1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2016 Joyent, Inc. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/tuneable.h> 31 #include <sys/systm.h> 32 #include <sys/vm.h> 33 #include <sys/kmem.h> 34 #include <sys/vmem.h> 35 #include <sys/mman.h> 36 #include <sys/cmn_err.h> 37 #include <sys/debug.h> 38 #include <sys/dumphdr.h> 39 #include <sys/bootconf.h> 40 #include <sys/lgrp.h> 41 #include <vm/seg_kmem.h> 42 #include <vm/hat.h> 43 #include <vm/page.h> 44 #include <vm/vm_dep.h> 45 #include <vm/faultcode.h> 46 #include <sys/promif.h> 47 #include <vm/seg_kp.h> 48 #include <sys/bitmap.h> 49 #include <sys/mem_cage.h> 50 51 #ifdef __sparc 52 #include <sys/ivintr.h> 53 #include <sys/panic.h> 54 #endif 55 56 /* 57 * seg_kmem is the primary kernel memory segment driver. It 58 * maps the kernel heap [kernelheap, ekernelheap), module text, 59 * and all memory which was allocated before the VM was initialized 60 * into kas. 61 * 62 * Pages which belong to seg_kmem are hashed into &kvp vnode at 63 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 64 * They must never be paged out since segkmem_fault() is a no-op to 65 * prevent recursive faults. 66 * 67 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 68 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 69 * supports relocation the #ifdef kludges can be removed. 70 * 71 * seg_kmem pages may be subject to relocation by page_relocate(), 72 * provided that the HAT supports it; if this is so, segkmem_reloc 73 * will be set to a nonzero value. All boot time allocated memory as 74 * well as static memory is considered off limits to relocation. 75 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 76 * we request P_NORELOC pages for memory that isn't safe to relocate. 77 * 78 * The kernel heap is logically divided up into four pieces: 79 * 80 * heap32_arena is for allocations that require 32-bit absolute 81 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 82 * 83 * heap_core is for allocations that require 2GB *relative* 84 * offsets; in other words all memory from heap_core is within 85 * 2GB of all other memory from the same arena. This is a requirement 86 * of the addressing modes of some processors in supervisor code. 87 * 88 * heap_arena is the general heap arena. 89 * 90 * static_arena is the static memory arena. Allocations from it 91 * are not subject to relocation so it is safe to use the memory 92 * physical address as well as the virtual address (e.g. the VA to 93 * PA translations are static). Caches may import from static_arena; 94 * all other static memory allocations should use static_alloc_arena. 95 * 96 * On some platforms which have limited virtual address space, seg_kmem 97 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 98 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 99 * address space which is actually seg_kp mapped. 100 */ 101 102 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 103 104 char *kernelheap; /* start of primary kernel heap */ 105 char *ekernelheap; /* end of primary kernel heap */ 106 struct seg kvseg; /* primary kernel heap segment */ 107 struct seg kvseg_core; /* "core" kernel heap segment */ 108 struct seg kzioseg; /* Segment for zio mappings */ 109 vmem_t *heap_arena; /* primary kernel heap arena */ 110 vmem_t *heap_core_arena; /* core kernel heap arena */ 111 char *heap_core_base; /* start of core kernel heap arena */ 112 char *heap_lp_base; /* start of kernel large page heap arena */ 113 char *heap_lp_end; /* end of kernel large page heap arena */ 114 vmem_t *hat_memload_arena; /* HAT translation data */ 115 struct seg kvseg32; /* 32-bit kernel heap segment */ 116 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 117 vmem_t *heaptext_arena; /* heaptext arena */ 118 struct as kas; /* kernel address space */ 119 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 120 vmem_t *static_arena; /* arena for caches to import static memory */ 121 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 122 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 123 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 124 125 /* 126 * seg_kmem driver can map part of the kernel heap with large pages. 127 * Currently this functionality is implemented for sparc platforms only. 128 * 129 * The large page size "segkmem_lpsize" for kernel heap is selected in the 130 * platform specific code. It can also be modified via /etc/system file. 131 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 132 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 133 * match segkmem_lpsize. 134 * 135 * At boot time we carve from kernel heap arena a range of virtual addresses 136 * that will be used for large page mappings. This range [heap_lp_base, 137 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 138 * create "kmem_lp_arena" that caches memory already backed up by large 139 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 140 */ 141 142 size_t segkmem_lpsize; 143 static uint_t segkmem_lpshift = PAGESHIFT; 144 int segkmem_lpszc = 0; 145 146 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 147 size_t segkmem_heaplp_quantum; 148 vmem_t *heap_lp_arena; 149 static vmem_t *kmem_lp_arena; 150 static vmem_t *segkmem_ppa_arena; 151 static segkmem_lpcb_t segkmem_lpcb; 152 153 /* 154 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 155 * consumed by the large page heap. By default this parameter is set to 1/8 of 156 * physmem but can be adjusted through /etc/system either directly or 157 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 158 * we allow for large page heap. 159 */ 160 size_t segkmem_kmemlp_max; 161 static uint_t segkmem_kmemlp_pcnt; 162 163 /* 164 * Getting large pages for kernel heap could be problematic due to 165 * physical memory fragmentation. That's why we allow to preallocate 166 * "segkmem_kmemlp_min" bytes at boot time. 167 */ 168 static size_t segkmem_kmemlp_min; 169 170 /* 171 * Throttling is used to avoid expensive tries to allocate large pages 172 * for kernel heap when a lot of succesive attempts to do so fail. 173 */ 174 static ulong_t segkmem_lpthrottle_max = 0x400000; 175 static ulong_t segkmem_lpthrottle_start = 0x40; 176 static ulong_t segkmem_use_lpthrottle = 1; 177 178 /* 179 * Freed pages accumulate on a garbage list until segkmem is ready, 180 * at which point we call segkmem_gc() to free it all. 181 */ 182 typedef struct segkmem_gc_list { 183 struct segkmem_gc_list *gc_next; 184 vmem_t *gc_arena; 185 size_t gc_size; 186 } segkmem_gc_list_t; 187 188 static segkmem_gc_list_t *segkmem_gc_list; 189 190 /* 191 * Allocations from the hat_memload arena add VM_MEMLOAD to their 192 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 193 * to take steps to prevent infinite recursion. HAT allocations also 194 * must be non-relocatable to prevent recursive page faults. 