Print this page
12045 segkmem_page_create(): Fire Walk With Me
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/vm/seg_kmem.c
+++ new/usr/src/uts/common/vm/seg_kmem.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
23 - * Copyright 2016 Joyent, Inc.
23 + * Copyright 2019 Joyent, Inc.
24 24 */
25 25
26 26 #include <sys/types.h>
27 27 #include <sys/t_lock.h>
28 28 #include <sys/param.h>
29 29 #include <sys/sysmacros.h>
30 30 #include <sys/tuneable.h>
31 31 #include <sys/systm.h>
32 32 #include <sys/vm.h>
33 33 #include <sys/kmem.h>
34 34 #include <sys/vmem.h>
35 35 #include <sys/mman.h>
36 36 #include <sys/cmn_err.h>
37 37 #include <sys/debug.h>
38 38 #include <sys/dumphdr.h>
39 39 #include <sys/bootconf.h>
40 40 #include <sys/lgrp.h>
41 41 #include <vm/seg_kmem.h>
42 42 #include <vm/hat.h>
43 43 #include <vm/page.h>
44 44 #include <vm/vm_dep.h>
45 45 #include <vm/faultcode.h>
46 46 #include <sys/promif.h>
47 47 #include <vm/seg_kp.h>
48 48 #include <sys/bitmap.h>
49 49 #include <sys/mem_cage.h>
50 50
51 51 #ifdef __sparc
52 52 #include <sys/ivintr.h>
53 53 #include <sys/panic.h>
54 54 #endif
55 55
56 56 /*
57 57 * seg_kmem is the primary kernel memory segment driver. It
58 58 * maps the kernel heap [kernelheap, ekernelheap), module text,
59 59 * and all memory which was allocated before the VM was initialized
60 60 * into kas.
61 61 *
62 62 * Pages which belong to seg_kmem are hashed into &kvp vnode at
63 63 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1.
64 64 * They must never be paged out since segkmem_fault() is a no-op to
65 65 * prevent recursive faults.
66 66 *
67 67 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on
68 68 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86
69 69 * supports relocation the #ifdef kludges can be removed.
70 70 *
71 71 * seg_kmem pages may be subject to relocation by page_relocate(),
72 72 * provided that the HAT supports it; if this is so, segkmem_reloc
73 73 * will be set to a nonzero value. All boot time allocated memory as
74 74 * well as static memory is considered off limits to relocation.
75 75 * Pages are "relocatable" if p_state does not have P_NORELOC set, so
76 76 * we request P_NORELOC pages for memory that isn't safe to relocate.
77 77 *
78 78 * The kernel heap is logically divided up into four pieces:
79 79 *
80 80 * heap32_arena is for allocations that require 32-bit absolute
81 81 * virtual addresses (e.g. code that uses 32-bit pointers/offsets).
82 82 *
83 83 * heap_core is for allocations that require 2GB *relative*
84 84 * offsets; in other words all memory from heap_core is within
85 85 * 2GB of all other memory from the same arena. This is a requirement
86 86 * of the addressing modes of some processors in supervisor code.
87 87 *
88 88 * heap_arena is the general heap arena.
89 89 *
90 90 * static_arena is the static memory arena. Allocations from it
91 91 * are not subject to relocation so it is safe to use the memory
92 92 * physical address as well as the virtual address (e.g. the VA to
93 93 * PA translations are static). Caches may import from static_arena;
94 94 * all other static memory allocations should use static_alloc_arena.
95 95 *
96 96 * On some platforms which have limited virtual address space, seg_kmem
97 97 * may share [kernelheap, ekernelheap) with seg_kp; if this is so,
98 98 * segkp_bitmap is non-NULL, and each bit represents a page of virtual
99 99 * address space which is actually seg_kp mapped.
100 100 */
101 101
102 102 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */
103 103
104 104 char *kernelheap; /* start of primary kernel heap */
105 105 char *ekernelheap; /* end of primary kernel heap */
106 106 struct seg kvseg; /* primary kernel heap segment */
107 107 struct seg kvseg_core; /* "core" kernel heap segment */
108 108 struct seg kzioseg; /* Segment for zio mappings */
109 109 vmem_t *heap_arena; /* primary kernel heap arena */
110 110 vmem_t *heap_core_arena; /* core kernel heap arena */
111 111 char *heap_core_base; /* start of core kernel heap arena */
112 112 char *heap_lp_base; /* start of kernel large page heap arena */
113 113 char *heap_lp_end; /* end of kernel large page heap arena */
114 114 vmem_t *hat_memload_arena; /* HAT translation data */
115 115 struct seg kvseg32; /* 32-bit kernel heap segment */
116 116 vmem_t *heap32_arena; /* 32-bit kernel heap arena */
117 117 vmem_t *heaptext_arena; /* heaptext arena */
118 118 struct as kas; /* kernel address space */
119 119 int segkmem_reloc; /* enable/disable relocatable segkmem pages */
120 120 vmem_t *static_arena; /* arena for caches to import static memory */
121 121 vmem_t *static_alloc_arena; /* arena for allocating static memory */
122 122 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */
123 123 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */
124 124
125 125 /*
126 126 * seg_kmem driver can map part of the kernel heap with large pages.
127 127 * Currently this functionality is implemented for sparc platforms only.
128 128 *
129 129 * The large page size "segkmem_lpsize" for kernel heap is selected in the
130 130 * platform specific code. It can also be modified via /etc/system file.
131 131 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large
132 132 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to
133 133 * match segkmem_lpsize.
134 134 *
135 135 * At boot time we carve from kernel heap arena a range of virtual addresses
136 136 * that will be used for large page mappings. This range [heap_lp_base,
137 137 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also
138 138 * create "kmem_lp_arena" that caches memory already backed up by large
139 139 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena.
140 140 */
141 141
142 142 size_t segkmem_lpsize;
143 143 static uint_t segkmem_lpshift = PAGESHIFT;
144 144 int segkmem_lpszc = 0;
145 145
146 146 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */
147 147 size_t segkmem_heaplp_quantum;
148 148 vmem_t *heap_lp_arena;
149 149 static vmem_t *kmem_lp_arena;
150 150 static vmem_t *segkmem_ppa_arena;
151 151 static segkmem_lpcb_t segkmem_lpcb;
152 152
153 153 /*
154 154 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory
155 155 * consumed by the large page heap. By default this parameter is set to 1/8 of
156 156 * physmem but can be adjusted through /etc/system either directly or
157 157 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem
158 158 * we allow for large page heap.
159 159 */
160 160 size_t segkmem_kmemlp_max;
161 161 static uint_t segkmem_kmemlp_pcnt;
162 162
163 163 /*
164 164 * Getting large pages for kernel heap could be problematic due to
165 165 * physical memory fragmentation. That's why we allow to preallocate
166 166 * "segkmem_kmemlp_min" bytes at boot time.
167 167 */
168 168 static size_t segkmem_kmemlp_min;
169 169
170 170 /*
171 171 * Throttling is used to avoid expensive tries to allocate large pages
172 172 * for kernel heap when a lot of succesive attempts to do so fail.
173 173 */
174 174 static ulong_t segkmem_lpthrottle_max = 0x400000;
175 175 static ulong_t segkmem_lpthrottle_start = 0x40;
176 176 static ulong_t segkmem_use_lpthrottle = 1;
177 177
178 178 /*
179 179 * Freed pages accumulate on a garbage list until segkmem is ready,
180 180 * at which point we call segkmem_gc() to free it all.
