }
1578 name_len = value - name;
1579 value_len = 0;
1580 /*
1581 * skip over the "="
1582 */
1583 value++;
1584 while (value[value_len] && !ISSPACE(value[value_len])) {
1585 ++value_len;
1586 }
1587 /*
1588 * build property name with "xpv-" prefix
1589 */
1590 if (name_len + 4 > 32) { /* skip if name too long */
1591 value += value_len;
1592 continue;
1593 }
1594 bcopy(name, &namebuf[4], name_len);
1595 name_len += 4;
1596 namebuf[name_len] = 0;
1597 bcopy(value, propbuf, value_len);
1598 propbuf[value_len] = 0;
1599 bsetprops(namebuf, propbuf);
1600
1601 /*
1602 * xpv-root is set to the logical disk name of the xen
1603 * VBD when booting from a disk-based filesystem.
1604 */
1605 if (strcmp(namebuf, "xpv-root") == 0)
1606 xen_vbdroot_props(propbuf);
1607 /*
1608 * While we're here, if we have a "xpv-nfsroot" property
1609 * then we need to set "fstype" to "nfs" so we mount
1610 * our root from the nfs server. Also parse the xpv-nfsroot
1611 * property to create the properties that nfs_mountroot will
1612 * need to find the root and mount it.
1613 */
1614 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1615 xen_nfsroot_props(propbuf);
1616
1617 if (strcmp(namebuf, "xpv-ip") == 0)
1618 xen_ip_props(propbuf);
1619 value += value_len;
1620 }
1621 #endif
1622
1623 while (ISSPACE(*value))
1624 ++value;
1625 /*
1626 * value now points at the boot-file
1627 */
1628 value_len = 0;
1629 while (value[value_len] && !ISSPACE(value[value_len]))
1630 ++value_len;
1631 if (value_len > 0) {
1632 whoami = propbuf;
1633 bcopy(value, whoami, value_len);
1634 whoami[value_len] = 0;
1635 bsetprops("boot-file", whoami);
1636 /*
1637 * strip leading path stuff from whoami, so running from
1638 * PXE/miniroot makes sense.
1639 */
1640 if (strstr(whoami, "/platform/") != NULL)
1641 whoami = strstr(whoami, "/platform/");
1642 bsetprops("whoami", whoami);
1643 }
1644
1645 /*
1646 * Values forcibly set boot properties on the command line via -B.
1647 * Allow use of quotes in values. Other stuff goes on kernel
1648 * command line.
1649 */
1650 name = value + value_len;
1651 while (*name != 0) {
1652 /*
1653 * anything not " -B" is copied to the command line
1654 */
1655 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1656 boot_args[boot_arg_len++] = *name;
1657 boot_args[boot_arg_len] = 0;
1658 ++name;
1659 continue;
1660 }
1661
1662 /*
1663 * skip the " -B" and following white space
1664 */
1665 name += 3;
1666 while (ISSPACE(*name))
1667 ++name;
1668 while (*name && !ISSPACE(*name)) {
1669 value = strstr(name, "=");
1670 if (value == NULL)
1671 break;
1672 name_len = value - name;
1673 ++value;
1674 value_len = 0;
1675 quoted = 0;
1676 for (; ; ++value_len) {
1677 if (!value[value_len])
1678 break;
1679
1680 /*
1681 * is this value quoted?
1682 */
1683 if (value_len == 0 &&
1684 (value[0] == '\'' || value[0] == '"')) {
1685 quoted = value[0];
1686 ++value_len;
1687 }
1688
1689 /*
1690 * In the quote accept any character,
1691 * but look for ending quote.
1692 */
1693 if (quoted) {
1694 if (value[value_len] == quoted)
1695 quoted = 0;
1696 continue;
1697 }
1698
1699 /*
1700 * a comma or white space ends the value
1701 */
1702 if (value[value_len] == ',' ||
1703 ISSPACE(value[value_len]))
1704 break;
1705 }
1706
1707 if (value_len == 0) {
1708 bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1709 NULL, 0);
1710 } else {
1711 char *v = value;
1712 int l = value_len;
1713 if (v[0] == v[l - 1] &&
1714 (v[0] == '\'' || v[0] == '"')) {
1715 ++v;
1716 l -= 2;
1717 }
1718 bcopy(v, propbuf, l);
1719 propbuf[l] = '\0';
1720 bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1721 propbuf, l + 1);
1722 }
1723 name = value + value_len;
1724 while (*name == ',')
1725 ++name;
1726 }
1727 }
1728
1729 /*
1730 * set boot-args property
1731 * 1275 name is bootargs, so set
1732 * that too
1733 */
1734 bsetprops("boot-args", boot_args);
1735 bsetprops("bootargs", boot_args);
1736
1737 process_boot_environment(benv);
1738
1739 #ifndef __xpv
1740 /*
1741 * Build boot command line for Fast Reboot
1742 */
1743 build_fastboot_cmdline(xbp);
1744
1745 if (xbp->bi_mb_version == 1) {
1746 multiboot_info_t *mbi = xbp->bi_mb_info;
1747 int netboot;
1748 struct sol_netinfo *sip;
1749
1750 /*
1751 * set the BIOS boot device from GRUB
1752 */
1753 netboot = 0;
1754
1755 /*
1756 * Save various boot information for Fast Reboot
1757 */
1758 save_boot_info(xbp);
1759
1760 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1761 boot_device = mbi->boot_device >> 24;
1762 if (boot_device == 0x20)
1763 netboot++;
1764 str[0] = (boot_device >> 4) + '0';
1765 str[1] = (boot_device & 0xf) + '0';
1766 str[2] = 0;
1767 bsetprops("bios-boot-device", str);
1768 } else {
1769 netboot = 1;
1770 }
1771
1772 /*
1773 * In the netboot case, drives_info is overloaded with the
1774 * dhcp ack. This is not multiboot compliant and requires
1775 * special pxegrub!
