Print this page
11859 need swapgs mitigation
Reviewed by: Robert Mustacchi <rm@fingolfin.org>
Reviewed by: Dan McDonald <danmcd@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Robert Mustacchi <rm@fingolfin.org>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/intel/ia32/os/sundep.c
+++ new/usr/src/uts/intel/ia32/os/sundep.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23 - * Copyright 2018 Joyent, Inc.
23 + * Copyright 2019 Joyent, Inc.
24 24 */
25 25
26 26 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
27 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
28 28 /* All Rights Reserved */
29 29
30 30 #include <sys/types.h>
31 31 #include <sys/param.h>
32 32 #include <sys/sysmacros.h>
33 33 #include <sys/signal.h>
34 34 #include <sys/systm.h>
35 35 #include <sys/user.h>
36 36 #include <sys/mman.h>
37 37 #include <sys/class.h>
38 38 #include <sys/proc.h>
39 39 #include <sys/procfs.h>
40 40 #include <sys/buf.h>
41 41 #include <sys/kmem.h>
42 42 #include <sys/cred.h>
43 43 #include <sys/archsystm.h>
44 44 #include <sys/vmparam.h>
45 45 #include <sys/prsystm.h>
46 46 #include <sys/reboot.h>
47 47 #include <sys/uadmin.h>
48 48 #include <sys/vfs.h>
49 49 #include <sys/vnode.h>
50 50 #include <sys/file.h>
51 51 #include <sys/session.h>
52 52 #include <sys/ucontext.h>
53 53 #include <sys/dnlc.h>
54 54 #include <sys/var.h>
55 55 #include <sys/cmn_err.h>
56 56 #include <sys/debugreg.h>
57 57 #include <sys/thread.h>
58 58 #include <sys/vtrace.h>
59 59 #include <sys/consdev.h>
60 60 #include <sys/psw.h>
61 61 #include <sys/regset.h>
62 62 #include <sys/privregs.h>
63 63 #include <sys/cpu.h>
64 64 #include <sys/stack.h>
65 65 #include <sys/swap.h>
66 66 #include <vm/hat.h>
67 67 #include <vm/anon.h>
68 68 #include <vm/as.h>
69 69 #include <vm/page.h>
70 70 #include <vm/seg.h>
71 71 #include <vm/seg_kmem.h>
72 72 #include <vm/seg_map.h>
73 73 #include <vm/seg_vn.h>
74 74 #include <sys/exec.h>
75 75 #include <sys/acct.h>
76 76 #include <sys/core.h>
77 77 #include <sys/corectl.h>
78 78 #include <sys/modctl.h>
79 79 #include <sys/tuneable.h>
80 80 #include <c2/audit.h>
81 81 #include <sys/bootconf.h>
82 82 #include <sys/brand.h>
83 83 #include <sys/dumphdr.h>
84 84 #include <sys/promif.h>
85 85 #include <sys/systeminfo.h>
86 86 #include <sys/kdi.h>
87 87 #include <sys/contract_impl.h>
88 88 #include <sys/x86_archext.h>
89 89 #include <sys/segments.h>
90 90 #include <sys/ontrap.h>
91 91 #include <sys/cpu.h>
92 92 #ifdef __xpv
93 93 #include <sys/hypervisor.h>
94 94 #endif
95 95
96 96 /*
97 97 * Compare the version of boot that boot says it is against
98 98 * the version of boot the kernel expects.
99 99 */
100 100 int
101 101 check_boot_version(int boots_version)
102 102 {
103 103 if (boots_version == BO_VERSION)
104 104 return (0);
105 105
106 106 prom_printf("Wrong boot interface - kernel needs v%d found v%d\n",
107 107 BO_VERSION, boots_version);
108 108 prom_panic("halting");
109 109 /*NOTREACHED*/
110 110 }
111 111
112 112 /*
113 113 * Process the physical installed list for boot.
114 114 * Finds:
115 115 * 1) the pfn of the highest installed physical page,
116 116 * 2) the number of pages installed
117 117 * 3) the number of distinct contiguous regions these pages fall into.