181 181 */
182 182 typedef struct segkmem_gc_list {
183 183 struct segkmem_gc_list *gc_next;
184 184 vmem_t *gc_arena;
185 185 size_t gc_size;
186 186 } segkmem_gc_list_t;
187 187
188 188 static segkmem_gc_list_t *segkmem_gc_list;
189 189
190 190 /*
191 191 * Allocations from the hat_memload arena add VM_MEMLOAD to their
192 192 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs
193 193 * to take steps to prevent infinite recursion. HAT allocations also
194 194 * must be non-relocatable to prevent recursive page faults.
195 195 */
196 196 static void *
197 197 hat_memload_alloc(vmem_t *vmp, size_t size, int flags)
198 198 {
199 199 flags |= (VM_MEMLOAD | VM_NORELOC);
200 200 return (segkmem_alloc(vmp, size, flags));
201 201 }
202 202
203 203 /*
204 204 * Allocations from static_arena arena (or any other arena that uses
205 205 * segkmem_alloc_permanent()) require non-relocatable (permanently
206 206 * wired) memory pages, since these pages are referenced by physical
207 207 * as well as virtual address.
208 208 */
209 209 void *
210 210 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags)
211 211 {
212 212 return (segkmem_alloc(vmp, size, flags | VM_NORELOC));
213 213 }
214 214
215 215 /*
216 216 * Initialize kernel heap boundaries.
217 217 */
218 218 void
219 219 kernelheap_init(
220 220 void *heap_start,
221 221 void *heap_end,
222 222 char *first_avail,
223 223 void *core_start,
224 224 void *core_end)
225 225 {
226 226 uintptr_t textbase;
227 227 size_t core_size;
228 228 size_t heap_size;
229 229 vmem_t *heaptext_parent;
230 230 size_t heap_lp_size = 0;
231 231 #ifdef __sparc
232 232 size_t kmem64_sz = kmem64_aligned_end - kmem64_base;
233 233 #endif /* __sparc */
234 234
235 235 kernelheap = heap_start;
236 236 ekernelheap = heap_end;
237 237
238 238 #ifdef __sparc
239 239 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4);
240 240 /*
241 241 * Bias heap_lp start address by kmem64_sz to reduce collisions
242 242 * in 4M kernel TSB between kmem64 area and heap_lp
243 243 */
244 244 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M);
245 245 if (kmem64_sz <= heap_lp_size / 2)
246 246 heap_lp_size -= kmem64_sz;
247 247 heap_lp_base = ekernelheap - heap_lp_size;
248 248 heap_lp_end = heap_lp_base + heap_lp_size;
249 249 #endif /* __sparc */
250 250
251 251 /*
252 252 * If this platform has a 'core' heap area, then the space for
253 253 * overflow module text should be carved out of the end of that
254 254 * heap. Otherwise, it gets carved out of the general purpose
255 255 * heap.
256 256 */
257 257 core_size = (uintptr_t)core_end - (uintptr_t)core_start;
258 258 if (core_size > 0) {
259 259 ASSERT(core_size >= HEAPTEXT_SIZE);
260 260 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE;
261 261 core_size -= HEAPTEXT_SIZE;
262 262 }
263 263 #ifndef __sparc
264 264 else {
265 265 ekernelheap -= HEAPTEXT_SIZE;
266 266 textbase = (uintptr_t)ekernelheap;
267 267 }
268 268 #endif
269 269
270 270 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap;
271 271 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE,
272 272 segkmem_alloc, segkmem_free);
273 273
274 274 if (core_size > 0) {
275 275 heap_core_arena = vmem_create("heap_core", core_start,
276 276 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
277 277 heap_core_base = core_start;
278 278 } else {
279 279 heap_core_arena = heap_arena;
280 280 heap_core_base = kernelheap;
281 281 }
282 282
283 283 /*
284 284 * reserve space for the large page heap. If large pages for kernel
285 285 * heap is enabled large page heap arean will be created later in the
286 286 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated
287 287 * range will be returned back to the heap_arena.
288 288 */
289 289 if (heap_lp_size) {
290 290 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0,
291 291 heap_lp_base, heap_lp_end,
292 292 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
293 293 }
294 294
295 295 /*
296 296 * Remove the already-spoken-for memory range [kernelheap, first_avail).
297 297 */
298 298 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE,
299 299 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
300 300
301 301 #ifdef __sparc
302 302 heap32_arena = vmem_create("heap32", (void *)SYSBASE32,
303 303 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL,
304 304 NULL, NULL, 0, VM_SLEEP);
305 305 /*
306 306 * Prom claims the physical and virtual resources used by panicbuf
307 307 * and inter_vec_table. So reserve space for panicbuf, intr_vec_table,
308 308 * reserved interrupt vector data structures from 32-bit heap.
309 309 */
310 310 (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
311 311 panicbuf, panicbuf + PANICBUFSIZE,
312 312 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
313 313
314 314 (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
315 315 intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
316 316 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
317 317
318 318 textbase = SYSLIMIT32 - HEAPTEXT_SIZE;
319 319 heaptext_parent = NULL;
320 320 #else /* __sparc */
321 321 heap32_arena = heap_core_arena;
322 322 heaptext_parent = heap_core_arena;
323 323 #endif /* __sparc */
324 324
325 325 heaptext_arena = vmem_create("heaptext", (void *)textbase,
326 326 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP);
327 327
328 328 /*
329 329 * Create a set of arenas for memory with static translations
330 330 * (e.g. VA -> PA translations cannot change). Since using
331 331 * kernel pages by physical address implies it isn't safe to
332 332 * walk across page boundaries, the static_arena quantum must
333 333 * be PAGESIZE. Any kmem caches that require static memory
334 334 * should source from static_arena, while direct allocations
335 335 * should only use static_alloc_arena.
336 336 */
337 337 static_arena = vmem_create("static", NULL, 0, PAGESIZE,
338 338 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
339 339 static_alloc_arena = vmem_create("static_alloc", NULL, 0,
340 340 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena,
341 341 0, VM_SLEEP);
342 342
343 343 /*
344 344 * Create an arena for translation data (ptes, hmes, or hblks).
345 345 * We need an arena for this because hat_memload() is essential
346 346 * to vmem_populate() (see comments in common/os/vmem.c).
347 347 *
348 348 * Note: any kmem cache that allocates from hat_memload_arena
349 349 * must be created as a KMC_NOHASH cache (i.e. no external slab
350 350 * and bufctl structures to allocate) so that slab creation doesn't
351 351 * require anything more than a single vmem_alloc().
352 352 */
353 353 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE,
354 354 hat_memload_alloc, segkmem_free, heap_arena, 0,
355 355 VM_SLEEP | VMC_POPULATOR | VMC_DUMPSAFE);
356 356 }
357 357
358 358 void
359 359 boot_mapin(caddr_t addr, size_t size)
360 360 {
361 361 caddr_t eaddr;
362 362 page_t *pp;
363 363 pfn_t pfnum;
364 364
365 365 if (page_resv(btop(size), KM_NOSLEEP) == 0)
366 366 panic("boot_mapin: page_resv failed");
367 367
368 368 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
369 369 pfnum = va_to_pfn(addr);
370 370 if (pfnum == PFN_INVALID)
371 371 continue;
372 372 if ((pp = page_numtopp_nolock(pfnum)) == NULL)
373 373 panic("boot_mapin(): No pp for pfnum = %lx", pfnum);
374 374
375 375 /*
376 376 * must break up any large pages that may have constituent
377 377 * pages being utilized for BOP_ALLOC()'s before calling
378 378 * page_numtopp().The locking code (ie. page_reclaim())
379 379 * can't handle them
380 380 */
381 381 if (pp->p_szc != 0)
382 382 page_boot_demote(pp);
383 383
384 384 pp = page_numtopp(pfnum, SE_EXCL);
385 385 if (pp == NULL || PP_ISFREE(pp))
386 386 panic("boot_alloc: pp is NULL or free");
387 387
388 388 /*
389 389 * If the cage is on but doesn't yet contain this page,
390 390 * mark it as non-relocatable.
