1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright 2018 Joyent, Inc.
  24  */
  25 
  26 /*      Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
  27 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
  28 /*      All Rights Reserved   */
  29 
  30 #include <sys/types.h>
  31 #include <sys/param.h>
  32 #include <sys/sysmacros.h>
  33 #include <sys/signal.h>
  34 #include <sys/systm.h>
  35 #include <sys/user.h>
  36 #include <sys/mman.h>
  37 #include <sys/class.h>
  38 #include <sys/proc.h>
  39 #include <sys/procfs.h>
  40 #include <sys/buf.h>
  41 #include <sys/kmem.h>
  42 #include <sys/cred.h>
  43 #include <sys/archsystm.h>
  44 #include <sys/vmparam.h>
  45 #include <sys/prsystm.h>
  46 #include <sys/reboot.h>
  47 #include <sys/uadmin.h>
  48 #include <sys/vfs.h>
  49 #include <sys/vnode.h>
  50 #include <sys/file.h>
  51 #include <sys/session.h>
  52 #include <sys/ucontext.h>
  53 #include <sys/dnlc.h>
  54 #include <sys/var.h>
  55 #include <sys/cmn_err.h>
  56 #include <sys/debugreg.h>
  57 #include <sys/thread.h>
  58 #include <sys/vtrace.h>
  59 #include <sys/consdev.h>
  60 #include <sys/psw.h>
  61 #include <sys/regset.h>
  62 #include <sys/privregs.h>
  63 #include <sys/cpu.h>
  64 #include <sys/stack.h>
  65 #include <sys/swap.h>
  66 #include <vm/hat.h>
  67 #include <vm/anon.h>
  68 #include <vm/as.h>
  69 #include <vm/page.h>
  70 #include <vm/seg.h>
  71 #include <vm/seg_kmem.h>
  72 #include <vm/seg_map.h>
  73 #include <vm/seg_vn.h>
  74 #include <sys/exec.h>
  75 #include <sys/acct.h>
  76 #include <sys/core.h>
  77 #include <sys/corectl.h>
  78 #include <sys/modctl.h>
  79 #include <sys/tuneable.h>
  80 #include <c2/audit.h>
  81 #include <sys/bootconf.h>
  82 #include <sys/brand.h>
  83 #include <sys/dumphdr.h>
  84 #include <sys/promif.h>
  85 #include <sys/systeminfo.h>
  86 #include <sys/kdi.h>
  87 #include <sys/contract_impl.h>
  88 #include <sys/x86_archext.h>
  89 #include <sys/segments.h>
  90 #include <sys/ontrap.h>
  91 #include <sys/cpu.h>
  92 #ifdef __xpv
  93 #include <sys/hypervisor.h>
  94 #endif
  95 
  96 /*
  97  * Compare the version of boot that boot says it is against
  98  * the version of boot the kernel expects.
  99  */
 100 int
 101 check_boot_version(int boots_version)
 102 {
 103         if (boots_version == BO_VERSION)
 104                 return (0);
 105 
 106         prom_printf("Wrong boot interface - kernel needs v%d found v%d\n",
 107             BO_VERSION, boots_version);
 108         prom_panic("halting");
 109         /*NOTREACHED*/
 110 }
 111 
 112 /*
 113  * Process the physical installed list for boot.
 114  * Finds:
 115  * 1) the pfn of the highest installed physical page,
 116  * 2) the number of pages installed
 117  * 3) the number of distinct contiguous regions these pages fall into.
 118  * 4) the number of contiguous memory ranges
 119  */
 120 void
 121 installed_top_size_ex(
 122         struct memlist *list,   /* pointer to start of installed list */
 123         pfn_t *high_pfn,        /* return ptr for top value */
 124         pgcnt_t *pgcnt,         /* return ptr for sum of installed pages */
 125         int     *ranges)        /* return ptr for the count of contig. ranges */
 126 {
 127         pfn_t top = 0;
 128         pgcnt_t sumpages = 0;
 129         pfn_t highp;            /* high page in a chunk */
 130         int cnt = 0;
 131 
 132         for (; list; list = list->ml_next) {
 133                 ++cnt;
 134                 highp = (list->ml_address + list->ml_size - 1) >> PAGESHIFT;
 135                 if (top < highp)
 136                         top = highp;
 137                 sumpages += btop(list->ml_size);
 138         }
 139 
 140         *high_pfn = top;
 141         *pgcnt = sumpages;
 142         *ranges = cnt;
 143 }
 144 
 145 void
 146 installed_top_size(
 147         struct memlist *list,   /* pointer to start of installed list */
 148         pfn_t *high_pfn,        /* return ptr for top value */
 149         pgcnt_t *pgcnt)         /* return ptr for sum of installed pages */
 150 {
 151         int ranges;
 152 
 153         installed_top_size_ex(list, high_pfn, pgcnt, &ranges);
 154 }
 155 
 156 void
 157 phys_install_has_changed(void)
 158 {}
 159 
 160 /*
 161  * Copy in a memory list from boot to kernel, with a filter function
 162  * to remove pages. The filter function can increase the address and/or
 163  * decrease the size to filter out pages.  It will also align addresses and
 164  * sizes to PAGESIZE.
 165  */
 166 void
 167 copy_memlist_filter(
 168         struct memlist *src,
 169         struct memlist **dstp,
 170         void (*filter)(uint64_t *, uint64_t *))
 171 {
 172         struct memlist *dst, *prev;
 173         uint64_t addr;
 174         uint64_t size;
 175         uint64_t eaddr;
 176 
 177         dst = *dstp;
 178         prev = dst;
 179 
 180         /*
 181          * Move through the memlist applying a filter against
 182          * each range of memory. Note that we may apply the
 183          * filter multiple times against each memlist entry.
 184          */
 185         for (; src; src = src->ml_next) {
 186                 addr = P2ROUNDUP(src->ml_address, PAGESIZE);
 187                 eaddr = P2ALIGN(src->ml_address + src->ml_size, PAGESIZE);
 188                 while (addr < eaddr) {
 189                         size = eaddr - addr;
 190                         if (filter != NULL)
 191                                 filter(&addr, &size);
 192                         if (size == 0)
 193                                 break;
 194                         dst->ml_address = addr;
 195                         dst->ml_size = size;
 196                         dst->ml_next = 0;
 197                         if (prev == dst) {
 198                                 dst->ml_prev = 0;
 199                                 dst++;
 200                         } else {
 201                                 dst->ml_prev = prev;
 202                                 prev->ml_next = dst;
 203                                 dst++;
 204                                 prev++;
 205                         }
 206                         addr += size;
 207                 }
 208         }
 209 
 210         *dstp = dst;
 211 }
 212 
 213 /*
 214  * Kernel setup code, called from startup().
 215  */
 216 void
 217 kern_setup1(void)
 218 {
 219         proc_t *pp;
 220 
 221         pp = &p0;
 222 
 223         proc_sched = pp;
 224 
 225         /*
 226          * Initialize process 0 data structures
 227          */
 228         pp->p_stat = SRUN;
 229         pp->p_flag = SSYS;
 230 
 231         pp->p_pidp = &pid0;
 232         pp->p_pgidp = &pid0;
 233         pp->p_sessp = &session0;
 234         pp->p_tlist = &t0;
 235         pid0.pid_pglink = pp;
 236         pid0.pid_pgtail = pp;
 237 
 238         /*
 239          * XXX - we asssume that the u-area is zeroed out except for
 240          * ttolwp(curthread)->lwp_regs.
 241          */
 242         PTOU(curproc)->u_cmask = (mode_t)CMASK;
 243 
 244         thread_init();          /* init thread_free list */
 245         pid_init();             /* initialize pid (proc) table */
 246         contract_init();        /* initialize contracts */
 247 
 248         init_pages_pp_maximum();
 249 }
 250 
 251 /*
 252  * Load a procedure into a thread.
 253  */
 254 void
 255 thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len)
 256 {
 257         caddr_t sp;
 258         size_t framesz;
 259         caddr_t argp;
 260         long *p;
 261         extern void thread_start();
 262 
 263         /*
 264          * Push a "c" call frame onto the stack to represent
 265          * the caller of "start".
 266          */
 267         sp = t->t_stk;
 268         ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0);
 269         if (len != 0) {
 270                 /*
 271                  * the object that arg points at is copied into the
 272                  * caller's frame.
 273                  */
 274                 framesz = SA(len);
 275                 sp -= framesz;
 276                 ASSERT(sp > t->t_stkbase);
 277                 argp = sp + SA(MINFRAME);
 278                 bcopy(arg, argp, len);
 279                 arg = argp;
 280         }
 281         /*
 282          * Set up arguments (arg and len) on the caller's stack frame.
 283          */
 284         p = (long *)sp;
 285 
 286         *--p = 0;               /* fake call */
 287         *--p = 0;               /* null frame pointer terminates stack trace */
 288         *--p = (long)len;
 289         *--p = (intptr_t)arg;
 290         *--p = (intptr_t)start;
 291 
 292         /*
 293          * initialize thread to resume at thread_start() which will
 294          * turn around and invoke (*start)(arg, len).
