1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 * Copyright 2019 Joyent, Inc. 30 */ 31 32 #include <sys/thread.h> 33 #include <sys/proc.h> 34 #include <sys/debug.h> 35 #include <sys/cmn_err.h> 36 #include <sys/systm.h> 37 #include <sys/sobject.h> 38 #include <sys/sleepq.h> 39 #include <sys/cpuvar.h> 40 #include <sys/condvar.h> 41 #include <sys/condvar_impl.h> 42 #include <sys/schedctl.h> 43 #include <sys/procfs.h> 44 #include <sys/sdt.h> 45 #include <sys/callo.h> 46 47 /* 48 * CV_MAX_WAITERS is the maximum number of waiters we track; once 49 * the number becomes higher than that, we look at the sleepq to 50 * see whether there are *really* any waiters. 51 */ 52 #define CV_MAX_WAITERS 1024 /* must be power of 2 */ 53 #define CV_WAITERS_MASK (CV_MAX_WAITERS - 1) 54 55 /* 56 * Threads don't "own" condition variables. 57 */ 58 /* ARGSUSED */ 59 static kthread_t * 60 cv_owner(void *cvp) 61 { 62 return (NULL); 63 } 64 65 /* 66 * Unsleep a thread that's blocked on a condition variable. 67 */ 68 static void 69 cv_unsleep(kthread_t *t) 70 { 71 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 72 sleepq_head_t *sqh = SQHASH(cvp); 73 74 ASSERT(THREAD_LOCK_HELD(t)); 75 76 if (cvp == NULL) 77 panic("cv_unsleep: thread %p not on sleepq %p", 78 (void *)t, (void *)sqh); 79 DTRACE_SCHED1(wakeup, kthread_t *, t); 80 sleepq_unsleep(t); 81 if (cvp->cv_waiters != CV_MAX_WAITERS) 82 cvp->cv_waiters--; 83 disp_lock_exit_high(&sqh->sq_lock); 84 CL_SETRUN(t); 85 } 86 87 /* 88 * Change the priority of a thread that's blocked on a condition variable. 89 */ 90 static void 91 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip) 92 { 93 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 94 sleepq_t *sqp = t->t_sleepq; 95 96 ASSERT(THREAD_LOCK_HELD(t)); 97 ASSERT(&SQHASH(cvp)->sq_queue == sqp); 98 99 if (cvp == NULL) 100 panic("cv_change_pri: %p not on sleep queue", (void *)t); 101 sleepq_dequeue(t); 102 *t_prip = pri; 103 sleepq_insert(sqp, t); 104 } 105 106 /* 107 * The sobj_ops vector exports a set of functions needed when a thread 108 * is asleep on a synchronization object of this type. 109 */ 110 static sobj_ops_t cv_sobj_ops = { 111 SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri 112 }; 113 114 /* ARGSUSED */ 115 void 116 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg) 117 { 118 ((condvar_impl_t *)cvp)->cv_waiters = 0; 119 } 120 121 /* 122 * cv_destroy is not currently needed, but is part of the DDI. 123 * This is in case cv_init ever needs to allocate something for a cv. 124 */ 125 /* ARGSUSED */ 126 void 127 cv_destroy(kcondvar_t *cvp) 128 { 129 ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0); 130 } 131 132 /* 133 * The cv_block() function blocks a thread on a condition variable 134 * by putting it in a hashed sleep queue associated with the 135 * synchronization object. 136 * 137 * Threads are taken off the hashed sleep queues via calls to 138 * cv_signal(), cv_broadcast(), or cv_unsleep(). 139 */ 140 static void 141 cv_block(condvar_impl_t *cvp) 142 { 143 kthread_t *t = curthread; 144 klwp_t *lwp = ttolwp(t); 145 sleepq_head_t *sqh; 146 147 ASSERT(THREAD_LOCK_HELD(t)); 148 ASSERT(t != CPU->cpu_idle_thread); 149 ASSERT(CPU_ON_INTR(CPU) == 0); 150 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 151 ASSERT(t->t_state == TS_ONPROC); 152 153 t->t_schedflag &= ~TS_SIGNALLED; 154 CL_SLEEP(t); /* assign kernel priority */ 155 t->t_wchan = (caddr_t)cvp; 156 t->t_sobj_ops = &cv_sobj_ops; 157 DTRACE_SCHED(sleep); 158 159 /* 160 * The check for t_intr is to avoid doing the 161 * account for an interrupt thread on the still-pinned 162 * lwp's statistics. 