391 391 */
392 392 if (kcage_on && !PP_ISNORELOC(pp)) {
393 393 PP_SETNORELOC(pp);
394 394 PLCNT_XFER_NORELOC(pp);
395 395 }
396 396
397 397 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL);
398 398 pp->p_lckcnt = 1;
399 399 #if defined(__x86)
400 400 page_downgrade(pp);
401 401 #else
402 402 page_unlock(pp);
403 403 #endif
404 404 }
405 405 }
406 406
407 407 /*
408 408 * Get pages from boot and hash them into the kernel's vp.
409 409 * Used after page structs have been allocated, but before segkmem is ready.
410 410 */
411 411 void *
412 412 boot_alloc(void *inaddr, size_t size, uint_t align)
413 413 {
414 414 caddr_t addr = inaddr;
415 415
416 416 if (bootops == NULL)
417 417 prom_panic("boot_alloc: attempt to allocate memory after "
418 418 "BOP_GONE");
419 419
420 420 size = ptob(btopr(size));
421 421 #ifdef __sparc
422 422 if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr)
423 423 panic("boot_alloc: bop_alloc_chunk failed");
424 424 #else
425 425 if (BOP_ALLOC(bootops, addr, size, align) != addr)
426 426 panic("boot_alloc: BOP_ALLOC failed");
427 427 #endif
428 428 boot_mapin((caddr_t)addr, size);
429 429 return (addr);
430 430 }
431 431
432 432 static void
433 433 segkmem_badop()
434 434 {
435 435 panic("segkmem_badop");
436 436 }
437 437
438 438 #define SEGKMEM_BADOP(t) (t(*)())(uintptr_t)segkmem_badop
439 439
440 440 /*ARGSUSED*/
441 441 static faultcode_t
442 442 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size,
443 443 enum fault_type type, enum seg_rw rw)
444 444 {
445 445 pgcnt_t npages;
446 446 spgcnt_t pg;
447 447 page_t *pp;
448 448 struct vnode *vp = seg->s_data;
449 449
450 450 ASSERT(RW_READ_HELD(&seg->s_as->a_lock));
451 451
452 452 if (seg->s_as != &kas || size > seg->s_size ||
453 453 addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
454 454 panic("segkmem_fault: bad args");
455 455
456 456 /*
457 457 * If it is one of segkp pages, call segkp_fault.
458 458 */
459 459 if (segkp_bitmap && seg == &kvseg &&
460 460 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
461 461 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw));
462 462
463 463 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER)
464 464 return (FC_NOSUPPORT);
465 465
466 466 npages = btopr(size);
467 467
468 468 switch (type) {
469 469 case F_SOFTLOCK: /* lock down already-loaded translations */
470 470 for (pg = 0; pg < npages; pg++) {
471 471 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
472 472 SE_SHARED);
473 473 if (pp == NULL) {
474 474 /*
475 475 * Hmm, no page. Does a kernel mapping
476 476 * exist for it?
477 477 */
478 478 if (!hat_probe(kas.a_hat, addr)) {
479 479 addr -= PAGESIZE;
480 480 while (--pg >= 0) {
481 481 pp = page_find(vp, (u_offset_t)
482 482 (uintptr_t)addr);
483 483 if (pp)
484 484 page_unlock(pp);
485 485 addr -= PAGESIZE;
486 486 }
487 487 return (FC_NOMAP);
488 488 }
489 489 }
490 490 addr += PAGESIZE;
491 491 }
492 492 if (rw == S_OTHER)
493 493 hat_reserve(seg->s_as, addr, size);
494 494 return (0);
495 495 case F_SOFTUNLOCK:
496 496 while (npages--) {
497 497 pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
498 498 if (pp)
499 499 page_unlock(pp);
500 500 addr += PAGESIZE;
501 501 }
502 502 return (0);
503 503 default:
504 504 return (FC_NOSUPPORT);
505 505 }
506 506 /*NOTREACHED*/
507 507 }
508 508
509 509 static int
510 510 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
511 511 {
512 512 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
513 513
514 514 if (seg->s_as != &kas || size > seg->s_size ||
515 515 addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
516 516 panic("segkmem_setprot: bad args");
517 517
518 518 /*
519 519 * If it is one of segkp pages, call segkp.
520 520 */
521 521 if (segkp_bitmap && seg == &kvseg &&
522 522 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
523 523 return (SEGOP_SETPROT(segkp, addr, size, prot));
524 524
525 525 if (prot == 0)
526 526 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD);
527 527 else
528 528 hat_chgprot(kas.a_hat, addr, size, prot);
529 529 return (0);
530 530 }
531 531
532 532 /*
533 533 * This is a dummy segkmem function overloaded to call segkp
534 534 * when segkp is under the heap.
535 535 */
536 536 /* ARGSUSED */
537 537 static int
538 538 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
539 539 {
540 540 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
541 541
542 542 if (seg->s_as != &kas)
543 543 segkmem_badop();
544 544
545 545 /*
546 546 * If it is one of segkp pages, call into segkp.
547 547 */
548 548 if (segkp_bitmap && seg == &kvseg &&
549 549 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
550 550 return (SEGOP_CHECKPROT(segkp, addr, size, prot));
551 551
552 552 segkmem_badop();
553 553 return (0);
554 554 }
555 555
556 556 /*
557 557 * This is a dummy segkmem function overloaded to call segkp
558 558 * when segkp is under the heap.
559 559 */
560 560 /* ARGSUSED */
561 561 static int
562 562 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
563 563 {
564 564 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
565 565
566 566 if (seg->s_as != &kas)
567 567 segkmem_badop();
568 568
569 569 /*
570 570 * If it is one of segkp pages, call into segkp.
571 571 */
572 572 if (segkp_bitmap && seg == &kvseg &&
573 573 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
574 574 return (SEGOP_KLUSTER(segkp, addr, delta));
575 575
576 576 segkmem_badop();
577 577 return (0);
578 578 }
579 579
580 580 static void
581 581 segkmem_xdump_range(void *arg, void *start, size_t size)
582 582 {
583 583 struct as *as = arg;
584 584 caddr_t addr = start;
585 585 caddr_t addr_end = addr + size;
586 586
587 587 while (addr < addr_end) {
588 588 pfn_t pfn = hat_getpfnum(kas.a_hat, addr);
589 589 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn))
590 590 dump_addpage(as, addr, pfn);
591 591 addr += PAGESIZE;
592 592 dump_timeleft = dump_timeout;
593 593 }
594 594 }
595 595
596 596 static void
597 597 segkmem_dump_range(void *arg, void *start, size_t size)
598 598 {
599 599 caddr_t addr = start;
600 600 caddr_t addr_end = addr + size;
601 601
602 602 /*
603 603 * If we are about to start dumping the range of addresses we
604 604 * carved out of the kernel heap for the large page heap walk
605 605 * heap_lp_arena to find what segments are actually populated
606 606 */
607 607 if (SEGKMEM_USE_LARGEPAGES &&
608 608 addr == heap_lp_base && addr_end == heap_lp_end &&
609 609 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) {
610 610 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT,
611 611 segkmem_xdump_range, arg);
612 612 } else {
613 613 segkmem_xdump_range(arg, start, size);
614 614 }
615 615 }
616 616
617 617 static void
618 618 segkmem_dump(struct seg *seg)
619 619 {
620 620 /*
621 621 * The kernel's heap_arena (represented by kvseg) is a very large
622 622 * VA space, most of which is typically unused. To speed up dumping
623 623 * we use vmem_walk() to quickly find the pieces of heap_arena that
624 624 * are actually in use. We do the same for heap32_arena and
625 625 * heap_core.
