1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright 2013 Joyent, Inc. All rights reserved.
27 */
28
29
30 #include <sys/types.h>
31 #include <sys/machparam.h>
32 #include <sys/x86_archext.h>
33 #include <sys/systm.h>
34 #include <sys/mach_mmu.h>
35 #include <sys/multiboot.h>
36 #include <sys/multiboot2.h>
37 #include <sys/multiboot2_impl.h>
38 #include <sys/sysmacros.h>
39 #include <sys/framebuffer.h>
40 #include <sys/sha1.h>
41 #include <util/string.h>
42 #include <util/strtolctype.h>
43 #include <sys/efi.h>
44
45 /*
46 * Compile time debug knob. We do not have any early mechanism to control it
47 * as the boot is the earliest mechanism we have, and we do not want to have
48 * it being switched on by default.
49 */
50 int dboot_debug = 0;
51
52 #if defined(__xpv)
53
54 #include <sys/hypervisor.h>
55 uintptr_t xen_virt_start;
56 pfn_t *mfn_to_pfn_mapping;
57
58 #else /* !__xpv */
59
60 extern multiboot_header_t mb_header;
61 extern uint32_t mb2_load_addr;
62 extern int have_cpuid(void);
63
64 #endif /* !__xpv */
65
66 #include <sys/inttypes.h>
67 #include <sys/bootinfo.h>
68 #include <sys/mach_mmu.h>
69 #include <sys/boot_console.h>
70
71 #include "dboot_asm.h"
72 #include "dboot_printf.h"
73 #include "dboot_xboot.h"
74 #include "dboot_elfload.h"
75
76 #define SHA1_ASCII_LENGTH (SHA1_DIGEST_LENGTH * 2)
77
78 /*
79 * This file contains code that runs to transition us from either a multiboot
80 * compliant loader (32 bit non-paging) or a XPV domain loader to
81 * regular kernel execution. Its task is to setup the kernel memory image
82 * and page tables.
83 *
84 * The code executes as:
85 * - 32 bits under GRUB (for 32 or 64 bit Solaris)
86 * - a 32 bit program for the 32-bit PV hypervisor
87 * - a 64 bit program for the 64-bit PV hypervisor (at least for now)
88 *
89 * Under the PV hypervisor, we must create mappings for any memory beyond the
90 * initial start of day allocation (such as the kernel itself).
91 *
92 * When on the metal, the mapping between maddr_t and paddr_t is 1:1.
93 * Since we are running in real mode, so all such memory is accessible.
94 */
95
96 /*
97 * Standard bits used in PTE (page level) and PTP (internal levels)
98 */
99 x86pte_t ptp_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_USER;
100 x86pte_t pte_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_MOD | PT_NOCONSIST;
101
102 /*
103 * This is the target addresses (physical) where the kernel text and data
104 * nucleus pages will be unpacked. On the hypervisor this is actually a
105 * virtual address.
106 */
107 paddr_t ktext_phys;
108 uint32_t ksize = 2 * FOUR_MEG; /* kernel nucleus is 8Meg */
109
110 static uint64_t target_kernel_text; /* value to use for KERNEL_TEXT */
111
112 /*
113 * The stack is setup in assembler before entering startup_kernel()
114 */
115 char stack_space[STACK_SIZE];
116
117 /*
118 * Used to track physical memory allocation
119 */
120 static paddr_t next_avail_addr = 0;
121
122 #if defined(__xpv)
123 /*
124 * Additional information needed for hypervisor memory allocation.
125 * Only memory up to scratch_end is mapped by page tables.
126 * mfn_base is the start of the hypervisor virtual image. It's ONE_GIG, so
127 * to derive a pfn from a pointer, you subtract mfn_base.
128 */
129
130 static paddr_t scratch_end = 0; /* we can't write all of mem here */
131 static paddr_t mfn_base; /* addr corresponding to mfn_list[0] */
132 start_info_t *xen_info;
133
134 #else /* __xpv */
135
136 /*
137 * If on the metal, then we have a multiboot loader.
138 */
139 uint32_t mb_magic; /* magic from boot loader */
140 uint32_t mb_addr; /* multiboot info package from loader */
141 int multiboot_version;
142 multiboot_info_t *mb_info;
143 multiboot2_info_header_t *mb2_info;
144 multiboot_tag_mmap_t *mb2_mmap_tagp;
145 int num_entries; /* mmap entry count */
146 boolean_t num_entries_set; /* is mmap entry count set */
147 uintptr_t load_addr;
148 static boot_framebuffer_t framebuffer __aligned(16);
149 static boot_framebuffer_t *fb;
150
151 /* can not be automatic variables because of alignment */
152 static efi_guid_t smbios3 = SMBIOS3_TABLE_GUID;
153 static efi_guid_t smbios = SMBIOS_TABLE_GUID;
154 static efi_guid_t acpi2 = EFI_ACPI_TABLE_GUID;
155 static efi_guid_t acpi1 = ACPI_10_TABLE_GUID;
156 #endif /* __xpv */
157
158 /*
159 * This contains information passed to the kernel
160 */
161 struct xboot_info boot_info __aligned(16);
162 struct xboot_info *bi;
163
164 /*
165 * Page table and memory stuff.
166 */
167 static paddr_t max_mem; /* maximum memory address */
168
169 /*
170 * Information about processor MMU
171 */
172 int amd64_support = 0;
173 int largepage_support = 0;
174 int pae_support = 0;
175 int pge_support = 0;
176 int NX_support = 0;
177 int PAT_support = 0;
178
179 /*
180 * Low 32 bits of kernel entry address passed back to assembler.
181 * When running a 64 bit kernel, the high 32 bits are 0xffffffff.
182 */
183 uint32_t entry_addr_low;
184
185 /*
186 * Memlists for the kernel. We shouldn't need a lot of these.
187 */
188 #define MAX_MEMLIST (50)
189 struct boot_memlist memlists[MAX_MEMLIST];
190 uint_t memlists_used = 0;
191 struct boot_memlist pcimemlists[MAX_MEMLIST];
192 uint_t pcimemlists_used = 0;
193 struct boot_memlist rsvdmemlists[MAX_MEMLIST];
194 uint_t rsvdmemlists_used = 0;
195
196 /*
197 * This should match what's in the bootloader. It's arbitrary, but GRUB
198 * in particular has limitations on how much space it can use before it
199 * stops working properly. This should be enough.
200 */
201 struct boot_modules modules[MAX_BOOT_MODULES];
202 uint_t modules_used = 0;
203
204 #ifdef __xpv
205 /*
206 * Xen strips the size field out of the mb_memory_map_t, see struct e820entry
207 * definition in Xen source.
208 */
209 typedef struct {
210 uint32_t base_addr_low;
211 uint32_t base_addr_high;
212 uint32_t length_low;
213 uint32_t length_high;
214 uint32_t type;
215 } mmap_t;
216
217 /*
218 * There is 512KB of scratch area after the boot stack page.
219 * We'll use that for everything except the kernel nucleus pages which are too
220 * big to fit there and are allocated last anyway.
221 */
222 #define MAXMAPS 100
223 static mmap_t map_buffer[MAXMAPS];
224 #else
225 typedef mb_memory_map_t mmap_t;
226 #endif
227
228 /*
229 * Debugging macros
230 */
231 uint_t prom_debug = 0;
232 uint_t map_debug = 0;
233
234 static char noname[2] = "-";
235
236 /*
237 * Either hypervisor-specific or grub-specific code builds the initial
238 * memlists. This code does the sort/merge/link for final use.
239 */
240 static void
241 sort_physinstall(void)
242 {
243 int i;
244 #if !defined(__xpv)
245 int j;
246 struct boot_memlist tmp;
247
248 /*
249 * Now sort the memlists, in case they weren't in order.
250 * Yeah, this is a bubble sort; small, simple and easy to get right.
251 */
252 DBG_MSG("Sorting phys-installed list\n");
253 for (j = memlists_used - 1; j > 0; --j) {
254 for (i = 0; i < j; ++i) {
255 if (memlists[i].addr < memlists[i + 1].addr)
256 continue;
257 tmp = memlists[i];
258 memlists[i] = memlists[i + 1];
259 memlists[i + 1] = tmp;
260 }
261 }
262
263 /*
264 * Merge any memlists that don't have holes between them.
265 */
266 for (i = 0; i <= memlists_used - 1; ++i) {
267 if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr)
268 continue;
269
270 if (prom_debug)
271 dboot_printf(
272 "merging mem segs %" PRIx64 "...%" PRIx64
273 " w/ %" PRIx64 "...%" PRIx64 "\n",
274 memlists[i].addr,
275 memlists[i].addr + memlists[i].size,
276 memlists[i + 1].addr,
277 memlists[i + 1].addr + memlists[i + 1].size);
278
279 memlists[i].size += memlists[i + 1].size;
280 for (j = i + 1; j < memlists_used - 1; ++j)
281 memlists[j] = memlists[j + 1];
282 --memlists_used;
283 DBG(memlists_used);
284 --i; /* after merging we need to reexamine, so do this */
285 }
286 #endif /* __xpv */
287
288 if (prom_debug) {
289 dboot_printf("\nFinal memlists:\n");
290 for (i = 0; i < memlists_used; ++i) {
291 dboot_printf("\t%d: addr=%" PRIx64 " size=%"
292 PRIx64 "\n", i, memlists[i].addr, memlists[i].size);
293 }
294 }
295
296 /*
297 * link together the memlists with native size pointers
298 */
299 memlists[0].next = 0;
300 memlists[0].prev = 0;
301 for (i = 1; i < memlists_used; ++i) {
302 memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1);
303 memlists[i].next = 0;
304 memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i);
305 }
306 bi->bi_phys_install = (native_ptr_t)(uintptr_t)memlists;
307 DBG(bi->bi_phys_install);
308 }
309
310 /*
311 * build bios reserved memlists
312 */
313 static void
314 build_rsvdmemlists(void)
315 {
316 int i;
317
318 rsvdmemlists[0].next = 0;
319 rsvdmemlists[0].prev = 0;
320 for (i = 1; i < rsvdmemlists_used; ++i) {
321 rsvdmemlists[i].prev =
322 (native_ptr_t)(uintptr_t)(rsvdmemlists + i - 1);
323 rsvdmemlists[i].next = 0;
324 rsvdmemlists[i - 1].next =
325 (native_ptr_t)(uintptr_t)(rsvdmemlists + i);
326 }
327 bi->bi_rsvdmem = (native_ptr_t)(uintptr_t)rsvdmemlists;
328 DBG(bi->bi_rsvdmem);
329 }
330
331 #if defined(__xpv)
332
333 /*
334 * halt on the hypervisor after a delay to drain console output
335 */
336 void
337 dboot_halt(void)
338 {
339 uint_t i = 10000;
340
341 while (--i)
342 (void) HYPERVISOR_yield();
343 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
344 }
345
346 /*
347 * From a machine address, find the corresponding pseudo-physical address.
348 * Pseudo-physical address are contiguous and run from mfn_base in each VM.
349 * Machine addresses are the real underlying hardware addresses.
350 * These are needed for page table entries. Note that this routine is
351 * poorly protected. A bad value of "ma" will cause a page fault.
