1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2017, Joyent, Inc.
  25  * Copyright 2015 Garrett D'Amore <garrett@damore.org>
  26  */
  27 
  28 /*
  29  * MAC Services Module
  30  *
  31  * The GLDv3 framework locking -  The MAC layer
  32  * --------------------------------------------
  33  *
  34  * The MAC layer is central to the GLD framework and can provide the locking
  35  * framework needed for itself and for the use of MAC clients. MAC end points
  36  * are fairly disjoint and don't share a lot of state. So a coarse grained
  37  * multi-threading scheme is to single thread all create/modify/delete or set
  38  * type of control operations on a per mac end point while allowing data threads
  39  * concurrently.
  40  *
  41  * Control operations (set) that modify a mac end point are always serialized on
  42  * a per mac end point basis, We have at most 1 such thread per mac end point
  43  * at a time.
  44  *
  45  * All other operations that are not serialized are essentially multi-threaded.
  46  * For example a control operation (get) like getting statistics which may not
  47  * care about reading values atomically or data threads sending or receiving
  48  * data. Mostly these type of operations don't modify the control state. Any
  49  * state these operations care about are protected using traditional locks.
  50  *
  51  * The perimeter only serializes serial operations. It does not imply there
  52  * aren't any other concurrent operations. However a serialized operation may
  53  * sometimes need to make sure it is the only thread. In this case it needs
  54  * to use reference counting mechanisms to cv_wait until any current data
  55  * threads are done.
  56  *
  57  * The mac layer itself does not hold any locks across a call to another layer.
  58  * The perimeter is however held across a down call to the driver to make the
  59  * whole control operation atomic with respect to other control operations.
  60  * Also the data path and get type control operations may proceed concurrently.
  61  * These operations synchronize with the single serial operation on a given mac
  62  * end point using regular locks. The perimeter ensures that conflicting
  63  * operations like say a mac_multicast_add and a mac_multicast_remove on the
  64  * same mac end point don't interfere with each other and also ensures that the
  65  * changes in the mac layer and the call to the underlying driver to say add a
  66  * multicast address are done atomically without interference from a thread
  67  * trying to delete the same address.
  68  *
  69  * For example, consider
  70  * mac_multicst_add()
  71  * {
  72  *      mac_perimeter_enter();  serialize all control operations
  73  *
  74  *      grab list lock          protect against access by data threads
  75  *      add to list
  76  *      drop list lock
  77  *
  78  *      call driver's mi_multicst
  79  *
  80  *      mac_perimeter_exit();
  81  * }
  82  *
  83  * To lessen the number of serialization locks and simplify the lock hierarchy,
  84  * we serialize all the control operations on a per mac end point by using a
  85  * single serialization lock called the perimeter. We allow recursive entry into
  86  * the perimeter to facilitate use of this mechanism by both the mac client and
  87  * the MAC layer itself.
  88  *
  89  * MAC client means an entity that does an operation on a mac handle
  90  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
  91  * an entity that does an operation on a mac handle obtained from a
  92  * mac_register. An entity could be both client and driver but on different
  93  * handles eg. aggr. and should only make the corresponding mac interface calls
  94  * i.e. mac driver interface or mac client interface as appropriate for that
  95  * mac handle.
  96  *
  97  * General rules.
  98  * -------------
  99  *
 100  * R1. The lock order of upcall threads is natually opposite to downcall
 101  * threads. Hence upcalls must not hold any locks across layers for fear of
 102  * recursive lock enter and lock order violation. This applies to all layers.
 103  *
 104  * R2. The perimeter is just another lock. Since it is held in the down
 105  * direction, acquiring the perimeter in an upcall is prohibited as it would
 106  * cause a deadlock. This applies to all layers.
 107  *
 108  * Note that upcalls that need to grab the mac perimeter (for example
 109  * mac_notify upcalls) can still achieve that by posting the request to a
 110  * thread, which can then grab all the required perimeters and locks in the
 111  * right global order. Note that in the above example the mac layer iself
 112  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
 113  * to the client must do that. Please see the aggr code for an example.
 114  *
 115  * MAC client rules
 116  * ----------------
 117  *
 118  * R3. A MAC client may use the MAC provided perimeter facility to serialize
 119  * control operations on a per mac end point. It does this by by acquring
 120  * and holding the perimeter across a sequence of calls to the mac layer.
 121  * This ensures atomicity across the entire block of mac calls. In this
 122  * model the MAC client must not hold any client locks across the calls to
 123  * the mac layer. This model is the preferred solution.
 124  *
 125  * R4. However if a MAC client has a lot of global state across all mac end
 126  * points the per mac end point serialization may not be sufficient. In this
 127  * case the client may choose to use global locks or use its own serialization.
 128  * To avoid deadlocks, these client layer locks held across the mac calls
 129  * in the control path must never be acquired by the data path for the reason
 130  * mentioned below.
 131  *
 132  * (Assume that a control operation that holds a client lock blocks in the
 133  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
 134  * data thread that holds this reference count, tries to acquire the same
 135  * client lock subsequently it will deadlock).
 136  *
 137  * A MAC client may follow either the R3 model or the R4 model, but can't
 138  * mix both. In the former, the hierarchy is Perim -> client locks, but in
 139  * the latter it is client locks -> Perim.
 140  *
 141  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
 142  * context since they may block while trying to acquire the perimeter.
 143  * In addition some calls may block waiting for upcall refcnts to come down to
 144  * zero.
 145  *
 146  * R6. MAC clients must make sure that they are single threaded and all threads
 147  * from the top (in particular data threads) have finished before calling
 148  * mac_client_close. The MAC framework does not track the number of client
 149  * threads using the mac client handle. Also mac clients must make sure
 150  * they have undone all the control operations before calling mac_client_close.
 151  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
 152  * mac_unicast_add/mac_multicast_add.
 153  *
 154  * MAC framework rules
 155  * -------------------
 156  *
 157  * R7. The mac layer itself must not hold any mac layer locks (except the mac
 158  * perimeter) across a call to any other layer from the mac layer. The call to
 159  * any other layer could be via mi_* entry points, classifier entry points into
 160  * the driver or via upcall pointers into layers above. The mac perimeter may
 161  * be acquired or held only in the down direction, for e.g. when calling into
 162  * a mi_* driver enty point to provide atomicity of the operation.
 163  *
 164  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
 165  * mac driver interfaces, the MAC layer must provide a cut out for control
 166  * interfaces like upcall notifications and start them in a separate thread.
 167  *
 168  * R9. Note that locking order also implies a plumbing order. For example
 169  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
 170  * to plumb in any other order must be failed at mac_open time, otherwise it
 171  * could lead to deadlocks due to inverse locking order.
 172  *
 173  * R10. MAC driver interfaces must not block since the driver could call them
 174  * in interrupt context.
 175  *
 176  * R11. Walkers must preferably not hold any locks while calling walker
 177  * callbacks. Instead these can operate on reference counts. In simple
 178  * callbacks it may be ok to hold a lock and call the callbacks, but this is
 179  * harder to maintain in the general case of arbitrary callbacks.
 180  *
 181  * R12. The MAC layer must protect upcall notification callbacks using reference
 182  * counts rather than holding locks across the callbacks.
 183  *
 184  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
 185  * sure that any pointers (such as mac ring pointers) it passes to the driver
 186  * remain valid until mac unregister time. Currently the mac layer achieves
 187  * this by using generation numbers for rings and freeing the mac rings only
 188  * at unregister time.  The MAC layer must provide a layer of indirection and
 189  * must not expose underlying driver rings or driver data structures/pointers
 190  * directly to MAC clients.
 191  *
 192  * MAC driver rules
 193  * ----------------
 194  *
 195  * R14. It would be preferable if MAC drivers don't hold any locks across any
 196  * mac call. However at a minimum they must not hold any locks across data
 197  * upcalls. They must also make sure that all references to mac data structures
 198  * are cleaned up and that it is single threaded at mac_unregister time.
 199  *
 200  * R15. MAC driver interfaces don't block and so the action may be done
 201  * asynchronously in a separate thread as for example handling notifications.
 202  * The driver must not assume that the action is complete when the call
 203  * returns.
 204  *
 205  * R16. Drivers must maintain a generation number per Rx ring, and pass it
 206  * back to mac_rx_ring(); They are expected to increment the generation
 207  * number whenever the ring's stop routine is invoked.
 208  * See comments in mac_rx_ring();
 209  *
 210  * R17 Similarly mi_stop is another synchronization point and the driver must
 211  * ensure that all upcalls are done and there won't be any future upcall
 212  * before returning from mi_stop.
 213  *
 214  * R18. The driver may assume that all set/modify control operations via
 215  * the mi_* entry points are single threaded on a per mac end point.
 216  *
 217  * Lock and Perimeter hierarchy scenarios
 218  * ---------------------------------------
 219  *
 220  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
 221  *
 222  * ft_lock -> fe_lock [mac_flow_lookup]
 223  *
 224  * mi_rw_lock -> fe_lock [mac_bcast_send]
 225  *
 226  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
 227  *
 228  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
 229  *
 230  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
 231  *
 232  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
 233  * client to driver. In the case of clients that explictly use the mac provided
 234  * perimeter mechanism for its serialization, the hierarchy is
 235  * Perimeter -> mac layer locks, since the client never holds any locks across
 236  * the mac calls. In the case of clients that use its own locks the hierarchy
 237  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
 238  * calls mac_perim_enter/exit in this case.
 239  *
 240  * Subflow creation rules
 241  * ---------------------------
 242  * o In case of a user specified cpulist present on underlying link and flows,
 243  * the flows cpulist must be a subset of the underlying link.
 244  * o In case of a user specified fanout mode present on link and flow, the
 245  * subflow fanout count has to be less than or equal to that of the
 246  * underlying link. The cpu-bindings for the subflows will be a subset of
 247  * the underlying link.
 248  * o In case if no cpulist specified on both underlying link and flow, the
 249  * underlying link relies on a  MAC tunable to provide out of box fanout.
 250  * The subflow will have no cpulist (the subflow will be unbound)
 251  * o In case if no cpulist is specified on the underlying link, a subflow can
 252  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
 253  * for the subflow will not adhere to restriction that they need to be subset
 254  * of the underlying link.
 255  * o In case where the underlying link is carrying either a user specified
 256  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
 257  * created unbound.
 258  * o While creating unbound subflows, bandwidth mode changes attempt to
 259  * figure a right fanout count. In such cases the fanout count will override
 260  * the unbound cpu-binding behavior.
 261  * o In addition to this, while cycling between flow and link properties, we
 262  * impose a restriction that if a link property has a subflow with
 263  * user-specified attributes, we will not allow changing the link property.
 264  * The administrator needs to reset all the user specified properties for the
 265  * subflows before attempting a link property change.
 266  * Some of the above rules can be overridden by specifying additional command
 267  * line options while creating or modifying link or subflow properties.
 268  *
 269  * Datapath
 270  * --------
 271  *
 272  * For information on the datapath, the world of soft rings, hardware rings, how
 273  * it is structured, and the path of an mblk_t between a driver and a mac
 274  * client, see mac_sched.c.
 275  */
 276 
 277 #include <sys/types.h>
 278 #include <sys/conf.h>
 279 #include <sys/id_space.h>
 280 #include <sys/esunddi.h>
 281 #include <sys/stat.h>
 282 #include <sys/mkdev.h>
 283 #include <sys/stream.h>
 284 #include <sys/strsun.h>
 285 #include <sys/strsubr.h>
 286 #include <sys/dlpi.h>
 287 #include <sys/list.h>
 288 #include <sys/modhash.h>
 289 #include <sys/mac_provider.h>
 290 #include <sys/mac_client_impl.h>
 291 #include <sys/mac_soft_ring.h>
 292 #include <sys/mac_stat.h>
 293 #include <sys/mac_impl.h>
 294 #include <sys/mac.h>
 295 #include <sys/dls.h>
 296 #include <sys/dld.h>
 297 #include <sys/modctl.h>
 298 #include <sys/fs/dv_node.h>
 299 #include <sys/thread.h>
 300 #include <sys/proc.h>
 301 #include <sys/callb.h>
 302 #include <sys/cpuvar.h>
 303 #include <sys/atomic.h>
 304 #include <sys/bitmap.h>
 305 #include <sys/sdt.h>
 306 #include <sys/mac_flow.h>
 307 #include <sys/ddi_intr_impl.h>
 308 #include <sys/disp.h>
 309 #include <sys/sdt.h>
 310 #include <sys/vnic.h>
 311 #include <sys/vnic_impl.h>
 312 #include <sys/vlan.h>
 313 #include <inet/ip.h>
 314 #include <inet/ip6.h>
 315 #include <sys/exacct.h>
 316 #include <sys/exacct_impl.h>
 317 #include <inet/nd.h>
 318 #include <sys/ethernet.h>
 319 #include <sys/pool.h>
 320 #include <sys/pool_pset.h>
 321 #include <sys/cpupart.h>
 322 #include <inet/wifi_ioctl.h>
 323 #include <net/wpa.h>
 324 
 325 #define IMPL_HASHSZ     67      /* prime */
 326 
 327 kmem_cache_t            *i_mac_impl_cachep;
 328 mod_hash_t              *i_mac_impl_hash;
 329 krwlock_t               i_mac_impl_lock;
 330 uint_t                  i_mac_impl_count;
 331 static kmem_cache_t     *mac_ring_cache;
 332 static id_space_t       *minor_ids;
 333 static uint32_t         minor_count;
 334 static pool_event_cb_t  mac_pool_event_reg;
 335 
 336 /*
 337  * Logging stuff. Perhaps mac_logging_interval could be broken into
 338  * mac_flow_log_interval and mac_link_log_interval if we want to be
 339  * able to schedule them differently.
 340  */
 341 uint_t                  mac_logging_interval;
 342 boolean_t               mac_flow_log_enable;
 343 boolean_t               mac_link_log_enable;
 344 timeout_id_t            mac_logging_timer;
 345 
 346 #define MACTYPE_KMODDIR "mac"
 347 #define MACTYPE_HASHSZ  67
 348 static mod_hash_t       *i_mactype_hash;
 349 /*
 350  * i_mactype_lock synchronizes threads that obtain references to mactype_t
 351  * structures through i_mactype_getplugin().
 352  */
 353 static kmutex_t         i_mactype_lock;
 354 
 355 /*
 356  * mac_tx_percpu_cnt
 357  *
 358  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
 359  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
 360  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
 361  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
 362  */
 363 int mac_tx_percpu_cnt;
 364 int mac_tx_percpu_cnt_max = 128;
 365 
 366 /*
 367  * Call back functions for the bridge module.  These are guaranteed to be valid
 368  * when holding a reference on a link or when holding mip->mi_bridge_lock and
 369  * mi_bridge_link is non-NULL.
 370  */
 371 mac_bridge_tx_t mac_bridge_tx_cb;
 372 mac_bridge_rx_t mac_bridge_rx_cb;
 373 mac_bridge_ref_t mac_bridge_ref_cb;
 374 mac_bridge_ls_t mac_bridge_ls_cb;
 375 
 376 static int i_mac_constructor(void *, void *, int);
 377 static void i_mac_destructor(void *, void *);
 378 static int i_mac_ring_ctor(void *, void *, int);
 379 static void i_mac_ring_dtor(void *, void *);
 380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
 381 void mac_tx_client_flush(mac_client_impl_t *);
 382 void mac_tx_client_block(mac_client_impl_t *);
 383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
 384 static int mac_start_group_and_rings(mac_group_t *);
 385 static void mac_stop_group_and_rings(mac_group_t *);
 386 static void mac_pool_event_cb(pool_event_t, int, void *);
 387 
 388 typedef struct netinfo_s {
 389         list_node_t     ni_link;
 390         void            *ni_record;
 391         int             ni_size;
 392         int             ni_type;
 393 } netinfo_t;
 394 
 395 /*
 396  * Module initialization functions.
 397  */
 398 
 399 void
 400 mac_init(void)
 401 {
 402         mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
 403             boot_max_ncpus);
 404 
 405         /* Upper bound is mac_tx_percpu_cnt_max */
 406         if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
 407                 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
 408 
 409         if (mac_tx_percpu_cnt < 1) {
 410                 /* Someone set max_tx_percpu_cnt_max to 0 or less */
 411                 mac_tx_percpu_cnt = 1;
 412         }
 413 
 414         ASSERT(mac_tx_percpu_cnt >= 1);
 415         mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
 416         /*
 417          * Make it of the form 2**N - 1 in the range
 418          * [0 .. mac_tx_percpu_cnt_max - 1]
 419          */
 420         mac_tx_percpu_cnt--;
 421 
 422         i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
 423             sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
 424             NULL, NULL, NULL, 0);
 425         ASSERT(i_mac_impl_cachep != NULL);
 426 
 427         mac_ring_cache = kmem_cache_create("mac_ring_cache",
 428             sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
 429             NULL, NULL, 0);
 430         ASSERT(mac_ring_cache != NULL);
 431 
 432         i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
 433             IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
 434             mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 435         rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
 436 
 437         mac_flow_init();
 438         mac_soft_ring_init();
 439         mac_bcast_init();
 440         mac_client_init();
 441 
 442         i_mac_impl_count = 0;
 443 
 444         i_mactype_hash = mod_hash_create_extended("mactype_hash",
 445             MACTYPE_HASHSZ,
 446             mod_hash_null_keydtor, mod_hash_null_valdtor,
 447             mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 448 
 449         /*
 450          * Allocate an id space to manage minor numbers. The range of the
 451          * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
 452          * leaves half of the 32-bit minors available for driver private use.
 453          */
 454         minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
 455             MAC_PRIVATE_MINOR-1);
 456         ASSERT(minor_ids != NULL);
 457         minor_count = 0;
 458 
 459         /* Let's default to 20 seconds */
 460         mac_logging_interval = 20;
 461         mac_flow_log_enable = B_FALSE;
 462         mac_link_log_enable = B_FALSE;
 463         mac_logging_timer = 0;
 464 
 465         /* Register to be notified of noteworthy pools events */
 466         mac_pool_event_reg.pec_func =  mac_pool_event_cb;
 467         mac_pool_event_reg.pec_arg = NULL;
 468         pool_event_cb_register(&mac_pool_event_reg);
 469 }
 470 
 471 int
 472 mac_fini(void)
 473 {
 474 
 475         if (i_mac_impl_count > 0 || minor_count > 0)
 476                 return (EBUSY);
 477 
 478         pool_event_cb_unregister(&mac_pool_event_reg);
 479 
 480         id_space_destroy(minor_ids);
 481         mac_flow_fini();
 482 
 483         mod_hash_destroy_hash(i_mac_impl_hash);
 484         rw_destroy(&i_mac_impl_lock);
 485 
 486         mac_client_fini();
 487         kmem_cache_destroy(mac_ring_cache);
 488 
 489         mod_hash_destroy_hash(i_mactype_hash);
 490         mac_soft_ring_finish();
 491 
 492 
 493         return (0);
 494 }
 495 
 496 /*
 497  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
 498  * (e.g. softmac) may pass in a NULL ops argument.
 499  */
 500 void
 501 mac_init_ops(struct dev_ops *ops, const char *name)
 502 {
 503         major_t major = ddi_name_to_major((char *)name);
 504 
 505         /*
 506          * By returning on error below, we are not letting the driver continue
 507          * in an undefined context.  The mac_register() function will faill if
 508          * DN_GLDV3_DRIVER isn't set.
 509          */
 510         if (major == DDI_MAJOR_T_NONE)
 511                 return;
 512         LOCK_DEV_OPS(&devnamesp[major].dn_lock);
 513         devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
 514         UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
 515         if (ops != NULL)
 516                 dld_init_ops(ops, name);
 517 }
 518 
 519 void
 520 mac_fini_ops(struct dev_ops *ops)
 521 {
 522         dld_fini_ops(ops);
 523 }
 524 
 525 /*ARGSUSED*/
 526 static int
 527 i_mac_constructor(void *buf, void *arg, int kmflag)
 528 {
 529         mac_impl_t      *mip = buf;
 530 
 531         bzero(buf, sizeof (mac_impl_t));
 532 
 533         mip->mi_linkstate = LINK_STATE_UNKNOWN;
 534 
 535         rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
 536         mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
 537         mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
 538         mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
 539 
 540         mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
 541         cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 542         mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
 543         cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 544 
 545         mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
 546 
 547         return (0);
 548 }
 549 
 550 /*ARGSUSED*/
 551 static void
 552 i_mac_destructor(void *buf, void *arg)
 553 {
 554         mac_impl_t      *mip = buf;
 555         mac_cb_info_t   *mcbi;
 556 
 557         ASSERT(mip->mi_ref == 0);
 558         ASSERT(mip->mi_active == 0);
 559         ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
 560         ASSERT(mip->mi_devpromisc == 0);
 561         ASSERT(mip->mi_ksp == NULL);
 562         ASSERT(mip->mi_kstat_count == 0);
 563         ASSERT(mip->mi_nclients == 0);
 564         ASSERT(mip->mi_nactiveclients == 0);
 565         ASSERT(mip->mi_single_active_client == NULL);
 566         ASSERT(mip->mi_state_flags == 0);
 567         ASSERT(mip->mi_factory_addr == NULL);
 568         ASSERT(mip->mi_factory_addr_num == 0);
 569         ASSERT(mip->mi_default_tx_ring == NULL);
 570 
 571         mcbi = &mip->mi_notify_cb_info;
 572         ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
 573         ASSERT(mip->mi_notify_bits == 0);
 574         ASSERT(mip->mi_notify_thread == NULL);
 575         ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
 576         mcbi->mcbi_lockp = NULL;
 577 
 578         mcbi = &mip->mi_promisc_cb_info;
 579         ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
 580         ASSERT(mip->mi_promisc_list == NULL);
 581         ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
 582         mcbi->mcbi_lockp = NULL;
 583 
 584         ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
 585         ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
 586 
 587         rw_destroy(&mip->mi_rw_lock);
 588 
 589         mutex_destroy(&mip->mi_promisc_lock);
 590         cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
 591         mutex_destroy(&mip->mi_notify_lock);
 592         cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
 593         mutex_destroy(&mip->mi_ring_lock);
 594 
 595         ASSERT(mip->mi_bridge_link == NULL);
 596 }
 597 
 598 /* ARGSUSED */
 599 static int
 600 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
 601 {
 602         mac_ring_t *ring = (mac_ring_t *)buf;
 603 
 604         bzero(ring, sizeof (mac_ring_t));
 605         cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
 606         mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
 607         ring->mr_state = MR_FREE;
 608         return (0);
 609 }
 610 
 611 /* ARGSUSED */
 612 static void
 613 i_mac_ring_dtor(void *buf, void *arg)
 614 {
 615         mac_ring_t *ring = (mac_ring_t *)buf;
 616 
 617         cv_destroy(&ring->mr_cv);
 618         mutex_destroy(&ring->mr_lock);
 619 }
 620 
 621 /*
 622  * Common functions to do mac callback addition and deletion. Currently this is
 623  * used by promisc callbacks and notify callbacks. List addition and deletion
 624  * need to take care of list walkers. List walkers in general, can't hold list
 625  * locks and make upcall callbacks due to potential lock order and recursive
 626  * reentry issues. Instead list walkers increment the list walker count to mark
 627  * the presence of a walker thread. Addition can be carefully done to ensure
 628  * that the list walker always sees either the old list or the new list.
 629  * However the deletion can't be done while the walker is active, instead the
 630  * deleting thread simply marks the entry as logically deleted. The last walker
 631  * physically deletes and frees up the logically deleted entries when the walk
 632  * is complete.
 633  */
 634 void
 635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 636     mac_cb_t *mcb_elem)
 637 {
 638         mac_cb_t        *p;
 639         mac_cb_t        **pp;
 640 
 641         /* Verify it is not already in the list */
 642         for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 643                 if (p == mcb_elem)
 644                         break;
 645         }
 646         VERIFY(p == NULL);
 647 
 648         /*
 649          * Add it to the head of the callback list. The membar ensures that
 650          * the following list pointer manipulations reach global visibility
 651          * in exactly the program order below.
 652          */
 653         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 654 
 655         mcb_elem->mcb_nextp = *mcb_head;
 656         membar_producer();
 657         *mcb_head = mcb_elem;
 658 }
 659 
 660 /*
 661  * Mark the entry as logically deleted. If there aren't any walkers unlink
 662  * from the list. In either case return the corresponding status.
 663  */
 664 boolean_t
 665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 666     mac_cb_t *mcb_elem)
 667 {
 668         mac_cb_t        *p;
 669         mac_cb_t        **pp;
 670 
 671         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 672         /*
 673          * Search the callback list for the entry to be removed
 674          */
 675         for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 676                 if (p == mcb_elem)
 677                         break;
 678         }
 679         VERIFY(p != NULL);
 680 
 681         /*
 682          * If there are walkers just mark it as deleted and the last walker
 683          * will remove from the list and free it.
 684          */
 685         if (mcbi->mcbi_walker_cnt != 0) {
 686                 p->mcb_flags |= MCB_CONDEMNED;
 687                 mcbi->mcbi_del_cnt++;
 688                 return (B_FALSE);
 689         }
 690 
 691         ASSERT(mcbi->mcbi_del_cnt == 0);
 692         *pp = p->mcb_nextp;
 693         p->mcb_nextp = NULL;
 694         return (B_TRUE);
 695 }
 696 
 697 /*
 698  * Wait for all pending callback removals to be completed
 699  */
 700 void
 701 mac_callback_remove_wait(mac_cb_info_t *mcbi)
 702 {
 703         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 704         while (mcbi->mcbi_del_cnt != 0) {
 705                 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
 706                 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
 707         }
 708 }
 709 
 710 /*
 711  * The last mac callback walker does the cleanup. Walk the list and unlik
 712  * all the logically deleted entries and construct a temporary list of
 713  * removed entries. Return the list of removed entries to the caller.
 714  */
 715 mac_cb_t *
 716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
 717 {
 718         mac_cb_t        *p;
 719         mac_cb_t        **pp;
 720         mac_cb_t        *rmlist = NULL;         /* List of removed elements */
 721         int     cnt = 0;
 722 
 723         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 724         ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
 725 
 726         pp = mcb_head;
 727         while (*pp != NULL) {
 728                 if ((*pp)->mcb_flags & MCB_CONDEMNED) {
 729                         p = *pp;
 730                         *pp = p->mcb_nextp;
 731                         p->mcb_nextp = rmlist;
 732                         rmlist = p;
 733                         cnt++;
 734                         continue;
 735                 }
 736                 pp = &(*pp)->mcb_nextp;
 737         }
 738 
 739         ASSERT(mcbi->mcbi_del_cnt == cnt);
 740         mcbi->mcbi_del_cnt = 0;
 741         return (rmlist);
 742 }
 743 
 744 boolean_t
 745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 746 {
 747         mac_cb_t        *mcb;
 748 
 749         /* Verify it is not already in the list */
 750         for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
 751                 if (mcb == mcb_elem)
 752                         return (B_TRUE);
 753         }
 754 
 755         return (B_FALSE);
 756 }
 757 
 758 boolean_t
 759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 760 {
 761         boolean_t       found;
 762 
 763         mutex_enter(mcbi->mcbi_lockp);
 764         found = mac_callback_lookup(mcb_headp, mcb_elem);
 765         mutex_exit(mcbi->mcbi_lockp);
 766 
 767         return (found);
 768 }
 769 
 770 /* Free the list of removed callbacks */
 771 void
 772 mac_callback_free(mac_cb_t *rmlist)
 773 {
 774         mac_cb_t        *mcb;
 775         mac_cb_t        *mcb_next;
 776 
 777         for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 778                 mcb_next = mcb->mcb_nextp;
 779                 kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
 780         }
 781 }
 782 
 783 /*
 784  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
 785  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
 786  * is only a single shared total walker count, and an entry can't be physically
 787  * unlinked if a walker is active on either list. The last walker does this
 788  * cleanup of logically deleted entries.
 789  */
 790 void
 791 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
 792 {
 793         mac_cb_t        *rmlist;
 794         mac_cb_t        *mcb;
 795         mac_cb_t        *mcb_next;
 796         mac_promisc_impl_t      *mpip;
 797 
 798         /*
 799          * Construct a temporary list of deleted callbacks by walking the
 800          * the mi_promisc_list. Then for each entry in the temporary list,
 801          * remove it from the mci_promisc_list and free the entry.
 802          */
 803         rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
 804             &mip->mi_promisc_list);
 805 
 806         for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 807                 mcb_next = mcb->mcb_nextp;
 808                 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
 809                 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
 810                     &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
 811                 mcb->mcb_flags = 0;
 812                 mcb->mcb_nextp = NULL;
 813                 kmem_cache_free(mac_promisc_impl_cache, mpip);
 814         }
 815 }
 816 
 817 void
 818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
 819 {
 820         mac_cb_info_t   *mcbi;
 821 
 822         /*
 823          * Signal the notify thread even after mi_ref has become zero and
 824          * mi_disabled is set. The synchronization with the notify thread
 825          * happens in mac_unregister and that implies the driver must make
 826          * sure it is single-threaded (with respect to mac calls) and that
 827          * all pending mac calls have returned before it calls mac_unregister
 828          */
 829         rw_enter(&i_mac_impl_lock, RW_READER);
 830         if (mip->mi_state_flags & MIS_DISABLED)
 831                 goto exit;
 832 
 833         /*
 834          * Guard against incorrect notifications.  (Running a newer
 835          * mac client against an older implementation?)
 836          */
 837         if (type >= MAC_NNOTE)
 838                 goto exit;
 839 
 840         mcbi = &mip->mi_notify_cb_info;
 841         mutex_enter(mcbi->mcbi_lockp);
 842         mip->mi_notify_bits |= (1 << type);
 843         cv_broadcast(&mcbi->mcbi_cv);
 844         mutex_exit(mcbi->mcbi_lockp);
 845 
 846 exit:
 847         rw_exit(&i_mac_impl_lock);
 848 }
 849 
 850 /*
 851  * Mac serialization primitives. Please see the block comment at the
 852  * top of the file.
 853  */
 854 void
 855 i_mac_perim_enter(mac_impl_t *mip)
 856 {
 857         mac_client_impl_t       *mcip;
 858 
 859         if (mip->mi_state_flags & MIS_IS_VNIC) {
 860                 /*
 861                  * This is a VNIC. Return the lower mac since that is what
 862                  * we want to serialize on.
 863                  */
 864                 mcip = mac_vnic_lower(mip);
 865                 mip = mcip->mci_mip;
 866         }
 867 
 868         mutex_enter(&mip->mi_perim_lock);
 869         if (mip->mi_perim_owner == curthread) {
 870                 mip->mi_perim_ocnt++;
 871                 mutex_exit(&mip->mi_perim_lock);
 872                 return;
 873         }
 874 
 875         while (mip->mi_perim_owner != NULL)
 876                 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
 877 
 878         mip->mi_perim_owner = curthread;
 879         ASSERT(mip->mi_perim_ocnt == 0);
 880         mip->mi_perim_ocnt++;
 881 #ifdef DEBUG
 882         mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
 883             MAC_PERIM_STACK_DEPTH);
 884 #endif
 885         mutex_exit(&mip->mi_perim_lock);
 886 }
 887 
 888 int
 889 i_mac_perim_enter_nowait(mac_impl_t *mip)
 890 {
 891         /*
 892          * The vnic is a special case, since the serialization is done based
 893          * on the lower mac. If the lower mac is busy, it does not imply the
 894          * vnic can't be unregistered. But in the case of other drivers,
 895          * a busy perimeter or open mac handles implies that the mac is busy
 896          * and can't be unregistered.
 897          */
 898         if (mip->mi_state_flags & MIS_IS_VNIC) {
 899                 i_mac_perim_enter(mip);
 900                 return (0);
 901         }
 902 
 903         mutex_enter(&mip->mi_perim_lock);
 904         if (mip->mi_perim_owner != NULL) {
 905                 mutex_exit(&mip->mi_perim_lock);
 906                 return (EBUSY);
 907         }
 908         ASSERT(mip->mi_perim_ocnt == 0);
 909         mip->mi_perim_owner = curthread;
 910         mip->mi_perim_ocnt++;
 911         mutex_exit(&mip->mi_perim_lock);
 912 
 913         return (0);
 914 }
 915 
 916 void
 917 i_mac_perim_exit(mac_impl_t *mip)
 918 {
 919         mac_client_impl_t *mcip;
 920 
 921         if (mip->mi_state_flags & MIS_IS_VNIC) {
 922                 /*
 923                  * This is a VNIC. Return the lower mac since that is what
 924                  * we want to serialize on.
 925                  */
 926                 mcip = mac_vnic_lower(mip);
 927                 mip = mcip->mci_mip;
 928         }
 929 
 930         ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
 931 
 932         mutex_enter(&mip->mi_perim_lock);
 933         if (--mip->mi_perim_ocnt == 0) {
 934                 mip->mi_perim_owner = NULL;
 935                 cv_signal(&mip->mi_perim_cv);
 936         }
 937         mutex_exit(&mip->mi_perim_lock);
 938 }
 939 
 940 /*
 941  * Returns whether the current thread holds the mac perimeter. Used in making
 942  * assertions.
 943  */
 944 boolean_t
 945 mac_perim_held(mac_handle_t mh)
 946 {
 947         mac_impl_t      *mip = (mac_impl_t *)mh;
 948         mac_client_impl_t *mcip;
 949 
 950         if (mip->mi_state_flags & MIS_IS_VNIC) {
 951                 /*
 952                  * This is a VNIC. Return the lower mac since that is what
 953                  * we want to serialize on.
 954                  */
 955                 mcip = mac_vnic_lower(mip);
 956                 mip = mcip->mci_mip;
 957         }
 958         return (mip->mi_perim_owner == curthread);
 959 }
 960 
 961 /*
 962  * mac client interfaces to enter the mac perimeter of a mac end point, given
 963  * its mac handle, or macname or linkid.
 964  */
 965 void
 966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
 967 {
 968         mac_impl_t      *mip = (mac_impl_t *)mh;
 969 
 970         i_mac_perim_enter(mip);
 971         /*
 972          * The mac_perim_handle_t returned encodes the 'mip' and whether a
 973          * mac_open has been done internally while entering the perimeter.
 974          * This information is used in mac_perim_exit
 975          */
 976         MAC_ENCODE_MPH(*mphp, mip, 0);
 977 }
 978 
 979 int
 980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
 981 {
 982         int     err;
 983         mac_handle_t    mh;
 984 
 985         if ((err = mac_open(name, &mh)) != 0)
 986                 return (err);
 987 
 988         mac_perim_enter_by_mh(mh, mphp);
 989         MAC_ENCODE_MPH(*mphp, mh, 1);
 990         return (0);
 991 }
 992 
 993 int
 994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
 995 {
 996         int     err;
 997         mac_handle_t    mh;
 998 
 999         if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1000                 return (err);
1001 
1002         mac_perim_enter_by_mh(mh, mphp);
1003         MAC_ENCODE_MPH(*mphp, mh, 1);
1004         return (0);
1005 }
1006 
1007 void
1008 mac_perim_exit(mac_perim_handle_t mph)
1009 {
1010         mac_impl_t      *mip;
1011         boolean_t       need_close;
1012 
1013         MAC_DECODE_MPH(mph, mip, need_close);
1014         i_mac_perim_exit(mip);
1015         if (need_close)
1016                 mac_close((mac_handle_t)mip);
1017 }
1018 
1019 int
1020 mac_hold(const char *macname, mac_impl_t **pmip)
1021 {
1022         mac_impl_t      *mip;
1023         int             err;
1024 
1025         /*
1026          * Check the device name length to make sure it won't overflow our
1027          * buffer.
1028          */
1029         if (strlen(macname) >= MAXNAMELEN)
1030                 return (EINVAL);
1031 
1032         /*
1033          * Look up its entry in the global hash table.
1034          */
1035         rw_enter(&i_mac_impl_lock, RW_WRITER);
1036         err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1037             (mod_hash_val_t *)&mip);
1038 
1039         if (err != 0) {
1040                 rw_exit(&i_mac_impl_lock);
1041                 return (ENOENT);
1042         }
1043 
1044         if (mip->mi_state_flags & MIS_DISABLED) {
1045                 rw_exit(&i_mac_impl_lock);
1046                 return (ENOENT);
1047         }
1048 
1049         if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1050                 rw_exit(&i_mac_impl_lock);
1051                 return (EBUSY);
1052         }
1053 
1054         mip->mi_ref++;
1055         rw_exit(&i_mac_impl_lock);
1056 
1057         *pmip = mip;
1058         return (0);
1059 }
1060 
1061 void
1062 mac_rele(mac_impl_t *mip)
1063 {
1064         rw_enter(&i_mac_impl_lock, RW_WRITER);
1065         ASSERT(mip->mi_ref != 0);
1066         if (--mip->mi_ref == 0) {
1067                 ASSERT(mip->mi_nactiveclients == 0 &&
1068                     !(mip->mi_state_flags & MIS_EXCLUSIVE));
1069         }
1070         rw_exit(&i_mac_impl_lock);
1071 }
1072 
1073 /*
1074  * Private GLDv3 function to start a MAC instance.
1075  */
1076 int
1077 mac_start(mac_handle_t mh)
1078 {
1079         mac_impl_t      *mip = (mac_impl_t *)mh;
1080         int             err = 0;
1081         mac_group_t     *defgrp;
1082 
1083         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1084         ASSERT(mip->mi_start != NULL);
1085 
1086         /*
1087          * Check whether the device is already started.
1088          */
1089         if (mip->mi_active++ == 0) {
1090                 mac_ring_t *ring = NULL;
1091 
1092                 /*
1093                  * Start the device.
1094                  */
1095                 err = mip->mi_start(mip->mi_driver);
1096                 if (err != 0) {
1097                         mip->mi_active--;
1098                         return (err);
1099                 }
1100 
1101                 /*
1102                  * Start the default tx ring.
1103                  */
1104                 if (mip->mi_default_tx_ring != NULL) {
1105 
1106                         ring = (mac_ring_t *)mip->mi_default_tx_ring;
1107                         if (ring->mr_state != MR_INUSE) {
1108                                 err = mac_start_ring(ring);
1109                                 if (err != 0) {
1110                                         mip->mi_active--;
1111                                         return (err);
1112                                 }
1113                         }
1114                 }
1115 
1116                 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1117                         /*
1118                          * Start the default ring, since it will be needed
1119                          * to receive broadcast and multicast traffic for
1120                          * both primary and non-primary MAC clients.
1121                          */
1122                         ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1123                         err = mac_start_group_and_rings(defgrp);
1124                         if (err != 0) {
1125                                 mip->mi_active--;
1126                                 if ((ring != NULL) &&
1127                                     (ring->mr_state == MR_INUSE))
1128                                         mac_stop_ring(ring);
1129                                 return (err);
1130                         }
1131                         mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1132                 }
1133         }
1134 
1135         return (err);
1136 }
1137 
1138 /*
1139  * Private GLDv3 function to stop a MAC instance.
1140  */
1141 void
1142 mac_stop(mac_handle_t mh)
1143 {
1144         mac_impl_t      *mip = (mac_impl_t *)mh;
1145         mac_group_t     *grp;
1146 
1147         ASSERT(mip->mi_stop != NULL);
1148         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1149 
1150         /*
1151          * Check whether the device is still needed.
1152          */
1153         ASSERT(mip->mi_active != 0);
1154         if (--mip->mi_active == 0) {
1155                 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1156                         /*
1157                          * There should be no more active clients since the
1158                          * MAC is being stopped. Stop the default RX group
1159                          * and transition it back to registered state.
1160                          *
1161                          * When clients are torn down, the groups
1162                          * are release via mac_release_rx_group which
1163                          * knows the the default group is always in
1164                          * started mode since broadcast uses it. So
1165                          * we can assert that their are no clients
1166                          * (since mac_bcast_add doesn't register itself
1167                          * as a client) and group is in SHARED state.
1168                          */
1169                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1170                         ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1171                             mip->mi_nactiveclients == 0);
1172                         mac_stop_group_and_rings(grp);
1173                         mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1174                 }
1175 
1176                 if (mip->mi_default_tx_ring != NULL) {
1177                         mac_ring_t *ring;
1178 
1179                         ring = (mac_ring_t *)mip->mi_default_tx_ring;
1180                         if (ring->mr_state == MR_INUSE) {
1181                                 mac_stop_ring(ring);
1182                                 ring->mr_flag = 0;
1183                         }
1184                 }
1185 
1186                 /*
1187                  * Stop the device.
1188                  */
1189                 mip->mi_stop(mip->mi_driver);
1190         }
1191 }
1192 
1193 int
1194 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1195 {
1196         int             err = 0;
1197 
1198         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1199         ASSERT(mip->mi_setpromisc != NULL);
1200 
1201         if (on) {
1202                 /*
1203                  * Enable promiscuous mode on the device if not yet enabled.
1204                  */
1205                 if (mip->mi_devpromisc++ == 0) {
1206                         err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1207                         if (err != 0) {
1208                                 mip->mi_devpromisc--;
1209                                 return (err);
1210                         }
1211                         i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1212                 }
1213         } else {
1214                 if (mip->mi_devpromisc == 0)
1215                         return (EPROTO);
1216 
1217                 /*
1218                  * Disable promiscuous mode on the device if this is the last
1219                  * enabling.
1220                  */
1221                 if (--mip->mi_devpromisc == 0) {
1222                         err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1223                         if (err != 0) {
1224                                 mip->mi_devpromisc++;
1225                                 return (err);
1226                         }
1227                         i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1228                 }
1229         }
1230 
1231         return (0);
1232 }
1233 
1234 /*
1235  * The promiscuity state can change any time. If the caller needs to take
1236  * actions that are atomic with the promiscuity state, then the caller needs
1237  * to bracket the entire sequence with mac_perim_enter/exit
1238  */
1239 boolean_t
1240 mac_promisc_get(mac_handle_t mh)
1241 {
1242         mac_impl_t              *mip = (mac_impl_t *)mh;
1243 
1244         /*
1245          * Return the current promiscuity.
1246          */
1247         return (mip->mi_devpromisc != 0);
1248 }
1249 
1250 /*
1251  * Invoked at MAC instance attach time to initialize the list
1252  * of factory MAC addresses supported by a MAC instance. This function
1253  * builds a local cache in the mac_impl_t for the MAC addresses
1254  * supported by the underlying hardware. The MAC clients themselves
1255  * use the mac_addr_factory*() functions to query and reserve
1256  * factory MAC addresses.
1257  */
1258 void
1259 mac_addr_factory_init(mac_impl_t *mip)
1260 {
1261         mac_capab_multifactaddr_t capab;
1262         uint8_t *addr;
1263         int i;
1264 
1265         /*
1266          * First round to see how many factory MAC addresses are available.
1267          */
1268         bzero(&capab, sizeof (capab));
1269         if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1270             &capab) || (capab.mcm_naddr == 0)) {
1271                 /*
1272                  * The MAC instance doesn't support multiple factory
1273                  * MAC addresses, we're done here.
1274                  */
1275                 return;
1276         }
1277 
1278         /*
1279          * Allocate the space and get all the factory addresses.
1280          */
1281         addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1282         capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1283 
1284         mip->mi_factory_addr_num = capab.mcm_naddr;
1285         mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1286             sizeof (mac_factory_addr_t), KM_SLEEP);
1287 
1288         for (i = 0; i < capab.mcm_naddr; i++) {
1289                 bcopy(addr + i * MAXMACADDRLEN,
1290                     mip->mi_factory_addr[i].mfa_addr,
1291                     mip->mi_type->mt_addr_length);
1292                 mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1293         }
1294 
1295         kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1296 }
1297 
1298 void
1299 mac_addr_factory_fini(mac_impl_t *mip)
1300 {
1301         if (mip->mi_factory_addr == NULL) {
1302                 ASSERT(mip->mi_factory_addr_num == 0);
1303                 return;
1304         }
1305 
1306         kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1307             sizeof (mac_factory_addr_t));
1308 
1309         mip->mi_factory_addr = NULL;
1310         mip->mi_factory_addr_num = 0;
1311 }
1312 
1313 /*
1314  * Reserve a factory MAC address. If *slot is set to -1, the function
1315  * attempts to reserve any of the available factory MAC addresses and
1316  * returns the reserved slot id. If no slots are available, the function
1317  * returns ENOSPC. If *slot is not set to -1, the function reserves
1318  * the specified slot if it is available, or returns EBUSY is the slot
1319  * is already used. Returns ENOTSUP if the underlying MAC does not
1320  * support multiple factory addresses. If the slot number is not -1 but
1321  * is invalid, returns EINVAL.
1322  */
1323 int
1324 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1325 {
1326         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1327         mac_impl_t *mip = mcip->mci_mip;
1328         int i, ret = 0;
1329 
1330         i_mac_perim_enter(mip);
1331         /*
1332          * Protect against concurrent readers that may need a self-consistent
1333          * view of the factory addresses
1334          */
1335         rw_enter(&mip->mi_rw_lock, RW_WRITER);
1336 
1337         if (mip->mi_factory_addr_num == 0) {
1338                 ret = ENOTSUP;
1339                 goto bail;
1340         }
1341 
1342         if (*slot != -1) {
1343                 /* check the specified slot */
1344                 if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1345                         ret = EINVAL;
1346                         goto bail;
1347                 }
1348                 if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1349                         ret = EBUSY;
1350                         goto bail;
1351                 }
1352         } else {
1353                 /* pick the next available slot */
1354                 for (i = 0; i < mip->mi_factory_addr_num; i++) {
1355                         if (!mip->mi_factory_addr[i].mfa_in_use)
1356                                 break;
1357                 }
1358 
1359                 if (i == mip->mi_factory_addr_num) {
1360                         ret = ENOSPC;
1361                         goto bail;
1362                 }
1363                 *slot = i+1;
1364         }
1365 
1366         mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1367         mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1368 
1369 bail:
1370         rw_exit(&mip->mi_rw_lock);
1371         i_mac_perim_exit(mip);
1372         return (ret);
1373 }
1374 
1375 /*
1376  * Release the specified factory MAC address slot.
1377  */
1378 void
1379 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1380 {
1381         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1382         mac_impl_t *mip = mcip->mci_mip;
1383 
1384         i_mac_perim_enter(mip);
1385         /*
1386          * Protect against concurrent readers that may need a self-consistent
1387          * view of the factory addresses
1388          */
1389         rw_enter(&mip->mi_rw_lock, RW_WRITER);
1390 
1391         ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1392         ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1393 
1394         mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1395 
1396         rw_exit(&mip->mi_rw_lock);
1397         i_mac_perim_exit(mip);
1398 }
1399 
1400 /*
1401  * Stores in mac_addr the value of the specified MAC address. Returns
1402  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1403  * The caller must provide a string of at least MAXNAMELEN bytes.
1404  */
1405 void
1406 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1407     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1408 {
1409         mac_impl_t *mip = (mac_impl_t *)mh;
1410         boolean_t in_use;
1411 
1412         ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1413 
1414         /*
1415          * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1416          * and mi_rw_lock
1417          */
1418         rw_enter(&mip->mi_rw_lock, RW_READER);
1419         bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1420         *addr_len = mip->mi_type->mt_addr_length;
1421         in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1422         if (in_use && client_name != NULL) {
1423                 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1424                     client_name, MAXNAMELEN);
1425         }
1426         if (in_use_arg != NULL)
1427                 *in_use_arg = in_use;
1428         rw_exit(&mip->mi_rw_lock);
1429 }
1430 
1431 /*
1432  * Returns the number of factory MAC addresses (in addition to the
1433  * primary MAC address), 0 if the underlying MAC doesn't support
1434  * that feature.
1435  */
1436 uint_t
1437 mac_addr_factory_num(mac_handle_t mh)
1438 {
1439         mac_impl_t *mip = (mac_impl_t *)mh;
1440 
1441         return (mip->mi_factory_addr_num);
1442 }
1443 
1444 
1445 void
1446 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1447 {
1448         mac_ring_t      *ring;
1449 
1450         for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1451                 ring->mr_flag &= ~flag;
1452 }
1453 
1454 /*
1455  * The following mac_hwrings_xxx() functions are private mac client functions
1456  * used by the aggr driver to access and control the underlying HW Rx group
1457  * and rings. In this case, the aggr driver has exclusive control of the
1458  * underlying HW Rx group/rings, it calls the following functions to
1459  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1460  * addresses, or set up the Rx callback.
1461  */
1462 /* ARGSUSED */
1463 static void
1464 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1465     mblk_t *mp_chain, boolean_t loopback)
1466 {
1467         mac_soft_ring_set_t     *mac_srs = (mac_soft_ring_set_t *)srs;
1468         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
1469         mac_direct_rx_t         proc;
1470         void                    *arg1;
1471         mac_resource_handle_t   arg2;
1472 
1473         proc = srs_rx->sr_func;
1474         arg1 = srs_rx->sr_arg1;
1475         arg2 = mac_srs->srs_mrh;
1476 
1477         proc(arg1, arg2, mp_chain, NULL);
1478 }
1479 
1480 /*
1481  * This function is called to get the list of HW rings that are reserved by
1482  * an exclusive mac client.
1483  *
1484  * Return value: the number of HW rings.
1485  */
1486 int
1487 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1488     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1489 {
1490         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
1491         flow_entry_t            *flent = mcip->mci_flent;
1492         mac_group_t             *grp;
1493         mac_ring_t              *ring;
1494         int                     cnt = 0;
1495 
1496         if (rtype == MAC_RING_TYPE_RX) {
1497                 grp = flent->fe_rx_ring_group;
1498         } else if (rtype == MAC_RING_TYPE_TX) {
1499                 grp = flent->fe_tx_ring_group;
1500         } else {
1501                 ASSERT(B_FALSE);
1502                 return (-1);
1503         }
1504         /*
1505          * The mac client did not reserve any RX group, return directly.
1506          * This is probably because the underlying MAC does not support
1507          * any groups.
1508          */
1509         if (hwgh != NULL)
1510                 *hwgh = NULL;
1511         if (grp == NULL)
1512                 return (0);
1513         /*
1514          * This group must be reserved by this mac client.
1515          */
1516         ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1517             (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1518 
1519         for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1520                 ASSERT(cnt < MAX_RINGS_PER_GROUP);
1521                 hwrh[cnt] = (mac_ring_handle_t)ring;
1522         }
1523         if (hwgh != NULL)
1524                 *hwgh = (mac_group_handle_t)grp;
1525 
1526         return (cnt);
1527 }
1528 
1529 /*
1530  * This function is called to get info about Tx/Rx rings.
1531  *
1532  * Return value: returns uint_t which will have various bits set
1533  * that indicates different properties of the ring.
1534  */
1535 uint_t
1536 mac_hwring_getinfo(mac_ring_handle_t rh)
1537 {
1538         mac_ring_t *ring = (mac_ring_t *)rh;
1539         mac_ring_info_t *info = &ring->mr_info;
1540 
1541         return (info->mri_flags);
1542 }
1543 
1544 /*
1545  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1546  * setup the RX callback of the mac client which exclusively controls
1547  * HW ring.
1548  */
1549 void
1550 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1551     mac_ring_handle_t pseudo_rh)
1552 {
1553         mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1554         mac_ring_t              *pseudo_ring;
1555         mac_soft_ring_set_t     *mac_srs = hw_ring->mr_srs;
1556 
1557         if (pseudo_rh != NULL) {
1558                 pseudo_ring = (mac_ring_t *)pseudo_rh;
1559                 /* Export the ddi handles to pseudo ring */
1560                 pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1561                     hw_ring->mr_info.mri_intr.mi_ddi_handle;
1562                 pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1563                     hw_ring->mr_info.mri_intr.mi_ddi_shared;
1564                 /*
1565                  * Save a pointer to pseudo ring in the hw ring. If
1566                  * interrupt handle changes, the hw ring will be
1567                  * notified of the change (see mac_ring_intr_set())
1568                  * and the appropriate change has to be made to
1569                  * the pseudo ring that has exported the ddi handle.
1570                  */
1571                 hw_ring->mr_prh = pseudo_rh;
1572         }
1573 
1574         if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1575                 ASSERT(!(mac_srs->srs_type & SRST_TX));
1576                 mac_srs->srs_mrh = prh;
1577                 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1578         }
1579 }
1580 
1581 void
1582 mac_hwring_teardown(mac_ring_handle_t hwrh)
1583 {
1584         mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1585         mac_soft_ring_set_t     *mac_srs;
1586 
1587         if (hw_ring == NULL)
1588                 return;
1589         hw_ring->mr_prh = NULL;
1590         if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1591                 mac_srs = hw_ring->mr_srs;
1592                 ASSERT(!(mac_srs->srs_type & SRST_TX));
1593                 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1594                 mac_srs->srs_mrh = NULL;
1595         }
1596 }
1597 
1598 int
1599 mac_hwring_disable_intr(mac_ring_handle_t rh)
1600 {
1601         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1602         mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1603 
1604         return (intr->mi_disable(intr->mi_handle));
1605 }
1606 
1607 int
1608 mac_hwring_enable_intr(mac_ring_handle_t rh)
1609 {
1610         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1611         mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1612 
1613         return (intr->mi_enable(intr->mi_handle));
1614 }
1615 
1616 int
1617 mac_hwring_start(mac_ring_handle_t rh)
1618 {
1619         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1620 
1621         MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1622         return (0);
1623 }
1624 
1625 void
1626 mac_hwring_stop(mac_ring_handle_t rh)
1627 {
1628         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1629 
1630         mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1631 }
1632 
1633 mblk_t *
1634 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1635 {
1636         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1637         mac_ring_info_t *info = &rr_ring->mr_info;
1638 
1639         return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1640 }
1641 
1642 /*
1643  * Send packets through a selected tx ring.
1644  */
1645 mblk_t *
1646 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1647 {
1648         mac_ring_t *ring = (mac_ring_t *)rh;
1649         mac_ring_info_t *info = &ring->mr_info;
1650 
1651         ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1652             ring->mr_state >= MR_INUSE);
1653         return (info->mri_tx(info->mri_driver, mp));
1654 }
1655 
1656 /*
1657  * Query stats for a particular rx/tx ring
1658  */
1659 int
1660 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1661 {
1662         mac_ring_t      *ring = (mac_ring_t *)rh;
1663         mac_ring_info_t *info = &ring->mr_info;
1664 
1665         return (info->mri_stat(info->mri_driver, stat, val));
1666 }
1667 
1668 /*
1669  * Private function that is only used by aggr to send packets through
1670  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1671  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1672  * access to mac_impl_t to send packets through m_tx() entry point.
1673  * It accomplishes this by calling mac_hwring_send_priv() function.
1674  */
1675 mblk_t *
1676 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1677 {
1678         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1679         mac_impl_t *mip = mcip->mci_mip;
1680 
1681         MAC_TX(mip, rh, mp, mcip);
1682         return (mp);
1683 }
1684 
1685 /*
1686  * Private function that is only used by aggr to update the default transmission
1687  * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1688  * temporarily be down, it may need to update the default ring that is used by
1689  * MAC such that it refers to a link that can actively be used to send traffic.
1690  * Note that this is different from the case where the port has been removed
1691  * from the group. In those cases, all of the rings will be torn down because
1692  * the ring will no longer exist. It's important to give aggr a case where the
1693  * rings can still exist such that it may be able to continue to send LACP PDUs
1694  * to potentially restore the link.
1695  *
1696  * Finally, we explicitly don't do anything if the ring hasn't been enabled yet.
1697  * This is to help out aggr which doesn't really know the internal state that
1698  * MAC does about the rings and can't know that it's not quite ready for use
1699  * yet.
1700  */
1701 void
1702 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1703 {
1704         mac_impl_t *mip = (mac_impl_t *)mh;
1705         mac_ring_t *ring = (mac_ring_t *)rh;
1706 
1707         ASSERT(MAC_PERIM_HELD(mh));
1708         VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1709 
1710         if (ring->mr_state != MR_INUSE)
1711                 return;
1712 
1713         mip->mi_default_tx_ring = rh;
1714 }
1715 
1716 int
1717 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1718 {
1719         mac_group_t *group = (mac_group_t *)gh;
1720 
1721         return (mac_group_addmac(group, addr));
1722 }
1723 
1724 int
1725 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1726 {
1727         mac_group_t *group = (mac_group_t *)gh;
1728 
1729         return (mac_group_remmac(group, addr));
1730 }
1731 
1732 /*
1733  * Set the RX group to be shared/reserved. Note that the group must be
1734  * started/stopped outside of this function.
1735  */
1736 void
1737 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1738 {
1739         /*
1740          * If there is no change in the group state, just return.
1741          */
1742         if (grp->mrg_state == state)
1743                 return;
1744 
1745         switch (state) {
1746         case MAC_GROUP_STATE_RESERVED:
1747                 /*
1748                  * Successfully reserved the group.
1749                  *
1750                  * Given that there is an exclusive client controlling this
1751                  * group, we enable the group level polling when available,
1752                  * so that SRSs get to turn on/off individual rings they's
1753                  * assigned to.
1754                  */
1755                 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1756 
1757                 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1758                     GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1759                         GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1760                 }
1761                 break;
1762 
1763         case MAC_GROUP_STATE_SHARED:
1764                 /*
1765                  * Set all rings of this group to software classified.
1766                  * If the group has an overriding interrupt, then re-enable it.
1767                  */
1768                 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1769 
1770                 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1771                     GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1772                         GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1773                 }
1774                 /* The ring is not available for reservations any more */
1775                 break;
1776 
1777         case MAC_GROUP_STATE_REGISTERED:
1778                 /* Also callable from mac_register, perim is not held */
1779                 break;
1780 
1781         default:
1782                 ASSERT(B_FALSE);
1783                 break;
1784         }
1785 
1786         grp->mrg_state = state;
1787 }
1788 
1789 /*
1790  * Quiesce future hardware classified packets for the specified Rx ring
1791  */
1792 static void
1793 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1794 {
1795         ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1796         ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1797 
1798         mutex_enter(&rx_ring->mr_lock);
1799         rx_ring->mr_flag |= ring_flag;
1800         while (rx_ring->mr_refcnt != 0)
1801                 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1802         mutex_exit(&rx_ring->mr_lock);
1803 }
1804 
1805 /*
1806  * Please see mac_tx for details about the per cpu locking scheme
1807  */
1808 static void
1809 mac_tx_lock_all(mac_client_impl_t *mcip)
1810 {
1811         int     i;
1812 
1813         for (i = 0; i <= mac_tx_percpu_cnt; i++)
1814                 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1815 }
1816 
1817 static void
1818 mac_tx_unlock_all(mac_client_impl_t *mcip)
1819 {
1820         int     i;
1821 
1822         for (i = mac_tx_percpu_cnt; i >= 0; i--)
1823                 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1824 }
1825 
1826 static void
1827 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1828 {
1829         int     i;
1830 
1831         for (i = mac_tx_percpu_cnt; i > 0; i--)
1832                 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1833 }
1834 
1835 static int
1836 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1837 {
1838         int     i;
1839         int     refcnt = 0;
1840 
1841         for (i = 0; i <= mac_tx_percpu_cnt; i++)
1842                 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1843 
1844         return (refcnt);
1845 }
1846 
1847 /*
1848  * Stop future Tx packets coming down from the client in preparation for
1849  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1850  * of rings between clients
1851  */
1852 void
1853 mac_tx_client_block(mac_client_impl_t *mcip)
1854 {
1855         mac_tx_lock_all(mcip);
1856         mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1857         while (mac_tx_sum_refcnt(mcip) != 0) {
1858                 mac_tx_unlock_allbutzero(mcip);
1859                 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1860                 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1861                 mac_tx_lock_all(mcip);
1862         }
1863         mac_tx_unlock_all(mcip);
1864 }
1865 
1866 void
1867 mac_tx_client_unblock(mac_client_impl_t *mcip)
1868 {
1869         mac_tx_lock_all(mcip);
1870         mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1871         mac_tx_unlock_all(mcip);
1872         /*
1873          * We may fail to disable flow control for the last MAC_NOTE_TX
1874          * notification because the MAC client is quiesced. Send the
1875          * notification again.
1876          */
1877         i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1878 }
1879 
1880 /*
1881  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1882  * quiesce is done.
1883  */
1884 static void
1885 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1886 {
1887         mutex_enter(&srs->srs_lock);
1888         while (!(srs->srs_state & srs_flag))
1889                 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1890         mutex_exit(&srs->srs_lock);
1891 }
1892 
1893 /*
1894  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1895  * works bottom up by cutting off packet flow from the bottommost point in the
1896  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1897  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1898  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1899  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1900  * for the SRS and MR flags. In the former case the threads pause waiting for
1901  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1902  * is also mostly similar to the above.
1903  *
1904  * 1. Stop future hardware classified packets at the lowest level in the mac.
1905  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1906  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1907  *    from increasing. Upcalls from the driver that come through hardware
1908  *    classification will be dropped in mac_rx from now on. Then we wait for
1909  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1910  *    sure there aren't any upcall threads from the driver through hardware
1911  *    classification. In the case of SRS teardown we also remove the
1912  *    classification rule in the driver.
1913  *
1914  * 2. Stop future software classified packets by marking the flow entry with
1915  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1916  *    increasing. We also remove the flow entry from the table in the latter
1917  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1918  *    that indicates there aren't any active threads using that flow entry.
1919  *
1920  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1921  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1922  *    with the SRS worker thread serving as a master controller. This
1923  *    mechansim is explained in mac_srs_worker_quiesce().
1924  *
1925  * The restart mechanism to reactivate the SRS and softrings is explained
1926  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1927  * restart sequence.
1928  */
1929 void
1930 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1931 {
1932         flow_entry_t    *flent = srs->srs_flent;
1933         uint_t  mr_flag, srs_done_flag;
1934 
1935         ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1936         ASSERT(!(srs->srs_type & SRST_TX));
1937 
1938         if (srs_quiesce_flag == SRS_CONDEMNED) {
1939                 mr_flag = MR_CONDEMNED;
1940                 srs_done_flag = SRS_CONDEMNED_DONE;
1941                 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1942                         mac_srs_client_poll_disable(srs->srs_mcip, srs);
1943         } else {
1944                 ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1945                 mr_flag = MR_QUIESCE;
1946                 srs_done_flag = SRS_QUIESCE_DONE;
1947                 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1948                         mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1949         }
1950 
1951         if (srs->srs_ring != NULL) {
1952                 mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1953         } else {
1954                 /*
1955                  * SRS is driven by software classification. In case
1956                  * of CONDEMNED, the top level teardown functions will
1957                  * deal with flow removal.
1958                  */
1959                 if (srs_quiesce_flag != SRS_CONDEMNED) {
1960                         FLOW_MARK(flent, FE_QUIESCE);
1961                         mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1962                 }
1963         }
1964 
1965         /*
1966          * Signal the SRS to quiesce itself, and then cv_wait for the
1967          * SRS quiesce to complete. The SRS worker thread will wake us
1968          * up when the quiesce is complete
1969          */
1970         mac_srs_signal(srs, srs_quiesce_flag);
1971         mac_srs_quiesce_wait(srs, srs_done_flag);
1972 }
1973 
1974 /*
1975  * Remove an SRS.
1976  */
1977 void
1978 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1979 {
1980         flow_entry_t *flent = srs->srs_flent;
1981         int i;
1982 
1983         mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1984         /*
1985          * Locate and remove our entry in the fe_rx_srs[] array, and
1986          * adjust the fe_rx_srs array entries and array count by
1987          * moving the last entry into the vacated spot.
1988          */
1989         mutex_enter(&flent->fe_lock);
1990         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1991                 if (flent->fe_rx_srs[i] == srs)
1992                         break;
1993         }
1994 
1995         ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1996         if (i != flent->fe_rx_srs_cnt - 1) {
1997                 flent->fe_rx_srs[i] =
1998                     flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1999                 i = flent->fe_rx_srs_cnt - 1;
2000         }
2001 
2002         flent->fe_rx_srs[i] = NULL;
2003         flent->fe_rx_srs_cnt--;
2004         mutex_exit(&flent->fe_lock);
2005 
2006         mac_srs_free(srs);
2007 }
2008 
2009 static void
2010 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2011 {
2012         mutex_enter(&srs->srs_lock);
2013         srs->srs_state &= ~flag;
2014         mutex_exit(&srs->srs_lock);
2015 }
2016 
2017 void
2018 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2019 {
2020         flow_entry_t    *flent = srs->srs_flent;
2021         mac_ring_t      *mr;
2022 
2023         ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2024         ASSERT((srs->srs_type & SRST_TX) == 0);
2025 
2026         /*
2027          * This handles a change in the number of SRSs between the quiesce and
2028          * and restart operation of a flow.
2029          */
2030         if (!SRS_QUIESCED(srs))
2031                 return;
2032 
2033         /*
2034          * Signal the SRS to restart itself. Wait for the restart to complete
2035          * Note that we only restart the SRS if it is not marked as
2036          * permanently quiesced.
2037          */
2038         if (!SRS_QUIESCED_PERMANENT(srs)) {
2039                 mac_srs_signal(srs, SRS_RESTART);
2040                 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2041                 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2042 
2043                 mac_srs_client_poll_restart(srs->srs_mcip, srs);
2044         }
2045 
2046         /* Finally clear the flags to let the packets in */
2047         mr = srs->srs_ring;
2048         if (mr != NULL) {
2049                 MAC_RING_UNMARK(mr, MR_QUIESCE);
2050                 /* In case the ring was stopped, safely restart it */
2051                 if (mr->mr_state != MR_INUSE)
2052                         (void) mac_start_ring(mr);
2053         } else {
2054                 FLOW_UNMARK(flent, FE_QUIESCE);
2055         }
2056 }
2057 
2058 /*
2059  * Temporary quiesce of a flow and associated Rx SRS.
2060  * Please see block comment above mac_rx_classify_flow_rem.
2061  */
2062 /* ARGSUSED */
2063 int
2064 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2065 {
2066         int             i;
2067 
2068         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2069                 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2070                     SRS_QUIESCE);
2071         }
2072         return (0);
2073 }
2074 
2075 /*
2076  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2077  * Please see block comment above mac_rx_classify_flow_rem
2078  */
2079 /* ARGSUSED */
2080 int
2081 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2082 {
2083         int             i;
2084 
2085         for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2086                 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2087 
2088         return (0);
2089 }
2090 
2091 void
2092 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2093 {
2094         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2095         flow_entry_t            *flent = mcip->mci_flent;
2096         mac_impl_t              *mip = mcip->mci_mip;
2097         mac_soft_ring_set_t     *mac_srs;
2098         int                     i;
2099 
2100         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2101 
2102         if (flent == NULL)
2103                 return;
2104 
2105         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2106                 mac_srs = flent->fe_rx_srs[i];
2107                 mutex_enter(&mac_srs->srs_lock);
2108                 if (on)
2109                         mac_srs->srs_state |= SRS_QUIESCE_PERM;
2110                 else
2111                         mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2112                 mutex_exit(&mac_srs->srs_lock);
2113         }
2114 }
2115 
2116 void
2117 mac_rx_client_quiesce(mac_client_handle_t mch)
2118 {
2119         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2120         mac_impl_t              *mip = mcip->mci_mip;
2121 
2122         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2123 
2124         if (MCIP_DATAPATH_SETUP(mcip)) {
2125                 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2126                     NULL);
2127                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2128                     mac_rx_classify_flow_quiesce, NULL);
2129         }
2130 }
2131 
2132 void
2133 mac_rx_client_restart(mac_client_handle_t mch)
2134 {
2135         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2136         mac_impl_t              *mip = mcip->mci_mip;
2137 
2138         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2139 
2140         if (MCIP_DATAPATH_SETUP(mcip)) {
2141                 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2142                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2143                     mac_rx_classify_flow_restart, NULL);
2144         }
2145 }
2146 
2147 /*
2148  * This function only quiesces the Tx SRS and softring worker threads. Callers
2149  * need to make sure that there aren't any mac client threads doing current or
2150  * future transmits in the mac before calling this function.
2151  */
2152 void
2153 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2154 {
2155         mac_client_impl_t       *mcip = srs->srs_mcip;
2156 
2157         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2158 
2159         ASSERT(srs->srs_type & SRST_TX);
2160         ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2161             srs_quiesce_flag == SRS_QUIESCE);
2162 
2163         /*
2164          * Signal the SRS to quiesce itself, and then cv_wait for the
2165          * SRS quiesce to complete. The SRS worker thread will wake us
2166          * up when the quiesce is complete
2167          */
2168         mac_srs_signal(srs, srs_quiesce_flag);
2169         mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2170             SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2171 }
2172 
2173 void
2174 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2175 {
2176         /*
2177          * Resizing the fanout could result in creation of new SRSs.
2178          * They may not necessarily be in the quiesced state in which
2179          * case it need be restarted
2180          */
2181         if (!SRS_QUIESCED(srs))
2182                 return;
2183 
2184         mac_srs_signal(srs, SRS_RESTART);
2185         mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2186         mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2187 }
2188 
2189 /*
2190  * Temporary quiesce of a flow and associated Rx SRS.
2191  * Please see block comment above mac_rx_srs_quiesce
2192  */
2193 /* ARGSUSED */
2194 int
2195 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2196 {
2197         /*
2198          * The fe_tx_srs is null for a subflow on an interface that is
2199          * not plumbed
2200          */
2201         if (flent->fe_tx_srs != NULL)
2202                 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2203         return (0);
2204 }
2205 
2206 /* ARGSUSED */
2207 int
2208 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2209 {
2210         /*
2211          * The fe_tx_srs is null for a subflow on an interface that is
2212          * not plumbed
2213          */
2214         if (flent->fe_tx_srs != NULL)
2215                 mac_tx_srs_restart(flent->fe_tx_srs);
2216         return (0);
2217 }
2218 
2219 static void
2220 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2221 {
2222         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2223 
2224         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2225 
2226         mac_tx_client_block(mcip);
2227         if (MCIP_TX_SRS(mcip) != NULL) {
2228                 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2229                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2230                     mac_tx_flow_quiesce, NULL);
2231         }
2232 }
2233 
2234 void
2235 mac_tx_client_quiesce(mac_client_handle_t mch)
2236 {
2237         i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2238 }
2239 
2240 void
2241 mac_tx_client_condemn(mac_client_handle_t mch)
2242 {
2243         i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2244 }
2245 
2246 void
2247 mac_tx_client_restart(mac_client_handle_t mch)
2248 {
2249         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2250 
2251         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2252 
2253         mac_tx_client_unblock(mcip);
2254         if (MCIP_TX_SRS(mcip) != NULL) {
2255                 mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2256                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2257                     mac_tx_flow_restart, NULL);
2258         }
2259 }
2260 
2261 void
2262 mac_tx_client_flush(mac_client_impl_t *mcip)
2263 {
2264         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2265 
2266         mac_tx_client_quiesce((mac_client_handle_t)mcip);
2267         mac_tx_client_restart((mac_client_handle_t)mcip);
2268 }
2269 
2270 void
2271 mac_client_quiesce(mac_client_impl_t *mcip)
2272 {
2273         mac_rx_client_quiesce((mac_client_handle_t)mcip);
2274         mac_tx_client_quiesce((mac_client_handle_t)mcip);
2275 }
2276 
2277 void
2278 mac_client_restart(mac_client_impl_t *mcip)
2279 {
2280         mac_rx_client_restart((mac_client_handle_t)mcip);
2281         mac_tx_client_restart((mac_client_handle_t)mcip);
2282 }
2283 
2284 /*
2285  * Allocate a minor number.
2286  */
2287 minor_t
2288 mac_minor_hold(boolean_t sleep)
2289 {
2290         minor_t minor;
2291 
2292         /*
2293          * Grab a value from the arena.
2294          */
2295         atomic_inc_32(&minor_count);
2296 
2297         if (sleep)
2298                 minor = (uint_t)id_alloc(minor_ids);
2299         else
2300                 minor = (uint_t)id_alloc_nosleep(minor_ids);
2301 
2302         if (minor == 0) {
2303                 atomic_dec_32(&minor_count);
2304                 return (0);
2305         }
2306 
2307         return (minor);
2308 }
2309 
2310 /*
2311  * Release a previously allocated minor number.
2312  */
2313 void
2314 mac_minor_rele(minor_t minor)
2315 {
2316         /*
2317          * Return the value to the arena.
2318          */
2319         id_free(minor_ids, minor);
2320         atomic_dec_32(&minor_count);
2321 }
2322 
2323 uint32_t
2324 mac_no_notification(mac_handle_t mh)
2325 {
2326         mac_impl_t *mip = (mac_impl_t *)mh;
2327 
2328         return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2329             mip->mi_capab_legacy.ml_unsup_note : 0);
2330 }
2331 
2332 /*
2333  * Prevent any new opens of this mac in preparation for unregister
2334  */
2335 int
2336 i_mac_disable(mac_impl_t *mip)
2337 {
2338         mac_client_impl_t       *mcip;
2339 
2340         rw_enter(&i_mac_impl_lock, RW_WRITER);
2341         if (mip->mi_state_flags & MIS_DISABLED) {
2342                 /* Already disabled, return success */
2343                 rw_exit(&i_mac_impl_lock);
2344                 return (0);
2345         }
2346         /*
2347          * See if there are any other references to this mac_t (e.g., VLAN's).
2348          * If so return failure. If all the other checks below pass, then
2349          * set mi_disabled atomically under the i_mac_impl_lock to prevent
2350          * any new VLAN's from being created or new mac client opens of this
2351          * mac end point.
2352          */
2353         if (mip->mi_ref > 0) {
2354                 rw_exit(&i_mac_impl_lock);
2355                 return (EBUSY);
2356         }
2357 
2358         /*
2359          * mac clients must delete all multicast groups they join before
2360          * closing. bcast groups are reference counted, the last client
2361          * to delete the group will wait till the group is physically
2362          * deleted. Since all clients have closed this mac end point
2363          * mi_bcast_ngrps must be zero at this point
2364          */
2365         ASSERT(mip->mi_bcast_ngrps == 0);
2366 
2367         /*
2368          * Don't let go of this if it has some flows.
2369          * All other code guarantees no flows are added to a disabled
2370          * mac, therefore it is sufficient to check for the flow table
2371          * only here.
2372          */
2373         mcip = mac_primary_client_handle(mip);
2374         if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2375                 rw_exit(&i_mac_impl_lock);
2376                 return (ENOTEMPTY);
2377         }
2378 
2379         mip->mi_state_flags |= MIS_DISABLED;
2380         rw_exit(&i_mac_impl_lock);
2381         return (0);
2382 }
2383 
2384 int
2385 mac_disable_nowait(mac_handle_t mh)
2386 {
2387         mac_impl_t      *mip = (mac_impl_t *)mh;
2388         int err;
2389 
2390         if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2391                 return (err);
2392         err = i_mac_disable(mip);
2393         i_mac_perim_exit(mip);
2394         return (err);
2395 }
2396 
2397 int
2398 mac_disable(mac_handle_t mh)
2399 {
2400         mac_impl_t      *mip = (mac_impl_t *)mh;
2401         int err;
2402 
2403         i_mac_perim_enter(mip);
2404         err = i_mac_disable(mip);
2405         i_mac_perim_exit(mip);
2406 
2407         /*
2408          * Clean up notification thread and wait for it to exit.
2409          */
2410         if (err == 0)
2411                 i_mac_notify_exit(mip);
2412 
2413         return (err);
2414 }
2415 
2416 /*
2417  * Called when the MAC instance has a non empty flow table, to de-multiplex
2418  * incoming packets to the right flow.
2419  * The MAC's rw lock is assumed held as a READER.
2420  */
2421 /* ARGSUSED */
2422 static mblk_t *
2423 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2424 {
2425         flow_entry_t    *flent = NULL;
2426         uint_t          flags = FLOW_INBOUND;
2427         int             err;
2428 
2429         /*
2430          * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2431          * to mac_flow_lookup() so that the VLAN packets can be successfully
2432          * passed to the non-VLAN aggregation flows.
2433          *
2434          * Note that there is possibly a race between this and
2435          * mac_unicast_remove/add() and VLAN packets could be incorrectly
2436          * classified to non-VLAN flows of non-aggregation mac clients. These
2437          * VLAN packets will be then filtered out by the mac module.
2438          */
2439         if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2440                 flags |= FLOW_IGNORE_VLAN;
2441 
2442         err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2443         if (err != 0) {
2444                 /* no registered receive function */
2445                 return (mp);
2446         } else {
2447                 mac_client_impl_t       *mcip;
2448 
2449                 /*
2450                  * This flent might just be an additional one on the MAC client,
2451                  * i.e. for classification purposes (different fdesc), however
2452                  * the resources, SRS et. al., are in the mci_flent, so if
2453                  * this isn't the mci_flent, we need to get it.
2454                  */
2455                 if ((mcip = flent->fe_mcip) != NULL &&
2456                     mcip->mci_flent != flent) {
2457                         FLOW_REFRELE(flent);
2458                         flent = mcip->mci_flent;
2459                         FLOW_TRY_REFHOLD(flent, err);
2460                         if (err != 0)
2461                                 return (mp);
2462                 }
2463                 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2464                     B_FALSE);
2465                 FLOW_REFRELE(flent);
2466         }
2467         return (NULL);
2468 }
2469 
2470 mblk_t *
2471 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2472 {
2473         mac_impl_t      *mip = (mac_impl_t *)mh;
2474         mblk_t          *bp, *bp1, **bpp, *list = NULL;
2475 
2476         /*
2477          * We walk the chain and attempt to classify each packet.
2478          * The packets that couldn't be classified will be returned
2479          * back to the caller.
2480          */
2481         bp = mp_chain;
2482         bpp = &list;
2483         while (bp != NULL) {
2484                 bp1 = bp;
2485                 bp = bp->b_next;
2486                 bp1->b_next = NULL;
2487 
2488                 if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2489                         *bpp = bp1;
2490                         bpp = &bp1->b_next;
2491                 }
2492         }
2493         return (list);
2494 }
2495 
2496 static int
2497 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2498 {
2499         mac_ring_handle_t ring = arg;
2500 
2501         if (flent->fe_tx_srs)
2502                 mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2503         return (0);
2504 }
2505 
2506 void
2507 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2508 {
2509         mac_client_impl_t       *cclient;
2510         mac_soft_ring_set_t     *mac_srs;
2511 
2512         /*
2513          * After grabbing the mi_rw_lock, the list of clients can't change.
2514          * If there are any clients mi_disabled must be B_FALSE and can't
2515          * get set since there are clients. If there aren't any clients we
2516          * don't do anything. In any case the mip has to be valid. The driver
2517          * must make sure that it goes single threaded (with respect to mac
2518          * calls) and wait for all pending mac calls to finish before calling
2519          * mac_unregister.
2520          */
2521         rw_enter(&i_mac_impl_lock, RW_READER);
2522         if (mip->mi_state_flags & MIS_DISABLED) {
2523                 rw_exit(&i_mac_impl_lock);
2524                 return;
2525         }
2526 
2527         /*
2528          * Get MAC tx srs from walking mac_client_handle list.
2529          */
2530         rw_enter(&mip->mi_rw_lock, RW_READER);
2531         for (cclient = mip->mi_clients_list; cclient != NULL;
2532             cclient = cclient->mci_client_next) {
2533                 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2534                         mac_tx_srs_wakeup(mac_srs, ring);
2535                 } else {
2536                         /*
2537                          * Aggr opens underlying ports in exclusive mode
2538                          * and registers flow control callbacks using
2539                          * mac_tx_client_notify(). When opened in
2540                          * exclusive mode, Tx SRS won't be created
2541                          * during mac_unicast_add().
2542                          */
2543                         if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2544                                 mac_tx_invoke_callbacks(cclient,
2545                                     (mac_tx_cookie_t)ring);
2546                         }
2547                 }
2548                 (void) mac_flow_walk(cclient->mci_subflow_tab,
2549                     mac_tx_flow_srs_wakeup, ring);
2550         }
2551         rw_exit(&mip->mi_rw_lock);
2552         rw_exit(&i_mac_impl_lock);
2553 }
2554 
2555 /* ARGSUSED */
2556 void
2557 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2558     boolean_t add)
2559 {
2560         mac_impl_t *mip = (mac_impl_t *)mh;
2561 
2562         i_mac_perim_enter((mac_impl_t *)mh);
2563         /*
2564          * If no specific refresh function was given then default to the
2565          * driver's m_multicst entry point.
2566          */
2567         if (refresh == NULL) {
2568                 refresh = mip->mi_multicst;
2569                 arg = mip->mi_driver;
2570         }
2571 
2572         mac_bcast_refresh(mip, refresh, arg, add);
2573         i_mac_perim_exit((mac_impl_t *)mh);
2574 }
2575 
2576 void
2577 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2578 {
2579         mac_impl_t      *mip = (mac_impl_t *)mh;
2580 
2581         /*
2582          * If no specific refresh function was given then default to the
2583          * driver's m_promisc entry point.
2584          */
2585         if (refresh == NULL) {
2586                 refresh = mip->mi_setpromisc;
2587                 arg = mip->mi_driver;
2588         }
2589         ASSERT(refresh != NULL);
2590 
2591         /*
2592          * Call the refresh function with the current promiscuity.
2593          */
2594         refresh(arg, (mip->mi_devpromisc != 0));
2595 }
2596 
2597 /*
2598  * The mac client requests that the mac not to change its margin size to
2599  * be less than the specified value.  If "current" is B_TRUE, then the client
2600  * requests the mac not to change its margin size to be smaller than the
2601  * current size. Further, return the current margin size value in this case.
2602  *
2603  * We keep every requested size in an ordered list from largest to smallest.
2604  */
2605 int
2606 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2607 {
2608         mac_impl_t              *mip = (mac_impl_t *)mh;
2609         mac_margin_req_t        **pp, *p;
2610         int                     err = 0;
2611 
2612         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2613         if (current)
2614                 *marginp = mip->mi_margin;
2615 
2616         /*
2617          * If the current margin value cannot satisfy the margin requested,
2618          * return ENOTSUP directly.
2619          */
2620         if (*marginp > mip->mi_margin) {
2621                 err = ENOTSUP;
2622                 goto done;
2623         }
2624 
2625         /*
2626          * Check whether the given margin is already in the list. If so,
2627          * bump the reference count.
2628          */
2629         for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2630                 if (p->mmr_margin == *marginp) {
2631                         /*
2632                          * The margin requested is already in the list,
2633                          * so just bump the reference count.
2634                          */
2635                         p->mmr_ref++;
2636                         goto done;
2637                 }
2638                 if (p->mmr_margin < *marginp)
2639                         break;
2640         }
2641 
2642 
2643         p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2644         p->mmr_margin = *marginp;
2645         p->mmr_ref++;
2646         p->mmr_nextp = *pp;
2647         *pp = p;
2648 
2649 done:
2650         rw_exit(&(mip->mi_rw_lock));
2651         return (err);
2652 }
2653 
2654 /*
2655  * The mac client requests to cancel its previous mac_margin_add() request.
2656  * We remove the requested margin size from the list.
2657  */
2658 int
2659 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2660 {
2661         mac_impl_t              *mip = (mac_impl_t *)mh;
2662         mac_margin_req_t        **pp, *p;
2663         int                     err = 0;
2664 
2665         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2666         /*
2667          * Find the entry in the list for the given margin.
2668          */
2669         for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2670                 if (p->mmr_margin == margin) {
2671                         if (--p->mmr_ref == 0)
2672                                 break;
2673 
2674                         /*
2675                          * There is still a reference to this address so
2676                          * there's nothing more to do.
2677                          */
2678                         goto done;
2679                 }
2680         }
2681 
2682         /*
2683          * We did not find an entry for the given margin.
2684          */
2685         if (p == NULL) {
2686                 err = ENOENT;
2687                 goto done;
2688         }
2689 
2690         ASSERT(p->mmr_ref == 0);
2691 
2692         /*
2693          * Remove it from the list.
2694          */
2695         *pp = p->mmr_nextp;
2696         kmem_free(p, sizeof (mac_margin_req_t));
2697 done:
2698         rw_exit(&(mip->mi_rw_lock));
2699         return (err);
2700 }
2701 
2702 boolean_t
2703 mac_margin_update(mac_handle_t mh, uint32_t margin)
2704 {
2705         mac_impl_t      *mip = (mac_impl_t *)mh;
2706         uint32_t        margin_needed = 0;
2707 
2708         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2709 
2710         if (mip->mi_mmrp != NULL)
2711                 margin_needed = mip->mi_mmrp->mmr_margin;
2712 
2713         if (margin_needed <= margin)
2714                 mip->mi_margin = margin;
2715 
2716         rw_exit(&(mip->mi_rw_lock));
2717 
2718         if (margin_needed <= margin)
2719                 i_mac_notify(mip, MAC_NOTE_MARGIN);
2720 
2721         return (margin_needed <= margin);
2722 }
2723 
2724 /*
2725  * MAC clients use this interface to request that a MAC device not change its
2726  * MTU below the specified amount. At this time, that amount must be within the
2727  * range of the device's current minimum and the device's current maximum. eg. a
2728  * client cannot request a 3000 byte MTU when the device's MTU is currently
2729  * 2000.
2730  *
2731  * If "current" is set to B_TRUE, then the request is to simply to reserve the
2732  * current underlying mac's maximum for this mac client and return it in mtup.
2733  */
2734 int
2735 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2736 {
2737         mac_impl_t              *mip = (mac_impl_t *)mh;
2738         mac_mtu_req_t           *prev, *cur;
2739         mac_propval_range_t     mpr;
2740         int                     err;
2741 
2742         i_mac_perim_enter(mip);
2743         rw_enter(&mip->mi_rw_lock, RW_WRITER);
2744 
2745         if (current == B_TRUE)
2746                 *mtup = mip->mi_sdu_max;
2747         mpr.mpr_count = 1;
2748         err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2749         if (err != 0) {
2750                 rw_exit(&mip->mi_rw_lock);
2751                 i_mac_perim_exit(mip);
2752                 return (err);
2753         }
2754 
2755         if (*mtup > mip->mi_sdu_max ||
2756             *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2757                 rw_exit(&mip->mi_rw_lock);
2758                 i_mac_perim_exit(mip);
2759                 return (ENOTSUP);
2760         }
2761 
2762         prev = NULL;
2763         for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2764                 if (*mtup == cur->mtr_mtu) {
2765                         cur->mtr_ref++;
2766                         rw_exit(&mip->mi_rw_lock);
2767                         i_mac_perim_exit(mip);
2768                         return (0);
2769                 }
2770 
2771                 if (*mtup > cur->mtr_mtu)
2772                         break;
2773 
2774                 prev = cur;
2775         }
2776 
2777         cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2778         cur->mtr_mtu = *mtup;
2779         cur->mtr_ref = 1;
2780         if (prev != NULL) {
2781                 cur->mtr_nextp = prev->mtr_nextp;
2782                 prev->mtr_nextp = cur;
2783         } else {
2784                 cur->mtr_nextp = mip->mi_mtrp;
2785                 mip->mi_mtrp = cur;
2786         }
2787 
2788         rw_exit(&mip->mi_rw_lock);
2789         i_mac_perim_exit(mip);
2790         return (0);
2791 }
2792 
2793 int
2794 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2795 {
2796         mac_impl_t *mip = (mac_impl_t *)mh;
2797         mac_mtu_req_t *cur, *prev;
2798 
2799         i_mac_perim_enter(mip);
2800         rw_enter(&mip->mi_rw_lock, RW_WRITER);
2801 
2802         prev = NULL;
2803         for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2804                 if (cur->mtr_mtu == mtu) {
2805                         ASSERT(cur->mtr_ref > 0);
2806                         cur->mtr_ref--;
2807                         if (cur->mtr_ref == 0) {
2808                                 if (prev == NULL) {
2809                                         mip->mi_mtrp = cur->mtr_nextp;
2810                                 } else {
2811                                         prev->mtr_nextp = cur->mtr_nextp;
2812                                 }
2813                                 kmem_free(cur, sizeof (mac_mtu_req_t));
2814                         }
2815                         rw_exit(&mip->mi_rw_lock);
2816                         i_mac_perim_exit(mip);
2817                         return (0);
2818                 }
2819 
2820                 prev = cur;
2821         }
2822 
2823         rw_exit(&mip->mi_rw_lock);
2824         i_mac_perim_exit(mip);
2825         return (ENOENT);
2826 }
2827 
2828 /*
2829  * MAC Type Plugin functions.
2830  */
2831 
2832 mactype_t *
2833 mactype_getplugin(const char *pname)
2834 {
2835         mactype_t       *mtype = NULL;
2836         boolean_t       tried_modload = B_FALSE;
2837 
2838         mutex_enter(&i_mactype_lock);
2839 
2840 find_registered_mactype:
2841         if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2842             (mod_hash_val_t *)&mtype) != 0) {
2843                 if (!tried_modload) {
2844                         /*
2845                          * If the plugin has not yet been loaded, then
2846                          * attempt to load it now.  If modload() succeeds,
2847                          * the plugin should have registered using
2848                          * mactype_register(), in which case we can go back
2849                          * and attempt to find it again.
2850                          */
2851                         if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2852                                 tried_modload = B_TRUE;
2853                                 goto find_registered_mactype;
2854                         }
2855                 }
2856         } else {
2857                 /*
2858                  * Note that there's no danger that the plugin we've loaded
2859                  * could be unloaded between the modload() step and the
2860                  * reference count bump here, as we're holding
2861                  * i_mactype_lock, which mactype_unregister() also holds.
2862                  */
2863                 atomic_inc_32(&mtype->mt_ref);
2864         }
2865 
2866         mutex_exit(&i_mactype_lock);
2867         return (mtype);
2868 }
2869 
2870 mactype_register_t *
2871 mactype_alloc(uint_t mactype_version)
2872 {
2873         mactype_register_t *mtrp;
2874 
2875         /*
2876          * Make sure there isn't a version mismatch between the plugin and
2877          * the framework.  In the future, if multiple versions are
2878          * supported, this check could become more sophisticated.
2879          */
2880         if (mactype_version != MACTYPE_VERSION)
2881                 return (NULL);
2882 
2883         mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2884         mtrp->mtr_version = mactype_version;
2885         return (mtrp);
2886 }
2887 
2888 void
2889 mactype_free(mactype_register_t *mtrp)
2890 {
2891         kmem_free(mtrp, sizeof (mactype_register_t));
2892 }
2893 
2894 int
2895 mactype_register(mactype_register_t *mtrp)
2896 {
2897         mactype_t       *mtp;
2898         mactype_ops_t   *ops = mtrp->mtr_ops;
2899 
2900         /* Do some sanity checking before we register this MAC type. */
2901         if (mtrp->mtr_ident == NULL || ops == NULL)
2902                 return (EINVAL);
2903 
2904         /*
2905          * Verify that all mandatory callbacks are set in the ops
2906          * vector.
2907          */
2908         if (ops->mtops_unicst_verify == NULL ||
2909             ops->mtops_multicst_verify == NULL ||
2910             ops->mtops_sap_verify == NULL ||
2911             ops->mtops_header == NULL ||
2912             ops->mtops_header_info == NULL) {
2913                 return (EINVAL);
2914         }
2915 
2916         mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2917         mtp->mt_ident = mtrp->mtr_ident;
2918         mtp->mt_ops = *ops;
2919         mtp->mt_type = mtrp->mtr_mactype;
2920         mtp->mt_nativetype = mtrp->mtr_nativetype;
2921         mtp->mt_addr_length = mtrp->mtr_addrlen;
2922         if (mtrp->mtr_brdcst_addr != NULL) {
2923                 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2924                 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2925                     mtrp->mtr_addrlen);
2926         }
2927 
2928         mtp->mt_stats = mtrp->mtr_stats;
2929         mtp->mt_statcount = mtrp->mtr_statcount;
2930 
2931         mtp->mt_mapping = mtrp->mtr_mapping;
2932         mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2933 
2934         if (mod_hash_insert(i_mactype_hash,
2935             (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2936                 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2937                 kmem_free(mtp, sizeof (*mtp));
2938                 return (EEXIST);
2939         }
2940         return (0);
2941 }
2942 
2943 int
2944 mactype_unregister(const char *ident)
2945 {
2946         mactype_t       *mtp;
2947         mod_hash_val_t  val;
2948         int             err;
2949 
2950         /*
2951          * Let's not allow MAC drivers to use this plugin while we're
2952          * trying to unregister it.  Holding i_mactype_lock also prevents a
2953          * plugin from unregistering while a MAC driver is attempting to
2954          * hold a reference to it in i_mactype_getplugin().
2955          */
2956         mutex_enter(&i_mactype_lock);
2957 
2958         if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2959             (mod_hash_val_t *)&mtp)) != 0) {
2960                 /* A plugin is trying to unregister, but it never registered. */
2961                 err = ENXIO;
2962                 goto done;
2963         }
2964 
2965         if (mtp->mt_ref != 0) {
2966                 err = EBUSY;
2967                 goto done;
2968         }
2969 
2970         err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2971         ASSERT(err == 0);
2972         if (err != 0) {
2973                 /* This should never happen, thus the ASSERT() above. */
2974                 err = EINVAL;
2975                 goto done;
2976         }
2977         ASSERT(mtp == (mactype_t *)val);
2978 
2979         if (mtp->mt_brdcst_addr != NULL)
2980                 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2981         kmem_free(mtp, sizeof (mactype_t));
2982 done:
2983         mutex_exit(&i_mactype_lock);
2984         return (err);
2985 }
2986 
2987 /*
2988  * Checks the size of the value size specified for a property as
2989  * part of a property operation. Returns B_TRUE if the size is
2990  * correct, B_FALSE otherwise.
2991  */
2992 boolean_t
2993 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2994 {
2995         uint_t minsize = 0;
2996 
2997         if (is_range)
2998                 return (valsize >= sizeof (mac_propval_range_t));
2999 
3000         switch (id) {
3001         case MAC_PROP_ZONE:
3002                 minsize = sizeof (dld_ioc_zid_t);
3003                 break;
3004         case MAC_PROP_AUTOPUSH:
3005                 if (valsize != 0)
3006                         minsize = sizeof (struct dlautopush);
3007                 break;
3008         case MAC_PROP_TAGMODE:
3009                 minsize = sizeof (link_tagmode_t);
3010                 break;
3011         case MAC_PROP_RESOURCE:
3012         case MAC_PROP_RESOURCE_EFF:
3013                 minsize = sizeof (mac_resource_props_t);
3014                 break;
3015         case MAC_PROP_DUPLEX:
3016                 minsize = sizeof (link_duplex_t);
3017                 break;
3018         case MAC_PROP_SPEED:
3019                 minsize = sizeof (uint64_t);
3020                 break;
3021         case MAC_PROP_STATUS:
3022                 minsize = sizeof (link_state_t);
3023                 break;
3024         case MAC_PROP_AUTONEG:
3025         case MAC_PROP_EN_AUTONEG:
3026                 minsize = sizeof (uint8_t);
3027                 break;
3028         case MAC_PROP_MTU:
3029         case MAC_PROP_LLIMIT:
3030         case MAC_PROP_LDECAY:
3031                 minsize = sizeof (uint32_t);
3032                 break;
3033         case MAC_PROP_FLOWCTRL:
3034                 minsize = sizeof (link_flowctrl_t);
3035                 break;
3036         case MAC_PROP_ADV_5000FDX_CAP:
3037         case MAC_PROP_EN_5000FDX_CAP:
3038         case MAC_PROP_ADV_2500FDX_CAP:
3039         case MAC_PROP_EN_2500FDX_CAP:
3040         case MAC_PROP_ADV_100GFDX_CAP:
3041         case MAC_PROP_EN_100GFDX_CAP:
3042         case MAC_PROP_ADV_50GFDX_CAP:
3043         case MAC_PROP_EN_50GFDX_CAP:
3044         case MAC_PROP_ADV_40GFDX_CAP:
3045         case MAC_PROP_EN_40GFDX_CAP:
3046         case MAC_PROP_ADV_25GFDX_CAP:
3047         case MAC_PROP_EN_25GFDX_CAP:
3048         case MAC_PROP_ADV_10GFDX_CAP:
3049         case MAC_PROP_EN_10GFDX_CAP:
3050         case MAC_PROP_ADV_1000HDX_CAP:
3051         case MAC_PROP_EN_1000HDX_CAP:
3052         case MAC_PROP_ADV_100FDX_CAP:
3053         case MAC_PROP_EN_100FDX_CAP:
3054         case MAC_PROP_ADV_100HDX_CAP:
3055         case MAC_PROP_EN_100HDX_CAP:
3056         case MAC_PROP_ADV_10FDX_CAP:
3057         case MAC_PROP_EN_10FDX_CAP:
3058         case MAC_PROP_ADV_10HDX_CAP:
3059         case MAC_PROP_EN_10HDX_CAP:
3060         case MAC_PROP_ADV_100T4_CAP:
3061         case MAC_PROP_EN_100T4_CAP:
3062                 minsize = sizeof (uint8_t);
3063                 break;
3064         case MAC_PROP_PVID:
3065                 minsize = sizeof (uint16_t);
3066                 break;
3067         case MAC_PROP_IPTUN_HOPLIMIT:
3068                 minsize = sizeof (uint32_t);
3069                 break;
3070         case MAC_PROP_IPTUN_ENCAPLIMIT:
3071                 minsize = sizeof (uint32_t);
3072                 break;
3073         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3074         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3075         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3076         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3077                 minsize = sizeof (uint_t);
3078                 break;
3079         case MAC_PROP_WL_ESSID:
3080                 minsize = sizeof (wl_linkstatus_t);
3081                 break;
3082         case MAC_PROP_WL_BSSID:
3083                 minsize = sizeof (wl_bssid_t);
3084                 break;
3085         case MAC_PROP_WL_BSSTYPE:
3086                 minsize = sizeof (wl_bss_type_t);
3087                 break;
3088         case MAC_PROP_WL_LINKSTATUS:
3089                 minsize = sizeof (wl_linkstatus_t);
3090                 break;
3091         case MAC_PROP_WL_DESIRED_RATES:
3092                 minsize = sizeof (wl_rates_t);
3093                 break;
3094         case MAC_PROP_WL_SUPPORTED_RATES:
3095                 minsize = sizeof (wl_rates_t);
3096                 break;
3097         case MAC_PROP_WL_AUTH_MODE:
3098                 minsize = sizeof (wl_authmode_t);
3099                 break;
3100         case MAC_PROP_WL_ENCRYPTION:
3101                 minsize = sizeof (wl_encryption_t);
3102                 break;
3103         case MAC_PROP_WL_RSSI:
3104                 minsize = sizeof (wl_rssi_t);
3105                 break;
3106         case MAC_PROP_WL_PHY_CONFIG:
3107                 minsize = sizeof (wl_phy_conf_t);
3108                 break;
3109         case MAC_PROP_WL_CAPABILITY:
3110                 minsize = sizeof (wl_capability_t);
3111                 break;
3112         case MAC_PROP_WL_WPA:
3113                 minsize = sizeof (wl_wpa_t);
3114                 break;
3115         case MAC_PROP_WL_SCANRESULTS:
3116                 minsize = sizeof (wl_wpa_ess_t);
3117                 break;
3118         case MAC_PROP_WL_POWER_MODE:
3119                 minsize = sizeof (wl_ps_mode_t);
3120                 break;
3121         case MAC_PROP_WL_RADIO:
3122                 minsize = sizeof (wl_radio_t);
3123                 break;
3124         case MAC_PROP_WL_ESS_LIST:
3125                 minsize = sizeof (wl_ess_list_t);
3126                 break;
3127         case MAC_PROP_WL_KEY_TAB:
3128                 minsize = sizeof (wl_wep_key_tab_t);
3129                 break;
3130         case MAC_PROP_WL_CREATE_IBSS:
3131                 minsize = sizeof (wl_create_ibss_t);
3132                 break;
3133         case MAC_PROP_WL_SETOPTIE:
3134                 minsize = sizeof (wl_wpa_ie_t);
3135                 break;
3136         case MAC_PROP_WL_DELKEY:
3137                 minsize = sizeof (wl_del_key_t);
3138                 break;
3139         case MAC_PROP_WL_KEY:
3140                 minsize = sizeof (wl_key_t);
3141                 break;
3142         case MAC_PROP_WL_MLME:
3143                 minsize = sizeof (wl_mlme_t);
3144                 break;
3145         case MAC_PROP_VN_PROMISC_FILTERED:
3146                 minsize = sizeof (boolean_t);
3147                 break;
3148         }
3149 
3150         return (valsize >= minsize);
3151 }
3152 
3153 /*
3154  * mac_set_prop() sets MAC or hardware driver properties:
3155  *
3156  * - MAC-managed properties such as resource properties include maxbw,
3157  *   priority, and cpu binding list, as well as the default port VID
3158  *   used by bridging. These properties are consumed by the MAC layer
3159  *   itself and not passed down to the driver. For resource control
3160  *   properties, this function invokes mac_set_resources() which will
3161  *   cache the property value in mac_impl_t and may call
3162  *   mac_client_set_resource() to update property value of the primary
3163  *   mac client, if it exists.
3164  *
3165  * - Properties which act on the hardware and must be passed to the
3166  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3167  */
3168 int
3169 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3170     uint_t valsize)
3171 {
3172         int err = ENOTSUP;
3173         mac_impl_t *mip = (mac_impl_t *)mh;
3174 
3175         ASSERT(MAC_PERIM_HELD(mh));
3176 
3177         switch (id) {
3178         case MAC_PROP_RESOURCE: {
3179                 mac_resource_props_t *mrp;
3180 
3181                 /* call mac_set_resources() for MAC properties */
3182                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3183                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3184                 bcopy(val, mrp, sizeof (*mrp));
3185                 err = mac_set_resources(mh, mrp);
3186                 kmem_free(mrp, sizeof (*mrp));
3187                 break;
3188         }
3189 
3190         case MAC_PROP_PVID:
3191                 ASSERT(valsize >= sizeof (uint16_t));
3192                 if (mip->mi_state_flags & MIS_IS_VNIC)
3193                         return (EINVAL);
3194                 err = mac_set_pvid(mh, *(uint16_t *)val);
3195                 break;
3196 
3197         case MAC_PROP_MTU: {
3198                 uint32_t mtu;
3199 
3200                 ASSERT(valsize >= sizeof (uint32_t));
3201                 bcopy(val, &mtu, sizeof (mtu));
3202                 err = mac_set_mtu(mh, mtu, NULL);
3203                 break;
3204         }
3205 
3206         case MAC_PROP_LLIMIT:
3207         case MAC_PROP_LDECAY: {
3208                 uint32_t learnval;
3209 
3210                 if (valsize < sizeof (learnval) ||
3211                     (mip->mi_state_flags & MIS_IS_VNIC))
3212                         return (EINVAL);
3213                 bcopy(val, &learnval, sizeof (learnval));
3214                 if (learnval == 0 && id == MAC_PROP_LDECAY)
3215                         return (EINVAL);
3216                 if (id == MAC_PROP_LLIMIT)
3217                         mip->mi_llimit = learnval;
3218                 else
3219                         mip->mi_ldecay = learnval;
3220                 err = 0;
3221                 break;
3222         }
3223 
3224         default:
3225                 /* For other driver properties, call driver's callback */
3226                 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3227                         err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3228                             name, id, valsize, val);
3229                 }
3230         }
3231         return (err);
3232 }
3233 
3234 /*
3235  * mac_get_prop() gets MAC or device driver properties.
3236  *
3237  * If the property is a driver property, mac_get_prop() calls driver's callback
3238  * entry point to get it.
3239  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3240  * which returns the cached value in mac_impl_t.
3241  */
3242 int
3243 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3244     uint_t valsize)
3245 {
3246         int err = ENOTSUP;
3247         mac_impl_t *mip = (mac_impl_t *)mh;
3248         uint_t  rings;
3249         uint_t  vlinks;
3250 
3251         bzero(val, valsize);
3252 
3253         switch (id) {
3254         case MAC_PROP_RESOURCE: {
3255                 mac_resource_props_t *mrp;
3256 
3257                 /* If mac property, read from cache */
3258                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3259                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3260                 mac_get_resources(mh, mrp);
3261                 bcopy(mrp, val, sizeof (*mrp));
3262                 kmem_free(mrp, sizeof (*mrp));
3263                 return (0);
3264         }
3265         case MAC_PROP_RESOURCE_EFF: {
3266                 mac_resource_props_t *mrp;
3267 
3268                 /* If mac effective property, read from client */
3269                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3270                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3271                 mac_get_effective_resources(mh, mrp);
3272                 bcopy(mrp, val, sizeof (*mrp));
3273                 kmem_free(mrp, sizeof (*mrp));
3274                 return (0);
3275         }
3276 
3277         case MAC_PROP_PVID:
3278                 ASSERT(valsize >= sizeof (uint16_t));
3279                 if (mip->mi_state_flags & MIS_IS_VNIC)
3280                         return (EINVAL);
3281                 *(uint16_t *)val = mac_get_pvid(mh);
3282                 return (0);
3283 
3284         case MAC_PROP_LLIMIT:
3285         case MAC_PROP_LDECAY:
3286                 ASSERT(valsize >= sizeof (uint32_t));
3287                 if (mip->mi_state_flags & MIS_IS_VNIC)
3288                         return (EINVAL);
3289                 if (id == MAC_PROP_LLIMIT)
3290                         bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3291                 else
3292                         bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3293                 return (0);
3294 
3295         case MAC_PROP_MTU: {
3296                 uint32_t sdu;
3297 
3298                 ASSERT(valsize >= sizeof (uint32_t));
3299                 mac_sdu_get2(mh, NULL, &sdu, NULL);
3300                 bcopy(&sdu, val, sizeof (sdu));
3301 
3302                 return (0);
3303         }
3304         case MAC_PROP_STATUS: {
3305                 link_state_t link_state;
3306 
3307                 if (valsize < sizeof (link_state))
3308                         return (EINVAL);
3309                 link_state = mac_link_get(mh);
3310                 bcopy(&link_state, val, sizeof (link_state));
3311 
3312                 return (0);
3313         }
3314 
3315         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3316         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3317                 ASSERT(valsize >= sizeof (uint_t));
3318                 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3319                     mac_rxavail_get(mh) : mac_txavail_get(mh);
3320                 bcopy(&rings, val, sizeof (uint_t));
3321                 return (0);
3322 
3323         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3324         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3325                 ASSERT(valsize >= sizeof (uint_t));
3326                 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3327                     mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3328                 bcopy(&vlinks, val, sizeof (uint_t));
3329                 return (0);
3330 
3331         case MAC_PROP_RXRINGSRANGE:
3332         case MAC_PROP_TXRINGSRANGE:
3333                 /*
3334                  * The value for these properties are returned through
3335                  * the MAC_PROP_RESOURCE property.
3336                  */
3337                 return (0);
3338 
3339         default:
3340                 break;
3341 
3342         }
3343 
3344         /* If driver property, request from driver */
3345         if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3346                 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3347                     valsize, val);
3348         }
3349 
3350         return (err);
3351 }
3352 
3353 /*
3354  * Helper function to initialize the range structure for use in
3355  * mac_get_prop. If the type can be other than uint32, we can
3356  * pass that as an arg.
3357  */
3358 static void
3359 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3360 {
3361         range->mpr_count = 1;
3362         range->mpr_type = MAC_PROPVAL_UINT32;
3363         range->mpr_range_uint32[0].mpur_min = min;
3364         range->mpr_range_uint32[0].mpur_max = max;
3365 }
3366 
3367 /*
3368  * Returns information about the specified property, such as default
3369  * values or permissions.
3370  */
3371 int
3372 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3373     void *default_val, uint_t default_size, mac_propval_range_t *range,
3374     uint_t *perm)
3375 {
3376         mac_prop_info_state_t state;
3377         mac_impl_t *mip = (mac_impl_t *)mh;
3378         uint_t  max;
3379 
3380         /*
3381          * A property is read/write by default unless the driver says
3382          * otherwise.
3383          */
3384         if (perm != NULL)
3385                 *perm = MAC_PROP_PERM_RW;
3386 
3387         if (default_val != NULL)
3388                 bzero(default_val, default_size);
3389 
3390         /*
3391          * First, handle framework properties for which we don't need to
3392          * involve the driver.
3393          */
3394         switch (id) {
3395         case MAC_PROP_RESOURCE:
3396         case MAC_PROP_PVID:
3397         case MAC_PROP_LLIMIT:
3398         case MAC_PROP_LDECAY:
3399                 return (0);
3400 
3401         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3402         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3403         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3404         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3405                 if (perm != NULL)
3406                         *perm = MAC_PROP_PERM_READ;
3407                 return (0);
3408 
3409         case MAC_PROP_RXRINGSRANGE:
3410         case MAC_PROP_TXRINGSRANGE:
3411                 /*
3412                  * Currently, we support range for RX and TX rings properties.
3413                  * When we extend this support to maxbw, cpus and priority,
3414                  * we should move this to mac_get_resources.
3415                  * There is no default value for RX or TX rings.
3416                  */
3417                 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3418                     mac_is_vnic_primary(mh)) {
3419                         /*
3420                          * We don't support setting rings for a VLAN
3421                          * data link because it shares its ring with the
3422                          * primary MAC client.
3423                          */
3424                         if (perm != NULL)
3425                                 *perm = MAC_PROP_PERM_READ;
3426                         if (range != NULL)
3427                                 range->mpr_count = 0;
3428                 } else if (range != NULL) {
3429                         if (mip->mi_state_flags & MIS_IS_VNIC)
3430                                 mh = mac_get_lower_mac_handle(mh);
3431                         mip = (mac_impl_t *)mh;
3432                         if ((id == MAC_PROP_RXRINGSRANGE &&
3433                             mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3434                             (id == MAC_PROP_TXRINGSRANGE &&
3435                             mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3436                                 if (id == MAC_PROP_RXRINGSRANGE) {
3437                                         if ((mac_rxhwlnksavail_get(mh) +
3438                                             mac_rxhwlnksrsvd_get(mh)) <= 1) {
3439                                                 /*
3440                                                  * doesn't support groups or
3441                                                  * rings
3442                                                  */
3443                                                 range->mpr_count = 0;
3444                                         } else {
3445                                                 /*
3446                                                  * supports specifying groups,
3447                                                  * but not rings
3448                                                  */
3449                                                 _mac_set_range(range, 0, 0);
3450                                         }
3451                                 } else {
3452                                         if ((mac_txhwlnksavail_get(mh) +
3453                                             mac_txhwlnksrsvd_get(mh)) <= 1) {
3454                                                 /*
3455                                                  * doesn't support groups or
3456                                                  * rings
3457                                                  */
3458                                                 range->mpr_count = 0;
3459                                         } else {
3460                                                 /*
3461                                                  * supports specifying groups,
3462                                                  * but not rings
3463                                                  */
3464                                                 _mac_set_range(range, 0, 0);
3465                                         }
3466                                 }
3467                         } else {
3468                                 max = id == MAC_PROP_RXRINGSRANGE ?
3469                                     mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3470                                     mac_txavail_get(mh) + mac_txrsvd_get(mh);
3471                                 if (max <= 1) {
3472                                         /*
3473                                          * doesn't support groups or
3474                                          * rings
3475                                          */
3476                                         range->mpr_count = 0;
3477                                 } else  {
3478                                         /*
3479                                          * -1 because we have to leave out the
3480                                          * default ring.
3481                                          */
3482                                         _mac_set_range(range, 1, max - 1);
3483                                 }
3484                         }
3485                 }
3486                 return (0);
3487 
3488         case MAC_PROP_STATUS:
3489                 if (perm != NULL)
3490                         *perm = MAC_PROP_PERM_READ;
3491                 return (0);
3492         }
3493 
3494         /*
3495          * Get the property info from the driver if it implements the
3496          * property info entry point.
3497          */
3498         bzero(&state, sizeof (state));
3499 
3500         if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3501                 state.pr_default = default_val;
3502                 state.pr_default_size = default_size;
3503 
3504                 /*
3505                  * The caller specifies the maximum number of ranges
3506                  * it can accomodate using mpr_count. We don't touch
3507                  * this value until the driver returns from its
3508                  * mc_propinfo() callback, and ensure we don't exceed
3509                  * this number of range as the driver defines
3510                  * supported range from its mc_propinfo().
3511                  *
3512                  * pr_range_cur_count keeps track of how many ranges
3513                  * were defined by the driver from its mc_propinfo()
3514                  * entry point.
3515                  *
3516                  * On exit, the user-specified range mpr_count returns
3517                  * the number of ranges specified by the driver on
3518                  * success, or the number of ranges it wanted to
3519                  * define if that number of ranges could not be
3520                  * accomodated by the specified range structure.  In
3521                  * the latter case, the caller will be able to
3522                  * allocate a larger range structure, and query the
3523                  * property again.
3524                  */
3525                 state.pr_range_cur_count = 0;
3526                 state.pr_range = range;
3527 
3528                 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3529                     (mac_prop_info_handle_t)&state);
3530 
3531                 if (state.pr_flags & MAC_PROP_INFO_RANGE)
3532                         range->mpr_count = state.pr_range_cur_count;
3533 
3534                 /*
3535                  * The operation could fail if the buffer supplied by
3536                  * the user was too small for the range or default
3537                  * value of the property.
3538                  */
3539                 if (state.pr_errno != 0)
3540                         return (state.pr_errno);
3541 
3542                 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3543                         *perm = state.pr_perm;
3544         }
3545 
3546         /*
3547          * The MAC layer may want to provide default values or allowed
3548          * ranges for properties if the driver does not provide a
3549          * property info entry point, or that entry point exists, but
3550          * it did not provide a default value or allowed ranges for
3551          * that property.
3552          */
3553         switch (id) {
3554         case MAC_PROP_MTU: {
3555                 uint32_t sdu;
3556 
3557                 mac_sdu_get2(mh, NULL, &sdu, NULL);
3558 
3559                 if (range != NULL && !(state.pr_flags &
3560                     MAC_PROP_INFO_RANGE)) {
3561                         /* MTU range */
3562                         _mac_set_range(range, sdu, sdu);
3563                 }
3564 
3565                 if (default_val != NULL && !(state.pr_flags &
3566                     MAC_PROP_INFO_DEFAULT)) {
3567                         if (mip->mi_info.mi_media == DL_ETHER)
3568                                 sdu = ETHERMTU;
3569                         /* default MTU value */
3570                         bcopy(&sdu, default_val, sizeof (sdu));
3571                 }
3572         }
3573         }
3574 
3575         return (0);
3576 }
3577 
3578 int
3579 mac_fastpath_disable(mac_handle_t mh)
3580 {
3581         mac_impl_t      *mip = (mac_impl_t *)mh;
3582 
3583         if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3584                 return (0);
3585 
3586         return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3587 }
3588 
3589 void
3590 mac_fastpath_enable(mac_handle_t mh)
3591 {
3592         mac_impl_t      *mip = (mac_impl_t *)mh;
3593 
3594         if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3595                 return;
3596 
3597         mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3598 }
3599 
3600 void
3601 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3602 {
3603         uint_t nprops, i;
3604 
3605         if (priv_props == NULL)
3606                 return;
3607 
3608         nprops = 0;
3609         while (priv_props[nprops] != NULL)
3610                 nprops++;
3611         if (nprops == 0)
3612                 return;
3613 
3614 
3615         mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3616 
3617         for (i = 0; i < nprops; i++) {
3618                 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3619                 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3620                     MAXLINKPROPNAME);
3621         }
3622 
3623         mip->mi_priv_prop_count = nprops;
3624 }
3625 
3626 void
3627 mac_unregister_priv_prop(mac_impl_t *mip)
3628 {
3629         uint_t i;
3630 
3631         if (mip->mi_priv_prop_count == 0) {
3632                 ASSERT(mip->mi_priv_prop == NULL);
3633                 return;
3634         }
3635 
3636         for (i = 0; i < mip->mi_priv_prop_count; i++)
3637                 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3638         kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3639             sizeof (char *));
3640 
3641         mip->mi_priv_prop = NULL;
3642         mip->mi_priv_prop_count = 0;
3643 }
3644 
3645 /*
3646  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3647  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3648  * cases if MAC free's the ring structure after mac_stop_ring(), any
3649  * illegal access to the ring structure coming from the driver will panic
3650  * the system. In order to protect the system from such inadverent access,
3651  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3652  * When packets are received on free'd up rings, MAC (through the generation
3653  * count mechanism) will drop such packets.
3654  */
3655 static mac_ring_t *
3656 mac_ring_alloc(mac_impl_t *mip)
3657 {
3658         mac_ring_t *ring;
3659 
3660         mutex_enter(&mip->mi_ring_lock);
3661         if (mip->mi_ring_freelist != NULL) {
3662                 ring = mip->mi_ring_freelist;
3663                 mip->mi_ring_freelist = ring->mr_next;
3664                 bzero(ring, sizeof (mac_ring_t));
3665                 mutex_exit(&mip->mi_ring_lock);
3666         } else {
3667                 mutex_exit(&mip->mi_ring_lock);
3668                 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3669         }
3670         ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3671         return (ring);
3672 }
3673 
3674 static void
3675 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3676 {
3677         ASSERT(ring->mr_state == MR_FREE);
3678 
3679         mutex_enter(&mip->mi_ring_lock);
3680         ring->mr_state = MR_FREE;
3681         ring->mr_flag = 0;
3682         ring->mr_next = mip->mi_ring_freelist;
3683         ring->mr_mip = NULL;
3684         mip->mi_ring_freelist = ring;
3685         mac_ring_stat_delete(ring);
3686         mutex_exit(&mip->mi_ring_lock);
3687 }
3688 
3689 static void
3690 mac_ring_freeall(mac_impl_t *mip)
3691 {
3692         mac_ring_t *ring_next;
3693         mutex_enter(&mip->mi_ring_lock);
3694         mac_ring_t *ring = mip->mi_ring_freelist;
3695         while (ring != NULL) {
3696                 ring_next = ring->mr_next;
3697                 kmem_cache_free(mac_ring_cache, ring);
3698                 ring = ring_next;
3699         }
3700         mip->mi_ring_freelist = NULL;
3701         mutex_exit(&mip->mi_ring_lock);
3702 }
3703 
3704 int
3705 mac_start_ring(mac_ring_t *ring)
3706 {
3707         int rv = 0;
3708 
3709         ASSERT(ring->mr_state == MR_FREE);
3710 
3711         if (ring->mr_start != NULL) {
3712                 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3713                 if (rv != 0)
3714                         return (rv);
3715         }
3716 
3717         ring->mr_state = MR_INUSE;
3718         return (rv);
3719 }
3720 
3721 void
3722 mac_stop_ring(mac_ring_t *ring)
3723 {
3724         ASSERT(ring->mr_state == MR_INUSE);
3725 
3726         if (ring->mr_stop != NULL)
3727                 ring->mr_stop(ring->mr_driver);
3728 
3729         ring->mr_state = MR_FREE;
3730 
3731         /*
3732          * Increment the ring generation number for this ring.
3733          */
3734         ring->mr_gen_num++;
3735 }
3736 
3737 int
3738 mac_start_group(mac_group_t *group)
3739 {
3740         int rv = 0;
3741 
3742         if (group->mrg_start != NULL)
3743                 rv = group->mrg_start(group->mrg_driver);
3744 
3745         return (rv);
3746 }
3747 
3748 void
3749 mac_stop_group(mac_group_t *group)
3750 {
3751         if (group->mrg_stop != NULL)
3752                 group->mrg_stop(group->mrg_driver);
3753 }
3754 
3755 /*
3756  * Called from mac_start() on the default Rx group. Broadcast and multicast
3757  * packets are received only on the default group. Hence the default group
3758  * needs to be up even if the primary client is not up, for the other groups
3759  * to be functional. We do this by calling this function at mac_start time
3760  * itself. However the broadcast packets that are received can't make their
3761  * way beyond mac_rx until a mac client creates a broadcast flow.
3762  */
3763 static int
3764 mac_start_group_and_rings(mac_group_t *group)
3765 {
3766         mac_ring_t      *ring;
3767         int             rv = 0;
3768 
3769         ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3770         if ((rv = mac_start_group(group)) != 0)
3771                 return (rv);
3772 
3773         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3774                 ASSERT(ring->mr_state == MR_FREE);
3775                 if ((rv = mac_start_ring(ring)) != 0)
3776                         goto error;
3777                 ring->mr_classify_type = MAC_SW_CLASSIFIER;
3778         }
3779         return (0);
3780 
3781 error:
3782         mac_stop_group_and_rings(group);
3783         return (rv);
3784 }
3785 
3786 /* Called from mac_stop on the default Rx group */
3787 static void
3788 mac_stop_group_and_rings(mac_group_t *group)
3789 {
3790         mac_ring_t      *ring;
3791 
3792         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3793                 if (ring->mr_state != MR_FREE) {
3794                         mac_stop_ring(ring);
3795                         ring->mr_flag = 0;
3796                         ring->mr_classify_type = MAC_NO_CLASSIFIER;
3797                 }
3798         }
3799         mac_stop_group(group);
3800 }
3801 
3802 
3803 static mac_ring_t *
3804 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3805     mac_capab_rings_t *cap_rings)
3806 {
3807         mac_ring_t *ring, *rnext;
3808         mac_ring_info_t ring_info;
3809         ddi_intr_handle_t ddi_handle;
3810 
3811         ring = mac_ring_alloc(mip);
3812 
3813         /* Prepare basic information of ring */
3814 
3815         /*
3816          * Ring index is numbered to be unique across a particular device.
3817          * Ring index computation makes following assumptions:
3818          *      - For drivers with static grouping (e.g. ixgbe, bge),
3819          *      ring index exchanged with the driver (e.g. during mr_rget)
3820          *      is unique only across the group the ring belongs to.
3821          *      - Drivers with dynamic grouping (e.g. nxge), start
3822          *      with single group (mrg_index = 0).
3823          */
3824         ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3825         ring->mr_type = group->mrg_type;
3826         ring->mr_gh = (mac_group_handle_t)group;
3827 
3828         /* Insert the new ring to the list. */
3829         ring->mr_next = group->mrg_rings;
3830         group->mrg_rings = ring;
3831 
3832         /* Zero to reuse the info data structure */
3833         bzero(&ring_info, sizeof (ring_info));
3834 
3835         /* Query ring information from driver */
3836         cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3837             index, &ring_info, (mac_ring_handle_t)ring);
3838 
3839         ring->mr_info = ring_info;
3840 
3841         /*
3842          * The interrupt handle could be shared among multiple rings.
3843          * Thus if there is a bunch of rings that are sharing an
3844          * interrupt, then only one ring among the bunch will be made
3845          * available for interrupt re-targeting; the rest will have
3846          * ddi_shared flag set to TRUE and would not be available for
3847          * be interrupt re-targeting.
3848          */
3849         if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3850                 rnext = ring->mr_next;
3851                 while (rnext != NULL) {
3852                         if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3853                             ddi_handle) {
3854                                 /*
3855                                  * If default ring (mr_index == 0) is part
3856                                  * of a group of rings sharing an
3857                                  * interrupt, then set ddi_shared flag for
3858                                  * the default ring and give another ring
3859                                  * the chance to be re-targeted.
3860                                  */
3861                                 if (rnext->mr_index == 0 &&
3862                                     !rnext->mr_info.mri_intr.mi_ddi_shared) {
3863                                         rnext->mr_info.mri_intr.mi_ddi_shared =
3864                                             B_TRUE;
3865                                 } else {
3866                                         ring->mr_info.mri_intr.mi_ddi_shared =
3867                                             B_TRUE;
3868                                 }
3869                                 break;
3870                         }
3871                         rnext = rnext->mr_next;
3872                 }
3873                 /*
3874                  * If rnext is NULL, then no matching ddi_handle was found.
3875                  * Rx rings get registered first. So if this is a Tx ring,
3876                  * then go through all the Rx rings and see if there is a
3877                  * matching ddi handle.
3878                  */
3879                 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3880                         mac_compare_ddi_handle(mip->mi_rx_groups,
3881                             mip->mi_rx_group_count, ring);
3882                 }
3883         }
3884 
3885         /* Update ring's status */
3886         ring->mr_state = MR_FREE;
3887         ring->mr_flag = 0;
3888 
3889         /* Update the ring count of the group */
3890         group->mrg_cur_count++;
3891 
3892         /* Create per ring kstats */
3893         if (ring->mr_stat != NULL) {
3894                 ring->mr_mip = mip;
3895                 mac_ring_stat_create(ring);
3896         }
3897 
3898         return (ring);
3899 }
3900 
3901 /*
3902  * Rings are chained together for easy regrouping.
3903  */
3904 static void
3905 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3906     mac_capab_rings_t *cap_rings)
3907 {
3908         int index;
3909 
3910         /*
3911          * Initialize all ring members of this group. Size of zero will not
3912          * enter the loop, so it's safe for initializing an empty group.
3913          */
3914         for (index = size - 1; index >= 0; index--)
3915                 (void) mac_init_ring(mip, group, index, cap_rings);
3916 }
3917 
3918 int
3919 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3920 {
3921         mac_capab_rings_t       *cap_rings;
3922         mac_group_t             *group;
3923         mac_group_t             *groups;
3924         mac_group_info_t        group_info;
3925         uint_t                  group_free = 0;
3926         uint_t                  ring_left;
3927         mac_ring_t              *ring;
3928         int                     g;
3929         int                     err = 0;
3930         uint_t                  grpcnt;
3931         boolean_t               pseudo_txgrp = B_FALSE;
3932 
3933         switch (rtype) {
3934         case MAC_RING_TYPE_RX:
3935                 ASSERT(mip->mi_rx_groups == NULL);
3936 
3937                 cap_rings = &mip->mi_rx_rings_cap;
3938                 cap_rings->mr_type = MAC_RING_TYPE_RX;
3939                 break;
3940         case MAC_RING_TYPE_TX:
3941                 ASSERT(mip->mi_tx_groups == NULL);
3942 
3943                 cap_rings = &mip->mi_tx_rings_cap;
3944                 cap_rings->mr_type = MAC_RING_TYPE_TX;
3945                 break;
3946         default:
3947                 ASSERT(B_FALSE);
3948         }
3949 
3950         if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3951                 return (0);
3952         grpcnt = cap_rings->mr_gnum;
3953 
3954         /*
3955          * If we have multiple TX rings, but only one TX group, we can
3956          * create pseudo TX groups (one per TX ring) in the MAC layer,
3957          * except for an aggr. For an aggr currently we maintain only
3958          * one group with all the rings (for all its ports), going
3959          * forwards we might change this.
3960          */
3961         if (rtype == MAC_RING_TYPE_TX &&
3962             cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
3963             (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3964                 /*
3965                  * The -1 here is because we create a default TX group
3966                  * with all the rings in it.
3967                  */
3968                 grpcnt = cap_rings->mr_rnum - 1;
3969                 pseudo_txgrp = B_TRUE;
3970         }
3971 
3972         /*
3973          * Allocate a contiguous buffer for all groups.
3974          */
3975         groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3976 
3977         ring_left = cap_rings->mr_rnum;
3978 
3979         /*
3980          * Get all ring groups if any, and get their ring members
3981          * if any.
3982          */
3983         for (g = 0; g < grpcnt; g++) {
3984                 group = groups + g;
3985 
3986                 /* Prepare basic information of the group */
3987                 group->mrg_index = g;
3988                 group->mrg_type = rtype;
3989                 group->mrg_state = MAC_GROUP_STATE_UNINIT;
3990                 group->mrg_mh = (mac_handle_t)mip;
3991                 group->mrg_next = group + 1;
3992 
3993                 /* Zero to reuse the info data structure */
3994                 bzero(&group_info, sizeof (group_info));
3995 
3996                 if (pseudo_txgrp) {
3997                         /*
3998                          * This is a pseudo group that we created, apart
3999                          * from setting the state there is nothing to be
4000                          * done.
4001                          */
4002                         group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4003                         group_free++;
4004                         continue;
4005                 }
4006                 /* Query group information from driver */
4007                 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4008                     (mac_group_handle_t)group);
4009 
4010                 switch (cap_rings->mr_group_type) {
4011                 case MAC_GROUP_TYPE_DYNAMIC:
4012                         if (cap_rings->mr_gaddring == NULL ||
4013                             cap_rings->mr_gremring == NULL) {
4014                                 DTRACE_PROBE3(
4015                                     mac__init__rings_no_addremring,
4016                                     char *, mip->mi_name,
4017                                     mac_group_add_ring_t,
4018                                     cap_rings->mr_gaddring,
4019                                     mac_group_add_ring_t,
4020                                     cap_rings->mr_gremring);
4021                                 err = EINVAL;
4022                                 goto bail;
4023                         }
4024 
4025                         switch (rtype) {
4026                         case MAC_RING_TYPE_RX:
4027                                 /*
4028                                  * The first RX group must have non-zero
4029                                  * rings, and the following groups must
4030                                  * have zero rings.
4031                                  */
4032                                 if (g == 0 && group_info.mgi_count == 0) {
4033                                         DTRACE_PROBE1(
4034                                             mac__init__rings__rx__def__zero,
4035                                             char *, mip->mi_name);
4036                                         err = EINVAL;
4037                                         goto bail;
4038                                 }
4039                                 if (g > 0 && group_info.mgi_count != 0) {
4040                                         DTRACE_PROBE3(
4041                                             mac__init__rings__rx__nonzero,
4042                                             char *, mip->mi_name,
4043                                             int, g, int, group_info.mgi_count);
4044                                         err = EINVAL;
4045                                         goto bail;
4046                                 }
4047                                 break;
4048                         case MAC_RING_TYPE_TX:
4049                                 /*
4050                                  * All TX ring groups must have zero rings.
4051                                  */
4052                                 if (group_info.mgi_count != 0) {
4053                                         DTRACE_PROBE3(
4054                                             mac__init__rings__tx__nonzero,
4055                                             char *, mip->mi_name,
4056                                             int, g, int, group_info.mgi_count);
4057                                         err = EINVAL;
4058                                         goto bail;
4059                                 }
4060                                 break;
4061                         }
4062                         break;
4063                 case MAC_GROUP_TYPE_STATIC:
4064                         /*
4065                          * Note that an empty group is allowed, e.g., an aggr
4066                          * would start with an empty group.
4067                          */
4068                         break;
4069                 default:
4070                         /* unknown group type */
4071                         DTRACE_PROBE2(mac__init__rings__unknown__type,
4072                             char *, mip->mi_name,
4073                             int, cap_rings->mr_group_type);
4074                         err = EINVAL;
4075                         goto bail;
4076                 }
4077 
4078 
4079                 /*
4080                  * Driver must register group->mgi_addmac/remmac() for rx groups
4081                  * to support multiple MAC addresses.
4082                  */
4083                 if (rtype == MAC_RING_TYPE_RX &&
4084                     ((group_info.mgi_addmac == NULL) ||
4085                     (group_info.mgi_remmac == NULL))) {
4086                         err = EINVAL;
4087                         goto bail;
4088                 }
4089 
4090                 /* Cache driver-supplied information */
4091                 group->mrg_info = group_info;
4092 
4093                 /* Update the group's status and group count. */
4094                 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4095                 group_free++;
4096 
4097                 group->mrg_rings = NULL;
4098                 group->mrg_cur_count = 0;
4099                 mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4100                 ring_left -= group_info.mgi_count;
4101 
4102                 /* The current group size should be equal to default value */
4103                 ASSERT(group->mrg_cur_count == group_info.mgi_count);
4104         }
4105 
4106         /* Build up a dummy group for free resources as a pool */
4107         group = groups + grpcnt;
4108 
4109         /* Prepare basic information of the group */
4110         group->mrg_index = -1;
4111         group->mrg_type = rtype;
4112         group->mrg_state = MAC_GROUP_STATE_UNINIT;
4113         group->mrg_mh = (mac_handle_t)mip;
4114         group->mrg_next = NULL;
4115 
4116         /*
4117          * If there are ungrouped rings, allocate a continuous buffer for
4118          * remaining resources.
4119          */
4120         if (ring_left != 0) {
4121                 group->mrg_rings = NULL;
4122                 group->mrg_cur_count = 0;
4123                 mac_init_group(mip, group, ring_left, cap_rings);
4124 
4125                 /* The current group size should be equal to ring_left */
4126                 ASSERT(group->mrg_cur_count == ring_left);
4127 
4128                 ring_left = 0;
4129 
4130                 /* Update this group's status */
4131                 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4132         } else
4133                 group->mrg_rings = NULL;
4134 
4135         ASSERT(ring_left == 0);
4136 
4137 bail:
4138 
4139         /* Cache other important information to finalize the initialization */
4140         switch (rtype) {
4141         case MAC_RING_TYPE_RX:
4142                 mip->mi_rx_group_type = cap_rings->mr_group_type;
4143                 mip->mi_rx_group_count = cap_rings->mr_gnum;
4144                 mip->mi_rx_groups = groups;
4145                 mip->mi_rx_donor_grp = groups;
4146                 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4147                         /*
4148                          * The default ring is reserved since it is
4149                          * used for sending the broadcast etc. packets.
4150                          */
4151                         mip->mi_rxrings_avail =
4152                             mip->mi_rx_groups->mrg_cur_count - 1;
4153                         mip->mi_rxrings_rsvd = 1;
4154                 }
4155                 /*
4156                  * The default group cannot be reserved. It is used by
4157                  * all the clients that do not have an exclusive group.
4158                  */
4159                 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4160                 mip->mi_rxhwclnt_used = 1;
4161                 break;
4162         case MAC_RING_TYPE_TX:
4163                 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4164                     cap_rings->mr_group_type;
4165                 mip->mi_tx_group_count = grpcnt;
4166                 mip->mi_tx_group_free = group_free;
4167                 mip->mi_tx_groups = groups;
4168 
4169                 group = groups + grpcnt;
4170                 ring = group->mrg_rings;
4171                 /*
4172                  * The ring can be NULL in the case of aggr. Aggr will
4173                  * have an empty Tx group which will get populated
4174                  * later when pseudo Tx rings are added after
4175                  * mac_register() is done.
4176                  */
4177                 if (ring == NULL) {
4178                         ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4179                         /*
4180                          * pass the group to aggr so it can add Tx
4181                          * rings to the group later.
4182                          */
4183                         cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4184                             (mac_group_handle_t)group);
4185                         /*
4186                          * Even though there are no rings at this time
4187                          * (rings will come later), set the group
4188                          * state to registered.
4189                          */
4190                         group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4191                 } else {
4192                         /*
4193                          * Ring 0 is used as the default one and it could be
4194                          * assigned to a client as well.
4195                          */
4196                         while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4197                                 ring = ring->mr_next;
4198                         ASSERT(ring->mr_index == 0);
4199                         mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4200                 }
4201                 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4202                         mip->mi_txrings_avail = group->mrg_cur_count - 1;
4203                         /*
4204                          * The default ring cannot be reserved.
4205                          */
4206                         mip->mi_txrings_rsvd = 1;
4207                 }
4208                 /*
4209                  * The default group cannot be reserved. It will be shared
4210                  * by clients that do not have an exclusive group.
4211                  */
4212                 mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4213                 mip->mi_txhwclnt_used = 1;
4214                 break;
4215         default:
4216                 ASSERT(B_FALSE);
4217         }
4218 
4219         if (err != 0)
4220                 mac_free_rings(mip, rtype);
4221 
4222         return (err);
4223 }
4224 
4225 /*
4226  * The ddi interrupt handle could be shared amoung rings. If so, compare
4227  * the new ring's ddi handle with the existing ones and set ddi_shared
4228  * flag.
4229  */
4230 void
4231 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4232 {
4233         mac_group_t *group;
4234         mac_ring_t *ring;
4235         ddi_intr_handle_t ddi_handle;
4236         int g;
4237 
4238         ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4239         for (g = 0; g < grpcnt; g++) {
4240                 group = groups + g;
4241                 for (ring = group->mrg_rings; ring != NULL;
4242                     ring = ring->mr_next) {
4243                         if (ring == cring)
4244                                 continue;
4245                         if (ring->mr_info.mri_intr.mi_ddi_handle ==
4246                             ddi_handle) {
4247                                 if (cring->mr_type == MAC_RING_TYPE_RX &&
4248                                     ring->mr_index == 0 &&
4249                                     !ring->mr_info.mri_intr.mi_ddi_shared) {
4250                                         ring->mr_info.mri_intr.mi_ddi_shared =
4251                                             B_TRUE;
4252                                 } else {
4253                                         cring->mr_info.mri_intr.mi_ddi_shared =
4254                                             B_TRUE;
4255                                 }
4256                                 return;
4257                         }
4258                 }
4259         }
4260 }
4261 
4262 /*
4263  * Called to free all groups of particular type (RX or TX). It's assumed that
4264  * no clients are using these groups.
4265  */
4266 void
4267 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4268 {
4269         mac_group_t *group, *groups;
4270         uint_t group_count;
4271 
4272         switch (rtype) {
4273         case MAC_RING_TYPE_RX:
4274                 if (mip->mi_rx_groups == NULL)
4275                         return;
4276 
4277                 groups = mip->mi_rx_groups;
4278                 group_count = mip->mi_rx_group_count;
4279 
4280                 mip->mi_rx_groups = NULL;
4281                 mip->mi_rx_donor_grp = NULL;
4282                 mip->mi_rx_group_count = 0;
4283                 break;
4284         case MAC_RING_TYPE_TX:
4285                 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4286 
4287                 if (mip->mi_tx_groups == NULL)
4288                         return;
4289 
4290                 groups = mip->mi_tx_groups;
4291                 group_count = mip->mi_tx_group_count;
4292 
4293                 mip->mi_tx_groups = NULL;
4294                 mip->mi_tx_group_count = 0;
4295                 mip->mi_tx_group_free = 0;
4296                 mip->mi_default_tx_ring = NULL;
4297                 break;
4298         default:
4299                 ASSERT(B_FALSE);
4300         }
4301 
4302         for (group = groups; group != NULL; group = group->mrg_next) {
4303                 mac_ring_t *ring;
4304 
4305                 if (group->mrg_cur_count == 0)
4306                         continue;
4307 
4308                 ASSERT(group->mrg_rings != NULL);
4309 
4310                 while ((ring = group->mrg_rings) != NULL) {
4311                         group->mrg_rings = ring->mr_next;
4312                         mac_ring_free(mip, ring);
4313                 }
4314         }
4315 
4316         /* Free all the cached rings */
4317         mac_ring_freeall(mip);
4318         /* Free the block of group data strutures */
4319         kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4320 }
4321 
4322 /*
4323  * Associate a MAC address with a receive group.
4324  *
4325  * The return value of this function should always be checked properly, because
4326  * any type of failure could cause unexpected results. A group can be added
4327  * or removed with a MAC address only after it has been reserved. Ideally,
4328  * a successful reservation always leads to calling mac_group_addmac() to
4329  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4330  * always imply that the group is functioning abnormally.
4331  *
4332  * Currently this function is called everywhere, and it reflects assumptions
4333  * about MAC addresses in the implementation. CR 6735196.
4334  */
4335 int
4336 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4337 {
4338         ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4339         ASSERT(group->mrg_info.mgi_addmac != NULL);
4340 
4341         return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4342 }
4343 
4344 /*
4345  * Remove the association between MAC address and receive group.
4346  */
4347 int
4348 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4349 {
4350         ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4351         ASSERT(group->mrg_info.mgi_remmac != NULL);
4352 
4353         return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4354 }
4355 
4356 /*
4357  * This is the entry point for packets transmitted through the bridging code.
4358  * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4359  * pointer may be NULL to select the default ring.
4360  */
4361 mblk_t *
4362 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4363 {
4364         mac_handle_t mh;
4365 
4366         /*
4367          * Once we take a reference on the bridge link, the bridge
4368          * module itself can't unload, so the callback pointers are
4369          * stable.
4370          */
4371         mutex_enter(&mip->mi_bridge_lock);
4372         if ((mh = mip->mi_bridge_link) != NULL)
4373                 mac_bridge_ref_cb(mh, B_TRUE);
4374         mutex_exit(&mip->mi_bridge_lock);
4375         if (mh == NULL) {
4376                 MAC_RING_TX(mip, rh, mp, mp);
4377         } else {
4378                 mp = mac_bridge_tx_cb(mh, rh, mp);
4379                 mac_bridge_ref_cb(mh, B_FALSE);
4380         }
4381 
4382         return (mp);
4383 }
4384 
4385 /*
4386  * Find a ring from its index.
4387  */
4388 mac_ring_handle_t
4389 mac_find_ring(mac_group_handle_t gh, int index)
4390 {
4391         mac_group_t *group = (mac_group_t *)gh;
4392         mac_ring_t *ring = group->mrg_rings;
4393 
4394         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4395                 if (ring->mr_index == index)
4396                         break;
4397 
4398         return ((mac_ring_handle_t)ring);
4399 }
4400 /*
4401  * Add a ring to an existing group.
4402  *
4403  * The ring must be either passed directly (for example if the ring
4404  * movement is initiated by the framework), or specified through a driver
4405  * index (for example when the ring is added by the driver.
4406  *
4407  * The caller needs to call mac_perim_enter() before calling this function.
4408  */
4409 int
4410 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4411 {
4412         mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4413         mac_capab_rings_t *cap_rings;
4414         boolean_t driver_call = (ring == NULL);
4415         mac_group_type_t group_type;
4416         int ret = 0;
4417         flow_entry_t *flent;
4418 
4419         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4420 
4421         switch (group->mrg_type) {
4422         case MAC_RING_TYPE_RX:
4423                 cap_rings = &mip->mi_rx_rings_cap;
4424                 group_type = mip->mi_rx_group_type;
4425                 break;
4426         case MAC_RING_TYPE_TX:
4427                 cap_rings = &mip->mi_tx_rings_cap;
4428                 group_type = mip->mi_tx_group_type;
4429                 break;
4430         default:
4431                 ASSERT(B_FALSE);
4432         }
4433 
4434         /*
4435          * There should be no ring with the same ring index in the target
4436          * group.
4437          */
4438         ASSERT(mac_find_ring((mac_group_handle_t)group,
4439             driver_call ? index : ring->mr_index) == NULL);
4440 
4441         if (driver_call) {
4442                 /*
4443                  * The function is called as a result of a request from
4444                  * a driver to add a ring to an existing group, for example
4445                  * from the aggregation driver. Allocate a new mac_ring_t
4446                  * for that ring.
4447                  */
4448                 ring = mac_init_ring(mip, group, index, cap_rings);
4449                 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4450         } else {
4451                 /*
4452                  * The function is called as a result of a MAC layer request
4453                  * to add a ring to an existing group. In this case the
4454                  * ring is being moved between groups, which requires
4455                  * the underlying driver to support dynamic grouping,
4456                  * and the mac_ring_t already exists.
4457                  */
4458                 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4459                 ASSERT(group->mrg_driver == NULL ||
4460                     cap_rings->mr_gaddring != NULL);
4461                 ASSERT(ring->mr_gh == NULL);
4462         }
4463 
4464         /*
4465          * At this point the ring should not be in use, and it should be
4466          * of the right for the target group.
4467          */
4468         ASSERT(ring->mr_state < MR_INUSE);
4469         ASSERT(ring->mr_srs == NULL);
4470         ASSERT(ring->mr_type == group->mrg_type);
4471 
4472         if (!driver_call) {
4473                 /*
4474                  * Add the driver level hardware ring if the process was not
4475                  * initiated by the driver, and the target group is not the
4476                  * group.
4477                  */
4478                 if (group->mrg_driver != NULL) {
4479                         cap_rings->mr_gaddring(group->mrg_driver,
4480                             ring->mr_driver, ring->mr_type);
4481                 }
4482 
4483                 /*
4484                  * Insert the ring ahead existing rings.
4485                  */
4486                 ring->mr_next = group->mrg_rings;
4487                 group->mrg_rings = ring;
4488                 ring->mr_gh = (mac_group_handle_t)group;
4489                 group->mrg_cur_count++;
4490         }
4491 
4492         /*
4493          * If the group has not been actively used, we're done.
4494          */
4495         if (group->mrg_index != -1 &&
4496             group->mrg_state < MAC_GROUP_STATE_RESERVED)
4497                 return (0);
4498 
4499         /*
4500          * Start the ring if needed. Failure causes to undo the grouping action.
4501          */
4502         if (ring->mr_state != MR_INUSE) {
4503                 if ((ret = mac_start_ring(ring)) != 0) {
4504                         if (!driver_call) {
4505                                 cap_rings->mr_gremring(group->mrg_driver,
4506                                     ring->mr_driver, ring->mr_type);
4507                         }
4508                         group->mrg_cur_count--;
4509                         group->mrg_rings = ring->mr_next;
4510 
4511                         ring->mr_gh = NULL;
4512 
4513                         if (driver_call)
4514                                 mac_ring_free(mip, ring);
4515 
4516                         return (ret);
4517                 }
4518         }
4519 
4520         /*
4521          * Set up SRS/SR according to the ring type.
4522          */
4523         switch (ring->mr_type) {
4524         case MAC_RING_TYPE_RX:
4525                 /*
4526                  * Setup SRS on top of the new ring if the group is
4527                  * reserved for someones exclusive use.
4528                  */
4529                 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4530                         mac_client_impl_t *mcip;
4531 
4532                         mcip = MAC_GROUP_ONLY_CLIENT(group);
4533                         /*
4534                          * Even though this group is reserved we migth still
4535                          * have multiple clients, i.e a VLAN shares the
4536                          * group with the primary mac client.
4537                          */
4538                         if (mcip != NULL) {
4539                                 flent = mcip->mci_flent;
4540                                 ASSERT(flent->fe_rx_srs_cnt > 0);
4541                                 mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4542                                 mac_fanout_setup(mcip, flent,
4543                                     MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4544                                     mcip, NULL, NULL);
4545                         } else {
4546                                 ring->mr_classify_type = MAC_SW_CLASSIFIER;
4547                         }
4548                 }
4549                 break;
4550         case MAC_RING_TYPE_TX:
4551         {
4552                 mac_grp_client_t        *mgcp = group->mrg_clients;
4553                 mac_client_impl_t       *mcip;
4554                 mac_soft_ring_set_t     *mac_srs;
4555                 mac_srs_tx_t            *tx;
4556 
4557                 if (MAC_GROUP_NO_CLIENT(group)) {
4558                         if (ring->mr_state == MR_INUSE)
4559                                 mac_stop_ring(ring);
4560                         ring->mr_flag = 0;
4561                         break;
4562                 }
4563                 /*
4564                  * If the rings are being moved to a group that has
4565                  * clients using it, then add the new rings to the
4566                  * clients SRS.
4567                  */
4568                 while (mgcp != NULL) {
4569                         boolean_t       is_aggr;
4570 
4571                         mcip = mgcp->mgc_client;
4572                         flent = mcip->mci_flent;
4573                         is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4574                         mac_srs = MCIP_TX_SRS(mcip);
4575                         tx = &mac_srs->srs_tx;
4576                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4577                         /*
4578                          * If we are  growing from 1 to multiple rings.
4579                          */
4580                         if (tx->st_mode == SRS_TX_BW ||
4581                             tx->st_mode == SRS_TX_SERIALIZE ||
4582                             tx->st_mode == SRS_TX_DEFAULT) {
4583                                 mac_ring_t      *tx_ring = tx->st_arg2;
4584 
4585                                 tx->st_arg2 = NULL;
4586                                 mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4587                                 mac_tx_srs_add_ring(mac_srs, tx_ring);
4588                                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4589                                         tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4590                                             SRS_TX_BW_FANOUT;
4591                                 } else {
4592                                         tx->st_mode = is_aggr ? SRS_TX_AGGR :
4593                                             SRS_TX_FANOUT;
4594                                 }
4595                                 tx->st_func = mac_tx_get_func(tx->st_mode);
4596                         }
4597                         mac_tx_srs_add_ring(mac_srs, ring);
4598                         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4599                             mac_rx_deliver, mcip, NULL, NULL);
4600                         mac_tx_client_restart((mac_client_handle_t)mcip);
4601                         mgcp = mgcp->mgc_next;
4602                 }
4603                 break;
4604         }
4605         default:
4606                 ASSERT(B_FALSE);
4607         }
4608         /*
4609          * For aggr, the default ring will be NULL to begin with. If it
4610          * is NULL, then pick the first ring that gets added as the
4611          * default ring. Any ring in an aggregation can be removed at
4612          * any time (by the user action of removing a link) and if the
4613          * current default ring gets removed, then a new one gets
4614          * picked (see i_mac_group_rem_ring()).
4615          */
4616         if (mip->mi_state_flags & MIS_IS_AGGR &&
4617             mip->mi_default_tx_ring == NULL &&
4618             ring->mr_type == MAC_RING_TYPE_TX) {
4619                 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4620         }
4621 
4622         MAC_RING_UNMARK(ring, MR_INCIPIENT);
4623         return (0);
4624 }
4625 
4626 /*
4627  * Remove a ring from it's current group. MAC internal function for dynamic
4628  * grouping.
4629  *
4630  * The caller needs to call mac_perim_enter() before calling this function.
4631  */
4632 void
4633 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4634     boolean_t driver_call)
4635 {
4636         mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4637         mac_capab_rings_t *cap_rings = NULL;
4638         mac_group_type_t group_type;
4639 
4640         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4641 
4642         ASSERT(mac_find_ring((mac_group_handle_t)group,
4643             ring->mr_index) == (mac_ring_handle_t)ring);
4644         ASSERT((mac_group_t *)ring->mr_gh == group);
4645         ASSERT(ring->mr_type == group->mrg_type);
4646 
4647         if (ring->mr_state == MR_INUSE)
4648                 mac_stop_ring(ring);
4649         switch (ring->mr_type) {
4650         case MAC_RING_TYPE_RX:
4651                 group_type = mip->mi_rx_group_type;
4652                 cap_rings = &mip->mi_rx_rings_cap;
4653 
4654                 /*
4655                  * Only hardware classified packets hold a reference to the
4656                  * ring all the way up the Rx path. mac_rx_srs_remove()
4657                  * will take care of quiescing the Rx path and removing the
4658                  * SRS. The software classified path neither holds a reference
4659                  * nor any association with the ring in mac_rx.
4660                  */
4661                 if (ring->mr_srs != NULL) {
4662                         mac_rx_srs_remove(ring->mr_srs);
4663                         ring->mr_srs = NULL;
4664                 }
4665 
4666                 break;
4667         case MAC_RING_TYPE_TX:
4668         {
4669                 mac_grp_client_t        *mgcp;
4670                 mac_client_impl_t       *mcip;
4671                 mac_soft_ring_set_t     *mac_srs;
4672                 mac_srs_tx_t            *tx;
4673                 mac_ring_t              *rem_ring;
4674                 mac_group_t             *defgrp;
4675                 uint_t                  ring_info = 0;
4676 
4677                 /*
4678                  * For TX this function is invoked in three
4679                  * cases:
4680                  *
4681                  * 1) In the case of a failure during the
4682                  * initial creation of a group when a share is
4683                  * associated with a MAC client. So the SRS is not
4684                  * yet setup, and will be setup later after the
4685                  * group has been reserved and populated.
4686                  *
4687                  * 2) From mac_release_tx_group() when freeing
4688                  * a TX SRS.
4689                  *
4690                  * 3) In the case of aggr, when a port gets removed,
4691                  * the pseudo Tx rings that it exposed gets removed.
4692                  *
4693                  * In the first two cases the SRS and its soft
4694                  * rings are already quiesced.
4695                  */
4696                 if (driver_call) {
4697                         mac_client_impl_t *mcip;
4698                         mac_soft_ring_set_t *mac_srs;
4699                         mac_soft_ring_t *sringp;
4700                         mac_srs_tx_t *srs_tx;
4701 
4702                         if (mip->mi_state_flags & MIS_IS_AGGR &&
4703                             mip->mi_default_tx_ring ==
4704                             (mac_ring_handle_t)ring) {
4705                                 /* pick a new default Tx ring */
4706                                 mip->mi_default_tx_ring =
4707                                     (group->mrg_rings != ring) ?
4708                                     (mac_ring_handle_t)group->mrg_rings :
4709                                     (mac_ring_handle_t)(ring->mr_next);
4710                         }
4711                         /* Presently only aggr case comes here */
4712                         if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4713                                 break;
4714 
4715                         mcip = MAC_GROUP_ONLY_CLIENT(group);
4716                         ASSERT(mcip != NULL);
4717                         ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4718                         mac_srs = MCIP_TX_SRS(mcip);
4719                         ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4720                             mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4721                         srs_tx = &mac_srs->srs_tx;
4722                         /*
4723                          * Wakeup any callers blocked on this
4724                          * Tx ring due to flow control.
4725                          */
4726                         sringp = srs_tx->st_soft_rings[ring->mr_index];
4727                         ASSERT(sringp != NULL);
4728                         mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4729                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4730                         mac_tx_srs_del_ring(mac_srs, ring);
4731                         mac_tx_client_restart((mac_client_handle_t)mcip);
4732                         break;
4733                 }
4734                 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4735                 group_type = mip->mi_tx_group_type;
4736                 cap_rings = &mip->mi_tx_rings_cap;
4737                 /*
4738                  * See if we need to take it out of the MAC clients using
4739                  * this group
4740                  */
4741                 if (MAC_GROUP_NO_CLIENT(group))
4742                         break;
4743                 mgcp = group->mrg_clients;
4744                 defgrp = MAC_DEFAULT_TX_GROUP(mip);
4745                 while (mgcp != NULL) {
4746                         mcip = mgcp->mgc_client;
4747                         mac_srs = MCIP_TX_SRS(mcip);
4748                         tx = &mac_srs->srs_tx;
4749                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4750                         /*
4751                          * If we are here when removing rings from the
4752                          * defgroup, mac_reserve_tx_ring would have
4753                          * already deleted the ring from the MAC
4754                          * clients in the group.
4755                          */
4756                         if (group != defgrp) {
4757                                 mac_tx_invoke_callbacks(mcip,
4758                                     (mac_tx_cookie_t)
4759                                     mac_tx_srs_get_soft_ring(mac_srs, ring));
4760                                 mac_tx_srs_del_ring(mac_srs, ring);
4761                         }
4762                         /*
4763                          * Additionally, if  we are left with only
4764                          * one ring in the group after this, we need
4765                          * to modify the mode etc. to. (We haven't
4766                          * yet taken the ring out, so we check with 2).
4767                          */
4768                         if (group->mrg_cur_count == 2) {
4769                                 if (ring->mr_next == NULL)
4770                                         rem_ring = group->mrg_rings;
4771                                 else
4772                                         rem_ring = ring->mr_next;
4773                                 mac_tx_invoke_callbacks(mcip,
4774                                     (mac_tx_cookie_t)
4775                                     mac_tx_srs_get_soft_ring(mac_srs,
4776                                     rem_ring));
4777                                 mac_tx_srs_del_ring(mac_srs, rem_ring);
4778                                 if (rem_ring->mr_state != MR_INUSE) {
4779                                         (void) mac_start_ring(rem_ring);
4780                                 }
4781                                 tx->st_arg2 = (void *)rem_ring;
4782                                 mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4783                                 ring_info = mac_hwring_getinfo(
4784                                     (mac_ring_handle_t)rem_ring);
4785                                 /*
4786                                  * We are  shrinking from multiple
4787                                  * to 1 ring.
4788                                  */
4789                                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4790                                         tx->st_mode = SRS_TX_BW;
4791                                 } else if (mac_tx_serialize ||
4792                                     (ring_info & MAC_RING_TX_SERIALIZE)) {
4793                                         tx->st_mode = SRS_TX_SERIALIZE;
4794                                 } else {
4795                                         tx->st_mode = SRS_TX_DEFAULT;
4796                                 }
4797                                 tx->st_func = mac_tx_get_func(tx->st_mode);
4798                         }
4799                         mac_tx_client_restart((mac_client_handle_t)mcip);
4800                         mgcp = mgcp->mgc_next;
4801                 }
4802                 break;
4803         }
4804         default:
4805                 ASSERT(B_FALSE);
4806         }
4807 
4808         /*
4809          * Remove the ring from the group.
4810          */
4811         if (ring == group->mrg_rings)
4812                 group->mrg_rings = ring->mr_next;
4813         else {
4814                 mac_ring_t *pre;
4815 
4816                 pre = group->mrg_rings;
4817                 while (pre->mr_next != ring)
4818                         pre = pre->mr_next;
4819                 pre->mr_next = ring->mr_next;
4820         }
4821         group->mrg_cur_count--;
4822 
4823         if (!driver_call) {
4824                 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4825                 ASSERT(group->mrg_driver == NULL ||
4826                     cap_rings->mr_gremring != NULL);
4827 
4828                 /*
4829                  * Remove the driver level hardware ring.
4830                  */
4831                 if (group->mrg_driver != NULL) {
4832                         cap_rings->mr_gremring(group->mrg_driver,
4833                             ring->mr_driver, ring->mr_type);
4834                 }
4835         }
4836 
4837         ring->mr_gh = NULL;
4838         if (driver_call)
4839                 mac_ring_free(mip, ring);
4840         else
4841                 ring->mr_flag = 0;
4842 }
4843 
4844 /*
4845  * Move a ring to the target group. If needed, remove the ring from the group
4846  * that it currently belongs to.
4847  *
4848  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4849  */
4850 static int
4851 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4852 {
4853         mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4854         int rv;
4855 
4856         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4857         ASSERT(d_group != NULL);
4858         ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4859 
4860         if (s_group == d_group)
4861                 return (0);
4862 
4863         /*
4864          * Remove it from current group first.
4865          */
4866         if (s_group != NULL)
4867                 i_mac_group_rem_ring(s_group, ring, B_FALSE);
4868 
4869         /*
4870          * Add it to the new group.
4871          */
4872         rv = i_mac_group_add_ring(d_group, ring, 0);
4873         if (rv != 0) {
4874                 /*
4875                  * Failed to add ring back to source group. If
4876                  * that fails, the ring is stuck in limbo, log message.
4877                  */
4878                 if (i_mac_group_add_ring(s_group, ring, 0)) {
4879                         cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4880                             mip->mi_name, (void *)ring);
4881                 }
4882         }
4883 
4884         return (rv);
4885 }
4886 
4887 /*
4888  * Find a MAC address according to its value.
4889  */
4890 mac_address_t *
4891 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4892 {
4893         mac_address_t *map;
4894 
4895         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4896 
4897         for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4898                 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4899                         break;
4900         }
4901 
4902         return (map);
4903 }
4904 
4905 /*
4906  * Check whether the MAC address is shared by multiple clients.
4907  */
4908 boolean_t
4909 mac_check_macaddr_shared(mac_address_t *map)
4910 {
4911         ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4912 
4913         return (map->ma_nusers > 1);
4914 }
4915 
4916 /*
4917  * Remove the specified MAC address from the MAC address list and free it.
4918  */
4919 static void
4920 mac_free_macaddr(mac_address_t *map)
4921 {
4922         mac_impl_t *mip = map->ma_mip;
4923 
4924         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4925         ASSERT(mip->mi_addresses != NULL);
4926 
4927         map = mac_find_macaddr(mip, map->ma_addr);
4928 
4929         ASSERT(map != NULL);
4930         ASSERT(map->ma_nusers == 0);
4931 
4932         if (map == mip->mi_addresses) {
4933                 mip->mi_addresses = map->ma_next;
4934         } else {
4935                 mac_address_t *pre;
4936 
4937                 pre = mip->mi_addresses;
4938                 while (pre->ma_next != map)
4939                         pre = pre->ma_next;
4940                 pre->ma_next = map->ma_next;
4941         }
4942 
4943         kmem_free(map, sizeof (mac_address_t));
4944 }
4945 
4946 /*
4947  * Add a MAC address reference for a client. If the desired MAC address
4948  * exists, add a reference to it. Otherwise, add the new address by adding
4949  * it to a reserved group or setting promiscuous mode. Won't try different
4950  * group is the group is non-NULL, so the caller must explictly share
4951  * default group when needed.
4952  *
4953  * Note, the primary MAC address is initialized at registration time, so
4954  * to add it to default group only need to activate it if its reference
4955  * count is still zero. Also, some drivers may not have advertised RINGS
4956  * capability.
4957  */
4958 int
4959 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4960     boolean_t use_hw)
4961 {
4962         mac_address_t *map;
4963         int err = 0;
4964         boolean_t allocated_map = B_FALSE;
4965 
4966         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4967 
4968         map = mac_find_macaddr(mip, mac_addr);
4969 
4970         /*
4971          * If the new MAC address has not been added. Allocate a new one
4972          * and set it up.
4973          */
4974         if (map == NULL) {
4975                 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4976                 map->ma_len = mip->mi_type->mt_addr_length;
4977                 bcopy(mac_addr, map->ma_addr, map->ma_len);
4978                 map->ma_nusers = 0;
4979                 map->ma_group = group;
4980                 map->ma_mip = mip;
4981 
4982                 /* add the new MAC address to the head of the address list */
4983                 map->ma_next = mip->mi_addresses;
4984                 mip->mi_addresses = map;
4985 
4986                 allocated_map = B_TRUE;
4987         }
4988 
4989         ASSERT(map->ma_group == NULL || map->ma_group == group);
4990         if (map->ma_group == NULL)
4991                 map->ma_group = group;
4992 
4993         /*
4994          * If the MAC address is already in use, simply account for the
4995          * new client.
4996          */
4997         if (map->ma_nusers++ > 0)
4998                 return (0);
4999 
5000         /*
5001          * Activate this MAC address by adding it to the reserved group.
5002          */
5003         if (group != NULL) {
5004                 err = mac_group_addmac(group, (const uint8_t *)mac_addr);
5005                 if (err == 0) {
5006                         map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5007                         return (0);
5008                 }
5009         }
5010 
5011         /*
5012          * The MAC address addition failed. If the client requires a
5013          * hardware classified MAC address, fail the operation.
5014          */
5015         if (use_hw) {
5016                 err = ENOSPC;
5017                 goto bail;
5018         }
5019 
5020         /*
5021          * Try promiscuous mode.
5022          *
5023          * For drivers that don't advertise RINGS capability, do
5024          * nothing for the primary address.
5025          */
5026         if ((group == NULL) &&
5027             (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5028                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5029                 return (0);
5030         }
5031 
5032         /*
5033          * Enable promiscuous mode in order to receive traffic
5034          * to the new MAC address.
5035          */
5036         if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5037                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5038                 return (0);
5039         }
5040 
5041         /*
5042          * Free the MAC address that could not be added. Don't free
5043          * a pre-existing address, it could have been the entry
5044          * for the primary MAC address which was pre-allocated by
5045          * mac_init_macaddr(), and which must remain on the list.
5046          */
5047 bail:
5048         map->ma_nusers--;
5049         if (allocated_map)
5050                 mac_free_macaddr(map);
5051         return (err);
5052 }
5053 
5054 /*
5055  * Remove a reference to a MAC address. This may cause to remove the MAC
5056  * address from an associated group or to turn off promiscuous mode.
5057  * The caller needs to handle the failure properly.
5058  */
5059 int
5060 mac_remove_macaddr(mac_address_t *map)
5061 {
5062         mac_impl_t *mip = map->ma_mip;
5063         int err = 0;
5064 
5065         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5066 
5067         ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5068 
5069         /*
5070          * If it's not the last client using this MAC address, only update
5071          * the MAC clients count.
5072          */
5073         if (--map->ma_nusers > 0)
5074                 return (0);
5075 
5076         /*
5077          * The MAC address is no longer used by any MAC client, so remove
5078          * it from its associated group, or turn off promiscuous mode
5079          * if it was enabled for the MAC address.
5080          */
5081         switch (map->ma_type) {
5082         case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5083                 /*
5084                  * Don't free the preset primary address for drivers that
5085                  * don't advertise RINGS capability.
5086                  */
5087                 if (map->ma_group == NULL)
5088                         return (0);
5089 
5090                 err = mac_group_remmac(map->ma_group, map->ma_addr);
5091                 if (err == 0)
5092                         map->ma_group = NULL;
5093                 break;
5094         case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5095                 err = i_mac_promisc_set(mip, B_FALSE);
5096                 break;
5097         default:
5098                 ASSERT(B_FALSE);
5099         }
5100 
5101         if (err != 0)
5102                 return (err);
5103 
5104         /*
5105          * We created MAC address for the primary one at registration, so we
5106          * won't free it here. mac_fini_macaddr() will take care of it.
5107          */
5108         if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5109                 mac_free_macaddr(map);
5110 
5111         return (0);
5112 }
5113 
5114 /*
5115  * Update an existing MAC address. The caller need to make sure that the new
5116  * value has not been used.
5117  */
5118 int
5119 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5120 {
5121         mac_impl_t *mip = map->ma_mip;
5122         int err = 0;
5123 
5124         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5125         ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5126 
5127         switch (map->ma_type) {
5128         case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5129                 /*
5130                  * Update the primary address for drivers that are not
5131                  * RINGS capable.
5132                  */
5133                 if (mip->mi_rx_groups == NULL) {
5134                         err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5135                             mac_addr);
5136                         if (err != 0)
5137                                 return (err);
5138                         break;
5139                 }
5140 
5141                 /*
5142                  * If this MAC address is not currently in use,
5143                  * simply break out and update the value.
5144                  */
5145                 if (map->ma_nusers == 0)
5146                         break;
5147 
5148                 /*
5149                  * Need to replace the MAC address associated with a group.
5150                  */
5151                 err = mac_group_remmac(map->ma_group, map->ma_addr);
5152                 if (err != 0)
5153                         return (err);
5154 
5155                 err = mac_group_addmac(map->ma_group, mac_addr);
5156 
5157                 /*
5158                  * Failure hints hardware error. The MAC layer needs to
5159                  * have error notification facility to handle this.
5160                  * Now, simply try to restore the value.
5161                  */
5162                 if (err != 0)
5163                         (void) mac_group_addmac(map->ma_group, map->ma_addr);
5164 
5165                 break;
5166         case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5167                 /*
5168                  * Need to do nothing more if in promiscuous mode.
5169                  */
5170                 break;
5171         default:
5172                 ASSERT(B_FALSE);
5173         }
5174 
5175         /*
5176          * Successfully replaced the MAC address.
5177          */
5178         if (err == 0)
5179                 bcopy(mac_addr, map->ma_addr, map->ma_len);
5180 
5181         return (err);
5182 }
5183 
5184 /*
5185  * Freshen the MAC address with new value. Its caller must have updated the
5186  * hardware MAC address before calling this function.
5187  * This funcitons is supposed to be used to handle the MAC address change
5188  * notification from underlying drivers.
5189  */
5190 void
5191 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5192 {
5193         mac_impl_t *mip = map->ma_mip;
5194 
5195         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5196         ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5197 
5198         /*
5199          * Freshen the MAC address with new value.
5200          */
5201         bcopy(mac_addr, map->ma_addr, map->ma_len);
5202         bcopy(mac_addr, mip->mi_addr, map->ma_len);
5203 
5204         /*
5205          * Update all MAC clients that share this MAC address.
5206          */
5207         mac_unicast_update_clients(mip, map);
5208 }
5209 
5210 /*
5211  * Set up the primary MAC address.
5212  */
5213 void
5214 mac_init_macaddr(mac_impl_t *mip)
5215 {
5216         mac_address_t *map;
5217 
5218         /*
5219          * The reference count is initialized to zero, until it's really
5220          * activated.
5221          */
5222         map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5223         map->ma_len = mip->mi_type->mt_addr_length;
5224         bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5225 
5226         /*
5227          * If driver advertises RINGS capability, it shouldn't have initialized
5228          * its primary MAC address. For other drivers, including VNIC, the
5229          * primary address must work after registration.
5230          */
5231         if (mip->mi_rx_groups == NULL)
5232                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5233 
5234         map->ma_mip = mip;
5235 
5236         mip->mi_addresses = map;
5237 }
5238 
5239 /*
5240  * Clean up the primary MAC address. Note, only one primary MAC address
5241  * is allowed. All other MAC addresses must have been freed appropriately.
5242  */
5243 void
5244 mac_fini_macaddr(mac_impl_t *mip)
5245 {
5246         mac_address_t *map = mip->mi_addresses;
5247 
5248         if (map == NULL)
5249                 return;
5250 
5251         /*
5252          * If mi_addresses is initialized, there should be exactly one
5253          * entry left on the list with no users.
5254          */
5255         ASSERT(map->ma_nusers == 0);
5256         ASSERT(map->ma_next == NULL);
5257 
5258         kmem_free(map, sizeof (mac_address_t));
5259         mip->mi_addresses = NULL;
5260 }
5261 
5262 /*
5263  * Logging related functions.
5264  *
5265  * Note that Kernel statistics have been extended to maintain fine
5266  * granularity of statistics viz. hardware lane, software lane, fanout
5267  * stats etc. However, extended accounting continues to support only
5268  * aggregate statistics like before.
5269  */
5270 
5271 /* Write the flow description to a netinfo_t record */
5272 static netinfo_t *
5273 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5274 {
5275         netinfo_t               *ninfo;
5276         net_desc_t              *ndesc;
5277         flow_desc_t             *fdesc;
5278         mac_resource_props_t    *mrp;
5279 
5280         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5281         if (ninfo == NULL)
5282                 return (NULL);
5283         ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5284         if (ndesc == NULL) {
5285                 kmem_free(ninfo, sizeof (netinfo_t));
5286                 return (NULL);
5287         }
5288 
5289         /*
5290          * Grab the fe_lock to see a self-consistent fe_flow_desc.
5291          * Updates to the fe_flow_desc are done under the fe_lock
5292          */
5293         mutex_enter(&flent->fe_lock);
5294         fdesc = &flent->fe_flow_desc;
5295         mrp = &flent->fe_resource_props;
5296 
5297         ndesc->nd_name = flent->fe_flow_name;
5298         ndesc->nd_devname = mcip->mci_name;
5299         bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5300         bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5301         ndesc->nd_sap = htonl(fdesc->fd_sap);
5302         ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5303         ndesc->nd_bw_limit = mrp->mrp_maxbw;
5304         if (ndesc->nd_isv4) {
5305                 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5306                 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5307         } else {
5308                 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5309                 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5310         }
5311         ndesc->nd_sport = htons(fdesc->fd_local_port);
5312         ndesc->nd_dport = htons(fdesc->fd_remote_port);
5313         ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5314         mutex_exit(&flent->fe_lock);
5315 
5316         ninfo->ni_record = ndesc;
5317         ninfo->ni_size = sizeof (net_desc_t);
5318         ninfo->ni_type = EX_NET_FLDESC_REC;
5319 
5320         return (ninfo);
5321 }
5322 
5323 /* Write the flow statistics to a netinfo_t record */
5324 static netinfo_t *
5325 mac_write_flow_stats(flow_entry_t *flent)
5326 {
5327         netinfo_t               *ninfo;
5328         net_stat_t              *nstat;
5329         mac_soft_ring_set_t     *mac_srs;
5330         mac_rx_stats_t          *mac_rx_stat;
5331         mac_tx_stats_t          *mac_tx_stat;
5332         int                     i;
5333 
5334         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5335         if (ninfo == NULL)
5336                 return (NULL);
5337         nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5338         if (nstat == NULL) {
5339                 kmem_free(ninfo, sizeof (netinfo_t));
5340                 return (NULL);
5341         }
5342 
5343         nstat->ns_name = flent->fe_flow_name;
5344         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5345                 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5346                 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5347 
5348                 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5349                     mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5350                 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5351                     mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5352                 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5353         }
5354 
5355         mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5356         if (mac_srs != NULL) {
5357                 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5358 
5359                 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5360                 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5361                 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5362         }
5363 
5364         ninfo->ni_record = nstat;
5365         ninfo->ni_size = sizeof (net_stat_t);
5366         ninfo->ni_type = EX_NET_FLSTAT_REC;
5367 
5368         return (ninfo);
5369 }
5370 
5371 /* Write the link description to a netinfo_t record */
5372 static netinfo_t *
5373 mac_write_link_desc(mac_client_impl_t *mcip)
5374 {
5375         netinfo_t               *ninfo;
5376         net_desc_t              *ndesc;
5377         flow_entry_t            *flent = mcip->mci_flent;
5378 
5379         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5380         if (ninfo == NULL)
5381                 return (NULL);
5382         ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5383         if (ndesc == NULL) {
5384                 kmem_free(ninfo, sizeof (netinfo_t));
5385                 return (NULL);
5386         }
5387 
5388         ndesc->nd_name = mcip->mci_name;
5389         ndesc->nd_devname = mcip->mci_name;
5390         ndesc->nd_isv4 = B_TRUE;
5391         /*
5392          * Grab the fe_lock to see a self-consistent fe_flow_desc.
5393          * Updates to the fe_flow_desc are done under the fe_lock
5394          * after removing the flent from the flow table.
5395          */
5396         mutex_enter(&flent->fe_lock);
5397         bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5398         mutex_exit(&flent->fe_lock);
5399 
5400         ninfo->ni_record = ndesc;
5401         ninfo->ni_size = sizeof (net_desc_t);
5402         ninfo->ni_type = EX_NET_LNDESC_REC;
5403 
5404         return (ninfo);
5405 }
5406 
5407 /* Write the link statistics to a netinfo_t record */
5408 static netinfo_t *
5409 mac_write_link_stats(mac_client_impl_t *mcip)
5410 {
5411         netinfo_t               *ninfo;
5412         net_stat_t              *nstat;
5413         flow_entry_t            *flent;
5414         mac_soft_ring_set_t     *mac_srs;
5415         mac_rx_stats_t          *mac_rx_stat;
5416         mac_tx_stats_t          *mac_tx_stat;
5417         int                     i;
5418 
5419         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5420         if (ninfo == NULL)
5421                 return (NULL);
5422         nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5423         if (nstat == NULL) {
5424                 kmem_free(ninfo, sizeof (netinfo_t));
5425                 return (NULL);
5426         }
5427 
5428         nstat->ns_name = mcip->mci_name;
5429         flent = mcip->mci_flent;
5430         if (flent != NULL)  {
5431                 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5432                         mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5433                         mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5434 
5435                         nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5436                             mac_rx_stat->mrs_pollbytes +
5437                             mac_rx_stat->mrs_lclbytes;
5438                         nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5439                             mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5440                         nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5441                 }
5442         }
5443 
5444         mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5445         if (mac_srs != NULL) {
5446                 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5447 
5448                 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5449                 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5450                 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5451         }
5452 
5453         ninfo->ni_record = nstat;
5454         ninfo->ni_size = sizeof (net_stat_t);
5455         ninfo->ni_type = EX_NET_LNSTAT_REC;
5456 
5457         return (ninfo);
5458 }
5459 
5460 typedef struct i_mac_log_state_s {
5461         boolean_t       mi_last;
5462         int             mi_fenable;
5463         int             mi_lenable;
5464         list_t          *mi_list;
5465 } i_mac_log_state_t;
5466 
5467 /*
5468  * For a given flow, if the description has not been logged before, do it now.
5469  * If it is a VNIC, then we have collected information about it from the MAC
5470  * table, so skip it.
5471  *
5472  * Called through mac_flow_walk_nolock()
5473  *
5474  * Return 0 if successful.
5475  */
5476 static int
5477 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5478 {
5479         mac_client_impl_t       *mcip = flent->fe_mcip;
5480         i_mac_log_state_t       *lstate = arg;
5481         netinfo_t               *ninfo;
5482 
5483         if (mcip == NULL)
5484                 return (0);
5485 
5486         /*
5487          * If the name starts with "vnic", and fe_user_generated is true (to
5488          * exclude the mcast and active flow entries created implicitly for
5489          * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5490          * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5491          */
5492         if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5493             (flent->fe_type & FLOW_USER) != 0) {
5494                 return (0);
5495         }
5496 
5497         if (!flent->fe_desc_logged) {
5498                 /*
5499                  * We don't return error because we want to continue the
5500                  * walk in case this is the last walk which means we
5501                  * need to reset fe_desc_logged in all the flows.
5502                  */
5503                 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5504                         return (0);
5505                 list_insert_tail(lstate->mi_list, ninfo);
5506                 flent->fe_desc_logged = B_TRUE;
5507         }
5508 
5509         /*
5510          * Regardless of the error, we want to proceed in case we have to
5511          * reset fe_desc_logged.
5512          */
5513         ninfo = mac_write_flow_stats(flent);
5514         if (ninfo == NULL)
5515                 return (-1);
5516 
5517         list_insert_tail(lstate->mi_list, ninfo);
5518 
5519         if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5520                 flent->fe_desc_logged = B_FALSE;
5521 
5522         return (0);
5523 }
5524 
5525 /*
5526  * Log the description for each mac client of this mac_impl_t, if it
5527  * hasn't already been done. Additionally, log statistics for the link as
5528  * well. Walk the flow table and log information for each flow as well.
5529  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5530  * also fe_desc_logged, if flow logging is on) since we want to log the
5531  * description if and when logging is restarted.
5532  *
5533  * Return 0 upon success or -1 upon failure
5534  */
5535 static int
5536 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5537 {
5538         mac_client_impl_t       *mcip;
5539         netinfo_t               *ninfo;
5540 
5541         i_mac_perim_enter(mip);
5542         /*
5543          * Only walk the client list for NIC and etherstub
5544          */
5545         if ((mip->mi_state_flags & MIS_DISABLED) ||
5546             ((mip->mi_state_flags & MIS_IS_VNIC) &&
5547             (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5548                 i_mac_perim_exit(mip);
5549                 return (0);
5550         }
5551 
5552         for (mcip = mip->mi_clients_list; mcip != NULL;
5553             mcip = mcip->mci_client_next) {
5554                 if (!MCIP_DATAPATH_SETUP(mcip))
5555                         continue;
5556                 if (lstate->mi_lenable) {
5557                         if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5558                                 ninfo = mac_write_link_desc(mcip);
5559                                 if (ninfo == NULL) {
5560                                 /*
5561                                  * We can't terminate it if this is the last
5562                                  * walk, else there might be some links with
5563                                  * mi_desc_logged set to true, which means
5564                                  * their description won't be logged the next
5565                                  * time logging is started (similarly for the
5566                                  * flows within such links). We can continue
5567                                  * without walking the flow table (i.e. to
5568                                  * set fe_desc_logged to false) because we
5569                                  * won't have written any flow stuff for this
5570                                  * link as we haven't logged the link itself.
5571                                  */
5572                                         i_mac_perim_exit(mip);
5573                                         if (lstate->mi_last)
5574                                                 return (0);
5575                                         else
5576                                                 return (-1);
5577                                 }
5578                                 mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5579                                 list_insert_tail(lstate->mi_list, ninfo);
5580                         }
5581                 }
5582 
5583                 ninfo = mac_write_link_stats(mcip);
5584                 if (ninfo == NULL && !lstate->mi_last) {
5585                         i_mac_perim_exit(mip);
5586                         return (-1);
5587                 }
5588                 list_insert_tail(lstate->mi_list, ninfo);
5589 
5590                 if (lstate->mi_last)
5591                         mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5592 
5593                 if (lstate->mi_fenable) {
5594                         if (mcip->mci_subflow_tab != NULL) {
5595                                 (void) mac_flow_walk_nolock(
5596                                     mcip->mci_subflow_tab, mac_log_flowinfo,
5597                                     lstate);
5598                         }
5599                 }
5600         }
5601         i_mac_perim_exit(mip);
5602         return (0);
5603 }
5604 
5605 /*
5606  * modhash walker function to add a mac_impl_t to a list
5607  */
5608 /*ARGSUSED*/
5609 static uint_t
5610 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5611 {
5612         list_t                  *list = (list_t *)arg;
5613         mac_impl_t              *mip = (mac_impl_t *)val;
5614 
5615         if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5616                 list_insert_tail(list, mip);
5617                 mip->mi_ref++;
5618         }
5619 
5620         return (MH_WALK_CONTINUE);
5621 }
5622 
5623 void
5624 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5625 {
5626         list_t                  mac_impl_list;
5627         mac_impl_t              *mip;
5628         netinfo_t               *ninfo;
5629 
5630         /* Create list of mac_impls */
5631         ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5632         list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5633             mi_node));
5634         mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5635         rw_exit(&i_mac_impl_lock);
5636 
5637         /* Create log entries for each mac_impl */
5638         for (mip = list_head(&mac_impl_list); mip != NULL;
5639             mip = list_next(&mac_impl_list, mip)) {
5640                 if (i_mac_impl_log(mip, lstate) != 0)
5641                         continue;
5642         }
5643 
5644         /* Remove elements and destroy list of mac_impls */
5645         rw_enter(&i_mac_impl_lock, RW_WRITER);
5646         while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5647                 mip->mi_ref--;
5648         }
5649         rw_exit(&i_mac_impl_lock);
5650         list_destroy(&mac_impl_list);
5651 
5652         /*
5653          * Write log entries to files outside of locks, free associated
5654          * structures, and remove entries from the list.
5655          */
5656         while ((ninfo = list_head(net_log_list)) != NULL) {
5657                 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5658                 list_remove(net_log_list, ninfo);
5659                 kmem_free(ninfo->ni_record, ninfo->ni_size);
5660                 kmem_free(ninfo, sizeof (*ninfo));
5661         }
5662         list_destroy(net_log_list);
5663 }
5664 
5665 /*
5666  * The timer thread that runs every mac_logging_interval seconds and logs
5667  * link and/or flow information.
5668  */
5669 /* ARGSUSED */
5670 void
5671 mac_log_linkinfo(void *arg)
5672 {
5673         i_mac_log_state_t       lstate;
5674         list_t                  net_log_list;
5675 
5676         list_create(&net_log_list, sizeof (netinfo_t),
5677             offsetof(netinfo_t, ni_link));
5678 
5679         rw_enter(&i_mac_impl_lock, RW_READER);
5680         if (!mac_flow_log_enable && !mac_link_log_enable) {
5681                 rw_exit(&i_mac_impl_lock);
5682                 return;
5683         }
5684         lstate.mi_fenable = mac_flow_log_enable;
5685         lstate.mi_lenable = mac_link_log_enable;
5686         lstate.mi_last = B_FALSE;
5687         lstate.mi_list = &net_log_list;
5688 
5689         /* Write log entries for each mac_impl in the list */
5690         i_mac_log_info(&net_log_list, &lstate);
5691 
5692         if (mac_flow_log_enable || mac_link_log_enable) {
5693                 mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5694                     SEC_TO_TICK(mac_logging_interval));
5695         }
5696 }
5697 
5698 typedef struct i_mac_fastpath_state_s {
5699         boolean_t       mf_disable;
5700         int             mf_err;
5701 } i_mac_fastpath_state_t;
5702 
5703 /* modhash walker function to enable or disable fastpath */
5704 /*ARGSUSED*/
5705 static uint_t
5706 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5707     void *arg)
5708 {
5709         i_mac_fastpath_state_t  *state = arg;
5710         mac_handle_t            mh = (mac_handle_t)val;
5711 
5712         if (state->mf_disable)
5713                 state->mf_err = mac_fastpath_disable(mh);
5714         else
5715                 mac_fastpath_enable(mh);
5716 
5717         return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5718 }
5719 
5720 /*
5721  * Start the logging timer.
5722  */
5723 int
5724 mac_start_logusage(mac_logtype_t type, uint_t interval)
5725 {
5726         i_mac_fastpath_state_t  dstate = {B_TRUE, 0};
5727         i_mac_fastpath_state_t  estate = {B_FALSE, 0};
5728         int                     err;
5729 
5730         rw_enter(&i_mac_impl_lock, RW_WRITER);
5731         switch (type) {
5732         case MAC_LOGTYPE_FLOW:
5733                 if (mac_flow_log_enable) {
5734                         rw_exit(&i_mac_impl_lock);
5735                         return (0);
5736                 }
5737                 /* FALLTHRU */
5738         case MAC_LOGTYPE_LINK:
5739                 if (mac_link_log_enable) {
5740                         rw_exit(&i_mac_impl_lock);
5741                         return (0);
5742                 }
5743                 break;
5744         default:
5745                 ASSERT(0);
5746         }
5747 
5748         /* Disable fastpath */
5749         mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5750         if ((err = dstate.mf_err) != 0) {
5751                 /* Reenable fastpath  */
5752                 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5753                 rw_exit(&i_mac_impl_lock);
5754                 return (err);
5755         }
5756 
5757         switch (type) {
5758         case MAC_LOGTYPE_FLOW:
5759                 mac_flow_log_enable = B_TRUE;
5760                 /* FALLTHRU */
5761         case MAC_LOGTYPE_LINK:
5762                 mac_link_log_enable = B_TRUE;
5763                 break;
5764         }
5765 
5766         mac_logging_interval = interval;
5767         rw_exit(&i_mac_impl_lock);
5768         mac_log_linkinfo(NULL);
5769         return (0);
5770 }
5771 
5772 /*
5773  * Stop the logging timer if both link and flow logging are turned off.
5774  */
5775 void
5776 mac_stop_logusage(mac_logtype_t type)
5777 {
5778         i_mac_log_state_t       lstate;
5779         i_mac_fastpath_state_t  estate = {B_FALSE, 0};
5780         list_t                  net_log_list;
5781 
5782         list_create(&net_log_list, sizeof (netinfo_t),
5783             offsetof(netinfo_t, ni_link));
5784 
5785         rw_enter(&i_mac_impl_lock, RW_WRITER);
5786 
5787         lstate.mi_fenable = mac_flow_log_enable;
5788         lstate.mi_lenable = mac_link_log_enable;
5789         lstate.mi_list = &net_log_list;
5790 
5791         /* Last walk */
5792         lstate.mi_last = B_TRUE;
5793 
5794         switch (type) {
5795         case MAC_LOGTYPE_FLOW:
5796                 if (lstate.mi_fenable) {
5797                         ASSERT(mac_link_log_enable);
5798                         mac_flow_log_enable = B_FALSE;
5799                         mac_link_log_enable = B_FALSE;
5800                         break;
5801                 }
5802                 /* FALLTHRU */
5803         case MAC_LOGTYPE_LINK:
5804                 if (!lstate.mi_lenable || mac_flow_log_enable) {
5805                         rw_exit(&i_mac_impl_lock);
5806                         return;
5807                 }
5808                 mac_link_log_enable = B_FALSE;
5809                 break;
5810         default:
5811                 ASSERT(0);
5812         }
5813 
5814         /* Reenable fastpath */
5815         mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5816 
5817         (void) untimeout(mac_logging_timer);
5818         mac_logging_timer = 0;
5819 
5820         /* Write log entries for each mac_impl in the list */
5821         i_mac_log_info(&net_log_list, &lstate);
5822 }
5823 
5824 /*
5825  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5826  */
5827 void
5828 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5829 {
5830         pri_t                   pri;
5831         int                     count;
5832         mac_soft_ring_set_t     *mac_srs;
5833 
5834         if (flent->fe_rx_srs_cnt <= 0)
5835                 return;
5836 
5837         if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5838             SRST_FLOW) {
5839                 pri = FLOW_PRIORITY(mcip->mci_min_pri,
5840                     mcip->mci_max_pri,
5841                     flent->fe_resource_props.mrp_priority);
5842         } else {
5843                 pri = mcip->mci_max_pri;
5844         }
5845 
5846         for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5847                 mac_srs = flent->fe_rx_srs[count];
5848                 mac_update_srs_priority(mac_srs, pri);
5849         }
5850         /*
5851          * If we have a Tx SRS, we need to modify all the threads associated
5852          * with it.
5853          */
5854         if (flent->fe_tx_srs != NULL)
5855                 mac_update_srs_priority(flent->fe_tx_srs, pri);
5856 }
5857 
5858 /*
5859  * RX and TX rings are reserved according to different semantics depending
5860  * on the requests from the MAC clients and type of rings:
5861  *
5862  * On the Tx side, by default we reserve individual rings, independently from
5863  * the groups.
5864  *
5865  * On the Rx side, the reservation is at the granularity of the group
5866  * of rings, and used for v12n level 1 only. It has a special case for the
5867  * primary client.
5868  *
5869  * If a share is allocated to a MAC client, we allocate a TX group and an
5870  * RX group to the client, and assign TX rings and RX rings to these
5871  * groups according to information gathered from the driver through
5872  * the share capability.
5873  *
5874  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5875  * to allocate individual rings out of a group and program the hw classifier
5876  * based on IP address or higher level criteria.
5877  */
5878 
5879 /*
5880  * mac_reserve_tx_ring()
5881  * Reserve a unused ring by marking it with MR_INUSE state.
5882  * As reserved, the ring is ready to function.
5883  *
5884  * Notes for Hybrid I/O:
5885  *
5886  * If a specific ring is needed, it is specified through the desired_ring
5887  * argument. Otherwise that argument is set to NULL.
5888  * If the desired ring was previous allocated to another client, this
5889  * function swaps it with a new ring from the group of unassigned rings.
5890  */
5891 mac_ring_t *
5892 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5893 {
5894         mac_group_t             *group;
5895         mac_grp_client_t        *mgcp;
5896         mac_client_impl_t       *mcip;
5897         mac_soft_ring_set_t     *srs;
5898 
5899         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5900 
5901         /*
5902          * Find an available ring and start it before changing its status.
5903          * The unassigned rings are at the end of the mi_tx_groups
5904          * array.
5905          */
5906         group = MAC_DEFAULT_TX_GROUP(mip);
5907 
5908         /* Can't take the default ring out of the default group */
5909         ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5910 
5911         if (desired_ring->mr_state == MR_FREE) {
5912                 ASSERT(MAC_GROUP_NO_CLIENT(group));
5913                 if (mac_start_ring(desired_ring) != 0)
5914                         return (NULL);
5915                 return (desired_ring);
5916         }
5917         /*
5918          * There are clients using this ring, so let's move the clients
5919          * away from using this ring.
5920          */
5921         for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5922                 mcip = mgcp->mgc_client;
5923                 mac_tx_client_quiesce((mac_client_handle_t)mcip);
5924                 srs = MCIP_TX_SRS(mcip);
5925                 ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5926                 mac_tx_invoke_callbacks(mcip,
5927                     (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5928                     desired_ring));
5929                 mac_tx_srs_del_ring(srs, desired_ring);
5930                 mac_tx_client_restart((mac_client_handle_t)mcip);
5931         }
5932         return (desired_ring);
5933 }
5934 
5935 /*
5936  * For a reserved group with multiple clients, return the primary client.
5937  */
5938 static mac_client_impl_t *
5939 mac_get_grp_primary(mac_group_t *grp)
5940 {
5941         mac_grp_client_t        *mgcp = grp->mrg_clients;
5942         mac_client_impl_t       *mcip;
5943 
5944         while (mgcp != NULL) {
5945                 mcip = mgcp->mgc_client;
5946                 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5947                         return (mcip);
5948                 mgcp = mgcp->mgc_next;
5949         }
5950         return (NULL);
5951 }
5952 
5953 /*
5954  * Hybrid I/O specifies the ring that should be given to a share.
5955  * If the ring is already used by clients, then we need to release
5956  * the ring back to the default group so that we can give it to
5957  * the share. This means the clients using this ring now get a
5958  * replacement ring. If there aren't any replacement rings, this
5959  * function returns a failure.
5960  */
5961 static int
5962 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5963     mac_ring_t *ring, mac_ring_t **rings, int nrings)
5964 {
5965         mac_group_t             *group = (mac_group_t *)ring->mr_gh;
5966         mac_resource_props_t    *mrp;
5967         mac_client_impl_t       *mcip;
5968         mac_group_t             *defgrp;
5969         mac_ring_t              *tring;
5970         mac_group_t             *tgrp;
5971         int                     i;
5972         int                     j;
5973 
5974         mcip = MAC_GROUP_ONLY_CLIENT(group);
5975         if (mcip == NULL)
5976                 mcip = mac_get_grp_primary(group);
5977         ASSERT(mcip != NULL);
5978         ASSERT(mcip->mci_share == 0);
5979 
5980         mrp = MCIP_RESOURCE_PROPS(mcip);
5981         if (ring_type == MAC_RING_TYPE_RX) {
5982                 defgrp = mip->mi_rx_donor_grp;
5983                 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5984                         /* Need to put this mac client in the default group */
5985                         if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5986                                 return (ENOSPC);
5987                 } else {
5988                         /*
5989                          * Switch this ring with some other ring from
5990                          * the default group.
5991                          */
5992                         for (tring = defgrp->mrg_rings; tring != NULL;
5993                             tring = tring->mr_next) {
5994                                 if (tring->mr_index == 0)
5995                                         continue;
5996                                 for (j = 0; j < nrings; j++) {
5997                                         if (rings[j] == tring)
5998                                                 break;
5999                                 }
6000                                 if (j >= nrings)
6001                                         break;
6002                         }
6003                         if (tring == NULL)
6004                                 return (ENOSPC);
6005                         if (mac_group_mov_ring(mip, group, tring) != 0)
6006                                 return (ENOSPC);
6007                         if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6008                                 (void) mac_group_mov_ring(mip, defgrp, tring);
6009                                 return (ENOSPC);
6010                         }
6011                 }
6012                 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6013                 return (0);
6014         }
6015 
6016         defgrp = MAC_DEFAULT_TX_GROUP(mip);
6017         if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6018                 /*
6019                  * See if we can get a spare ring to replace the default
6020                  * ring.
6021                  */
6022                 if (defgrp->mrg_cur_count == 1) {
6023                         /*
6024                          * Need to get a ring from another client, see if
6025                          * there are any clients that can be moved to
6026                          * the default group, thereby freeing some rings.
6027                          */
6028                         for (i = 0; i < mip->mi_tx_group_count; i++) {
6029                                 tgrp = &mip->mi_tx_groups[i];
6030                                 if (tgrp->mrg_state ==
6031                                     MAC_GROUP_STATE_REGISTERED) {
6032                                         continue;
6033                                 }
6034                                 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6035                                 if (mcip == NULL)
6036                                         mcip = mac_get_grp_primary(tgrp);
6037                                 ASSERT(mcip != NULL);
6038                                 mrp = MCIP_RESOURCE_PROPS(mcip);
6039                                 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6040                                         ASSERT(tgrp->mrg_cur_count == 1);
6041                                         /*
6042                                          * If this ring is part of the
6043                                          * rings asked by the share we cannot
6044                                          * use it as the default ring.
6045                                          */
6046                                         for (j = 0; j < nrings; j++) {
6047                                                 if (rings[j] == tgrp->mrg_rings)
6048                                                         break;
6049                                         }
6050                                         if (j < nrings)
6051                                                 continue;
6052                                         mac_tx_client_quiesce(
6053                                             (mac_client_handle_t)mcip);
6054                                         mac_tx_switch_group(mcip, tgrp,
6055                                             defgrp);
6056                                         mac_tx_client_restart(
6057                                             (mac_client_handle_t)mcip);
6058                                         break;
6059                                 }
6060                         }
6061                         /*
6062                          * All the rings are reserved, can't give up the
6063                          * default ring.
6064                          */
6065                         if (defgrp->mrg_cur_count <= 1)
6066                                 return (ENOSPC);
6067                 }
6068                 /*
6069                  * Swap the default ring with another.
6070                  */
6071                 for (tring = defgrp->mrg_rings; tring != NULL;
6072                     tring = tring->mr_next) {
6073                         /*
6074                          * If this ring is part of the rings asked by the
6075                          * share we cannot use it as the default ring.
6076                          */
6077                         for (j = 0; j < nrings; j++) {
6078                                 if (rings[j] == tring)
6079                                         break;
6080                         }
6081                         if (j >= nrings)
6082                                 break;
6083                 }
6084                 ASSERT(tring != NULL);
6085                 mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6086                 return (0);
6087         }
6088         /*
6089          * The Tx ring is with a group reserved by a MAC client. See if
6090          * we can swap it.
6091          */
6092         ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6093         mcip = MAC_GROUP_ONLY_CLIENT(group);
6094         if (mcip == NULL)
6095                 mcip = mac_get_grp_primary(group);
6096         ASSERT(mcip !=  NULL);
6097         mrp = MCIP_RESOURCE_PROPS(mcip);
6098         mac_tx_client_quiesce((mac_client_handle_t)mcip);
6099         if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6100                 ASSERT(group->mrg_cur_count == 1);
6101                 /* Put this mac client in the default group */
6102                 mac_tx_switch_group(mcip, group, defgrp);
6103         } else {
6104                 /*
6105                  * Switch this ring with some other ring from
6106                  * the default group.
6107                  */
6108                 for (tring = defgrp->mrg_rings; tring != NULL;
6109                     tring = tring->mr_next) {
6110                         if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6111                                 continue;
6112                         /*
6113                          * If this ring is part of the rings asked by the
6114                          * share we cannot use it for swapping.
6115                          */
6116                         for (j = 0; j < nrings; j++) {
6117                                 if (rings[j] == tring)
6118                                         break;
6119                         }
6120                         if (j >= nrings)
6121                                 break;
6122                 }
6123                 if (tring == NULL) {
6124                         mac_tx_client_restart((mac_client_handle_t)mcip);
6125                         return (ENOSPC);
6126                 }
6127                 if (mac_group_mov_ring(mip, group, tring) != 0) {
6128                         mac_tx_client_restart((mac_client_handle_t)mcip);
6129                         return (ENOSPC);
6130                 }
6131                 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6132                         (void) mac_group_mov_ring(mip, defgrp, tring);
6133                         mac_tx_client_restart((mac_client_handle_t)mcip);
6134                         return (ENOSPC);
6135                 }
6136         }
6137         mac_tx_client_restart((mac_client_handle_t)mcip);
6138         ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6139         return (0);
6140 }
6141 
6142 /*
6143  * Populate a zero-ring group with rings. If the share is non-NULL,
6144  * the rings are chosen according to that share.
6145  * Invoked after allocating a new RX or TX group through
6146  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6147  * Returns zero on success, an errno otherwise.
6148  */
6149 int
6150 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6151     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6152     uint32_t ringcnt)
6153 {
6154         mac_ring_t **rings, *ring;
6155         uint_t nrings;
6156         int rv = 0, i = 0, j;
6157 
6158         ASSERT((ring_type == MAC_RING_TYPE_RX &&
6159             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6160             (ring_type == MAC_RING_TYPE_TX &&
6161             mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6162 
6163         /*
6164          * First find the rings to allocate to the group.
6165          */
6166         if (share != 0) {
6167                 /* get rings through ms_squery() */
6168                 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6169                 ASSERT(nrings != 0);
6170                 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6171                     KM_SLEEP);
6172                 mip->mi_share_capab.ms_squery(share, ring_type,
6173                     (mac_ring_handle_t *)rings, &nrings);
6174                 for (i = 0; i < nrings; i++) {
6175                         /*
6176                          * If we have given this ring to a non-default
6177                          * group, we need to check if we can get this
6178                          * ring.
6179                          */
6180                         ring = rings[i];
6181                         if (ring->mr_gh != (mac_group_handle_t)src_group ||
6182                             ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6183                                 if (mac_reclaim_ring_from_grp(mip, ring_type,
6184                                     ring, rings, nrings) != 0) {
6185                                         rv = ENOSPC;
6186                                         goto bail;
6187                                 }
6188                         }
6189                 }
6190         } else {
6191                 /*
6192                  * Pick one ring from default group.
6193                  *
6194                  * for now pick the second ring which requires the first ring
6195                  * at index 0 to stay in the default group, since it is the
6196                  * ring which carries the multicast traffic.
6197                  * We need a better way for a driver to indicate this,
6198                  * for example a per-ring flag.
6199                  */
6200                 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6201                     KM_SLEEP);
6202                 for (ring = src_group->mrg_rings; ring != NULL;
6203                     ring = ring->mr_next) {
6204                         if (ring_type == MAC_RING_TYPE_RX &&
6205                             ring->mr_index == 0) {
6206                                 continue;
6207                         }
6208                         if (ring_type == MAC_RING_TYPE_TX &&
6209                             ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6210                                 continue;
6211                         }
6212                         rings[i++] = ring;
6213                         if (i == ringcnt)
6214                                 break;
6215                 }
6216                 ASSERT(ring != NULL);
6217                 nrings = i;
6218                 /* Not enough rings as required */
6219                 if (nrings != ringcnt) {
6220                         rv = ENOSPC;
6221                         goto bail;
6222                 }
6223         }
6224 
6225         switch (ring_type) {
6226         case MAC_RING_TYPE_RX:
6227                 if (src_group->mrg_cur_count - nrings < 1) {
6228                         /* we ran out of rings */
6229                         rv = ENOSPC;
6230                         goto bail;
6231                 }
6232 
6233                 /* move receive rings to new group */
6234                 for (i = 0; i < nrings; i++) {
6235                         rv = mac_group_mov_ring(mip, new_group, rings[i]);
6236                         if (rv != 0) {
6237                                 /* move rings back on failure */
6238                                 for (j = 0; j < i; j++) {
6239                                         (void) mac_group_mov_ring(mip,
6240                                             src_group, rings[j]);
6241                                 }
6242                                 goto bail;
6243                         }
6244                 }
6245                 break;
6246 
6247         case MAC_RING_TYPE_TX: {
6248                 mac_ring_t *tmp_ring;
6249 
6250                 /* move the TX rings to the new group */
6251                 for (i = 0; i < nrings; i++) {
6252                         /* get the desired ring */
6253                         tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6254                         if (tmp_ring == NULL) {
6255                                 rv = ENOSPC;
6256                                 goto bail;
6257                         }
6258                         ASSERT(tmp_ring == rings[i]);
6259                         rv = mac_group_mov_ring(mip, new_group, rings[i]);
6260                         if (rv != 0) {
6261                                 /* cleanup on failure */
6262                                 for (j = 0; j < i; j++) {
6263                                         (void) mac_group_mov_ring(mip,
6264                                             MAC_DEFAULT_TX_GROUP(mip),
6265                                             rings[j]);
6266                                 }
6267                                 goto bail;
6268                         }
6269                 }
6270                 break;
6271         }
6272         }
6273 
6274         /* add group to share */
6275         if (share != 0)
6276                 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6277 
6278 bail:
6279         /* free temporary array of rings */
6280         kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6281 
6282         return (rv);
6283 }
6284 
6285 void
6286 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6287 {
6288         mac_grp_client_t *mgcp;
6289 
6290         for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6291                 if (mgcp->mgc_client == mcip)
6292                         break;
6293         }
6294 
6295         VERIFY(mgcp == NULL);
6296 
6297         mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6298         mgcp->mgc_client = mcip;
6299         mgcp->mgc_next = grp->mrg_clients;
6300         grp->mrg_clients = mgcp;
6301 
6302 }
6303 
6304 void
6305 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6306 {
6307         mac_grp_client_t *mgcp, **pprev;
6308 
6309         for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6310             pprev = &mgcp->mgc_next, mgcp = *pprev) {
6311                 if (mgcp->mgc_client == mcip)
6312                         break;
6313         }
6314 
6315         ASSERT(mgcp != NULL);
6316 
6317         *pprev = mgcp->mgc_next;
6318         kmem_free(mgcp, sizeof (mac_grp_client_t));
6319 }
6320 
6321 /*
6322  * mac_reserve_rx_group()
6323  *
6324  * Finds an available group and exclusively reserves it for a client.
6325  * The group is chosen to suit the flow's resource controls (bandwidth and
6326  * fanout requirements) and the address type.
6327  * If the requestor is the pimary MAC then return the group with the
6328  * largest number of rings, otherwise the default ring when available.
6329  */
6330 mac_group_t *
6331 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6332 {
6333         mac_share_handle_t      share = mcip->mci_share;
6334         mac_impl_t              *mip = mcip->mci_mip;
6335         mac_group_t             *grp = NULL;
6336         int                     i;
6337         int                     err = 0;
6338         mac_address_t           *map;
6339         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
6340         int                     nrings;
6341         int                     donor_grp_rcnt;
6342         boolean_t               need_exclgrp = B_FALSE;
6343         int                     need_rings = 0;
6344         mac_group_t             *candidate_grp = NULL;
6345         mac_client_impl_t       *gclient;
6346         mac_resource_props_t    *gmrp;
6347         mac_group_t             *donorgrp = NULL;
6348         boolean_t               rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6349         boolean_t               unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6350         boolean_t               isprimary;
6351 
6352         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6353 
6354         isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6355 
6356         /*
6357          * Check if a group already has this mac address (case of VLANs)
6358          * unless we are moving this MAC client from one group to another.
6359          */
6360         if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6361                 if (map->ma_group != NULL)
6362                         return (map->ma_group);
6363         }
6364         if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6365                 return (NULL);
6366         /*
6367          * If exclusive open, return NULL which will enable the
6368          * caller to use the default group.
6369          */
6370         if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6371                 return (NULL);
6372 
6373         /* For dynamic groups default unspecified to 1 */
6374         if (rxhw && unspec &&
6375             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6376                 mrp->mrp_nrxrings = 1;
6377         }
6378         /*
6379          * For static grouping we allow only specifying rings=0 and
6380          * unspecified
6381          */
6382         if (rxhw && mrp->mrp_nrxrings > 0 &&
6383             mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6384                 return (NULL);
6385         }
6386         if (rxhw) {
6387                 /*
6388                  * We have explicitly asked for a group (with nrxrings,
6389                  * if unspec).
6390                  */
6391                 if (unspec || mrp->mrp_nrxrings > 0) {
6392                         need_exclgrp = B_TRUE;
6393                         need_rings = mrp->mrp_nrxrings;
6394                 } else if (mrp->mrp_nrxrings == 0) {
6395                         /*
6396                          * We have asked for a software group.
6397                          */
6398                         return (NULL);
6399                 }
6400         } else if (isprimary && mip->mi_nactiveclients == 1 &&
6401             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6402                 /*
6403                  * If the primary is the only active client on this
6404                  * mip and we have not asked for any rings, we give
6405                  * it the default group so that the primary gets to
6406                  * use all the rings.
6407                  */
6408                 return (NULL);
6409         }
6410 
6411         /* The group that can donate rings */
6412         donorgrp = mip->mi_rx_donor_grp;
6413 
6414         /*
6415          * The number of rings that the default group can donate.
6416          * We need to leave at least one ring.
6417          */
6418         donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6419 
6420         /*
6421          * Try to exclusively reserve a RX group.
6422          *
6423          * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6424          * client), try to reserve the a non-default RX group and give
6425          * it all the rings from the donor group, except the default ring
6426          *
6427          * For flows requiring HW_RING (unicast flow of other clients), try
6428          * to reserve non-default RX group with the specified number of
6429          * rings, if available.
6430          *
6431          * For flows that have not asked for software or hardware ring,
6432          * try to reserve a non-default group with 1 ring, if available.
6433          */
6434         for (i = 1; i < mip->mi_rx_group_count; i++) {
6435                 grp = &mip->mi_rx_groups[i];
6436 
6437                 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6438                     int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6439 
6440                 /*
6441                  * Check if this group could be a candidate group for
6442                  * eviction if we need a group for this MAC client,
6443                  * but there aren't any. A candidate group is one
6444                  * that didn't ask for an exclusive group, but got
6445                  * one and it has enough rings (combined with what
6446                  * the donor group can donate) for the new MAC
6447                  * client
6448                  */
6449                 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6450                         /*
6451                          * If the primary/donor group is not the default
6452                          * group, don't bother looking for a candidate group.
6453                          * If we don't have enough rings we will check
6454                          * if the primary group can be vacated.
6455                          */
6456                         if (candidate_grp == NULL &&
6457                             donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6458                                 ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6459                                 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6460                                 if (gclient == NULL)
6461                                         gclient = mac_get_grp_primary(grp);
6462                                 ASSERT(gclient != NULL);
6463                                 gmrp = MCIP_RESOURCE_PROPS(gclient);
6464                                 if (gclient->mci_share == 0 &&
6465                                     (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6466                                     (unspec ||
6467                                     (grp->mrg_cur_count + donor_grp_rcnt >=
6468                                     need_rings))) {
6469                                         candidate_grp = grp;
6470                                 }
6471                         }
6472                         continue;
6473                 }
6474                 /*
6475                  * This group could already be SHARED by other multicast
6476                  * flows on this client. In that case, the group would
6477                  * be shared and has already been started.
6478                  */
6479                 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6480 
6481                 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6482                     (mac_start_group(grp) != 0)) {
6483                         continue;
6484                 }
6485 
6486                 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6487                         break;
6488                 ASSERT(grp->mrg_cur_count == 0);
6489 
6490                 /*
6491                  * Populate the group. Rings should be taken
6492                  * from the donor group.
6493                  */
6494                 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6495 
6496                 /*
6497                  * If the donor group can't donate, let's just walk and
6498                  * see if someone can vacate a group, so that we have
6499                  * enough rings for this, unless we already have
6500                  * identified a candiate group..
6501                  */
6502                 if (nrings <= donor_grp_rcnt) {
6503                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6504                             donorgrp, grp, share, nrings);
6505                         if (err == 0) {
6506                                 /*
6507                                  * For a share i_mac_group_allocate_rings gets
6508                                  * the rings from the driver, let's populate
6509                                  * the property for the client now.
6510                                  */
6511                                 if (share != 0) {
6512                                         mac_client_set_rings(
6513                                             (mac_client_handle_t)mcip,
6514                                             grp->mrg_cur_count, -1);
6515                                 }
6516                                 if (mac_is_primary_client(mcip) && !rxhw)
6517                                         mip->mi_rx_donor_grp = grp;
6518                                 break;
6519                         }
6520                 }
6521 
6522                 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6523                     mip->mi_name, int, grp->mrg_index, int, err);
6524 
6525                 /*
6526                  * It's a dynamic group but the grouping operation
6527                  * failed.
6528                  */
6529                 mac_stop_group(grp);
6530         }
6531         /* We didn't find an exclusive group for this MAC client */
6532         if (i >= mip->mi_rx_group_count) {
6533 
6534                 if (!need_exclgrp)
6535                         return (NULL);
6536 
6537                 /*
6538                  * If we found a candidate group then we switch the
6539                  * MAC client from the candidate_group to the default
6540                  * group and give the group to this MAC client. If
6541                  * we didn't find a candidate_group, check if the
6542                  * primary is in its own group and if it can make way
6543                  * for this MAC client.
6544                  */
6545                 if (candidate_grp == NULL &&
6546                     donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6547                     donorgrp->mrg_cur_count >= need_rings) {
6548                         candidate_grp = donorgrp;
6549                 }
6550                 if (candidate_grp != NULL) {
6551                         boolean_t       prim_grp = B_FALSE;
6552 
6553                         /*
6554                          * Switch the MAC client from the candidate group
6555                          * to the default group.. If this group was the
6556                          * donor group, then after the switch we need
6557                          * to update the donor group too.
6558                          */
6559                         grp = candidate_grp;
6560                         gclient = MAC_GROUP_ONLY_CLIENT(grp);
6561                         if (gclient == NULL)
6562                                 gclient = mac_get_grp_primary(grp);
6563                         if (grp == mip->mi_rx_donor_grp)
6564                                 prim_grp = B_TRUE;
6565                         if (mac_rx_switch_group(gclient, grp,
6566                             MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6567                                 return (NULL);
6568                         }
6569                         if (prim_grp) {
6570                                 mip->mi_rx_donor_grp =
6571                                     MAC_DEFAULT_RX_GROUP(mip);
6572                                 donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6573                         }
6574 
6575 
6576                         /*
6577                          * Now give this group with the required rings
6578                          * to this MAC client.
6579                          */
6580                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6581                         if (mac_start_group(grp) != 0)
6582                                 return (NULL);
6583 
6584                         if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6585                                 return (grp);
6586 
6587                         donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6588                         ASSERT(grp->mrg_cur_count == 0);
6589                         ASSERT(donor_grp_rcnt >= need_rings);
6590                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6591                             donorgrp, grp, share, need_rings);
6592                         if (err == 0) {
6593                                 /*
6594                                  * For a share i_mac_group_allocate_rings gets
6595                                  * the rings from the driver, let's populate
6596                                  * the property for the client now.
6597                                  */
6598                                 if (share != 0) {
6599                                         mac_client_set_rings(
6600                                             (mac_client_handle_t)mcip,
6601                                             grp->mrg_cur_count, -1);
6602                                 }
6603                                 DTRACE_PROBE2(rx__group__reserved,
6604                                     char *, mip->mi_name, int, grp->mrg_index);
6605                                 return (grp);
6606                         }
6607                         DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6608                             mip->mi_name, int, grp->mrg_index, int, err);
6609                         mac_stop_group(grp);
6610                 }
6611                 return (NULL);
6612         }
6613         ASSERT(grp != NULL);
6614 
6615         DTRACE_PROBE2(rx__group__reserved,
6616             char *, mip->mi_name, int, grp->mrg_index);
6617         return (grp);
6618 }
6619 
6620 /*
6621  * mac_rx_release_group()
6622  *
6623  * This is called when there are no clients left for the group.
6624  * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6625  * and if it is a non default group, the shares are removed and
6626  * all rings are assigned back to default group.
6627  */
6628 void
6629 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6630 {
6631         mac_impl_t              *mip = mcip->mci_mip;
6632         mac_ring_t              *ring;
6633 
6634         ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6635 
6636         if (mip->mi_rx_donor_grp == group)
6637                 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6638 
6639         /*
6640          * This is the case where there are no clients left. Any
6641          * SRS etc on this group have also be quiesced.
6642          */
6643         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6644                 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6645                         ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6646                         /*
6647                          * Remove the SRS associated with the HW ring.
6648                          * As a result, polling will be disabled.
6649                          */
6650                         ring->mr_srs = NULL;
6651                 }
6652                 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6653                     ring->mr_state == MR_INUSE);
6654                 if (ring->mr_state == MR_INUSE) {
6655                         mac_stop_ring(ring);
6656                         ring->mr_flag = 0;
6657                 }
6658         }
6659 
6660         /* remove group from share */
6661         if (mcip->mci_share != 0) {
6662                 mip->mi_share_capab.ms_sremove(mcip->mci_share,
6663                     group->mrg_driver);
6664         }
6665 
6666         if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6667                 mac_ring_t *ring;
6668 
6669                 /*
6670                  * Rings were dynamically allocated to group.
6671                  * Move rings back to default group.
6672                  */
6673                 while ((ring = group->mrg_rings) != NULL) {
6674                         (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6675                             ring);
6676                 }
6677         }
6678         mac_stop_group(group);
6679         /*
6680          * Possible improvement: See if we can assign the group just released
6681          * to a another client of the mip
6682          */
6683 }
6684 
6685 /*
6686  * When we move the primary's mac address between groups, we need to also
6687  * take all the clients sharing the same mac address along with it (VLANs)
6688  * We remove the mac address for such clients from the group after quiescing
6689  * them. When we add the mac address we restart the client. Note that
6690  * the primary's mac address is removed from the group after all the
6691  * other clients sharing the address are removed. Similarly, the primary's
6692  * mac address is added before all the other client's mac address are
6693  * added. While grp is the group where the clients reside, tgrp is
6694  * the group where the addresses have to be added.
6695  */
6696 static void
6697 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6698     mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6699 {
6700         mac_impl_t              *mip = mcip->mci_mip;
6701         mac_grp_client_t        *mgcp = grp->mrg_clients;
6702         mac_client_impl_t       *gmcip;
6703         boolean_t               prim;
6704 
6705         prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6706 
6707         /*
6708          * If the clients are in a non-default group, we just have to
6709          * walk the group's client list. If it is in the default group
6710          * (which will be shared by other clients as well, we need to
6711          * check if the unicast address matches mcip's unicast.
6712          */
6713         while (mgcp != NULL) {
6714                 gmcip = mgcp->mgc_client;
6715                 if (gmcip != mcip &&
6716                     (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6717                     mcip->mci_unicast == gmcip->mci_unicast)) {
6718                         if (!add) {
6719                                 mac_rx_client_quiesce(
6720                                     (mac_client_handle_t)gmcip);
6721                                 (void) mac_remove_macaddr(mcip->mci_unicast);
6722                         } else {
6723                                 (void) mac_add_macaddr(mip, tgrp, maddr, prim);
6724                                 mac_rx_client_restart(
6725                                     (mac_client_handle_t)gmcip);
6726                         }
6727                 }
6728                 mgcp = mgcp->mgc_next;
6729         }
6730 }
6731 
6732 
6733 /*
6734  * Move the MAC address from fgrp to tgrp. If this is the primary client,
6735  * we need to take any VLANs etc. together too.
6736  */
6737 static int
6738 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6739     mac_group_t *tgrp)
6740 {
6741         mac_impl_t              *mip = mcip->mci_mip;
6742         uint8_t                 maddr[MAXMACADDRLEN];
6743         int                     err = 0;
6744         boolean_t               prim;
6745         boolean_t               multiclnt = B_FALSE;
6746 
6747         mac_rx_client_quiesce((mac_client_handle_t)mcip);
6748         ASSERT(mcip->mci_unicast != NULL);
6749         bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6750 
6751         prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6752         if (mcip->mci_unicast->ma_nusers > 1) {
6753                 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6754                 multiclnt = B_TRUE;
6755         }
6756         ASSERT(mcip->mci_unicast->ma_nusers == 1);
6757         err = mac_remove_macaddr(mcip->mci_unicast);
6758         if (err != 0) {
6759                 mac_rx_client_restart((mac_client_handle_t)mcip);
6760                 if (multiclnt) {
6761                         mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6762                             B_TRUE);
6763                 }
6764                 return (err);
6765         }
6766         /*
6767          * Program the H/W Classifier first, if this fails we need
6768          * not proceed with the other stuff.
6769          */
6770         if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6771                 /* Revert back the H/W Classifier */
6772                 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6773                         /*
6774                          * This should not fail now since it worked earlier,
6775                          * should we panic?
6776                          */
6777                         cmn_err(CE_WARN,
6778                             "mac_rx_switch_group: switching %p back"
6779                             " to group %p failed!!", (void *)mcip,
6780                             (void *)fgrp);
6781                 }
6782                 mac_rx_client_restart((mac_client_handle_t)mcip);
6783                 if (multiclnt) {
6784                         mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6785                             B_TRUE);
6786                 }
6787                 return (err);
6788         }
6789         mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6790         mac_rx_client_restart((mac_client_handle_t)mcip);
6791         if (multiclnt)
6792                 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6793         return (err);
6794 }
6795 
6796 /*
6797  * Switch the MAC client from one group to another. This means we need
6798  * to remove the MAC address from the group, remove the MAC client,
6799  * teardown the SRSs and revert the group state. Then, we add the client
6800  * to the destination group, set the SRSs, and add the MAC address to the
6801  * group.
6802  */
6803 int
6804 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6805     mac_group_t *tgrp)
6806 {
6807         int                     err;
6808         mac_group_state_t       next_state;
6809         mac_client_impl_t       *group_only_mcip;
6810         mac_client_impl_t       *gmcip;
6811         mac_impl_t              *mip = mcip->mci_mip;
6812         mac_grp_client_t        *mgcp;
6813 
6814         ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6815 
6816         if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6817                 return (err);
6818 
6819         /*
6820          * The group might be reserved, but SRSs may not be set up, e.g.
6821          * primary and its vlans using a reserved group.
6822          */
6823         if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6824             MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6825                 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6826         }
6827         if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6828                 mgcp = fgrp->mrg_clients;
6829                 while (mgcp != NULL) {
6830                         gmcip = mgcp->mgc_client;
6831                         mgcp = mgcp->mgc_next;
6832                         mac_group_remove_client(fgrp, gmcip);
6833                         mac_group_add_client(tgrp, gmcip);
6834                         gmcip->mci_flent->fe_rx_ring_group = tgrp;
6835                 }
6836                 mac_release_rx_group(mcip, fgrp);
6837                 ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6838                 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6839         } else {
6840                 mac_group_remove_client(fgrp, mcip);
6841                 mac_group_add_client(tgrp, mcip);
6842                 mcip->mci_flent->fe_rx_ring_group = tgrp;
6843                 /*
6844                  * If there are other clients (VLANs) sharing this address
6845                  * we should be here only for the primary.
6846                  */
6847                 if (mcip->mci_unicast->ma_nusers > 1) {
6848                         /*
6849                          * We need to move all the clients that are using
6850                          * this h/w address.
6851                          */
6852                         mgcp = fgrp->mrg_clients;
6853                         while (mgcp != NULL) {
6854                                 gmcip = mgcp->mgc_client;
6855                                 mgcp = mgcp->mgc_next;
6856                                 if (mcip->mci_unicast == gmcip->mci_unicast) {
6857                                         mac_group_remove_client(fgrp, gmcip);
6858                                         mac_group_add_client(tgrp, gmcip);
6859                                         gmcip->mci_flent->fe_rx_ring_group =
6860                                             tgrp;
6861                                 }
6862                         }
6863                 }
6864                 /*
6865                  * The default group will still take the multicast,
6866                  * broadcast traffic etc., so it won't go to
6867                  * MAC_GROUP_STATE_REGISTERED.
6868                  */
6869                 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6870                         mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6871                 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6872         }
6873         next_state = mac_group_next_state(tgrp, &group_only_mcip,
6874             MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6875         mac_set_group_state(tgrp, next_state);
6876         /*
6877          * If the destination group is reserved, setup the SRSs etc.
6878          */
6879         if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6880                 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6881                 mac_fanout_setup(mcip, mcip->mci_flent,
6882                     MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6883                     NULL);
6884                 mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6885         } else {
6886                 mac_rx_switch_grp_to_sw(tgrp);
6887         }
6888         return (0);
6889 }
6890 
6891 /*
6892  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6893  * when a share was allocated to the client.
6894  */
6895 mac_group_t *
6896 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6897 {
6898         mac_impl_t              *mip = mcip->mci_mip;
6899         mac_group_t             *grp = NULL;
6900         int                     rv;
6901         int                     i;
6902         int                     err;
6903         mac_group_t             *defgrp;
6904         mac_share_handle_t      share = mcip->mci_share;
6905         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
6906         int                     nrings;
6907         int                     defnrings;
6908         boolean_t               need_exclgrp = B_FALSE;
6909         int                     need_rings = 0;
6910         mac_group_t             *candidate_grp = NULL;
6911         mac_client_impl_t       *gclient;
6912         mac_resource_props_t    *gmrp;
6913         boolean_t               txhw = mrp->mrp_mask & MRP_TX_RINGS;
6914         boolean_t               unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6915         boolean_t               isprimary;
6916 
6917         isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6918         /*
6919          * When we come here for a VLAN on the primary (dladm create-vlan),
6920          * we need to pair it along with the primary (to keep it consistent
6921          * with the RX side). So, we check if the primary is already assigned
6922          * to a group and return the group if so. The other way is also
6923          * true, i.e. the VLAN is already created and now we are plumbing
6924          * the primary.
6925          */
6926         if (!move && isprimary) {
6927                 for (gclient = mip->mi_clients_list; gclient != NULL;
6928                     gclient = gclient->mci_client_next) {
6929                         if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6930                             gclient->mci_flent->fe_tx_ring_group != NULL) {
6931                                 return (gclient->mci_flent->fe_tx_ring_group);
6932                         }
6933                 }
6934         }
6935 
6936         if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6937                 return (NULL);
6938 
6939         /* For dynamic groups, default unspec to 1 */
6940         if (txhw && unspec &&
6941             mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6942                 mrp->mrp_ntxrings = 1;
6943         }
6944         /*
6945          * For static grouping we allow only specifying rings=0 and
6946          * unspecified
6947          */
6948         if (txhw && mrp->mrp_ntxrings > 0 &&
6949             mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6950                 return (NULL);
6951         }
6952 
6953         if (txhw) {
6954                 /*
6955                  * We have explicitly asked for a group (with ntxrings,
6956                  * if unspec).
6957                  */
6958                 if (unspec || mrp->mrp_ntxrings > 0) {
6959                         need_exclgrp = B_TRUE;
6960                         need_rings = mrp->mrp_ntxrings;
6961                 } else if (mrp->mrp_ntxrings == 0) {
6962                         /*
6963                          * We have asked for a software group.
6964                          */
6965                         return (NULL);
6966                 }
6967         }
6968         defgrp = MAC_DEFAULT_TX_GROUP(mip);
6969         /*
6970          * The number of rings that the default group can donate.
6971          * We need to leave at least one ring - the default ring - in
6972          * this group.
6973          */
6974         defnrings = defgrp->mrg_cur_count - 1;
6975 
6976         /*
6977          * Primary gets default group unless explicitly told not
6978          * to  (i.e. rings > 0).
6979          */
6980         if (isprimary && !need_exclgrp)
6981                 return (NULL);
6982 
6983         nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6984         for (i = 0; i <  mip->mi_tx_group_count; i++) {
6985                 grp = &mip->mi_tx_groups[i];
6986                 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6987                     (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6988                         /*
6989                          * Select a candidate for replacement if we don't
6990                          * get an exclusive group. A candidate group is one
6991                          * that didn't ask for an exclusive group, but got
6992                          * one and it has enough rings (combined with what
6993                          * the default group can donate) for the new MAC
6994                          * client.
6995                          */
6996                         if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6997                             candidate_grp == NULL) {
6998                                 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6999                                 if (gclient == NULL)
7000                                         gclient = mac_get_grp_primary(grp);
7001                                 gmrp = MCIP_RESOURCE_PROPS(gclient);
7002                                 if (gclient->mci_share == 0 &&
7003                                     (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7004                                     (unspec ||
7005                                     (grp->mrg_cur_count + defnrings) >=
7006                                     need_rings)) {
7007                                         candidate_grp = grp;
7008                                 }
7009                         }
7010                         continue;
7011                 }
7012                 /*
7013                  * If the default can't donate let's just walk and
7014                  * see if someone can vacate a group, so that we have
7015                  * enough rings for this.
7016                  */
7017                 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7018                     nrings <= defnrings) {
7019                         if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7020                                 rv = mac_start_group(grp);
7021                                 ASSERT(rv == 0);
7022                         }
7023                         break;
7024                 }
7025         }
7026 
7027         /* The default group */
7028         if (i >= mip->mi_tx_group_count) {
7029                 /*
7030                  * If we need an exclusive group and have identified a
7031                  * candidate group we switch the MAC client from the
7032                  * candidate group to the default group and give the
7033                  * candidate group to this client.
7034                  */
7035                 if (need_exclgrp && candidate_grp != NULL) {
7036                         /*
7037                          * Switch the MAC client from the candidate group
7038                          * to the default group.
7039                          */
7040                         grp = candidate_grp;
7041                         gclient = MAC_GROUP_ONLY_CLIENT(grp);
7042                         if (gclient == NULL)
7043                                 gclient = mac_get_grp_primary(grp);
7044                         mac_tx_client_quiesce((mac_client_handle_t)gclient);
7045                         mac_tx_switch_group(gclient, grp, defgrp);
7046                         mac_tx_client_restart((mac_client_handle_t)gclient);
7047 
7048                         /*
7049                          * Give the candidate group with the specified number
7050                          * of rings to this MAC client.
7051                          */
7052                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7053                         rv = mac_start_group(grp);
7054                         ASSERT(rv == 0);
7055 
7056                         if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7057                                 return (grp);
7058 
7059                         ASSERT(grp->mrg_cur_count == 0);
7060                         ASSERT(defgrp->mrg_cur_count > need_rings);
7061 
7062                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7063                             defgrp, grp, share, need_rings);
7064                         if (err == 0) {
7065                                 /*
7066                                  * For a share i_mac_group_allocate_rings gets
7067                                  * the rings from the driver, let's populate
7068                                  * the property for the client now.
7069                                  */
7070                                 if (share != 0) {
7071                                         mac_client_set_rings(
7072                                             (mac_client_handle_t)mcip, -1,
7073                                             grp->mrg_cur_count);
7074                                 }
7075                                 mip->mi_tx_group_free--;
7076                                 return (grp);
7077                         }
7078                         DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7079                             mip->mi_name, int, grp->mrg_index, int, err);
7080                         mac_stop_group(grp);
7081                 }
7082                 return (NULL);
7083         }
7084         /*
7085          * We got an exclusive group, but it is not dynamic.
7086          */
7087         if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7088                 mip->mi_tx_group_free--;
7089                 return (grp);
7090         }
7091 
7092         rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7093             share, nrings);
7094         if (rv != 0) {
7095                 DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7096                     char *, mip->mi_name, int, grp->mrg_index, int, rv);
7097                 mac_stop_group(grp);
7098                 return (NULL);
7099         }
7100         /*
7101          * For a share i_mac_group_allocate_rings gets the rings from the
7102          * driver, let's populate the property for the client now.
7103          */
7104         if (share != 0) {
7105                 mac_client_set_rings((mac_client_handle_t)mcip, -1,
7106                     grp->mrg_cur_count);
7107         }
7108         mip->mi_tx_group_free--;
7109         return (grp);
7110 }
7111 
7112 void
7113 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7114 {
7115         mac_impl_t              *mip = mcip->mci_mip;
7116         mac_share_handle_t      share = mcip->mci_share;
7117         mac_ring_t              *ring;
7118         mac_soft_ring_set_t     *srs = MCIP_TX_SRS(mcip);
7119         mac_group_t             *defgrp;
7120 
7121         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7122         if (srs != NULL) {
7123                 if (srs->srs_soft_ring_count > 0) {
7124                         for (ring = grp->mrg_rings; ring != NULL;
7125                             ring = ring->mr_next) {
7126                                 ASSERT(mac_tx_srs_ring_present(srs, ring));
7127                                 mac_tx_invoke_callbacks(mcip,
7128                                     (mac_tx_cookie_t)
7129                                     mac_tx_srs_get_soft_ring(srs, ring));
7130                                 mac_tx_srs_del_ring(srs, ring);
7131                         }
7132                 } else {
7133                         ASSERT(srs->srs_tx.st_arg2 != NULL);
7134                         srs->srs_tx.st_arg2 = NULL;
7135                         mac_srs_stat_delete(srs);
7136                 }
7137         }
7138         if (share != 0)
7139                 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7140 
7141         /* move the ring back to the pool */
7142         if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7143                 while ((ring = grp->mrg_rings) != NULL)
7144                         (void) mac_group_mov_ring(mip, defgrp, ring);
7145         }
7146         mac_stop_group(grp);
7147         mip->mi_tx_group_free++;
7148 }
7149 
7150 /*
7151  * Disassociate a MAC client from a group, i.e go through the rings in the
7152  * group and delete all the soft rings tied to them.
7153  */
7154 static void
7155 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7156 {
7157         mac_client_impl_t       *mcip = flent->fe_mcip;
7158         mac_soft_ring_set_t     *tx_srs;
7159         mac_srs_tx_t            *tx;
7160         mac_ring_t              *ring;
7161 
7162         tx_srs = flent->fe_tx_srs;
7163         tx = &tx_srs->srs_tx;
7164 
7165         /* Single ring case we haven't created any soft rings */
7166         if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7167             tx->st_mode == SRS_TX_DEFAULT) {
7168                 tx->st_arg2 = NULL;
7169                 mac_srs_stat_delete(tx_srs);
7170         /* Fanout case, where we have to dismantle the soft rings */
7171         } else {
7172                 for (ring = fgrp->mrg_rings; ring != NULL;
7173                     ring = ring->mr_next) {
7174                         ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7175                         mac_tx_invoke_callbacks(mcip,
7176                             (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7177                             ring));
7178                         mac_tx_srs_del_ring(tx_srs, ring);
7179                 }
7180                 ASSERT(tx->st_arg2 == NULL);
7181         }
7182 }
7183 
7184 /*
7185  * Switch the MAC client from one group to another. This means we need
7186  * to remove the MAC client, teardown the SRSs and revert the group state.
7187  * Then, we add the client to the destination roup, set the SRSs etc.
7188  */
7189 void
7190 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7191     mac_group_t *tgrp)
7192 {
7193         mac_client_impl_t       *group_only_mcip;
7194         mac_impl_t              *mip = mcip->mci_mip;
7195         flow_entry_t            *flent = mcip->mci_flent;
7196         mac_group_t             *defgrp;
7197         mac_grp_client_t        *mgcp;
7198         mac_client_impl_t       *gmcip;
7199         flow_entry_t            *gflent;
7200 
7201         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7202         ASSERT(fgrp == flent->fe_tx_ring_group);
7203 
7204         if (fgrp == defgrp) {
7205                 /*
7206                  * If this is the primary we need to find any VLANs on
7207                  * the primary and move them too.
7208                  */
7209                 mac_group_remove_client(fgrp, mcip);
7210                 mac_tx_dismantle_soft_rings(fgrp, flent);
7211                 if (mcip->mci_unicast->ma_nusers > 1) {
7212                         mgcp = fgrp->mrg_clients;
7213                         while (mgcp != NULL) {
7214                                 gmcip = mgcp->mgc_client;
7215                                 mgcp = mgcp->mgc_next;
7216                                 if (mcip->mci_unicast != gmcip->mci_unicast)
7217                                         continue;
7218                                 mac_tx_client_quiesce(
7219                                     (mac_client_handle_t)gmcip);
7220 
7221                                 gflent = gmcip->mci_flent;
7222                                 mac_group_remove_client(fgrp, gmcip);
7223                                 mac_tx_dismantle_soft_rings(fgrp, gflent);
7224 
7225                                 mac_group_add_client(tgrp, gmcip);
7226                                 gflent->fe_tx_ring_group = tgrp;
7227                                 /* We could directly set this to SHARED */
7228                                 tgrp->mrg_state = mac_group_next_state(tgrp,
7229                                     &group_only_mcip, defgrp, B_FALSE);
7230 
7231                                 mac_tx_srs_group_setup(gmcip, gflent,
7232                                     SRST_LINK);
7233                                 mac_fanout_setup(gmcip, gflent,
7234                                     MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7235                                     gmcip, NULL, NULL);
7236 
7237                                 mac_tx_client_restart(
7238                                     (mac_client_handle_t)gmcip);
7239                         }
7240                 }
7241                 if (MAC_GROUP_NO_CLIENT(fgrp)) {
7242                         mac_ring_t      *ring;
7243                         int             cnt;
7244                         int             ringcnt;
7245 
7246                         fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7247                         /*
7248                          * Additionally, we also need to stop all
7249                          * the rings in the default group, except
7250                          * the default ring. The reason being
7251                          * this group won't be released since it is
7252                          * the default group, so the rings won't
7253                          * be stopped otherwise.
7254                          */
7255                         ringcnt = fgrp->mrg_cur_count;
7256                         ring = fgrp->mrg_rings;
7257                         for (cnt = 0; cnt < ringcnt; cnt++) {
7258                                 if (ring->mr_state == MR_INUSE &&
7259                                     ring !=
7260                                     (mac_ring_t *)mip->mi_default_tx_ring) {
7261                                         mac_stop_ring(ring);
7262                                         ring->mr_flag = 0;
7263                                 }
7264                                 ring = ring->mr_next;
7265                         }
7266                 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7267                         fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7268                 } else {
7269                         ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7270                 }
7271         } else {
7272                 /*
7273                  * We could have VLANs sharing the non-default group with
7274                  * the primary.
7275                  */
7276                 mgcp = fgrp->mrg_clients;
7277                 while (mgcp != NULL) {
7278                         gmcip = mgcp->mgc_client;
7279                         mgcp = mgcp->mgc_next;
7280                         if (gmcip == mcip)
7281                                 continue;
7282                         mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7283                         gflent = gmcip->mci_flent;
7284 
7285                         mac_group_remove_client(fgrp, gmcip);
7286                         mac_tx_dismantle_soft_rings(fgrp, gflent);
7287 
7288                         mac_group_add_client(tgrp, gmcip);
7289                         gflent->fe_tx_ring_group = tgrp;
7290                         /* We could directly set this to SHARED */
7291                         tgrp->mrg_state = mac_group_next_state(tgrp,
7292                             &group_only_mcip, defgrp, B_FALSE);
7293                         mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7294                         mac_fanout_setup(gmcip, gflent,
7295                             MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7296                             gmcip, NULL, NULL);
7297 
7298                         mac_tx_client_restart((mac_client_handle_t)gmcip);
7299                 }
7300                 mac_group_remove_client(fgrp, mcip);
7301                 mac_release_tx_group(mcip, fgrp);
7302                 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7303         }
7304 
7305         /* Add it to the tgroup */
7306         mac_group_add_client(tgrp, mcip);
7307         flent->fe_tx_ring_group = tgrp;
7308         tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7309             defgrp, B_FALSE);
7310 
7311         mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7312         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7313             mac_rx_deliver, mcip, NULL, NULL);
7314 }
7315 
7316 /*
7317  * This is a 1-time control path activity initiated by the client (IP).
7318  * The mac perimeter protects against other simultaneous control activities,
7319  * for example an ioctl that attempts to change the degree of fanout and
7320  * increase or decrease the number of softrings associated with this Tx SRS.
7321  */
7322 static mac_tx_notify_cb_t *
7323 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7324     mac_tx_notify_t notify, void *arg)
7325 {
7326         mac_cb_info_t *mcbi;
7327         mac_tx_notify_cb_t *mtnfp;
7328 
7329         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7330 
7331         mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7332         mtnfp->mtnf_fn = notify;
7333         mtnfp->mtnf_arg = arg;
7334         mtnfp->mtnf_link.mcb_objp = mtnfp;
7335         mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7336         mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7337 
7338         mcbi = &mcip->mci_tx_notify_cb_info;
7339         mutex_enter(mcbi->mcbi_lockp);
7340         mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7341         mutex_exit(mcbi->mcbi_lockp);
7342         return (mtnfp);
7343 }
7344 
7345 static void
7346 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7347 {
7348         mac_cb_info_t   *mcbi;
7349         mac_cb_t        **cblist;
7350 
7351         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7352 
7353         if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7354             &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7355                 cmn_err(CE_WARN,
7356                     "mac_client_tx_notify_remove: callback not "
7357                     "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7358                 return;
7359         }
7360 
7361         mcbi = &mcip->mci_tx_notify_cb_info;
7362         cblist = &mcip->mci_tx_notify_cb_list;
7363         mutex_enter(mcbi->mcbi_lockp);
7364         if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7365                 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7366         else
7367                 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7368         mutex_exit(mcbi->mcbi_lockp);
7369 }
7370 
7371 /*
7372  * mac_client_tx_notify():
7373  * call to add and remove flow control callback routine.
7374  */
7375 mac_tx_notify_handle_t
7376 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7377     void *ptr)
7378 {
7379         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
7380         mac_tx_notify_cb_t      *mtnfp = NULL;
7381 
7382         i_mac_perim_enter(mcip->mci_mip);
7383 
7384         if (callb_func != NULL) {
7385                 /* Add a notify callback */
7386                 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7387         } else {
7388                 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7389         }
7390         i_mac_perim_exit(mcip->mci_mip);
7391 
7392         return ((mac_tx_notify_handle_t)mtnfp);
7393 }
7394 
7395 void
7396 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7397     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7398 {
7399         mac_bridge_tx_cb = txf;
7400         mac_bridge_rx_cb = rxf;
7401         mac_bridge_ref_cb = reff;
7402         mac_bridge_ls_cb = lsf;
7403 }
7404 
7405 int
7406 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7407 {
7408         mac_impl_t *mip = (mac_impl_t *)mh;
7409         int retv;
7410 
7411         mutex_enter(&mip->mi_bridge_lock);
7412         if (mip->mi_bridge_link == NULL) {
7413                 mip->mi_bridge_link = link;
7414                 retv = 0;
7415         } else {
7416                 retv = EBUSY;
7417         }
7418         mutex_exit(&mip->mi_bridge_lock);
7419         if (retv == 0) {
7420                 mac_poll_state_change(mh, B_FALSE);
7421                 mac_capab_update(mh);
7422         }
7423         return (retv);
7424 }
7425 
7426 /*
7427  * Disable bridging on the indicated link.
7428  */
7429 void
7430 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7431 {
7432         mac_impl_t *mip = (mac_impl_t *)mh;
7433 
7434         mutex_enter(&mip->mi_bridge_lock);
7435         ASSERT(mip->mi_bridge_link == link);
7436         mip->mi_bridge_link = NULL;
7437         mutex_exit(&mip->mi_bridge_lock);
7438         mac_poll_state_change(mh, B_TRUE);
7439         mac_capab_update(mh);
7440 }
7441 
7442 void
7443 mac_no_active(mac_handle_t mh)
7444 {
7445         mac_impl_t *mip = (mac_impl_t *)mh;
7446 
7447         i_mac_perim_enter(mip);
7448         mip->mi_state_flags |= MIS_NO_ACTIVE;
7449         i_mac_perim_exit(mip);
7450 }
7451 
7452 /*
7453  * Walk the primary VLAN clients whenever the primary's rings property
7454  * changes and update the mac_resource_props_t for the VLAN's client.
7455  * We need to do this since we don't support setting these properties
7456  * on the primary's VLAN clients, but the VLAN clients have to
7457  * follow the primary w.r.t the rings property;
7458  */
7459 void
7460 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7461 {
7462         mac_client_impl_t       *vmcip;
7463         mac_resource_props_t    *vmrp;
7464 
7465         for (vmcip = mip->mi_clients_list; vmcip != NULL;
7466             vmcip = vmcip->mci_client_next) {
7467                 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7468                     mac_client_vid((mac_client_handle_t)vmcip) ==
7469                     VLAN_ID_NONE) {
7470                         continue;
7471                 }
7472                 vmrp = MCIP_RESOURCE_PROPS(vmcip);
7473 
7474                 vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7475                 if (mrp->mrp_mask & MRP_RX_RINGS)
7476                         vmrp->mrp_mask |= MRP_RX_RINGS;
7477                 else if (vmrp->mrp_mask & MRP_RX_RINGS)
7478                         vmrp->mrp_mask &= ~MRP_RX_RINGS;
7479 
7480                 vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7481                 if (mrp->mrp_mask & MRP_TX_RINGS)
7482                         vmrp->mrp_mask |= MRP_TX_RINGS;
7483                 else if (vmrp->mrp_mask & MRP_TX_RINGS)
7484                         vmrp->mrp_mask &= ~MRP_TX_RINGS;
7485 
7486                 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7487                         vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7488                 else
7489                         vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7490 
7491                 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7492                         vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7493                 else
7494                         vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7495         }
7496 }
7497 
7498 /*
7499  * We are adding or removing ring(s) from a group. The source for taking
7500  * rings is the default group. The destination for giving rings back is
7501  * the default group.
7502  */
7503 int
7504 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7505     mac_group_t *defgrp)
7506 {
7507         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
7508         uint_t                  modify;
7509         int                     count;
7510         mac_ring_t              *ring;
7511         mac_ring_t              *next;
7512         mac_impl_t              *mip = mcip->mci_mip;
7513         mac_ring_t              **rings;
7514         uint_t                  ringcnt;
7515         int                     i = 0;
7516         boolean_t               rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7517         int                     start;
7518         int                     end;
7519         mac_group_t             *tgrp;
7520         int                     j;
7521         int                     rv = 0;
7522 
7523         /*
7524          * If we are asked for just a group, we give 1 ring, else
7525          * the specified number of rings.
7526          */
7527         if (rx_group) {
7528                 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7529                     mrp->mrp_nrxrings;
7530         } else {
7531                 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7532                     mrp->mrp_ntxrings;
7533         }
7534 
7535         /* don't allow modifying rings for a share for now. */
7536         ASSERT(mcip->mci_share == 0);
7537 
7538         if (ringcnt == group->mrg_cur_count)
7539                 return (0);
7540 
7541         if (group->mrg_cur_count > ringcnt) {
7542                 modify = group->mrg_cur_count - ringcnt;
7543                 if (rx_group) {
7544                         if (mip->mi_rx_donor_grp == group) {
7545                                 ASSERT(mac_is_primary_client(mcip));
7546                                 mip->mi_rx_donor_grp = defgrp;
7547                         } else {
7548                                 defgrp = mip->mi_rx_donor_grp;
7549                         }
7550                 }
7551                 ring = group->mrg_rings;
7552                 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7553                     KM_SLEEP);
7554                 j = 0;
7555                 for (count = 0; count < modify; count++) {
7556                         next = ring->mr_next;
7557                         rv = mac_group_mov_ring(mip, defgrp, ring);
7558                         if (rv != 0) {
7559                                 /* cleanup on failure */
7560                                 for (j = 0; j < count; j++) {
7561                                         (void) mac_group_mov_ring(mip, group,
7562                                             rings[j]);
7563                                 }
7564                                 break;
7565                         }
7566                         rings[j++] = ring;
7567                         ring = next;
7568                 }
7569                 kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7570                 return (rv);
7571         }
7572         if (ringcnt >= MAX_RINGS_PER_GROUP)
7573                 return (EINVAL);
7574 
7575         modify = ringcnt - group->mrg_cur_count;
7576 
7577         if (rx_group) {
7578                 if (group != mip->mi_rx_donor_grp)
7579                         defgrp = mip->mi_rx_donor_grp;
7580                 else
7581                         /*
7582                          * This is the donor group with all the remaining
7583                          * rings. Default group now gets to be the donor
7584                          */
7585                         mip->mi_rx_donor_grp = defgrp;
7586                 start = 1;
7587                 end = mip->mi_rx_group_count;
7588         } else {
7589                 start = 0;
7590                 end = mip->mi_tx_group_count - 1;
7591         }
7592         /*
7593          * If the default doesn't have any rings, lets see if we can
7594          * take rings given to an h/w client that doesn't need it.
7595          * For now, we just see if there is  any one client that can donate
7596          * all the required rings.
7597          */
7598         if (defgrp->mrg_cur_count < (modify + 1)) {
7599                 for (i = start; i < end; i++) {
7600                         if (rx_group) {
7601                                 tgrp = &mip->mi_rx_groups[i];
7602                                 if (tgrp == group || tgrp->mrg_state <
7603                                     MAC_GROUP_STATE_RESERVED) {
7604                                         continue;
7605                                 }
7606                                 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7607                                 if (mcip == NULL)
7608                                         mcip = mac_get_grp_primary(tgrp);
7609                                 ASSERT(mcip != NULL);
7610                                 mrp = MCIP_RESOURCE_PROPS(mcip);
7611                                 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7612                                         continue;
7613                                 if ((tgrp->mrg_cur_count +
7614                                     defgrp->mrg_cur_count) < (modify + 1)) {
7615                                         continue;
7616                                 }
7617                                 if (mac_rx_switch_group(mcip, tgrp,
7618                                     defgrp) != 0) {
7619                                         return (ENOSPC);
7620                                 }
7621                         } else {
7622                                 tgrp = &mip->mi_tx_groups[i];
7623                                 if (tgrp == group || tgrp->mrg_state <
7624                                     MAC_GROUP_STATE_RESERVED) {
7625                                         continue;
7626                                 }
7627                                 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7628                                 if (mcip == NULL)
7629                                         mcip = mac_get_grp_primary(tgrp);
7630                                 mrp = MCIP_RESOURCE_PROPS(mcip);
7631                                 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7632                                         continue;
7633                                 if ((tgrp->mrg_cur_count +
7634                                     defgrp->mrg_cur_count) < (modify + 1)) {
7635                                         continue;
7636                                 }
7637                                 /* OK, we can switch this to s/w */
7638                                 mac_tx_client_quiesce(
7639                                     (mac_client_handle_t)mcip);
7640                                 mac_tx_switch_group(mcip, tgrp, defgrp);
7641                                 mac_tx_client_restart(
7642                                     (mac_client_handle_t)mcip);
7643                         }
7644                 }
7645                 if (defgrp->mrg_cur_count < (modify + 1))
7646                         return (ENOSPC);
7647         }
7648         if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7649             group, mcip->mci_share, modify)) != 0) {
7650                 return (rv);
7651         }
7652         return (0);
7653 }
7654 
7655 /*
7656  * Given the poolname in mac_resource_props, find the cpupart
7657  * that is associated with this pool.  The cpupart will be used
7658  * later for finding the cpus to be bound to the networking threads.
7659  *
7660  * use_default is set B_TRUE if pools are enabled and pool_default
7661  * is returned.  This avoids a 2nd lookup to set the poolname
7662  * for pool-effective.
7663  *
7664  * returns:
7665  *
7666  *    NULL -   pools are disabled or if the 'cpus' property is set.
7667  *    cpupart of pool_default  - pools are enabled and the pool
7668  *             is not available or poolname is blank
7669  *    cpupart of named pool    - pools are enabled and the pool
7670  *             is available.
7671  */
7672 cpupart_t *
7673 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7674 {
7675         pool_t          *pool;
7676         cpupart_t       *cpupart;
7677 
7678         *use_default = B_FALSE;
7679 
7680         /* CPUs property is set */
7681         if (mrp->mrp_mask & MRP_CPUS)
7682                 return (NULL);
7683 
7684         ASSERT(pool_lock_held());
7685 
7686         /* Pools are disabled, no pset */
7687         if (pool_state == POOL_DISABLED)
7688                 return (NULL);
7689 
7690         /* Pools property is set */
7691         if (mrp->mrp_mask & MRP_POOL) {
7692                 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7693                         /* Pool not found */
7694                         DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7695                             mrp->mrp_pool);
7696                         *use_default = B_TRUE;
7697                         pool = pool_default;
7698                 }
7699         /* Pools property is not set */
7700         } else {
7701                 *use_default = B_TRUE;
7702                 pool = pool_default;
7703         }
7704 
7705         /* Find the CPU pset that corresponds to the pool */
7706         mutex_enter(&cpu_lock);
7707         if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7708                 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7709                     pool->pool_pset->pset_id);
7710         }
7711         mutex_exit(&cpu_lock);
7712 
7713         return (cpupart);
7714 }
7715 
7716 void
7717 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7718     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7719 {
7720         ASSERT(pool_lock_held());
7721 
7722         if (cpupart != NULL) {
7723                 emrp->mrp_mask |= MRP_POOL;
7724                 if (use_default) {
7725                         (void) strcpy(emrp->mrp_pool,
7726                             "pool_default");
7727                 } else {
7728                         ASSERT(strlen(mrp->mrp_pool) != 0);
7729                         (void) strcpy(emrp->mrp_pool,
7730                             mrp->mrp_pool);
7731                 }
7732         } else {
7733                 emrp->mrp_mask &= ~MRP_POOL;
7734                 bzero(emrp->mrp_pool, MAXPATHLEN);
7735         }
7736 }
7737 
7738 struct mac_pool_arg {
7739         char            mpa_poolname[MAXPATHLEN];
7740         pool_event_t    mpa_what;
7741 };
7742 
7743 /*ARGSUSED*/
7744 static uint_t
7745 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7746 {
7747         struct mac_pool_arg     *mpa = arg;
7748         mac_impl_t              *mip = (mac_impl_t *)val;
7749         mac_client_impl_t       *mcip;
7750         mac_resource_props_t    *mrp, *emrp;
7751         boolean_t               pool_update = B_FALSE;
7752         boolean_t               pool_clear = B_FALSE;
7753         boolean_t               use_default = B_FALSE;
7754         cpupart_t               *cpupart = NULL;
7755 
7756         mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7757         i_mac_perim_enter(mip);
7758         for (mcip = mip->mi_clients_list; mcip != NULL;
7759             mcip = mcip->mci_client_next) {
7760                 pool_update = B_FALSE;
7761                 pool_clear = B_FALSE;
7762                 use_default = B_FALSE;
7763                 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7764                 emrp = MCIP_EFFECTIVE_PROPS(mcip);
7765 
7766                 /*
7767                  * When pools are enabled
7768                  */
7769                 if ((mpa->mpa_what == POOL_E_ENABLE) &&
7770                     ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7771                         mrp->mrp_mask |= MRP_POOL;
7772                         pool_update = B_TRUE;
7773                 }
7774 
7775                 /*
7776                  * When pools are disabled
7777                  */
7778                 if ((mpa->mpa_what == POOL_E_DISABLE) &&
7779                     ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7780                         mrp->mrp_mask |= MRP_POOL;
7781                         pool_clear = B_TRUE;
7782                 }
7783 
7784                 /*
7785                  * Look for links with the pool property set and the poolname
7786                  * matching the one which is changing.
7787                  */
7788                 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7789                         /*
7790                          * The pool associated with the link has changed.
7791                          */
7792                         if (mpa->mpa_what == POOL_E_CHANGE) {
7793                                 mrp->mrp_mask |= MRP_POOL;
7794                                 pool_update = B_TRUE;
7795                         }
7796                 }
7797 
7798                 /*
7799                  * This link is associated with pool_default and
7800                  * pool_default has changed.
7801                  */
7802                 if ((mpa->mpa_what == POOL_E_CHANGE) &&
7803                     (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7804                     (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7805                         mrp->mrp_mask |= MRP_POOL;
7806                         pool_update = B_TRUE;
7807                 }
7808 
7809                 /*
7810                  * Get new list of cpus for the pool, bind network
7811                  * threads to new list of cpus and update resources.
7812                  */
7813                 if (pool_update) {
7814                         if (MCIP_DATAPATH_SETUP(mcip)) {
7815                                 pool_lock();
7816                                 cpupart = mac_pset_find(mrp, &use_default);
7817                                 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7818                                     mac_rx_deliver, mcip, NULL, cpupart);
7819                                 mac_set_pool_effective(use_default, cpupart,
7820                                     mrp, emrp);
7821                                 pool_unlock();
7822                         }
7823                         mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7824                             B_FALSE);
7825                 }
7826 
7827                 /*
7828                  * Clear the effective pool and bind network threads
7829                  * to any available CPU.
7830                  */
7831                 if (pool_clear) {
7832                         if (MCIP_DATAPATH_SETUP(mcip)) {
7833                                 emrp->mrp_mask &= ~MRP_POOL;
7834                                 bzero(emrp->mrp_pool, MAXPATHLEN);
7835                                 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7836                                     mac_rx_deliver, mcip, NULL, NULL);
7837                         }
7838                         mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7839                             B_FALSE);
7840                 }
7841         }
7842         i_mac_perim_exit(mip);
7843         kmem_free(mrp, sizeof (*mrp));
7844         return (MH_WALK_CONTINUE);
7845 }
7846 
7847 static void
7848 mac_pool_update(void *arg)
7849 {
7850         mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7851         kmem_free(arg, sizeof (struct mac_pool_arg));
7852 }
7853 
7854 /*
7855  * Callback function to be executed when a noteworthy pool event
7856  * takes place.
7857  */
7858 /* ARGSUSED */
7859 static void
7860 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7861 {
7862         pool_t                  *pool;
7863         char                    *poolname = NULL;
7864         struct mac_pool_arg     *mpa;
7865 
7866         pool_lock();
7867         mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7868 
7869         switch (what) {
7870         case POOL_E_ENABLE:
7871         case POOL_E_DISABLE:
7872                 break;
7873 
7874         case POOL_E_CHANGE:
7875                 pool = pool_lookup_pool_by_id(id);
7876                 if (pool == NULL) {
7877                         kmem_free(mpa, sizeof (struct mac_pool_arg));
7878                         pool_unlock();
7879                         return;
7880                 }
7881                 pool_get_name(pool, &poolname);
7882                 (void) strlcpy(mpa->mpa_poolname, poolname,
7883                     sizeof (mpa->mpa_poolname));
7884                 break;
7885 
7886         default:
7887                 kmem_free(mpa, sizeof (struct mac_pool_arg));
7888                 pool_unlock();
7889                 return;
7890         }
7891         pool_unlock();
7892 
7893         mpa->mpa_what = what;
7894 
7895         mac_pool_update(mpa);
7896 }
7897 
7898 /*
7899  * Set effective rings property. This could be called from datapath_setup/
7900  * datapath_teardown or set-linkprop.
7901  * If the group is reserved we just go ahead and set the effective rings.
7902  * Additionally, for TX this could mean the default  group has lost/gained
7903  * some rings, so if the default group is reserved, we need to adjust the
7904  * effective rings for the default group clients. For RX, if we are working
7905  * with the non-default group, we just need * to reset the effective props
7906  * for the default group clients.
7907  */
7908 void
7909 mac_set_rings_effective(mac_client_impl_t *mcip)
7910 {
7911         mac_impl_t              *mip = mcip->mci_mip;
7912         mac_group_t             *grp;
7913         mac_group_t             *defgrp;
7914         flow_entry_t            *flent = mcip->mci_flent;
7915         mac_resource_props_t    *emrp = MCIP_EFFECTIVE_PROPS(mcip);
7916         mac_grp_client_t        *mgcp;
7917         mac_client_impl_t       *gmcip;
7918 
7919         grp = flent->fe_rx_ring_group;
7920         if (grp != NULL) {
7921                 defgrp = MAC_DEFAULT_RX_GROUP(mip);
7922                 /*
7923                  * If we have reserved a group, set the effective rings
7924                  * to the ring count in the group.
7925                  */
7926                 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7927                         emrp->mrp_mask |= MRP_RX_RINGS;
7928                         emrp->mrp_nrxrings = grp->mrg_cur_count;
7929                 }
7930 
7931                 /*
7932                  * We go through the clients in the shared group and
7933                  * reset the effective properties. It is possible this
7934                  * might have already been done for some client (i.e.
7935                  * if some client is being moved to a group that is
7936                  * already shared). The case where the default group is
7937                  * RESERVED is taken care of above (note in the RX side if
7938                  * there is a non-default group, the default group is always
7939                  * SHARED).
7940                  */
7941                 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7942                         if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7943                                 mgcp = grp->mrg_clients;
7944                         else
7945                                 mgcp = defgrp->mrg_clients;
7946                         while (mgcp != NULL) {
7947                                 gmcip = mgcp->mgc_client;
7948                                 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7949                                 if (emrp->mrp_mask & MRP_RX_RINGS) {
7950                                         emrp->mrp_mask &= ~MRP_RX_RINGS;
7951                                         emrp->mrp_nrxrings = 0;
7952                                 }
7953                                 mgcp = mgcp->mgc_next;
7954                         }
7955                 }
7956         }
7957 
7958         /* Now the TX side */
7959         grp = flent->fe_tx_ring_group;
7960         if (grp != NULL) {
7961                 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7962 
7963                 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7964                         emrp->mrp_mask |= MRP_TX_RINGS;
7965                         emrp->mrp_ntxrings = grp->mrg_cur_count;
7966                 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7967                         mgcp = grp->mrg_clients;
7968                         while (mgcp != NULL) {
7969                                 gmcip = mgcp->mgc_client;
7970                                 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7971                                 if (emrp->mrp_mask & MRP_TX_RINGS) {
7972                                         emrp->mrp_mask &= ~MRP_TX_RINGS;
7973                                         emrp->mrp_ntxrings = 0;
7974                                 }
7975                                 mgcp = mgcp->mgc_next;
7976                         }
7977                 }
7978 
7979                 /*
7980                  * If the group is not the default group and the default
7981                  * group is reserved, the ring count in the default group
7982                  * might have changed, update it.
7983                  */
7984                 if (grp != defgrp &&
7985                     defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7986                         gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7987                         emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7988                         emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7989                 }
7990         }
7991         emrp = MCIP_EFFECTIVE_PROPS(mcip);
7992 }
7993 
7994 /*
7995  * Check if the primary is in the default group. If so, see if we
7996  * can give it a an exclusive group now that another client is
7997  * being configured. We take the primary out of the default group
7998  * because the multicast/broadcast packets for the all the clients
7999  * will land in the default ring in the default group which means
8000  * any client in the default group, even if it is the only on in
8001  * the group, will lose exclusive access to the rings, hence
8002  * polling.
8003  */
8004 mac_client_impl_t *
8005 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8006 {
8007         mac_impl_t              *mip = mcip->mci_mip;
8008         mac_group_t             *defgrp = MAC_DEFAULT_RX_GROUP(mip);
8009         flow_entry_t            *flent = mcip->mci_flent;
8010         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
8011         uint8_t                 *mac_addr;
8012         mac_group_t             *ngrp;
8013 
8014         /*
8015          * Check if the primary is in the default group, if not
8016          * or if it is explicitly configured to be in the default
8017          * group OR set the RX rings property, return.
8018          */
8019         if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8020                 return (NULL);
8021 
8022         /*
8023          * If the new client needs an exclusive group and we
8024          * don't have another for the primary, return.
8025          */
8026         if (rxhw && mip->mi_rxhwclnt_avail < 2)
8027                 return (NULL);
8028 
8029         mac_addr = flent->fe_flow_desc.fd_dst_mac;
8030         /*
8031          * We call this when we are setting up the datapath for
8032          * the first non-primary.
8033          */
8034         ASSERT(mip->mi_nactiveclients == 2);
8035         /*
8036          * OK, now we have the primary that needs to be relocated.
8037          */
8038         ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8039         if (ngrp == NULL)
8040                 return (NULL);
8041         if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8042                 mac_stop_group(ngrp);
8043                 return (NULL);
8044         }
8045         return (mcip);
8046 }
8047 
8048 void
8049 mac_transceiver_init(mac_impl_t *mip)
8050 {
8051         if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8052             &mip->mi_transceiver)) {
8053                 /*
8054                  * The driver set a flag that we don't know about. In this case,
8055                  * we need to warn about that case and ignore this capability.
8056                  */
8057                 if (mip->mi_transceiver.mct_flags != 0) {
8058                         dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8059                             "flags to invalid value: 0x%x, ignoring "
8060                             "capability", mip->mi_transceiver.mct_flags);
8061                         bzero(&mip->mi_transceiver,
8062                             sizeof (mac_capab_transceiver_t));
8063                 }
8064         } else {
8065                         bzero(&mip->mi_transceiver,
8066                             sizeof (mac_capab_transceiver_t));
8067         }
8068 }
8069 
8070 int
8071 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8072 {
8073         mac_impl_t *mip = (mac_impl_t *)mh;
8074 
8075         ASSERT(MAC_PERIM_HELD(mh));
8076 
8077         if (mip->mi_transceiver.mct_ntransceivers == 0)
8078                 return (ENOTSUP);
8079 
8080         *countp = mip->mi_transceiver.mct_ntransceivers;
8081         return (0);
8082 }
8083 
8084 int
8085 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8086     boolean_t *usable)
8087 {
8088         int ret;
8089         mac_transceiver_info_t info;
8090 
8091         mac_impl_t *mip = (mac_impl_t *)mh;
8092 
8093         ASSERT(MAC_PERIM_HELD(mh));
8094 
8095         if (mip->mi_transceiver.mct_info == NULL ||
8096             mip->mi_transceiver.mct_ntransceivers == 0)
8097                 return (ENOTSUP);
8098 
8099         if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8100                 return (EINVAL);
8101 
8102         bzero(&info, sizeof (mac_transceiver_info_t));
8103         if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8104             &info)) != 0) {
8105                 return (ret);
8106         }
8107 
8108         *present = info.mti_present;
8109         *usable = info.mti_usable;
8110         return (0);
8111 }
8112 
8113 int
8114 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8115     size_t nbytes, off_t offset, size_t *nread)
8116 {
8117         int ret;
8118         size_t nr;
8119         mac_impl_t *mip = (mac_impl_t *)mh;
8120 
8121         ASSERT(MAC_PERIM_HELD(mh));
8122 
8123         if (mip->mi_transceiver.mct_read == NULL)
8124                 return (ENOTSUP);
8125 
8126         if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8127                 return (EINVAL);
8128 
8129         /*
8130          * All supported pages today are 256 bytes wide. Make sure offset +
8131          * nbytes never exceeds that.
8132          */
8133         if (offset < 0 || offset >= 256 || nbytes > 256 ||
8134             offset + nbytes > 256)
8135                 return (EINVAL);
8136 
8137         if (nread == NULL)
8138                 nread = &nr;
8139         ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8140             nbytes, offset, nread);
8141         if (ret == 0 && *nread > nbytes) {
8142                 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8143                     "%lu byte sized buffer, possible memory corruption",
8144                     *nread, nbytes);
8145         }
8146 
8147         return (ret);
8148 }
8149 
8150 void
8151 mac_led_init(mac_impl_t *mip)
8152 {
8153         mip->mi_led_modes = MAC_LED_DEFAULT;
8154 
8155         if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8156                 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8157                 return;
8158         }
8159 
8160         if (mip->mi_led.mcl_flags != 0) {
8161                 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8162                     "flags to invalid value: 0x%x, ignoring "
8163                     "capability", mip->mi_transceiver.mct_flags);
8164                 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8165                 return;
8166         }
8167 
8168         if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8169                 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8170                     "supported modes to invalid value: 0x%x, ignoring "
8171                     "capability", mip->mi_transceiver.mct_flags);
8172                 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8173                 return;
8174         }
8175 }
8176 
8177 int
8178 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8179 {
8180         mac_impl_t *mip = (mac_impl_t *)mh;
8181 
8182         ASSERT(MAC_PERIM_HELD(mh));
8183 
8184         if (mip->mi_led.mcl_set == NULL)
8185                 return (ENOTSUP);
8186 
8187         *supported = mip->mi_led.mcl_modes;
8188         *active = mip->mi_led_modes;
8189 
8190         return (0);
8191 }
8192 
8193 /*
8194  * Update and multiplex the various LED requests. We only ever send one LED to
8195  * the underlying driver at a time. As such, we end up multiplexing all
8196  * requested states and picking one to send down to the driver.
8197  */
8198 int
8199 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8200 {
8201         int ret;
8202         mac_led_mode_t driver;
8203 
8204         mac_impl_t *mip = (mac_impl_t *)mh;
8205 
8206         ASSERT(MAC_PERIM_HELD(mh));
8207 
8208         /*
8209          * If we've been passed a desired value of zero, that indicates that
8210          * we're basically resetting to the value of zero, which is our default
8211          * value.
8212          */
8213         if (desired == 0)
8214                 desired = MAC_LED_DEFAULT;
8215 
8216         if (mip->mi_led.mcl_set == NULL)
8217                 return (ENOTSUP);
8218 
8219         /*
8220          * Catch both values that we don't know about and those that the driver
8221          * doesn't support.
8222          */
8223         if ((desired & ~MAC_LED_ALL) != 0)
8224                 return (EINVAL);
8225 
8226         if ((desired & ~mip->mi_led.mcl_modes) != 0)
8227                 return (ENOTSUP);
8228 
8229         /*
8230          * If we have the same value, then there is nothing to do.
8231          */
8232         if (desired == mip->mi_led_modes)
8233                 return (0);
8234 
8235         /*
8236          * Based on the desired value, determine what to send to the driver. We
8237          * only will send a single bit to the driver at any given time. IDENT
8238          * takes priority over OFF or ON. We also let OFF take priority over the
8239          * rest.
8240          */
8241         if (desired & MAC_LED_IDENT) {
8242                 driver = MAC_LED_IDENT;
8243         } else if (desired & MAC_LED_OFF) {
8244                 driver = MAC_LED_OFF;
8245         } else if (desired & MAC_LED_ON) {
8246                 driver = MAC_LED_ON;
8247         } else {
8248                 driver = MAC_LED_DEFAULT;
8249         }
8250 
8251         if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8252                 mip->mi_led_modes = desired;
8253         }
8254 
8255         return (ret);
8256 }