626 626 *
627 627 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage()
628 628 * may ultimately need to allocate memory. Reentrant walks are
629 629 * necessarily imperfect snapshots. The kernel heap continues
630 630 * to change during a live crash dump, for example. For a normal
631 631 * crash dump, however, we know that there won't be any other threads
632 632 * messing with the heap. Therefore, at worst, we may fail to dump
633 633 * the pages that get allocated by the act of dumping; but we will
634 634 * always dump every page that was allocated when the walk began.
635 635 *
636 636 * The other segkmem segments are dense (fully populated), so there's
637 637 * no need to use this technique when dumping them.
638 638 *
639 639 * Note: when adding special dump handling for any new sparsely-
640 640 * populated segments, be sure to add similar handling to the ::kgrep
641 641 * code in mdb.
642 642 */
643 643 if (seg == &kvseg) {
644 644 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT,
645 645 segkmem_dump_range, seg->s_as);
646 646 #ifndef __sparc
647 647 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
648 648 segkmem_dump_range, seg->s_as);
649 649 #endif
650 650 } else if (seg == &kvseg_core) {
651 651 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT,
652 652 segkmem_dump_range, seg->s_as);
653 653 } else if (seg == &kvseg32) {
654 654 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT,
655 655 segkmem_dump_range, seg->s_as);
656 656 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
657 657 segkmem_dump_range, seg->s_as);
658 658 } else if (seg == &kzioseg) {
659 659 /*
660 660 * We don't want to dump pages attached to kzioseg since they
661 661 * contain file data from ZFS. If this page's segment is
662 662 * kzioseg return instead of writing it to the dump device.
663 663 */
664 664 return;
665 665 } else {
666 666 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size);
667 667 }
668 668 }
669 669
670 670 /*
671 671 * lock/unlock kmem pages over a given range [addr, addr+len).
672 672 * Returns a shadow list of pages in ppp. If there are holes
673 673 * in the range (e.g. some of the kernel mappings do not have
674 674 * underlying page_ts) returns ENOTSUP so that as_pagelock()
675 675 * will handle the range via as_fault(F_SOFTLOCK).
676 676 */
677 677 /*ARGSUSED*/
678 678 static int
679 679 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len,
680 680 page_t ***ppp, enum lock_type type, enum seg_rw rw)
681 681 {
682 682 page_t **pplist, *pp;
683 683 pgcnt_t npages;
684 684 spgcnt_t pg;
685 685 size_t nb;
686 686 struct vnode *vp = seg->s_data;
687 687
688 688 ASSERT(ppp != NULL);
689 689
690 690 /*
691 691 * If it is one of segkp pages, call into segkp.
692 692 */
693 693 if (segkp_bitmap && seg == &kvseg &&
694 694 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
695 695 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw));
696 696
697 697 npages = btopr(len);
698 698 nb = sizeof (page_t *) * npages;
699 699
700 700 if (type == L_PAGEUNLOCK) {
701 701 pplist = *ppp;
702 702 ASSERT(pplist != NULL);
703 703
704 704 for (pg = 0; pg < npages; pg++) {
705 705 pp = pplist[pg];
706 706 page_unlock(pp);
707 707 }
708 708 kmem_free(pplist, nb);
709 709 return (0);
710 710 }
711 711
712 712 ASSERT(type == L_PAGELOCK);
713 713
714 714 pplist = kmem_alloc(nb, KM_NOSLEEP);
715 715 if (pplist == NULL) {
716 716 *ppp = NULL;
717 717 return (ENOTSUP); /* take the slow path */
718 718 }
719 719
720 720 for (pg = 0; pg < npages; pg++) {
721 721 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED);
722 722 if (pp == NULL) {
723 723 while (--pg >= 0)
724 724 page_unlock(pplist[pg]);
725 725 kmem_free(pplist, nb);
726 726 *ppp = NULL;
727 727 return (ENOTSUP);
728 728 }
729 729 pplist[pg] = pp;
730 730 addr += PAGESIZE;
731 731 }
732 732
733 733 *ppp = pplist;
734 734 return (0);
735 735 }
736 736
737 737 /*
738 738 * This is a dummy segkmem function overloaded to call segkp
739 739 * when segkp is under the heap.
740 740 */
741 741 /* ARGSUSED */
742 742 static int
743 743 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
744 744 {
745 745 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
746 746
747 747 if (seg->s_as != &kas)
748 748 segkmem_badop();
749 749
750 750 /*
751 751 * If it is one of segkp pages, call into segkp.
752 752 */
753 753 if (segkp_bitmap && seg == &kvseg &&
754 754 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
755 755 return (SEGOP_GETMEMID(segkp, addr, memidp));
756 756
757 757 segkmem_badop();
758 758 return (0);
759 759 }
760 760
761 761 /*ARGSUSED*/
762 762 static lgrp_mem_policy_info_t *
763 763 segkmem_getpolicy(struct seg *seg, caddr_t addr)
764 764 {
765 765 return (NULL);
766 766 }
767 767
768 768 /*ARGSUSED*/
769 769 static int
770 770 segkmem_capable(struct seg *seg, segcapability_t capability)
771 771 {
772 772 if (capability == S_CAPABILITY_NOMINFLT)
773 773 return (1);
774 774 return (0);
775 775 }
776 776
777 777 struct seg_ops segkmem_ops = {
778 778 SEGKMEM_BADOP(int), /* dup */
779 779 SEGKMEM_BADOP(int), /* unmap */
780 780 SEGKMEM_BADOP(void), /* free */
781 781 segkmem_fault,
782 782 SEGKMEM_BADOP(faultcode_t), /* faulta */
783 783 segkmem_setprot,
784 784 segkmem_checkprot,
785 785 segkmem_kluster,
786 786 SEGKMEM_BADOP(size_t), /* swapout */
787 787 SEGKMEM_BADOP(int), /* sync */
788 788 SEGKMEM_BADOP(size_t), /* incore */
789 789 SEGKMEM_BADOP(int), /* lockop */
790 790 SEGKMEM_BADOP(int), /* getprot */
791 791 SEGKMEM_BADOP(u_offset_t), /* getoffset */
792 792 SEGKMEM_BADOP(int), /* gettype */
793 793 SEGKMEM_BADOP(int), /* getvp */
794 794 SEGKMEM_BADOP(int), /* advise */
795 795 segkmem_dump,
796 796 segkmem_pagelock,
797 797 SEGKMEM_BADOP(int), /* setpgsz */
798 798 segkmem_getmemid,
799 799 segkmem_getpolicy, /* getpolicy */
800 800 segkmem_capable, /* capable */
801 801 seg_inherit_notsup /* inherit */
802 802 };
803 803
804 804 int
805 805 segkmem_zio_create(struct seg *seg)
806 806 {
807 807 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
808 808 seg->s_ops = &segkmem_ops;
809 809 seg->s_data = &zvp;
810 810 kas.a_size += seg->s_size;
811 811 return (0);
812 812 }
813 813
814 814 int
815 815 segkmem_create(struct seg *seg)
816 816 {
817 817 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
↓ open down ↓ |
784 lines elided |
↑ open up ↑ |
818 818 seg->s_ops = &segkmem_ops;
819 819 seg->s_data = &kvp;
820 820 kas.a_size += seg->s_size;
821 821 return (0);
822 822 }
823 823
824 824 /*ARGSUSED*/
825 825 page_t *
826 826 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg)
827 827 {
828 - struct seg kseg;
829 - int pgflags;
828 + struct seg kseg = { 0 };
829 + int pgflags = PG_EXCL;
830 830 struct vnode *vp = arg;
831 831
832 832 if (vp == NULL)
833 833 vp = &kvp;
834 834
835 835 kseg.s_as = &kas;
836 - pgflags = PG_EXCL;
837 836
838 837 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
839 838 pgflags |= PG_NORELOC;
840 839 if ((vmflag & VM_NOSLEEP) == 0)
841 840 pgflags |= PG_WAIT;
842 841 if (vmflag & VM_PANIC)
843 842 pgflags |= PG_PANIC;
844 843 if (vmflag & VM_PUSHPAGE)
845 844 pgflags |= PG_PUSHPAGE;
846 845 if (vmflag & VM_NORMALPRI) {
847 846 ASSERT(vmflag & VM_NOSLEEP);
848 847 pgflags |= PG_NORMALPRI;
849 848 }
850 849
851 850 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size,
852 851 pgflags, &kseg, addr));
853 852 }
854 853
855 854 /*
856 855 * Allocate pages to back the virtual address range [addr, addr + size).