352 */
353 paddr_t
354 ma_to_pa(maddr_t ma)
355 {
356 ulong_t pgoff = ma & MMU_PAGEOFFSET;
357 ulong_t pfn = mfn_to_pfn_mapping[mmu_btop(ma)];
358 paddr_t pa;
359
360 if (pfn >= xen_info->nr_pages)
361 return (-(paddr_t)1);
362 pa = mfn_base + mmu_ptob((paddr_t)pfn) + pgoff;
363 #ifdef DEBUG
364 if (ma != pa_to_ma(pa))
365 dboot_printf("ma_to_pa(%" PRIx64 ") got %" PRIx64 ", "
366 "pa_to_ma() says %" PRIx64 "\n", ma, pa, pa_to_ma(pa));
367 #endif
368 return (pa);
369 }
370
371 /*
372 * From a pseudo-physical address, find the corresponding machine address.
373 */
374 maddr_t
375 pa_to_ma(paddr_t pa)
376 {
377 pfn_t pfn;
378 ulong_t mfn;
379
380 pfn = mmu_btop(pa - mfn_base);
381 if (pa < mfn_base || pfn >= xen_info->nr_pages)
382 dboot_panic("pa_to_ma(): illegal address 0x%lx", (ulong_t)pa);
383 mfn = ((ulong_t *)xen_info->mfn_list)[pfn];
384 #ifdef DEBUG
385 if (mfn_to_pfn_mapping[mfn] != pfn)
386 dboot_printf("pa_to_ma(pfn=%lx) got %lx ma_to_pa() says %lx\n",
387 pfn, mfn, mfn_to_pfn_mapping[mfn]);
388 #endif
389 return (mfn_to_ma(mfn) | (pa & MMU_PAGEOFFSET));
390 }
391
392 #endif /* __xpv */
393
394 x86pte_t
395 get_pteval(paddr_t table, uint_t index)
396 {
397 if (pae_support)
398 return (((x86pte_t *)(uintptr_t)table)[index]);
399 return (((x86pte32_t *)(uintptr_t)table)[index]);
400 }
401
402 /*ARGSUSED*/
403 void
404 set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval)
405 {
406 #ifdef __xpv
407 mmu_update_t t;
408 maddr_t mtable = pa_to_ma(table);
409 int retcnt;
410
411 t.ptr = (mtable + index * pte_size) | MMU_NORMAL_PT_UPDATE;
412 t.val = pteval;
413 if (HYPERVISOR_mmu_update(&t, 1, &retcnt, DOMID_SELF) || retcnt != 1)
414 dboot_panic("HYPERVISOR_mmu_update() failed");
415 #else /* __xpv */
416 uintptr_t tab_addr = (uintptr_t)table;
417
418 if (pae_support)
419 ((x86pte_t *)tab_addr)[index] = pteval;
420 else
421 ((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval;
422 if (level == top_level && level == 2)
423 reload_cr3();
424 #endif /* __xpv */
425 }
426
427 paddr_t
428 make_ptable(x86pte_t *pteval, uint_t level)
429 {
430 paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
431
432 if (level == top_level && level == 2)
433 *pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID;
434 else
435 *pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits;
436
437 #ifdef __xpv
438 /* Remove write permission to the new page table. */
439 if (HYPERVISOR_update_va_mapping(new_table,
440 *pteval & ~(x86pte_t)PT_WRITABLE, UVMF_INVLPG | UVMF_LOCAL))
441 dboot_panic("HYP_update_va_mapping error");
442 #endif
443
444 if (map_debug)
445 dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%"
446 PRIx64 "\n", level, (ulong_t)new_table, *pteval);
447 return (new_table);
448 }
449
450 x86pte_t *
451 map_pte(paddr_t table, uint_t index)
452 {
453 return ((x86pte_t *)(uintptr_t)(table + index * pte_size));
454 }
455
456 /*
457 * dump out the contents of page tables...
458 */
459 static void
460 dump_tables(void)
461 {
462 uint_t save_index[4]; /* for recursion */
463 char *save_table[4]; /* for recursion */
464 uint_t l;
465 uint64_t va;
466 uint64_t pgsize;
467 int index;
468 int i;
469 x86pte_t pteval;
470 char *table;
471 static char *tablist = "\t\t\t";
472 char *tabs = tablist + 3 - top_level;
473 uint_t pa, pa1;
474 #if !defined(__xpv)
475 #define maddr_t paddr_t
476 #endif /* !__xpv */
477
478 dboot_printf("Finished pagetables:\n");
479 table = (char *)(uintptr_t)top_page_table;
480 l = top_level;
481 va = 0;
482 for (index = 0; index < ptes_per_table; ++index) {
483 pgsize = 1ull << shift_amt[l];
484 if (pae_support)
485 pteval = ((x86pte_t *)table)[index];
486 else
487 pteval = ((x86pte32_t *)table)[index];
488 if (pteval == 0)
489 goto next_entry;
490
491 dboot_printf("%s %p[0x%x] = %" PRIx64 ", va=%" PRIx64,
492 tabs + l, (void *)table, index, (uint64_t)pteval, va);
493 pa = ma_to_pa(pteval & MMU_PAGEMASK);
494 dboot_printf(" physaddr=%x\n", pa);
495
496 /*
497 * Don't try to walk hypervisor private pagetables
498 */
499 if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) {
500 save_table[l] = table;
501 save_index[l] = index;
502 --l;
503 index = -1;
504 table = (char *)(uintptr_t)
505 ma_to_pa(pteval & MMU_PAGEMASK);
506 goto recursion;
507 }
508
509 /*
510 * shorten dump for consecutive mappings
511 */
512 for (i = 1; index + i < ptes_per_table; ++i) {
513 if (pae_support)
514 pteval = ((x86pte_t *)table)[index + i];
515 else
516 pteval = ((x86pte32_t *)table)[index + i];
517 if (pteval == 0)
518 break;
519 pa1 = ma_to_pa(pteval & MMU_PAGEMASK);
520 if (pa1 != pa + i * pgsize)
521 break;
522 }
523 if (i > 2) {
524 dboot_printf("%s...\n", tabs + l);
525 va += pgsize * (i - 2);
526 index += i - 2;
527 }
528 next_entry:
529 va += pgsize;
530 if (l == 3 && index == 256) /* VA hole */
531 va = 0xffff800000000000ull;
532 recursion:
533 ;
534 }
535 if (l < top_level) {
536 ++l;
537 index = save_index[l];
538 table = save_table[l];
539 goto recursion;
540 }
541 }
542
543 /*
544 * Add a mapping for the machine page at the given virtual address.
545 */
546 static void
547 map_ma_at_va(maddr_t ma, native_ptr_t va, uint_t level)
548 {
549 x86pte_t *ptep;
550 x86pte_t pteval;
551
552 pteval = ma | pte_bits;
553 if (level > 0)
554 pteval |= PT_PAGESIZE;
555 if (va >= target_kernel_text && pge_support)
556 pteval |= PT_GLOBAL;
557
558 if (map_debug && ma != va)
559 dboot_printf("mapping ma=0x%" PRIx64 " va=0x%" PRIx64
560 " pte=0x%" PRIx64 " l=%d\n",
561 (uint64_t)ma, (uint64_t)va, pteval, level);
562
563 #if defined(__xpv)
564 /*
565 * see if we can avoid find_pte() on the hypervisor
566 */
567 if (HYPERVISOR_update_va_mapping(va, pteval,
568 UVMF_INVLPG | UVMF_LOCAL) == 0)
569 return;
570 #endif
571
572 /*
573 * Find the pte that will map this address. This creates any
574 * missing intermediate level page tables
575 */
576 ptep = find_pte(va, NULL, level, 0);
577
578 /*
579 * When paravirtualized, we must use hypervisor calls to modify the
580 * PTE, since paging is active. On real hardware we just write to
581 * the pagetables which aren't in use yet.
582 */
583 #if defined(__xpv)
584 ptep = ptep; /* shut lint up */
585 if (HYPERVISOR_update_va_mapping(va, pteval, UVMF_INVLPG | UVMF_LOCAL))
586 dboot_panic("mmu_update failed-map_pa_at_va va=0x%" PRIx64
587 " l=%d ma=0x%" PRIx64 ", pte=0x%" PRIx64 "",
588 (uint64_t)va, level, (uint64_t)ma, pteval);
589 #else
590 if (va < 1024 * 1024)
591 pteval |= PT_NOCACHE; /* for video RAM */
592 if (pae_support)
593 *ptep = pteval;
594 else
595 *((x86pte32_t *)ptep) = (x86pte32_t)pteval;
596 #endif
597 }
598
599 /*
600 * Add a mapping for the physical page at the given virtual address.
601 */
602 static void
603 map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level)
604 {
605 map_ma_at_va(pa_to_ma(pa), va, level);
606 }
607
608 /*
609 * This is called to remove start..end from the
610 * possible range of PCI addresses.
611 */
612 const uint64_t pci_lo_limit = 0x00100000ul;
613 const uint64_t pci_hi_limit = 0xfff00000ul;
614 static void
615 exclude_from_pci(uint64_t start, uint64_t end)
616 {
617 int i;
618 int j;
619 struct boot_memlist *ml;
620
621 for (i = 0; i < pcimemlists_used; ++i) {
622 ml = &pcimemlists[i];
623
624 /* delete the entire range? */
625 if (start <= ml->addr && ml->addr + ml->size <= end) {
626 --pcimemlists_used;
627 for (j = i; j < pcimemlists_used; ++j)
628 pcimemlists[j] = pcimemlists[j + 1];
629 --i; /* to revisit the new one at this index */
630 }
631
632 /* split a range? */
633 else if (ml->addr < start && end < ml->addr + ml->size) {
634
635 ++pcimemlists_used;
636 if (pcimemlists_used > MAX_MEMLIST)
637 dboot_panic("too many pcimemlists");
638
639 for (j = pcimemlists_used - 1; j > i; --j)
640 pcimemlists[j] = pcimemlists[j - 1];
641 ml->size = start - ml->addr;
642
643 ++ml;
644 ml->size = (ml->addr + ml->size) - end;
645 ml->addr = end;
646 ++i; /* skip on to next one */
647 }
648
649 /* cut memory off the start? */
650 else if (ml->addr < end && end < ml->addr + ml->size) {
651 ml->size -= end - ml->addr;
652 ml->addr = end;
653 }
654
655 /* cut memory off the end? */
656 else if (ml->addr <= start && start < ml->addr + ml->size) {
657 ml->size = start - ml->addr;
658 }
659 }
660 }
661
662 /*
663 * During memory allocation, find the highest address not used yet.