118 118 * 4) the number of contiguous memory ranges
119 119 */
120 120 void
121 121 installed_top_size_ex(
122 122 struct memlist *list, /* pointer to start of installed list */
123 123 pfn_t *high_pfn, /* return ptr for top value */
124 124 pgcnt_t *pgcnt, /* return ptr for sum of installed pages */
125 125 int *ranges) /* return ptr for the count of contig. ranges */
126 126 {
127 127 pfn_t top = 0;
128 128 pgcnt_t sumpages = 0;
129 129 pfn_t highp; /* high page in a chunk */
130 130 int cnt = 0;
131 131
132 132 for (; list; list = list->ml_next) {
133 133 ++cnt;
134 134 highp = (list->ml_address + list->ml_size - 1) >> PAGESHIFT;
135 135 if (top < highp)
136 136 top = highp;
137 137 sumpages += btop(list->ml_size);
138 138 }
139 139
140 140 *high_pfn = top;
141 141 *pgcnt = sumpages;
142 142 *ranges = cnt;
143 143 }
144 144
145 145 void
146 146 installed_top_size(
147 147 struct memlist *list, /* pointer to start of installed list */
148 148 pfn_t *high_pfn, /* return ptr for top value */
149 149 pgcnt_t *pgcnt) /* return ptr for sum of installed pages */
150 150 {
151 151 int ranges;
152 152
153 153 installed_top_size_ex(list, high_pfn, pgcnt, &ranges);
154 154 }
155 155
156 156 void
157 157 phys_install_has_changed(void)
158 158 {}
159 159
160 160 /*
161 161 * Copy in a memory list from boot to kernel, with a filter function
162 162 * to remove pages. The filter function can increase the address and/or
163 163 * decrease the size to filter out pages. It will also align addresses and
164 164 * sizes to PAGESIZE.
165 165 */
166 166 void
167 167 copy_memlist_filter(
168 168 struct memlist *src,
169 169 struct memlist **dstp,
170 170 void (*filter)(uint64_t *, uint64_t *))
171 171 {
172 172 struct memlist *dst, *prev;
173 173 uint64_t addr;
174 174 uint64_t size;
175 175 uint64_t eaddr;
176 176
177 177 dst = *dstp;
178 178 prev = dst;
179 179
180 180 /*
181 181 * Move through the memlist applying a filter against
182 182 * each range of memory. Note that we may apply the
183 183 * filter multiple times against each memlist entry.
184 184 */
185 185 for (; src; src = src->ml_next) {
186 186 addr = P2ROUNDUP(src->ml_address, PAGESIZE);
187 187 eaddr = P2ALIGN(src->ml_address + src->ml_size, PAGESIZE);
188 188 while (addr < eaddr) {
189 189 size = eaddr - addr;
190 190 if (filter != NULL)
191 191 filter(&addr, &size);
192 192 if (size == 0)
193 193 break;
194 194 dst->ml_address = addr;
195 195 dst->ml_size = size;
196 196 dst->ml_next = 0;
197 197 if (prev == dst) {
198 198 dst->ml_prev = 0;
199 199 dst++;
200 200 } else {
201 201 dst->ml_prev = prev;
202 202 prev->ml_next = dst;
203 203 dst++;
204 204 prev++;
205 205 }
206 206 addr += size;
207 207 }
208 208 }
209 209
210 210 *dstp = dst;
211 211 }
212 212
213 213 /*
214 214 * Kernel setup code, called from startup().
215 215 */
216 216 void
217 217 kern_setup1(void)
218 218 {
219 219 proc_t *pp;
220 220
221 221 pp = &p0;
222 222
223 223 proc_sched = pp;
224 224
225 225 /*
226 226 * Initialize process 0 data structures
227 227 */
228 228 pp->p_stat = SRUN;
229 229 pp->p_flag = SSYS;
230 230
231 231 pp->p_pidp = &pid0;
232 232 pp->p_pgidp = &pid0;
233 233 pp->p_sessp = &session0;
234 234 pp->p_tlist = &t0;
235 235 pid0.pid_pglink = pp;
236 236 pid0.pid_pgtail = pp;
237 237
238 238 /*
239 239 * XXX - we asssume that the u-area is zeroed out except for
240 240 * ttolwp(curthread)->lwp_regs.
241 241 */
242 242 PTOU(curproc)->u_cmask = (mode_t)CMASK;
243 243
244 244 thread_init(); /* init thread_free list */
245 245 pid_init(); /* initialize pid (proc) table */
246 246 contract_init(); /* initialize contracts */
247 247
248 248 init_pages_pp_maximum();
249 249 }
250 250
251 251 /*
252 252 * Load a procedure into a thread.
253 253 */
254 254 void
255 255 thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len)
256 256 {
257 257 caddr_t sp;
258 258 size_t framesz;
259 259 caddr_t argp;
260 260 long *p;
261 261 extern void thread_start();
262 262
263 263 /*
264 264 * Push a "c" call frame onto the stack to represent
265 265 * the caller of "start".
266 266 */
267 267 sp = t->t_stk;
268 268 ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0);
269 269 if (len != 0) {
270 270 /*
271 271 * the object that arg points at is copied into the
272 272 * caller's frame.
273 273 */
274 274 framesz = SA(len);
275 275 sp -= framesz;
276 276 ASSERT(sp > t->t_stkbase);
277 277 argp = sp + SA(MINFRAME);
278 278 bcopy(arg, argp, len);
279 279 arg = argp;
280 280 }
281 281 /*
282 282 * Set up arguments (arg and len) on the caller's stack frame.
283 283 */
284 284 p = (long *)sp;
285 285
286 286 *--p = 0; /* fake call */
287 287 *--p = 0; /* null frame pointer terminates stack trace */
288 288 *--p = (long)len;
289 289 *--p = (intptr_t)arg;
290 290 *--p = (intptr_t)start;
291 291
292 292 /*
293 293 * initialize thread to resume at thread_start() which will
294 294 * turn around and invoke (*start)(arg, len).
295 295 */
296 296 t->t_pc = (uintptr_t)thread_start;
297 297 t->t_sp = (uintptr_t)p;
298 298
299 299 ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0);
300 300 }
301 301
302 302 /*
303 303 * load user registers into lwp.
304 304 */
305 305 /*ARGSUSED2*/
306 306 void
307 307 lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr)
308 308 {
309 309 struct regs *rp = lwptoregs(lwp);
310 310
311 311 setgregs(lwp, grp);
312 312 rp->r_ps = PSL_USER;
313 313
314 314 /*
315 315 * For 64-bit lwps, we allow one magic %fs selector value, and one
316 316 * magic %gs selector to point anywhere in the address space using
317 317 * %fsbase and %gsbase behind the scenes. libc uses %fs to point
318 318 * at the ulwp_t structure.
319 319 *
320 320 * For 32-bit lwps, libc wedges its lwp thread pointer into the
321 321 * ucontext ESP slot (which is otherwise irrelevant to setting a
322 322 * ucontext) and LWPGS_SEL value into gregs[REG_GS]. This is so
323 323 * syslwp_create() can atomically setup %gs.
324 324 *
325 325 * See setup_context() in libc.
326 326 */
327 327 #ifdef _SYSCALL32_IMPL
328 328 if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) {
329 329 if (grp[REG_GS] == LWPGS_SEL)
330 330 (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
331 331 } else {
332 332 /*
333 333 * See lwp_setprivate in kernel and setup_context in libc.
334 334 *
335 335 * Currently libc constructs a ucontext from whole cloth for
336 336 * every new (not main) lwp created. For 64 bit processes
337 337 * %fsbase is directly set to point to current thread pointer.
338 338 * In the past (solaris 10) %fs was also set LWPFS_SEL to
339 339 * indicate %fsbase. Now we use the null GDT selector for
340 340 * this purpose. LWP[FS|GS]_SEL are only intended for 32 bit
341 341 * processes. To ease transition we support older libcs in
342 342 * the newer kernel by forcing %fs or %gs selector to null
343 343 * by calling lwp_setprivate if LWP[FS|GS]_SEL is passed in
344 344 * the ucontext. This is should be ripped out at some future
345 345 * date. Another fix would be for libc to do a getcontext
346 346 * and inherit the null %fs/%gs from the current context but
347 347 * that means an extra system call and could hurt performance.
348 348 */
349 349 if (grp[REG_FS] == 0x1bb) /* hard code legacy LWPFS_SEL */
350 350 (void) lwp_setprivate(lwp, _LWP_FSBASE,
351 351 (uintptr_t)grp[REG_FSBASE]);
352 352
353 353 if (grp[REG_GS] == 0x1c3) /* hard code legacy LWPGS_SEL */
354 354 (void) lwp_setprivate(lwp, _LWP_GSBASE,
355 355 (uintptr_t)grp[REG_GSBASE]);
356 356 }
357 357 #else
358 358 if (grp[GS] == LWPGS_SEL)
359 359 (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
360 360 #endif
361 361
362 362 lwp->lwp_eosys = JUSTRETURN;
363 363 lwptot(lwp)->t_post_sys = 1;
364 364 }
365 365
366 366 /*
367 367 * set syscall()'s return values for a lwp.
368 368 */
369 369 void
370 370 lwp_setrval(klwp_t *lwp, int v1, int v2)
371 371 {
372 372 lwptoregs(lwp)->r_ps &= ~PS_C;
373 373 lwptoregs(lwp)->r_r0 = v1;
374 374 lwptoregs(lwp)->r_r1 = v2;
375 375 }
376 376
377 377 /*
378 378 * set syscall()'s return values for a lwp.
379 379 */
380 380 void
381 381 lwp_setsp(klwp_t *lwp, caddr_t sp)
382 382 {
383 383 lwptoregs(lwp)->r_sp = (intptr_t)sp;
384 384 }
385 385
386 386 /*
387 387 * Copy regs from parent to child.
388 388 */
389 389 void
390 390 lwp_forkregs(klwp_t *lwp, klwp_t *clwp)
391 391 {
392 392 #if defined(__amd64)
393 393 struct pcb *pcb = &clwp->lwp_pcb;
394 394 struct regs *rp = lwptoregs(lwp);
395 395
396 396 if (!PCB_NEED_UPDATE_SEGS(pcb)) {
397 397 pcb->pcb_ds = rp->r_ds;
398 398 pcb->pcb_es = rp->r_es;
399 399 pcb->pcb_fs = rp->r_fs;
400 400 pcb->pcb_gs = rp->r_gs;
401 401 PCB_SET_UPDATE_SEGS(pcb);
402 402 lwptot(clwp)->t_post_sys = 1;
403 403 }
404 404 ASSERT(lwptot(clwp)->t_post_sys);
405 405 #endif
406 406
407 407 fp_lwp_dup(clwp);
408 408
409 409 bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs));
410 410 }
411 411
412 412 /*
413 413 * This function is currently unused on x86.
414 414 */
415 415 /*ARGSUSED*/
416 416 void
417 417 lwp_freeregs(klwp_t *lwp, int isexec)
418 418 {}
419 419
420 420 /*
421 421 * This function is currently unused on x86.
422 422 */
423 423 void
424 424 lwp_pcb_exit(void)
425 425 {}
426 426
427 427 /*
428 428 * Lwp context ops for segment registers.
429 429 */
430 430
431 431 /*
432 432 * Every time we come into the kernel (syscall, interrupt or trap
433 433 * but not fast-traps) we capture the current values of the user's
434 434 * segment registers into the lwp's reg structure. This includes
435 435 * lcall for i386 generic system call support since it is handled
436 436 * as a segment-not-present trap.
437 437 *
438 438 * Here we save the current values from the lwp regs into the pcb
439 439 * and or PCB_UPDATE_SEGS (1) in pcb->pcb_rupdate to tell the rest
440 440 * of the kernel that the pcb copy of the segment registers is the
441 441 * current one. This ensures the lwp's next trip to user land via
442 442 * update_sregs. Finally we set t_post_sys to ensure that no
443 443 * system call fast-path's its way out of the kernel via sysret.
444 444 *
445 445 * (This means that we need to have interrupts disabled when we
446 446 * test t->t_post_sys in the syscall handlers; if the test fails,
447 447 * we need to keep interrupts disabled until we return to userland
448 448 * so we can't be switched away.)
449 449 *
450 450 * As a result of all this, we don't really have to do a whole lot
451 451 * if the thread is just mucking about in the kernel, switching on
452 452 * and off the cpu for whatever reason it feels like. And yet we
453 453 * still preserve fast syscalls, cause if we -don't- get
454 454 * descheduled, we never come here either.
455 455 */
456 456
457 457 #define VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \
458 458 (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL)
459 459
460 460 /*ARGSUSED*/
461 461 void
462 462 lwp_segregs_save(klwp_t *lwp)
463 463 {
464 464 #if defined(__amd64)
465 465 pcb_t *pcb = &lwp->lwp_pcb;
466 466 struct regs *rp;
467 467
468 468 ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
469 469 ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));
470 470
471 471 if (!PCB_NEED_UPDATE_SEGS(pcb)) {
472 472 rp = lwptoregs(lwp);
473 473
474 474 /*
475 475 * If there's no update already pending, capture the current
476 476 * %ds/%es/%fs/%gs values from lwp's regs in case the user
477 477 * changed them; %fsbase and %gsbase are privileged so the
478 478 * kernel versions of these registers in pcb_fsbase and
479 479 * pcb_gsbase are always up-to-date.
480 480 */
481 481 pcb->pcb_ds = rp->r_ds;
482 482 pcb->pcb_es = rp->r_es;
483 483 pcb->pcb_fs = rp->r_fs;
484 484 pcb->pcb_gs = rp->r_gs;
485 485 PCB_SET_UPDATE_SEGS(pcb);
486 486 lwp->lwp_thread->t_post_sys = 1;
487 487 }
488 488 #endif /* __amd64 */
489 489
490 490 #if !defined(__xpv) /* XXPV not sure if we can re-read gdt? */
491 491 ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc,
492 492 sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0);
493 493 ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc,
494 494 sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0);
495 495 #endif
496 496 }
497 497
498 498 #if defined(__amd64)
499 499
500 500 /*
501 501 * Update the segment registers with new values from the pcb.
502 502 *
503 503 * We have to do this carefully, and in the following order,
504 504 * in case any of the selectors points at a bogus descriptor.
505 505 * If they do, we'll catch trap with on_trap and return 1.
506 506 * returns 0 on success.
507 507 *
508 508 * This is particularly tricky for %gs.
509 509 * This routine must be executed under a cli.
510 510 */
511 511 int
512 512 update_sregs(struct regs *rp, klwp_t *lwp)
513 513 {
514 514 pcb_t *pcb = &lwp->lwp_pcb;
515 515 ulong_t kgsbase;
516 516 on_trap_data_t otd;
517 517 int rc = 0;
518 518
519 519 if (!on_trap(&otd, OT_SEGMENT_ACCESS)) {
520 520
521 521 #if defined(__xpv)
522 522 /*
523 523 * On the hyervisor this is easy. The hypercall below will
524 524 * swapgs and load %gs with the user selector. If the user
525 525 * selector is bad the hypervisor will catch the fault and
526 526 * load %gs with the null selector instead. Either way the
527 527 * kernel's gsbase is not damaged.
528 528 */
529 529 kgsbase = (ulong_t)CPU;
530 530 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL,
531 531 pcb->pcb_gs) != 0) {
532 532 no_trap();
533 533 return (1);
534 534 }
535 535
536 536 rp->r_gs = pcb->pcb_gs;
537 537 ASSERT((cpu_t *)kgsbase == CPU);
538 538
539 539 #else /* __xpv */
540 540
541 541 /*
542 542 * A little more complicated running native.
543 543 */
↓ open down ↓ |
510 lines elided |
↑ open up ↑ |
544 544 kgsbase = (ulong_t)CPU;
545 545 __set_gs(pcb->pcb_gs);
546 546
547 547 /*
548 548 * If __set_gs fails it's because the new %gs is a bad %gs,
549 549 * we'll be taking a trap but with the original %gs and %gsbase
550 550 * undamaged (i.e. pointing at curcpu).
551 551 *
552 552 * We've just mucked up the kernel's gsbase. Oops. In
553 553 * particular we can't take any traps at all. Make the newly
554 - * computed gsbase be the hidden gs via __swapgs, and fix
554 + * computed gsbase be the hidden gs via swapgs, and fix
555 555 * the kernel's gsbase back again. Later, when we return to
556 556 * userland we'll swapgs again restoring gsbase just loaded
557 557 * above.
558 558 */
559 - __swapgs();
559 + __asm__ __volatile__("mfence; swapgs");
560 +
560 561 rp->r_gs = pcb->pcb_gs;
561 562
562 563 /*
563 - * restore kernel's gsbase
564 + * Restore kernel's gsbase. Note that this also serializes any
565 + * attempted speculation from loading the user-controlled
566 + * %gsbase.
564 567 */
565 568 wrmsr(MSR_AMD_GSBASE, kgsbase);
566 569
567 570 #endif /* __xpv */
568 571
569 572 /*
570 573 * Only override the descriptor base address if
571 574 * r_gs == LWPGS_SEL or if r_gs == NULL. A note on
572 575 * NULL descriptors -- 32-bit programs take faults
573 576 * if they deference NULL descriptors; however,
574 577 * when 64-bit programs load them into %fs or %gs,
575 578 * they DONT fault -- only the base address remains
576 579 * whatever it was from the last load. Urk.
577 580 *
578 581 * XXX - note that lwp_setprivate now sets %fs/%gs to the
579 582 * null selector for 64 bit processes. Whereas before
580 583 * %fs/%gs were set to LWP(FS|GS)_SEL regardless of
581 584 * the process's data model. For now we check for both
582 585 * values so that the kernel can also support the older
583 586 * libc. This should be ripped out at some point in the
584 587 * future.
585 588 */
586 589 if (pcb->pcb_gs == LWPGS_SEL || pcb->pcb_gs == 0) {
587 590 #if defined(__xpv)
588 591 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER,
589 592 pcb->pcb_gsbase)) {
590 593 no_trap();
591 594 return (1);
592 595 }
593 596 #else
594 597 wrmsr(MSR_AMD_KGSBASE, pcb->pcb_gsbase);
595 598 #endif
596 599 }
597 600
598 601 __set_ds(pcb->pcb_ds);
599 602 rp->r_ds = pcb->pcb_ds;
600 603
601 604 __set_es(pcb->pcb_es);
602 605 rp->r_es = pcb->pcb_es;
603 606
604 607 __set_fs(pcb->pcb_fs);
605 608 rp->r_fs = pcb->pcb_fs;
606 609
607 610 /*
608 611 * Same as for %gs
609 612 */
610 613 if (pcb->pcb_fs == LWPFS_SEL || pcb->pcb_fs == 0) {
611 614 #if defined(__xpv)
612 615 if (HYPERVISOR_set_segment_base(SEGBASE_FS,
613 616 pcb->pcb_fsbase)) {
614 617 no_trap();
615 618 return (1);
616 619 }
617 620 #else
618 621 wrmsr(MSR_AMD_FSBASE, pcb->pcb_fsbase);
619 622 #endif
620 623 }
621 624
622 625 } else {
623 626 cli();
624 627 rc = 1;
625 628 }
626 629 no_trap();
627 630 return (rc);
628 631 }
629 632
630 633 /*
631 634 * Make sure any stale selectors are cleared from the segment registers
632 635 * by putting KDS_SEL (the kernel's default %ds gdt selector) into them.
633 636 * This is necessary because the kernel itself does not use %es, %fs, nor
634 637 * %ds. (%cs and %ss are necessary, and are set up by the kernel - along with
635 638 * %gs - to point to the current cpu struct.) If we enter kmdb while in the
636 639 * kernel and resume with a stale ldt or brandz selector sitting there in a
637 640 * segment register, kmdb will #gp fault if the stale selector points to,
638 641 * for example, an ldt in the context of another process.