857 856 * If addr is NULL, allocate the virtual address space as well.
858 857 */
859 858 void *
860 859 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr,
861 860 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg)
862 861 {
863 862 page_t *ppl;
864 863 caddr_t addr = inaddr;
865 864 pgcnt_t npages = btopr(size);
866 865 int allocflag;
867 866
868 867 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
869 868 return (NULL);
870 869
871 870 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
872 871
873 872 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
874 873 if (inaddr == NULL)
875 874 vmem_free(vmp, addr, size);
876 875 return (NULL);
877 876 }
878 877
879 878 ppl = page_create_func(addr, size, vmflag, pcarg);
880 879 if (ppl == NULL) {
881 880 if (inaddr == NULL)
882 881 vmem_free(vmp, addr, size);
883 882 page_unresv(npages);
884 883 return (NULL);
885 884 }
886 885
887 886 /*
888 887 * Under certain conditions, we need to let the HAT layer know
889 888 * that it cannot safely allocate memory. Allocations from
890 889 * the hat_memload vmem arena always need this, to prevent
891 890 * infinite recursion.
892 891 *
893 892 * In addition, the x86 hat cannot safely do memory
894 893 * allocations while in vmem_populate(), because there
895 894 * is no simple bound on its usage.
896 895 */
897 896 if (vmflag & VM_MEMLOAD)
898 897 allocflag = HAT_NO_KALLOC;
899 898 #if defined(__x86)
900 899 else if (vmem_is_populator())
901 900 allocflag = HAT_NO_KALLOC;
902 901 #endif
903 902 else
904 903 allocflag = 0;
905 904
906 905 while (ppl != NULL) {
907 906 page_t *pp = ppl;
908 907 page_sub(&ppl, pp);
909 908 ASSERT(page_iolock_assert(pp));
910 909 ASSERT(PAGE_EXCL(pp));
911 910 page_io_unlock(pp);
912 911 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp,
913 912 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
914 913 HAT_LOAD_LOCK | allocflag);
915 914 pp->p_lckcnt = 1;
916 915 #if defined(__x86)
917 916 page_downgrade(pp);
918 917 #else
919 918 if (vmflag & SEGKMEM_SHARELOCKED)
920 919 page_downgrade(pp);
921 920 else
922 921 page_unlock(pp);
923 922 #endif
924 923 }
925 924
926 925 return (addr);
927 926 }
928 927
929 928 static void *
930 929 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp)
931 930 {
932 931 void *addr;
933 932 segkmem_gc_list_t *gcp, **prev_gcpp;
934 933
935 934 ASSERT(vp != NULL);
936 935
937 936 if (kvseg.s_base == NULL) {
938 937 #ifndef __sparc
939 938 if (bootops->bsys_alloc == NULL)
940 939 halt("Memory allocation between bop_alloc() and "
941 940 "kmem_alloc().\n");
942 941 #endif
943 942
944 943 /*
945 944 * There's not a lot of memory to go around during boot,
946 945 * so recycle it if we can.
947 946 */
948 947 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL;
949 948 prev_gcpp = &gcp->gc_next) {
950 949 if (gcp->gc_arena == vmp && gcp->gc_size == size) {
951 950 *prev_gcpp = gcp->gc_next;
952 951 return (gcp);
953 952 }
954 953 }
955 954
956 955 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC);
957 956 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr)
958 957 panic("segkmem_alloc: boot_alloc failed");
959 958 return (addr);
960 959 }
961 960 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
962 961 segkmem_page_create, vp));
963 962 }
964 963
965 964 void *
966 965 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
967 966 {
968 967 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp));
969 968 }
970 969
971 970 void *
972 971 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag)
973 972 {
974 973 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp));
975 974 }
976 975
977 976 /*
978 977 * Any changes to this routine must also be carried over to
979 978 * devmap_free_pages() in the seg_dev driver. This is because
980 979 * we currently don't have a special kernel segment for non-paged
981 980 * kernel memory that is exported by drivers to user space.
982 981 */
983 982 static void
984 983 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp,
985 984 void (*func)(page_t *))
986 985 {
987 986 page_t *pp;
988 987 caddr_t addr = inaddr;
989 988 caddr_t eaddr;
990 989 pgcnt_t npages = btopr(size);
991 990
992 991 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
993 992 ASSERT(vp != NULL);
994 993
995 994 if (kvseg.s_base == NULL) {
996 995 segkmem_gc_list_t *gc = inaddr;
997 996 gc->gc_arena = vmp;
998 997 gc->gc_size = size;
999 998 gc->gc_next = segkmem_gc_list;
1000 999 segkmem_gc_list = gc;
1001 1000 return;
1002 1001 }
1003 1002
1004 1003 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1005 1004
1006 1005 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
1007 1006 #if defined(__x86)
1008 1007 pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
1009 1008 if (pp == NULL)
1010 1009 panic("segkmem_free: page not found");
1011 1010 if (!page_tryupgrade(pp)) {
1012 1011 /*
1013 1012 * Some other thread has a sharelock. Wait for
1014 1013 * it to drop the lock so we can free this page.
1015 1014 */
1016 1015 page_unlock(pp);
1017 1016 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
1018 1017 SE_EXCL);
1019 1018 }
1020 1019 #else
1021 1020 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1022 1021 #endif
1023 1022 if (pp == NULL)
1024 1023 panic("segkmem_free: page not found");
1025 1024 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */
1026 1025 pp->p_lckcnt = 0;
1027 1026 if (func)
1028 1027 func(pp);
1029 1028 else
1030 1029 page_destroy(pp, 0);
1031 1030 }
1032 1031 if (func == NULL)
1033 1032 page_unresv(npages);
1034 1033
1035 1034 if (vmp != NULL)
1036 1035 vmem_free(vmp, inaddr, size);
1037 1036
1038 1037 }
1039 1038
1040 1039 void
1041 1040 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *))
1042 1041 {
1043 1042 segkmem_free_vn(vmp, inaddr, size, &kvp, func);
1044 1043 }
1045 1044
1046 1045 void
1047 1046 segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
1048 1047 {
1049 1048 segkmem_free_vn(vmp, inaddr, size, &kvp, NULL);
1050 1049 }
1051 1050
1052 1051 void
1053 1052 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size)
1054 1053 {
1055 1054 segkmem_free_vn(vmp, inaddr, size, &zvp, NULL);
1056 1055 }
1057 1056
1058 1057 void
1059 1058 segkmem_gc(void)
1060 1059 {
1061 1060 ASSERT(kvseg.s_base != NULL);
1062 1061 while (segkmem_gc_list != NULL) {
1063 1062 segkmem_gc_list_t *gc = segkmem_gc_list;
1064 1063 segkmem_gc_list = gc->gc_next;
1065 1064 segkmem_free(gc->gc_arena, gc, gc->gc_size);
1066 1065 }
1067 1066 }
1068 1067
1069 1068 /*
1070 1069 * Legacy entry points from here to end of file.