664 */
665 static void
666 check_higher(paddr_t a)
667 {
668 if (a < next_avail_addr)
669 return;
670 next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE);
671 DBG(next_avail_addr);
672 }
673
674 static int
675 dboot_loader_mmap_entries(void)
676 {
677 #if !defined(__xpv)
678 if (num_entries_set == B_TRUE)
679 return (num_entries);
680
681 switch (multiboot_version) {
682 case 1:
683 DBG(mb_info->flags);
684 if (mb_info->flags & 0x40) {
685 mb_memory_map_t *mmap;
686 caddr32_t mmap_addr;
687
688 DBG(mb_info->mmap_addr);
689 DBG(mb_info->mmap_length);
690 check_higher(mb_info->mmap_addr + mb_info->mmap_length);
691
692 for (mmap_addr = mb_info->mmap_addr;
693 mmap_addr < mb_info->mmap_addr +
694 mb_info->mmap_length;
695 mmap_addr += mmap->size + sizeof (mmap->size)) {
696 mmap = (mb_memory_map_t *)(uintptr_t)mmap_addr;
697 ++num_entries;
698 }
699
700 num_entries_set = B_TRUE;
701 }
702 break;
703 case 2:
704 num_entries_set = B_TRUE;
705 num_entries = dboot_multiboot2_mmap_nentries(mb2_info,
706 mb2_mmap_tagp);
707 break;
708 default:
709 dboot_panic("Unknown multiboot version: %d\n",
710 multiboot_version);
711 break;
712 }
713 return (num_entries);
714 #else
715 return (MAXMAPS);
716 #endif
717 }
718
719 static uint32_t
720 dboot_loader_mmap_get_type(int index)
721 {
722 #if !defined(__xpv)
723 mb_memory_map_t *mp, *mpend;
724 caddr32_t mmap_addr;
725 int i;
726
727 switch (multiboot_version) {
728 case 1:
729 mp = (mb_memory_map_t *)(uintptr_t)mb_info->mmap_addr;
730 mpend = (mb_memory_map_t *)(uintptr_t)
731 (mb_info->mmap_addr + mb_info->mmap_length);
732
733 for (i = 0; mp < mpend && i != index; i++)
734 mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size +
735 sizeof (mp->size));
736 if (mp >= mpend) {
737 dboot_panic("dboot_loader_mmap_get_type(): index "
738 "out of bounds: %d\n", index);
739 }
740 return (mp->type);
741
742 case 2:
743 return (dboot_multiboot2_mmap_get_type(mb2_info,
744 mb2_mmap_tagp, index));
745
746 default:
747 dboot_panic("Unknown multiboot version: %d\n",
748 multiboot_version);
749 break;
750 }
751 return (0);
752 #else
753 return (map_buffer[index].type);
754 #endif
755 }
756
757 static uint64_t
758 dboot_loader_mmap_get_base(int index)
759 {
760 #if !defined(__xpv)
761 mb_memory_map_t *mp, *mpend;
762 int i;
763
764 switch (multiboot_version) {
765 case 1:
766 mp = (mb_memory_map_t *)mb_info->mmap_addr;
767 mpend = (mb_memory_map_t *)
768 (mb_info->mmap_addr + mb_info->mmap_length);
769
770 for (i = 0; mp < mpend && i != index; i++)
771 mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size +
772 sizeof (mp->size));
773 if (mp >= mpend) {
774 dboot_panic("dboot_loader_mmap_get_base(): index "
775 "out of bounds: %d\n", index);
776 }
777 return (((uint64_t)mp->base_addr_high << 32) +
778 (uint64_t)mp->base_addr_low);
779
780 case 2:
781 return (dboot_multiboot2_mmap_get_base(mb2_info,
782 mb2_mmap_tagp, index));
783
784 default:
785 dboot_panic("Unknown multiboot version: %d\n",
786 multiboot_version);
787 break;
788 }
789 return (0);
790 #else
791 return (((uint64_t)map_buffer[index].base_addr_high << 32) +
792 (uint64_t)map_buffer[index].base_addr_low);
793 #endif
794 }
795
796 static uint64_t
797 dboot_loader_mmap_get_length(int index)
798 {
799 #if !defined(__xpv)
800 mb_memory_map_t *mp, *mpend;
801 int i;
802
803 switch (multiboot_version) {
804 case 1:
805 mp = (mb_memory_map_t *)mb_info->mmap_addr;
806 mpend = (mb_memory_map_t *)
807 (mb_info->mmap_addr + mb_info->mmap_length);
808
809 for (i = 0; mp < mpend && i != index; i++)
810 mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size +
811 sizeof (mp->size));
812 if (mp >= mpend) {
813 dboot_panic("dboot_loader_mmap_get_length(): index "
814 "out of bounds: %d\n", index);
815 }
816 return (((uint64_t)mp->length_high << 32) +
817 (uint64_t)mp->length_low);
818
819 case 2:
820 return (dboot_multiboot2_mmap_get_length(mb2_info,
821 mb2_mmap_tagp, index));
822
823 default:
824 dboot_panic("Unknown multiboot version: %d\n",
825 multiboot_version);
826 break;
827 }
828 return (0);
829 #else
830 return (((uint64_t)map_buffer[index].length_high << 32) +
831 (uint64_t)map_buffer[index].length_low);
832 #endif
833 }
834
835 static void
836 build_pcimemlists(void)
837 {
838 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */
839 uint64_t start;
840 uint64_t end;
841 int i, num;
842
843 /*
844 * initialize
845 */
846 pcimemlists[0].addr = pci_lo_limit;
847 pcimemlists[0].size = pci_hi_limit - pci_lo_limit;
848 pcimemlists_used = 1;
849
850 num = dboot_loader_mmap_entries();
851 /*
852 * Fill in PCI memlists.
853 */
854 for (i = 0; i < num; ++i) {
855 start = dboot_loader_mmap_get_base(i);
856 end = start + dboot_loader_mmap_get_length(i);
857
858 if (prom_debug)
859 dboot_printf("\ttype: %d %" PRIx64 "..%"
860 PRIx64 "\n", dboot_loader_mmap_get_type(i),
861 start, end);
862
863 /*
864 * page align start and end
865 */
866 start = (start + page_offset) & ~page_offset;
867 end &= ~page_offset;
868 if (end <= start)
869 continue;
870
871 exclude_from_pci(start, end);
872 }
873
874 /*
875 * Finish off the pcimemlist
876 */
877 if (prom_debug) {
878 for (i = 0; i < pcimemlists_used; ++i) {
879 dboot_printf("pcimemlist entry 0x%" PRIx64 "..0x%"
880 PRIx64 "\n", pcimemlists[i].addr,
881 pcimemlists[i].addr + pcimemlists[i].size);
882 }
883 }
884 pcimemlists[0].next = 0;
885 pcimemlists[0].prev = 0;
886 for (i = 1; i < pcimemlists_used; ++i) {
887 pcimemlists[i].prev =
888 (native_ptr_t)(uintptr_t)(pcimemlists + i - 1);
889 pcimemlists[i].next = 0;
890 pcimemlists[i - 1].next =
891 (native_ptr_t)(uintptr_t)(pcimemlists + i);
892 }
893 bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
894 DBG(bi->bi_pcimem);
895 }
896
897 #if defined(__xpv)
898 /*
899 * Initialize memory allocator stuff from hypervisor-supplied start info.
900 */
901 static void
902 init_mem_alloc(void)
903 {
904 int local; /* variables needed to find start region */
905 paddr_t scratch_start;
906 xen_memory_map_t map;
907
908 DBG_MSG("Entered init_mem_alloc()\n");
909
910 /*
911 * Free memory follows the stack. There's at least 512KB of scratch
912 * space, rounded up to at least 2Mb alignment. That should be enough
913 * for the page tables we'll need to build. The nucleus memory is
914 * allocated last and will be outside the addressible range. We'll
915 * switch to new page tables before we unpack the kernel
916 */
917 scratch_start = RNDUP((paddr_t)(uintptr_t)&local, MMU_PAGESIZE);
918 DBG(scratch_start);
919 scratch_end = RNDUP((paddr_t)scratch_start + 512 * 1024, TWO_MEG);
920 DBG(scratch_end);
921
922 /*
923 * For paranoia, leave some space between hypervisor data and ours.
924 * Use 500 instead of 512.
925 */
926 next_avail_addr = scratch_end - 500 * 1024;
927 DBG(next_avail_addr);
928
929 /*
930 * The domain builder gives us at most 1 module
931 */
932 DBG(xen_info->mod_len);
933 if (xen_info->mod_len > 0) {
934 DBG(xen_info->mod_start);
935 modules[0].bm_addr =
936 (native_ptr_t)(uintptr_t)xen_info->mod_start;
937 modules[0].bm_size = xen_info->mod_len;
938 bi->bi_module_cnt = 1;
939 bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
940 } else {
941 bi->bi_module_cnt = 0;
942 bi->bi_modules = (native_ptr_t)(uintptr_t)NULL;
943 }
944 DBG(bi->bi_module_cnt);
945 DBG(bi->bi_modules);
946
947 DBG(xen_info->mfn_list);
948 DBG(xen_info->nr_pages);
949 max_mem = (paddr_t)xen_info->nr_pages << MMU_PAGESHIFT;
950 DBG(max_mem);
951
952 /*
953 * Using pseudo-physical addresses, so only 1 memlist element
954 */
955 memlists[0].addr = 0;
956 DBG(memlists[0].addr);
957 memlists[0].size = max_mem;
958 DBG(memlists[0].size);
959 memlists_used = 1;
960 DBG(memlists_used);
961
962 /*
963 * finish building physinstall list
964 */
965 sort_physinstall();
966
967 /*
968 * build bios reserved memlists
969 */
970 build_rsvdmemlists();
971
972 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
973 /*
974 * build PCI Memory list
975 */
976 map.nr_entries = MAXMAPS;
977 /*LINTED: constant in conditional context*/
978 set_xen_guest_handle(map.buffer, map_buffer);
979 if (HYPERVISOR_memory_op(XENMEM_machine_memory_map, &map) != 0)
980 dboot_panic("getting XENMEM_machine_memory_map failed");
981 build_pcimemlists();
982 }
983 }
984
985 #else /* !__xpv */
986
987 static void
988 dboot_multiboot1_xboot_consinfo(void)
989 {
990 fb->framebuffer = 0;
991 }
992
993 static void
994 dboot_multiboot2_xboot_consinfo(void)
995 {
996 multiboot_tag_framebuffer_t *fbtag;
997 fbtag = dboot_multiboot2_find_tag(mb2_info,
998 MULTIBOOT_TAG_TYPE_FRAMEBUFFER);
999 fb->framebuffer = (uint64_t)(uintptr_t)fbtag;
1000 }
1001
1002 static int
1003 dboot_multiboot_modcount(void)
1004 {
1005 switch (multiboot_version) {
1006 case 1:
1007 return (mb_info->mods_count);
1008
1009 case 2:
1010 return (dboot_multiboot2_modcount(mb2_info));
1011
1012 default:
1013 dboot_panic("Unknown multiboot version: %d\n",
1014 multiboot_version);
1015 break;
1016 }
1017 return (0);
1018 }
1019
1020 static uint32_t
1021 dboot_multiboot_modstart(int index)
1022 {
1023 switch (multiboot_version) {
1024 case 1:
1025 return (((mb_module_t *)mb_info->mods_addr)[index].mod_start);
1026
1027 case 2:
1028 return (dboot_multiboot2_modstart(mb2_info, index));
1029
1030 default:
1031 dboot_panic("Unknown multiboot version: %d\n",
1032 multiboot_version);
1033 break;
1034 }
1035 return (0);
1036 }
1037
1038 static uint32_t
1039 dboot_multiboot_modend(int index)
1040 {
1041 switch (multiboot_version) {
1042 case 1:
1043 return (((mb_module_t *)mb_info->mods_addr)[index].mod_end);
1044
1045 case 2:
1046 return (dboot_multiboot2_modend(mb2_info, index));
1047
1048 default:
1049 dboot_panic("Unknown multiboot version: %d\n",
1050 multiboot_version);
1051 break;
1052 }
1053 return (0);
1054 }
1055
1056 static char *
1057 dboot_multiboot_modcmdline(int index)
1058 {
1059 switch (multiboot_version) {
1060 case 1:
1061 return ((char *)((mb_module_t *)
1062 mb_info->mods_addr)[index].mod_name);
1063
1064 case 2:
1065 return (dboot_multiboot2_modcmdline(mb2_info, index));
1066
1067 default:
1068 dboot_panic("Unknown multiboot version: %d\n",
1069 multiboot_version);
1070 break;
1071 }
1072 return (0);
1073 }
1074
1075 /*
1076 * Find the modules used by console setup.
1077 * Since we need the console to print early boot messages, the console is set up
1078 * before anything else and therefore we need to pick up the needed modules.
1079 *
1080 * Note, we just will search for and if found, will pass the modules
1081 * to console setup, the proper module list processing will happen later.
1082 * Currently used modules are boot environment and console font.
1083 */
1084 static void
1085 dboot_find_console_modules(void)
1086 {
1087 int i, modcount;
1088 uint32_t mod_start, mod_end;
1089 char *cmdline;
1090
1091 modcount = dboot_multiboot_modcount();
1092 bi->bi_module_cnt = 0;
1093 for (i = 0; i < modcount; ++i) {
1094 cmdline = dboot_multiboot_modcmdline(i);
1095 if (cmdline == NULL)
1096 continue;
1097
1098 if (strstr(cmdline, "type=console-font") != NULL)
1099 modules[bi->bi_module_cnt].bm_type = BMT_FONT;
1100 else if (strstr(cmdline, "type=environment") != NULL)
1101 modules[bi->bi_module_cnt].bm_type = BMT_ENV;
1102 else
1103 continue;
1104
1105 mod_start = dboot_multiboot_modstart(i);
1106 mod_end = dboot_multiboot_modend(i);
1107 modules[bi->bi_module_cnt].bm_addr =
1108 (native_ptr_t)(uintptr_t)mod_start;
1109 modules[bi->bi_module_cnt].bm_size = mod_end - mod_start;
1110 modules[bi->bi_module_cnt].bm_name =
1111 (native_ptr_t)(uintptr_t)NULL;
1112 modules[bi->bi_module_cnt].bm_hash =
1113 (native_ptr_t)(uintptr_t)NULL;
1114 bi->bi_module_cnt++;
1115 }
1116 if (bi->bi_module_cnt != 0)
1117 bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1118 }
1119
1120 static boolean_t
1121 dboot_multiboot_basicmeminfo(uint32_t *lower, uint32_t *upper)
1122 {
1123 boolean_t rv = B_FALSE;
1124
1125 switch (multiboot_version) {
1126 case 1:
1127 if (mb_info->flags & 0x01) {
1128 *lower = mb_info->mem_lower;
1129 *upper = mb_info->mem_upper;
1130 rv = B_TRUE;
1131 }
1132 break;
1133
1134 case 2:
1135 return (dboot_multiboot2_basicmeminfo(mb2_info, lower, upper));
1136
1137 default:
1138 dboot_panic("Unknown multiboot version: %d\n",
1139 multiboot_version);
1140 break;
1141 }
1142 return (rv);
1143 }
1144
1145 static uint8_t
1146 dboot_a2h(char v)
1147 {
1148 if (v >= 'a')
1149 return (v - 'a' + 0xa);
1150 else if (v >= 'A')
1151 return (v - 'A' + 0xa);
1152 else if (v >= '0')
1153 return (v - '0');
1154 else
1155 dboot_panic("bad ASCII hex character %c\n", v);
1156
1157 return (0);
1158 }
1159
1160 static void
1161 digest_a2h(const char *ascii, uint8_t *digest)
1162 {
1163 unsigned int i;
1164
1165 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1166 digest[i] = dboot_a2h(ascii[i * 2]) << 4;
1167 digest[i] |= dboot_a2h(ascii[i * 2 + 1]);
1168 }
1169 }
1170
1171 /*
1172 * Generate a SHA-1 hash of the first len bytes of image, and compare it with
1173 * the ASCII-format hash found in the 40-byte buffer at ascii. If they
1174 * match, return 0, otherwise -1. This works only for images smaller than
1175 * 4 GB, which should not be a problem.
1176 */
1177 static int
1178 check_image_hash(uint_t midx)
1179 {
1180 const char *ascii;
1181 const void *image;
1182 size_t len;
1183 SHA1_CTX ctx;
1184 uint8_t digest[SHA1_DIGEST_LENGTH];
1185 uint8_t baseline[SHA1_DIGEST_LENGTH];
1186 unsigned int i;
1187
1188 ascii = (const char *)(uintptr_t)modules[midx].bm_hash;
1189 image = (const void *)(uintptr_t)modules[midx].bm_addr;
1190 len = (size_t)modules[midx].bm_size;
1191
1192 digest_a2h(ascii, baseline);
1193
1194 SHA1Init(&ctx);
1195 SHA1Update(&ctx, image, len);
1196 SHA1Final(digest, &ctx);
1197
1198 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1199 if (digest[i] != baseline[i])
1200 return (-1);
1201 }
1202
1203 return (0);
1204 }
1205
1206 static const char *
1207 type_to_str(boot_module_type_t type)
1208 {
1209 switch (type) {
1210 case BMT_ROOTFS:
1211 return ("rootfs");
1212 case BMT_FILE:
1213 return ("file");
1214 case BMT_HASH:
1215 return ("hash");
1216 case BMT_ENV:
1217 return ("environment");
1218 case BMT_FONT:
1219 return ("console-font");
1220 default:
1221 return ("unknown");
1222 }
1223 }
1224
1225 static void
1226 check_images(void)
1227 {
1228 uint_t i;
1229 char displayhash[SHA1_ASCII_LENGTH + 1];
1230
1231 for (i = 0; i < modules_used; i++) {
1232 if (prom_debug) {
1233 dboot_printf("module #%d: name %s type %s "
1234 "addr %lx size %lx\n",
1235 i, (char *)(uintptr_t)modules[i].bm_name,
1236 type_to_str(modules[i].bm_type),
1237 (ulong_t)modules[i].bm_addr,
1238 (ulong_t)modules[i].bm_size);
1239 }
1240
1241 if (modules[i].bm_type == BMT_HASH ||
1242 modules[i].bm_hash == (native_ptr_t)(uintptr_t)NULL) {
1243 DBG_MSG("module has no hash; skipping check\n");
1244 continue;
1245 }
1246 (void) memcpy(displayhash,
1247 (void *)(uintptr_t)modules[i].bm_hash,
1248 SHA1_ASCII_LENGTH);
1249 displayhash[SHA1_ASCII_LENGTH] = '\0';
1250 if (prom_debug) {
1251 dboot_printf("checking expected hash [%s]: ",
1252 displayhash);
1253 }
1254
1255 if (check_image_hash(i) != 0)
1256 dboot_panic("hash mismatch!\n");
1257 else
1258 DBG_MSG("OK\n");
1259 }
1260 }
1261
1262 /*
1263 * Determine the module's starting address, size, name, and type, and fill the
1264 * boot_modules structure. This structure is used by the bop code, except for
1265 * hashes which are checked prior to transferring control to the kernel.
1266 */
1267 static void
1268 process_module(int midx)
1269 {
1270 uint32_t mod_start = dboot_multiboot_modstart(midx);
1271 uint32_t mod_end = dboot_multiboot_modend(midx);
1272 char *cmdline = dboot_multiboot_modcmdline(midx);
1273 char *p, *q;
1274
1275 check_higher(mod_end);
1276 if (prom_debug) {
1277 dboot_printf("\tmodule #%d: '%s' at 0x%lx, end 0x%lx\n",
1278 midx, cmdline, (ulong_t)mod_start, (ulong_t)mod_end);
1279 }
1280
1281 if (mod_start > mod_end) {
1282 dboot_panic("module #%d: module start address 0x%lx greater "
1283 "than end address 0x%lx", midx,
1284 (ulong_t)mod_start, (ulong_t)mod_end);
1285 }
1286
1287 /*
1288 * A brief note on lengths and sizes: GRUB, for reasons unknown, passes
1289 * the address of the last valid byte in a module plus 1 as mod_end.
1290 * This is of course a bug; the multiboot specification simply states
1291 * that mod_start and mod_end "contain the start and end addresses of
1292 * the boot module itself" which is pretty obviously not what GRUB is
1293 * doing. However, fixing it requires that not only this code be
1294 * changed but also that other code consuming this value and values
1295 * derived from it be fixed, and that the kernel and GRUB must either
1296 * both have the bug or neither. While there are a lot of combinations
1297 * that will work, there are also some that won't, so for simplicity
1298 * we'll just cope with the bug. That means we won't actually hash the
1299 * byte at mod_end, and we will expect that mod_end for the hash file
1300 * itself is one greater than some multiple of 41 (40 bytes of ASCII
1301 * hash plus a newline for each module). We set bm_size to the true
1302 * correct number of bytes in each module, achieving exactly this.
1303 */
1304
1305 modules[midx].bm_addr = (native_ptr_t)(uintptr_t)mod_start;
1306 modules[midx].bm_size = mod_end - mod_start;
1307 modules[midx].bm_name = (native_ptr_t)(uintptr_t)cmdline;
1308 modules[midx].bm_hash = (native_ptr_t)(uintptr_t)NULL;
1309 modules[midx].bm_type = BMT_FILE;
1310
1311 if (cmdline == NULL) {
1312 modules[midx].bm_name = (native_ptr_t)(uintptr_t)noname;
1313 return;
1314 }
1315
1316 p = cmdline;
1317 modules[midx].bm_name =
1318 (native_ptr_t)(uintptr_t)strsep(&p, " \t\f\n\r");
1319
1320 while (p != NULL) {
1321 q = strsep(&p, " \t\f\n\r");
1322 if (strncmp(q, "name=", 5) == 0) {
1323 if (q[5] != '\0' && !isspace(q[5])) {
1324 modules[midx].bm_name =
1325 (native_ptr_t)(uintptr_t)(q + 5);
1326 }
1327 continue;
1328 }
1329
1330 if (strncmp(q, "type=", 5) == 0) {
1331 if (q[5] == '\0' || isspace(q[5]))
1332 continue;
1333 q += 5;
1334 if (strcmp(q, "rootfs") == 0) {
1335 modules[midx].bm_type = BMT_ROOTFS;
1336 } else if (strcmp(q, "hash") == 0) {
1337 modules[midx].bm_type = BMT_HASH;
1338 } else if (strcmp(q, "environment") == 0) {
1339 modules[midx].bm_type = BMT_ENV;
1340 } else if (strcmp(q, "console-font") == 0) {
1341 modules[midx].bm_type = BMT_FONT;
1342 } else if (strcmp(q, "file") != 0) {
1343 dboot_printf("\tmodule #%d: unknown module "
1344 "type '%s'; defaulting to 'file'\n",
1345 midx, q);
1346 }
1347 continue;
1348 }
1349
1350 if (strncmp(q, "hash=", 5) == 0) {
1351 if (q[5] != '\0' && !isspace(q[5])) {
1352 modules[midx].bm_hash =
1353 (native_ptr_t)(uintptr_t)(q + 5);
1354 }
1355 continue;
1356 }
1357
1358 dboot_printf("ignoring unknown option '%s'\n", q);
1359 }
1360 }
1361
1362 /*
1363 * Backward compatibility: if there are exactly one or two modules, both
1364 * of type 'file' and neither with an embedded hash value, we have been
1365 * given the legacy style modules. In this case we need to treat the first
1366 * module as a rootfs and the second as a hash referencing that module.
1367 * Otherwise, even if the configuration is invalid, we assume that the
1368 * operator knows what he's doing or at least isn't being bitten by this
1369 * interface change.
1370 */
1371 static void
1372 fixup_modules(void)
1373 {
1374 if (modules_used == 0 || modules_used > 2)
1375 return;
1376
1377 if (modules[0].bm_type != BMT_FILE ||
1378 modules_used > 1 && modules[1].bm_type != BMT_FILE) {
1379 return;
1380 }
1381
1382 if (modules[0].bm_hash != (native_ptr_t)(uintptr_t)NULL ||
1383 modules_used > 1 &&
1384 modules[1].bm_hash != (native_ptr_t)(uintptr_t)NULL) {
1385 return;
1386 }
1387
1388 modules[0].bm_type = BMT_ROOTFS;
1389 if (modules_used > 1) {
1390 modules[1].bm_type = BMT_HASH;
1391 modules[1].bm_name = modules[0].bm_name;
1392 }
1393 }
1394
1395 /*
1396 * For modules that do not have assigned hashes but have a separate hash module,
1397 * find the assigned hash module and set the primary module's bm_hash to point
1398 * to the hash data from that module. We will then ignore modules of type
1399 * BMT_HASH from this point forward.
1400 */
1401 static void
1402 assign_module_hashes(void)
1403 {
1404 uint_t i, j;
1405
1406 for (i = 0; i < modules_used; i++) {
1407 if (modules[i].bm_type == BMT_HASH ||
1408 modules[i].bm_hash != (native_ptr_t)(uintptr_t)NULL) {
1409 continue;
1410 }
1411
1412 for (j = 0; j < modules_used; j++) {
1413 if (modules[j].bm_type != BMT_HASH ||
1414 strcmp((char *)(uintptr_t)modules[j].bm_name,
1415 (char *)(uintptr_t)modules[i].bm_name) != 0) {
1416 continue;
1417 }
1418
1419 if (modules[j].bm_size < SHA1_ASCII_LENGTH) {
1420 dboot_printf("Short hash module of length "
1421 "0x%lx bytes; ignoring\n",
1422 (ulong_t)modules[j].bm_size);
1423 } else {
1424 modules[i].bm_hash = modules[j].bm_addr;
1425 }
1426 break;
1427 }
1428 }
1429 }
1430
1431 /*
1432 * Walk through the module information finding the last used address.
1433 * The first available address will become the top level page table.
1434 */
1435 static void
1436 dboot_process_modules(void)
1437 {
1438 int i, modcount;
1439 extern char _end[];
1440
1441 DBG_MSG("\nFinding Modules\n");
1442 modcount = dboot_multiboot_modcount();
1443 if (modcount > MAX_BOOT_MODULES) {
1444 dboot_panic("Too many modules (%d) -- the maximum is %d.",
1445 modcount, MAX_BOOT_MODULES);
1446 }
1447 /*
1448 * search the modules to find the last used address
1449 * we'll build the module list while we're walking through here
1450 */
1451 check_higher((paddr_t)(uintptr_t)&_end);
1452 for (i = 0; i < modcount; ++i) {
1453 process_module(i);
1454 modules_used++;
1455 }
1456 bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1457 DBG(bi->bi_modules);
1458 bi->bi_module_cnt = modcount;
1459 DBG(bi->bi_module_cnt);
1460
1461 fixup_modules();
1462 assign_module_hashes();
1463 check_images();
1464 }
1465
1466 /*
1467 * We then build the phys_install memlist from the multiboot information.
1468 */
1469 static void
1470 dboot_process_mmap(void)
1471 {
1472 uint64_t start;
1473 uint64_t end;
1474 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */
1475 uint32_t lower, upper;
1476 int i, mmap_entries;
1477
1478 /*
1479 * Walk through the memory map from multiboot and build our memlist
1480 * structures. Note these will have native format pointers.
1481 */
1482 DBG_MSG("\nFinding Memory Map\n");
1483 num_entries = 0;
1484 num_entries_set = B_FALSE;
1485 max_mem = 0;
1486 if ((mmap_entries = dboot_loader_mmap_entries()) > 0) {
1487 for (i = 0; i < mmap_entries; i++) {
1488 uint32_t type = dboot_loader_mmap_get_type(i);
1489 start = dboot_loader_mmap_get_base(i);
1490 end = start + dboot_loader_mmap_get_length(i);
1491
1492 if (prom_debug)
1493 dboot_printf("\ttype: %d %" PRIx64 "..%"
1494 PRIx64 "\n", type, start, end);
1495
1496 /*
1497 * page align start and end
1498 */
1499 start = (start + page_offset) & ~page_offset;
1500 end &= ~page_offset;
1501 if (end <= start)
1502 continue;
1503
1504 /*
1505 * only type 1 is usable RAM
1506 */
1507 switch (type) {
1508 case 1:
1509 if (end > max_mem)
1510 max_mem = end;
1511 memlists[memlists_used].addr = start;
1512 memlists[memlists_used].size = end - start;
1513 ++memlists_used;
1514 if (memlists_used > MAX_MEMLIST)
1515 dboot_panic("too many memlists");
1516 break;
1517 case 2:
1518 rsvdmemlists[rsvdmemlists_used].addr = start;
1519 rsvdmemlists[rsvdmemlists_used].size =
1520 end - start;
1521 ++rsvdmemlists_used;
1522 if (rsvdmemlists_used > MAX_MEMLIST)
1523 dboot_panic("too many rsvdmemlists");
1524 break;
1525 default:
1526 continue;
1527 }
1528 }
1529 build_pcimemlists();
1530 } else if (dboot_multiboot_basicmeminfo(&lower, &upper)) {
1531 DBG(lower);
1532 memlists[memlists_used].addr = 0;
1533 memlists[memlists_used].size = lower * 1024;
1534 ++memlists_used;
1535 DBG(upper);
1536 memlists[memlists_used].addr = 1024 * 1024;
1537 memlists[memlists_used].size = upper * 1024;
1538 ++memlists_used;
1539
1540 /*
1541 * Old platform - assume I/O space at the end of memory.
1542 */
1543 pcimemlists[0].addr = (upper * 1024) + (1024 * 1024);
1544 pcimemlists[0].size = pci_hi_limit - pcimemlists[0].addr;
1545 pcimemlists[0].next = 0;
1546 pcimemlists[0].prev = 0;
1547 bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
1548 DBG(bi->bi_pcimem);
1549 } else {
1550 dboot_panic("No memory info from boot loader!!!");
1551 }
1552
1553 /*
1554 * finish processing the physinstall list
1555 */
1556 sort_physinstall();
1557
1558 /*
1559 * build bios reserved mem lists
1560 */
1561 build_rsvdmemlists();
1562 }
1563
1564 /*
1565 * The highest address is used as the starting point for dboot's simple
1566 * memory allocator.
1567 *
1568 * Finding the highest address in case of Multiboot 1 protocol is
1569 * quite painful in the sense that some information provided by
1570 * the multiboot info structure points to BIOS data, and some to RAM.
1571 *
1572 * The module list was processed and checked already by dboot_process_modules(),
1573 * so we will check the command line string and the memory map.
1574 *
1575 * This list of to be checked items is based on our current knowledge of
1576 * allocations made by grub1 and will need to be reviewed if there
1577 * are updates about the information provided by Multiboot 1.
1578 *
1579 * In the case of the Multiboot 2, our life is much simpler, as the MB2
1580 * information tag list is one contiguous chunk of memory.
1581 */
1582 static paddr_t
1583 dboot_multiboot1_highest_addr(void)
1584 {
1585 paddr_t addr = (paddr_t)(uintptr_t)NULL;
1586 char *cmdl = (char *)mb_info->cmdline;
1587
1588 if (mb_info->flags & MB_INFO_CMDLINE)
1589 addr = ((paddr_t)((uintptr_t)cmdl + strlen(cmdl) + 1));
1590
1591 if (mb_info->flags & MB_INFO_MEM_MAP)
1592 addr = MAX(addr,
1593 ((paddr_t)(mb_info->mmap_addr + mb_info->mmap_length)));
1594 return (addr);
1595 }
1596
1597 static void
1598 dboot_multiboot_highest_addr(void)
1599 {
1600 paddr_t addr;
1601
1602 switch (multiboot_version) {
1603 case 1:
1604 addr = dboot_multiboot1_highest_addr();
1605 if (addr != (paddr_t)(uintptr_t)NULL)
1606 check_higher(addr);
1607 break;
1608 case 2:
1609 addr = dboot_multiboot2_highest_addr(mb2_info);
1610 if (addr != (paddr_t)(uintptr_t)NULL)
1611 check_higher(addr);
1612 break;
1613 default:
1614 dboot_panic("Unknown multiboot version: %d\n",
1615 multiboot_version);
1616 break;
1617 }
1618 }
1619
1620 /*
1621 * Walk the boot loader provided information and find the highest free address.
1622 */
1623 static void
1624 init_mem_alloc(void)
1625 {
1626 DBG_MSG("Entered init_mem_alloc()\n");
1627 dboot_process_modules();
1628 dboot_process_mmap();
1629 dboot_multiboot_highest_addr();
1630 }
1631
1632 static int
1633 dboot_same_guids(efi_guid_t *g1, efi_guid_t *g2)
1634 {
1635 int i;
1636
1637 if (g1->time_low != g2->time_low)
1638 return (0);
1639 if (g1->time_mid != g2->time_mid)
1640 return (0);
1641 if (g1->time_hi_and_version != g2->time_hi_and_version)
1642 return (0);
1643 if (g1->clock_seq_hi_and_reserved != g2->clock_seq_hi_and_reserved)
1644 return (0);
1645 if (g1->clock_seq_low != g2->clock_seq_low)
1646 return (0);
1647
1648 for (i = 0; i < 6; i++) {
1649 if (g1->node_addr[i] != g2->node_addr[i])
1650 return (0);
1651 }
1652 return (1);
1653 }
1654
1655 static void
1656 process_efi32(EFI_SYSTEM_TABLE32 *efi)
1657 {
1658 uint32_t entries;
1659 EFI_CONFIGURATION_TABLE32 *config;
1660 efi_guid_t VendorGuid;
1661 int i;
1662
1663 entries = efi->NumberOfTableEntries;
1664 config = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t)
1665 efi->ConfigurationTable;
1666
1667 for (i = 0; i < entries; i++) {
1668 (void) memcpy(&VendorGuid, &config[i].VendorGuid,
1669 sizeof (VendorGuid));
1670 if (dboot_same_guids(&VendorGuid, &smbios3)) {
1671 bi->bi_smbios = (native_ptr_t)(uintptr_t)
1672 config[i].VendorTable;
1673 }
1674 if (bi->bi_smbios == 0 &&
1675 dboot_same_guids(&VendorGuid, &smbios)) {
1676 bi->bi_smbios = (native_ptr_t)(uintptr_t)
1677 config[i].VendorTable;
1678 }
1679 if (dboot_same_guids(&VendorGuid, &acpi2)) {
1680 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1681 config[i].VendorTable;
1682 }
1683 if (bi->bi_acpi_rsdp == 0 &&
1684 dboot_same_guids(&VendorGuid, &acpi1)) {
1685 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1686 config[i].VendorTable;
1687 }
1688 }
1689 }
1690
1691 static void
1692 process_efi64(EFI_SYSTEM_TABLE64 *efi)
1693 {
1694 uint64_t entries;
1695 EFI_CONFIGURATION_TABLE64 *config;
1696 efi_guid_t VendorGuid;
1697 int i;
1698
1699 entries = efi->NumberOfTableEntries;
1700 config = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t)
1701 efi->ConfigurationTable;
1702
1703 for (i = 0; i < entries; i++) {
1704 (void) memcpy(&VendorGuid, &config[i].VendorGuid,
1705 sizeof (VendorGuid));
1706 if (dboot_same_guids(&VendorGuid, &smbios3)) {
1707 bi->bi_smbios = (native_ptr_t)(uintptr_t)
1708 config[i].VendorTable;
1709 }
1710 if (bi->bi_smbios == 0 &&
1711 dboot_same_guids(&VendorGuid, &smbios)) {
1712 bi->bi_smbios = (native_ptr_t)(uintptr_t)
1713 config[i].VendorTable;
1714 }
1715 /* Prefer acpi v2+ over v1. */
1716 if (dboot_same_guids(&VendorGuid, &acpi2)) {
1717 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1718 config[i].VendorTable;
1719 }
1720 if (bi->bi_acpi_rsdp == 0 &&
1721 dboot_same_guids(&VendorGuid, &acpi1)) {
1722 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1723 config[i].VendorTable;
1724 }
1725 }
1726 }
1727
1728 static void
1729 dboot_multiboot_get_fwtables(void)
1730 {
1731 multiboot_tag_new_acpi_t *nacpitagp;
1732 multiboot_tag_old_acpi_t *oacpitagp;
1733 multiboot_tag_efi64_t *efi64tagp = NULL;
1734 multiboot_tag_efi32_t *efi32tagp = NULL;
1735
1736 /* no fw tables from multiboot 1 */
1737 if (multiboot_version != 2)
1738 return;
1739
1740 efi64tagp = (multiboot_tag_efi64_t *)
1741 dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_EFI64);
1742 if (efi64tagp != NULL) {
1743 bi->bi_uefi_arch = XBI_UEFI_ARCH_64;
1744 bi->bi_uefi_systab = (native_ptr_t)(uintptr_t)
1745 efi64tagp->mb_pointer;
1746 process_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t)
1747 efi64tagp->mb_pointer);
1748 } else {
1749 efi32tagp = (multiboot_tag_efi32_t *)
1750 dboot_multiboot2_find_tag(mb2_info,
1751 MULTIBOOT_TAG_TYPE_EFI32);
1752 if (efi32tagp != NULL) {
1753 bi->bi_uefi_arch = XBI_UEFI_ARCH_32;
1754 bi->bi_uefi_systab = (native_ptr_t)(uintptr_t)
1755 efi32tagp->mb_pointer;
1756 process_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t)
1757 efi32tagp->mb_pointer);
1758 }
1759 }
1760
1761 /*
1762 * The ACPI RSDP can be found by scanning the BIOS memory areas or
1763 * from the EFI system table. The boot loader may pass in the address
1764 * it found the ACPI tables at.
1765 */
1766 nacpitagp = (multiboot_tag_new_acpi_t *)
1767 dboot_multiboot2_find_tag(mb2_info,
1768 MULTIBOOT_TAG_TYPE_ACPI_NEW);
1769 oacpitagp = (multiboot_tag_old_acpi_t *)
1770 dboot_multiboot2_find_tag(mb2_info,
1771 MULTIBOOT_TAG_TYPE_ACPI_OLD);
1772
1773 if (nacpitagp != NULL) {
1774 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1775 &nacpitagp->mb_rsdp[0];
1776 } else if (oacpitagp != NULL) {
1777 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1778 &oacpitagp->mb_rsdp[0];
1779 }
1780 }
1781
1782 /* print out EFI version string with newline */
1783 static void
1784 dboot_print_efi_version(uint32_t ver)
1785 {
1786 int rev;
1787
1788 dboot_printf("%d.", EFI_REV_MAJOR(ver));
1789
1790 rev = EFI_REV_MINOR(ver);
1791 if ((rev % 10) != 0) {
1792 dboot_printf("%d.%d\n", rev / 10, rev % 10);
1793 } else {
1794 dboot_printf("%d\n", rev / 10);
1795 }
1796 }
1797
1798 static void
1799 print_efi32(EFI_SYSTEM_TABLE32 *efi)
1800 {
1801 uint16_t *data;
1802 EFI_CONFIGURATION_TABLE32 *conf;
1803 int i;
1804
1805 dboot_printf("EFI32 signature: %llx\n",
1806 (unsigned long long)efi->Hdr.Signature);
1807 dboot_printf("EFI system version: ");
1808 dboot_print_efi_version(efi->Hdr.Revision);
1809 dboot_printf("EFI system vendor: ");
1810 data = (uint16_t *)(uintptr_t)efi->FirmwareVendor;
1811 for (i = 0; data[i] != 0; i++)
1812 dboot_printf("%c", (char)data[i]);
1813 dboot_printf("\nEFI firmware revision: ");
1814 dboot_print_efi_version(efi->FirmwareRevision);
1815 dboot_printf("EFI system table number of entries: %d\n",
1816 efi->NumberOfTableEntries);
1817 conf = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t)
1818 efi->ConfigurationTable;
1819 for (i = 0; i < (int)efi->NumberOfTableEntries; i++) {
1820 dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i,
1821 conf[i].VendorGuid.time_low,
1822 conf[i].VendorGuid.time_mid,
1823 conf[i].VendorGuid.time_hi_and_version,
1824 conf[i].VendorGuid.clock_seq_hi_and_reserved,
1825 conf[i].VendorGuid.clock_seq_low);
1826 dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
1827 conf[i].VendorGuid.node_addr[0],
1828 conf[i].VendorGuid.node_addr[1],
1829 conf[i].VendorGuid.node_addr[2],
1830 conf[i].VendorGuid.node_addr[3],
1831 conf[i].VendorGuid.node_addr[4],
1832 conf[i].VendorGuid.node_addr[5]);
1833 }
1834 }
1835
1836 static void
1837 print_efi64(EFI_SYSTEM_TABLE64 *efi)
1838 {
1839 uint16_t *data;
1840 EFI_CONFIGURATION_TABLE64 *conf;
1841 int i;
1842
1843 dboot_printf("EFI64 signature: %llx\n",
1844 (unsigned long long)efi->Hdr.Signature);
1845 dboot_printf("EFI system version: ");
1846 dboot_print_efi_version(efi->Hdr.Revision);
1847 dboot_printf("EFI system vendor: ");
1848 data = (uint16_t *)(uintptr_t)efi->FirmwareVendor;
1849 for (i = 0; data[i] != 0; i++)
1850 dboot_printf("%c", (char)data[i]);
1851 dboot_printf("\nEFI firmware revision: ");
1852 dboot_print_efi_version(efi->FirmwareRevision);
1853 dboot_printf("EFI system table number of entries: %" PRIu64 "\n",
1854 efi->NumberOfTableEntries);
1855 conf = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t)
1856 efi->ConfigurationTable;
1857 for (i = 0; i < (int)efi->NumberOfTableEntries; i++) {
1858 dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i,
1859 conf[i].VendorGuid.time_low,
1860 conf[i].VendorGuid.time_mid,
1861 conf[i].VendorGuid.time_hi_and_version,
1862 conf[i].VendorGuid.clock_seq_hi_and_reserved,
1863 conf[i].VendorGuid.clock_seq_low);
1864 dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
1865 conf[i].VendorGuid.node_addr[0],
1866 conf[i].VendorGuid.node_addr[1],
1867 conf[i].VendorGuid.node_addr[2],
1868 conf[i].VendorGuid.node_addr[3],
1869 conf[i].VendorGuid.node_addr[4],
1870 conf[i].VendorGuid.node_addr[5]);
1871 }
1872 }
1873 #endif /* !__xpv */
1874
1875 /*
1876 * Simple memory allocator, allocates aligned physical memory.
1877 * Note that startup_kernel() only allocates memory, never frees.
1878 * Memory usage just grows in an upward direction.
1879 */
1880 static void *
1881 do_mem_alloc(uint32_t size, uint32_t align)
1882 {
1883 uint_t i;
1884 uint64_t best;
1885 uint64_t start;
1886 uint64_t end;
1887
1888 /*
1889 * make sure size is a multiple of pagesize
1890 */
1891 size = RNDUP(size, MMU_PAGESIZE);
1892 next_avail_addr = RNDUP(next_avail_addr, align);
1893
1894 /*
1895 * XXPV fixme joe
1896 *
1897 * a really large bootarchive that causes you to run out of memory
1898 * may cause this to blow up
1899 */
1900 /* LINTED E_UNEXPECTED_UINT_PROMOTION */
1901 best = (uint64_t)-size;
1902 for (i = 0; i < memlists_used; ++i) {
1903 start = memlists[i].addr;
1904 #if defined(__xpv)
1905 start += mfn_base;
1906 #endif
1907 end = start + memlists[i].size;
1908
1909 /*
1910 * did we find the desired address?
1911 */
1912 if (start <= next_avail_addr && next_avail_addr + size <= end) {
1913 best = next_avail_addr;
1914 goto done;
1915 }
1916
1917 /*
1918 * if not is this address the best so far?
1919 */
1920 if (start > next_avail_addr && start < best &&
1921 RNDUP(start, align) + size <= end)
1922 best = RNDUP(start, align);
1923 }
1924
1925 /*
1926 * We didn't find exactly the address we wanted, due to going off the
1927 * end of a memory region. Return the best found memory address.
1928 */
1929 done:
1930 next_avail_addr = best + size;
1931 #if defined(__xpv)
1932 if (next_avail_addr > scratch_end)
1933 dboot_panic("Out of mem next_avail: 0x%lx, scratch_end: "
1934 "0x%lx", (ulong_t)next_avail_addr,
1935 (ulong_t)scratch_end);
1936 #endif
1937 (void) memset((void *)(uintptr_t)best, 0, size);
1938 return ((void *)(uintptr_t)best);
1939 }
1940
1941 void *
1942 mem_alloc(uint32_t size)
1943 {
1944 return (do_mem_alloc(size, MMU_PAGESIZE));
1945 }
1946
1947
1948 /*
1949 * Build page tables to map all of memory used so far as well as the kernel.
1950 */
1951 static void
1952 build_page_tables(void)
1953 {
1954 uint32_t psize;
1955 uint32_t level;
1956 uint32_t off;
1957 uint64_t start;
1958 #if !defined(__xpv)
1959 uint32_t i;
1960 uint64_t end;
1961 #endif /* __xpv */
1962
1963 /*
1964 * If we're on metal, we need to create the top level pagetable.
1965 */
1966 #if defined(__xpv)
1967 top_page_table = (paddr_t)(uintptr_t)xen_info->pt_base;
1968 #else /* __xpv */
1969 top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
1970 #endif /* __xpv */
1971 DBG((uintptr_t)top_page_table);
1972
1973 /*
1974 * Determine if we'll use large mappings for kernel, then map it.
1975 */
1976 if (largepage_support) {
1977 psize = lpagesize;
1978 level = 1;
1979 } else {
1980 psize = MMU_PAGESIZE;
1981 level = 0;
1982 }
1983
1984 DBG_MSG("Mapping kernel\n");
1985 DBG(ktext_phys);
1986 DBG(target_kernel_text);
1987 DBG(ksize);
1988 DBG(psize);
1989 for (off = 0; off < ksize; off += psize)
1990 map_pa_at_va(ktext_phys + off, target_kernel_text + off, level);
1991
1992 /*
1993 * The kernel will need a 1 page window to work with page tables
1994 */
1995 bi->bi_pt_window = (native_ptr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
1996 DBG(bi->bi_pt_window);
1997 bi->bi_pte_to_pt_window =
1998 (native_ptr_t)(uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0);
1999 DBG(bi->bi_pte_to_pt_window);
2000
2001 #if defined(__xpv)
2002 if (!DOMAIN_IS_INITDOMAIN(xen_info)) {
2003 /* If this is a domU we're done. */
2004 DBG_MSG("\nPage tables constructed\n");
2005 return;
2006 }
2007 #endif /* __xpv */
2008
2009 /*
2010 * We need 1:1 mappings for the lower 1M of memory to access
2011 * BIOS tables used by a couple of drivers during boot.
2012 *
2013 * The following code works because our simple memory allocator
2014 * only grows usage in an upwards direction.
2015 *
2016 * Note that by this point in boot some mappings for low memory
2017 * may already exist because we've already accessed device in low
2018 * memory. (Specifically the video frame buffer and keyboard
2019 * status ports.) If we're booting on raw hardware then GRUB
2020 * created these mappings for us. If we're booting under a
2021 * hypervisor then we went ahead and remapped these devices into
2022 * memory allocated within dboot itself.
2023 */
2024 if (map_debug)
2025 dboot_printf("1:1 map pa=0..1Meg\n");
2026 for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE) {
2027 #if defined(__xpv)
2028 map_ma_at_va(start, start, 0);
2029 #else /* __xpv */
2030 map_pa_at_va(start, start, 0);
2031 #endif /* __xpv */
2032 }
2033
2034 #if !defined(__xpv)
2035
2036 for (i = 0; i < memlists_used; ++i) {
2037 start = memlists[i].addr;
2038 end = start + memlists[i].size;
2039
2040 if (map_debug)
2041 dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
2042 start, end);
2043 while (start < end && start < next_avail_addr) {
2044 map_pa_at_va(start, start, 0);
2045 start += MMU_PAGESIZE;
2046 }
2047 if (start >= next_avail_addr)
2048 break;
2049 }
2050
2051 /*
2052 * Map framebuffer memory as PT_NOCACHE as this is memory from a
2053 * device and therefore must not be cached.
2054 */
2055 if (fb != NULL && fb->framebuffer != 0) {
2056 multiboot_tag_framebuffer_t *fb_tagp;
2057 fb_tagp = (multiboot_tag_framebuffer_t *)(uintptr_t)
2058 fb->framebuffer;
2059
2060 start = fb_tagp->framebuffer_common.framebuffer_addr;
2061 end = start + fb_tagp->framebuffer_common.framebuffer_height *
2062 fb_tagp->framebuffer_common.framebuffer_pitch;
2063
2064 if (map_debug)
2065 dboot_printf("FB 1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
2066 start, end);
2067 pte_bits |= PT_NOCACHE;
2068 if (PAT_support != 0)
2069 pte_bits |= PT_PAT_4K;
2070
2071 while (start < end) {
2072 map_pa_at_va(start, start, 0);
2073 start += MMU_PAGESIZE;
2074 }
2075 pte_bits &= ~PT_NOCACHE;
2076 if (PAT_support != 0)
2077 pte_bits &= ~PT_PAT_4K;
2078 }
2079 #endif /* !__xpv */
2080
2081 DBG_MSG("\nPage tables constructed\n");
2082 }
2083
2084 #define NO_MULTIBOOT \
2085 "multiboot is no longer used to boot the Solaris Operating System.\n\
2086 The grub entry should be changed to:\n\
2087 kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\
2088 module$ /platform/i86pc/$ISADIR/boot_archive\n\
2089 See http://illumos.org/msg/SUNOS-8000-AK for details.\n"
2090
2091 static void
2092 dboot_init_xboot_consinfo(void)
2093 {
2094 bi = &boot_info;
2095
2096 #if !defined(__xpv)
2097 fb = &framebuffer;
2098 bi->bi_framebuffer = (native_ptr_t)(uintptr_t)fb;
2099
2100 switch (multiboot_version) {
2101 case 1:
2102 dboot_multiboot1_xboot_consinfo();
2103 break;
2104 case 2:
2105 dboot_multiboot2_xboot_consinfo();
2106 break;
2107 default:
2108 dboot_panic("Unknown multiboot version: %d\n",
2109 multiboot_version);
2110 break;
2111 }
2112 dboot_find_console_modules();
2113 #endif
2114 }
2115
2116 /*
2117 * Set up basic data from the boot loader.
2118 * The load_addr is part of AOUT kludge setup in dboot_grub.s, to support
2119 * 32-bit dboot code setup used to set up and start 64-bit kernel.
2120 * AOUT kludge does allow 32-bit boot loader, such as grub1, to load and
2121 * start 64-bit illumos kernel.
2122 */
2123 static void
2124 dboot_loader_init(void)
2125 {
2126 #if !defined(__xpv)
2127 mb_info = NULL;
2128 mb2_info = NULL;
2129
2130 switch (mb_magic) {
2131 case MB_BOOTLOADER_MAGIC:
2132 multiboot_version = 1;
2133 mb_info = (multiboot_info_t *)(uintptr_t)mb_addr;
2134 #if defined(_BOOT_TARGET_amd64)
2135 load_addr = mb_header.load_addr;
2136 #endif
2137 break;
2138
2139 case MULTIBOOT2_BOOTLOADER_MAGIC:
2140 multiboot_version = 2;
2141 mb2_info = (multiboot2_info_header_t *)(uintptr_t)mb_addr;
2142 mb2_mmap_tagp = dboot_multiboot2_get_mmap_tagp(mb2_info);
2143 #if defined(_BOOT_TARGET_amd64)
2144 load_addr = mb2_load_addr;
2145 #endif
2146 break;
2147
2148 default:
2149 dboot_panic("Unknown bootloader magic: 0x%x\n", mb_magic);
2150 break;
2151 }
2152 #endif /* !defined(__xpv) */
2153 }
2154
2155 /* Extract the kernel command line from [multi]boot information. */
2156 static char *
2157 dboot_loader_cmdline(void)
2158 {
2159 char *line = NULL;
2160
2161 #if defined(__xpv)
2162 line = (char *)xen_info->cmd_line;
2163 #else /* __xpv */
2164
2165 switch (multiboot_version) {
2166 case 1:
2167 if (mb_info->flags & MB_INFO_CMDLINE)
2168 line = (char *)mb_info->cmdline;
2169 break;
2170
2171 case 2:
2172 line = dboot_multiboot2_cmdline(mb2_info);
2173 break;
2174
2175 default:
2176 dboot_panic("Unknown multiboot version: %d\n",
2177 multiboot_version);
2178 break;
2179 }
2180
2181 #endif /* __xpv */
2182
2183 /*
2184 * Make sure we have valid pointer so the string operations
2185 * will not crash us.
2186 */
2187 if (line == NULL)
2188 line = "";
2189
2190 return (line);
2191 }
2192
2193 static char *
2194 dboot_loader_name(void)
2195 {
2196 #if defined(__xpv)
2197 return (NULL);
2198 #else /* __xpv */
2199 multiboot_tag_string_t *tag;
2200
2201 switch (multiboot_version) {
2202 case 1:
2203 return ((char *)(uintptr_t)mb_info->boot_loader_name);
2204
2205 case 2:
2206 tag = dboot_multiboot2_find_tag(mb2_info,
2207 MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME);
2208 return (tag->mb_string);
2209 default:
2210 dboot_panic("Unknown multiboot version: %d\n",
2211 multiboot_version);
2212 break;
2213 }
2214
2215 return (NULL);
2216 #endif /* __xpv */
2217 }
2218
2219 /*
2220 * startup_kernel has a pretty simple job. It builds pagetables which reflect
2221 * 1:1 mappings for all memory in use. It then also adds mappings for
2222 * the kernel nucleus at virtual address of target_kernel_text using large page
2223 * mappings. The page table pages are also accessible at 1:1 mapped
2224 * virtual addresses.
2225 */
2226 /*ARGSUSED*/
2227 void
2228 startup_kernel(void)
2229 {
2230 char *cmdline;
2231 char *bootloader;
2232 #if defined(__xpv)
2233 physdev_set_iopl_t set_iopl;
2234 #endif /* __xpv */
2235
2236 if (dboot_debug == 1)
2237 bcons_init(NULL); /* Set very early console to ttya. */
2238 dboot_loader_init();
2239 /*
2240 * At this point we are executing in a 32 bit real mode.
2241 */
2242
2243 bootloader = dboot_loader_name();
2244 cmdline = dboot_loader_cmdline();
2245
2246 #if defined(__xpv)
2247 /*
2248 * For dom0, before we initialize the console subsystem we'll
2249 * need to enable io operations, so set I/O priveldge level to 1.