1776 */
1777 if (netboot && mbi->drives_length != 0) {
1778 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1779 if (sip->sn_infotype == SN_TYPE_BOOTP)
1780 bsetprop(DDI_PROP_TYPE_BYTE,
1781 "bootp-response",
1782 sizeof ("bootp-response"),
1783 (void *)(uintptr_t)mbi->drives_addr,
1784 mbi->drives_length);
1785 else if (sip->sn_infotype == SN_TYPE_RARP)
1786 setup_rarp_props(sip);
1787 }
1788 } else {
1789 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1790 multiboot_tag_bootdev_t *bootdev = NULL;
1791 multiboot_tag_network_t *netdev = NULL;
1792
1793 if (mbi != NULL) {
1794 bootdev = dboot_multiboot2_find_tag(mbi,
1795 MULTIBOOT_TAG_TYPE_BOOTDEV);
1796 netdev = dboot_multiboot2_find_tag(mbi,
1797 MULTIBOOT_TAG_TYPE_NETWORK);
1798 }
1799 if (bootdev != NULL) {
1800 DBG(bootdev->mb_biosdev);
1801 boot_device = bootdev->mb_biosdev;
1802 str[0] = (boot_device >> 4) + '0';
1803 str[1] = (boot_device & 0xf) + '0';
1804 str[2] = 0;
1805 bsetprops("bios-boot-device", str);
1806 }
1807 if (netdev != NULL) {
1808 bsetprop(DDI_PROP_TYPE_BYTE,
1809 "bootp-response", sizeof ("bootp-response"),
1810 (void *)(uintptr_t)netdev->mb_dhcpack,
1811 netdev->mb_size -
1812 sizeof (multiboot_tag_network_t));
1813 }
1814 }
1815
1816 bsetprop32("stdout", stdout_val);
1817 #endif /* __xpv */
1818
1819 /*
1820 * more conjured up values for made up things....
1821 */
1822 #if defined(__xpv)
1823 bsetprops("mfg-name", "i86xpv");
1824 bsetprops("impl-arch-name", "i86xpv");
1825 #else
1826 bsetprops("mfg-name", "i86pc");
1827 bsetprops("impl-arch-name", "i86pc");
1828 #endif
1829
1830 /*
1831 * Build firmware-provided system properties
1832 */
1833 build_firmware_properties(xbp);
1834
1835 /*
1836 * XXPV
1837 *
1838 * Find out what these are:
1839 * - cpuid_feature_ecx_include
1840 * - cpuid_feature_ecx_exclude
1841 * - cpuid_feature_edx_include
1842 * - cpuid_feature_edx_exclude
1843 *
1844 * Find out what these are in multiboot:
1845 * - netdev-path
1846 * - fstype
1847 */
1848 }
1849
1850 #ifdef __xpv
1851 /*
1852 * Under the Hypervisor, memory usable for DMA may be scarce. One
1853 * very likely large pool of DMA friendly memory is occupied by
1854 * the boot_archive, as it was loaded by grub into low MFNs.
1855 *
1856 * Here we free up that memory by copying the boot archive to what are
1857 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1858 */
1859 #define PFN_2GIG 0x80000
1860 static void
1861 relocate_boot_archive(struct xboot_info *xbp)
1862 {
1863 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1864 struct boot_modules *bm = xbp->bi_modules;
1865 uintptr_t va;
1866 pfn_t va_pfn;
1867 mfn_t va_mfn;
1868 caddr_t copy;
1869 pfn_t copy_pfn;
1870 mfn_t copy_mfn;
1871 size_t len;
1872 int slop;
1873 int total = 0;
1874 int relocated = 0;
1875 int mmu_update_return;
1876 mmu_update_t t[2];
1877 x86pte_t pte;
1878
1879 /*
1880 * If all MFN's are below 2Gig, don't bother doing this.
1881 */
1882 if (max_mfn < PFN_2GIG)
1883 return;
1884 if (xbp->bi_module_cnt < 1) {
1885 DBG_MSG("no boot_archive!");
1886 return;
1887 }
1888
1889 DBG_MSG("moving boot_archive to high MFN memory\n");
1890 va = (uintptr_t)bm->bm_addr;
1891 len = bm->bm_size;
1892 slop = va & MMU_PAGEOFFSET;
1893 if (slop) {
1894 va += MMU_PAGESIZE - slop;
1895 len -= MMU_PAGESIZE - slop;
1896 }
1897 len = P2ALIGN(len, MMU_PAGESIZE);
1898
1899 /*
1900 * Go through all boot_archive pages, swapping any low MFN pages
1901 * with memory at next_phys.