1071 1070 */
1072 1071 void
1073 1072 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot,
1074 1073 pfn_t pfn, uint_t flags)
1075 1074 {
1076 1075 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1077 1076 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot,
1078 1077 flags | HAT_LOAD_LOCK);
1079 1078 }
1080 1079
1081 1080 void
1082 1081 segkmem_mapout(struct seg *seg, void *addr, size_t size)
1083 1082 {
1084 1083 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1085 1084 }
1086 1085
1087 1086 void *
1088 1087 kmem_getpages(pgcnt_t npages, int kmflag)
1089 1088 {
1090 1089 return (kmem_alloc(ptob(npages), kmflag));
1091 1090 }
1092 1091
1093 1092 void
1094 1093 kmem_freepages(void *addr, pgcnt_t npages)
1095 1094 {
1096 1095 kmem_free(addr, ptob(npages));
1097 1096 }
1098 1097
1099 1098 /*
1100 1099 * segkmem_page_create_large() allocates a large page to be used for the kmem
1101 1100 * caches. If kpr is enabled we ask for a relocatable page unless requested
1102 1101 * otherwise. If kpr is disabled we have to ask for a non-reloc page
1103 1102 */
1104 1103 static page_t *
1105 1104 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg)
1106 1105 {
1107 1106 int pgflags;
1108 1107
1109 1108 pgflags = PG_EXCL;
1110 1109
1111 1110 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
1112 1111 pgflags |= PG_NORELOC;
1113 1112 if (!(vmflag & VM_NOSLEEP))
1114 1113 pgflags |= PG_WAIT;
1115 1114 if (vmflag & VM_PUSHPAGE)
1116 1115 pgflags |= PG_PUSHPAGE;
1117 1116 if (vmflag & VM_NORMALPRI)
1118 1117 pgflags |= PG_NORMALPRI;
1119 1118
1120 1119 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
1121 1120 pgflags, &kvseg, addr, arg));
1122 1121 }
1123 1122
1124 1123 /*
1125 1124 * Allocate a large page to back the virtual address range
1126 1125 * [addr, addr + size). If addr is NULL, allocate the virtual address
1127 1126 * space as well.
1128 1127 */
1129 1128 static void *
1130 1129 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
1131 1130 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
1132 1131 void *pcarg)
1133 1132 {
1134 1133 caddr_t addr = inaddr, pa;
1135 1134 size_t lpsize = segkmem_lpsize;
1136 1135 pgcnt_t npages = btopr(size);
1137 1136 pgcnt_t nbpages = btop(lpsize);
1138 1137 pgcnt_t nlpages = size >> segkmem_lpshift;
1139 1138 size_t ppasize = nbpages * sizeof (page_t *);
1140 1139 page_t *pp, *rootpp, **ppa, *pplist = NULL;
1141 1140 int i;
1142 1141
1143 1142 vmflag |= VM_NOSLEEP;
1144 1143
1145 1144 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
1146 1145 return (NULL);
1147 1146 }
1148 1147
1149 1148 /*
1150 1149 * allocate an array we need for hat_memload_array.
1151 1150 * we use a separate arena to avoid recursion.
1152 1151 * we will not need this array when hat_memload_array learns pp++
1153 1152 */
1154 1153 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) {
1155 1154 goto fail_array_alloc;
1156 1155 }
1157 1156
1158 1157 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
1159 1158 goto fail_vmem_alloc;
1160 1159
1161 1160 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0);
1162 1161
1163 1162 /* create all the pages */
1164 1163 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) {
1165 1164 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL)
1166 1165 goto fail_page_create;
1167 1166 page_list_concat(&pplist, &pp);
1168 1167 }
1169 1168
1170 1169 /* at this point we have all the resource to complete the request */
1171 1170 while ((rootpp = pplist) != NULL) {
1172 1171 for (i = 0; i < nbpages; i++) {
1173 1172 ASSERT(pplist != NULL);
1174 1173 pp = pplist;
1175 1174 page_sub(&pplist, pp);
1176 1175 ASSERT(page_iolock_assert(pp));
1177 1176 page_io_unlock(pp);
1178 1177 ppa[i] = pp;
1179 1178 }
1180 1179 /*
1181 1180 * Load the locked entry. It's OK to preload the entry into the
1182 1181 * TSB since we now support large mappings in the kernel TSB.
1183 1182 */
1184 1183 hat_memload_array(kas.a_hat,
1185 1184 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize,
1186 1185 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
1187 1186 HAT_LOAD_LOCK);
1188 1187
1189 1188 for (--i; i >= 0; --i) {
1190 1189 ppa[i]->p_lckcnt = 1;
1191 1190 page_unlock(ppa[i]);
1192 1191 }
1193 1192 }
1194 1193
1195 1194 vmem_free(segkmem_ppa_arena, ppa, ppasize);
1196 1195 return (addr);
1197 1196
1198 1197 fail_page_create:
1199 1198 while ((rootpp = pplist) != NULL) {
1200 1199 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) {
1201 1200 ASSERT(pp != NULL);
1202 1201 page_sub(&pplist, pp);
1203 1202 ASSERT(page_iolock_assert(pp));
1204 1203 page_io_unlock(pp);
1205 1204 }
1206 1205 page_destroy_pages(rootpp);
1207 1206 }
1208 1207
1209 1208 if (inaddr == NULL)
1210 1209 vmem_free(vmp, addr, size);
1211 1210
1212 1211 fail_vmem_alloc:
1213 1212 vmem_free(segkmem_ppa_arena, ppa, ppasize);
1214 1213
1215 1214 fail_array_alloc:
1216 1215 page_unresv(npages);
1217 1216
1218 1217 return (NULL);
1219 1218 }
1220 1219
1221 1220 static void
1222 1221 segkmem_free_one_lp(caddr_t addr, size_t size)
1223 1222 {
1224 1223 page_t *pp, *rootpp = NULL;
1225 1224 pgcnt_t pgs_left = btopr(size);
1226 1225
1227 1226 ASSERT(size == segkmem_lpsize);
1228 1227
1229 1228 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1230 1229
1231 1230 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) {
1232 1231 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1233 1232 if (pp == NULL)
1234 1233 panic("segkmem_free_one_lp: page not found");
1235 1234 ASSERT(PAGE_EXCL(pp));
1236 1235 pp->p_lckcnt = 0;
1237 1236 if (rootpp == NULL)
1238 1237 rootpp = pp;
1239 1238 }
1240 1239 ASSERT(rootpp != NULL);
1241 1240 page_destroy_pages(rootpp);
1242 1241
1243 1242 /* page_unresv() is done by the caller */
1244 1243 }
1245 1244
1246 1245 /*
1247 1246 * This function is called to import new spans into the vmem arenas like
1248 1247 * kmem_default_arena and kmem_oversize_arena. It first tries to import
1249 1248 * spans from large page arena - kmem_lp_arena. In order to do this it might
1250 1249 * have to "upgrade the requested size" to kmem_lp_arena quantum. If
1251 1250 * it was not able to satisfy the upgraded request it then calls regular
1252 1251 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena
1253 1252 */
1254 1253 /*ARGSUSED*/
1255 1254 void *
1256 1255 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
1257 1256 {
1258 1257 size_t size;