2250 */
2251 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2252 set_iopl.iopl = 1;
2253 (void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
2254 }
2255 #endif /* __xpv */
2256
2257 dboot_init_xboot_consinfo();
2258 bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline;
2259 bcons_init(bi); /* Now we can set the real console. */
2260
2261 prom_debug = (find_boot_prop("prom_debug") != NULL);
2262 map_debug = (find_boot_prop("map_debug") != NULL);
2263
2264 #if !defined(__xpv)
2265 dboot_multiboot_get_fwtables();
2266 #endif
2267 DBG_MSG("\n\nillumos prekernel set: ");
2268 DBG_MSG(cmdline);
2269 DBG_MSG("\n");
2270
2271 if (bootloader != NULL && prom_debug) {
2272 dboot_printf("Kernel loaded by: %s\n", bootloader);
2273 #if !defined(__xpv)
2274 dboot_printf("Using multiboot %d boot protocol.\n",
2275 multiboot_version);
2276 #endif
2277 }
2278
2279 if (strstr(cmdline, "multiboot") != NULL) {
2280 dboot_panic(NO_MULTIBOOT);
2281 }
2282
2283 DBG((uintptr_t)bi);
2284 #if !defined(__xpv)
2285 DBG((uintptr_t)mb_info);
2286 DBG((uintptr_t)mb2_info);
2287 if (mb2_info != NULL)
2288 DBG(mb2_info->mbi_total_size);
2289 DBG(bi->bi_acpi_rsdp);
2290 DBG(bi->bi_smbios);
2291 DBG(bi->bi_uefi_arch);
2292 DBG(bi->bi_uefi_systab);
2293
2294 if (bi->bi_uefi_systab && prom_debug) {
2295 if (bi->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2296 print_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t)
2297 bi->bi_uefi_systab);
2298 } else {
2299 print_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t)
2300 bi->bi_uefi_systab);
2301 }
2302 }
2303 #endif
2304
2305 /*
2306 * Need correct target_kernel_text value
2307 */
2308 #if defined(_BOOT_TARGET_amd64)
2309 target_kernel_text = KERNEL_TEXT_amd64;
2310 #elif defined(__xpv)
2311 target_kernel_text = KERNEL_TEXT_i386_xpv;
2312 #else
2313 target_kernel_text = KERNEL_TEXT_i386;
2314 #endif
2315 DBG(target_kernel_text);
2316
2317 #if defined(__xpv)
2318
2319 /*
2320 * XXPV Derive this stuff from CPUID / what the hypervisor has enabled
2321 */
2322
2323 #if defined(_BOOT_TARGET_amd64)
2324 /*
2325 * 64-bit hypervisor.
2326 */
2327 amd64_support = 1;
2328 pae_support = 1;
2329
2330 #else /* _BOOT_TARGET_amd64 */
2331
2332 /*
2333 * See if we are running on a PAE Hypervisor
2334 */
2335 {
2336 xen_capabilities_info_t caps;
2337
2338 if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0)
2339 dboot_panic("HYPERVISOR_xen_version(caps) failed");
2340 caps[sizeof (caps) - 1] = 0;
2341 if (prom_debug)
2342 dboot_printf("xen capabilities %s\n", caps);
2343 if (strstr(caps, "x86_32p") != NULL)
2344 pae_support = 1;
2345 }
2346
2347 #endif /* _BOOT_TARGET_amd64 */
2348 {
2349 xen_platform_parameters_t p;
2350
2351 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0)
2352 dboot_panic("HYPERVISOR_xen_version(parms) failed");
2353 DBG(p.virt_start);
2354 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2355 }
2356
2357 /*
2358 * The hypervisor loads stuff starting at 1Gig
2359 */
2360 mfn_base = ONE_GIG;
2361 DBG(mfn_base);
2362
2363 /*
2364 * enable writable page table mode for the hypervisor
2365 */
2366 if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2367 VMASST_TYPE_writable_pagetables) < 0)
2368 dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed");
2369
2370 /*
2371 * check for NX support
2372 */
2373 if (pae_support) {
2374 uint32_t eax = 0x80000000;
2375 uint32_t edx = get_cpuid_edx(&eax);
2376
2377 if (eax >= 0x80000001) {
2378 eax = 0x80000001;
2379 edx = get_cpuid_edx(&eax);
2380 if (edx & CPUID_AMD_EDX_NX)
2381 NX_support = 1;
2382 }
2383 }
2384
2385 /*
2386 * check for PAT support
2387 */
2388 {
2389 uint32_t eax = 1;
2390 uint32_t edx = get_cpuid_edx(&eax);
2391
2392 if (edx & CPUID_INTC_EDX_PAT)
2393 PAT_support = 1;
2394 }
2395 #if !defined(_BOOT_TARGET_amd64)
2396
2397 /*
2398 * The 32-bit hypervisor uses segmentation to protect itself from
2399 * guests. This means when a guest attempts to install a flat 4GB
2400 * code or data descriptor the 32-bit hypervisor will protect itself
2401 * by silently shrinking the segment such that if the guest attempts
2402 * any access where the hypervisor lives a #gp fault is generated.
2403 * The problem is that some applications expect a full 4GB flat
2404 * segment for their current thread pointer and will use negative
2405 * offset segment wrap around to access data. TLS support in linux
2406 * brand is one example of this.
2407 *
2408 * The 32-bit hypervisor can catch the #gp fault in these cases
2409 * and emulate the access without passing the #gp fault to the guest
2410 * but only if VMASST_TYPE_4gb_segments is explicitly turned on.
2411 * Seems like this should have been the default.
2412 * Either way, we want the hypervisor -- and not Solaris -- to deal
2413 * to deal with emulating these accesses.
2414 */
2415 if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2416 VMASST_TYPE_4gb_segments) < 0)
2417 dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed");
2418 #endif /* !_BOOT_TARGET_amd64 */
2419
2420 #else /* __xpv */
2421
2422 /*
2423 * use cpuid to enable MMU features
2424 */
2425 if (have_cpuid()) {
2426 uint32_t eax, edx;
2427
2428 eax = 1;
2429 edx = get_cpuid_edx(&eax);
2430 if (edx & CPUID_INTC_EDX_PSE)
2431 largepage_support = 1;
2432 if (edx & CPUID_INTC_EDX_PGE)
2433 pge_support = 1;
2434 if (edx & CPUID_INTC_EDX_PAE)
2435 pae_support = 1;
2436 if (edx & CPUID_INTC_EDX_PAT)
2437 PAT_support = 1;
2438
2439 eax = 0x80000000;
2440 edx = get_cpuid_edx(&eax);
2441 if (eax >= 0x80000001) {
2442 eax = 0x80000001;
2443 edx = get_cpuid_edx(&eax);
2444 if (edx & CPUID_AMD_EDX_LM)
2445 amd64_support = 1;
2446 if (edx & CPUID_AMD_EDX_NX)
2447 NX_support = 1;
2448 }
2449 } else {
2450 dboot_printf("cpuid not supported\n");
2451 }
2452 #endif /* __xpv */
2453
2454
2455 #if defined(_BOOT_TARGET_amd64)
2456 if (amd64_support == 0)
2457 dboot_panic("long mode not supported, rebooting");
2458 else if (pae_support == 0)
2459 dboot_panic("long mode, but no PAE; rebooting");
2460 #else
2461 /*
2462 * Allow the command line to over-ride use of PAE for 32 bit.
2463 */
2464 if (strstr(cmdline, "disablePAE=true") != NULL) {
2465 pae_support = 0;
2466 NX_support = 0;
2467 amd64_support = 0;
2468 }
2469 #endif
2470
2471 /*
2472 * initialize the simple memory allocator
2473 */
2474 init_mem_alloc();
2475
2476 #if !defined(__xpv) && !defined(_BOOT_TARGET_amd64)
2477 /*
2478 * disable PAE on 32 bit h/w w/o NX and < 4Gig of memory
2479 */
2480 if (max_mem < FOUR_GIG && NX_support == 0)
2481 pae_support = 0;
2482 #endif
2483
2484 /*
2485 * configure mmu information
2486 */
2487 if (pae_support) {
2488 shift_amt = shift_amt_pae;
2489 ptes_per_table = 512;
2490 pte_size = 8;
2491 lpagesize = TWO_MEG;
2492 #if defined(_BOOT_TARGET_amd64)
2493 top_level = 3;
2494 #else
2495 top_level = 2;
2496 #endif
2497 } else {
2498 pae_support = 0;
2499 NX_support = 0;
2500 shift_amt = shift_amt_nopae;
2501 ptes_per_table = 1024;
2502 pte_size = 4;
2503 lpagesize = FOUR_MEG;
2504 top_level = 1;
2505 }
2506
2507 DBG(PAT_support);
2508 DBG(pge_support);
2509 DBG(NX_support);
2510 DBG(largepage_support);
2511 DBG(amd64_support);
2512 DBG(top_level);
2513 DBG(pte_size);
2514 DBG(ptes_per_table);
2515 DBG(lpagesize);
2516
2517 #if defined(__xpv)
2518 ktext_phys = ONE_GIG; /* from UNIX Mapfile */
2519 #else
2520 ktext_phys = FOUR_MEG; /* from UNIX Mapfile */
2521 #endif
2522
2523 #if !defined(__xpv) && defined(_BOOT_TARGET_amd64)
2524 /*
2525 * For grub, copy kernel bits from the ELF64 file to final place.
2526 */
2527 DBG_MSG("\nAllocating nucleus pages.\n");
2528 ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG);
2529
2530 if (ktext_phys == 0)
2531 dboot_panic("failed to allocate aligned kernel memory");
2532 DBG(load_addr);
2533 if (dboot_elfload64(load_addr) != 0)
2534 dboot_panic("failed to parse kernel ELF image, rebooting");
2535 #endif
2536
2537 DBG(ktext_phys);
2538
2539 /*
2540 * Allocate page tables.
2541 */
2542 build_page_tables();
2543
2544 /*
2545 * return to assembly code to switch to running kernel
2546 */
2547 entry_addr_low = (uint32_t)target_kernel_text;
2548 DBG(entry_addr_low);
2549 bi->bi_use_largepage = largepage_support;
2550 bi->bi_use_pae = pae_support;
2551 bi->bi_use_pge = pge_support;
2552 bi->bi_use_nx = NX_support;
2553
2554 #if defined(__xpv)
2555
2556 bi->bi_next_paddr = next_avail_addr - mfn_base;
2557 DBG(bi->bi_next_paddr);
2558 bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr;
2559 DBG(bi->bi_next_vaddr);
2560
2561 /*
2562 * unmap unused pages in start area to make them available for DMA
2563 */
2564 while (next_avail_addr < scratch_end) {
2565 (void) HYPERVISOR_update_va_mapping(next_avail_addr,
2566 0, UVMF_INVLPG | UVMF_LOCAL);
2567 next_avail_addr += MMU_PAGESIZE;
2568 }
2569
2570 bi->bi_xen_start_info = (native_ptr_t)(uintptr_t)xen_info;
2571 DBG((uintptr_t)HYPERVISOR_shared_info);
2572 bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info;
2573 bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base;
2574
2575 #else /* __xpv */
2576
2577 bi->bi_next_paddr = next_avail_addr;
2578 DBG(bi->bi_next_paddr);
2579 bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr;
2580 DBG(bi->bi_next_vaddr);
2581 bi->bi_mb_version = multiboot_version;
2582
2583 switch (multiboot_version) {
2584 case 1:
2585 bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb_info;
2586 break;
2587 case 2:
2588 bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb2_info;
2589 break;
2590 default:
2591 dboot_panic("Unknown multiboot version: %d\n",
2592 multiboot_version);
2593 break;
2594 }
2595 bi->bi_top_page_table = (uintptr_t)top_page_table;
2596
2597 #endif /* __xpv */
2598
2599 bi->bi_kseg_size = FOUR_MEG;
2600 DBG(bi->bi_kseg_size);
2601
2602 #ifndef __xpv
2603 if (map_debug)
2604 dump_tables();
2605 #endif
2606
2607 DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n");
2608
2609 #ifndef __xpv
2610 /* Update boot info with FB data */
2611 fb->cursor.origin.x = fb_info.cursor.origin.x;
2612 fb->cursor.origin.y = fb_info.cursor.origin.y;
2613 fb->cursor.pos.x = fb_info.cursor.pos.x;
2614 fb->cursor.pos.y = fb_info.cursor.pos.y;
2615 fb->cursor.visible = fb_info.cursor.visible;
2616 #endif
2617 }