 295          */
 296         t->t_pc = (uintptr_t)thread_start;
 297         t->t_sp = (uintptr_t)p;
 298 
 299         ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0);
 300 }
 301 
 302 /*
 303  * load user registers into lwp.
 304  */
 305 /*ARGSUSED2*/
 306 void
 307 lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr)
 308 {
 309         struct regs *rp = lwptoregs(lwp);
 310 
 311         setgregs(lwp, grp);
 312         rp->r_ps = PSL_USER;
 313 
 314         /*
 315          * For 64-bit lwps, we allow one magic %fs selector value, and one
 316          * magic %gs selector to point anywhere in the address space using
 317          * %fsbase and %gsbase behind the scenes.  libc uses %fs to point
 318          * at the ulwp_t structure.
 319          *
 320          * For 32-bit lwps, libc wedges its lwp thread pointer into the
 321          * ucontext ESP slot (which is otherwise irrelevant to setting a
 322          * ucontext) and LWPGS_SEL value into gregs[REG_GS].  This is so
 323          * syslwp_create() can atomically setup %gs.
 324          *
 325          * See setup_context() in libc.
 326          */
 327 #ifdef _SYSCALL32_IMPL
 328         if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) {
 329                 if (grp[REG_GS] == LWPGS_SEL)
 330                         (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
 331         } else {
 332                 /*
 333                  * See lwp_setprivate in kernel and setup_context in libc.
 334                  *
 335                  * Currently libc constructs a ucontext from whole cloth for
 336                  * every new (not main) lwp created.  For 64 bit processes
 337                  * %fsbase is directly set to point to current thread pointer.
 338                  * In the past (solaris 10) %fs was also set LWPFS_SEL to
 339                  * indicate %fsbase. Now we use the null GDT selector for
 340                  * this purpose. LWP[FS|GS]_SEL are only intended for 32 bit
 341                  * processes. To ease transition we support older libcs in
 342                  * the newer kernel by forcing %fs or %gs selector to null
 343                  * by calling lwp_setprivate if LWP[FS|GS]_SEL is passed in
 344                  * the ucontext.  This is should be ripped out at some future
 345                  * date.  Another fix would be for libc to do a getcontext
 346                  * and inherit the null %fs/%gs from the current context but
 347                  * that means an extra system call and could hurt performance.
 348                  */
 349                 if (grp[REG_FS] == 0x1bb) /* hard code legacy LWPFS_SEL */
 350                         (void) lwp_setprivate(lwp, _LWP_FSBASE,
 351                             (uintptr_t)grp[REG_FSBASE]);
 352 
 353                 if (grp[REG_GS] == 0x1c3) /* hard code legacy LWPGS_SEL */
 354                         (void) lwp_setprivate(lwp, _LWP_GSBASE,
 355                             (uintptr_t)grp[REG_GSBASE]);
 356         }
 357 #else
 358         if (grp[GS] == LWPGS_SEL)
 359                 (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
 360 #endif
 361 
 362         lwp->lwp_eosys = JUSTRETURN;
 363         lwptot(lwp)->t_post_sys = 1;
 364 }
 365 
 366 /*
 367  * set syscall()'s return values for a lwp.
 368  */
 369 void
 370 lwp_setrval(klwp_t *lwp, int v1, int v2)
 371 {
 372         lwptoregs(lwp)->r_ps &= ~PS_C;
 373         lwptoregs(lwp)->r_r0 = v1;
 374         lwptoregs(lwp)->r_r1 = v2;
 375 }
 376 
 377 /*
 378  * set syscall()'s return values for a lwp.
 379  */
 380 void
 381 lwp_setsp(klwp_t *lwp, caddr_t sp)
 382 {
 383         lwptoregs(lwp)->r_sp = (intptr_t)sp;
 384 }
 385 
 386 /*
 387  * Copy regs from parent to child.
 388  */
 389 void
 390 lwp_forkregs(klwp_t *lwp, klwp_t *clwp)
 391 {
 392 #if defined(__amd64)
 393         struct pcb *pcb = &clwp->lwp_pcb;
 394         struct regs *rp = lwptoregs(lwp);
 395 
 396         if (!PCB_NEED_UPDATE_SEGS(pcb)) {
 397                 pcb->pcb_ds = rp->r_ds;
 398                 pcb->pcb_es = rp->r_es;
 399                 pcb->pcb_fs = rp->r_fs;
 400                 pcb->pcb_gs = rp->r_gs;
 401                 PCB_SET_UPDATE_SEGS(pcb);
 402                 lwptot(clwp)->t_post_sys = 1;
 403         }
 404         ASSERT(lwptot(clwp)->t_post_sys);
 405 #endif
 406 
 407         fp_lwp_dup(clwp);
 408 
 409         bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs));
 410 }
 411 
 412 /*
 413  * This function is currently unused on x86.
 414  */
 415 /*ARGSUSED*/
 416 void
 417 lwp_freeregs(klwp_t *lwp, int isexec)
 418 {}
 419 
 420 /*
 421  * This function is currently unused on x86.
 422  */
 423 void
 424 lwp_pcb_exit(void)
 425 {}
 426 
 427 /*
 428  * Lwp context ops for segment registers.
 429  */
 430 
 431 /*
 432  * Every time we come into the kernel (syscall, interrupt or trap
 433  * but not fast-traps) we capture the current values of the user's
 434  * segment registers into the lwp's reg structure. This includes
 435  * lcall for i386 generic system call support since it is handled
 436  * as a segment-not-present trap.
 437  *
 438  * Here we save the current values from the lwp regs into the pcb
 439  * and or PCB_UPDATE_SEGS (1) in pcb->pcb_rupdate to tell the rest
 440  * of the kernel that the pcb copy of the segment registers is the
 441  * current one.  This ensures the lwp's next trip to user land via
 442  * update_sregs.  Finally we set t_post_sys to ensure that no
 443  * system call fast-path's its way out of the kernel via sysret.
 444  *
 445  * (This means that we need to have interrupts disabled when we
 446  * test t->t_post_sys in the syscall handlers; if the test fails,
 447  * we need to keep interrupts disabled until we return to userland
 448  * so we can't be switched away.)
 449  *
 450  * As a result of all this, we don't really have to do a whole lot
 451  * if the thread is just mucking about in the kernel, switching on
 452  * and off the cpu for whatever reason it feels like. And yet we
 453  * still preserve fast syscalls, cause if we -don't- get
 454  * descheduled, we never come here either.
 455  */
 456 
 457 #define VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \
 458             (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL)
 459 
 460 /*ARGSUSED*/
 461 void
 462 lwp_segregs_save(klwp_t *lwp)
 463 {
 464 #if defined(__amd64)
 465         pcb_t *pcb = &lwp->lwp_pcb;
 466         struct regs *rp;
 467 
 468         ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
 469         ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));
 470 
 471         if (!PCB_NEED_UPDATE_SEGS(pcb)) {
 472                 rp = lwptoregs(lwp);
 473 
 474                 /*
 475                  * If there's no update already pending, capture the current
 476                  * %ds/%es/%fs/%gs values from lwp's regs in case the user
 477                  * changed them; %fsbase and %gsbase are privileged so the
 478                  * kernel versions of these registers in pcb_fsbase and
 479                  * pcb_gsbase are always up-to-date.
 480                  */
 481                 pcb->pcb_ds = rp->r_ds;
 482                 pcb->pcb_es = rp->r_es;
 483                 pcb->pcb_fs = rp->r_fs;
 484                 pcb->pcb_gs = rp->r_gs;
 485                 PCB_SET_UPDATE_SEGS(pcb);
 486                 lwp->lwp_thread->t_post_sys = 1;
 487         }
 488 #endif  /* __amd64 */
 489 
 490 #if !defined(__xpv)     /* XXPV not sure if we can re-read gdt? */
 491         ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc,
 492             sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0);
 493         ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc,
 494             sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0);
 495 #endif
 496 }
 497 
 498 #if defined(__amd64)
 499 
 500 /*
 501  * Update the segment registers with new values from the pcb.
 502  *
 503  * We have to do this carefully, and in the following order,
 504  * in case any of the selectors points at a bogus descriptor.
 505  * If they do, we'll catch trap with on_trap and return 1.
 506  * returns 0 on success.
 507  *
 508  * This is particularly tricky for %gs.
 509  * This routine must be executed under a cli.
 510  */
 511 int
 512 update_sregs(struct regs *rp,  klwp_t *lwp)
 513 {
 514         pcb_t *pcb = &lwp->lwp_pcb;
 515         ulong_t kgsbase;
 516         on_trap_data_t  otd;
 517         int rc = 0;
 518 
 519         if (!on_trap(&otd, OT_SEGMENT_ACCESS)) {
 520 
 521 #if defined(__xpv)
 522                 /*
 523                  * On the hyervisor this is easy. The hypercall below will
 524                  * swapgs and load %gs with the user selector. If the user
 525                  * selector is bad the hypervisor will catch the fault and
 526                  * load %gs with the null selector instead. Either way the
 527                  * kernel's gsbase is not damaged.
 528                  */
 529                 kgsbase = (ulong_t)CPU;
 530                 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL,
 531                     pcb->pcb_gs) != 0) {
 532                                 no_trap();
 533                                 return (1);
 534                 }
 535 
 536                 rp->r_gs = pcb->pcb_gs;
 537                 ASSERT((cpu_t *)kgsbase == CPU);
 538 
 539 #else   /* __xpv */
 540 
 541                 /*
 542                  * A little more complicated running native.
 543                  */
 544                 kgsbase = (ulong_t)CPU;
 545                 __set_gs(pcb->pcb_gs);
 546 
 547                 /*
 548                  * If __set_gs fails it's because the new %gs is a bad %gs,
 549                  * we'll be taking a trap but with the original %gs and %gsbase
 550                  * undamaged (i.e. pointing at curcpu).
 551                  *
 552                  * We've just mucked up the kernel's gsbase.  Oops.  In
 553                  * particular we can't take any traps at all.  Make the newly
 554                  * computed gsbase be the hidden gs via __swapgs, and fix
 555                  * the kernel's gsbase back again. Later, when we return to
 556                  * userland we'll swapgs again restoring gsbase just loaded
 557                  * above.
 558                  */
 559                 __swapgs();
 560                 rp->r_gs = pcb->pcb_gs;
 561 
 562                 /*
 563                  * restore kernel's gsbase
 564                  */
 565                 wrmsr(MSR_AMD_GSBASE, kgsbase);
 566 
 567 #endif  /* __xpv */
 568 
 569                 /*
 570                  * Only override the descriptor base address if
 571                  * r_gs == LWPGS_SEL or if r_gs == NULL. A note on
 572                  * NULL descriptors -- 32-bit programs take faults
 573                  * if they deference NULL descriptors; however,
 574                  * when 64-bit programs load them into %fs or %gs,
 575                  * they DONT fault -- only the base address remains
 576                  * whatever it was from the last load.   Urk.
 577                  *
 578                  * XXX - note that lwp_setprivate now sets %fs/%gs to the
 579                  * null selector for 64 bit processes. Whereas before
 580                  * %fs/%gs were set to LWP(FS|GS)_SEL regardless of
 581                  * the process's data model. For now we check for both
 582                  * values so that the kernel can also support the older
 583                  * libc. This should be ripped out at some point in the
 584                  * future.
 585                  */
 586                 if (pcb->pcb_gs == LWPGS_SEL || pcb->pcb_gs == 0) {
 587 #if defined(__xpv)
 588                         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER,
 589                             pcb->pcb_gsbase)) {
 590                                 no_trap();
 591                                 return (1);
 592                         }
 593 #else
 594                         wrmsr(MSR_AMD_KGSBASE, pcb->pcb_gsbase);
 595 #endif
 596                 }
 597 
 598                 __set_ds(pcb->pcb_ds);
 599                 rp->r_ds = pcb->pcb_ds;
 600 
 601                 __set_es(pcb->pcb_es);
 602                 rp->r_es = pcb->pcb_es;
 603 
 604                 __set_fs(pcb->pcb_fs);
 605                 rp->r_fs = pcb->pcb_fs;
 606 
 607                 /*
 608                  * Same as for %gs
 609                  */
 610                 if (pcb->pcb_fs == LWPFS_SEL || pcb->pcb_fs == 0) {
 611 #if defined(__xpv)
 612                         if (HYPERVISOR_set_segment_base(SEGBASE_FS,
 613                             pcb->pcb_fsbase)) {
 614                                 no_trap();
 615                                 return (1);
 616                         }
 617 #else
 618                         wrmsr(MSR_AMD_FSBASE, pcb->pcb_fsbase);
 619 #endif
 620                 }
 621 
 622         } else {
 623                 cli();
 624                 rc = 1;
 625         }
 626         no_trap();
 627         return (rc);
 628 }
 629 
 630 /*
 631  * Make sure any stale selectors are cleared from the segment registers
 632  * by putting KDS_SEL (the kernel's default %ds gdt selector) into them.
 633  * This is necessary because the kernel itself does not use %es, %fs, nor
 634  * %ds. (%cs and %ss are necessary, and are set up by the kernel - along with
 635  * %gs - to point to the current cpu struct.) If we enter kmdb while in the
 636  * kernel and resume with a stale ldt or brandz selector sitting there in a
 637  * segment register, kmdb will #gp fault if the stale selector points to,
 638  * for example, an ldt in the context of another process.
 639  *
 640  * WARNING: Intel and AMD chips behave differently when storing
 641  * the null selector into %fs and %gs while in long mode. On AMD
 642  * chips fsbase and gsbase are not cleared. But on Intel chips, storing
 643  * a null selector into %fs or %gs has the side effect of clearing
 644  * fsbase or gsbase. For that reason we use KDS_SEL, which has
 645  * consistent behavor between AMD and Intel.
 646  *
 647  * Caller responsible for preventing cpu migration.
 648  */
 649 void
 650 reset_sregs(void)
 651 {
 652         ulong_t kgsbase = (ulong_t)CPU;
 653 
 654         ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL);
 655 
 656         cli();
 657         __set_gs(KGS_SEL);
 658 
 659         /*
 660          * restore kernel gsbase
 661          */
 662 #if defined(__xpv)
 663         xen_set_segment_base(SEGBASE_GS_KERNEL, kgsbase);
 664 #else
 665         wrmsr(MSR_AMD_GSBASE, kgsbase);
 666 #endif
 667 
 668         sti();
 669 
 670         __set_ds(KDS_SEL);
 671         __set_es(0 | SEL_KPL);  /* selector RPL not ring 0 on hypervisor */
 672         __set_fs(KFS_SEL);
 673 }
 674 
 675 #endif  /* __amd64 */
 676 
 677 #ifdef _SYSCALL32_IMPL
 678 
 679 /*
 680  * Make it impossible for a process to change its data model.
 681  * We do this by toggling the present bits for the 32 and
 682  * 64-bit user code descriptors. That way if a user lwp attempts
 683  * to change its data model (by using the wrong code descriptor in
 684  * %cs) it will fault immediately. This also allows us to simplify
 685  * assertions and checks in the kernel.
 686  */
 687 
 688 static void
 689 gdt_ucode_model(model_t model)
 690 {
 691         kpreempt_disable();
 692         if (model == DATAMODEL_NATIVE) {
 693                 gdt_update_usegd(GDT_UCODE, &ucs_on);
 694                 gdt_update_usegd(GDT_U32CODE, &ucs32_off);
 695         } else {
 696                 gdt_update_usegd(GDT_U32CODE, &ucs32_on);
 697                 gdt_update_usegd(GDT_UCODE, &ucs_off);
 698         }
 699         kpreempt_enable();
 700 }
 701 
 702 #endif  /* _SYSCALL32_IMPL */
 703 
 704 /*
 705  * Restore lwp private fs and gs segment descriptors
 706  * on current cpu's GDT.
 707  */
 708 static void
 709 lwp_segregs_restore(klwp_t *lwp)
 710 {
 711         pcb_t *pcb = &lwp->lwp_pcb;
 712 
 713         ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
 714         ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));
 715 
 716 #ifdef  _SYSCALL32_IMPL
 717         gdt_ucode_model(DATAMODEL_NATIVE);
 718 #endif
 719 
 720         gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
 721         gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);
 722 
 723 }
 724 
 725 #ifdef _SYSCALL32_IMPL
 726 
 727 static void
 728 lwp_segregs_restore32(klwp_t *lwp)
 729 {
 730         /*LINTED*/
 731         cpu_t *cpu = CPU;
 732         pcb_t *pcb = &lwp->lwp_pcb;
 733 
 734         ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_fsdesc));
 735         ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_gsdesc));
 736 
 737         gdt_ucode_model(DATAMODEL_ILP32);
 738         gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
 739         gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);
 740 }
 741 
 742 #endif  /* _SYSCALL32_IMPL */
 743 
 744 /*
 745  * If this is a process in a branded zone, then we want it to use the brand
 746  * syscall entry points instead of the standard Solaris entry points.  This
 747  * routine must be called when a new lwp is created within a branded zone
 748  * or when an existing lwp moves into a branded zone via a zone_enter()
 749  * operation.
 750  */
 751 void
 752 lwp_attach_brand_hdlrs(klwp_t *lwp)
 753 {
 754         kthread_t *t = lwptot(lwp);
 755 
 756         ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
 757 
 758         ASSERT(removectx(t, NULL, brand_interpositioning_disable,
 759             brand_interpositioning_enable, NULL, NULL,
 760             brand_interpositioning_disable, NULL) == 0);
 761         installctx(t, NULL, brand_interpositioning_disable,
 762             brand_interpositioning_enable, NULL, NULL,
 763             brand_interpositioning_disable, NULL);
 764 
 765         if (t == curthread) {
 766                 kpreempt_disable();
 767                 brand_interpositioning_enable();
 768                 kpreempt_enable();
 769         }
 770 }
 771 
 772 /*
 773  * If this is a process in a branded zone, then we want it to disable the
 774  * brand syscall entry points.  This routine must be called when the last
 775  * lwp in a process is exiting in proc_exit().
 776  */
 777 void
 778 lwp_detach_brand_hdlrs(klwp_t *lwp)
 779 {
 780         kthread_t *t = lwptot(lwp);
 781 
 782         ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
 783         if (t == curthread)
 784                 kpreempt_disable();
 785 
 786         /* Remove the original context handlers */
 787         VERIFY(removectx(t, NULL, brand_interpositioning_disable,
 788             brand_interpositioning_enable, NULL, NULL,
 789             brand_interpositioning_disable, NULL) != 0);
 790 
 791         if (t == curthread) {
 792                 /* Cleanup our MSR and IDT entries. */
 793                 brand_interpositioning_disable();
 794                 kpreempt_enable();
 795         }
 796 }
 797 
 798 /*
 799  * Add any lwp-associated context handlers to the lwp at the beginning
 800  * of the lwp's useful life.
 801  *
 802  * All paths which create lwp's invoke lwp_create(); lwp_create()
 803  * invokes lwp_stk_init() which initializes the stack, sets up
 804  * lwp_regs, and invokes this routine.
 805  *
 806  * All paths which destroy lwp's invoke lwp_exit() to rip the lwp
 807  * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it
 808  * ends up in thread_free() which invokes freectx(t, 0) before
 809  * invoking lwp_stk_fini().  When the lwp is recycled from death
 810  * row, lwp_stk_fini() is invoked, then thread_free(), and thus
 811  * freectx(t, 0) as before.
 812  *
 813  * In the case of exec, the surviving lwp is thoroughly scrubbed
 814  * clean; exec invokes freectx(t, 1) to destroy associated contexts.
 815  * On the way back to the new image, it invokes setregs() which
 816  * in turn invokes this routine.
 817  */
 818 void
 819 lwp_installctx(klwp_t *lwp)
 820 {
 821         kthread_t *t = lwptot(lwp);
 822         int thisthread = t == curthread;
 823 #ifdef _SYSCALL32_IMPL
 824         void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ?
 825             lwp_segregs_restore : lwp_segregs_restore32;
 826 #else
 827         void (*restop)(klwp_t *) = lwp_segregs_restore;
 828 #endif
 829 
 830         /*
 831          * Install the basic lwp context handlers on each lwp.
 832          *
 833          * On the amd64 kernel, the context handlers are responsible for
 834          * virtualizing %ds, %es, %fs, and %gs to the lwp.  The register
 835          * values are only ever changed via sys_rtt when the
 836          * PCB_UPDATE_SEGS bit (1) is set in pcb->pcb_rupdate. Only
 837          * sys_rtt gets to clear the bit.
 838          *
 839          * On the i386 kernel, the context handlers are responsible for
 840          * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs
 841          */
 842         ASSERT(removectx(t, lwp, lwp_segregs_save, restop,
 843             NULL, NULL, NULL, NULL) == 0);
 844         if (thisthread)
 845                 kpreempt_disable();
 846         installctx(t, lwp, lwp_segregs_save, restop,
 847             NULL, NULL, NULL, NULL);
 848         if (thisthread) {
 849                 /*
 850                  * Since we're the right thread, set the values in the GDT
 851                  */
 852                 restop(lwp);
 853                 kpreempt_enable();
 854         }
 855 
 856         /*
 857          * If we have sysenter/sysexit instructions enabled, we need
 858          * to ensure that the hardware mechanism is kept up-to-date with the
 859          * lwp's kernel stack pointer across context switches.
 860          *
 861          * sep_save zeros the sysenter stack pointer msr; sep_restore sets
 862          * it to the lwp's kernel stack pointer (kstktop).
 863          */
 864         if (is_x86_feature(x86_featureset, X86FSET_SEP)) {
 865 #if defined(__amd64)
 866                 caddr_t kstktop = (caddr_t)lwp->lwp_regs;
 867 #elif defined(__i386)
 868                 caddr_t kstktop = ((caddr_t)lwp->lwp_regs - MINFRAME) +
 869                     SA(sizeof (struct regs) + MINFRAME);
 870 #endif
 871                 ASSERT(removectx(t, kstktop,
 872                     sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0);
 873 
 874                 if (thisthread)
 875                         kpreempt_disable();
 876                 installctx(t, kstktop,
 877                     sep_save, sep_restore, NULL, NULL, NULL, NULL);
 878                 if (thisthread) {
 879                         /*
 880                          * We're the right thread, so set the stack pointer
 881                          * for the first sysenter instruction to use
 882                          */
 883                         sep_restore(kstktop);
 884                         kpreempt_enable();
 885                 }
 886         }
 887 
 888         if (PROC_IS_BRANDED(ttoproc(t)))
 889                 lwp_attach_brand_hdlrs(lwp);
 890 }
 891 
 892 /*
 893  * Clear registers on exec(2).
 894  */
 895 void
 896 setregs(uarg_t *args)
 897 {
 898         struct regs *rp;
 899         kthread_t *t = curthread;
 900         klwp_t *lwp = ttolwp(t);
 901         pcb_t *pcb = &lwp->lwp_pcb;
 902         greg_t sp;
 903 
 904         /*
 905          * Initialize user registers
 906          */
 907         (void) save_syscall_args();     /* copy args from registers first */
 908         rp = lwptoregs(lwp);
 909         sp = rp->r_sp;
 910         bzero(rp, sizeof (*rp));
 911 
 912         rp->r_ss = UDS_SEL;
 913         rp->r_sp = sp;
 914         rp->r_pc = args->entry;
 915         rp->r_ps = PSL_USER;
 916 
 917 #if defined(__amd64)
 918 
 919         pcb->pcb_fs = pcb->pcb_gs = 0;
 920         pcb->pcb_fsbase = pcb->pcb_gsbase = 0;
 921 
 922         if (ttoproc(t)->p_model == DATAMODEL_NATIVE) {
 923 
 924                 rp->r_cs = UCS_SEL;
 925 
 926                 /*
 927                  * Only allow 64-bit user code descriptor to be present.
 928                  */
 929                 gdt_ucode_model(DATAMODEL_NATIVE);
 930 
 931                 /*
 932                  * Arrange that the virtualized %fs and %gs GDT descriptors
 933                  * have a well-defined initial state (present, ring 3
 934                  * and of type data).
 935                  */
 936                 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
 937 
 938                 /*
 939                  * thrptr is either NULL or a value used by DTrace.
 940                  * 64-bit processes use %fs as their "thread" register.
 941                  */
 942                 if (args->thrptr)
 943                         (void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr);
 944 
 945         } else {
 946 
 947                 rp->r_cs = U32CS_SEL;
 948                 rp->r_ds = rp->r_es = UDS_SEL;
 949 
 950                 /*
 951                  * only allow 32-bit user code selector to be present.
 952                  */
 953                 gdt_ucode_model(DATAMODEL_ILP32);
 954 
 955                 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
 956 
 957                 /*
 958                  * thrptr is either NULL or a value used by DTrace.
 959                  * 32-bit processes use %gs as their "thread" register.
 960                  */
 961                 if (args->thrptr)
 962                         (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr);
 963 
 964         }
 965 
 966         pcb->pcb_ds = rp->r_ds;
 967         pcb->pcb_es = rp->r_es;
 968         PCB_SET_UPDATE_SEGS(pcb);
 969 
 970 #elif defined(__i386)
 971 
 972         rp->r_cs = UCS_SEL;
 973         rp->r_ds = rp->r_es = UDS_SEL;
 974 
 975         /*
 976          * Arrange that the virtualized %fs and %gs GDT descriptors
 977          * have a well-defined initial state (present, ring 3
 978          * and of type data).
 979          */
 980         pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
 981 
 982         /*
 983          * For %gs we need to reset LWP_GSBASE in pcb and the
 984          * per-cpu GDT descriptor. thrptr is either NULL
 985          * or a value used by DTrace.
 986          */
 987         if (args->thrptr)
 988                 (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr);
 989 #endif
 990 
 991         lwp->lwp_eosys = JUSTRETURN;
 992         t->t_post_sys = 1;
 993 
 994         /*
 995          * Add the lwp context handlers that virtualize segment registers,
 996          * and/or system call stacks etc.
 997          */
 998         lwp_installctx(lwp);
 999 
1000         /*
1001          * Reset the FPU flags and then initialize the FPU for this lwp.
1002          */
1003         fp_exec();
1004 }
1005 
1006 user_desc_t *
1007 cpu_get_gdt(void)
1008 {
1009         return (CPU->cpu_gdt);
1010 }
1011 
1012 
1013 #if !defined(lwp_getdatamodel)
1014 
1015 /*
1016  * Return the datamodel of the given lwp.
1017  */
1018 /*ARGSUSED*/
1019 model_t
1020 lwp_getdatamodel(klwp_t *lwp)
1021 {
1022         return (lwp->lwp_procp->p_model);
1023 }
1024 
1025 #endif  /* !lwp_getdatamodel */
1026 
1027 #if !defined(get_udatamodel)
1028 
1029 model_t
1030 get_udatamodel(void)
1031 {
1032         return (curproc->p_model);
1033 }
1034 
1035 #endif  /* !get_udatamodel */