1259 1258 kthread_t *t = curthread;
1260 1259 segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1261 1260
1262 1261 ASSERT(sizep != NULL);
1263 1262
1264 1263 size = *sizep;
1265 1264
1266 1265 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) &&
1267 1266 !(vmflag & SEGKMEM_SHARELOCKED)) {
1268 1267
1269 1268 size_t kmemlp_qnt = segkmem_kmemlp_quantum;
1270 1269 size_t asize = P2ROUNDUP(size, kmemlp_qnt);
1271 1270 void *addr = NULL;
1272 1271 ulong_t *lpthrtp = &lpcb->lp_throttle;
1273 1272 ulong_t lpthrt = *lpthrtp;
1274 1273 int dowakeup = 0;
1275 1274 int doalloc = 1;
1276 1275
1277 1276 ASSERT(kmem_lp_arena != NULL);
1278 1277 ASSERT(asize >= size);
1279 1278
1280 1279 if (lpthrt != 0) {
1281 1280 /* try to update the throttle value */
1282 1281 lpthrt = atomic_inc_ulong_nv(lpthrtp);
1283 1282 if (lpthrt >= segkmem_lpthrottle_max) {
1284 1283 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt,
1285 1284 segkmem_lpthrottle_max / 4);
1286 1285 }
1287 1286
1288 1287 /*
1289 1288 * when we get above throttle start do an exponential
1290 1289 * backoff at trying large pages and reaping
1291 1290 */
1292 1291 if (lpthrt > segkmem_lpthrottle_start &&
1293 1292 !ISP2(lpthrt)) {
1294 1293 lpcb->allocs_throttled++;
1295 1294 lpthrt--;
1296 1295 if (ISP2(lpthrt))
1297 1296 kmem_reap();
1298 1297 return (segkmem_alloc(vmp, size, vmflag));
1299 1298 }
1300 1299 }
1301 1300
1302 1301 if (!(vmflag & VM_NOSLEEP) &&
1303 1302 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) &&
1304 1303 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt &&
1305 1304 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) {
1306 1305
1307 1306 /*
1308 1307 * we are low on free memory in kmem_lp_arena
1309 1308 * we let only one guy to allocate heap_lp
1310 1309 * quantum size chunk that everybody is going to
1311 1310 * share
1312 1311 */
1313 1312 mutex_enter(&lpcb->lp_lock);
1314 1313
1315 1314 if (lpcb->lp_wait) {
1316 1315
1317 1316 /* we are not the first one - wait */
1318 1317 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock);
1319 1318 if (vmem_size(kmem_lp_arena, VMEM_FREE) <
1320 1319 kmemlp_qnt) {
1321 1320 doalloc = 0;
1322 1321 }
1323 1322 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <=
1324 1323 kmemlp_qnt) {
1325 1324
1326 1325 /*
1327 1326 * we are the first one, make sure we import
1328 1327 * a large page
1329 1328 */
1330 1329 if (asize == kmemlp_qnt)
1331 1330 asize += kmemlp_qnt;
1332 1331 dowakeup = 1;
1333 1332 lpcb->lp_wait = 1;
1334 1333 }
1335 1334
1336 1335 mutex_exit(&lpcb->lp_lock);
1337 1336 }
1338 1337
1339 1338 /*
1340 1339 * VM_ABORT flag prevents sleeps in vmem_xalloc when
1341 1340 * large pages are not available. In that case this allocation
1342 1341 * attempt will fail and we will retry allocation with small
1343 1342 * pages. We also do not want to panic if this allocation fails
1344 1343 * because we are going to retry.
1345 1344 */
1346 1345 if (doalloc) {
1347 1346 addr = vmem_alloc(kmem_lp_arena, asize,
1348 1347 (vmflag | VM_ABORT) & ~VM_PANIC);
1349 1348
1350 1349 if (dowakeup) {
1351 1350 mutex_enter(&lpcb->lp_lock);
1352 1351 ASSERT(lpcb->lp_wait != 0);
1353 1352 lpcb->lp_wait = 0;
1354 1353 cv_broadcast(&lpcb->lp_cv);
1355 1354 mutex_exit(&lpcb->lp_lock);
1356 1355 }
1357 1356 }
1358 1357
1359 1358 if (addr != NULL) {
1360 1359 *sizep = asize;
1361 1360 *lpthrtp = 0;
1362 1361 return (addr);
1363 1362 }
1364 1363
1365 1364 if (vmflag & VM_NOSLEEP)
1366 1365 lpcb->nosleep_allocs_failed++;
1367 1366 else
1368 1367 lpcb->sleep_allocs_failed++;
1369 1368 lpcb->alloc_bytes_failed += size;
1370 1369
1371 1370 /* if large page throttling is not started yet do it */
1372 1371 if (segkmem_use_lpthrottle && lpthrt == 0) {
1373 1372 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1);
1374 1373 }
1375 1374 }
1376 1375 return (segkmem_alloc(vmp, size, vmflag));
1377 1376 }
1378 1377
1379 1378 void
1380 1379 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size)
1381 1380 {
1382 1381 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) {
1383 1382 segkmem_free(vmp, inaddr, size);
1384 1383 } else {
1385 1384 vmem_free(kmem_lp_arena, inaddr, size);
1386 1385 }
1387 1386 }
1388 1387
1389 1388 /*
1390 1389 * segkmem_alloc_lpi() imports virtual memory from large page heap arena
1391 1390 * into kmem_lp arena. In the process it maps the imported segment with
1392 1391 * large pages
1393 1392 */
1394 1393 static void *
1395 1394 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag)
1396 1395 {
1397 1396 segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1398 1397 void *addr;
1399 1398
1400 1399 ASSERT(size != 0);
1401 1400 ASSERT(vmp == heap_lp_arena);
1402 1401
1403 1402 /* do not allow large page heap grow beyound limits */
1404 1403 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) {
1405 1404 lpcb->allocs_limited++;
1406 1405 return (NULL);
1407 1406 }
1408 1407
1409 1408 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0,
1410 1409 segkmem_page_create_large, NULL);
1411 1410 return (addr);
1412 1411 }
1413 1412
1414 1413 /*
1415 1414 * segkmem_free_lpi() returns virtual memory back into large page heap arena
1416 1415 * from kmem_lp arena. Beore doing this it unmaps the segment and frees
1417 1416 * large pages used to map it.
1418 1417 */
1419 1418 static void
1420 1419 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size)
1421 1420 {
1422 1421 pgcnt_t nlpages = size >> segkmem_lpshift;
1423 1422 size_t lpsize = segkmem_lpsize;
1424 1423 caddr_t addr = inaddr;
1425 1424 pgcnt_t npages = btopr(size);
1426 1425 int i;
1427 1426
1428 1427 ASSERT(vmp == heap_lp_arena);
1429 1428 ASSERT(IS_KMEM_VA_LARGEPAGE(addr));
1430 1429 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0);
1431 1430
1432 1431 for (i = 0; i < nlpages; i++) {
1433 1432 segkmem_free_one_lp(addr, lpsize);
1434 1433 addr += lpsize;
1435 1434 }
1436 1435
1437 1436 page_unresv(npages);
1438 1437
1439 1438 vmem_free(vmp, inaddr, size);
1440 1439 }
1441 1440
1442 1441 /*
1443 1442 * This function is called at system boot time by kmem_init right after
1444 1443 * /etc/system file has been read. It checks based on hardware configuration
1445 1444 * and /etc/system settings if system is going to use large pages. The
1446 1445 * initialiazation necessary to actually start using large pages
1447 1446 * happens later in the process after segkmem_heap_lp_init() is called.
1448 1447 */
1449 1448 int
1450 1449 segkmem_lpsetup()
1451 1450 {
1452 1451 int use_large_pages = 0;
1453 1452
1454 1453 #ifdef __sparc
1455 1454
1456 1455 size_t memtotal = physmem * PAGESIZE;
1457 1456
1458 1457 if (heap_lp_base == NULL) {
1459 1458 segkmem_lpsize = PAGESIZE;
1460 1459 return (0);
1461 1460 }
1462 1461
1463 1462 /* get a platform dependent value of large page size for kernel heap */
1464 1463 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize);
1465 1464
1466 1465 if (segkmem_lpsize <= PAGESIZE) {
1467 1466 /*
1468 1467 * put virtual space reserved for the large page kernel
1469 1468 * back to the regular heap
1470 1469 */
1471 1470 vmem_xfree(heap_arena, heap_lp_base,
1472 1471 heap_lp_end - heap_lp_base);
1473 1472 heap_lp_base = NULL;
1474 1473 heap_lp_end = NULL;
1475 1474 segkmem_lpsize = PAGESIZE;
1476 1475 return (0);
1477 1476 }
1478 1477
1479 1478 /* set heap_lp quantum if necessary */
1480 1479 if (segkmem_heaplp_quantum == 0 || !ISP2(segkmem_heaplp_quantum) ||
1481 1480 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) {
1482 1481 segkmem_heaplp_quantum = segkmem_lpsize;
1483 1482 }
1484 1483
1485 1484 /* set kmem_lp quantum if necessary */
1486 1485 if (segkmem_kmemlp_quantum == 0 || !ISP2(segkmem_kmemlp_quantum) ||
1487 1486 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) {
1488 1487 segkmem_kmemlp_quantum = segkmem_heaplp_quantum;
1489 1488 }
1490 1489
1491 1490 /* set total amount of memory allowed for large page kernel heap */
1492 1491 if (segkmem_kmemlp_max == 0) {
1493 1492 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100)
1494 1493 segkmem_kmemlp_pcnt = 12;
1495 1494 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100;
1496 1495 }
1497 1496 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max,
1498 1497 segkmem_heaplp_quantum);
1499 1498
1500 1499 /* fix lp kmem preallocation request if necesssary */
1501 1500 if (segkmem_kmemlp_min) {
1502 1501 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min,
1503 1502 segkmem_heaplp_quantum);
1504 1503 if (segkmem_kmemlp_min > segkmem_kmemlp_max)
1505 1504 segkmem_kmemlp_min = segkmem_kmemlp_max;
1506 1505 }
1507 1506
1508 1507 use_large_pages = 1;
1509 1508 segkmem_lpszc = page_szc(segkmem_lpsize);
1510 1509 segkmem_lpshift = page_get_shift(segkmem_lpszc);
1511 1510
1512 1511 #endif
1513 1512 return (use_large_pages);
1514 1513 }
1515 1514
1516 1515 void
1517 1516 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size)
1518 1517 {
1519 1518 ASSERT(zio_mem_base != NULL);
1520 1519 ASSERT(zio_mem_size != 0);
1521 1520
1522 1521 /*
1523 1522 * To reduce VA space fragmentation, we set up quantum caches for the
1524 1523 * smaller sizes; we chose 32k because that translates to 128k VA
1525 1524 * slabs, which matches nicely with the common 128k zio_data bufs.
1526 1525 */
1527 1526 zio_arena = vmem_create("zfs_file_data", zio_mem_base, zio_mem_size,
1528 1527 PAGESIZE, NULL, NULL, NULL, 32 * 1024, VM_SLEEP);
1529 1528
1530 1529 zio_alloc_arena = vmem_create("zfs_file_data_buf", NULL, 0, PAGESIZE,
1531 1530 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP);
1532 1531
1533 1532 ASSERT(zio_arena != NULL);
1534 1533 ASSERT(zio_alloc_arena != NULL);
1535 1534 }
1536 1535
1537 1536 #ifdef __sparc
1538 1537
1539 1538
1540 1539 static void *
1541 1540 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag)
1542 1541 {
1543 1542 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1544 1543 void *addr;
1545 1544
1546 1545 if (ppaquantum <= PAGESIZE)
1547 1546 return (segkmem_alloc(vmp, size, vmflag));
1548 1547
1549 1548 ASSERT((size & (ppaquantum - 1)) == 0);
1550 1549
1551 1550 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag);
1552 1551 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0,
1553 1552 segkmem_page_create, NULL) == NULL) {
1554 1553 vmem_xfree(vmp, addr, size);
1555 1554 addr = NULL;
1556 1555 }
1557 1556
1558 1557 return (addr);
1559 1558 }
1560 1559
1561 1560 static void
1562 1561 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size)
1563 1562 {
1564 1563 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1565 1564
1566 1565 ASSERT(addr != NULL);
1567 1566
1568 1567 if (ppaquantum <= PAGESIZE) {
1569 1568 segkmem_free(vmp, addr, size);
1570 1569 } else {
1571 1570 segkmem_free(NULL, addr, size);
1572 1571 vmem_xfree(vmp, addr, size);
1573 1572 }
1574 1573 }
1575 1574
1576 1575 void
1577 1576 segkmem_heap_lp_init()
1578 1577 {
1579 1578 segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1580 1579 size_t heap_lp_size = heap_lp_end - heap_lp_base;
1581 1580 size_t lpsize = segkmem_lpsize;
1582 1581 size_t ppaquantum;
1583 1582 void *addr;
1584 1583
1585 1584 if (segkmem_lpsize <= PAGESIZE) {
1586 1585 ASSERT(heap_lp_base == NULL);
1587 1586 ASSERT(heap_lp_end == NULL);
1588 1587 return;
1589 1588 }
1590 1589
1591 1590 ASSERT(segkmem_heaplp_quantum >= lpsize);
1592 1591 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0);
1593 1592 ASSERT(lpcb->lp_uselp == 0);
1594 1593 ASSERT(heap_lp_base != NULL);
1595 1594 ASSERT(heap_lp_end != NULL);
1596 1595 ASSERT(heap_lp_base < heap_lp_end);
1597 1596 ASSERT(heap_lp_arena == NULL);
1598 1597 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0);
1599 1598 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0);
1600 1599
1601 1600 /* create large page heap arena */
1602 1601 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size,
1603 1602 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP);
1604 1603
1605 1604 ASSERT(heap_lp_arena != NULL);
1606 1605
1607 1606 /* This arena caches memory already mapped by large pages */
1608 1607 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum,
1609 1608 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP);
1610 1609
1611 1610 ASSERT(kmem_lp_arena != NULL);
1612 1611
1613 1612 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL);
1614 1613 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL);
1615 1614
1616 1615 /*
1617 1616 * this arena is used for the array of page_t pointers necessary
1618 1617 * to call hat_mem_load_array
1619 1618 */
1620 1619 ppaquantum = btopr(lpsize) * sizeof (page_t *);
1621 1620 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum,
1622 1621 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum,
1623 1622 VM_SLEEP);
1624 1623
1625 1624 ASSERT(segkmem_ppa_arena != NULL);
1626 1625
1627 1626 /* prealloacate some memory for the lp kernel heap */
1628 1627 if (segkmem_kmemlp_min) {
1629 1628
1630 1629 ASSERT(P2PHASE(segkmem_kmemlp_min,
1631 1630 segkmem_heaplp_quantum) == 0);
1632 1631
1633 1632 if ((addr = segkmem_alloc_lpi(heap_lp_arena,
1634 1633 segkmem_kmemlp_min, VM_SLEEP)) != NULL) {
1635 1634
1636 1635 addr = vmem_add(kmem_lp_arena, addr,
1637 1636 segkmem_kmemlp_min, VM_SLEEP);
1638 1637 ASSERT(addr != NULL);
1639 1638 }
1640 1639 }
1641 1640
1642 1641 lpcb->lp_uselp = 1;
1643 1642 }
1644 1643
1645 1644 #endif
↓ open down ↓ |
799 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX