1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 by Delphix. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 */ 28 29 /* 30 * Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. 31 * Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T 32 * All Rights Reserved 33 */ 34 35 /* 36 * Copyright (c) 2009, Intel Corporation. 37 * All rights reserved. 38 */ 39 40 /* 41 * General assembly language routines. 42 * It is the intent of this file to contain routines that are 43 * independent of the specific kernel architecture, and those that are 44 * common across kernel architectures. 45 * As architectures diverge, and implementations of specific 46 * architecture-dependent routines change, the routines should be moved 47 * from this file into the respective ../`arch -k`/subr.s file. 48 */ 49 50 #include <sys/asm_linkage.h> 51 #include <sys/asm_misc.h> 52 #include <sys/panic.h> 53 #include <sys/ontrap.h> 54 #include <sys/regset.h> 55 #include <sys/privregs.h> 56 #include <sys/reboot.h> 57 #include <sys/psw.h> 58 #include <sys/x86_archext.h> 59 60 #if defined(__lint) 61 #include <sys/types.h> 62 #include <sys/systm.h> 63 #include <sys/thread.h> 64 #include <sys/archsystm.h> 65 #include <sys/byteorder.h> 66 #include <sys/dtrace.h> 67 #include <sys/ftrace.h> 68 #else /* __lint */ 69 #include "assym.h" 70 #endif /* __lint */ 71 #include <sys/dditypes.h> 72 73 /* 74 * on_fault() 75 * 76 * Catch lofault faults. Like setjmp except it returns one 77 * if code following causes uncorrectable fault. Turned off 78 * by calling no_fault(). Note that while under on_fault(), 79 * SMAP is disabled. For more information see 80 * uts/intel/ia32/ml/copy.s. 81 */ 82 83 #if defined(__lint) 84 85 /* ARGSUSED */ 86 int 87 on_fault(label_t *ljb) 88 { return (0); } 89 90 void 91 no_fault(void) 92 {} 93 94 #else /* __lint */ 95 96 #if defined(__amd64) 97 98 ENTRY(on_fault) 99 movq %gs:CPU_THREAD, %rsi 100 leaq catch_fault(%rip), %rdx 101 movq %rdi, T_ONFAULT(%rsi) /* jumpbuf in t_onfault */ 102 movq %rdx, T_LOFAULT(%rsi) /* catch_fault in t_lofault */ 103 call smap_disable /* allow user accesses */ 104 jmp setjmp /* let setjmp do the rest */ 105 106 catch_fault: 107 movq %gs:CPU_THREAD, %rsi 108 movq T_ONFAULT(%rsi), %rdi /* address of save area */ 109 xorl %eax, %eax 110 movq %rax, T_ONFAULT(%rsi) /* turn off onfault */ 111 movq %rax, T_LOFAULT(%rsi) /* turn off lofault */ 112 call smap_enable /* disallow user accesses */ 113 jmp longjmp /* let longjmp do the rest */ 114 SET_SIZE(on_fault) 115 116 ENTRY(no_fault) 117 movq %gs:CPU_THREAD, %rsi 118 xorl %eax, %eax 119 movq %rax, T_ONFAULT(%rsi) /* turn off onfault */ 120 movq %rax, T_LOFAULT(%rsi) /* turn off lofault */ 121 call smap_enable /* disallow user accesses */ 122 ret 123 SET_SIZE(no_fault) 124 125 #elif defined(__i386) 126 127 ENTRY(on_fault) 128 movl %gs:CPU_THREAD, %edx 129 movl 4(%esp), %eax /* jumpbuf address */ 130 leal catch_fault, %ecx 131 movl %eax, T_ONFAULT(%edx) /* jumpbuf in t_onfault */ 132 movl %ecx, T_LOFAULT(%edx) /* catch_fault in t_lofault */ 133 jmp setjmp /* let setjmp do the rest */ 134 135 catch_fault: 136 movl %gs:CPU_THREAD, %edx 137 xorl %eax, %eax 138 movl T_ONFAULT(%edx), %ecx /* address of save area */ 139 movl %eax, T_ONFAULT(%edx) /* turn off onfault */ 140 movl %eax, T_LOFAULT(%edx) /* turn off lofault */ 141 pushl %ecx 142 call longjmp /* let longjmp do the rest */ 143 SET_SIZE(on_fault) 144 145 ENTRY(no_fault) 146 movl %gs:CPU_THREAD, %edx 147 xorl %eax, %eax 148 movl %eax, T_ONFAULT(%edx) /* turn off onfault */ 149 movl %eax, T_LOFAULT(%edx) /* turn off lofault */ 150 ret 151 SET_SIZE(no_fault) 152 153 #endif /* __i386 */ 154 #endif /* __lint */ 155 156 /* 157 * Default trampoline code for on_trap() (see <sys/ontrap.h>). We just 158 * do a longjmp(&curthread->t_ontrap->ot_jmpbuf) if this is ever called. 159 */ 160 161 #if defined(lint) 162 163 void 164 on_trap_trampoline(void) 165 {} 166 167 #else /* __lint */ 168 169 #if defined(__amd64) 170 171 ENTRY(on_trap_trampoline) 172 movq %gs:CPU_THREAD, %rsi 173 movq T_ONTRAP(%rsi), %rdi 174 addq $OT_JMPBUF, %rdi 175 jmp longjmp 176 SET_SIZE(on_trap_trampoline) 177 178 #elif defined(__i386) 179 180 ENTRY(on_trap_trampoline) 181 movl %gs:CPU_THREAD, %eax 182 movl T_ONTRAP(%eax), %eax 183 addl $OT_JMPBUF, %eax 184 pushl %eax 185 call longjmp 186 SET_SIZE(on_trap_trampoline) 187 188 #endif /* __i386 */ 189 #endif /* __lint */ 190 191 /* 192 * Push a new element on to the t_ontrap stack. Refer to <sys/ontrap.h> for 193 * more information about the on_trap() mechanism. If the on_trap_data is the 194 * same as the topmost stack element, we just modify that element. 195 */ 196 #if defined(lint) 197 198 /*ARGSUSED*/ 199 int 200 on_trap(on_trap_data_t *otp, uint_t prot) 201 { return (0); } 202 203 #else /* __lint */ 204 205 #if defined(__amd64) 206 207 ENTRY(on_trap) 208 movw %si, OT_PROT(%rdi) /* ot_prot = prot */ 209 movw $0, OT_TRAP(%rdi) /* ot_trap = 0 */ 210 leaq on_trap_trampoline(%rip), %rdx /* rdx = &on_trap_trampoline */ 211 movq %rdx, OT_TRAMPOLINE(%rdi) /* ot_trampoline = rdx */ 212 xorl %ecx, %ecx 213 movq %rcx, OT_HANDLE(%rdi) /* ot_handle = NULL */ 214 movq %rcx, OT_PAD1(%rdi) /* ot_pad1 = NULL */ 215 movq %gs:CPU_THREAD, %rdx /* rdx = curthread */ 216 movq T_ONTRAP(%rdx), %rcx /* rcx = curthread->t_ontrap */ 217 cmpq %rdi, %rcx /* if (otp == %rcx) */ 218 je 0f /* don't modify t_ontrap */ 219 220 movq %rcx, OT_PREV(%rdi) /* ot_prev = t_ontrap */ 221 movq %rdi, T_ONTRAP(%rdx) /* curthread->t_ontrap = otp */ 222 223 0: addq $OT_JMPBUF, %rdi /* &ot_jmpbuf */ 224 jmp setjmp 225 SET_SIZE(on_trap) 226 227 #elif defined(__i386) 228 229 ENTRY(on_trap) 230 movl 4(%esp), %eax /* %eax = otp */ 231 movl 8(%esp), %edx /* %edx = prot */ 232 233 movw %dx, OT_PROT(%eax) /* ot_prot = prot */ 234 movw $0, OT_TRAP(%eax) /* ot_trap = 0 */ 235 leal on_trap_trampoline, %edx /* %edx = &on_trap_trampoline */ 236 movl %edx, OT_TRAMPOLINE(%eax) /* ot_trampoline = %edx */ 237 movl $0, OT_HANDLE(%eax) /* ot_handle = NULL */ 238 movl $0, OT_PAD1(%eax) /* ot_pad1 = NULL */ 239 movl %gs:CPU_THREAD, %edx /* %edx = curthread */ 240 movl T_ONTRAP(%edx), %ecx /* %ecx = curthread->t_ontrap */ 241 cmpl %eax, %ecx /* if (otp == %ecx) */ 242 je 0f /* don't modify t_ontrap */ 243 244 movl %ecx, OT_PREV(%eax) /* ot_prev = t_ontrap */ 245 movl %eax, T_ONTRAP(%edx) /* curthread->t_ontrap = otp */ 246 247 0: addl $OT_JMPBUF, %eax /* %eax = &ot_jmpbuf */ 248 movl %eax, 4(%esp) /* put %eax back on the stack */ 249 jmp setjmp /* let setjmp do the rest */ 250 SET_SIZE(on_trap) 251 252 #endif /* __i386 */ 253 #endif /* __lint */ 254 255 /* 256 * Setjmp and longjmp implement non-local gotos using state vectors 257 * type label_t. 258 */ 259 260 #if defined(__lint) 261 262 /* ARGSUSED */ 263 int 264 setjmp(label_t *lp) 265 { return (0); } 266 267 /* ARGSUSED */ 268 void 269 longjmp(label_t *lp) 270 {} 271 272 #else /* __lint */ 273 274 #if LABEL_PC != 0 275 #error LABEL_PC MUST be defined as 0 for setjmp/longjmp to work as coded 276 #endif /* LABEL_PC != 0 */ 277 278 #if defined(__amd64) 279 280 ENTRY(setjmp) 281 movq %rsp, LABEL_SP(%rdi) 282 movq %rbp, LABEL_RBP(%rdi) 283 movq %rbx, LABEL_RBX(%rdi) 284 movq %r12, LABEL_R12(%rdi) 285 movq %r13, LABEL_R13(%rdi) 286 movq %r14, LABEL_R14(%rdi) 287 movq %r15, LABEL_R15(%rdi) 288 movq (%rsp), %rdx /* return address */ 289 movq %rdx, (%rdi) /* LABEL_PC is 0 */ 290 xorl %eax, %eax /* return 0 */ 291 ret 292 SET_SIZE(setjmp) 293 294 ENTRY(longjmp) 295 movq LABEL_SP(%rdi), %rsp 296 movq LABEL_RBP(%rdi), %rbp 297 movq LABEL_RBX(%rdi), %rbx 298 movq LABEL_R12(%rdi), %r12 299 movq LABEL_R13(%rdi), %r13 300 movq LABEL_R14(%rdi), %r14 301 movq LABEL_R15(%rdi), %r15 302 movq (%rdi), %rdx /* return address; LABEL_PC is 0 */ 303 movq %rdx, (%rsp) 304 xorl %eax, %eax 305 incl %eax /* return 1 */ 306 ret 307 SET_SIZE(longjmp) 308 309 #elif defined(__i386) 310 311 ENTRY(setjmp) 312 movl 4(%esp), %edx /* address of save area */ 313 movl %ebp, LABEL_EBP(%edx) 314 movl %ebx, LABEL_EBX(%edx) 315 movl %esi, LABEL_ESI(%edx) 316 movl %edi, LABEL_EDI(%edx) 317 movl %esp, 4(%edx) 318 movl (%esp), %ecx /* %eip (return address) */ 319 movl %ecx, (%edx) /* LABEL_PC is 0 */ 320 subl %eax, %eax /* return 0 */ 321 ret 322 SET_SIZE(setjmp) 323 324 ENTRY(longjmp) 325 movl 4(%esp), %edx /* address of save area */ 326 movl LABEL_EBP(%edx), %ebp 327 movl LABEL_EBX(%edx), %ebx 328 movl LABEL_ESI(%edx), %esi 329 movl LABEL_EDI(%edx), %edi 330 movl 4(%edx), %esp 331 movl (%edx), %ecx /* %eip (return addr); LABEL_PC is 0 */ 332 movl $1, %eax 333 addl $4, %esp /* pop ret adr */ 334 jmp *%ecx /* indirect */ 335 SET_SIZE(longjmp) 336 337 #endif /* __i386 */ 338 #endif /* __lint */ 339 340 /* 341 * if a() calls b() calls caller(), 342 * caller() returns return address in a(). 343 * (Note: We assume a() and b() are C routines which do the normal entry/exit 344 * sequence.) 345 */ 346 347 #if defined(__lint) 348 349 caddr_t 350 caller(void) 351 { return (0); } 352 353 #else /* __lint */ 354 355 #if defined(__amd64) 356 357 ENTRY(caller) 358 movq 8(%rbp), %rax /* b()'s return pc, in a() */ 359 ret 360 SET_SIZE(caller) 361 362 #elif defined(__i386) 363 364 ENTRY(caller) 365 movl 4(%ebp), %eax /* b()'s return pc, in a() */ 366 ret 367 SET_SIZE(caller) 368 369 #endif /* __i386 */ 370 #endif /* __lint */ 371 372 /* 373 * if a() calls callee(), callee() returns the 374 * return address in a(); 375 */ 376 377 #if defined(__lint) 378 379 caddr_t 380 callee(void) 381 { return (0); } 382 383 #else /* __lint */ 384 385 #if defined(__amd64) 386 387 ENTRY(callee) 388 movq (%rsp), %rax /* callee()'s return pc, in a() */ 389 ret 390 SET_SIZE(callee) 391 392 #elif defined(__i386) 393 394 ENTRY(callee) 395 movl (%esp), %eax /* callee()'s return pc, in a() */ 396 ret 397 SET_SIZE(callee) 398 399 #endif /* __i386 */ 400 #endif /* __lint */ 401 402 /* 403 * return the current frame pointer 404 */ 405 406 #if defined(__lint) 407 408 greg_t 409 getfp(void) 410 { return (0); } 411 412 #else /* __lint */ 413 414 #if defined(__amd64) 415 416 ENTRY(getfp) 417 movq %rbp, %rax 418 ret 419 SET_SIZE(getfp) 420 421 #elif defined(__i386) 422 423 ENTRY(getfp) 424 movl %ebp, %eax 425 ret 426 SET_SIZE(getfp) 427 428 #endif /* __i386 */ 429 #endif /* __lint */ 430 431 /* 432 * Invalidate a single page table entry in the TLB 433 */ 434 435 #if defined(__lint) 436 437 /* ARGSUSED */ 438 void 439 mmu_invlpg(caddr_t m) 440 {} 441 442 #else /* __lint */ 443 444 ENTRY(mmu_invlpg) 445 invlpg (%rdi) 446 ret 447 SET_SIZE(mmu_invlpg) 448 449 #endif /* __lint */ 450 451 452 /* 453 * Get/Set the value of various control registers 454 */ 455 456 #if defined(__lint) 457 458 ulong_t 459 getcr0(void) 460 { return (0); } 461 462 /* ARGSUSED */ 463 void 464 setcr0(ulong_t value) 465 {} 466 467 ulong_t 468 getcr2(void) 469 { return (0); } 470 471 ulong_t 472 getcr3(void) 473 { return (0); } 474 475 #if !defined(__xpv) 476 /* ARGSUSED */ 477 void 478 setcr3(ulong_t val) 479 {} 480 481 void 482 reload_cr3(void) 483 {} 484 #endif 485 486 ulong_t 487 getcr4(void) 488 { return (0); } 489 490 /* ARGSUSED */ 491 void 492 setcr4(ulong_t val) 493 {} 494 495 #if defined(__amd64) 496 497 ulong_t 498 getcr8(void) 499 { return (0); } 500 501 /* ARGSUSED */ 502 void 503 setcr8(ulong_t val) 504 {} 505 506 #endif /* __amd64 */ 507 508 #else /* __lint */ 509 510 #if defined(__amd64) 511 512 ENTRY(getcr0) 513 movq %cr0, %rax 514 ret 515 SET_SIZE(getcr0) 516 517 ENTRY(setcr0) 518 movq %rdi, %cr0 519 ret 520 SET_SIZE(setcr0) 521 522 ENTRY(getcr2) 523 #if defined(__xpv) 524 movq %gs:CPU_VCPU_INFO, %rax 525 movq VCPU_INFO_ARCH_CR2(%rax), %rax 526 #else 527 movq %cr2, %rax 528 #endif 529 ret 530 SET_SIZE(getcr2) 531 532 ENTRY(getcr3) 533 movq %cr3, %rax 534 ret 535 SET_SIZE(getcr3) 536 537 #if !defined(__xpv) 538 539 ENTRY(setcr3) 540 movq %rdi, %cr3 541 ret 542 SET_SIZE(setcr3) 543 544 ENTRY(reload_cr3) 545 movq %cr3, %rdi 546 movq %rdi, %cr3 547 ret 548 SET_SIZE(reload_cr3) 549 550 #endif /* __xpv */ 551 552 ENTRY(getcr4) 553 movq %cr4, %rax 554 ret 555 SET_SIZE(getcr4) 556 557 ENTRY(setcr4) 558 movq %rdi, %cr4 559 ret 560 SET_SIZE(setcr4) 561 562 ENTRY(getcr8) 563 movq %cr8, %rax 564 ret 565 SET_SIZE(getcr8) 566 567 ENTRY(setcr8) 568 movq %rdi, %cr8 569 ret 570 SET_SIZE(setcr8) 571 572 #elif defined(__i386) 573 574 ENTRY(getcr0) 575 movl %cr0, %eax 576 ret 577 SET_SIZE(getcr0) 578 579 ENTRY(setcr0) 580 movl 4(%esp), %eax 581 movl %eax, %cr0 582 ret 583 SET_SIZE(setcr0) 584 585 /* 586 * "lock mov %cr0" is used on processors which indicate it is 587 * supported via CPUID. Normally the 32 bit TPR is accessed via 588 * the local APIC. 589 */ 590 ENTRY(getcr8) 591 lock 592 movl %cr0, %eax 593 ret 594 SET_SIZE(getcr8) 595 596 ENTRY(setcr8) 597 movl 4(%esp), %eax 598 lock 599 movl %eax, %cr0 600 ret 601 SET_SIZE(setcr8) 602 603 ENTRY(getcr2) 604 #if defined(__xpv) 605 movl %gs:CPU_VCPU_INFO, %eax 606 movl VCPU_INFO_ARCH_CR2(%eax), %eax 607 #else 608 movl %cr2, %eax 609 #endif 610 ret 611 SET_SIZE(getcr2) 612 613 ENTRY(getcr3) 614 movl %cr3, %eax 615 ret 616 SET_SIZE(getcr3) 617 618 #if !defined(__xpv) 619 620 ENTRY(setcr3) 621 movl 4(%esp), %eax 622 movl %eax, %cr3 623 ret 624 SET_SIZE(setcr3) 625 626 ENTRY(reload_cr3) 627 movl %cr3, %eax 628 movl %eax, %cr3 629 ret 630 SET_SIZE(reload_cr3) 631 632 #endif /* __xpv */ 633 634 ENTRY(getcr4) 635 movl %cr4, %eax 636 ret 637 SET_SIZE(getcr4) 638 639 ENTRY(setcr4) 640 movl 4(%esp), %eax 641 movl %eax, %cr4 642 ret 643 SET_SIZE(setcr4) 644 645 #endif /* __i386 */ 646 #endif /* __lint */ 647 648 #if defined(__lint) 649 650 /*ARGSUSED*/ 651 uint32_t 652 __cpuid_insn(struct cpuid_regs *regs) 653 { return (0); } 654 655 #else /* __lint */ 656 657 #if defined(__amd64) 658 659 ENTRY(__cpuid_insn) 660 movq %rbx, %r8 661 movq %rcx, %r9 662 movq %rdx, %r11 663 movl (%rdi), %eax /* %eax = regs->cp_eax */ 664 movl 0x4(%rdi), %ebx /* %ebx = regs->cp_ebx */ 665 movl 0x8(%rdi), %ecx /* %ecx = regs->cp_ecx */ 666 movl 0xc(%rdi), %edx /* %edx = regs->cp_edx */ 667 cpuid 668 movl %eax, (%rdi) /* regs->cp_eax = %eax */ 669 movl %ebx, 0x4(%rdi) /* regs->cp_ebx = %ebx */ 670 movl %ecx, 0x8(%rdi) /* regs->cp_ecx = %ecx */ 671 movl %edx, 0xc(%rdi) /* regs->cp_edx = %edx */ 672 movq %r8, %rbx 673 movq %r9, %rcx 674 movq %r11, %rdx 675 ret 676 SET_SIZE(__cpuid_insn) 677 678 #elif defined(__i386) 679 680 ENTRY(__cpuid_insn) 681 pushl %ebp 682 movl 0x8(%esp), %ebp /* %ebp = regs */ 683 pushl %ebx 684 pushl %ecx 685 pushl %edx 686 movl (%ebp), %eax /* %eax = regs->cp_eax */ 687 movl 0x4(%ebp), %ebx /* %ebx = regs->cp_ebx */ 688 movl 0x8(%ebp), %ecx /* %ecx = regs->cp_ecx */ 689 movl 0xc(%ebp), %edx /* %edx = regs->cp_edx */ 690 cpuid 691 movl %eax, (%ebp) /* regs->cp_eax = %eax */ 692 movl %ebx, 0x4(%ebp) /* regs->cp_ebx = %ebx */ 693 movl %ecx, 0x8(%ebp) /* regs->cp_ecx = %ecx */ 694 movl %edx, 0xc(%ebp) /* regs->cp_edx = %edx */ 695 popl %edx 696 popl %ecx 697 popl %ebx 698 popl %ebp 699 ret 700 SET_SIZE(__cpuid_insn) 701 702 #endif /* __i386 */ 703 #endif /* __lint */ 704 705 #if defined(__lint) 706 707 /*ARGSUSED*/ 708 void 709 i86_monitor(volatile uint32_t *addr, uint32_t extensions, uint32_t hints) 710 {} 711 712 #else /* __lint */ 713 714 #if defined(__amd64) 715 716 ENTRY_NP(i86_monitor) 717 pushq %rbp 718 movq %rsp, %rbp 719 movq %rdi, %rax /* addr */ 720 movq %rsi, %rcx /* extensions */ 721 /* rdx contains input arg3: hints */ 722 clflush (%rax) 723 .byte 0x0f, 0x01, 0xc8 /* monitor */ 724 leave 725 ret 726 SET_SIZE(i86_monitor) 727 728 #elif defined(__i386) 729 730 ENTRY_NP(i86_monitor) 731 pushl %ebp 732 movl %esp, %ebp 733 movl 0x8(%ebp),%eax /* addr */ 734 movl 0xc(%ebp),%ecx /* extensions */ 735 movl 0x10(%ebp),%edx /* hints */ 736 clflush (%eax) 737 .byte 0x0f, 0x01, 0xc8 /* monitor */ 738 leave 739 ret 740 SET_SIZE(i86_monitor) 741 742 #endif /* __i386 */ 743 #endif /* __lint */ 744 745 #if defined(__lint) 746 747 /*ARGSUSED*/ 748 void 749 i86_mwait(uint32_t data, uint32_t extensions) 750 {} 751 752 #else /* __lint */ 753 754 #if defined(__amd64) 755 756 ENTRY_NP(i86_mwait) 757 pushq %rbp 758 call *x86_md_clear 759 movq %rsp, %rbp 760 movq %rdi, %rax /* data */ 761 movq %rsi, %rcx /* extensions */ 762 .byte 0x0f, 0x01, 0xc9 /* mwait */ 763 leave 764 ret 765 SET_SIZE(i86_mwait) 766 767 #elif defined(__i386) 768 769 ENTRY_NP(i86_mwait) 770 pushl %ebp 771 movl %esp, %ebp 772 movl 0x8(%ebp),%eax /* data */ 773 movl 0xc(%ebp),%ecx /* extensions */ 774 .byte 0x0f, 0x01, 0xc9 /* mwait */ 775 leave 776 ret 777 SET_SIZE(i86_mwait) 778 779 #endif /* __i386 */ 780 #endif /* __lint */ 781 782 #if defined(__xpv) 783 /* 784 * Defined in C 785 */ 786 #else 787 788 #if defined(__lint) 789 790 hrtime_t 791 tsc_read(void) 792 { 793 return (0); 794 } 795 796 #else /* __lint */ 797 798 #if defined(__amd64) 799 800 ENTRY_NP(tsc_read) 801 movq %rbx, %r11 802 movl $0, %eax 803 cpuid 804 rdtsc 805 movq %r11, %rbx 806 shlq $32, %rdx 807 orq %rdx, %rax 808 ret 809 .globl _tsc_mfence_start 810 _tsc_mfence_start: 811 mfence 812 rdtsc 813 shlq $32, %rdx 814 orq %rdx, %rax 815 ret 816 .globl _tsc_mfence_end 817 _tsc_mfence_end: 818 .globl _tscp_start 819 _tscp_start: 820 .byte 0x0f, 0x01, 0xf9 /* rdtscp instruction */ 821 shlq $32, %rdx 822 orq %rdx, %rax 823 ret 824 .globl _tscp_end 825 _tscp_end: 826 .globl _no_rdtsc_start 827 _no_rdtsc_start: 828 xorl %edx, %edx 829 xorl %eax, %eax 830 ret 831 .globl _no_rdtsc_end 832 _no_rdtsc_end: 833 .globl _tsc_lfence_start 834 _tsc_lfence_start: 835 lfence 836 rdtsc 837 shlq $32, %rdx 838 orq %rdx, %rax 839 ret 840 .globl _tsc_lfence_end 841 _tsc_lfence_end: 842 SET_SIZE(tsc_read) 843 844 #else /* __i386 */ 845 846 ENTRY_NP(tsc_read) 847 pushl %ebx 848 movl $0, %eax 849 cpuid 850 rdtsc 851 popl %ebx 852 ret 853 .globl _tsc_mfence_start 854 _tsc_mfence_start: 855 mfence 856 rdtsc 857 ret 858 .globl _tsc_mfence_end 859 _tsc_mfence_end: 860 .globl _tscp_start 861 _tscp_start: 862 .byte 0x0f, 0x01, 0xf9 /* rdtscp instruction */ 863 ret 864 .globl _tscp_end 865 _tscp_end: 866 .globl _no_rdtsc_start 867 _no_rdtsc_start: 868 xorl %edx, %edx 869 xorl %eax, %eax 870 ret 871 .globl _no_rdtsc_end 872 _no_rdtsc_end: 873 .globl _tsc_lfence_start 874 _tsc_lfence_start: 875 lfence 876 rdtsc 877 ret 878 .globl _tsc_lfence_end 879 _tsc_lfence_end: 880 SET_SIZE(tsc_read) 881 882 #endif /* __i386 */ 883 884 #endif /* __lint */ 885 886 887 #endif /* __xpv */ 888 889 #ifdef __lint 890 /* 891 * Do not use this function for obtaining clock tick. This 892 * is called by callers who do not need to have a guarenteed 893 * correct tick value. The proper routine to use is tsc_read(). 894 */ 895 u_longlong_t 896 randtick(void) 897 { 898 return (0); 899 } 900 #else 901 #if defined(__amd64) 902 ENTRY_NP(randtick) 903 rdtsc 904 shlq $32, %rdx 905 orq %rdx, %rax 906 ret 907 SET_SIZE(randtick) 908 #else 909 ENTRY_NP(randtick) 910 rdtsc 911 ret 912 SET_SIZE(randtick) 913 #endif /* __i386 */ 914 #endif /* __lint */ 915 /* 916 * Insert entryp after predp in a doubly linked list. 917 */ 918 919 #if defined(__lint) 920 921 /*ARGSUSED*/ 922 void 923 _insque(caddr_t entryp, caddr_t predp) 924 {} 925 926 #else /* __lint */ 927 928 #if defined(__amd64) 929 930 ENTRY(_insque) 931 movq (%rsi), %rax /* predp->forw */ 932 movq %rsi, CPTRSIZE(%rdi) /* entryp->back = predp */ 933 movq %rax, (%rdi) /* entryp->forw = predp->forw */ 934 movq %rdi, (%rsi) /* predp->forw = entryp */ 935 movq %rdi, CPTRSIZE(%rax) /* predp->forw->back = entryp */ 936 ret 937 SET_SIZE(_insque) 938 939 #elif defined(__i386) 940 941 ENTRY(_insque) 942 movl 8(%esp), %edx 943 movl 4(%esp), %ecx 944 movl (%edx), %eax /* predp->forw */ 945 movl %edx, CPTRSIZE(%ecx) /* entryp->back = predp */ 946 movl %eax, (%ecx) /* entryp->forw = predp->forw */ 947 movl %ecx, (%edx) /* predp->forw = entryp */ 948 movl %ecx, CPTRSIZE(%eax) /* predp->forw->back = entryp */ 949 ret 950 SET_SIZE(_insque) 951 952 #endif /* __i386 */ 953 #endif /* __lint */ 954 955 /* 956 * Remove entryp from a doubly linked list 957 */ 958 959 #if defined(__lint) 960 961 /*ARGSUSED*/ 962 void 963 _remque(caddr_t entryp) 964 {} 965 966 #else /* __lint */ 967 968 #if defined(__amd64) 969 970 ENTRY(_remque) 971 movq (%rdi), %rax /* entry->forw */ 972 movq CPTRSIZE(%rdi), %rdx /* entry->back */ 973 movq %rax, (%rdx) /* entry->back->forw = entry->forw */ 974 movq %rdx, CPTRSIZE(%rax) /* entry->forw->back = entry->back */ 975 ret 976 SET_SIZE(_remque) 977 978 #elif defined(__i386) 979 980 ENTRY(_remque) 981 movl 4(%esp), %ecx 982 movl (%ecx), %eax /* entry->forw */ 983 movl CPTRSIZE(%ecx), %edx /* entry->back */ 984 movl %eax, (%edx) /* entry->back->forw = entry->forw */ 985 movl %edx, CPTRSIZE(%eax) /* entry->forw->back = entry->back */ 986 ret 987 SET_SIZE(_remque) 988 989 #endif /* __i386 */ 990 #endif /* __lint */ 991 992 /* 993 * Returns the number of 994 * non-NULL bytes in string argument. 995 */ 996 997 #if defined(__lint) 998 999 /* ARGSUSED */ 1000 size_t 1001 strlen(const char *str) 1002 { return (0); } 1003 1004 #else /* __lint */ 1005 1006 #if defined(__amd64) 1007 1008 /* 1009 * This is close to a simple transliteration of a C version of this 1010 * routine. We should either just -make- this be a C version, or 1011 * justify having it in assembler by making it significantly faster. 1012 * 1013 * size_t 1014 * strlen(const char *s) 1015 * { 1016 * const char *s0; 1017 * #if defined(DEBUG) 1018 * if ((uintptr_t)s < KERNELBASE) 1019 * panic(.str_panic_msg); 1020 * #endif 1021 * for (s0 = s; *s; s++) 1022 * ; 1023 * return (s - s0); 1024 * } 1025 */ 1026 1027 ENTRY(strlen) 1028 #ifdef DEBUG 1029 movq postbootkernelbase(%rip), %rax 1030 cmpq %rax, %rdi 1031 jae str_valid 1032 pushq %rbp 1033 movq %rsp, %rbp 1034 leaq .str_panic_msg(%rip), %rdi 1035 xorl %eax, %eax 1036 call panic 1037 #endif /* DEBUG */ 1038 str_valid: 1039 cmpb $0, (%rdi) 1040 movq %rdi, %rax 1041 je .null_found 1042 .align 4 1043 .strlen_loop: 1044 incq %rdi 1045 cmpb $0, (%rdi) 1046 jne .strlen_loop 1047 .null_found: 1048 subq %rax, %rdi 1049 movq %rdi, %rax 1050 ret 1051 SET_SIZE(strlen) 1052 1053 #elif defined(__i386) 1054 1055 ENTRY(strlen) 1056 #ifdef DEBUG 1057 movl postbootkernelbase, %eax 1058 cmpl %eax, 4(%esp) 1059 jae str_valid 1060 pushl %ebp 1061 movl %esp, %ebp 1062 pushl $.str_panic_msg 1063 call panic 1064 #endif /* DEBUG */ 1065 1066 str_valid: 1067 movl 4(%esp), %eax /* %eax = string address */ 1068 testl $3, %eax /* if %eax not word aligned */ 1069 jnz .not_word_aligned /* goto .not_word_aligned */ 1070 .align 4 1071 .word_aligned: 1072 movl (%eax), %edx /* move 1 word from (%eax) to %edx */ 1073 movl $0x7f7f7f7f, %ecx 1074 andl %edx, %ecx /* %ecx = %edx & 0x7f7f7f7f */ 1075 addl $4, %eax /* next word */ 1076 addl $0x7f7f7f7f, %ecx /* %ecx += 0x7f7f7f7f */ 1077 orl %edx, %ecx /* %ecx |= %edx */ 1078 andl $0x80808080, %ecx /* %ecx &= 0x80808080 */ 1079 cmpl $0x80808080, %ecx /* if no null byte in this word */ 1080 je .word_aligned /* goto .word_aligned */ 1081 subl $4, %eax /* post-incremented */ 1082 .not_word_aligned: 1083 cmpb $0, (%eax) /* if a byte in (%eax) is null */ 1084 je .null_found /* goto .null_found */ 1085 incl %eax /* next byte */ 1086 testl $3, %eax /* if %eax not word aligned */ 1087 jnz .not_word_aligned /* goto .not_word_aligned */ 1088 jmp .word_aligned /* goto .word_aligned */ 1089 .align 4 1090 .null_found: 1091 subl 4(%esp), %eax /* %eax -= string address */ 1092 ret 1093 SET_SIZE(strlen) 1094 1095 #endif /* __i386 */ 1096 1097 #ifdef DEBUG 1098 .text 1099 .str_panic_msg: 1100 .string "strlen: argument below kernelbase" 1101 #endif /* DEBUG */ 1102 1103 #endif /* __lint */ 1104 1105 /* 1106 * Berkeley 4.3 introduced symbolically named interrupt levels 1107 * as a way deal with priority in a machine independent fashion. 1108 * Numbered priorities are machine specific, and should be 1109 * discouraged where possible. 1110 * 1111 * Note, for the machine specific priorities there are 1112 * examples listed for devices that use a particular priority. 1113 * It should not be construed that all devices of that 1114 * type should be at that priority. It is currently were 1115 * the current devices fit into the priority scheme based 1116 * upon time criticalness. 1117 * 1118 * The underlying assumption of these assignments is that 1119 * IPL 10 is the highest level from which a device 1120 * routine can call wakeup. Devices that interrupt from higher 1121 * levels are restricted in what they can do. If they need 1122 * kernels services they should schedule a routine at a lower 1123 * level (via software interrupt) to do the required 1124 * processing. 1125 * 1126 * Examples of this higher usage: 1127 * Level Usage 1128 * 14 Profiling clock (and PROM uart polling clock) 1129 * 12 Serial ports 1130 * 1131 * The serial ports request lower level processing on level 6. 1132 * 1133 * Also, almost all splN routines (where N is a number or a 1134 * mnemonic) will do a RAISE(), on the assumption that they are 1135 * never used to lower our priority. 1136 * The exceptions are: 1137 * spl8() Because you can't be above 15 to begin with! 1138 * splzs() Because this is used at boot time to lower our 1139 * priority, to allow the PROM to poll the uart. 1140 * spl0() Used to lower priority to 0. 1141 */ 1142 1143 #if defined(__lint) 1144 1145 int spl0(void) { return (0); } 1146 int spl6(void) { return (0); } 1147 int spl7(void) { return (0); } 1148 int spl8(void) { return (0); } 1149 int splhigh(void) { return (0); } 1150 int splhi(void) { return (0); } 1151 int splzs(void) { return (0); } 1152 1153 /* ARGSUSED */ 1154 void 1155 splx(int level) 1156 {} 1157 1158 #else /* __lint */ 1159 1160 #if defined(__amd64) 1161 1162 #define SETPRI(level) \ 1163 movl $/**/level, %edi; /* new priority */ \ 1164 jmp do_splx /* redirect to do_splx */ 1165 1166 #define RAISE(level) \ 1167 movl $/**/level, %edi; /* new priority */ \ 1168 jmp splr /* redirect to splr */ 1169 1170 #elif defined(__i386) 1171 1172 #define SETPRI(level) \ 1173 pushl $/**/level; /* new priority */ \ 1174 call do_splx; /* invoke common splx code */ \ 1175 addl $4, %esp; /* unstack arg */ \ 1176 ret 1177 1178 #define RAISE(level) \ 1179 pushl $/**/level; /* new priority */ \ 1180 call splr; /* invoke common splr code */ \ 1181 addl $4, %esp; /* unstack