195 */ 196 static void * 197 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 198 { 199 flags |= (VM_MEMLOAD | VM_NORELOC); 200 return (segkmem_alloc(vmp, size, flags)); 201 } 202 203 /* 204 * Allocations from static_arena arena (or any other arena that uses 205 * segkmem_alloc_permanent()) require non-relocatable (permanently 206 * wired) memory pages, since these pages are referenced by physical 207 * as well as virtual address. 208 */ 209 void * 210 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 211 { 212 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 213 } 214 215 /* 216 * Initialize kernel heap boundaries. 217 */ 218 void 219 kernelheap_init( 220 void *heap_start, 221 void *heap_end, 222 char *first_avail, 223 void *core_start, 224 void *core_end) 225 { 226 uintptr_t textbase; 227 size_t core_size; 228 size_t heap_size; 229 vmem_t *heaptext_parent; 230 size_t heap_lp_size = 0; 231 #ifdef __sparc 232 size_t kmem64_sz = kmem64_aligned_end - kmem64_base; 233 #endif /* __sparc */ 234 235 kernelheap = heap_start; 236 ekernelheap = heap_end; 237 238 #ifdef __sparc 239 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 240 /* 241 * Bias heap_lp start address by kmem64_sz to reduce collisions 242 * in 4M kernel TSB between kmem64 area and heap_lp 243 */ 244 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M); 245 if (kmem64_sz <= heap_lp_size / 2) 246 heap_lp_size -= kmem64_sz; 247 heap_lp_base = ekernelheap - heap_lp_size; 248 heap_lp_end = heap_lp_base + heap_lp_size; 249 #endif /* __sparc */ 250 251 /* 252 * If this platform has a 'core' heap area, then the space for 253 * overflow module text should be carved out of the end of that 254 * heap. Otherwise, it gets carved out of the general purpose 255 * heap. 256 */ 257 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 258 if (core_size > 0) { 259 ASSERT(core_size >= HEAPTEXT_SIZE); 260 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 261 core_size -= HEAPTEXT_SIZE; 262 } 263 #ifndef __sparc 264 else { 265 ekernelheap -= HEAPTEXT_SIZE; 266 textbase = (uintptr_t)ekernelheap; 267 } 268 #endif 269 270 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 271 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 272 segkmem_alloc, segkmem_free); 273 274 if (core_size > 0) { 275 heap_core_arena = vmem_create("heap_core", core_start, 276 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 277 heap_core_base = core_start; 278 } else { 279 heap_core_arena = heap_arena; 280 heap_core_base = kernelheap; 281 } 282 283 /* 284 * reserve space for the large page heap. If large pages for kernel 285 * heap is enabled large page heap arean will be created later in the 286 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 287 * range will be returned back to the heap_arena. 288 */ 289 if (heap_lp_size) { 290 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 291 heap_lp_base, heap_lp_end, 292 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 293 } 294 295 /* 296 * Remove the already-spoken-for memory range [kernelheap, first_avail). 297 */ 298 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 299 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 300 301 #ifdef __sparc 302 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 303 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 304 NULL, NULL, 0, VM_SLEEP); 305 /* 306 * Prom claims the physical and virtual resources used by panicbuf 307 * and inter_vec_table. So reserve space for panicbuf, intr_vec_table, 308 * reserved interrupt vector data structures from 32-bit heap. 309 */ 310 (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0, 311 panicbuf, panicbuf + PANICBUFSIZE, 312 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 313 314 (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0, 315 intr_vec_table, (caddr_t)intr_vec_table + IVSIZE, 316 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 317 318 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 319 heaptext_parent = NULL; 320 #else /* __sparc */ 321 heap32_arena = heap_core_arena; 322 heaptext_parent = heap_core_arena; 323 #endif /* __sparc */ 324 325 heaptext_arena = vmem_create("heaptext", (void *)textbase, 326 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 327 328 /* 329 * Create a set of arenas for memory with static translations 330 * (e.g. VA -> PA translations cannot change). Since using 331 * kernel pages by physical address implies it isn't safe to 332 * walk across page boundaries, the static_arena quantum must 333 * be PAGESIZE. Any kmem caches that require static memory 334 * should source from static_arena, while direct allocations 335 * should only use static_alloc_arena. 336 */ 337 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 338 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 339 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 340 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 341 0, VM_SLEEP); 342 343 /* 344 * Create an arena for translation data (ptes, hmes, or hblks). 345 * We need an arena for this because hat_memload() is essential 346 * to vmem_populate() (see comments in common/os/vmem.c). 347 * 348 * Note: any kmem cache that allocates from hat_memload_arena 349 * must be created as a KMC_NOHASH cache (i.e. no external slab 350 * and bufctl structures to allocate) so that slab creation doesn't 351 * require anything more than a single vmem_alloc(). 352 */ 353 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 354 hat_memload_alloc, segkmem_free, heap_arena, 0, 355 VM_SLEEP | VMC_POPULATOR | VMC_DUMPSAFE); 356 } 357 358 void 359 boot_mapin(caddr_t addr, size_t size) 360 { 361 caddr_t eaddr; 362 page_t *pp; 363 pfn_t pfnum; 364 365 if (page_resv(btop(size), KM_NOSLEEP) == 0) 366 panic("boot_mapin: page_resv failed"); 367 368 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 369 pfnum = va_to_pfn(addr); 370 if (pfnum == PFN_INVALID) 371 continue; 372 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 373 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 374 375 /* 376 * must break up any large pages that may have constituent 377 * pages being utilized for BOP_ALLOC()'s before calling 378 * page_numtopp().The locking code (ie. page_reclaim()) 379 * can't handle them 380 */ 381 if (pp->p_szc != 0) 382 page_boot_demote(pp); 383 384 pp = page_numtopp(pfnum, SE_EXCL); 385 if (pp == NULL || PP_ISFREE(pp)) 386 panic("boot_alloc: pp is NULL or free"); 387 388 /* 389 * If the cage is on but doesn't yet contain this page, 390 * mark it as non-relocatable. 391 */ 392 if (kcage_on && !PP_ISNORELOC(pp)) { 393 PP_SETNORELOC(pp); 394 PLCNT_XFER_NORELOC(pp); 395 } 396 397 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 398 pp->p_lckcnt = 1; 399 #if defined(__x86) 400 page_downgrade(pp); 401 #else 402 page_unlock(pp); 403 #endif 404 } 405 } 406 407 /* 408 * Get pages from boot and hash them into the kernel's vp. 409 * Used after page structs have been allocated, but before segkmem is ready. 410 */ 411 void * 412 boot_alloc(void *inaddr, size_t size, uint_t align) 413 { 414 caddr_t addr = inaddr; 415 416 if (bootops == NULL) 417 prom_panic("boot_alloc: attempt to allocate memory after " 418 "BOP_GONE"); 419 420 size = ptob(btopr(size)); 421 #ifdef __sparc 422 if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr) 423 panic("boot_alloc: bop_alloc_chunk failed"); 424 #else 425 if (BOP_ALLOC(bootops, addr, size, align) != addr) 426 panic("boot_alloc: BOP_ALLOC failed"); 427 #endif 428 boot_mapin((caddr_t)addr, size); 429 return (addr); 430 } 431 432 static void 433 segkmem_badop() 434 { 435 panic("segkmem_badop"); 436 } 437 438 #define SEGKMEM_BADOP(t) (t(*)())(uintptr_t)segkmem_badop 439 440 /*ARGSUSED*/ 441 static faultcode_t 442 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 443 enum fault_type type, enum seg_rw rw) 444 { 445 pgcnt_t npages; 446 spgcnt_t pg; 447 page_t *pp; 448 struct vnode *vp = seg->s_data; 449 450 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 451 452 if (seg->s_as != &kas || size > seg->s_size || 453 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 454 panic("segkmem_fault: bad args"); 455 456 /* 457 * If it is one of segkp pages, call segkp_fault. 458 */ 459 if (segkp_bitmap && seg == &kvseg && 460 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 461 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 462 463 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 464 return (FC_NOSUPPORT); 465 466 npages = btopr(size); 467 468 switch (type) { 469 case F_SOFTLOCK: /* lock down already-loaded translations */ 470 for (pg = 0; pg < npages; pg++) { 471 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 472 SE_SHARED); 473 if (pp == NULL) { 474 /* 475 * Hmm, no page. Does a kernel mapping 476 * exist for it? 477 */ 478 if (!hat_probe(kas.a_hat, addr)) { 479 addr -= PAGESIZE; 480 while (--pg >= 0) { 481 pp = page_find(vp, (u_offset_t) 482 (uintptr_t)addr); 483 if (pp) 484 page_unlock(pp); 485 addr -= PAGESIZE; 486 } 487 return (FC_NOMAP); 488 } 489 } 490 addr += PAGESIZE; 491 } 492 if (rw == S_OTHER) 493 hat_reserve(seg->s_as, addr, size); 494 return (0); 495 case F_SOFTUNLOCK: 496 while (npages--) { 497 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 498 if (pp) 499 page_unlock(pp); 500 addr += PAGESIZE; 501 } 502 return (0); 503 default: 504 return (FC_NOSUPPORT); 505 } 506 /*NOTREACHED*/ 507 } 508 509 static int 510 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 511 { 512 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 513 514 if (seg->s_as != &kas || size > seg->s_size || 515 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 516 panic("segkmem_setprot: bad args"); 517 518 /* 519 * If it is one of segkp pages, call segkp. 520 */ 521 if (segkp_bitmap && seg == &kvseg && 522 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 523 return (SEGOP_SETPROT(segkp, addr, size, prot)); 524 525 if (prot == 0) 526 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 527 else 528 hat_chgprot(kas.a_hat, addr, size, prot); 529 return (0); 530 } 531 532 /* 533 * This is a dummy segkmem function overloaded to call segkp 534 * when segkp is under the heap. 535 */ 536 /* ARGSUSED */ 537 static int 538 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 539 { 540 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 541 542 if (seg->s_as != &kas) 543 segkmem_badop(); 544 545 /* 546 * If it is one of segkp pages, call into segkp. 547 */ 548 if (segkp_bitmap && seg == &kvseg && 549 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 550 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 551 552 segkmem_badop(); 553 return (0); 554 } 555 556 /* 557 * This is a dummy segkmem function overloaded to call segkp 558 * when segkp is under the heap. 559 */ 560 /* ARGSUSED */ 561 static int 562 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 563 { 564 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 565 566 if (seg->s_as != &kas) 567 segkmem_badop(); 568 569 /* 570 * If it is one of segkp pages, call into segkp. 571 */ 572 if (segkp_bitmap && seg == &kvseg && 573 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 574 return (SEGOP_KLUSTER(segkp, addr, delta)); 575 576 segkmem_badop(); 577 return (0); 578 } 579 580 static void 581 segkmem_xdump_range(void *arg, void *start, size_t size) 582 { 583 struct as *as = arg; 584 caddr_t addr = start; 585 caddr_t addr_end = addr + size; 586 587 while (addr < addr_end) { 588 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 589 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 590 dump_addpage(as, addr, pfn); 591 addr += PAGESIZE; 592 dump_timeleft = dump_timeout; 593 } 594 } 595 596 static void 597 segkmem_dump_range(void *arg, void *start, size_t size) 598 { 599 caddr_t addr = start; 600 caddr_t addr_end = addr + size; 601 602 /* 603 * If we are about to start dumping the range of addresses we 604 * carved out of the kernel heap for the large page heap walk 605 * heap_lp_arena to find what segments are actually populated 606 */ 607 if (SEGKMEM_USE_LARGEPAGES && 608 addr == heap_lp_base && addr_end == heap_lp_end && 609 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 610 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 611 segkmem_xdump_range, arg); 612 } else { 613 segkmem_xdump_range(arg, start, size); 614 } 615 } 616 617 static void 618 segkmem_dump(struct seg *seg) 619 { 620 /* 621 * The kernel's heap_arena (represented by kvseg) is a very large 622 * VA space, most of which is typically unused. To speed up dumping 623 * we use vmem_walk() to quickly find the pieces of heap_arena that 624 * are actually in use. We do the same for heap32_arena and 625 * heap_core. 626 * 627 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 628 * may ultimately need to allocate memory. Reentrant walks are 629 * necessarily imperfect snapshots. The kernel heap continues 630 * to change during a live crash dump, for example. For a normal 631 * crash dump, however, we know that there won't be any other threads 632 * messing with the heap. Therefore, at worst, we may fail to dump 633 * the pages that get allocated by the act of dumping; but we will 634 * always dump every page that was allocated when the walk began. 635 * 636 * The other segkmem segments are dense (fully populated), so there's 637 * no need to use this technique when dumping them. 638 * 639 * Note: when adding special dump handling for any new sparsely- 640 * populated segments, be sure to add similar handling to the ::kgrep 641 * code in mdb. 642 */ 643 if (seg == &kvseg) { 644 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 645 segkmem_dump_range, seg->s_as); 646 #ifndef __sparc 647 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 648 segkmem_dump_range, seg->s_as); 649 #endif 650 } else if (seg == &kvseg_core) { 651 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 652 segkmem_dump_range, seg->s_as); 653 } else if (seg == &kvseg32) { 654 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 655 segkmem_dump_range, seg->s_as); 656 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 657 segkmem_dump_range, seg->s_as); 658 } else if (seg == &kzioseg) { 659 /* 660 * We don't want to dump pages attached to kzioseg since they 661 * contain file data from ZFS. If this page's segment is 662 * kzioseg return instead of writing it to the dump device. 663 */ 664 return; 665 } else { 666 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 667 } 668 } 669 670 /* 671 * lock/unlock kmem pages over a given range [addr, addr+len). 672 * Returns a shadow list of pages in ppp. If there are holes 673 * in the range (e.g. some of the kernel mappings do not have 674 * underlying page_ts) returns ENOTSUP so that as_pagelock() 675 * will handle the range via as_fault(F_SOFTLOCK). 676 */ 677 /*ARGSUSED*/ 678 static int 679 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 680 page_t ***ppp, enum lock_type type, enum seg_rw rw) 681 { 682 page_t **pplist, *pp; 683 pgcnt_t npages; 684 spgcnt_t pg; 685 size_t nb; 686 struct vnode *vp = seg->s_data; 687 688 ASSERT(ppp != NULL); 689 690 /* 691 * If it is one of segkp pages, call into segkp. 692 */ 693 if (segkp_bitmap && seg == &kvseg && 694 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 695 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw)); 696 697 npages = btopr(len); 698 nb = sizeof (page_t *) * npages; 699 700 if (type == L_PAGEUNLOCK) { 701 pplist = *ppp; 702 ASSERT(pplist != NULL); 703 704 for (pg = 0; pg < npages; pg++) { 705 pp = pplist[pg]; 706 page_unlock(pp); 707 } 708 kmem_free(pplist, nb); 709 return (0); 710 } 711 712 ASSERT(type == L_PAGELOCK); 713 714 pplist = kmem_alloc(nb, KM_NOSLEEP); 715 if (pplist == NULL) { 716 *ppp = NULL; 717 return (ENOTSUP); /* take the slow path */ 718 } 719 720 for (pg = 0; pg < npages; pg++) { 721 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 722 if (pp == NULL) { 723 while (--pg >= 0) 724 page_unlock(pplist[pg]); 725 kmem_free(pplist, nb); 726 *ppp = NULL; 727 return (ENOTSUP); 728 } 729 pplist[pg] = pp; 730 addr += PAGESIZE; 731 } 732 733 *ppp = pplist; 734 return (0); 735 } 736 737 /* 738 * This is a dummy segkmem function overloaded to call segkp 739 * when segkp is under the heap. 740 */ 741 /* ARGSUSED */ 742 static int 743 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 744 { 745 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 746 747 if (seg->s_as != &kas) 748 segkmem_badop(); 749 750 /* 751 * If it is one of segkp pages, call into segkp. 752 */ 753 if (segkp_bitmap && seg == &kvseg && 754 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 755 return (SEGOP_GETMEMID(segkp, addr, memidp)); 756 757 segkmem_badop(); 758 return (0); 759 } 760 761 /*ARGSUSED*/ 762 static lgrp_mem_policy_info_t * 763 segkmem_getpolicy(struct seg *seg, caddr_t addr) 764 { 765 return (NULL); 766 } 767 768 /*ARGSUSED*/ 769 static int 770 segkmem_capable(struct seg *seg, segcapability_t capability) 771 { 772 if (capability == S_CAPABILITY_NOMINFLT) 773 return (1); 774 return (0); 775 } 776 777 struct seg_ops segkmem_ops = { 778 SEGKMEM_BADOP(int), /* dup */ 779 SEGKMEM_BADOP(int), /* unmap */ 780 SEGKMEM_BADOP(void), /* free */ 781 segkmem_fault, 782 SEGKMEM_BADOP(faultcode_t), /* faulta */ 783 segkmem_setprot, 784 segkmem_checkprot, 785 segkmem_kluster, 786 SEGKMEM_BADOP(size_t), /* swapout */ 787 SEGKMEM_BADOP(int), /* sync */ 788 SEGKMEM_BADOP(size_t), /* incore */ 789 SEGKMEM_BADOP(int), /* lockop */ 790 SEGKMEM_BADOP(int), /* getprot */ 791 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 792 SEGKMEM_BADOP(int), /* gettype */ 793 SEGKMEM_BADOP(int), /* getvp */ 794 SEGKMEM_BADOP(int), /* advise */ 795 segkmem_dump, 796 segkmem_pagelock, 797 SEGKMEM_BADOP(int), /* setpgsz */ 798 segkmem_getmemid, 799 segkmem_getpolicy, /* getpolicy */ 800 segkmem_capable, /* capable */ 801 seg_inherit_notsup /* inherit */ 802 }; 803 804 int 805 segkmem_zio_create(struct seg *seg) 806 { 807 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 808 seg->s_ops = &segkmem_ops; 809 seg->s_data = &zvp; 810 kas.a_size += seg->s_size; 811 return (0); 812 } 813 814 int 815 segkmem_create(struct seg *seg) 816 { 817 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 818 seg->s_ops = &segkmem_ops; 819 seg->s_data = &kvp; 820 kas.a_size += seg->s_size; 821 return (0); 822 } 823 824 /*ARGSUSED*/ 825 page_t * 826 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 827 { 828 struct seg kseg; 829 int pgflags; 830 struct vnode *vp = arg; 831 832 if (vp == NULL) 833 vp = &kvp; 834 835 kseg.s_as = &kas; 836 pgflags = PG_EXCL; 837 838 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 839 pgflags |= PG_NORELOC; 840 if ((vmflag & VM_NOSLEEP) == 0) 841 pgflags |= PG_WAIT; 842 if (vmflag & VM_PANIC) 843 pgflags |= PG_PANIC; 844 if (vmflag & VM_PUSHPAGE) 845 pgflags |= PG_PUSHPAGE; 846 if (vmflag & VM_NORMALPRI) { 847 ASSERT(vmflag & VM_NOSLEEP); 848 pgflags |= PG_NORMALPRI; 849 } 850 851 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 852 pgflags, &kseg, addr)); 853 } 854 855 /* 856 * Allocate pages to back the virtual address range [addr, addr + size). 857 * If addr is NULL, allocate the virtual address space as well. 858 */ 859 void * 860 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 861 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 862 { 863 page_t *ppl; 864 caddr_t addr = inaddr; 865 pgcnt_t npages = btopr(size); 866 int allocflag; 867 868 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 869 return (NULL); 870 871 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 872 873 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 874 if (inaddr == NULL) 875 vmem_free(vmp, addr, size); 876 return (NULL); 877 } 878 879 ppl = page_create_func(addr, size, vmflag, pcarg); 880 if (ppl == NULL) { 881 if (inaddr == NULL) 882 vmem_free(vmp, addr, size); 883 page_unresv(npages); 884 return (NULL); 885 } 886 887 /* 888 * Under certain conditions, we need to let the HAT layer know 889 * that it cannot safely allocate memory. Allocations from 890 * the hat_memload vmem arena always need this, to prevent 891 * infinite recursion. 892 * 893 * In addition, the x86 hat cannot safely do memory 894 * allocations while in vmem_populate(), because there 895 * is no simple bound on its usage. 896 */ 897 if (vmflag & VM_MEMLOAD) 898 allocflag = HAT_NO_KALLOC; 899 #if defined(__x86) 900 else if (vmem_is_populator()) 901 allocflag = HAT_NO_KALLOC; 902 #endif 903 else 904 allocflag = 0; 905 906 while (ppl != NULL) { 907 page_t *pp = ppl; 908 page_sub(&ppl, pp); 909 ASSERT(page_iolock_assert(pp)); 910 ASSERT(PAGE_EXCL(pp)); 911 page_io_unlock(pp); 912 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 913 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 914 HAT_LOAD_LOCK | allocflag); 915 pp->p_lckcnt = 1; 916 #if defined(__x86) 917 page_downgrade(pp); 918 #else 919 if (vmflag & SEGKMEM_SHARELOCKED) 920 page_downgrade(pp); 921 else 922 page_unlock(pp); 923 #endif 924 } 925 926 return (addr); 927 } 928 929 static void * 930 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 931 { 932 void *addr; 933 segkmem_gc_list_t *gcp, **prev_gcpp; 934 935 ASSERT(vp != NULL); 936 937 if (kvseg.s_base == NULL) { 938 #ifndef __sparc 939 if (bootops->bsys_alloc == NULL) 940 halt("Memory allocation between bop_alloc() and " 941 "kmem_alloc().\n"); 942 #endif 943 944 /* 945 * There's not a lot of memory to go around during boot, 946 * so recycle it if we can. 947 */ 948 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 949 prev_gcpp = &gcp->gc_next) { 950 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 951 *prev_gcpp = gcp->gc_next; 952 return (gcp); 953 } 954 } 955 956 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 957 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 958 panic("segkmem_alloc: boot_alloc failed"); 959 return (addr); 960 } 961 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 962 segkmem_page_create, vp)); 963 } 964 965 void * 966 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 967 { 968 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 969 } 970 971 void * 972 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 973 { 974 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp)); 975 } 976 977 /* 978 * Any changes to this routine must also be carried over to 979 * devmap_free_pages() in the seg_dev driver. This is because 980 * we currently don't have a special kernel segment for non-paged 981 * kernel memory that is exported by drivers to user space. 982 */ 983 static void 984 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp, 985 void (*func)(page_t *)) 986 { 987 page_t *pp; 988 caddr_t addr = inaddr; 989 caddr_t eaddr; 990 pgcnt_t npages = btopr(size); 991 992 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 993 ASSERT(vp != NULL); 994 995 if (kvseg.s_base == NULL) { 996 segkmem_gc_list_t *gc = inaddr; 997 gc->gc_arena = vmp; 998 gc->gc_size = size; 999 gc->gc_next = segkmem_gc_list; 1000 segkmem_gc_list = gc; 1001 return; 1002 } 1003 1004 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1005 1006 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1007 #if defined(__x86) 1008 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 1009 if (pp == NULL) 1010 panic("segkmem_free: page not found"); 1011 if (!page_tryupgrade(pp)) { 1012 /* 1013 * Some other thread has a sharelock. Wait for 1014 * it to drop the lock so we can free this page. 1015 */ 1016 page_unlock(pp); 1017 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 1018 SE_EXCL); 1019 } 1020 #else 1021 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1022 #endif 1023 if (pp == NULL) 1024 panic("segkmem_free: page not found"); 1025 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1026 pp->p_lckcnt = 0; 1027 if (func) 1028 func(pp); 1029 else 1030 page_destroy(pp, 0); 1031 } 1032 if (func == NULL) 1033 page_unresv(npages); 1034 1035 if (vmp != NULL) 1036 vmem_free(vmp, inaddr, size); 1037 1038 } 1039 1040 void 1041 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *)) 1042 { 1043 segkmem_free_vn(vmp, inaddr, size, &kvp, func); 1044 } 1045 1046 void 1047 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1048 { 1049 segkmem_free_vn(vmp, inaddr, size, &kvp, NULL); 1050 } 1051 1052 void 1053 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1054 { 1055 segkmem_free_vn(vmp, inaddr, size, &zvp, NULL); 1056 } 1057 1058 void 1059 segkmem_gc(void) 1060 { 1061 ASSERT(kvseg.s_base != NULL); 1062 while (segkmem_gc_list != NULL) { 1063 segkmem_gc_list_t *gc = segkmem_gc_list; 1064 segkmem_gc_list = gc->gc_next; 1065 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1066 } 1067 } 1068 1069 /* 1070 * Legacy entry points from here to end of file. 1071 */ 1072 void 1073 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1074 pfn_t pfn, uint_t flags) 1075 { 1076 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1077 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1078 flags | HAT_LOAD_LOCK); 1079 } 1080 1081 void 1082 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1083 { 1084 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1085 } 1086 1087 void * 1088 kmem_getpages(pgcnt_t npages, int kmflag) 1089 { 1090 return (kmem_alloc(ptob(npages), kmflag)); 1091 } 1092 1093 void 1094 kmem_freepages(void *addr, pgcnt_t npages) 1095 { 1096 kmem_free(addr, ptob(npages)); 1097 } 1098 1099 /* 1100 * segkmem_page_create_large() allocates a large page to be used for the kmem 1101 * caches. If kpr is enabled we ask for a relocatable page unless requested 1102 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1103 */ 1104 static page_t * 1105 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1106 { 1107 int pgflags; 1108 1109 pgflags = PG_EXCL; 1110 1111 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1112 pgflags |= PG_NORELOC; 1113 if (!(vmflag & VM_NOSLEEP)) 1114 pgflags |= PG_WAIT; 1115 if (vmflag & VM_PUSHPAGE) 1116 pgflags |= PG_PUSHPAGE; 1117 if (vmflag & VM_NORMALPRI) 1118 pgflags |= PG_NORMALPRI; 1119 1120 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1121 pgflags, &kvseg, addr, arg)); 1122 } 1123 1124 /* 1125 * Allocate a large page to back the virtual address range 1126 * [addr, addr + size). If addr is NULL, allocate the virtual address 1127 * space as well. 1128 */ 1129 static void * 1130 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1131 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1132 void *pcarg) 1133 { 1134 caddr_t addr = inaddr, pa; 1135 size_t lpsize = segkmem_lpsize; 1136 pgcnt_t npages = btopr(size); 1137 pgcnt_t nbpages = btop(lpsize); 1138 pgcnt_t nlpages = size >> segkmem_lpshift; 1139 size_t ppasize = nbpages * sizeof (page_t *); 1140 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1141 int i; 1142 1143 vmflag |= VM_NOSLEEP; 1144 1145 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1146 return (NULL); 1147 } 1148 1149 /* 1150 * allocate an array we need for hat_memload_array. 1151 * we use a separate arena to avoid recursion. 1152 * we will not need this array when hat_memload_array learns pp++ 1153 */ 1154 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1155 goto fail_array_alloc; 1156 } 1157 1158 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1159 goto fail_vmem_alloc; 1160 1161 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1162 1163 /* create all the pages */ 1164 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1165 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1166 goto fail_page_create; 1167 page_list_concat(&pplist, &pp); 1168 } 1169 1170 /* at this point we have all the resource to complete the request */ 1171 while ((rootpp = pplist) != NULL) { 1172 for (i = 0; i < nbpages; i++) { 1173 ASSERT(pplist != NULL); 1174 pp = pplist; 1175 page_sub(&pplist, pp); 1176 ASSERT(page_iolock_assert(pp)); 1177 page_io_unlock(pp); 1178 ppa[i] = pp; 1179 } 1180 /* 1181 * Load the locked entry. It's OK to preload the entry into the 1182 * TSB since we now support large mappings in the kernel TSB. 1183 */ 1184 hat_memload_array(kas.a_hat, 1185 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1186 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1187 HAT_LOAD_LOCK); 1188 1189 for (--i; i >= 0; --i) { 1190 ppa[i]->p_lckcnt = 1; 1191 page_unlock(ppa[i]); 1192 } 1193 } 1194 1195 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1196 return (addr); 1197 1198 fail_page_create: 1199 while ((rootpp = pplist) != NULL) { 1200 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1201 ASSERT(pp != NULL); 1202 page_sub(&pplist, pp); 1203 ASSERT(page_iolock_assert(pp)); 1204 page_io_unlock(pp); 1205 } 1206 page_destroy_pages(rootpp); 1207 } 1208 1209 if (inaddr == NULL) 1210 vmem_free(vmp, addr, size); 1211 1212 fail_vmem_alloc: 1213 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1214 1215 fail_array_alloc: 1216 page_unresv(npages); 1217 1218 return (NULL); 1219 } 1220 1221 static void 1222 segkmem_free_one_lp(caddr_t addr, size_t size) 1223 { 1224 page_t *pp, *rootpp = NULL; 1225 pgcnt_t pgs_left = btopr(size); 1226 1227 ASSERT(size == segkmem_lpsize); 1228 1229 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1230 1231 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1232 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1233 if (pp == NULL) 1234 panic("segkmem_free_one_lp: page not found"); 1235 ASSERT(PAGE_EXCL(pp)); 1236 pp->p_lckcnt = 0; 1237 if (rootpp == NULL) 1238 rootpp = pp; 1239 } 1240 ASSERT(rootpp != NULL); 1241 page_destroy_pages(rootpp); 1242 1243 /* page_unresv() is done by the caller */ 1244 } 1245 1246 /* 1247 * This function is called to import new spans into the vmem arenas like 1248 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1249 * spans from large page arena - kmem_lp_arena. In order to do this it might 1250 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1251 * it was not able to satisfy the upgraded request it then calls regular 1252 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1253 */ 1254 /*ARGSUSED*/ 1255 void * 1256 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 1257 { 1258 size_t size; 1259 kthread_t *t = curthread; 1260 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1261 1262 ASSERT(sizep != NULL); 1263 1264 size = *sizep; 1265 1266 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1267 !(vmflag & SEGKMEM_SHARELOCKED)) { 1268 1269 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1270 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1271 void *addr = NULL; 1272 ulong_t *lpthrtp = &lpcb->lp_throttle; 1273 ulong_t lpthrt = *lpthrtp; 1274 int dowakeup = 0; 1275 int doalloc = 1; 1276 1277 ASSERT(kmem_lp_arena != NULL); 1278 ASSERT(asize >= size); 1279 1280 if (lpthrt != 0) { 1281 /* try to update the throttle value */ 1282 lpthrt = atomic_inc_ulong_nv(lpthrtp); 1283 if (lpthrt >= segkmem_lpthrottle_max) { 1284 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1285 segkmem_lpthrottle_max / 4); 1286 } 1287 1288 /* 1289 * when we get above throttle start do an exponential 1290 * backoff at trying large pages and reaping 1291 */ 1292 if (lpthrt > segkmem_lpthrottle_start && 1293 !ISP2(lpthrt)) { 1294 lpcb->allocs_throttled++; 1295 lpthrt--; 1296 if (ISP2(lpthrt)) 1297 kmem_reap(); 1298 return (segkmem_alloc(vmp, size, vmflag)); 1299 } 1300 } 1301 1302 if (!(vmflag & VM_NOSLEEP) && 1303 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1304 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1305 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1306 1307 /* 1308 * we are low on free memory in kmem_lp_arena 1309 * we let only one guy to allocate heap_lp 1310 * quantum size chunk that everybody is going to 1311 * share 1312 */ 1313 mutex_enter(&lpcb->lp_lock); 1314 1315 if (lpcb->lp_wait) { 1316 1317 /* we are not the first one - wait */ 1318 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1319 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1320 kmemlp_qnt) { 1321 doalloc = 0; 1322 } 1323 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1324 kmemlp_qnt) { 1325 1326 /* 1327 * we are the first one, make sure we import 1328 * a large page 1329 */ 1330 if (asize == kmemlp_qnt) 1331 asize += kmemlp_qnt; 1332 dowakeup = 1; 1333 lpcb->lp_wait = 1; 1334 } 1335 1336 mutex_exit(&lpcb->lp_lock); 1337 } 1338 1339 /* 1340 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1341 * large pages are not available. In that case this allocation 1342 * attempt will fail and we will retry allocation with small 1343 * pages. We also do not want to panic if this allocation fails 1344 * because we are going to retry. 1345 */ 1346 if (doalloc) { 1347 addr = vmem_alloc(kmem_lp_arena, asize, 1348 (vmflag | VM_ABORT) & ~VM_PANIC); 1349 1350 if (dowakeup) { 1351 mutex_enter(&lpcb->lp_lock); 1352 ASSERT(lpcb->lp_wait != 0); 1353 lpcb->lp_wait = 0; 1354 cv_broadcast(&lpcb->lp_cv); 1355 mutex_exit(&lpcb->lp_lock); 1356 } 1357 } 1358 1359 if (addr != NULL) { 1360 *sizep = asize; 1361 *lpthrtp = 0; 1362 return (addr); 1363 } 1364 1365 if (vmflag & VM_NOSLEEP) 1366 lpcb->nosleep_allocs_failed++; 1367 else 1368 lpcb->sleep_allocs_failed++; 1369 lpcb->alloc_bytes_failed += size; 1370 1371 /* if large page throttling is not started yet do it */ 1372 if (segkmem_use_lpthrottle && lpthrt == 0) { 1373 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1374 } 1375 } 1376 return (segkmem_alloc(vmp, size, vmflag)); 1377 } 1378 1379 void 1380 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1381 { 1382 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1383 segkmem_free(vmp, inaddr, size); 1384 } else { 1385 vmem_free(kmem_lp_arena, inaddr, size); 1386 } 1387 } 1388 1389 /* 1390 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1391 * into kmem_lp arena. In the process it maps the imported segment with 1392 * large pages 1393 */ 1394 static void * 1395 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1396 { 1397 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1398 void *addr; 1399 1400 ASSERT(size != 0); 1401 ASSERT(vmp == heap_lp_arena); 1402 1403 /* do not allow large page heap grow beyound limits */ 1404 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1405 lpcb->allocs_limited++; 1406 return (NULL); 1407 } 1408 1409 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1410 segkmem_page_create_large, NULL); 1411 return (addr); 1412 } 1413 1414 /* 1415 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1416 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1417 * large pages used to map it. 1418 */ 1419 static void 1420 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1421 { 1422 pgcnt_t nlpages = size >> segkmem_lpshift; 1423 size_t lpsize = segkmem_lpsize; 1424 caddr_t addr = inaddr; 1425 pgcnt_t npages = btopr(size); 1426 int i; 1427 1428 ASSERT(vmp == heap_lp_arena); 1429 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1430 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1431 1432 for (i = 0; i < nlpages; i++) { 1433 segkmem_free_one_lp(addr, lpsize); 1434 addr += lpsize; 1435 } 1436 1437 page_unresv(npages); 1438 1439 vmem_free(vmp, inaddr, size); 1440 } 1441 1442 /* 1443 * This function is called at system boot time by kmem_init right after 1444 * /etc/system file has been read. It checks based on hardware configuration 1445 * and /etc/system settings if system is going to use large pages. The 1446 * initialiazation necessary to actually start using large pages 1447 * happens later in the process after segkmem_heap_lp_init() is called. 1448 */ 1449 int 1450 segkmem_lpsetup() 1451 { 1452 int use_large_pages = 0; 1453 1454 #ifdef __sparc 1455 1456 size_t memtotal = physmem * PAGESIZE; 1457 1458 if (heap_lp_base == NULL) { 1459 segkmem_lpsize = PAGESIZE; 1460 return (0); 1461 } 1462 1463 /* get a platform dependent value of large page size for kernel heap */ 1464 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1465 1466 if (segkmem_lpsize <= PAGESIZE) { 1467 /* 1468 * put virtual space reserved for the large page kernel 1469 * back to the regular heap 1470 */ 1471 vmem_xfree(heap_arena, heap_lp_base, 1472 heap_lp_end - heap_lp_base); 1473 heap_lp_base = NULL; 1474 heap_lp_end = NULL; 1475 segkmem_lpsize = PAGESIZE; 1476 return (0); 1477 } 1478 1479 /* set heap_lp quantum if necessary */ 1480 if (segkmem_heaplp_quantum == 0 || !ISP2(segkmem_heaplp_quantum) || 1481 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1482 segkmem_heaplp_quantum = segkmem_lpsize; 1483 } 1484 1485 /* set kmem_lp quantum if necessary */ 1486 if (segkmem_kmemlp_quantum == 0 || !ISP2(segkmem_kmemlp_quantum) || 1487 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1488 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1489 } 1490 1491 /* set total amount of memory allowed for large page kernel heap */ 1492 if (segkmem_kmemlp_max == 0) { 1493 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1494 segkmem_kmemlp_pcnt = 12; 1495 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1496 } 1497 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1498 segkmem_heaplp_quantum); 1499 1500 /* fix lp kmem preallocation request if necesssary */ 1501 if (segkmem_kmemlp_min) { 1502 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1503 segkmem_heaplp_quantum); 1504 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1505 segkmem_kmemlp_min = segkmem_kmemlp_max; 1506 } 1507 1508 use_large_pages = 1; 1509 segkmem_lpszc = page_szc(segkmem_lpsize); 1510 segkmem_lpshift = page_get_shift(segkmem_lpszc); 1511 1512 #endif 1513 return (use_large_pages); 1514 } 1515 1516 void 1517 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1518 { 1519 ASSERT(zio_mem_base != NULL); 1520 ASSERT(zio_mem_size != 0); 1521 1522 /* 1523 * To reduce VA space fragmentation, we set up quantum caches for the 1524 * smaller sizes; we chose 32k because that translates to 128k VA 1525 * slabs, which matches nicely with the common 128k zio_data bufs. 1526 */ 1527 zio_arena = vmem_create("zfs_file_data", zio_mem_base, zio_mem_size, 1528 PAGESIZE, NULL, NULL, NULL, 32 * 1024, VM_SLEEP); 1529 1530 zio_alloc_arena = vmem_create("zfs_file_data_buf", NULL, 0, PAGESIZE, 1531 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1532 1533 ASSERT(zio_arena != NULL); 1534 ASSERT(zio_alloc_arena != NULL); 1535 } 1536 1537 #ifdef __sparc 1538 1539 1540 static void * 1541 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1542 { 1543 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1544 void *addr; 1545 1546 if (ppaquantum <= PAGESIZE) 1547 return (segkmem_alloc(vmp, size, vmflag)); 1548 1549 ASSERT((size & (ppaquantum - 1)) == 0); 1550 1551 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1552 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1553 segkmem_page_create, NULL) == NULL) { 1554 vmem_xfree(vmp, addr, size); 1555 addr = NULL; 1556 } 1557 1558 return (addr); 1559 } 1560 1561 static void 1562 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1563 { 1564 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1565 1566 ASSERT(addr != NULL); 1567 1568 if (ppaquantum <= PAGESIZE) { 1569 segkmem_free(vmp, addr, size); 1570 } else { 1571 segkmem_free(NULL, addr, size); 1572 vmem_xfree(vmp, addr, size); 1573 } 1574 } 1575 1576 void 1577 segkmem_heap_lp_init() 1578 { 1579 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1580 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1581 size_t lpsize = segkmem_lpsize; 1582 size_t ppaquantum; 1583 void *addr; 1584 1585 if (segkmem_lpsize <= PAGESIZE) { 1586 ASSERT(heap_lp_base == NULL); 1587 ASSERT(heap_lp_end == NULL); 1588 return; 1589 } 1590 1591 ASSERT(segkmem_heaplp_quantum >= lpsize); 1592 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1593 ASSERT(lpcb->lp_uselp == 0); 1594 ASSERT(heap_lp_base != NULL); 1595 ASSERT(heap_lp_end != NULL); 1596 ASSERT(heap_lp_base < heap_lp_end); 1597 ASSERT(heap_lp_arena == NULL); 1598 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1599 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1600 1601 /* create large page heap arena */ 1602 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1603 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1604 1605 ASSERT(heap_lp_arena != NULL); 1606 1607 /* This arena caches memory already mapped by large pages */ 1608 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1609 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1610 1611 ASSERT(kmem_lp_arena != NULL); 1612 1613 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1614 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1615 1616 /* 1617 * this arena is used for the array of page_t pointers necessary 1618 * to call hat_mem_load_array 1619 */ 1620 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1621 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1622 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1623 VM_SLEEP); 1624 1625 ASSERT(segkmem_ppa_arena != NULL); 1626 1627 /* prealloacate some memory for the lp kernel heap */ 1628 if (segkmem_kmemlp_min) { 1629 1630 ASSERT(P2PHASE(segkmem_kmemlp_min, 1631 segkmem_heaplp_quantum) == 0); 1632 1633 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1634 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1635 1636 addr = vmem_add(kmem_lp_arena, addr, 1637 segkmem_kmemlp_min, VM_SLEEP); 1638 ASSERT(addr != NULL); 1639 } 1640 } 1641 1642 lpcb->lp_uselp = 1; 1643 } 1644 1645 #endif