163 */ 164 if (lwp != NULL && t->t_intr == NULL) { 165 lwp->lwp_ru.nvcsw++; 166 (void) new_mstate(t, LMS_SLEEP); 167 } 168 169 sqh = SQHASH(cvp); 170 disp_lock_enter_high(&sqh->sq_lock); 171 if (cvp->cv_waiters < CV_MAX_WAITERS) 172 cvp->cv_waiters++; 173 ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS); 174 THREAD_SLEEP(t, &sqh->sq_lock); 175 sleepq_insert(&sqh->sq_queue, t); 176 /* 177 * THREAD_SLEEP() moves curthread->t_lockp to point to the 178 * lock sqh->sq_lock. This lock is later released by the caller 179 * when it calls thread_unlock() on curthread. 180 */ 181 } 182 183 #define cv_block_sig(t, cvp) \ 184 { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); } 185 186 /* 187 * Block on the indicated condition variable and release the 188 * associated kmutex while blocked. 189 */ 190 void 191 cv_wait(kcondvar_t *cvp, kmutex_t *mp) 192 { 193 if (panicstr) 194 return; 195 ASSERT(!quiesce_active); 196 197 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 198 thread_lock(curthread); /* lock the thread */ 199 cv_block((condvar_impl_t *)cvp); 200 thread_unlock_nopreempt(curthread); /* unlock the waiters field */ 201 mutex_exit(mp); 202 swtch(); 203 mutex_enter(mp); 204 } 205 206 static void 207 cv_wakeup(void *arg) 208 { 209 kthread_t *t = arg; 210 211 /* 212 * This mutex is acquired and released in order to make sure that 213 * the wakeup does not happen before the block itself happens. 214 */ 215 mutex_enter(&t->t_wait_mutex); 216 mutex_exit(&t->t_wait_mutex); 217 setrun(t); 218 } 219 220 /* 221 * Same as cv_wait except the thread will unblock at 'tim' 222 * (an absolute time) if it hasn't already unblocked. 223 * 224 * Returns the amount of time left from the original 'tim' value 225 * when it was unblocked. 226 */ 227 clock_t 228 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 229 { 230 hrtime_t hrtim; 231 clock_t now = ddi_get_lbolt(); 232 233 if (tim <= now) 234 return (-1); 235 236 hrtim = TICK_TO_NSEC(tim - now); 237 return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 238 } 239 240 /* 241 * Same as cv_timedwait() except that the third argument is a relative 242 * timeout value, as opposed to an absolute one. There is also a fourth 243 * argument that specifies how accurately the timeout must be implemented. 244 */ 245 clock_t 246 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res) 247 { 248 hrtime_t exp; 249 250 ASSERT(TIME_RES_VALID(res)); 251 252 if (delta <= 0) 253 return (-1); 254 255 if ((exp = TICK_TO_NSEC(delta)) < 0) 256 exp = CY_INFINITY; 257 258 return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0)); 259 } 260 261 clock_t 262 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 263 hrtime_t res, int flag) 264 { 265 kthread_t *t = curthread; 266 callout_id_t id; 267 clock_t timeleft; 268 hrtime_t limit; 269 int signalled; 270 271 if (panicstr) 272 return (-1); 273 ASSERT(!quiesce_active); 274 275 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 276 if (tim <= limit) 277 return (-1); 278 mutex_enter(&t->t_wait_mutex); 279 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 280 tim, res, flag); 281 thread_lock(t); /* lock the thread */ 282 cv_block((condvar_impl_t *)cvp); 283 thread_unlock_nopreempt(t); 284 mutex_exit(&t->t_wait_mutex); 285 mutex_exit(mp); 286 swtch(); 287 signalled = (t->t_schedflag & TS_SIGNALLED); 288 /* 289 * Get the time left. untimeout() returns -1 if the timeout has 290 * occured or the time remaining. If the time remaining is zero, 291 * the timeout has occured between when we were awoken and 292 * we called untimeout. We will treat this as if the timeout 293 * has occured and set timeleft to -1. 294 */ 295 timeleft = untimeout_default(id, 0); 296 mutex_enter(mp); 297 if (timeleft <= 0) { 298 timeleft = -1; 299 if (signalled) /* avoid consuming the cv_signal() */ 300 cv_signal(cvp); 301 } 302 return (timeleft); 303 } 304 305 int 306 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp) 307 { 308 kthread_t *t = curthread; 309 proc_t *p = ttoproc(t); 310 klwp_t *lwp = ttolwp(t); 311 int cancel_pending; 312 int rval = 1; 313 int signalled = 0; 314 315 if (panicstr) 316 return (rval); 317 ASSERT(!quiesce_active); 318 319 /* 320 * Threads in system processes don't process signals. This is 321 * true both for standard threads of system processes and for 322 * interrupt threads which have borrowed their pinned thread's LWP. 323 */ 324 if (lwp == NULL || (p->p_flag & SSYS)) { 325 cv_wait(cvp, mp); 326 return (rval); 327 } 328 ASSERT(t->t_intr == NULL); 329 330 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 331 cancel_pending = schedctl_cancel_pending(); 332 lwp->lwp_asleep = 1; 333 lwp->lwp_sysabort = 0; 334 thread_lock(t); 335 cv_block_sig(t, (condvar_impl_t *)cvp); 336 thread_unlock_nopreempt(t); 337 mutex_exit(mp); 338 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 339 setrun(t); 340 /* ASSERT(no locks are held) */ 341 swtch(); 342 signalled = (t->t_schedflag & TS_SIGNALLED); 343 t->t_flag &= ~T_WAKEABLE; 344 mutex_enter(mp); 345 if (ISSIG_PENDING(t, lwp, p)) { 346 mutex_exit(mp); 347 if (issig(FORREAL)) 348 rval = 0; 349 mutex_enter(mp); 350 } 351 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 352 rval = 0; 353 if (rval != 0 && cancel_pending) { 354 schedctl_cancel_eintr(); 355 rval = 0; 356 } 357 lwp->lwp_asleep = 0; 358 lwp->lwp_sysabort = 0; 359 if (rval == 0 && signalled) /* avoid consuming the cv_signal() */ 360 cv_signal(cvp); 361 return (rval); 362 } 363 364 static clock_t 365 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 366 hrtime_t res, int flag) 367 { 368 kthread_t *t = curthread; 369 proc_t *p = ttoproc(t); 370 klwp_t *lwp = ttolwp(t); 371 int cancel_pending = 0; 372 callout_id_t id; 373 clock_t rval = 1; 374 hrtime_t limit; 375 int signalled = 0; 376 377 if (panicstr) 378 return (rval); 379 ASSERT(!quiesce_active); 380 381 /* 382 * Threads in system processes don't process signals. This is 383 * true both for standard threads of system processes and for 384 * interrupt threads which have borrowed their pinned thread's LWP. 385 */ 386 if (lwp == NULL || (p->p_flag & SSYS)) 387 return (cv_timedwait_hires(cvp, mp, tim, res, flag)); 388 ASSERT(t->t_intr == NULL); 389 390 /* 391 * If tim is less than or equal to current hrtime, then the timeout 392 * has already occured. So just check to see if there is a signal 393 * pending. If so return 0 indicating that there is a signal pending. 394 * Else return -1 indicating that the timeout occured. No need to 395 * wait on anything. 396 */ 397 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 398 if (tim <= limit) { 399 lwp->lwp_asleep = 1; 400 lwp->lwp_sysabort = 0; 401 rval = -1; 402 goto out; 403 } 404 405 /* 406 * Set the timeout and wait. 407 */ 408 cancel_pending = schedctl_cancel_pending(); 409 mutex_enter(&t->t_wait_mutex); 410 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 411 tim, res, flag); 412 lwp->lwp_asleep = 1; 413 lwp->lwp_sysabort = 0; 414 thread_lock(t); 415 cv_block_sig(t, (condvar_impl_t *)cvp); 416 thread_unlock_nopreempt(t); 417 mutex_exit(&t->t_wait_mutex); 418 mutex_exit(mp); 419 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 420 setrun(t); 421 /* ASSERT(no locks are held) */ 422 swtch(); 423 signalled = (t->t_schedflag & TS_SIGNALLED); 424 t->t_flag &= ~T_WAKEABLE; 425 426 /* 427 * Untimeout the thread. untimeout() returns -1 if the timeout has 428 * occured or the time remaining. If the time remaining is zero, 429 * the timeout has occured between when we were awoken and 430 * we called untimeout. We will treat this as if the timeout 431 * has occured and set rval to -1. 432 */ 433 rval = untimeout_default(id, 0); 434 mutex_enter(mp); 435 if (rval <= 0) 436 rval = -1; 437 438 /* 439 * Check to see if a signal is pending. If so, regardless of whether 440 * or not we were awoken due to the signal, the signal is now pending 441 * and a return of 0 has the highest priority. 442 */ 443 out: 444 if (ISSIG_PENDING(t, lwp, p)) { 445 mutex_exit(mp); 446 if (issig(FORREAL)) 447 rval = 0; 448 mutex_enter(mp); 449 } 450 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 451 rval = 0; 452 if (rval != 0 && cancel_pending) { 453 schedctl_cancel_eintr(); 454 rval = 0; 455 } 456 lwp->lwp_asleep = 0; 457 lwp->lwp_sysabort = 0; 458 if (rval <= 0 && signalled) /* avoid consuming the cv_signal() */ 459 cv_signal(cvp); 460 return (rval); 461 } 462 463 /* 464 * Returns: 465 * Function result in order of precedence: 466 * 0 if a signal was received 467 * -1 if timeout occured 468 * >0 if awakened via cv_signal() or cv_broadcast(). 469 * (returns time remaining) 470 * 471 * cv_timedwait_sig() is now part of the DDI. 472 * 473 * This function is now just a wrapper for cv_timedwait_sig_hires(). 474 */ 475 clock_t 476 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 477 { 478 hrtime_t hrtim; 479 480 hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt()); 481 return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 482 } 483 484 /* 485 * Wait until the specified time. 486 * If tim == -1, waits without timeout using cv_wait_sig_swap(). 487 */ 488 int 489 cv_timedwait_sig_hrtime(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim) 490 { 491 if (tim == -1) { 492 return (cv_wait_sig_swap(cvp, mp)); 493 } else { 494 return (cv_timedwait_sig_hires(cvp, mp, tim, 1, 495 CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP)); 496 } 497 } 498 499 /* 500 * Same as cv_timedwait_sig() except that the third argument is a relative 501 * timeout value, as opposed to an absolute one. There is also a fourth 502 * argument that specifies how accurately the timeout must be implemented. 503 */ 504 clock_t 505 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, 506 time_res_t res) 507 { 508 hrtime_t exp = 0; 509 510 ASSERT(TIME_RES_VALID(res)); 511 512 if (delta > 0) { 513 if ((exp = TICK_TO_NSEC(delta)) < 0) 514 exp = CY_INFINITY; 515 } 516 517 return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0)); 518 } 519 520 /* 521 * Like cv_wait_sig_swap but allows the caller to indicate (with a 522 * non-NULL sigret) that they will take care of signalling the cv 523 * after wakeup, if necessary. This is a vile hack that should only 524 * be used when no other option is available; almost all callers 525 * should just use cv_wait_sig_swap (which takes care of the cv_signal 526 * stuff automatically) instead. 527 */ 528 int 529 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret) 530 { 531 kthread_t *t = curthread; 532 proc_t *p = ttoproc(t); 533 klwp_t *lwp = ttolwp(t); 534 int cancel_pending; 535 int rval = 1; 536 int signalled = 0; 537 538 if (panicstr) 539 return (rval); 540 541 /* 542 * Threads in system processes don't process signals. This is 543 * true both for standard threads of system processes and for 544 * interrupt threads which have borrowed their pinned thread's LWP. 545 */ 546 if (lwp == NULL || (p->p_flag & SSYS)) { 547 cv_wait(cvp, mp); 548 return (rval); 549 } 550 ASSERT(t->t_intr == NULL); 551 552 cancel_pending = schedctl_cancel_pending(); 553 lwp->lwp_asleep = 1; 554 lwp->lwp_sysabort = 0; 555 thread_lock(t); 556 cv_block_sig(t, (condvar_impl_t *)cvp); 557 /* I can be swapped now */ 558 curthread->t_schedflag &= ~TS_DONT_SWAP; 559 thread_unlock_nopreempt(t); 560 mutex_exit(mp); 561 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 562 setrun(t); 563 /* ASSERT(no locks are held) */ 564 swtch(); 565 signalled = (t->t_schedflag & TS_SIGNALLED); 566 t->t_flag &= ~T_WAKEABLE; 567 /* TS_DONT_SWAP set by disp() */ 568 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 569 mutex_enter(mp); 570 if (ISSIG_PENDING(t, lwp, p)) { 571 mutex_exit(mp); 572 if (issig(FORREAL)) 573 rval = 0; 574 mutex_enter(mp); 575 } 576 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 577 rval = 0; 578 if (rval != 0 && cancel_pending) { 579 schedctl_cancel_eintr(); 580 rval = 0; 581 } 582 lwp->lwp_asleep = 0; 583 lwp->lwp_sysabort = 0; 584 if (rval == 0) { 585 if (sigret != NULL) 586 *sigret = signalled; /* just tell the caller */ 587 else if (signalled) 588 cv_signal(cvp); /* avoid consuming the cv_signal() */ 589 } 590 return (rval); 591 } 592 593 /* 594 * Same as cv_wait_sig but the thread can be swapped out while waiting. 595 * This should only be used when we know we aren't holding any locks. 596 */ 597 int 598 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp) 599 { 600 return (cv_wait_sig_swap_core(cvp, mp, NULL)); 601 } 602 603 void 604 cv_signal(kcondvar_t *cvp) 605 { 606 condvar_impl_t *cp = (condvar_impl_t *)cvp; 607 608 /* make sure the cv_waiters field looks sane */ 609 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 610 if (cp->cv_waiters > 0) { 611 sleepq_head_t *sqh = SQHASH(cp); 612 disp_lock_enter(&sqh->sq_lock); 613 ASSERT(CPU_ON_INTR(CPU) == 0); 614 if (cp->cv_waiters & CV_WAITERS_MASK) { 615 kthread_t *t; 616 cp->cv_waiters--; 617 t = sleepq_wakeone_chan(&sqh->sq_queue, cp); 618 /* 619 * If cv_waiters is non-zero (and less than 620 * CV_MAX_WAITERS) there should be a thread 621 * in the queue. 622 */ 623 ASSERT(t != NULL); 624 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) { 625 cp->cv_waiters = 0; 626 } 627 disp_lock_exit(&sqh->sq_lock); 628 } 629 } 630 631 void 632 cv_broadcast(kcondvar_t *cvp) 633 { 634 condvar_impl_t *cp = (condvar_impl_t *)cvp; 635 636 /* make sure the cv_waiters field looks sane */ 637 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 638 if (cp->cv_waiters > 0) { 639 sleepq_head_t *sqh = SQHASH(cp); 640 disp_lock_enter(&sqh->sq_lock); 641 ASSERT(CPU_ON_INTR(CPU) == 0); 642 sleepq_wakeall_chan(&sqh->sq_queue, cp); 643 cp->cv_waiters = 0; 644 disp_lock_exit(&sqh->sq_lock); 645 } 646 } 647 648 /* 649 * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check 650 * for requests to stop, like cv_wait_sig() but without dealing with signals. 651 * This is a horrible kludge. It is evil. It is vile. It is swill. 652 * If your code has to call this function then your code is the same. 653 */ 654 void 655 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time) 656 { 657 kthread_t *t = curthread; 658 klwp_t *lwp = ttolwp(t); 659 proc_t *p = ttoproc(t); 660 callout_id_t id; 661 clock_t tim; 662 663 if (panicstr) 664 return; 665 666 /* 667 * Threads in system processes don't process signals. This is 668 * true both for standard threads of system processes and for 669 * interrupt threads which have borrowed their pinned thread's LWP. 670 */ 671 if (lwp == NULL || (p->p_flag & SSYS)) { 672 cv_wait(cvp, mp); 673 return; 674 } 675 ASSERT(t->t_intr == NULL); 676 677 /* 678 * Wakeup in wakeup_time milliseconds, i.e., human time. 679 */ 680 tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time); 681 mutex_enter(&t->t_wait_mutex); 682 id = realtime_timeout_default((void (*)(void *))cv_wakeup, t, 683 tim - ddi_get_lbolt()); 684 thread_lock(t); /* lock the thread */ 685 cv_block((condvar_impl_t *)cvp); 686 thread_unlock_nopreempt(t); 687 mutex_exit(&t->t_wait_mutex); 688 mutex_exit(mp); 689 /* ASSERT(no locks are held); */ 690 swtch(); 691 (void) untimeout_default(id, 0); 692 693 /* 694 * Check for reasons to stop, if lwp_nostop is not true. 695 * See issig_forreal() for explanations of the various stops. 696 */ 697 mutex_enter(&p->p_lock); 698 while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) { 699 /* 700 * Hold the lwp here for watchpoint manipulation. 701 */ 702 if (t->t_proc_flag & TP_PAUSE) { 703 stop(PR_SUSPENDED, SUSPEND_PAUSE); 704 continue; 705 } 706 /* 707 * System checkpoint. 708 */ 709 if (t->t_proc_flag & TP_CHKPT) { 710 stop(PR_CHECKPOINT, 0); 711 continue; 712 } 713 /* 714 * Honor fork1(), watchpoint activity (remapping a page), 715 * and lwp_suspend() requests. 716 */ 717 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 718 (t->t_proc_flag & TP_HOLDLWP)) { 719 stop(PR_SUSPENDED, SUSPEND_NORMAL); 720 continue; 721 } 722 /* 723 * Honor /proc requested stop. 724 */ 725 if (t->t_proc_flag & TP_PRSTOP) { 726 stop(PR_REQUESTED, 0); 727 } 728 /* 729 * If some lwp in the process has already stopped 730 * showing PR_JOBCONTROL, stop in sympathy with it. 731 */ 732 if (p->p_stopsig && t != p->p_agenttp) { 733 stop(PR_JOBCONTROL, p->p_stopsig); 734 continue; 735 } 736 break; 737 } 738 mutex_exit(&p->p_lock); 739 mutex_enter(mp); 740 } 741 742 /* 743 * Like cv_timedwait_sig(), but takes an absolute hires future time 744 * rather than a future time in clock ticks. Will not return showing 745 * that a timeout occurred until the future time is passed. 746 * If 'when' is a NULL pointer, no timeout will occur. 747 * Returns: 748 * Function result in order of precedence: 749 * 0 if a signal was received 750 * -1 if timeout occured 751 * >0 if awakened via cv_signal() or cv_broadcast() 752 * or by a spurious wakeup. 753 * (might return time remaining) 754 * As a special test, if someone abruptly resets the system time 755 * (but not through adjtime(2); drifting of the clock is allowed and 756 * expected [see timespectohz_adj()]), then we force a return of -1 757 * so the caller can return a premature timeout to the calling process 758 * so it can reevaluate the situation in light of the new system time. 759 * (The system clock has been reset if timecheck != timechanged.) 760 * 761 * Generally, cv_timedwait_sig_hrtime() should be used instead of this 762 * routine. It waits based on hrtime rather than wall-clock time and therefore 763 * does not need to deal with the time changing. 764 */ 765 int 766 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, timestruc_t *when, 767 int timecheck) 768 { 769 timestruc_t now; 770 timestruc_t delta; 771 hrtime_t interval; 772 int rval; 773 774 if (when == NULL) 775 return (cv_wait_sig_swap(cvp, mp)); 776 777 gethrestime(&now); 778 delta = *when; 779 timespecsub(&delta, &now); 780 if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) { 781 /* 782 * We have already reached the absolute future time. 783 * Call cv_timedwait_sig() just to check for signals. 784 * We will return immediately with either 0 or -1. 785 */ 786 rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0); 787 } else { 788 if (timecheck == timechanged) { 789 /* 790 * Make sure that the interval is atleast one tick. 791 * This is to prevent a user from flooding the system 792 * with very small, high resolution timers. 793 */ 794 interval = ts2hrt(&delta); 795 if (interval < nsec_per_tick) 796 interval = nsec_per_tick; 797 rval = cv_timedwait_sig_hires(cvp, mp, interval, 1, 798 CALLOUT_FLAG_HRESTIME); 799 } else { 800 /* 801 * Someone reset the system time; 802 * just force an immediate timeout. 803 */ 804 rval = -1; 805 } 806 if (rval == -1 && timecheck == timechanged) { 807 /* 808 * Even though cv_timedwait_sig() returned showing a 809 * timeout, the future time may not have passed yet. 810 * If not, change rval to indicate a normal wakeup. 811 */ 812 gethrestime(&now); 813 delta = *when; 814 timespecsub(&delta, &now); 815 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 816 delta.tv_nsec > 0)) 817 rval = 1; 818 } 819 } 820 return (rval); 821 }