1902 */
1903 while (len != 0) {
1904 ++total;
1905 va_pfn = mmu_btop(va - ONE_GIG);
1906 va_mfn = mfn_list[va_pfn];
1907 if (mfn_list[va_pfn] < PFN_2GIG) {
1908 copy = kbm_remap_window(next_phys, 1);
1909 bcopy((void *)va, copy, MMU_PAGESIZE);
1910 copy_pfn = mmu_btop(next_phys);
1911 copy_mfn = mfn_list[copy_pfn];
1912
1913 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1914 if (HYPERVISOR_update_va_mapping(va, pte,
1915 UVMF_INVLPG | UVMF_LOCAL))
1916 bop_panic("relocate_boot_archive(): "
1917 "HYPERVISOR_update_va_mapping() failed");
1918
1919 mfn_list[va_pfn] = copy_mfn;
1920 mfn_list[copy_pfn] = va_mfn;
1921
1922 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1923 t[0].val = va_pfn;
1924 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1925 t[1].val = copy_pfn;
1926 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1927 DOMID_SELF) != 0 || mmu_update_return != 2)
1928 bop_panic("relocate_boot_archive(): "
1929 "HYPERVISOR_mmu_update() failed");
1930
1931 next_phys += MMU_PAGESIZE;
1932 ++relocated;
1933 }
1934 len -= MMU_PAGESIZE;
1935 va += MMU_PAGESIZE;
1936 }
1937 DBG_MSG("Relocated pages:\n");
1938 DBG(relocated);
1939 DBG_MSG("Out of total pages:\n");
1940 DBG(total);
1941 }
1942 #endif /* __xpv */
1943
1944 #if !defined(__xpv)
1945 /*
1946 * simple description of a stack frame (args are 32 bit only currently)
1947 */
1948 typedef struct bop_frame {
1949 struct bop_frame *old_frame;
1950 pc_t retaddr;
1951 long arg[1];
1952 } bop_frame_t;
1953
1954 void
1955 bop_traceback(bop_frame_t *frame)
1956 {
1957 pc_t pc;
1958 int cnt;
1959 char *ksym;
1960 ulong_t off;
1961
1962 bop_printf(NULL, "Stack traceback:\n");
1963 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
1964 pc = frame->retaddr;
1965 if (pc == 0)
1966 break;
1967 ksym = kobj_getsymname(pc, &off);
1968 if (ksym)
1969 bop_printf(NULL, " %s+%lx", ksym, off);
1970 else
1971 bop_printf(NULL, " 0x%lx", pc);
1972
1973 frame = frame->old_frame;
1974 if (frame == 0) {
1975 bop_printf(NULL, "\n");
1976 break;
1977 }
1978 bop_printf(NULL, "\n");
1979 }
1980 }
1981
1982 struct trapframe {
1983 ulong_t error_code; /* optional */
1984 ulong_t inst_ptr;
1985 ulong_t code_seg;
1986 ulong_t flags_reg;
1987 ulong_t stk_ptr;
1988 ulong_t stk_seg;
1989 };
1990
1991 void
1992 bop_trap(ulong_t *tfp)
1993 {
1994 struct trapframe *tf = (struct trapframe *)tfp;
1995 bop_frame_t fakeframe;
1996 static int depth = 0;
1997
1998 /*
1999 * Check for an infinite loop of traps.
2000 */
2001 if (++depth > 2)
2002 bop_panic("Nested trap");
2003
2004 bop_printf(NULL, "Unexpected trap\n");
2005
2006 /*
2007 * adjust the tf for optional error_code by detecting the code selector
2008 */
2009 if (tf->code_seg != B64CODE_SEL)
2010 tf = (struct trapframe *)(tfp - 1);
2011 else
2012 bop_printf(NULL, "error code 0x%lx\n",
2013 tf->error_code & 0xffffffff);
2014
2015 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
2016 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
2017 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
2018 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
2019 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
2020 bop_printf(NULL, "%%cr2 0x%lx\n", getcr2());
2021
2022 /* grab %[er]bp pushed by our code from the stack */
2023 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
2024 fakeframe.retaddr = (pc_t)tf->inst_ptr;
2025 bop_printf(NULL, "Attempting stack backtrace:\n");
2026 bop_traceback(&fakeframe);
2027 bop_panic("unexpected trap in early boot");
2028 }
2029
2030 extern void bop_trap_handler(void);
2031
2032 static gate_desc_t *bop_idt;
2033
2034 static desctbr_t bop_idt_info;
2035
2036 /*
2037 * Install a temporary IDT that lets us catch errors in the boot time code.
2038 * We shouldn't get any faults at all while this is installed, so we'll
2039 * just generate a traceback and exit.
2040 */
2041 static void
2042 bop_idt_init(void)
2043 {
2044 int t;
2045
2046 bop_idt = (gate_desc_t *)
2047 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2048 bzero(bop_idt, MMU_PAGESIZE);
2049 for (t = 0; t < NIDT; ++t) {
2050 /*
2051 * Note that since boot runs without a TSS, the
2052 * double fault handler cannot use an alternate stack (64-bit).
2053 */
2054 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
2055 SDT_SYSIGT, TRP_KPL, 0);
2056 }
2057 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
2058 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
2059 wr_idtr(&bop_idt_info);
2060 }
2061 #endif /* !defined(__xpv) */
2062
2063 /*
2064 * This is where we enter the kernel. It dummies up the boot_ops and
2065 * boot_syscalls vectors and jumps off to _kobj_boot()
2066 */
2067 void
2068 _start(struct xboot_info *xbp)
2069 {
2070 bootops_t *bops = &bootop;
2071 extern void _kobj_boot();
2072
2073 /*
2074 * 1st off - initialize the console for any error messages
2075 */
2076 xbootp = xbp;
2077 #ifdef __xpv
2078 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2079 xen_info = xbp->bi_xen_start_info;
2080 #endif
2081
2082 #ifndef __xpv
2083 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2084 FASTBOOT_MAGIC) {
2085 post_fastreboot = 1;
2086 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2087 }
2088 #endif
2089
2090 bcons_init(xbp);
2091 have_console = 1;
2092
2093 /*
2094 * enable debugging
2095 */
2096 if (find_boot_prop("kbm_debug") != NULL)
2097 kbm_debug = 1;
2098
2099 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
2100 DBG_MSG((char *)xbp->bi_cmdline);
2101 DBG_MSG("\n\n\n");
2102
2103 /*
2104 * physavail is no longer used by startup
2105 */
2106 bm.physinstalled = xbp->bi_phys_install;
2107 bm.pcimem = xbp->bi_pcimem;
2108 bm.rsvdmem = xbp->bi_rsvdmem;
2109 bm.physavail = NULL;
2110
2111 /*
2112 * initialize the boot time allocator
2113 */
2114 next_phys = xbp->bi_next_paddr;
2115 DBG(next_phys);
2116 next_virt = (uintptr_t)xbp->bi_next_vaddr;
2117 DBG(next_virt);
2118 DBG_MSG("Initializing boot time memory management...");
2119 #ifdef __xpv
2120 {
2121 xen_platform_parameters_t p;
2122
2123 /* This call shouldn't fail, dboot already did it once. */
2124 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2125 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2126 DBG(xen_virt_start);
2127 }
2128 #endif
2129 kbm_init(xbp);
2130 DBG_MSG("done\n");
2131
2132 /*
2133 * Fill in the bootops vector
2134 */
2135 bops->bsys_version = BO_VERSION;
2136 bops->boot_mem = &bm;
2137 bops->bsys_alloc = do_bsys_alloc;
2138 bops->bsys_free = do_bsys_free;
2139 bops->bsys_getproplen = do_bsys_getproplen;
2140 bops->bsys_getprop = do_bsys_getprop;
2141 bops->bsys_nextprop = do_bsys_nextprop;
2142 bops->bsys_printf = bop_printf;
2143 bops->bsys_doint = do_bsys_doint;
2144
2145 /*
2146 * BOP_EALLOC() is no longer needed
2147 */
2148 bops->bsys_ealloc = do_bsys_ealloc;
2149
2150 #ifdef __xpv
2151 /*
2152 * On domain 0 we need to free up some physical memory that is
2153 * usable for DMA. Since GRUB loaded the boot_archive, it is
2154 * sitting in low MFN memory. We'll relocated the boot archive
2155 * pages to high PFN memory.
2156 */
2157 if (DOMAIN_IS_INITDOMAIN(xen_info))
2158 relocate_boot_archive(xbp);
2159 #endif
2160
2161 #ifndef __xpv
2162 /*
2163 * Install an IDT to catch early pagefaults (shouldn't have any).
2164 * Also needed for kmdb.
2165 */
2166 bop_idt_init();
2167 #endif
2168 /* Set up the shadow fb for framebuffer console */
2169 boot_fb_shadow_init(bops);
2170
2171 /*
2172 * Start building the boot properties from the command line
2173 */
2174 DBG_MSG("Initializing boot properties:\n");
2175 build_boot_properties(xbp);
2176
2177 if (find_boot_prop("prom_debug") || kbm_debug) {
2178 char *value;
2179
2180 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2181 boot_prop_display(value);
2182 }
2183
2184 /*
2185 * jump into krtld...
2186 */
2187 _kobj_boot(&bop_sysp, NULL, bops, NULL);
2188 }
2189
2190
2191 /*ARGSUSED*/
2192 static caddr_t
2193 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2194 {
2195 panic("Attempt to bsys_alloc() too late\n");
2196 return (NULL);
2197 }
2198
2199 /*ARGSUSED*/
2200 static void
2201 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2202 {
2203 panic("Attempt to bsys_free() too late\n");
2204 }
2205
2206 void
2207 bop_no_more_mem(void)
2208 {
2209 DBG(total_bop_alloc_scratch);
2210 DBG(total_bop_alloc_kernel);
2211 bootops->bsys_alloc = no_more_alloc;
2212 bootops->bsys_free = no_more_free;
2213 }
2214
2215
2216 /*
2217 * Set ACPI firmware properties
2218 */
2219
2220 static caddr_t
2221 vmap_phys(size_t length, paddr_t pa)
2222 {
2223 paddr_t start, end;
2224 caddr_t va;
2225 size_t len, page;
2226
2227 #ifdef __xpv
2228 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2229 #endif
2230 start = P2ALIGN(pa, MMU_PAGESIZE);
2231 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2232 len = end - start;
2233 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2234 for (page = 0; page < len; page += MMU_PAGESIZE)
2235 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2236 return (va + (pa & MMU_PAGEOFFSET));
2237 }
2238
2239 static uint8_t
2240 checksum_table(uint8_t *tp, size_t len)
2241 {
2242 uint8_t sum = 0;
2243
2244 while (len-- > 0)
2245 sum += *tp++;
2246
2247 return (sum);
2248 }
2249
2250 static int
2251 valid_rsdp(ACPI_TABLE_RSDP *rp)
2252 {
2253
2254 /* validate the V1.x checksum */
2255 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2256 return (0);
2257
2258 /* If pre-ACPI 2.0, this is a valid RSDP */
2259 if (rp->Revision < 2)
2260 return (1);
2261
2262 /* validate the V2.x checksum */
2263 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2264 return (0);
2265
2266 return (1);
2267 }
2268
2269 /*
2270 * Scan memory range for an RSDP;
2271 * see ACPI 3.0 Spec, 5.2.5.1
2272 */
2273 static ACPI_TABLE_RSDP *
2274 scan_rsdp(paddr_t *paddrp, size_t len)
2275 {
2276 paddr_t paddr = *paddrp;
2277 caddr_t ptr;
2278
2279 ptr = vmap_phys(len, paddr);
2280
2281 while (len > 0) {
2282 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2283 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) {
2284 *paddrp = paddr;
2285 return ((ACPI_TABLE_RSDP *)ptr);
2286 }
2287
2288 ptr += ACPI_RSDP_SCAN_STEP;
2289 paddr += ACPI_RSDP_SCAN_STEP;
2290 len -= ACPI_RSDP_SCAN_STEP;
2291 }
2292
2293 return (NULL);
2294 }
2295
2296 /*
2297 * Locate the ACPI RSDP. We search in a particular order:
2298 *
2299 * - If the bootloader told us the location of the RSDP (via the EFI system
2300 * table), try that first.
2301 * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy
2302 * case).
2303 * - Finally, our bootloader may have a copy of the RSDP in its info: this might
2304 * get freed after boot, so we always prefer to find the original RSDP first.
2305 *
2306 * Once found, we set acpi-root-tab property (a physical address) for the
2307 * benefit of acpica, acpidump etc.
2308 */
2309
2310 static ACPI_TABLE_RSDP *
2311 find_rsdp(struct xboot_info *xbp)
2312 {
2313 ACPI_TABLE_RSDP *rsdp = NULL;
2314 paddr_t paddr = 0;
2315
2316 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2317 (void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr);
2318 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2319 }
2320
2321 #ifndef __xpv
2322 if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) {
2323 paddr = (uintptr_t)xbp->bi_acpi_rsdp;
2324 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2325 }
2326 #endif
2327
2328 if (rsdp == NULL) {
2329 uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2330 ACPI_EBDA_PTR_LOCATION);
2331 paddr = *ebda_seg << 4;
2332 rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE);
2333 }
2334
2335 if (rsdp == NULL) {
2336 paddr = ACPI_HI_RSDP_WINDOW_BASE;
2337 rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE);
2338 }
2339
2340 #ifndef __xpv
2341 if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) {
2342 paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy;
2343 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2344 }
2345 #endif
2346
2347 if (rsdp == NULL) {
2348 bop_printf(NULL, "no RSDP found!\n");
2349 return (NULL);
2350 }
2351
2352 if (kbm_debug)
2353 bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr);
2354
2355 if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t))
2356 bsetprop64("acpi-root-tab", paddr);
2357
2358 return (rsdp);
2359 }
2360
2361 static ACPI_TABLE_HEADER *
2362 map_fw_table(paddr_t table_addr)
2363 {
2364 ACPI_TABLE_HEADER *tp;
2365 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2366
2367 /*
2368 * Map at least a page; if the table is larger than this, remap it
2369 */
2370 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2371 if (tp->Length > len)
2372 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2373 return (tp);
2374 }
2375
2376 static ACPI_TABLE_HEADER *
2377 find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature)
2378 {
2379 static int revision = 0;
2380 static ACPI_TABLE_XSDT *xsdt;
2381 static int len;
2382 paddr_t xsdt_addr;
2383 ACPI_TABLE_HEADER *tp;
2384 paddr_t table_addr;
2385 int n;
2386
2387 if (strlen(signature) != ACPI_NAME_SIZE)
2388 return (NULL);
2389
2390 /*
2391 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2392 * understand this code. If we haven't already found the RSDT/XSDT,
2393 * revision will be 0. Find the RSDP and check the revision
2394 * to find out whether to use the RSDT or XSDT. If revision is
2395 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2396 * use the XSDT. If the XSDT address is 0, though, fall back to
2397 * revision 1 and use the RSDT.
2398 */
2399 if (revision == 0) {
2400 if (rsdp == NULL)
2401 return (NULL);
2402
2403 revision = rsdp->Revision;
2404 /*
2405 * ACPI 6.0 states that current revision is 2
2406 * from acpi_table_rsdp definition:
2407 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2408 */
2409 if (revision > 2)
2410 revision = 2;
2411 switch (revision) {
2412 case 2:
2413 /*
2414 * Use the XSDT unless BIOS is buggy and
2415 * claims to be rev 2 but has a null XSDT
2416 * address
2417 */
2418 xsdt_addr = rsdp->XsdtPhysicalAddress;
2419 if (xsdt_addr != 0)
2420 break;
2421 /* FALLTHROUGH */
2422 case 0:
2423 /* treat RSDP rev 0 as revision 1 internally */
2424 revision = 1;
2425 /* FALLTHROUGH */
2426 case 1:
2427 /* use the RSDT for rev 0/1 */
2428 xsdt_addr = rsdp->RsdtPhysicalAddress;
2429 break;
2430 default:
2431 /* unknown revision */
2432 revision = 0;
2433 break;
2434 }
2435
2436 if (revision == 0)
2437 return (NULL);
2438
2439 /* cache the XSDT info */
2440 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2441 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2442 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2443 }
2444
2445 /*
2446 * Scan the table headers looking for a signature match
2447 */
2448 for (n = 0; n < len; n++) {
2449 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2450 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2451 xsdt->TableOffsetEntry[n];
2452
2453 if (table_addr == 0)
2454 continue;
2455 tp = map_fw_table(table_addr);
2456 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2457 return (tp);
2458 }
2459 }
2460 return (NULL);
2461 }
2462
2463 static void
2464 process_mcfg(ACPI_TABLE_MCFG *tp)
2465 {
2466 ACPI_MCFG_ALLOCATION *cfg_baap;
2467 char *cfg_baa_endp;
2468 int64_t ecfginfo[4];
2469
2470 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2471 cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2472 while ((char *)cfg_baap < cfg_baa_endp) {
2473 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2474 ecfginfo[0] = cfg_baap->Address;
2475 ecfginfo[1] = cfg_baap->PciSegment;
2476 ecfginfo[2] = cfg_baap->StartBusNumber;
2477 ecfginfo[3] = cfg_baap->EndBusNumber;
2478 bsetprop(DDI_PROP_TYPE_INT64,
2479 MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2480 ecfginfo, sizeof (ecfginfo));
2481 break;
2482 }
2483 cfg_baap++;
2484 }
2485 }
2486
2487 #ifndef __xpv
2488 static void
2489 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2490 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2491 {
2492 ACPI_SUBTABLE_HEADER *item, *end;
2493 uint32_t cpu_count = 0;
2494 uint32_t cpu_possible_count = 0;
2495
2496 /*
2497 * Determine number of CPUs and keep track of "final" APIC ID
2498 * for each CPU by walking through ACPI MADT processor list
2499 */
2500 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2501 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2502
2503 while (item < end) {
2504 switch (item->Type) {
2505 case ACPI_MADT_TYPE_LOCAL_APIC: {
2506 ACPI_MADT_LOCAL_APIC *cpu =
2507 (ACPI_MADT_LOCAL_APIC *) item;
2508
2509 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2510 if (cpu_apicid_array != NULL)
2511 cpu_apicid_array[cpu_count] = cpu->Id;
2512 cpu_count++;
2513 }
2514 cpu_possible_count++;
2515 break;
2516 }
2517 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2518 ACPI_MADT_LOCAL_X2APIC *cpu =
2519 (ACPI_MADT_LOCAL_X2APIC *) item;
2520
2521 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2522 if (cpu_apicid_array != NULL)
2523 cpu_apicid_array[cpu_count] =
2524 cpu->LocalApicId;
2525 cpu_count++;
2526 }
2527 cpu_possible_count++;
2528 break;
2529 }
2530 default:
2531 if (kbm_debug)
2532 bop_printf(NULL, "MADT type %d\n", item->Type);
2533 break;
2534 }
2535
2536 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2537 }
2538 if (cpu_countp)
2539 *cpu_countp = cpu_count;
2540 if (cpu_possible_countp)
2541 *cpu_possible_countp = cpu_possible_count;
2542 }
2543
2544 static void
2545 process_madt(ACPI_TABLE_MADT *tp)
2546 {
2547 uint32_t cpu_count = 0;
2548 uint32_t cpu_possible_count = 0;
2549 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2550
2551 if (tp != NULL) {
2552 /* count cpu's */
2553 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2554
2555 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2556 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2557 if (cpu_apicid_array == NULL)
2558 bop_panic("Not enough memory for APIC ID array");
2559
2560 /* copy IDs */
2561 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2562
2563 /*
2564 * Make boot property for array of "final" APIC IDs for each
2565 * CPU
2566 */
2567 bsetprop(DDI_PROP_TYPE_INT,
2568 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2569 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2570 }
2571
2572 /*
2573 * Check whether property plat-max-ncpus is already set.
2574 */
2575 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2576 /*
2577 * Set plat-max-ncpus to number of maximum possible CPUs given
2578 * in MADT if it hasn't been set.
2579 * There's no formal way to detect max possible CPUs supported
2580 * by platform according to ACPI spec3.0b. So current CPU
2581 * hotplug implementation expects that all possible CPUs will
2582 * have an entry in MADT table and set plat-max-ncpus to number
2583 * of entries in MADT.
2584 * With introducing of ACPI4.0, Maximum System Capability Table
2585 * (MSCT) provides maximum number of CPUs supported by platform.
2586 * If MSCT is unavailable, fall back to old way.
2587 */
2588 if (tp != NULL)
2589 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2590 }
2591
2592 /*
2593 * Set boot property boot-max-ncpus to number of CPUs existing at
2594 * boot time. boot-max-ncpus is mainly used for optimization.
2595 */
2596 if (tp != NULL)
2597 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2598
2599 /*
2600 * User-set boot-ncpus overrides firmware count
2601 */
2602 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2603 return;
2604
2605 /*
2606 * Set boot property boot-ncpus to number of active CPUs given in MADT
2607 * if it hasn't been set yet.
2608 */
2609 if (tp != NULL)
2610 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2611 }
2612
2613 static void
2614 process_srat(ACPI_TABLE_SRAT *tp)
2615 {
2616 ACPI_SUBTABLE_HEADER *item, *end;
2617 int i;
2618 int proc_num, mem_num;
2619 #pragma pack(1)
2620 struct {
2621 uint32_t domain;
2622 uint32_t apic_id;
2623 uint32_t sapic_id;
2624 } processor;
2625 struct {
2626 uint32_t domain;
2627 uint32_t x2apic_id;
2628 } x2apic;
2629 struct {
2630 uint32_t domain;
2631 uint64_t addr;
2632 uint64_t length;
2633 uint32_t flags;
2634 } memory;
2635 #pragma pack()
2636 char prop_name[30];
2637 uint64_t maxmem = 0;
2638
2639 if (tp == NULL)
2640 return;
2641
2642 proc_num = mem_num = 0;
2643 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2644 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2645 while (item < end) {
2646 switch (item->Type) {
2647 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2648 ACPI_SRAT_CPU_AFFINITY *cpu =
2649 (ACPI_SRAT_CPU_AFFINITY *) item;
2650
2651 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2652 break;
2653 processor.domain = cpu->ProximityDomainLo;
2654 for (i = 0; i < 3; i++)
2655 processor.domain +=
2656 cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2657 processor.apic_id = cpu->ApicId;
2658 processor.sapic_id = cpu->LocalSapicEid;
2659 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2660 proc_num);
2661 bsetprop(DDI_PROP_TYPE_INT,
2662 prop_name, strlen(prop_name), &processor,
2663 sizeof (processor));
2664 proc_num++;
2665 break;
2666 }
2667 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2668 ACPI_SRAT_MEM_AFFINITY *mem =
2669 (ACPI_SRAT_MEM_AFFINITY *)item;
2670
2671 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2672 break;
2673 memory.domain = mem->ProximityDomain;
2674 memory.addr = mem->BaseAddress;
2675 memory.length = mem->Length;
2676 memory.flags = mem->Flags;
2677 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2678 mem_num);
2679 bsetprop(DDI_PROP_TYPE_INT,
2680 prop_name, strlen(prop_name), &memory,
2681 sizeof (memory));
2682 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2683 (memory.addr + memory.length > maxmem)) {
2684 maxmem = memory.addr + memory.length;
2685 }
2686 mem_num++;
2687 break;
2688 }
2689 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2690 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2691 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2692
2693 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2694 break;
2695 x2apic.domain = x2cpu->ProximityDomain;
2696 x2apic.x2apic_id = x2cpu->ApicId;
2697 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2698 proc_num);
2699 bsetprop(DDI_PROP_TYPE_INT,
2700 prop_name, strlen(prop_name), &x2apic,
2701 sizeof (x2apic));
2702 proc_num++;
2703 break;
2704 }
2705 default:
2706 if (kbm_debug)
2707 bop_printf(NULL, "SRAT type %d\n", item->Type);
2708 break;
2709 }
2710
2711 item = (ACPI_SUBTABLE_HEADER *)
2712 (item->Length + (uintptr_t)item);
2713 }
2714
2715 /*
2716 * The maximum physical address calculated from the SRAT table is more
2717 * accurate than that calculated from the MSCT table.
2718 */
2719 if (maxmem != 0) {
2720 plat_dr_physmax = btop(maxmem);
2721 }
2722 }
2723
2724 static void
2725 process_slit(ACPI_TABLE_SLIT *tp)
2726 {
2727
2728 /*
2729 * Check the number of localities; if it's too huge, we just
2730 * return and locality enumeration code will handle this later,
2731 * if possible.
2732 *
2733 * Note that the size of the table is the square of the
2734 * number of localities; if the number of localities exceeds
2735 * UINT16_MAX, the table size may overflow an int when being
2736 * passed to bsetprop() below.
2737 */
2738 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2739 return;
2740
2741 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2742 bsetprop(DDI_PROP_TYPE_BYTE,
2743 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2744 tp->LocalityCount * tp->LocalityCount);
2745 }
2746
2747 static ACPI_TABLE_MSCT *
2748 process_msct(ACPI_TABLE_MSCT *tp)
2749 {
2750 int last_seen = 0;
2751 int proc_num = 0;
2752 ACPI_MSCT_PROXIMITY *item, *end;
2753 extern uint64_t plat_dr_options;
2754
2755 ASSERT(tp != NULL);
2756
2757 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2758 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2759 item < end;
2760 item = (void *)(item->Length + (uintptr_t)item)) {
2761 /*
2762 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2763 * Revision 1
2764 * Length 22
2765 */
2766 if (item->Revision != 1 || item->Length != 22) {
2767 cmn_err(CE_CONT,
2768 "?boot: unknown proximity domain structure in MSCT "
2769 "with Revision(%d), Length(%d).\n",
2770 (int)item->Revision, (int)item->Length);
2771 return (NULL);
2772 } else if (item->RangeStart > item->RangeEnd) {
2773 cmn_err(CE_CONT,
2774 "?boot: invalid proximity domain structure in MSCT "
2775 "with RangeStart(%u), RangeEnd(%u).\n",
2776 item->RangeStart, item->RangeEnd);
2777 return (NULL);
2778 } else if (item->RangeStart != last_seen) {
2779 /*
2780 * Items must be organized in ascending order of the
2781 * proximity domain enumerations.
2782 */
2783 cmn_err(CE_CONT,
2784 "?boot: invalid proximity domain structure in MSCT,"
2785 " items are not orginized in ascending order.\n");
2786 return (NULL);
2787 }
2788
2789 /*
2790 * If ProcessorCapacity is 0 then there would be no CPUs in this
2791 * domain.
2792 */
2793 if (item->ProcessorCapacity != 0) {
2794 proc_num += (item->RangeEnd - item->RangeStart + 1) *
2795 item->ProcessorCapacity;
2796 }
2797
2798 last_seen = item->RangeEnd - item->RangeStart + 1;
2799 /*
2800 * Break out if all proximity domains have been processed.
2801 * Some BIOSes may have unused items at the end of MSCT table.
2802 */
2803 if (last_seen > tp->MaxProximityDomains) {
2804 break;
2805 }
2806 }
2807 if (last_seen != tp->MaxProximityDomains + 1) {
2808 cmn_err(CE_CONT,
2809 "?boot: invalid proximity domain structure in MSCT, "
2810 "proximity domain count doesn't match.\n");
2811 return (NULL);
2812 }
2813
2814 /*
2815 * Set plat-max-ncpus property if it hasn't been set yet.
2816 */
2817 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2818 if (proc_num != 0) {
2819 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2820 }
2821 }
2822
2823 /*
2824 * Use Maximum Physical Address from the MSCT table as upper limit for
2825 * memory hot-adding by default. It may be overridden by value from
2826 * the SRAT table or the "plat-dr-physmax" boot option.
2827 */
2828 plat_dr_physmax = btop(tp->MaxAddress + 1);
2829
2830 /*
2831 * Existence of MSCT implies CPU/memory hotplug-capability for the
2832 * platform.
2833 */
2834 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2835 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2836
2837 return (tp);
2838 }
2839
2840 #else /* __xpv */
2841 static void
2842 enumerate_xen_cpus()
2843 {
2844 processorid_t id, max_id;
2845
2846 /*
2847 * User-set boot-ncpus overrides enumeration
2848 */
2849 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2850 return;
2851
2852 /*
2853 * Probe every possible virtual CPU id and remember the
2854 * highest id present; the count of CPUs is one greater
2855 * than this. This tacitly assumes at least cpu 0 is present.
2856 */
2857 max_id = 0;
2858 for (id = 0; id < MAX_VIRT_CPUS; id++)
2859 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2860 max_id = id;
2861
2862 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2863
2864 }
2865 #endif /* __xpv */
2866
2867 /*ARGSUSED*/
2868 static void
2869 build_firmware_properties(struct xboot_info *xbp)
2870 {
2871 ACPI_TABLE_HEADER *tp = NULL;
2872 ACPI_TABLE_RSDP *rsdp;
2873
2874 #ifndef __xpv
2875 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2876 bsetprops("efi-systype", "64");
2877 bsetprop64("efi-systab",
2878 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2879 if (kbm_debug)
2880 bop_printf(NULL, "64-bit UEFI detected.\n");
2881 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2882 bsetprops("efi-systype", "32");
2883 bsetprop64("efi-systab",
2884 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2885 if (kbm_debug)
2886 bop_printf(NULL, "32-bit UEFI detected.\n");
2887 }
2888
2889 if (xbp->bi_smbios != NULL) {
2890 bsetprop64("smbios-address",
2891 (uint64_t)(uintptr_t)xbp->bi_smbios);
2892 }
2893
2894 rsdp = find_rsdp(xbp);
2895
2896 if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL)
2897 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2898 else
2899 msct_ptr = NULL;
2900
2901 if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL)
2902 process_madt((ACPI_TABLE_MADT *)tp);
2903
2904 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2905 find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL)
2906 process_srat(srat_ptr);
2907
2908 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp, ACPI_SIG_SLIT))
2909 process_slit(slit_ptr);
2910
2911 tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2912 #else /* __xpv */
2913 enumerate_xen_cpus();
2914 if (DOMAIN_IS_INITDOMAIN(xen_info))
2915 tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2916 #endif /* __xpv */
2917 if (tp != NULL)
2918 process_mcfg((ACPI_TABLE_MCFG *)tp);
2919 }
2920
2921 /*
2922 * fake up a boot property for deferred early console output
2923 * this is used by both graphical boot and the (developer only)
2924 * USB serial console
2925 */
2926 void *
2927 defcons_init(size_t size)
2928 {
2929 static char *p = NULL;
2930
2931 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2932 *p = 0;
2933 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2934 return (p);
2935 }
2936
2937 /*ARGSUSED*/
2938 int
2939 boot_compinfo(int fd, struct compinfo *cbp)
2940 {
2941 cbp->iscmp = 0;
2942 cbp->blksize = MAXBSIZE;
2943 return (0);
2944 }
2945
2946 /*
2947 * Get an integer value for given boot property
2948 */
2949 int
2950 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2951 {
2952 int boot_prop_len;
2953 char str[BP_MAX_STRLEN];
2954 u_longlong_t value;
2955
2956 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2957 if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) ||
2958 BOP_GETPROP(bootops, prop_name, str) < 0 ||
2959 kobj_getvalue(str, &value) == -1)
2960 return (-1);
2961
2962 if (prop_value)
2963 *prop_value = value;
2964
2965 return (0);
2966 }
2967
2968 int
2969 bootprop_getstr(const char *prop_name, char *buf, size_t buflen)
2970 {
2971 int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2972
2973 if (boot_prop_len < 0 || boot_prop_len >= buflen ||
2974 BOP_GETPROP(bootops, prop_name, buf) < 0)
2975 return (-1);
2976
2977 return (0);
2978 }