639 642 *
640 643 * WARNING: Intel and AMD chips behave differently when storing
641 644 * the null selector into %fs and %gs while in long mode. On AMD
642 645 * chips fsbase and gsbase are not cleared. But on Intel chips, storing
643 646 * a null selector into %fs or %gs has the side effect of clearing
644 647 * fsbase or gsbase. For that reason we use KDS_SEL, which has
645 648 * consistent behavor between AMD and Intel.
646 649 *
647 650 * Caller responsible for preventing cpu migration.
648 651 */
649 652 void
650 653 reset_sregs(void)
651 654 {
652 655 ulong_t kgsbase = (ulong_t)CPU;
653 656
654 657 ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL);
655 658
656 659 cli();
657 660 __set_gs(KGS_SEL);
658 661
659 662 /*
660 663 * restore kernel gsbase
661 664 */
662 665 #if defined(__xpv)
663 666 xen_set_segment_base(SEGBASE_GS_KERNEL, kgsbase);
664 667 #else
665 668 wrmsr(MSR_AMD_GSBASE, kgsbase);
666 669 #endif
667 670
668 671 sti();
669 672
670 673 __set_ds(KDS_SEL);
671 674 __set_es(0 | SEL_KPL); /* selector RPL not ring 0 on hypervisor */
672 675 __set_fs(KFS_SEL);
673 676 }
674 677
675 678 #endif /* __amd64 */
676 679
677 680 #ifdef _SYSCALL32_IMPL
678 681
679 682 /*
680 683 * Make it impossible for a process to change its data model.
681 684 * We do this by toggling the present bits for the 32 and
682 685 * 64-bit user code descriptors. That way if a user lwp attempts
683 686 * to change its data model (by using the wrong code descriptor in
684 687 * %cs) it will fault immediately. This also allows us to simplify
685 688 * assertions and checks in the kernel.
686 689 */
687 690
688 691 static void
689 692 gdt_ucode_model(model_t model)
690 693 {
691 694 kpreempt_disable();
692 695 if (model == DATAMODEL_NATIVE) {
693 696 gdt_update_usegd(GDT_UCODE, &ucs_on);
694 697 gdt_update_usegd(GDT_U32CODE, &ucs32_off);
695 698 } else {
696 699 gdt_update_usegd(GDT_U32CODE, &ucs32_on);
697 700 gdt_update_usegd(GDT_UCODE, &ucs_off);
698 701 }
699 702 kpreempt_enable();
700 703 }
701 704
702 705 #endif /* _SYSCALL32_IMPL */
703 706
704 707 /*
705 708 * Restore lwp private fs and gs segment descriptors
706 709 * on current cpu's GDT.
707 710 */
708 711 static void
709 712 lwp_segregs_restore(klwp_t *lwp)
710 713 {
711 714 pcb_t *pcb = &lwp->lwp_pcb;
712 715
713 716 ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
714 717 ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));
715 718
716 719 #ifdef _SYSCALL32_IMPL
717 720 gdt_ucode_model(DATAMODEL_NATIVE);
718 721 #endif
719 722
720 723 gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
721 724 gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);
722 725
723 726 }
724 727
725 728 #ifdef _SYSCALL32_IMPL
726 729
727 730 static void
728 731 lwp_segregs_restore32(klwp_t *lwp)
729 732 {
730 733 /*LINTED*/
731 734 cpu_t *cpu = CPU;
732 735 pcb_t *pcb = &lwp->lwp_pcb;
733 736
734 737 ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_fsdesc));
735 738 ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_gsdesc));
736 739
737 740 gdt_ucode_model(DATAMODEL_ILP32);
738 741 gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
739 742 gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);
740 743 }
741 744
742 745 #endif /* _SYSCALL32_IMPL */
743 746
744 747 /*
745 748 * If this is a process in a branded zone, then we want it to use the brand
746 749 * syscall entry points instead of the standard Solaris entry points. This
747 750 * routine must be called when a new lwp is created within a branded zone
748 751 * or when an existing lwp moves into a branded zone via a zone_enter()
749 752 * operation.
750 753 */
751 754 void
752 755 lwp_attach_brand_hdlrs(klwp_t *lwp)
753 756 {
754 757 kthread_t *t = lwptot(lwp);
755 758
756 759 ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
757 760
758 761 ASSERT(removectx(t, NULL, brand_interpositioning_disable,
759 762 brand_interpositioning_enable, NULL, NULL,
760 763 brand_interpositioning_disable, NULL) == 0);
761 764 installctx(t, NULL, brand_interpositioning_disable,
762 765 brand_interpositioning_enable, NULL, NULL,
763 766 brand_interpositioning_disable, NULL);
764 767
765 768 if (t == curthread) {
766 769 kpreempt_disable();
767 770 brand_interpositioning_enable();
768 771 kpreempt_enable();
769 772 }
770 773 }
771 774
772 775 /*
773 776 * If this is a process in a branded zone, then we want it to disable the
774 777 * brand syscall entry points. This routine must be called when the last
775 778 * lwp in a process is exiting in proc_exit().
776 779 */
777 780 void
778 781 lwp_detach_brand_hdlrs(klwp_t *lwp)
779 782 {
780 783 kthread_t *t = lwptot(lwp);
781 784
782 785 ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
783 786 if (t == curthread)
784 787 kpreempt_disable();
785 788
786 789 /* Remove the original context handlers */
787 790 VERIFY(removectx(t, NULL, brand_interpositioning_disable,
788 791 brand_interpositioning_enable, NULL, NULL,
789 792 brand_interpositioning_disable, NULL) != 0);
790 793
791 794 if (t == curthread) {
792 795 /* Cleanup our MSR and IDT entries. */
793 796 brand_interpositioning_disable();
794 797 kpreempt_enable();
795 798 }
796 799 }
797 800
798 801 /*
799 802 * Add any lwp-associated context handlers to the lwp at the beginning
800 803 * of the lwp's useful life.
801 804 *
802 805 * All paths which create lwp's invoke lwp_create(); lwp_create()
803 806 * invokes lwp_stk_init() which initializes the stack, sets up
804 807 * lwp_regs, and invokes this routine.
805 808 *
806 809 * All paths which destroy lwp's invoke lwp_exit() to rip the lwp
807 810 * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it
808 811 * ends up in thread_free() which invokes freectx(t, 0) before
809 812 * invoking lwp_stk_fini(). When the lwp is recycled from death
810 813 * row, lwp_stk_fini() is invoked, then thread_free(), and thus
811 814 * freectx(t, 0) as before.
812 815 *
813 816 * In the case of exec, the surviving lwp is thoroughly scrubbed
814 817 * clean; exec invokes freectx(t, 1) to destroy associated contexts.
815 818 * On the way back to the new image, it invokes setregs() which
816 819 * in turn invokes this routine.
817 820 */
818 821 void
819 822 lwp_installctx(klwp_t *lwp)
820 823 {
821 824 kthread_t *t = lwptot(lwp);
822 825 int thisthread = t == curthread;
823 826 #ifdef _SYSCALL32_IMPL
824 827 void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ?
825 828 lwp_segregs_restore : lwp_segregs_restore32;
826 829 #else
827 830 void (*restop)(klwp_t *) = lwp_segregs_restore;
828 831 #endif
829 832
830 833 /*
831 834 * Install the basic lwp context handlers on each lwp.
832 835 *
833 836 * On the amd64 kernel, the context handlers are responsible for
834 837 * virtualizing %ds, %es, %fs, and %gs to the lwp. The register
835 838 * values are only ever changed via sys_rtt when the
836 839 * PCB_UPDATE_SEGS bit (1) is set in pcb->pcb_rupdate. Only
837 840 * sys_rtt gets to clear the bit.
838 841 *
839 842 * On the i386 kernel, the context handlers are responsible for
840 843 * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs
841 844 */
842 845 ASSERT(removectx(t, lwp, lwp_segregs_save, restop,
843 846 NULL, NULL, NULL, NULL) == 0);
844 847 if (thisthread)
845 848 kpreempt_disable();
846 849 installctx(t, lwp, lwp_segregs_save, restop,
847 850 NULL, NULL, NULL, NULL);
848 851 if (thisthread) {
849 852 /*
850 853 * Since we're the right thread, set the values in the GDT
851 854 */
852 855 restop(lwp);
853 856 kpreempt_enable();
854 857 }
855 858
856 859 /*
857 860 * If we have sysenter/sysexit instructions enabled, we need
858 861 * to ensure that the hardware mechanism is kept up-to-date with the
859 862 * lwp's kernel stack pointer across context switches.
860 863 *
861 864 * sep_save zeros the sysenter stack pointer msr; sep_restore sets
862 865 * it to the lwp's kernel stack pointer (kstktop).
863 866 */
864 867 if (is_x86_feature(x86_featureset, X86FSET_SEP)) {
865 868 #if defined(__amd64)
866 869 caddr_t kstktop = (caddr_t)lwp->lwp_regs;
867 870 #elif defined(__i386)
868 871 caddr_t kstktop = ((caddr_t)lwp->lwp_regs - MINFRAME) +
869 872 SA(sizeof (struct regs) + MINFRAME);
870 873 #endif
871 874 ASSERT(removectx(t, kstktop,
872 875 sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0);
873 876
874 877 if (thisthread)
875 878 kpreempt_disable();
876 879 installctx(t, kstktop,
877 880 sep_save, sep_restore, NULL, NULL, NULL, NULL);
878 881 if (thisthread) {
879 882 /*
880 883 * We're the right thread, so set the stack pointer
881 884 * for the first sysenter instruction to use
882 885 */
883 886 sep_restore(kstktop);
884 887 kpreempt_enable();
885 888 }
886 889 }
887 890
888 891 if (PROC_IS_BRANDED(ttoproc(t)))
889 892 lwp_attach_brand_hdlrs(lwp);
890 893 }
891 894
892 895 /*
893 896 * Clear registers on exec(2).
894 897 */
895 898 void
896 899 setregs(uarg_t *args)
897 900 {
898 901 struct regs *rp;
899 902 kthread_t *t = curthread;
900 903 klwp_t *lwp = ttolwp(t);
901 904 pcb_t *pcb = &lwp->lwp_pcb;
902 905 greg_t sp;
903 906
904 907 /*
905 908 * Initialize user registers
906 909 */
907 910 (void) save_syscall_args(); /* copy args from registers first */
908 911 rp = lwptoregs(lwp);
909 912 sp = rp->r_sp;
910 913 bzero(rp, sizeof (*rp));
911 914
912 915 rp->r_ss = UDS_SEL;
913 916 rp->r_sp = sp;
914 917 rp->r_pc = args->entry;
915 918 rp->r_ps = PSL_USER;
916 919
917 920 #if defined(__amd64)
918 921
919 922 pcb->pcb_fs = pcb->pcb_gs = 0;
920 923 pcb->pcb_fsbase = pcb->pcb_gsbase = 0;
921 924
922 925 if (ttoproc(t)->p_model == DATAMODEL_NATIVE) {
923 926
924 927 rp->r_cs = UCS_SEL;
925 928
926 929 /*
927 930 * Only allow 64-bit user code descriptor to be present.
928 931 */
929 932 gdt_ucode_model(DATAMODEL_NATIVE);
930 933
931 934 /*
932 935 * Arrange that the virtualized %fs and %gs GDT descriptors
933 936 * have a well-defined initial state (present, ring 3
934 937 * and of type data).
935 938 */
936 939 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
937 940
938 941 /*
939 942 * thrptr is either NULL or a value used by DTrace.
940 943 * 64-bit processes use %fs as their "thread" register.
941 944 */
942 945 if (args->thrptr)
943 946 (void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr);
944 947
945 948 } else {
946 949
947 950 rp->r_cs = U32CS_SEL;
948 951 rp->r_ds = rp->r_es = UDS_SEL;
949 952
950 953 /*
951 954 * only allow 32-bit user code selector to be present.
952 955 */
953 956 gdt_ucode_model(DATAMODEL_ILP32);
954 957
955 958 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
956 959
957 960 /*
958 961 * thrptr is either NULL or a value used by DTrace.
959 962 * 32-bit processes use %gs as their "thread" register.
960 963 */
961 964 if (args->thrptr)
962 965 (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr);
963 966
964 967 }
965 968
966 969 pcb->pcb_ds = rp->r_ds;
967 970 pcb->pcb_es = rp->r_es;
968 971 PCB_SET_UPDATE_SEGS(pcb);
969 972
970 973 #elif defined(__i386)
971 974
972 975 rp->r_cs = UCS_SEL;
973 976 rp->r_ds = rp->r_es = UDS_SEL;
974 977
975 978 /*
976 979 * Arrange that the virtualized %fs and %gs GDT descriptors
977 980 * have a well-defined initial state (present, ring 3
978 981 * and of type data).
979 982 */
980 983 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
981 984
982 985 /*
983 986 * For %gs we need to reset LWP_GSBASE in pcb and the
984 987 * per-cpu GDT descriptor. thrptr is either NULL
985 988 * or a value used by DTrace.
986 989 */
987 990 if (args->thrptr)
988 991 (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr);
989 992 #endif
990 993
991 994 lwp->lwp_eosys = JUSTRETURN;
992 995 t->t_post_sys = 1;
993 996
994 997 /*
995 998 * Add the lwp context handlers that virtualize segment registers,
996 999 * and/or system call stacks etc.
997 1000 */
998 1001 lwp_installctx(lwp);
999 1002
1000 1003 /*
1001 1004 * Reset the FPU flags and then initialize the FPU for this lwp.
1002 1005 */
1003 1006 fp_exec();
1004 1007 }
1005 1008
1006 1009 user_desc_t *
1007 1010 cpu_get_gdt(void)
1008 1011 {
1009 1012 return (CPU->cpu_gdt);
1010 1013 }
1011 1014
1012 1015
1013 1016 #if !defined(lwp_getdatamodel)
1014 1017
1015 1018 /*
1016 1019 * Return the datamodel of the given lwp.
1017 1020 */
1018 1021 /*ARGSUSED*/
1019 1022 model_t
1020 1023 lwp_getdatamodel(klwp_t *lwp)
1021 1024 {
1022 1025 return (lwp->lwp_procp->p_model);
1023 1026 }
1024 1027
1025 1028 #endif /* !lwp_getdatamodel */
1026 1029
1027 1030 #if !defined(get_udatamodel)
1028 1031
1029 1032 model_t
1030 1033 get_udatamodel(void)
1031 1034 {
1032 1035 return (curproc->p_model);
1033 1036 }
1034 1037
1035 1038 #endif /* !get_udatamodel */
↓ open down ↓ |
462 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX