1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright (c) 2019, Joyent, Inc. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/multiboot2.h> 44 #include <sys/multiboot2_impl.h> 45 #include <sys/bootvfs.h> 46 #include <sys/bootprops.h> 47 #include <sys/varargs.h> 48 #include <sys/param.h> 49 #include <sys/machparam.h> 50 #include <sys/machsystm.h> 51 #include <sys/archsystm.h> 52 #include <sys/boot_console.h> 53 #include <sys/framebuffer.h> 54 #include <sys/cmn_err.h> 55 #include <sys/systm.h> 56 #include <sys/promif.h> 57 #include <sys/archsystm.h> 58 #include <sys/x86_archext.h> 59 #include <sys/kobj.h> 60 #include <sys/privregs.h> 61 #include <sys/sysmacros.h> 62 #include <sys/ctype.h> 63 #include <sys/fastboot.h> 64 #ifdef __xpv 65 #include <sys/hypervisor.h> 66 #include <net/if.h> 67 #endif 68 #include <vm/kboot_mmu.h> 69 #include <vm/hat_pte.h> 70 #include <sys/kobj.h> 71 #include <sys/kobj_lex.h> 72 #include <sys/pci_cfgspace_impl.h> 73 #include <sys/fastboot_impl.h> 74 #include <sys/acpi/acconfig.h> 75 #include <sys/acpi/acpi.h> 76 #include <sys/ddipropdefs.h> /* For DDI prop types */ 77 78 static int have_console = 0; /* set once primitive console is initialized */ 79 static char *boot_args = ""; 80 81 /* 82 * Debugging macros 83 */ 84 static uint_t kbm_debug = 0; 85 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 86 #define DBG(x) { if (kbm_debug) \ 87 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 88 } 89 90 #define PUT_STRING(s) { \ 91 char *cp; \ 92 for (cp = (s); *cp; ++cp) \ 93 bcons_putchar(*cp); \ 94 } 95 96 /* callback to boot_fb to set shadow frame buffer */ 97 extern void boot_fb_shadow_init(bootops_t *); 98 99 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 100 struct bsys_mem bm; 101 102 /* 103 * Boot info from "glue" code in low memory. xbootp is used by: 104 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish(). 105 */ 106 static struct xboot_info *xbootp; 107 static uintptr_t next_virt; /* next available virtual address */ 108 static paddr_t next_phys; /* next available physical address from dboot */ 109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 110 111 /* 112 * buffer for vsnprintf for console I/O 113 */ 114 #define BUFFERSIZE 512 115 static char buffer[BUFFERSIZE]; 116 117 /* 118 * stuff to store/report/manipulate boot property settings. 119 */ 120 typedef struct bootprop { 121 struct bootprop *bp_next; 122 char *bp_name; 123 int bp_flags; /* DDI prop type */ 124 uint_t bp_vlen; /* 0 for boolean */ 125 char *bp_value; 126 } bootprop_t; 127 128 static bootprop_t *bprops = NULL; 129 static char *curr_page = NULL; /* ptr to avail bprop memory */ 130 static int curr_space = 0; /* amount of memory at curr_page */ 131 132 #ifdef __xpv 133 start_info_t *xen_info; 134 shared_info_t *HYPERVISOR_shared_info; 135 #endif 136 137 /* 138 * some allocator statistics 139 */ 140 static ulong_t total_bop_alloc_scratch = 0; 141 static ulong_t total_bop_alloc_kernel = 0; 142 143 static void build_firmware_properties(struct xboot_info *); 144 145 static int early_allocation = 1; 146 147 int force_fastreboot = 0; 148 volatile int fastreboot_onpanic = 0; 149 int post_fastreboot = 0; 150 #ifdef __xpv 151 volatile int fastreboot_capable = 0; 152 #else 153 volatile int fastreboot_capable = 1; 154 #endif 155 156 /* 157 * Information saved from current boot for fast reboot. 158 * If the information size exceeds what we have allocated, fast reboot 159 * will not be supported. 160 */ 161 multiboot_info_t saved_mbi; 162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 165 int saved_cmdline_len = 0; 166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 167 168 /* 169 * Turn off fastreboot_onpanic to avoid panic loop. 170 */ 171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 173 174 /* 175 * Pointers to where System Resource Affinity Table (SRAT), System Locality 176 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 177 * are mapped into virtual memory 178 */ 179 ACPI_TABLE_SRAT *srat_ptr = NULL; 180 ACPI_TABLE_SLIT *slit_ptr = NULL; 181 ACPI_TABLE_MSCT *msct_ptr = NULL; 182 183 /* 184 * Arbitrary limit on number of localities we handle; if 185 * this limit is raised to more than UINT16_MAX, make sure 186 * process_slit() knows how to handle it. 187 */ 188 #define SLIT_LOCALITIES_MAX (4096) 189 190 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 191 #define SLIT_PROPNAME "acpi-slit" 192 193 /* 194 * Allocate aligned physical memory at boot time. This allocator allocates 195 * from the highest possible addresses. This avoids exhausting memory that 196 * would be useful for DMA buffers. 197 */ 198 paddr_t 199 do_bop_phys_alloc(uint64_t size, uint64_t align) 200 { 201 paddr_t pa = 0; 202 paddr_t start; 203 paddr_t end; 204 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 205 206 /* 207 * Be careful if high memory usage is limited in startup.c 208 * Since there are holes in the low part of the physical address 209 * space we can treat physmem as a pfn (not just a pgcnt) and 210 * get a conservative upper limit. 211 */ 212 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 213 high_phys = pfn_to_pa(physmem); 214 215 /* 216 * find the highest available memory in physinstalled 217 */ 218 size = P2ROUNDUP(size, align); 219 for (; ml; ml = ml->ml_next) { 220 start = P2ROUNDUP(ml->ml_address, align); 221 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 222 if (start < next_phys) 223 start = P2ROUNDUP(next_phys, align); 224 if (end > high_phys) 225 end = P2ALIGN(high_phys, align); 226 227 if (end <= start) 228 continue; 229 if (end - start < size) 230 continue; 231 232 /* 233 * Early allocations need to use low memory, since 234 * physmem might be further limited by bootenv.rc 235 */ 236 if (early_allocation) { 237 if (pa == 0 || start < pa) 238 pa = start; 239 } else { 240 if (end - size > pa) 241 pa = end - size; 242 } 243 } 244 if (pa != 0) { 245 if (early_allocation) 246 next_phys = pa + size; 247 else 248 high_phys = pa; 249 return (pa); 250 } 251 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 252 ") Out of memory\n", size, align); 253 /*NOTREACHED*/ 254 } 255 256 uintptr_t 257 alloc_vaddr(size_t size, paddr_t align) 258 { 259 uintptr_t rv; 260 261 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 262 rv = (uintptr_t)next_virt; 263 next_virt += size; 264 return (rv); 265 } 266 267 /* 268 * Allocate virtual memory. The size is always rounded up to a multiple 269 * of base pagesize. 270 */ 271 272 /*ARGSUSED*/ 273 static caddr_t 274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 275 { 276 paddr_t a = align; /* same type as pa for masking */ 277 uint_t pgsize; 278 paddr_t pa; 279 uintptr_t va; 280 ssize_t s; /* the aligned size */ 281 uint_t level; 282 uint_t is_kernel = (virthint != 0); 283 284 if (a < MMU_PAGESIZE) 285 a = MMU_PAGESIZE; 286 else if (!ISP2(a)) 287 prom_panic("do_bsys_alloc() incorrect alignment"); 288 size = P2ROUNDUP(size, MMU_PAGESIZE); 289 290 /* 291 * Use the next aligned virtual address if we weren't given one. 292 */ 293 if (virthint == NULL) { 294 virthint = (caddr_t)alloc_vaddr(size, a); 295 total_bop_alloc_scratch += size; 296 } else { 297 total_bop_alloc_kernel += size; 298 } 299 300 /* 301 * allocate the physical memory 302 */ 303 pa = do_bop_phys_alloc(size, a); 304 305 /* 306 * Add the mappings to the page tables, try large pages first. 307 */ 308 va = (uintptr_t)virthint; 309 s = size; 310 level = 1; 311 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 312 if (xbootp->bi_use_largepage && a == pgsize) { 313 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 314 s >= pgsize) { 315 kbm_map(va, pa, level, is_kernel); 316 va += pgsize; 317 pa += pgsize; 318 s -= pgsize; 319 } 320 } 321 322 /* 323 * Map remaining pages use small mappings 324 */ 325 level = 0; 326 pgsize = MMU_PAGESIZE; 327 while (s > 0) { 328 kbm_map(va, pa, level, is_kernel); 329 va += pgsize; 330 pa += pgsize; 331 s -= pgsize; 332 } 333 return (virthint); 334 } 335 336 /* 337 * Free virtual memory - we'll just ignore these. 338 */ 339 /*ARGSUSED*/ 340 static void 341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 342 { 343 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 344 (void *)virt, size); 345 } 346 347 /* 348 * Old interface 349 */ 350 /*ARGSUSED*/ 351 static caddr_t 352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 353 int align, int flags) 354 { 355 prom_panic("unsupported call to BOP_EALLOC()\n"); 356 return (0); 357 } 358 359 360 static void 361 bsetprop(int flags, char *name, int nlen, void *value, int vlen) 362 { 363 uint_t size; 364 uint_t need_size; 365 bootprop_t *b; 366 367 /* 368 * align the size to 16 byte boundary 369 */ 370 size = sizeof (bootprop_t) + nlen + 1 + vlen; 371 size = (size + 0xf) & ~0xf; 372 if (size > curr_space) { 373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 375 curr_space = need_size; 376 } 377 378 /* 379 * use a bootprop_t at curr_page and link into list 380 */ 381 b = (bootprop_t *)curr_page; 382 curr_page += sizeof (bootprop_t); 383 curr_space -= sizeof (bootprop_t); 384 b->bp_next = bprops; 385 bprops = b; 386 387 /* 388 * follow by name and ending zero byte 389 */ 390 b->bp_name = curr_page; 391 bcopy(name, curr_page, nlen); 392 curr_page += nlen; 393 *curr_page++ = 0; 394 curr_space -= nlen + 1; 395 396 /* 397 * set the property type 398 */ 399 b->bp_flags = flags & DDI_PROP_TYPE_MASK; 400 401 /* 402 * copy in value, but no ending zero byte 403 */ 404 b->bp_value = curr_page; 405 b->bp_vlen = vlen; 406 if (vlen > 0) { 407 bcopy(value, curr_page, vlen); 408 curr_page += vlen; 409 curr_space -= vlen; 410 } 411 412 /* 413 * align new values of curr_page, curr_space 414 */ 415 while (curr_space & 0xf) { 416 ++curr_page; 417 --curr_space; 418 } 419 } 420 421 static void 422 bsetprops(char *name, char *value) 423 { 424 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name), 425 value, strlen(value) + 1); 426 } 427 428 static void 429 bsetprop32(char *name, uint32_t value) 430 { 431 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name), 432 (void *)&value, sizeof (value)); 433 } 434 435 static void 436 bsetprop64(char *name, uint64_t value) 437 { 438 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name), 439 (void *)&value, sizeof (value)); 440 } 441 442 static void 443 bsetpropsi(char *name, int value) 444 { 445 char prop_val[32]; 446 447 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 448 bsetprops(name, prop_val); 449 } 450 451 /* 452 * to find the type of the value associated with this name 453 */ 454 /*ARGSUSED*/ 455 int 456 do_bsys_getproptype(bootops_t *bop, const char *name) 457 { 458 bootprop_t *b; 459 460 for (b = bprops; b != NULL; b = b->bp_next) { 461 if (strcmp(name, b->bp_name) != 0) 462 continue; 463 return (b->bp_flags); 464 } 465 return (-1); 466 } 467 468 /* 469 * to find the size of the buffer to allocate 470 */ 471 /*ARGSUSED*/ 472 int 473 do_bsys_getproplen(bootops_t *bop, const char *name) 474 { 475 bootprop_t *b; 476 477 for (b = bprops; b; b = b->bp_next) { 478 if (strcmp(name, b->bp_name) != 0) 479 continue; 480 return (b->bp_vlen); 481 } 482 return (-1); 483 } 484 485 /* 486 * get the value associated with this name 487 */ 488 /*ARGSUSED*/ 489 int 490 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 491 { 492 bootprop_t *b; 493 494 for (b = bprops; b; b = b->bp_next) { 495 if (strcmp(name, b->bp_name) != 0) 496 continue; 497 bcopy(b->bp_value, value, b->bp_vlen); 498 return (0); 499 } 500 return (-1); 501 } 502 503 /* 504 * get the name of the next property in succession from the standalone 505 */ 506 /*ARGSUSED*/ 507 static char * 508 do_bsys_nextprop(bootops_t *bop, char *name) 509 { 510 bootprop_t *b; 511 512 /* 513 * A null name is a special signal for the 1st boot property 514 */ 515 if (name == NULL || strlen(name) == 0) { 516 if (bprops == NULL) 517 return (NULL); 518 return (bprops->bp_name); 519 } 520 521 for (b = bprops; b; b = b->bp_next) { 522 if (name != b->bp_name) 523 continue; 524 b = b->bp_next; 525 if (b == NULL) 526 return (NULL); 527 return (b->bp_name); 528 } 529 return (NULL); 530 } 531 532 /* 533 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 534 */ 535 static int 536 parse_value(char *p, uint64_t *retval) 537 { 538 int adjust = 0; 539 uint64_t tmp = 0; 540 int digit; 541 int radix = 10; 542 543 *retval = 0; 544 if (*p == '-' || *p == '~') 545 adjust = *p++; 546 547 if (*p == '0') { 548 ++p; 549 if (*p == 0) 550 return (0); 551 if (*p == 'x' || *p == 'X') { 552 radix = 16; 553 ++p; 554 } else { 555 radix = 8; 556 ++p; 557 } 558 } 559 while (*p) { 560 if ('0' <= *p && *p <= '9') 561 digit = *p - '0'; 562 else if ('a' <= *p && *p <= 'f') 563 digit = 10 + *p - 'a'; 564 else if ('A' <= *p && *p <= 'F') 565 digit = 10 + *p - 'A'; 566 else 567 return (-1); 568 if (digit >= radix) 569 return (-1); 570 tmp = tmp * radix + digit; 571 ++p; 572 } 573 if (adjust == '-') 574 tmp = -tmp; 575 else if (adjust == '~') 576 tmp = ~tmp; 577 *retval = tmp; 578 return (0); 579 } 580 581 static boolean_t 582 unprintable(char *value, int size) 583 { 584 int i; 585 586 if (size <= 0 || value[0] == '\0') 587 return (B_TRUE); 588 589 for (i = 0; i < size; i++) { 590 if (value[i] == '\0') 591 return (i != (size - 1)); 592 593 if (!isprint(value[i])) 594 return (B_TRUE); 595 } 596 return (B_FALSE); 597 } 598 599 /* 600 * Print out information about all boot properties. 601 * buffer is pointer to pre-allocated space to be used as temporary 602 * space for property values. 603 */ 604 static void 605 boot_prop_display(char *buffer) 606 { 607 char *name = ""; 608 int i, len, flags, *buf32; 609 int64_t *buf64; 610 611 bop_printf(NULL, "\nBoot properties:\n"); 612 613 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 614 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 615 (void) do_bsys_getprop(NULL, name, buffer); 616 len = do_bsys_getproplen(NULL, name); 617 flags = do_bsys_getproptype(NULL, name); 618 bop_printf(NULL, "len=%d ", len); 619 620 switch (flags) { 621 case DDI_PROP_TYPE_INT: 622 len = len / sizeof (int); 623 buf32 = (int *)buffer; 624 for (i = 0; i < len; i++) { 625 bop_printf(NULL, "%08x", buf32[i]); 626 if (i < len - 1) 627 bop_printf(NULL, "."); 628 } 629 break; 630 case DDI_PROP_TYPE_STRING: 631 bop_printf(NULL, "%s", buffer); 632 break; 633 case DDI_PROP_TYPE_INT64: 634 len = len / sizeof (int64_t); 635 buf64 = (int64_t *)buffer; 636 for (i = 0; i < len; i++) { 637 bop_printf(NULL, "%016" PRIx64, buf64[i]); 638 if (i < len - 1) 639 bop_printf(NULL, "."); 640 } 641 break; 642 default: 643 if (!unprintable(buffer, len)) { 644 buffer[len] = 0; 645 bop_printf(NULL, "%s", buffer); 646 break; 647 } 648 for (i = 0; i < len; i++) { 649 bop_printf(NULL, "%02x", buffer[i] & 0xff); 650 if (i < len - 1) 651 bop_printf(NULL, "."); 652 } 653 break; 654 } 655 bop_printf(NULL, "\n"); 656 } 657 } 658 659 /* 660 * 2nd part of building the table of boot properties. This includes: 661 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 662 * 663 * lines look like one of: 664 * ^$ 665 * ^# comment till end of line 666 * setprop name 'value' 667 * setprop name value 668 * setprop name "value" 669 * 670 * we do single character I/O since this is really just looking at memory 671 */ 672 void 673 boot_prop_finish(void) 674 { 675 int fd; 676 char *line; 677 int c; 678 int bytes_read; 679 char *name; 680 int n_len; 681 char *value; 682 int v_len; 683 char *inputdev; /* these override the command line if serial ports */ 684 char *outputdev; 685 char *consoledev; 686 uint64_t lvalue; 687 int use_xencons = 0; 688 extern int bootrd_debug; 689 690 #ifdef __xpv 691 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 692 use_xencons = 1; 693 #endif /* __xpv */ 694 695 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 696 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 697 DBG(fd); 698 699 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 700 while (fd >= 0) { 701 702 /* 703 * get a line 704 */ 705 for (c = 0; ; ++c) { 706 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 707 if (bytes_read == 0) { 708 if (c == 0) 709 goto done; 710 break; 711 } 712 if (line[c] == '\n') 713 break; 714 } 715 line[c] = 0; 716 717 /* 718 * ignore comment lines 719 */ 720 c = 0; 721 while (ISSPACE(line[c])) 722 ++c; 723 if (line[c] == '#' || line[c] == 0) 724 continue; 725 726 /* 727 * must have "setprop " or "setprop\t" 728 */ 729 if (strncmp(line + c, "setprop ", 8) != 0 && 730 strncmp(line + c, "setprop\t", 8) != 0) 731 continue; 732 c += 8; 733 while (ISSPACE(line[c])) 734 ++c; 735 if (line[c] == 0) 736 continue; 737 738 /* 739 * gather up the property name 740 */ 741 name = line + c; 742 n_len = 0; 743 while (line[c] && !ISSPACE(line[c])) 744 ++n_len, ++c; 745 746 /* 747 * gather up the value, if any 748 */ 749 value = ""; 750 v_len = 0; 751 while (ISSPACE(line[c])) 752 ++c; 753 if (line[c] != 0) { 754 value = line + c; 755 while (line[c] && !ISSPACE(line[c])) 756 ++v_len, ++c; 757 } 758 759 if (v_len >= 2 && value[0] == value[v_len - 1] && 760 (value[0] == '\'' || value[0] == '"')) { 761 ++value; 762 v_len -= 2; 763 } 764 name[n_len] = 0; 765 if (v_len > 0) 766 value[v_len] = 0; 767 else 768 continue; 769 770 /* 771 * ignore "boot-file" property, it's now meaningless 772 */ 773 if (strcmp(name, "boot-file") == 0) 774 continue; 775 if (strcmp(name, "boot-args") == 0 && 776 strlen(boot_args) > 0) 777 continue; 778 779 /* 780 * If a property was explicitly set on the command line 781 * it will override a setting in bootenv.rc 782 */ 783 if (do_bsys_getproplen(NULL, name) >= 0) 784 continue; 785 786 bsetprops(name, value); 787 } 788 done: 789 if (fd >= 0) 790 (void) BRD_CLOSE(bfs_ops, fd); 791 792 /* 793 * Check if we have to limit the boot time allocator 794 */ 795 if (do_bsys_getproplen(NULL, "physmem") != -1 && 796 do_bsys_getprop(NULL, "physmem", line) >= 0 && 797 parse_value(line, &lvalue) != -1) { 798 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 799 physmem = (pgcnt_t)lvalue; 800 DBG(physmem); 801 } 802 } 803 early_allocation = 0; 804 805 /* 806 * Check for bootrd_debug. 807 */ 808 if (find_boot_prop("bootrd_debug")) 809 bootrd_debug = 1; 810 811 /* 812 * check to see if we have to override the default value of the console 813 */ 814 if (!use_xencons) { 815 inputdev = line; 816 v_len = do_bsys_getproplen(NULL, "input-device"); 817 if (v_len > 0) 818 (void) do_bsys_getprop(NULL, "input-device", inputdev); 819 else 820 v_len = 0; 821 inputdev[v_len] = 0; 822 823 outputdev = inputdev + v_len + 1; 824 v_len = do_bsys_getproplen(NULL, "output-device"); 825 if (v_len > 0) 826 (void) do_bsys_getprop(NULL, "output-device", 827 outputdev); 828 else 829 v_len = 0; 830 outputdev[v_len] = 0; 831 832 consoledev = outputdev + v_len + 1; 833 v_len = do_bsys_getproplen(NULL, "console"); 834 if (v_len > 0) { 835 (void) do_bsys_getprop(NULL, "console", consoledev); 836 if (post_fastreboot && 837 strcmp(consoledev, "graphics") == 0) { 838 bsetprops("console", "text"); 839 v_len = strlen("text"); 840 bcopy("text", consoledev, v_len); 841 } 842 } else { 843 v_len = 0; 844 } 845 consoledev[v_len] = 0; 846 bcons_init2(inputdev, outputdev, consoledev); 847 } else { 848 /* 849 * Ensure console property exists 850 * If not create it as "hypervisor" 851 */ 852 v_len = do_bsys_getproplen(NULL, "console"); 853 if (v_len < 0) 854 bsetprops("console", "hypervisor"); 855 inputdev = outputdev = consoledev = "hypervisor"; 856 bcons_init2(inputdev, outputdev, consoledev); 857 } 858 859 if (find_boot_prop("prom_debug") || kbm_debug) 860 boot_prop_display(line); 861 } 862 863 /* 864 * print formatted output 865 */ 866 /*ARGSUSED*/ 867 void 868 vbop_printf(void *ptr, const char *fmt, va_list ap) 869 { 870 if (have_console == 0) 871 return; 872 873 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 874 PUT_STRING(buffer); 875 } 876 877 /*PRINTFLIKE2*/ 878 void 879 bop_printf(void *bop, const char *fmt, ...) 880 { 881 va_list ap; 882 883 va_start(ap, fmt); 884 vbop_printf(bop, fmt, ap); 885 va_end(ap); 886 } 887 888 /* 889 * Another panic() variant; this one can be used even earlier during boot than 890 * prom_panic(). 891 */ 892 /*PRINTFLIKE1*/ 893 void 894 bop_panic(const char *fmt, ...) 895 { 896 va_list ap; 897 898 va_start(ap, fmt); 899 bop_printf(NULL, fmt, ap); 900 va_end(ap); 901 902 bop_printf(NULL, "\nPress any key to reboot.\n"); 903 (void) bcons_getchar(); 904 bop_printf(NULL, "Resetting...\n"); 905 pc_reset(); 906 } 907 908 /* 909 * Do a real mode interrupt BIOS call 910 */ 911 typedef struct bios_regs { 912 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 913 } bios_regs_t; 914 typedef int (*bios_func_t)(int, bios_regs_t *); 915 916 /*ARGSUSED*/ 917 static void 918 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 919 { 920 #if defined(__xpv) 921 prom_panic("unsupported call to BOP_DOINT()\n"); 922 #else /* __xpv */ 923 static int firsttime = 1; 924 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 925 bios_regs_t br; 926 927 /* 928 * We're about to disable paging; we shouldn't be PCID enabled. 929 */ 930 if (getcr4() & CR4_PCIDE) 931 prom_panic("do_bsys_doint() with PCID enabled\n"); 932 933 /* 934 * The first time we do this, we have to copy the pre-packaged 935 * low memory bios call code image into place. 936 */ 937 if (firsttime) { 938 extern char bios_image[]; 939 extern uint32_t bios_size; 940 941 bcopy(bios_image, (void *)bios_func, bios_size); 942 firsttime = 0; 943 } 944 945 br.ax = rp->eax.word.ax; 946 br.bx = rp->ebx.word.bx; 947 br.cx = rp->ecx.word.cx; 948 br.dx = rp->edx.word.dx; 949 br.bp = rp->ebp.word.bp; 950 br.si = rp->esi.word.si; 951 br.di = rp->edi.word.di; 952 br.ds = rp->ds; 953 br.es = rp->es; 954 955 DBG_MSG("Doing BIOS call..."); 956 DBG(br.ax); 957 DBG(br.bx); 958 DBG(br.dx); 959 rp->eflags = bios_func(intnum, &br); 960 DBG_MSG("done\n"); 961 962 rp->eax.word.ax = br.ax; 963 rp->ebx.word.bx = br.bx; 964 rp->ecx.word.cx = br.cx; 965 rp->edx.word.dx = br.dx; 966 rp->ebp.word.bp = br.bp; 967 rp->esi.word.si = br.si; 968 rp->edi.word.di = br.di; 969 rp->ds = br.ds; 970 rp->es = br.es; 971 #endif /* __xpv */ 972 } 973 974 static struct boot_syscalls bop_sysp = { 975 bcons_getchar, 976 bcons_putchar, 977 bcons_ischar, 978 }; 979 980 static char *whoami; 981 982 #define BUFLEN 64 983 984 #if defined(__xpv) 985 986 static char namebuf[32]; 987 988 static void 989 xen_parse_props(char *s, char *prop_map[], int n_prop) 990 { 991 char **prop_name = prop_map; 992 char *cp = s, *scp; 993 994 do { 995 scp = cp; 996 while ((*cp != '\0') && (*cp != ':')) 997 cp++; 998 999 if ((scp != cp) && (*prop_name != NULL)) { 1000 *cp = '\0'; 1001 bsetprops(*prop_name, scp); 1002 } 1003 1004 cp++; 1005 prop_name++; 1006 n_prop--; 1007 } while (n_prop > 0); 1008 } 1009 1010 #define VBDPATHLEN 64 1011 1012 /* 1013 * parse the 'xpv-root' property to create properties used by 1014 * ufs_mountroot. 1015 */ 1016 static void 1017 xen_vbdroot_props(char *s) 1018 { 1019 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 1020 const char lnamefix[] = "/dev/dsk/c0d"; 1021 char *pnp; 1022 char *prop_p; 1023 char mi; 1024 short minor; 1025 long addr = 0; 1026 1027 pnp = vbdpath + strlen(vbdpath); 1028 prop_p = s + strlen(lnamefix); 1029 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 1030 addr = addr * 10 + *prop_p++ - '0'; 1031 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 1032 pnp = vbdpath + strlen(vbdpath); 1033 if (*prop_p == 's') 1034 mi = 'a'; 1035 else if (*prop_p == 'p') 1036 mi = 'q'; 1037 else 1038 ASSERT(0); /* shouldn't be here */ 1039 prop_p++; 1040 ASSERT(*prop_p != '\0'); 1041 if (ISDIGIT(*prop_p)) { 1042 minor = *prop_p - '0'; 1043 prop_p++; 1044 if (ISDIGIT(*prop_p)) { 1045 minor = minor * 10 + *prop_p - '0'; 1046 } 1047 } else { 1048 /* malformed root path, use 0 as default */ 1049 minor = 0; 1050 } 1051 ASSERT(minor < 16); /* at most 16 partitions */ 1052 mi += minor; 1053 *pnp++ = ':'; 1054 *pnp++ = mi; 1055 *pnp++ = '\0'; 1056 bsetprops("fstype", "ufs"); 1057 bsetprops("bootpath", vbdpath); 1058 1059 DBG_MSG("VBD bootpath set to "); 1060 DBG_MSG(vbdpath); 1061 DBG_MSG("\n"); 1062 } 1063 1064 /* 1065 * parse the xpv-nfsroot property to create properties used by 1066 * nfs_mountroot. 1067 */ 1068 static void 1069 xen_nfsroot_props(char *s) 1070 { 1071 char *prop_map[] = { 1072 BP_SERVER_IP, /* server IP address */ 1073 BP_SERVER_NAME, /* server hostname */ 1074 BP_SERVER_PATH, /* root path */ 1075 }; 1076 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1077 1078 bsetprops("fstype", "nfs"); 1079 1080 xen_parse_props(s, prop_map, n_prop); 1081 1082 /* 1083 * If a server name wasn't specified, use a default. 1084 */ 1085 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1086 bsetprops(BP_SERVER_NAME, "unknown"); 1087 } 1088 1089 /* 1090 * Extract our IP address, etc. from the "xpv-ip" property. 1091 */ 1092 static void 1093 xen_ip_props(char *s) 1094 { 1095 char *prop_map[] = { 1096 BP_HOST_IP, /* IP address */ 1097 NULL, /* NFS server IP address (ignored in */ 1098 /* favour of xpv-nfsroot) */ 1099 BP_ROUTER_IP, /* IP gateway */ 1100 BP_SUBNET_MASK, /* IP subnet mask */ 1101 "xpv-hostname", /* hostname (ignored) */ 1102 BP_NETWORK_INTERFACE, /* interface name */ 1103 "xpv-hcp", /* host configuration protocol */ 1104 }; 1105 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1106 char ifname[IFNAMSIZ]; 1107 1108 xen_parse_props(s, prop_map, n_prop); 1109 1110 /* 1111 * A Linux dom0 administrator expects all interfaces to be 1112 * called "ethX", which is not the case here. 1113 * 1114 * If the interface name specified is "eth0", presume that 1115 * this is really intended to be "xnf0" (the first domU -> 1116 * dom0 interface for this domain). 1117 */ 1118 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1119 (strcmp("eth0", ifname) == 0)) { 1120 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1121 bop_printf(NULL, 1122 "network interface name 'eth0' replaced with 'xnf0'\n"); 1123 } 1124 } 1125 1126 #else /* __xpv */ 1127 1128 static void 1129 setup_rarp_props(struct sol_netinfo *sip) 1130 { 1131 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1132 uint8_t *val; 1133 1134 val = (uint8_t *)&sip->sn_ciaddr; 1135 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1136 val[0], val[1], val[2], val[3]); 1137 bsetprops(BP_HOST_IP, buf); 1138 1139 val = (uint8_t *)&sip->sn_siaddr; 1140 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1141 val[0], val[1], val[2], val[3]); 1142 bsetprops(BP_SERVER_IP, buf); 1143 1144 if (sip->sn_giaddr != 0) { 1145 val = (uint8_t *)&sip->sn_giaddr; 1146 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1147 val[0], val[1], val[2], val[3]); 1148 bsetprops(BP_ROUTER_IP, buf); 1149 } 1150 1151 if (sip->sn_netmask != 0) { 1152 val = (uint8_t *)&sip->sn_netmask; 1153 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1154 val[0], val[1], val[2], val[3]); 1155 bsetprops(BP_SUBNET_MASK, buf); 1156 } 1157 1158 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1159 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1160 sip->sn_mactype, sip->sn_maclen); 1161 } else { 1162 val = sip->sn_macaddr; 1163 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1164 val[0], val[1], val[2], val[3], val[4], val[5]); 1165 bsetprops(BP_BOOT_MAC, buf); 1166 } 1167 } 1168 1169 #endif /* __xpv */ 1170 1171 static void 1172 build_panic_cmdline(const char *cmd, int cmdlen) 1173 { 1174 int proplen; 1175 size_t arglen; 1176 1177 arglen = sizeof (fastreboot_onpanic_args); 1178 /* 1179 * If we allready have fastreboot-onpanic set to zero, 1180 * don't add them again. 1181 */ 1182 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1183 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1184 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1185 fastreboot_onpanic_cmdline); 1186 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1187 arglen = 1; 1188 } 1189 1190 /* 1191 * construct fastreboot_onpanic_cmdline 1192 */ 1193 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1194 DBG_MSG("Command line too long: clearing " 1195 FASTREBOOT_ONPANIC "\n"); 1196 fastreboot_onpanic = 0; 1197 } else { 1198 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1199 if (arglen != 1) 1200 bcopy(fastreboot_onpanic_args, 1201 fastreboot_onpanic_cmdline + cmdlen, arglen); 1202 else 1203 fastreboot_onpanic_cmdline[cmdlen] = 0; 1204 } 1205 } 1206 1207 1208 #ifndef __xpv 1209 /* 1210 * Construct boot command line for Fast Reboot. The saved_cmdline 1211 * is also reported by "eeprom bootcmd". 1212 */ 1213 static void 1214 build_fastboot_cmdline(struct xboot_info *xbp) 1215 { 1216 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1217 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1218 DBG(saved_cmdline_len); 1219 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1220 fastreboot_capable = 0; 1221 } else { 1222 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1223 saved_cmdline_len); 1224 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1225 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1226 } 1227 } 1228 1229 /* 1230 * Save memory layout, disk drive information, unix and boot archive sizes for 1231 * Fast Reboot. 1232 */ 1233 static void 1234 save_boot_info(struct xboot_info *xbi) 1235 { 1236 multiboot_info_t *mbi = xbi->bi_mb_info; 1237 struct boot_modules *modp; 1238 int i; 1239 1240 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1241 if (mbi->mmap_length > sizeof (saved_mmap)) { 1242 DBG_MSG("mbi->mmap_length too big: clearing " 1243 "fastreboot_capable\n"); 1244 fastreboot_capable = 0; 1245 } else { 1246 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1247 mbi->mmap_length); 1248 } 1249 1250 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1251 if (mbi->drives_length > sizeof (saved_drives)) { 1252 DBG(mbi->drives_length); 1253 DBG_MSG("mbi->drives_length too big: clearing " 1254 "fastreboot_capable\n"); 1255 fastreboot_capable = 0; 1256 } else { 1257 bcopy((void *)(uintptr_t)mbi->drives_addr, 1258 (void *)saved_drives, mbi->drives_length); 1259 } 1260 } else { 1261 saved_mbi.drives_length = 0; 1262 saved_mbi.drives_addr = 0; 1263 } 1264 1265 /* 1266 * Current file sizes. Used by fastboot.c to figure out how much 1267 * memory to reserve for panic reboot. 1268 * Use the module list from the dboot-constructed xboot_info 1269 * instead of the list referenced by the multiboot structure 1270 * because that structure may not be addressable now. 1271 */ 1272 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1273 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1274 i < xbi->bi_module_cnt; i++, modp++) { 1275 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1276 } 1277 } 1278 #endif /* __xpv */ 1279 1280 /* 1281 * Import boot environment module variables as properties, applying 1282 * blacklist filter for variables we know we will not use. 1283 * 1284 * Since the environment can be relatively large, containing many variables 1285 * used only for boot loader purposes, we will use a blacklist based filter. 1286 * To keep the blacklist from growing too large, we use prefix based filtering. 1287 * This is possible because in many cases, the loader variable names are 1288 * using a structured layout. 1289 * 1290 * We will not overwrite already set properties. 1291 * 1292 * Note that the menu items in particular can contain characters not 1293 * well-handled as bootparams, such as spaces, brackets, and the like, so that's 1294 * another reason. 1295 */ 1296 static struct bop_blacklist { 1297 const char *bl_name; 1298 int bl_name_len; 1299 } bop_prop_blacklist[] = { 1300 { "ISADIR", sizeof ("ISADIR") }, 1301 { "acpi", sizeof ("acpi") }, 1302 { "autoboot_delay", sizeof ("autoboot_delay") }, 1303 { "beansi_", sizeof ("beansi_") }, 1304 { "beastie", sizeof ("beastie") }, 1305 { "bemenu", sizeof ("bemenu") }, 1306 { "boot.", sizeof ("boot.") }, 1307 { "bootenv", sizeof ("bootenv") }, 1308 { "currdev", sizeof ("currdev") }, 1309 { "dhcp.", sizeof ("dhcp.") }, 1310 { "interpret", sizeof ("interpret") }, 1311 { "kernel", sizeof ("kernel") }, 1312 { "loaddev", sizeof ("loaddev") }, 1313 { "loader_", sizeof ("loader_") }, 1314 { "mainansi_", sizeof ("mainansi_") }, 1315 { "mainmenu_", sizeof ("mainmenu_") }, 1316 { "maintoggled_", sizeof ("maintoggled_") }, 1317 { "menu_timeout_command", sizeof ("menu_timeout_command") }, 1318 { "menuset_", sizeof ("menuset_") }, 1319 { "module_path", sizeof ("module_path") }, 1320 { "nfs.", sizeof ("nfs.") }, 1321 { "optionsansi_", sizeof ("optionsansi_") }, 1322 { "optionsmenu_", sizeof ("optionsmenu_") }, 1323 { "optionstoggled_", sizeof ("optionstoggled_") }, 1324 { "pcibios", sizeof ("pcibios") }, 1325 { "prompt", sizeof ("prompt") }, 1326 { "smbios", sizeof ("smbios") }, 1327 { "tem", sizeof ("tem") }, 1328 { "twiddle_divisor", sizeof ("twiddle_divisor") }, 1329 { "zfs_be", sizeof ("zfs_be") }, 1330 }; 1331 1332 /* 1333 * Match the name against prefixes in above blacklist. If the match was 1334 * found, this name is blacklisted. 1335 */ 1336 static boolean_t 1337 name_is_blacklisted(const char *name) 1338 { 1339 int i, n; 1340 1341 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]); 1342 for (i = 0; i < n; i++) { 1343 if (strncmp(bop_prop_blacklist[i].bl_name, name, 1344 bop_prop_blacklist[i].bl_name_len - 1) == 0) { 1345 return (B_TRUE); 1346 } 1347 } 1348 return (B_FALSE); 1349 } 1350 1351 static void 1352 process_boot_environment(struct boot_modules *benv) 1353 { 1354 char *env, *ptr, *name, *value; 1355 uint32_t size, name_len, value_len; 1356 1357 if (benv == NULL || benv->bm_type != BMT_ENV) 1358 return; 1359 ptr = env = benv->bm_addr; 1360 size = benv->bm_size; 1361 do { 1362 name = ptr; 1363 /* find '=' */ 1364 while (*ptr != '=') { 1365 ptr++; 1366 if (ptr > env + size) /* Something is very wrong. */ 1367 return; 1368 } 1369 name_len = ptr - name; 1370 if (sizeof (buffer) <= name_len) 1371 continue; 1372 1373 (void) strncpy(buffer, name, sizeof (buffer)); 1374 buffer[name_len] = '\0'; 1375 name = buffer; 1376 1377 value_len = 0; 1378 value = ++ptr; 1379 while ((uintptr_t)ptr - (uintptr_t)env < size) { 1380 if (*ptr == '\0') { 1381 ptr++; 1382 value_len = (uintptr_t)ptr - (uintptr_t)env; 1383 break; 1384 } 1385 ptr++; 1386 } 1387 1388 /* Did we reach the end of the module? */ 1389 if (value_len == 0) 1390 return; 1391 1392 if (*value == '\0') 1393 continue; 1394 1395 /* Is this property already set? */ 1396 if (do_bsys_getproplen(NULL, name) >= 0) 1397 continue; 1398 1399 /* Translate netboot variables */ 1400 if (strcmp(name, "boot.netif.gateway") == 0) { 1401 bsetprops(BP_ROUTER_IP, value); 1402 continue; 1403 } 1404 if (strcmp(name, "boot.netif.hwaddr") == 0) { 1405 bsetprops(BP_BOOT_MAC, value); 1406 continue; 1407 } 1408 if (strcmp(name, "boot.netif.ip") == 0) { 1409 bsetprops(BP_HOST_IP, value); 1410 continue; 1411 } 1412 if (strcmp(name, "boot.netif.netmask") == 0) { 1413 bsetprops(BP_SUBNET_MASK, value); 1414 continue; 1415 } 1416 if (strcmp(name, "boot.netif.server") == 0) { 1417 bsetprops(BP_SERVER_IP, value); 1418 continue; 1419 } 1420 if (strcmp(name, "boot.netif.server") == 0) { 1421 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1422 bsetprops(BP_SERVER_IP, value); 1423 continue; 1424 } 1425 if (strcmp(name, "boot.nfsroot.server") == 0) { 1426 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1427 bsetprops(BP_SERVER_IP, value); 1428 continue; 1429 } 1430 if (strcmp(name, "boot.nfsroot.path") == 0) { 1431 bsetprops(BP_SERVER_PATH, value); 1432 continue; 1433 } 1434 1435 if (name_is_blacklisted(name) == B_TRUE) 1436 continue; 1437 1438 /* Create new property. */ 1439 bsetprops(name, value); 1440 1441 /* Avoid reading past the module end. */ 1442 if (size <= (uintptr_t)ptr - (uintptr_t)env) 1443 return; 1444 } while (*ptr != '\0'); 1445 } 1446 1447 /* 1448 * 1st pass at building the table of boot properties. This includes: 1449 * - values set on the command line: -B a=x,b=y,c=z .... 1450 * - known values we just compute (ie. from xbp) 1451 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1452 * 1453 * the grub command line looked like: 1454 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1455 * 1456 * whoami is the same as boot-file 1457 */ 1458 static void 1459 build_boot_properties(struct xboot_info *xbp) 1460 { 1461 char *name; 1462 int name_len; 1463 char *value; 1464 int value_len; 1465 struct boot_modules *bm, *rdbm, *benv = NULL; 1466 char *propbuf; 1467 int quoted = 0; 1468 int boot_arg_len; 1469 uint_t i, midx; 1470 char modid[32]; 1471 #ifndef __xpv 1472 static int stdout_val = 0; 1473 uchar_t boot_device; 1474 char str[3]; 1475 #endif 1476 1477 /* 1478 * These have to be done first, so that kobj_mount_root() works 1479 */ 1480 DBG_MSG("Building boot properties\n"); 1481 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1482 DBG((uintptr_t)propbuf); 1483 if (xbp->bi_module_cnt > 0) { 1484 bm = xbp->bi_modules; 1485 rdbm = NULL; 1486 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1487 if (bm[i].bm_type == BMT_ROOTFS) { 1488 rdbm = &bm[i]; 1489 continue; 1490 } 1491 if (bm[i].bm_type == BMT_HASH || 1492 bm[i].bm_type == BMT_FONT || 1493 bm[i].bm_name == NULL) 1494 continue; 1495 1496 if (bm[i].bm_type == BMT_ENV) { 1497 if (benv == NULL) 1498 benv = &bm[i]; 1499 else 1500 continue; 1501 } 1502 1503 (void) snprintf(modid, sizeof (modid), 1504 "module-name-%u", midx); 1505 bsetprops(modid, (char *)bm[i].bm_name); 1506 (void) snprintf(modid, sizeof (modid), 1507 "module-addr-%u", midx); 1508 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1509 (void) snprintf(modid, sizeof (modid), 1510 "module-size-%u", midx); 1511 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1512 ++midx; 1513 } 1514 if (rdbm != NULL) { 1515 bsetprop64("ramdisk_start", 1516 (uint64_t)(uintptr_t)rdbm->bm_addr); 1517 bsetprop64("ramdisk_end", 1518 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1519 } 1520 } 1521 1522 /* 1523 * If there are any boot time modules or hashes present, then disable 1524 * fast reboot. 1525 */ 1526 if (xbp->bi_module_cnt > 1) { 1527 fastreboot_disable(FBNS_BOOTMOD); 1528 } 1529 1530 #ifndef __xpv 1531 /* 1532 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1533 * since we don't currently support MB2 info and module relocation. 1534 * Note that fast reboot will have already been disabled if multiple 1535 * modules are present, since the current implementation assumes that 1536 * we only have a single module, the boot_archive. 1537 */ 1538 if (xbp->bi_mb_version != 1) { 1539 fastreboot_disable(FBNS_MULTIBOOT2); 1540 } 1541 #endif 1542 1543 DBG_MSG("Parsing command line for boot properties\n"); 1544 value = xbp->bi_cmdline; 1545 1546 /* 1547 * allocate memory to collect boot_args into 1548 */ 1549 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1550 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1551 boot_args[0] = 0; 1552 boot_arg_len = 0; 1553 1554 #ifdef __xpv 1555 /* 1556 * Xen puts a lot of device information in front of the kernel name 1557 * let's grab them and make them boot properties. The first 1558 * string w/o an "=" in it will be the boot-file property. 1559 */ 1560 (void) strcpy(namebuf, "xpv-"); 1561 for (;;) { 1562 /* 1563 * get to next property 1564 */ 1565 while (ISSPACE(*value)) 1566 ++value; 1567 name = value; 1568 /* 1569 * look for an "=" 1570 */ 1571 while (*value && !ISSPACE(*value) && *value != '=') { 1572 value++; 1573 } 1574 if (*value != '=') { /* no "=" in the property */ 1575 value = name; 1576 break; 1577 } 1578 name_len = value - name; 1579 value_len = 0; 1580 /* 1581 * skip over the "=" 1582 */ 1583 value++; 1584 while (value[value_len] && !ISSPACE(value[value_len])) { 1585 ++value_len; 1586 } 1587 /* 1588 * build property name with "xpv-" prefix 1589 */ 1590 if (name_len + 4 > 32) { /* skip if name too long */ 1591 value += value_len; 1592 continue; 1593 } 1594 bcopy(name, &namebuf[4], name_len); 1595 name_len += 4; 1596 namebuf[name_len] = 0; 1597 bcopy(value, propbuf, value_len); 1598 propbuf[value_len] = 0; 1599 bsetprops(namebuf, propbuf); 1600 1601 /* 1602 * xpv-root is set to the logical disk name of the xen 1603 * VBD when booting from a disk-based filesystem. 1604 */ 1605 if (strcmp(namebuf, "xpv-root") == 0) 1606 xen_vbdroot_props(propbuf); 1607 /* 1608 * While we're here, if we have a "xpv-nfsroot" property 1609 * then we need to set "fstype" to "nfs" so we mount 1610 * our root from the nfs server. Also parse the xpv-nfsroot 1611 * property to create the properties that nfs_mountroot will 1612 * need to find the root and mount it. 1613 */ 1614 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1615 xen_nfsroot_props(propbuf); 1616 1617 if (strcmp(namebuf, "xpv-ip") == 0) 1618 xen_ip_props(propbuf); 1619 value += value_len; 1620 } 1621 #endif 1622 1623 while (ISSPACE(*value)) 1624 ++value; 1625 /* 1626 * value now points at the boot-file 1627 */ 1628 value_len = 0; 1629 while (value[value_len] && !ISSPACE(value[value_len])) 1630 ++value_len; 1631 if (value_len > 0) { 1632 whoami = propbuf; 1633 bcopy(value, whoami, value_len); 1634 whoami[value_len] = 0; 1635 bsetprops("boot-file", whoami); 1636 /* 1637 * strip leading path stuff from whoami, so running from 1638 * PXE/miniroot makes sense. 1639 */ 1640 if (strstr(whoami, "/platform/") != NULL) 1641 whoami = strstr(whoami, "/platform/"); 1642 bsetprops("whoami", whoami); 1643 } 1644 1645 /* 1646 * Values forcibly set boot properties on the command line via -B. 1647 * Allow use of quotes in values. Other stuff goes on kernel 1648 * command line. 1649 */ 1650 name = value + value_len; 1651 while (*name != 0) { 1652 /* 1653 * anything not " -B" is copied to the command line 1654 */ 1655 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1656 boot_args[boot_arg_len++] = *name; 1657 boot_args[boot_arg_len] = 0; 1658 ++name; 1659 continue; 1660 } 1661 1662 /* 1663 * skip the " -B" and following white space 1664 */ 1665 name += 3; 1666 while (ISSPACE(*name)) 1667 ++name; 1668 while (*name && !ISSPACE(*name)) { 1669 value = strstr(name, "="); 1670 if (value == NULL) 1671 break; 1672 name_len = value - name; 1673 ++value; 1674 value_len = 0; 1675 quoted = 0; 1676 for (; ; ++value_len) { 1677 if (!value[value_len]) 1678 break; 1679 1680 /* 1681 * is this value quoted? 1682 */ 1683 if (value_len == 0 && 1684 (value[0] == '\'' || value[0] == '"')) { 1685 quoted = value[0]; 1686 ++value_len; 1687 } 1688 1689 /* 1690 * In the quote accept any character, 1691 * but look for ending quote. 1692 */ 1693 if (quoted) { 1694 if (value[value_len] == quoted) 1695 quoted = 0; 1696 continue; 1697 } 1698 1699 /* 1700 * a comma or white space ends the value 1701 */ 1702 if (value[value_len] == ',' || 1703 ISSPACE(value[value_len])) 1704 break; 1705 } 1706 1707 if (value_len == 0) { 1708 bsetprop(DDI_PROP_TYPE_ANY, name, name_len, 1709 NULL, 0); 1710 } else { 1711 char *v = value; 1712 int l = value_len; 1713 if (v[0] == v[l - 1] && 1714 (v[0] == '\'' || v[0] == '"')) { 1715 ++v; 1716 l -= 2; 1717 } 1718 bcopy(v, propbuf, l); 1719 propbuf[l] = '\0'; 1720 bsetprop(DDI_PROP_TYPE_STRING, name, name_len, 1721 propbuf, l + 1); 1722 } 1723 name = value + value_len; 1724 while (*name == ',') 1725 ++name; 1726 } 1727 } 1728 1729 /* 1730 * set boot-args property 1731 * 1275 name is bootargs, so set 1732 * that too 1733 */ 1734 bsetprops("boot-args", boot_args); 1735 bsetprops("bootargs", boot_args); 1736 1737 process_boot_environment(benv); 1738 1739 #ifndef __xpv 1740 /* 1741 * Build boot command line for Fast Reboot 1742 */ 1743 build_fastboot_cmdline(xbp); 1744 1745 if (xbp->bi_mb_version == 1) { 1746 multiboot_info_t *mbi = xbp->bi_mb_info; 1747 int netboot; 1748 struct sol_netinfo *sip; 1749 1750 /* 1751 * set the BIOS boot device from GRUB 1752 */ 1753 netboot = 0; 1754 1755 /* 1756 * Save various boot information for Fast Reboot 1757 */ 1758 save_boot_info(xbp); 1759 1760 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1761 boot_device = mbi->boot_device >> 24; 1762 if (boot_device == 0x20) 1763 netboot++; 1764 str[0] = (boot_device >> 4) + '0'; 1765 str[1] = (boot_device & 0xf) + '0'; 1766 str[2] = 0; 1767 bsetprops("bios-boot-device", str); 1768 } else { 1769 netboot = 1; 1770 } 1771 1772 /* 1773 * In the netboot case, drives_info is overloaded with the 1774 * dhcp ack. This is not multiboot compliant and requires 1775 * special pxegrub! 1776 */ 1777 if (netboot && mbi->drives_length != 0) { 1778 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1779 if (sip->sn_infotype == SN_TYPE_BOOTP) 1780 bsetprop(DDI_PROP_TYPE_BYTE, 1781 "bootp-response", 1782 sizeof ("bootp-response"), 1783 (void *)(uintptr_t)mbi->drives_addr, 1784 mbi->drives_length); 1785 else if (sip->sn_infotype == SN_TYPE_RARP) 1786 setup_rarp_props(sip); 1787 } 1788 } else { 1789 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1790 multiboot_tag_bootdev_t *bootdev = NULL; 1791 multiboot_tag_network_t *netdev = NULL; 1792 1793 if (mbi != NULL) { 1794 bootdev = dboot_multiboot2_find_tag(mbi, 1795 MULTIBOOT_TAG_TYPE_BOOTDEV); 1796 netdev = dboot_multiboot2_find_tag(mbi, 1797 MULTIBOOT_TAG_TYPE_NETWORK); 1798 } 1799 if (bootdev != NULL) { 1800 DBG(bootdev->mb_biosdev); 1801 boot_device = bootdev->mb_biosdev; 1802 str[0] = (boot_device >> 4) + '0'; 1803 str[1] = (boot_device & 0xf) + '0'; 1804 str[2] = 0; 1805 bsetprops("bios-boot-device", str); 1806 } 1807 if (netdev != NULL) { 1808 bsetprop(DDI_PROP_TYPE_BYTE, 1809 "bootp-response", sizeof ("bootp-response"), 1810 (void *)(uintptr_t)netdev->mb_dhcpack, 1811 netdev->mb_size - 1812 sizeof (multiboot_tag_network_t)); 1813 } 1814 } 1815 1816 bsetprop32("stdout", stdout_val); 1817 #endif /* __xpv */ 1818 1819 /* 1820 * more conjured up values for made up things.... 1821 */ 1822 #if defined(__xpv) 1823 bsetprops("mfg-name", "i86xpv"); 1824 bsetprops("impl-arch-name", "i86xpv"); 1825 #else 1826 bsetprops("mfg-name", "i86pc"); 1827 bsetprops("impl-arch-name", "i86pc"); 1828 #endif 1829 1830 /* 1831 * Build firmware-provided system properties 1832 */ 1833 build_firmware_properties(xbp); 1834 1835 /* 1836 * XXPV 1837 * 1838 * Find out what these are: 1839 * - cpuid_feature_ecx_include 1840 * - cpuid_feature_ecx_exclude 1841 * - cpuid_feature_edx_include 1842 * - cpuid_feature_edx_exclude 1843 * 1844 * Find out what these are in multiboot: 1845 * - netdev-path 1846 * - fstype 1847 */ 1848 } 1849 1850 #ifdef __xpv 1851 /* 1852 * Under the Hypervisor, memory usable for DMA may be scarce. One 1853 * very likely large pool of DMA friendly memory is occupied by 1854 * the boot_archive, as it was loaded by grub into low MFNs. 1855 * 1856 * Here we free up that memory by copying the boot archive to what are 1857 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1858 */ 1859 #define PFN_2GIG 0x80000 1860 static void 1861 relocate_boot_archive(struct xboot_info *xbp) 1862 { 1863 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1864 struct boot_modules *bm = xbp->bi_modules; 1865 uintptr_t va; 1866 pfn_t va_pfn; 1867 mfn_t va_mfn; 1868 caddr_t copy; 1869 pfn_t copy_pfn; 1870 mfn_t copy_mfn; 1871 size_t len; 1872 int slop; 1873 int total = 0; 1874 int relocated = 0; 1875 int mmu_update_return; 1876 mmu_update_t t[2]; 1877 x86pte_t pte; 1878 1879 /* 1880 * If all MFN's are below 2Gig, don't bother doing this. 1881 */ 1882 if (max_mfn < PFN_2GIG) 1883 return; 1884 if (xbp->bi_module_cnt < 1) { 1885 DBG_MSG("no boot_archive!"); 1886 return; 1887 } 1888 1889 DBG_MSG("moving boot_archive to high MFN memory\n"); 1890 va = (uintptr_t)bm->bm_addr; 1891 len = bm->bm_size; 1892 slop = va & MMU_PAGEOFFSET; 1893 if (slop) { 1894 va += MMU_PAGESIZE - slop; 1895 len -= MMU_PAGESIZE - slop; 1896 } 1897 len = P2ALIGN(len, MMU_PAGESIZE); 1898 1899 /* 1900 * Go through all boot_archive pages, swapping any low MFN pages 1901 * with memory at next_phys. 1902 */ 1903 while (len != 0) { 1904 ++total; 1905 va_pfn = mmu_btop(va - ONE_GIG); 1906 va_mfn = mfn_list[va_pfn]; 1907 if (mfn_list[va_pfn] < PFN_2GIG) { 1908 copy = kbm_remap_window(next_phys, 1); 1909 bcopy((void *)va, copy, MMU_PAGESIZE); 1910 copy_pfn = mmu_btop(next_phys); 1911 copy_mfn = mfn_list[copy_pfn]; 1912 1913 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1914 if (HYPERVISOR_update_va_mapping(va, pte, 1915 UVMF_INVLPG | UVMF_LOCAL)) 1916 bop_panic("relocate_boot_archive(): " 1917 "HYPERVISOR_update_va_mapping() failed"); 1918 1919 mfn_list[va_pfn] = copy_mfn; 1920 mfn_list[copy_pfn] = va_mfn; 1921 1922 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1923 t[0].val = va_pfn; 1924 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1925 t[1].val = copy_pfn; 1926 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1927 DOMID_SELF) != 0 || mmu_update_return != 2) 1928 bop_panic("relocate_boot_archive(): " 1929 "HYPERVISOR_mmu_update() failed"); 1930 1931 next_phys += MMU_PAGESIZE; 1932 ++relocated; 1933 } 1934 len -= MMU_PAGESIZE; 1935 va += MMU_PAGESIZE; 1936 } 1937 DBG_MSG("Relocated pages:\n"); 1938 DBG(relocated); 1939 DBG_MSG("Out of total pages:\n"); 1940 DBG(total); 1941 } 1942 #endif /* __xpv */ 1943 1944 #if !defined(__xpv) 1945 /* 1946 * simple description of a stack frame (args are 32 bit only currently) 1947 */ 1948 typedef struct bop_frame { 1949 struct bop_frame *old_frame; 1950 pc_t retaddr; 1951 long arg[1]; 1952 } bop_frame_t; 1953 1954 void 1955 bop_traceback(bop_frame_t *frame) 1956 { 1957 pc_t pc; 1958 int cnt; 1959 char *ksym; 1960 ulong_t off; 1961 1962 bop_printf(NULL, "Stack traceback:\n"); 1963 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1964 pc = frame->retaddr; 1965 if (pc == 0) 1966 break; 1967 ksym = kobj_getsymname(pc, &off); 1968 if (ksym) 1969 bop_printf(NULL, " %s+%lx", ksym, off); 1970 else 1971 bop_printf(NULL, " 0x%lx", pc); 1972 1973 frame = frame->old_frame; 1974 if (frame == 0) { 1975 bop_printf(NULL, "\n"); 1976 break; 1977 } 1978 bop_printf(NULL, "\n"); 1979 } 1980 } 1981 1982 struct trapframe { 1983 ulong_t error_code; /* optional */ 1984 ulong_t inst_ptr; 1985 ulong_t code_seg; 1986 ulong_t flags_reg; 1987 ulong_t stk_ptr; 1988 ulong_t stk_seg; 1989 }; 1990 1991 void 1992 bop_trap(ulong_t *tfp) 1993 { 1994 struct trapframe *tf = (struct trapframe *)tfp; 1995 bop_frame_t fakeframe; 1996 static int depth = 0; 1997 1998 /* 1999 * Check for an infinite loop of traps. 2000 */ 2001 if (++depth > 2) 2002 bop_panic("Nested trap"); 2003 2004 bop_printf(NULL, "Unexpected trap\n"); 2005 2006 /* 2007 * adjust the tf for optional error_code by detecting the code selector 2008 */ 2009 if (tf->code_seg != B64CODE_SEL) 2010 tf = (struct trapframe *)(tfp - 1); 2011 else 2012 bop_printf(NULL, "error code 0x%lx\n", 2013 tf->error_code & 0xffffffff); 2014 2015 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 2016 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 2017 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 2018 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 2019 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 2020 bop_printf(NULL, "%%cr2 0x%lx\n", getcr2()); 2021 2022 /* grab %[er]bp pushed by our code from the stack */ 2023 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 2024 fakeframe.retaddr = (pc_t)tf->inst_ptr; 2025 bop_printf(NULL, "Attempting stack backtrace:\n"); 2026 bop_traceback(&fakeframe); 2027 bop_panic("unexpected trap in early boot"); 2028 } 2029 2030 extern void bop_trap_handler(void); 2031 2032 static gate_desc_t *bop_idt; 2033 2034 static desctbr_t bop_idt_info; 2035 2036 /* 2037 * Install a temporary IDT that lets us catch errors in the boot time code. 2038 * We shouldn't get any faults at all while this is installed, so we'll 2039 * just generate a traceback and exit. 2040 */ 2041 static void 2042 bop_idt_init(void) 2043 { 2044 int t; 2045 2046 bop_idt = (gate_desc_t *) 2047 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2048 bzero(bop_idt, MMU_PAGESIZE); 2049 for (t = 0; t < NIDT; ++t) { 2050 /* 2051 * Note that since boot runs without a TSS, the 2052 * double fault handler cannot use an alternate stack (64-bit). 2053 */ 2054 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL, 2055 SDT_SYSIGT, TRP_KPL, 0); 2056 } 2057 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 2058 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 2059 wr_idtr(&bop_idt_info); 2060 } 2061 #endif /* !defined(__xpv) */ 2062 2063 /* 2064 * This is where we enter the kernel. It dummies up the boot_ops and 2065 * boot_syscalls vectors and jumps off to _kobj_boot() 2066 */ 2067 void 2068 _start(struct xboot_info *xbp) 2069 { 2070 bootops_t *bops = &bootop; 2071 extern void _kobj_boot(); 2072 2073 /* 2074 * 1st off - initialize the console for any error messages 2075 */ 2076 xbootp = xbp; 2077 #ifdef __xpv 2078 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 2079 xen_info = xbp->bi_xen_start_info; 2080 #endif 2081 2082 #ifndef __xpv 2083 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 2084 FASTBOOT_MAGIC) { 2085 post_fastreboot = 1; 2086 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 2087 } 2088 #endif 2089 2090 bcons_init(xbp); 2091 have_console = 1; 2092 2093 /* 2094 * enable debugging 2095 */ 2096 if (find_boot_prop("kbm_debug") != NULL) 2097 kbm_debug = 1; 2098 2099 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 2100 DBG_MSG((char *)xbp->bi_cmdline); 2101 DBG_MSG("\n\n\n"); 2102 2103 /* 2104 * physavail is no longer used by startup 2105 */ 2106 bm.physinstalled = xbp->bi_phys_install; 2107 bm.pcimem = xbp->bi_pcimem; 2108 bm.rsvdmem = xbp->bi_rsvdmem; 2109 bm.physavail = NULL; 2110 2111 /* 2112 * initialize the boot time allocator 2113 */ 2114 next_phys = xbp->bi_next_paddr; 2115 DBG(next_phys); 2116 next_virt = (uintptr_t)xbp->bi_next_vaddr; 2117 DBG(next_virt); 2118 DBG_MSG("Initializing boot time memory management..."); 2119 #ifdef __xpv 2120 { 2121 xen_platform_parameters_t p; 2122 2123 /* This call shouldn't fail, dboot already did it once. */ 2124 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 2125 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 2126 DBG(xen_virt_start); 2127 } 2128 #endif 2129 kbm_init(xbp); 2130 DBG_MSG("done\n"); 2131 2132 /* 2133 * Fill in the bootops vector 2134 */ 2135 bops->bsys_version = BO_VERSION; 2136 bops->boot_mem = &bm; 2137 bops->bsys_alloc = do_bsys_alloc; 2138 bops->bsys_free = do_bsys_free; 2139 bops->bsys_getproplen = do_bsys_getproplen; 2140 bops->bsys_getprop = do_bsys_getprop; 2141 bops->bsys_nextprop = do_bsys_nextprop; 2142 bops->bsys_printf = bop_printf; 2143 bops->bsys_doint = do_bsys_doint; 2144 2145 /* 2146 * BOP_EALLOC() is no longer needed 2147 */ 2148 bops->bsys_ealloc = do_bsys_ealloc; 2149 2150 #ifdef __xpv 2151 /* 2152 * On domain 0 we need to free up some physical memory that is 2153 * usable for DMA. Since GRUB loaded the boot_archive, it is 2154 * sitting in low MFN memory. We'll relocated the boot archive 2155 * pages to high PFN memory. 2156 */ 2157 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2158 relocate_boot_archive(xbp); 2159 #endif 2160 2161 #ifndef __xpv 2162 /* 2163 * Install an IDT to catch early pagefaults (shouldn't have any). 2164 * Also needed for kmdb. 2165 */ 2166 bop_idt_init(); 2167 #endif 2168 /* Set up the shadow fb for framebuffer console */ 2169 boot_fb_shadow_init(bops); 2170 2171 /* 2172 * Start building the boot properties from the command line 2173 */ 2174 DBG_MSG("Initializing boot properties:\n"); 2175 build_boot_properties(xbp); 2176 2177 if (find_boot_prop("prom_debug") || kbm_debug) { 2178 char *value; 2179 2180 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2181 boot_prop_display(value); 2182 } 2183 2184 /* 2185 * jump into krtld... 2186 */ 2187 _kobj_boot(&bop_sysp, NULL, bops, NULL); 2188 } 2189 2190 2191 /*ARGSUSED*/ 2192 static caddr_t 2193 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 2194 { 2195 panic("Attempt to bsys_alloc() too late\n"); 2196 return (NULL); 2197 } 2198 2199 /*ARGSUSED*/ 2200 static void 2201 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 2202 { 2203 panic("Attempt to bsys_free() too late\n"); 2204 } 2205 2206 void 2207 bop_no_more_mem(void) 2208 { 2209 DBG(total_bop_alloc_scratch); 2210 DBG(total_bop_alloc_kernel); 2211 bootops->bsys_alloc = no_more_alloc; 2212 bootops->bsys_free = no_more_free; 2213 } 2214 2215 2216 /* 2217 * Set ACPI firmware properties 2218 */ 2219 2220 static caddr_t 2221 vmap_phys(size_t length, paddr_t pa) 2222 { 2223 paddr_t start, end; 2224 caddr_t va; 2225 size_t len, page; 2226 2227 #ifdef __xpv 2228 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 2229 #endif 2230 start = P2ALIGN(pa, MMU_PAGESIZE); 2231 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2232 len = end - start; 2233 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2234 for (page = 0; page < len; page += MMU_PAGESIZE) 2235 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2236 return (va + (pa & MMU_PAGEOFFSET)); 2237 } 2238 2239 static uint8_t 2240 checksum_table(uint8_t *tp, size_t len) 2241 { 2242 uint8_t sum = 0; 2243 2244 while (len-- > 0) 2245 sum += *tp++; 2246 2247 return (sum); 2248 } 2249 2250 static int 2251 valid_rsdp(ACPI_TABLE_RSDP *rp) 2252 { 2253 2254 /* validate the V1.x checksum */ 2255 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2256 return (0); 2257 2258 /* If pre-ACPI 2.0, this is a valid RSDP */ 2259 if (rp->Revision < 2) 2260 return (1); 2261 2262 /* validate the V2.x checksum */ 2263 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2264 return (0); 2265 2266 return (1); 2267 } 2268 2269 /* 2270 * Scan memory range for an RSDP; 2271 * see ACPI 3.0 Spec, 5.2.5.1 2272 */ 2273 static ACPI_TABLE_RSDP * 2274 scan_rsdp(paddr_t start, paddr_t end) 2275 { 2276 ssize_t len = end - start; 2277 caddr_t ptr; 2278 2279 ptr = vmap_phys(len, start); 2280 while (len > 0) { 2281 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2282 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) 2283 return ((ACPI_TABLE_RSDP *)ptr); 2284 2285 ptr += ACPI_RSDP_SCAN_STEP; 2286 len -= ACPI_RSDP_SCAN_STEP; 2287 } 2288 2289 return (NULL); 2290 } 2291 2292 /* 2293 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 2294 */ 2295 static ACPI_TABLE_RSDP * 2296 find_rsdp() 2297 { 2298 ACPI_TABLE_RSDP *rsdp; 2299 uint64_t rsdp_val = 0; 2300 uint16_t *ebda_seg; 2301 paddr_t ebda_addr; 2302 2303 /* check for "acpi-root-tab" property */ 2304 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2305 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val); 2306 if (rsdp_val != 0) { 2307 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp)); 2308 if (rsdp != NULL) { 2309 if (kbm_debug) { 2310 bop_printf(NULL, 2311 "Using RSDP from bootloader: " 2312 "0x%p\n", (void *)rsdp); 2313 } 2314 return (rsdp); 2315 } 2316 } 2317 } 2318 2319 /* 2320 * Get the EBDA segment and scan the first 1K 2321 */ 2322 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2323 ACPI_EBDA_PTR_LOCATION); 2324 ebda_addr = *ebda_seg << 4; 2325 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE); 2326 if (rsdp == NULL) 2327 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 2328 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE, 2329 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE); 2330 return (rsdp); 2331 } 2332 2333 static ACPI_TABLE_HEADER * 2334 map_fw_table(paddr_t table_addr) 2335 { 2336 ACPI_TABLE_HEADER *tp; 2337 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2338 2339 /* 2340 * Map at least a page; if the table is larger than this, remap it 2341 */ 2342 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2343 if (tp->Length > len) 2344 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2345 return (tp); 2346 } 2347 2348 static ACPI_TABLE_HEADER * 2349 find_fw_table(char *signature) 2350 { 2351 static int revision = 0; 2352 static ACPI_TABLE_XSDT *xsdt; 2353 static int len; 2354 paddr_t xsdt_addr; 2355 ACPI_TABLE_RSDP *rsdp; 2356 ACPI_TABLE_HEADER *tp; 2357 paddr_t table_addr; 2358 int n; 2359 2360 if (strlen(signature) != ACPI_NAME_SIZE) 2361 return (NULL); 2362 2363 /* 2364 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2365 * understand this code. If we haven't already found the RSDT/XSDT, 2366 * revision will be 0. Find the RSDP and check the revision 2367 * to find out whether to use the RSDT or XSDT. If revision is 2368 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2369 * use the XSDT. If the XSDT address is 0, though, fall back to 2370 * revision 1 and use the RSDT. 2371 */ 2372 if (revision == 0) { 2373 if ((rsdp = find_rsdp()) != NULL) { 2374 revision = rsdp->Revision; 2375 /* 2376 * ACPI 6.0 states that current revision is 2 2377 * from acpi_table_rsdp definition: 2378 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2379 */ 2380 if (revision > 2) 2381 revision = 2; 2382 switch (revision) { 2383 case 2: 2384 /* 2385 * Use the XSDT unless BIOS is buggy and 2386 * claims to be rev 2 but has a null XSDT 2387 * address 2388 */ 2389 xsdt_addr = rsdp->XsdtPhysicalAddress; 2390 if (xsdt_addr != 0) 2391 break; 2392 /* FALLTHROUGH */ 2393 case 0: 2394 /* treat RSDP rev 0 as revision 1 internally */ 2395 revision = 1; 2396 /* FALLTHROUGH */ 2397 case 1: 2398 /* use the RSDT for rev 0/1 */ 2399 xsdt_addr = rsdp->RsdtPhysicalAddress; 2400 break; 2401 default: 2402 /* unknown revision */ 2403 revision = 0; 2404 break; 2405 } 2406 } 2407 if (revision == 0) 2408 return (NULL); 2409 2410 /* cache the XSDT info */ 2411 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2412 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2413 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2414 } 2415 2416 /* 2417 * Scan the table headers looking for a signature match 2418 */ 2419 for (n = 0; n < len; n++) { 2420 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2421 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2422 xsdt->TableOffsetEntry[n]; 2423 2424 if (table_addr == 0) 2425 continue; 2426 tp = map_fw_table(table_addr); 2427 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2428 return (tp); 2429 } 2430 } 2431 return (NULL); 2432 } 2433 2434 static void 2435 process_mcfg(ACPI_TABLE_MCFG *tp) 2436 { 2437 ACPI_MCFG_ALLOCATION *cfg_baap; 2438 char *cfg_baa_endp; 2439 int64_t ecfginfo[4]; 2440 2441 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2442 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2443 while ((char *)cfg_baap < cfg_baa_endp) { 2444 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2445 ecfginfo[0] = cfg_baap->Address; 2446 ecfginfo[1] = cfg_baap->PciSegment; 2447 ecfginfo[2] = cfg_baap->StartBusNumber; 2448 ecfginfo[3] = cfg_baap->EndBusNumber; 2449 bsetprop(DDI_PROP_TYPE_INT64, 2450 MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2451 ecfginfo, sizeof (ecfginfo)); 2452 break; 2453 } 2454 cfg_baap++; 2455 } 2456 } 2457 2458 #ifndef __xpv 2459 static void 2460 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2461 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2462 { 2463 ACPI_SUBTABLE_HEADER *item, *end; 2464 uint32_t cpu_count = 0; 2465 uint32_t cpu_possible_count = 0; 2466 2467 /* 2468 * Determine number of CPUs and keep track of "final" APIC ID 2469 * for each CPU by walking through ACPI MADT processor list 2470 */ 2471 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2472 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2473 2474 while (item < end) { 2475 switch (item->Type) { 2476 case ACPI_MADT_TYPE_LOCAL_APIC: { 2477 ACPI_MADT_LOCAL_APIC *cpu = 2478 (ACPI_MADT_LOCAL_APIC *) item; 2479 2480 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2481 if (cpu_apicid_array != NULL) 2482 cpu_apicid_array[cpu_count] = cpu->Id; 2483 cpu_count++; 2484 } 2485 cpu_possible_count++; 2486 break; 2487 } 2488 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2489 ACPI_MADT_LOCAL_X2APIC *cpu = 2490 (ACPI_MADT_LOCAL_X2APIC *) item; 2491 2492 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2493 if (cpu_apicid_array != NULL) 2494 cpu_apicid_array[cpu_count] = 2495 cpu->LocalApicId; 2496 cpu_count++; 2497 } 2498 cpu_possible_count++; 2499 break; 2500 } 2501 default: 2502 if (kbm_debug) 2503 bop_printf(NULL, "MADT type %d\n", item->Type); 2504 break; 2505 } 2506 2507 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2508 } 2509 if (cpu_countp) 2510 *cpu_countp = cpu_count; 2511 if (cpu_possible_countp) 2512 *cpu_possible_countp = cpu_possible_count; 2513 } 2514 2515 static void 2516 process_madt(ACPI_TABLE_MADT *tp) 2517 { 2518 uint32_t cpu_count = 0; 2519 uint32_t cpu_possible_count = 0; 2520 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2521 2522 if (tp != NULL) { 2523 /* count cpu's */ 2524 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2525 2526 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2527 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2528 if (cpu_apicid_array == NULL) 2529 bop_panic("Not enough memory for APIC ID array"); 2530 2531 /* copy IDs */ 2532 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2533 2534 /* 2535 * Make boot property for array of "final" APIC IDs for each 2536 * CPU 2537 */ 2538 bsetprop(DDI_PROP_TYPE_INT, 2539 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2540 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2541 } 2542 2543 /* 2544 * Check whether property plat-max-ncpus is already set. 2545 */ 2546 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2547 /* 2548 * Set plat-max-ncpus to number of maximum possible CPUs given 2549 * in MADT if it hasn't been set. 2550 * There's no formal way to detect max possible CPUs supported 2551 * by platform according to ACPI spec3.0b. So current CPU 2552 * hotplug implementation expects that all possible CPUs will 2553 * have an entry in MADT table and set plat-max-ncpus to number 2554 * of entries in MADT. 2555 * With introducing of ACPI4.0, Maximum System Capability Table 2556 * (MSCT) provides maximum number of CPUs supported by platform. 2557 * If MSCT is unavailable, fall back to old way. 2558 */ 2559 if (tp != NULL) 2560 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2561 } 2562 2563 /* 2564 * Set boot property boot-max-ncpus to number of CPUs existing at 2565 * boot time. boot-max-ncpus is mainly used for optimization. 2566 */ 2567 if (tp != NULL) 2568 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2569 2570 /* 2571 * User-set boot-ncpus overrides firmware count 2572 */ 2573 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2574 return; 2575 2576 /* 2577 * Set boot property boot-ncpus to number of active CPUs given in MADT 2578 * if it hasn't been set yet. 2579 */ 2580 if (tp != NULL) 2581 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2582 } 2583 2584 static void 2585 process_srat(ACPI_TABLE_SRAT *tp) 2586 { 2587 ACPI_SUBTABLE_HEADER *item, *end; 2588 int i; 2589 int proc_num, mem_num; 2590 #pragma pack(1) 2591 struct { 2592 uint32_t domain; 2593 uint32_t apic_id; 2594 uint32_t sapic_id; 2595 } processor; 2596 struct { 2597 uint32_t domain; 2598 uint32_t x2apic_id; 2599 } x2apic; 2600 struct { 2601 uint32_t domain; 2602 uint64_t addr; 2603 uint64_t length; 2604 uint32_t flags; 2605 } memory; 2606 #pragma pack() 2607 char prop_name[30]; 2608 uint64_t maxmem = 0; 2609 2610 if (tp == NULL) 2611 return; 2612 2613 proc_num = mem_num = 0; 2614 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2615 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2616 while (item < end) { 2617 switch (item->Type) { 2618 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2619 ACPI_SRAT_CPU_AFFINITY *cpu = 2620 (ACPI_SRAT_CPU_AFFINITY *) item; 2621 2622 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2623 break; 2624 processor.domain = cpu->ProximityDomainLo; 2625 for (i = 0; i < 3; i++) 2626 processor.domain += 2627 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2628 processor.apic_id = cpu->ApicId; 2629 processor.sapic_id = cpu->LocalSapicEid; 2630 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2631 proc_num); 2632 bsetprop(DDI_PROP_TYPE_INT, 2633 prop_name, strlen(prop_name), &processor, 2634 sizeof (processor)); 2635 proc_num++; 2636 break; 2637 } 2638 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2639 ACPI_SRAT_MEM_AFFINITY *mem = 2640 (ACPI_SRAT_MEM_AFFINITY *)item; 2641 2642 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2643 break; 2644 memory.domain = mem->ProximityDomain; 2645 memory.addr = mem->BaseAddress; 2646 memory.length = mem->Length; 2647 memory.flags = mem->Flags; 2648 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2649 mem_num); 2650 bsetprop(DDI_PROP_TYPE_INT, 2651 prop_name, strlen(prop_name), &memory, 2652 sizeof (memory)); 2653 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2654 (memory.addr + memory.length > maxmem)) { 2655 maxmem = memory.addr + memory.length; 2656 } 2657 mem_num++; 2658 break; 2659 } 2660 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2661 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2662 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2663 2664 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2665 break; 2666 x2apic.domain = x2cpu->ProximityDomain; 2667 x2apic.x2apic_id = x2cpu->ApicId; 2668 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2669 proc_num); 2670 bsetprop(DDI_PROP_TYPE_INT, 2671 prop_name, strlen(prop_name), &x2apic, 2672 sizeof (x2apic)); 2673 proc_num++; 2674 break; 2675 } 2676 default: 2677 if (kbm_debug) 2678 bop_printf(NULL, "SRAT type %d\n", item->Type); 2679 break; 2680 } 2681 2682 item = (ACPI_SUBTABLE_HEADER *) 2683 (item->Length + (uintptr_t)item); 2684 } 2685 2686 /* 2687 * The maximum physical address calculated from the SRAT table is more 2688 * accurate than that calculated from the MSCT table. 2689 */ 2690 if (maxmem != 0) { 2691 plat_dr_physmax = btop(maxmem); 2692 } 2693 } 2694 2695 static void 2696 process_slit(ACPI_TABLE_SLIT *tp) 2697 { 2698 2699 /* 2700 * Check the number of localities; if it's too huge, we just 2701 * return and locality enumeration code will handle this later, 2702 * if possible. 2703 * 2704 * Note that the size of the table is the square of the 2705 * number of localities; if the number of localities exceeds 2706 * UINT16_MAX, the table size may overflow an int when being 2707 * passed to bsetprop() below. 2708 */ 2709 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2710 return; 2711 2712 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount); 2713 bsetprop(DDI_PROP_TYPE_BYTE, 2714 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2715 tp->LocalityCount * tp->LocalityCount); 2716 } 2717 2718 static ACPI_TABLE_MSCT * 2719 process_msct(ACPI_TABLE_MSCT *tp) 2720 { 2721 int last_seen = 0; 2722 int proc_num = 0; 2723 ACPI_MSCT_PROXIMITY *item, *end; 2724 extern uint64_t plat_dr_options; 2725 2726 ASSERT(tp != NULL); 2727 2728 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2729 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2730 item < end; 2731 item = (void *)(item->Length + (uintptr_t)item)) { 2732 /* 2733 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2734 * Revision 1 2735 * Length 22 2736 */ 2737 if (item->Revision != 1 || item->Length != 22) { 2738 cmn_err(CE_CONT, 2739 "?boot: unknown proximity domain structure in MSCT " 2740 "with Revision(%d), Length(%d).\n", 2741 (int)item->Revision, (int)item->Length); 2742 return (NULL); 2743 } else if (item->RangeStart > item->RangeEnd) { 2744 cmn_err(CE_CONT, 2745 "?boot: invalid proximity domain structure in MSCT " 2746 "with RangeStart(%u), RangeEnd(%u).\n", 2747 item->RangeStart, item->RangeEnd); 2748 return (NULL); 2749 } else if (item->RangeStart != last_seen) { 2750 /* 2751 * Items must be organized in ascending order of the 2752 * proximity domain enumerations. 2753 */ 2754 cmn_err(CE_CONT, 2755 "?boot: invalid proximity domain structure in MSCT," 2756 " items are not orginized in ascending order.\n"); 2757 return (NULL); 2758 } 2759 2760 /* 2761 * If ProcessorCapacity is 0 then there would be no CPUs in this 2762 * domain. 2763 */ 2764 if (item->ProcessorCapacity != 0) { 2765 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2766 item->ProcessorCapacity; 2767 } 2768 2769 last_seen = item->RangeEnd - item->RangeStart + 1; 2770 /* 2771 * Break out if all proximity domains have been processed. 2772 * Some BIOSes may have unused items at the end of MSCT table. 2773 */ 2774 if (last_seen > tp->MaxProximityDomains) { 2775 break; 2776 } 2777 } 2778 if (last_seen != tp->MaxProximityDomains + 1) { 2779 cmn_err(CE_CONT, 2780 "?boot: invalid proximity domain structure in MSCT, " 2781 "proximity domain count doesn't match.\n"); 2782 return (NULL); 2783 } 2784 2785 /* 2786 * Set plat-max-ncpus property if it hasn't been set yet. 2787 */ 2788 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2789 if (proc_num != 0) { 2790 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2791 } 2792 } 2793 2794 /* 2795 * Use Maximum Physical Address from the MSCT table as upper limit for 2796 * memory hot-adding by default. It may be overridden by value from 2797 * the SRAT table or the "plat-dr-physmax" boot option. 2798 */ 2799 plat_dr_physmax = btop(tp->MaxAddress + 1); 2800 2801 /* 2802 * Existence of MSCT implies CPU/memory hotplug-capability for the 2803 * platform. 2804 */ 2805 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2806 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2807 2808 return (tp); 2809 } 2810 2811 #else /* __xpv */ 2812 static void 2813 enumerate_xen_cpus() 2814 { 2815 processorid_t id, max_id; 2816 2817 /* 2818 * User-set boot-ncpus overrides enumeration 2819 */ 2820 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2821 return; 2822 2823 /* 2824 * Probe every possible virtual CPU id and remember the 2825 * highest id present; the count of CPUs is one greater 2826 * than this. This tacitly assumes at least cpu 0 is present. 2827 */ 2828 max_id = 0; 2829 for (id = 0; id < MAX_VIRT_CPUS; id++) 2830 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2831 max_id = id; 2832 2833 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2834 2835 } 2836 #endif /* __xpv */ 2837 2838 /*ARGSUSED*/ 2839 static void 2840 build_firmware_properties(struct xboot_info *xbp) 2841 { 2842 ACPI_TABLE_HEADER *tp = NULL; 2843 2844 #ifndef __xpv 2845 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2846 bsetprops("efi-systype", "64"); 2847 bsetprop64("efi-systab", 2848 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2849 if (kbm_debug) 2850 bop_printf(NULL, "64-bit UEFI detected.\n"); 2851 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) { 2852 bsetprops("efi-systype", "32"); 2853 bsetprop64("efi-systab", 2854 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2855 if (kbm_debug) 2856 bop_printf(NULL, "32-bit UEFI detected.\n"); 2857 } 2858 2859 if (xbp->bi_acpi_rsdp != NULL) { 2860 bsetprop64("acpi-root-tab", 2861 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp); 2862 } 2863 2864 if (xbp->bi_smbios != NULL) { 2865 bsetprop64("smbios-address", 2866 (uint64_t)(uintptr_t)xbp->bi_smbios); 2867 } 2868 2869 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL) 2870 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2871 else 2872 msct_ptr = NULL; 2873 2874 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL) 2875 process_madt((ACPI_TABLE_MADT *)tp); 2876 2877 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2878 find_fw_table(ACPI_SIG_SRAT)) != NULL) 2879 process_srat(srat_ptr); 2880 2881 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT)) 2882 process_slit(slit_ptr); 2883 2884 tp = find_fw_table(ACPI_SIG_MCFG); 2885 #else /* __xpv */ 2886 enumerate_xen_cpus(); 2887 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2888 tp = find_fw_table(ACPI_SIG_MCFG); 2889 #endif /* __xpv */ 2890 if (tp != NULL) 2891 process_mcfg((ACPI_TABLE_MCFG *)tp); 2892 } 2893 2894 /* 2895 * fake up a boot property for deferred early console output 2896 * this is used by both graphical boot and the (developer only) 2897 * USB serial console 2898 */ 2899 void * 2900 defcons_init(size_t size) 2901 { 2902 static char *p = NULL; 2903 2904 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2905 *p = 0; 2906 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p)); 2907 return (p); 2908 } 2909 2910 /*ARGSUSED*/ 2911 int 2912 boot_compinfo(int fd, struct compinfo *cbp) 2913 { 2914 cbp->iscmp = 0; 2915 cbp->blksize = MAXBSIZE; 2916 return (0); 2917 } 2918 2919 /* 2920 * Get an integer value for given boot property 2921 */ 2922 int 2923 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2924 { 2925 int boot_prop_len; 2926 char str[BP_MAX_STRLEN]; 2927 u_longlong_t value; 2928 2929 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2930 if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) || 2931 BOP_GETPROP(bootops, prop_name, str) < 0 || 2932 kobj_getvalue(str, &value) == -1) 2933 return (-1); 2934 2935 if (prop_value) 2936 *prop_value = value; 2937 2938 return (0); 2939 } 2940 2941 int 2942 bootprop_getstr(const char *prop_name, char *buf, size_t buflen) 2943 { 2944 int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2945 2946 if (boot_prop_len < 0 || boot_prop_len >= buflen || 2947 BOP_GETPROP(bootops, prop_name, buf) < 0) 2948 return (-1); 2949 2950 return (0); 2951 }