args */ \ 1182 ret 1183 1184 #endif /* __i386 */ 1185 1186 /* locks out all interrupts, including memory errors */ 1187 ENTRY(spl8) 1188 SETPRI(15) 1189 SET_SIZE(spl8) 1190 1191 /* just below the level that profiling runs */ 1192 ENTRY(spl7) 1193 RAISE(13) 1194 SET_SIZE(spl7) 1195 1196 /* sun specific - highest priority onboard serial i/o asy ports */ 1197 ENTRY(splzs) 1198 SETPRI(12) /* Can't be a RAISE, as it's used to lower us */ 1199 SET_SIZE(splzs) 1200 1201 ENTRY(splhi) 1202 ALTENTRY(splhigh) 1203 ALTENTRY(spl6) 1204 ALTENTRY(i_ddi_splhigh) 1205 1206 RAISE(DISP_LEVEL) 1207 1208 SET_SIZE(i_ddi_splhigh) 1209 SET_SIZE(spl6) 1210 SET_SIZE(splhigh) 1211 SET_SIZE(splhi) 1212 1213 /* allow all interrupts */ 1214 ENTRY(spl0) 1215 SETPRI(0) 1216 SET_SIZE(spl0) 1217 1218 1219 /* splx implementation */ 1220 ENTRY(splx) 1221 jmp do_splx /* redirect to common splx code */ 1222 SET_SIZE(splx) 1223 1224 #endif /* __lint */ 1225 1226 #if defined(__i386) 1227 1228 /* 1229 * Read and write the %gs register 1230 */ 1231 1232 #if defined(__lint) 1233 1234 /*ARGSUSED*/ 1235 uint16_t 1236 getgs(void) 1237 { return (0); } 1238 1239 /*ARGSUSED*/ 1240 void 1241 setgs(uint16_t sel) 1242 {} 1243 1244 #else /* __lint */ 1245 1246 ENTRY(getgs) 1247 clr %eax 1248 movw %gs, %ax 1249 ret 1250 SET_SIZE(getgs) 1251 1252 ENTRY(setgs) 1253 movw 4(%esp), %gs 1254 ret 1255 SET_SIZE(setgs) 1256 1257 #endif /* __lint */ 1258 #endif /* __i386 */ 1259 1260 #if defined(__lint) 1261 1262 void 1263 pc_reset(void) 1264 {} 1265 1266 void 1267 efi_reset(void) 1268 {} 1269 1270 #else /* __lint */ 1271 1272 ENTRY(wait_500ms) 1273 #if defined(__amd64) 1274 pushq %rbx 1275 #elif defined(__i386) 1276 push %ebx 1277 #endif 1278 movl $50000, %ebx 1279 1: 1280 call tenmicrosec 1281 decl %ebx 1282 jnz 1b 1283 #if defined(__amd64) 1284 popq %rbx 1285 #elif defined(__i386) 1286 pop %ebx 1287 #endif 1288 ret 1289 SET_SIZE(wait_500ms) 1290 1291 #define RESET_METHOD_KBC 1 1292 #define RESET_METHOD_PORT92 2 1293 #define RESET_METHOD_PCI 4 1294 1295 DGDEF3(pc_reset_methods, 4, 8) 1296 .long RESET_METHOD_KBC|RESET_METHOD_PORT92|RESET_METHOD_PCI; 1297 1298 ENTRY(pc_reset) 1299 1300 #if defined(__i386) 1301 testl $RESET_METHOD_KBC, pc_reset_methods 1302 #elif defined(__amd64) 1303 testl $RESET_METHOD_KBC, pc_reset_methods(%rip) 1304 #endif 1305 jz 1f 1306 1307 / 1308 / Try the classic keyboard controller-triggered reset. 1309 / 1310 movw $0x64, %dx 1311 movb $0xfe, %al 1312 outb (%dx) 1313 1314 / Wait up to 500 milliseconds here for the keyboard controller 1315 / to pull the reset line. On some systems where the keyboard 1316 / controller is slow to pull the reset line, the next reset method 1317 / may be executed (which may be bad if those systems hang when the 1318 / next reset method is used, e.g. Ferrari 3400 (doesn't like port 92), 1319 / and Ferrari 4000 (doesn't like the cf9 reset method)) 1320 1321 call wait_500ms 1322 1323 1: 1324 #if defined(__i386) 1325 testl $RESET_METHOD_PORT92, pc_reset_methods 1326 #elif defined(__amd64) 1327 testl $RESET_METHOD_PORT92, pc_reset_methods(%rip) 1328 #endif 1329 jz 3f 1330 1331 / 1332 / Try port 0x92 fast reset 1333 / 1334 movw $0x92, %dx 1335 inb (%dx) 1336 cmpb $0xff, %al / If port's not there, we should get back 0xFF 1337 je 1f 1338 testb $1, %al / If bit 0 1339 jz 2f / is clear, jump to perform the reset 1340 andb $0xfe, %al / otherwise, 1341 outb (%dx) / clear bit 0 first, then 1342 2: 1343 orb $1, %al / Set bit 0 1344 outb (%dx) / and reset the system 1345 1: 1346 1347 call wait_500ms 1348 1349 3: 1350 #if defined(__i386) 1351 testl $RESET_METHOD_PCI, pc_reset_methods 1352 #elif defined(__amd64) 1353 testl $RESET_METHOD_PCI, pc_reset_methods(%rip) 1354 #endif 1355 jz 4f 1356 1357 / Try the PCI (soft) reset vector (should work on all modern systems, 1358 / but has been shown to cause problems on 450NX systems, and some newer 1359 / systems (e.g. ATI IXP400-equipped systems)) 1360 / When resetting via this method, 2 writes are required. The first 1361 / targets bit 1 (0=hard reset without power cycle, 1=hard reset with 1362 / power cycle). 1363 / The reset occurs on the second write, during bit 2's transition from 1364 / 0->1. 1365 movw $0xcf9, %dx 1366 movb $0x2, %al / Reset mode = hard, no power cycle 1367 outb (%dx) 1368 movb $0x6, %al 1369 outb (%dx) 1370 1371 call wait_500ms 1372 1373 4: 1374 / 1375 / port 0xcf9 failed also. Last-ditch effort is to 1376 / triple-fault the CPU. 1377 / Also, use triple fault for EFI firmware 1378 / 1379 ENTRY(efi_reset) 1380 #if defined(__amd64) 1381 pushq $0x0 1382 pushq $0x0 / IDT base of 0, limit of 0 + 2 unused bytes 1383 lidt (%rsp) 1384 #elif defined(__i386) 1385 pushl $0x0 1386 pushl $0x0 / IDT base of 0, limit of 0 + 2 unused bytes 1387 lidt (%esp) 1388 #endif 1389 int $0x0 / Trigger interrupt, generate triple-fault 1390 1391 cli 1392 hlt / Wait forever 1393 /*NOTREACHED*/ 1394 SET_SIZE(efi_reset) 1395 SET_SIZE(pc_reset) 1396 1397 #endif /* __lint */ 1398 1399 /* 1400 * C callable in and out routines 1401 */ 1402 1403 #if defined(__lint) 1404 1405 /* ARGSUSED */ 1406 void 1407 outl(int port_address, uint32_t val) 1408 {} 1409 1410 #else /* __lint */ 1411 1412 #if defined(__amd64) 1413 1414 ENTRY(outl) 1415 movw %di, %dx 1416 movl %esi, %eax 1417 outl (%dx) 1418 ret 1419 SET_SIZE(outl) 1420 1421 #elif defined(__i386) 1422 1423 .set PORT, 4 1424 .set VAL, 8 1425 1426 ENTRY(outl) 1427 movw PORT(%esp), %dx 1428 movl VAL(%esp), %eax 1429 outl (%dx) 1430 ret 1431 SET_SIZE(outl) 1432 1433 #endif /* __i386 */ 1434 #endif /* __lint */ 1435 1436 #if defined(__lint) 1437 1438 /* ARGSUSED */ 1439 void 1440 outw(int port_address, uint16_t val) 1441 {} 1442 1443 #else /* __lint */ 1444 1445 #if defined(__amd64) 1446 1447 ENTRY(outw) 1448 movw %di, %dx 1449 movw %si, %ax 1450 D16 outl (%dx) /* XX64 why not outw? */ 1451 ret 1452 SET_SIZE(outw) 1453 1454 #elif defined(__i386) 1455 1456 ENTRY(outw) 1457 movw PORT(%esp), %dx 1458 movw VAL(%esp), %ax 1459 D16 outl (%dx) 1460 ret 1461 SET_SIZE(outw) 1462 1463 #endif /* __i386 */ 1464 #endif /* __lint */ 1465 1466 #if defined(__lint) 1467 1468 /* ARGSUSED */ 1469 void 1470 outb(int port_address, uint8_t val) 1471 {} 1472 1473 #else /* __lint */ 1474 1475 #if defined(__amd64) 1476 1477 ENTRY(outb) 1478 movw %di, %dx 1479 movb %sil, %al 1480 outb (%dx) 1481 ret 1482 SET_SIZE(outb) 1483 1484 #elif defined(__i386) 1485 1486 ENTRY(outb) 1487 movw PORT(%esp), %dx 1488 movb VAL(%esp), %al 1489 outb (%dx) 1490 ret 1491 SET_SIZE(outb) 1492 1493 #endif /* __i386 */ 1494 #endif /* __lint */ 1495 1496 #if defined(__lint) 1497 1498 /* ARGSUSED */ 1499 uint32_t 1500 inl(int port_address) 1501 { return (0); } 1502 1503 #else /* __lint */ 1504 1505 #if defined(__amd64) 1506 1507 ENTRY(inl) 1508 xorl %eax, %eax 1509 movw %di, %dx 1510 inl (%dx) 1511 ret 1512 SET_SIZE(inl) 1513 1514 #elif defined(__i386) 1515 1516 ENTRY(inl) 1517 movw PORT(%esp), %dx 1518 inl (%dx) 1519 ret 1520 SET_SIZE(inl) 1521 1522 #endif /* __i386 */ 1523 #endif /* __lint */ 1524 1525 #if defined(__lint) 1526 1527 /* ARGSUSED */ 1528 uint16_t 1529 inw(int port_address) 1530 { return (0); } 1531 1532 #else /* __lint */ 1533 1534 #if defined(__amd64) 1535 1536 ENTRY(inw) 1537 xorl %eax, %eax 1538 movw %di, %dx 1539 D16 inl (%dx) 1540 ret 1541 SET_SIZE(inw) 1542 1543 #elif defined(__i386) 1544 1545 ENTRY(inw) 1546 subl %eax, %eax 1547 movw PORT(%esp), %dx 1548 D16 inl (%dx) 1549 ret 1550 SET_SIZE(inw) 1551 1552 #endif /* __i386 */ 1553 #endif /* __lint */ 1554 1555 1556 #if defined(__lint) 1557 1558 /* ARGSUSED */ 1559 uint8_t 1560 inb(int port_address) 1561 { return (0); } 1562 1563 #else /* __lint */ 1564 1565 #if defined(__amd64) 1566 1567 ENTRY(inb) 1568 xorl %eax, %eax 1569 movw %di, %dx 1570 inb (%dx) 1571 ret 1572 SET_SIZE(inb) 1573 1574 #elif defined(__i386) 1575 1576 ENTRY(inb) 1577 subl %eax, %eax 1578 movw PORT(%esp), %dx 1579 inb (%dx) 1580 ret 1581 SET_SIZE(inb) 1582 1583 #endif /* __i386 */ 1584 #endif /* __lint */ 1585 1586 1587 #if defined(__lint) 1588 1589 /* ARGSUSED */ 1590 void 1591 repoutsw(int port, uint16_t *addr, int cnt) 1592 {} 1593 1594 #else /* __lint */ 1595 1596 #if defined(__amd64) 1597 1598 ENTRY(repoutsw) 1599 movl %edx, %ecx 1600 movw %di, %dx 1601 rep 1602 D16 outsl 1603 ret 1604 SET_SIZE(repoutsw) 1605 1606 #elif defined(__i386) 1607 1608 /* 1609 * The arguments and saved registers are on the stack in the 1610 * following order: 1611 * | cnt | +16 1612 * | *addr | +12 1613 * | port | +8 1614 * | eip | +4 1615 * | esi | <-- %esp 1616 * If additional values are pushed onto the stack, make sure 1617 * to adjust the following constants accordingly. 1618 */ 1619 .set PORT, 8 1620 .set ADDR, 12 1621 .set COUNT, 16 1622 1623 ENTRY(repoutsw) 1624 pushl %esi 1625 movl PORT(%esp), %edx 1626 movl ADDR(%esp), %esi 1627 movl COUNT(%esp), %ecx 1628 rep 1629 D16 outsl 1630 popl %esi 1631 ret 1632 SET_SIZE(repoutsw) 1633 1634 #endif /* __i386 */ 1635 #endif /* __lint */ 1636 1637 1638 #if defined(__lint) 1639 1640 /* ARGSUSED */ 1641 void 1642 repinsw(int port_addr, uint16_t *addr, int cnt) 1643 {} 1644 1645 #else /* __lint */ 1646 1647 #if defined(__amd64) 1648 1649 ENTRY(repinsw) 1650 movl %edx, %ecx 1651 movw %di, %dx 1652 rep 1653 D16 insl 1654 ret 1655 SET_SIZE(repinsw) 1656 1657 #elif defined(__i386) 1658 1659 ENTRY(repinsw) 1660 pushl %edi 1661 movl PORT(%esp), %edx 1662 movl ADDR(%esp), %edi 1663 movl COUNT(%esp), %ecx 1664 rep 1665 D16 insl 1666 popl %edi 1667 ret 1668 SET_SIZE(repinsw) 1669 1670 #endif /* __i386 */ 1671 #endif /* __lint */ 1672 1673 1674 #if defined(__lint) 1675 1676 /* ARGSUSED */ 1677 void 1678 repinsb(int port, uint8_t *addr, int count) 1679 {} 1680 1681 #else /* __lint */ 1682 1683 #if defined(__amd64) 1684 1685 ENTRY(repinsb) 1686 movl %edx, %ecx 1687 movw %di, %dx 1688 movq %rsi, %rdi 1689 rep 1690 insb 1691 ret 1692 SET_SIZE(repinsb) 1693 1694 #elif defined(__i386) 1695 1696 /* 1697 * The arguments and saved registers are on the stack in the 1698 * following order: 1699 * | cnt | +16 1700 * | *addr | +12 1701 * | port | +8 1702 * | eip | +4 1703 * | esi | <-- %esp 1704 * If additional values are pushed onto the stack, make sure 1705 * to adjust the following constants accordingly. 1706 */ 1707 .set IO_PORT, 8 1708 .set IO_ADDR, 12 1709 .set IO_COUNT, 16 1710 1711 ENTRY(repinsb) 1712 pushl %edi 1713 movl IO_ADDR(%esp), %edi 1714 movl IO_COUNT(%esp), %ecx 1715 movl IO_PORT(%esp), %edx 1716 rep 1717 insb 1718 popl %edi 1719 ret 1720 SET_SIZE(repinsb) 1721 1722 #endif /* __i386 */ 1723 #endif /* __lint */ 1724 1725 1726 /* 1727 * Input a stream of 32-bit words. 1728 * NOTE: count is a DWORD count. 1729 */ 1730 #if defined(__lint) 1731 1732 /* ARGSUSED */ 1733 void 1734 repinsd(int port, uint32_t *addr, int count) 1735 {} 1736 1737 #else /* __lint */ 1738 1739 #if defined(__amd64) 1740 1741 ENTRY(repinsd) 1742 movl %edx, %ecx 1743 movw %di, %dx 1744 movq %rsi, %rdi 1745 rep 1746 insl 1747 ret 1748 SET_SIZE(repinsd) 1749 1750 #elif defined(__i386) 1751 1752 ENTRY(repinsd) 1753 pushl %edi 1754 movl IO_ADDR(%esp), %edi 1755 movl IO_COUNT(%esp), %ecx 1756 movl IO_PORT(%esp), %edx 1757 rep 1758 insl 1759 popl %edi 1760 ret 1761 SET_SIZE(repinsd) 1762 1763 #endif /* __i386 */ 1764 #endif /* __lint */ 1765 1766 /* 1767 * Output a stream of bytes 1768 * NOTE: count is a byte count 1769 */ 1770 #if defined(__lint) 1771 1772 /* ARGSUSED */ 1773 void 1774 repoutsb(int port, uint8_t *addr, int count) 1775 {} 1776 1777 #else /* __lint */ 1778 1779 #if defined(__amd64) 1780 1781 ENTRY(repoutsb) 1782 movl %edx, %ecx 1783 movw %di, %dx 1784 rep 1785 outsb 1786 ret 1787 SET_SIZE(repoutsb) 1788 1789 #elif defined(__i386) 1790 1791 ENTRY(repoutsb) 1792 pushl %esi 1793 movl IO_ADDR(%esp), %esi 1794 movl IO_COUNT(%esp), %ecx 1795 movl IO_PORT(%esp), %edx 1796 rep 1797 outsb 1798 popl %esi 1799 ret 1800 SET_SIZE(repoutsb) 1801 1802 #endif /* __i386 */ 1803 #endif /* __lint */ 1804 1805 /* 1806 * Output a stream of 32-bit words 1807 * NOTE: count is a DWORD count 1808 */ 1809 #if defined(__lint) 1810 1811 /* ARGSUSED */ 1812 void 1813 repoutsd(int port, uint32_t *addr, int count) 1814 {} 1815 1816 #else /* __lint */ 1817 1818 #if defined(__amd64) 1819 1820 ENTRY(repoutsd) 1821 movl %edx, %ecx 1822 movw %di, %dx 1823 rep 1824 outsl 1825 ret 1826 SET_SIZE(repoutsd) 1827 1828 #elif defined(__i386) 1829 1830 ENTRY(repoutsd) 1831 pushl %esi 1832 movl IO_ADDR(%esp), %esi 1833 movl IO_COUNT(%esp), %ecx 1834 movl IO_PORT(%esp), %edx 1835 rep 1836 outsl 1837 popl %esi 1838 ret 1839 SET_SIZE(repoutsd) 1840 1841 #endif /* __i386 */ 1842 #endif /* __lint */ 1843 1844 /* 1845 * void int3(void) 1846 * void int18(void) 1847 * void int20(void) 1848 * void int_cmci(void) 1849 */ 1850 1851 #if defined(__lint) 1852 1853 void 1854 int3(void) 1855 {} 1856 1857 void 1858 int18(void) 1859 {} 1860 1861 void 1862 int20(void) 1863 {} 1864 1865 void 1866 int_cmci(void) 1867 {} 1868 1869 #else /* __lint */ 1870 1871 ENTRY(int3) 1872 int $T_BPTFLT 1873 ret 1874 SET_SIZE(int3) 1875 1876 ENTRY(int18) 1877 int $T_MCE 1878 ret 1879 SET_SIZE(int18) 1880 1881 ENTRY(int20) 1882 movl boothowto, %eax 1883 andl $RB_DEBUG, %eax 1884 jz 1f 1885 1886 int $T_DBGENTR 1887 1: 1888 rep; ret /* use 2 byte return instruction when branch target */ 1889 /* AMD Software Optimization Guide - Section 6.2 */ 1890 SET_SIZE(int20) 1891 1892 ENTRY(int_cmci) 1893 int $T_ENOEXTFLT 1894 ret 1895 SET_SIZE(int_cmci) 1896 1897 #endif /* __lint */ 1898 1899 #if defined(__lint) 1900 1901 /* ARGSUSED */ 1902 int 1903 scanc(size_t size, uchar_t *cp, uchar_t *table, uchar_t mask) 1904 { return (0); } 1905 1906 #else /* __lint */ 1907 1908 #if defined(__amd64) 1909 1910 ENTRY(scanc) 1911 /* rdi == size */ 1912 /* rsi == cp */ 1913 /* rdx == table */ 1914 /* rcx == mask */ 1915 addq %rsi, %rdi /* end = &cp[size] */ 1916 .scanloop: 1917 cmpq %rdi, %rsi /* while (cp < end */ 1918 jnb .scandone 1919 movzbq (%rsi), %r8 /* %r8 = *cp */ 1920 incq %rsi /* cp++ */ 1921 testb %cl, (%r8, %rdx) 1922 jz .scanloop /* && (table[*cp] & mask) == 0) */ 1923 decq %rsi /* (fix post-increment) */ 1924 .scandone: 1925 movl %edi, %eax 1926 subl %esi, %eax /* return (end - cp) */ 1927 ret 1928 SET_SIZE(scanc) 1929 1930 #elif defined(__i386) 1931 1932 ENTRY(scanc) 1933 pushl %edi 1934 pushl %esi 1935 movb 24(%esp), %cl /* mask = %cl */ 1936 movl 16(%esp), %esi /* cp = %esi */ 1937 movl 20(%esp), %edx /* table = %edx */ 1938 movl %esi, %edi 1939 addl 12(%esp), %edi /* end = &cp[size]; */ 1940 .scanloop: 1941 cmpl %edi, %esi /* while (cp < end */ 1942 jnb .scandone 1943 movzbl (%esi), %eax /* %al = *cp */ 1944 incl %esi /* cp++ */ 1945 movb (%edx, %eax), %al /* %al = table[*cp] */ 1946 testb %al, %cl 1947 jz .scanloop /* && (table[*cp] & mask) == 0) */ 1948 dec %esi /* post-incremented */ 1949 .scandone: 1950 movl %edi, %eax 1951 subl %esi, %eax /* return (end - cp) */ 1952 popl %esi 1953 popl %edi 1954 ret 1955 SET_SIZE(scanc) 1956 1957 #endif /* __i386 */ 1958 #endif /* __lint */ 1959 1960 /* 1961 * Replacement functions for ones that are normally inlined. 1962 * In addition to the copy in i86.il, they are defined here just in case. 1963 */ 1964 1965 #if defined(__lint) 1966 1967 ulong_t 1968 intr_clear(void) 1969 { return (0); } 1970 1971 ulong_t 1972 clear_int_flag(void) 1973 { return (0); } 1974 1975 #else /* __lint */ 1976 1977 #if defined(__amd64) 1978 1979 ENTRY(intr_clear) 1980 ENTRY(clear_int_flag) 1981 pushfq 1982 popq %rax 1983 #if defined(__xpv) 1984 leaq xpv_panicking, %rdi 1985 movl (%rdi), %edi 1986 cmpl $0, %edi 1987 jne 2f 1988 CLIRET(%rdi, %dl) /* returns event mask in %dl */ 1989 /* 1990 * Synthesize the PS_IE bit from the event mask bit 1991 */ 1992 andq $_BITNOT(PS_IE), %rax 1993 testb $1, %dl 1994 jnz 1f 1995 orq $PS_IE, %rax 1996 1: 1997 ret 1998 2: 1999 #endif 2000 CLI(%rdi) 2001 ret 2002 SET_SIZE(clear_int_flag) 2003 SET_SIZE(intr_clear) 2004 2005 #elif defined(__i386) 2006 2007 ENTRY(intr_clear) 2008 ENTRY(clear_int_flag) 2009 pushfl 2010 popl %eax 2011 #if defined(__xpv) 2012 leal xpv_panicking, %edx 2013 movl (%edx), %edx 2014 cmpl $0, %edx 2015 jne 2f 2016 CLIRET(%edx, %cl) /* returns event mask in %cl */ 2017 /* 2018 * Synthesize the PS_IE bit from the event mask bit 2019 */ 2020 andl $_BITNOT(PS_IE), %eax 2021 testb $1, %cl 2022 jnz 1f 2023 orl $PS_IE, %eax 2024 1: 2025 ret 2026 2: 2027 #endif 2028 CLI(%edx) 2029 ret 2030 SET_SIZE(clear_int_flag) 2031 SET_SIZE(intr_clear) 2032 2033 #endif /* __i386 */ 2034 #endif /* __lint */ 2035 2036 #if defined(__lint) 2037 2038 struct cpu * 2039 curcpup(void) 2040 { return 0; } 2041 2042 #else /* __lint */ 2043 2044 #if defined(__amd64) 2045 2046 ENTRY(curcpup) 2047 movq %gs:CPU_SELF, %rax 2048 ret 2049 SET_SIZE(curcpup) 2050 2051 #elif defined(__i386) 2052 2053 ENTRY(curcpup) 2054 movl %gs:CPU_SELF, %eax 2055 ret 2056 SET_SIZE(curcpup) 2057 2058 #endif /* __i386 */ 2059 #endif /* __lint */ 2060 2061 /* htonll(), ntohll(), htonl(), ntohl(), htons(), ntohs() 2062 * These functions reverse the byte order of the input parameter and returns 2063 * the result. This is to convert the byte order from host byte order 2064 * (little endian) to network byte order (big endian), or vice versa. 2065 */ 2066 2067 #if defined(__lint) 2068 2069 uint64_t 2070 htonll(uint64_t i) 2071 { return (i); } 2072 2073 uint64_t 2074 ntohll(uint64_t i) 2075 { return (i); } 2076 2077 uint32_t 2078 htonl(uint32_t i) 2079 { return (i); } 2080 2081 uint32_t 2082 ntohl(uint32_t i) 2083 { return (i); } 2084 2085 uint16_t 2086 htons(uint16_t i) 2087 { return (i); } 2088 2089 uint16_t 2090 ntohs(uint16_t i) 2091 { return (i); } 2092 2093 #else /* __lint */ 2094 2095 #if defined(__amd64) 2096 2097 ENTRY(htonll) 2098 ALTENTRY(ntohll) 2099 movq %rdi, %rax 2100 bswapq %rax 2101 ret 2102 SET_SIZE(ntohll) 2103 SET_SIZE(htonll) 2104 2105 /* XX64 there must be shorter sequences for this */ 2106 ENTRY(htonl) 2107 ALTENTRY(ntohl) 2108 movl %edi, %eax 2109 bswap %eax 2110 ret 2111 SET_SIZE(ntohl) 2112 SET_SIZE(htonl) 2113 2114 /* XX64 there must be better sequences for this */ 2115 ENTRY(htons) 2116 ALTENTRY(ntohs) 2117 movl %edi, %eax 2118 bswap %eax 2119 shrl $16, %eax 2120 ret 2121 SET_SIZE(ntohs) 2122 SET_SIZE(htons) 2123 2124 #elif defined(__i386) 2125 2126 ENTRY(htonll) 2127 ALTENTRY(ntohll) 2128 movl 4(%esp), %edx 2129 movl 8(%esp), %eax 2130 bswap %edx 2131 bswap %eax 2132 ret 2133 SET_SIZE(ntohll) 2134 SET_SIZE(htonll) 2135 2136 ENTRY(htonl) 2137 ALTENTRY(ntohl) 2138 movl 4(%esp), %eax 2139 bswap %eax 2140 ret 2141 SET_SIZE(ntohl) 2142 SET_SIZE(htonl) 2143 2144 ENTRY(htons) 2145 ALTENTRY(ntohs) 2146 movl 4(%esp), %eax 2147 bswap %eax 2148 shrl $16, %eax 2149 ret 2150 SET_SIZE(ntohs) 2151 SET_SIZE(htons) 2152 2153 #endif /* __i386 */ 2154 #endif /* __lint */ 2155 2156 2157 #if defined(__lint) 2158 2159 /* ARGSUSED */ 2160 void 2161 intr_restore(ulong_t i) 2162 { return; } 2163 2164 /* ARGSUSED */ 2165 void 2166 restore_int_flag(ulong_t i) 2167 { return; } 2168 2169 #else /* __lint */ 2170 2171 #if defined(__amd64) 2172 2173 ENTRY(intr_restore) 2174 ENTRY(restore_int_flag) 2175 testq $PS_IE, %rdi 2176 jz 1f 2177 #if defined(__xpv) 2178 leaq xpv_panicking, %rsi 2179 movl (%rsi), %esi 2180 cmpl $0, %esi 2181 jne 1f 2182 /* 2183 * Since we're -really- running unprivileged, our attempt 2184 * to change the state of the IF bit will be ignored. 2185 * The virtual IF bit is tweaked by CLI and STI. 2186 */ 2187 IE_TO_EVENT_MASK(%rsi, %rdi) 2188 #else 2189 sti 2190 #endif 2191 1: 2192 ret 2193 SET_SIZE(restore_int_flag) 2194 SET_SIZE(intr_restore) 2195 2196 #elif defined(__i386) 2197 2198 ENTRY(intr_restore) 2199 ENTRY(restore_int_flag) 2200 testl $PS_IE, 4(%esp) 2201 jz 1f 2202 #if defined(__xpv) 2203 leal xpv_panicking, %edx 2204 movl (%edx), %edx 2205 cmpl $0, %edx 2206 jne 1f 2207 /* 2208 * Since we're -really- running unprivileged, our attempt 2209 * to change the state of the IF bit will be ignored. 2210 * The virtual IF bit is tweaked by CLI and STI. 2211 */ 2212 IE_TO_EVENT_MASK(%edx, 4(%esp)) 2213 #else 2214 sti 2215 #endif 2216 1: 2217 ret 2218 SET_SIZE(restore_int_flag) 2219 SET_SIZE(intr_restore) 2220 2221 #endif /* __i386 */ 2222 #endif /* __lint */ 2223 2224 #if defined(__lint) 2225 2226 void 2227 sti(void) 2228 {} 2229 2230 void 2231 cli(void) 2232 {} 2233 2234 #else /* __lint */ 2235 2236 ENTRY(sti) 2237 STI 2238 ret 2239 SET_SIZE(sti) 2240 2241 ENTRY(cli) 2242 #if defined(__amd64) 2243 CLI(%rax) 2244 #elif defined(__i386) 2245 CLI(%eax) 2246 #endif /* __i386 */ 2247 ret 2248 SET_SIZE(cli) 2249 2250 #endif /* __lint */ 2251 2252 #if defined(__lint) 2253 2254 dtrace_icookie_t 2255 dtrace_interrupt_disable(void) 2256 { return (0); } 2257 2258 #else /* __lint */ 2259 2260 #if defined(__amd64) 2261 2262 ENTRY(dtrace_interrupt_disable) 2263 pushfq 2264 popq %rax 2265 #if defined(__xpv) 2266 leaq xpv_panicking, %rdi 2267 movl (%rdi), %edi 2268 cmpl $0, %edi 2269 jne .dtrace_interrupt_disable_done 2270 CLIRET(%rdi, %dl) /* returns event mask in %dl */ 2271 /* 2272 * Synthesize the PS_IE bit from the event mask bit 2273 */ 2274 andq $_BITNOT(PS_IE), %rax 2275 testb $1, %dl 2276 jnz .dtrace_interrupt_disable_done 2277 orq $PS_IE, %rax 2278 #else 2279 CLI(%rdx) 2280 #endif 2281 .dtrace_interrupt_disable_done: 2282 ret 2283 SET_SIZE(dtrace_interrupt_disable) 2284 2285 #elif defined(__i386) 2286 2287 ENTRY(dtrace_interrupt_disable) 2288 pushfl 2289 popl %eax 2290 #if defined(__xpv) 2291 leal xpv_panicking, %edx 2292 movl (%edx), %edx 2293 cmpl $0, %edx 2294 jne .dtrace_interrupt_disable_done 2295 CLIRET(%edx, %cl) /* returns event mask in %cl */ 2296 /* 2297 * Synthesize the PS_IE bit from the event mask bit 2298 */ 2299 andl $_BITNOT(PS_IE), %eax 2300 testb $1, %cl 2301 jnz .dtrace_interrupt_disable_done 2302 orl $PS_IE, %eax 2303 #else 2304 CLI(%edx) 2305 #endif 2306 .dtrace_interrupt_disable_done: 2307 ret 2308 SET_SIZE(dtrace_interrupt_disable) 2309 2310 #endif /* __i386 */ 2311 #endif /* __lint */ 2312 2313 #if defined(__lint) 2314 2315 /*ARGSUSED*/ 2316 void 2317 dtrace_interrupt_enable(dtrace_icookie_t cookie) 2318 {} 2319 2320 #else /* __lint */ 2321 2322 #if defined(__amd64) 2323 2324 ENTRY(dtrace_interrupt_enable) 2325 pushq %rdi 2326 popfq 2327 #if defined(__xpv) 2328 leaq xpv_panicking, %rdx 2329 movl (%rdx), %edx 2330 cmpl $0, %edx 2331 jne .dtrace_interrupt_enable_done 2332 /* 2333 * Since we're -really- running unprivileged, our attempt 2334 * to change the state of the IF bit will be ignored. The 2335 * virtual IF bit is tweaked by CLI and STI. 2336 */ 2337 IE_TO_EVENT_MASK(%rdx, %rdi) 2338 #endif 2339 .dtrace_interrupt_enable_done: 2340 ret 2341 SET_SIZE(dtrace_interrupt_enable) 2342 2343 #elif defined(__i386) 2344 2345 ENTRY(dtrace_interrupt_enable) 2346 movl 4(%esp), %eax 2347 pushl %eax 2348 popfl 2349 #if defined(__xpv) 2350 leal xpv_panicking, %edx 2351 movl (%edx), %edx 2352 cmpl $0, %edx 2353 jne .dtrace_interrupt_enable_done 2354 /* 2355 * Since we're -really- running unprivileged, our attempt 2356 * to change the state of the IF bit will be ignored. The 2357 * virtual IF bit is tweaked by CLI and STI. 2358 */ 2359 IE_TO_EVENT_MASK(%edx, %eax) 2360 #endif 2361 .dtrace_interrupt_enable_done: 2362 ret 2363 SET_SIZE(dtrace_interrupt_enable) 2364 2365 #endif /* __i386 */ 2366 #endif /* __lint */ 2367 2368 2369 #if defined(lint) 2370 2371 void 2372 dtrace_membar_producer(void) 2373 {} 2374 2375 void 2376 dtrace_membar_consumer(void) 2377 {} 2378 2379 #else /* __lint */ 2380 2381 ENTRY(dtrace_membar_producer) 2382 rep; ret /* use 2 byte return instruction when branch target */ 2383 /* AMD Software Optimization Guide - Section 6.2 */ 2384 SET_SIZE(dtrace_membar_producer) 2385 2386 ENTRY(dtrace_membar_consumer) 2387 rep; ret /* use 2 byte return instruction when branch target */ 2388 /* AMD Software Optimization Guide - Section 6.2 */ 2389 SET_SIZE(dtrace_membar_consumer) 2390 2391 #endif /* __lint */ 2392 2393 #if defined(__lint) 2394 2395 kthread_id_t 2396 threadp(void) 2397 { return ((kthread_id_t)0); } 2398 2399 #else /* __lint */ 2400 2401 #if defined(__amd64) 2402 2403 ENTRY(threadp) 2404 movq %gs:CPU_THREAD, %rax 2405 ret 2406 SET_SIZE(threadp) 2407 2408 #elif defined(__i386) 2409 2410 ENTRY(threadp) 2411 movl %gs:CPU_THREAD, %eax 2412 ret 2413 SET_SIZE(threadp) 2414 2415 #endif /* __i386 */ 2416 #endif /* __lint */ 2417 2418 /* 2419 * Checksum routine for Internet Protocol Headers 2420 */ 2421 2422 #if defined(__lint) 2423 2424 /* ARGSUSED */ 2425 unsigned int 2426 ip_ocsum( 2427 ushort_t *address, /* ptr to 1st message buffer */ 2428 int halfword_count, /* length of data */ 2429 unsigned int sum) /* partial checksum */ 2430 { 2431 int i; 2432 unsigned int psum = 0; /* partial sum */ 2433 2434 for (i = 0; i < halfword_count; i++, address++) { 2435 psum += *address; 2436 } 2437 2438 while ((psum >> 16) != 0) { 2439 psum = (psum & 0xffff) + (psum >> 16); 2440 } 2441 2442 psum += sum; 2443 2444 while ((psum >> 16) != 0) { 2445 psum = (psum & 0xffff) + (psum >> 16); 2446 } 2447 2448 return (psum); 2449 } 2450 2451 #else /* __lint */ 2452 2453 #if defined(__amd64) 2454 2455 ENTRY(ip_ocsum) 2456 pushq %rbp 2457 movq %rsp, %rbp 2458 #ifdef DEBUG 2459 movq postbootkernelbase(%rip), %rax 2460 cmpq %rax, %rdi 2461 jnb 1f 2462 xorl %eax, %eax 2463 movq %rdi, %rsi 2464 leaq .ip_ocsum_panic_msg(%rip), %rdi 2465 call panic 2466 /*NOTREACHED*/ 2467 .ip_ocsum_panic_msg: 2468 .string "ip_ocsum: address 0x%p below kernelbase\n" 2469 1: 2470 #endif 2471 movl %esi, %ecx /* halfword_count */ 2472 movq %rdi, %rsi /* address */ 2473 /* partial sum in %edx */ 2474 xorl %eax, %eax 2475 testl %ecx, %ecx 2476 jz .ip_ocsum_done 2477 testq $3, %rsi 2478 jnz .ip_csum_notaligned 2479 .ip_csum_aligned: /* XX64 opportunities for 8-byte operations? */ 2480 .next_iter: 2481 /* XX64 opportunities for prefetch? */ 2482 /* XX64 compute csum with 64 bit quantities? */ 2483 subl $32, %ecx 2484 jl .less_than_32 2485 2486 addl 0(%rsi), %edx 2487 .only60: 2488 adcl 4(%rsi), %eax 2489 .only56: 2490 adcl 8(%rsi), %edx 2491 .only52: 2492 adcl 12(%rsi), %eax 2493 .only48: 2494 adcl 16(%rsi), %edx 2495 .only44: 2496 adcl 20(%rsi), %eax 2497 .only40: 2498 adcl 24(%rsi), %edx 2499 .only36: 2500 adcl 28(%rsi), %eax 2501 .only32: 2502 adcl 32(%rsi), %edx 2503 .only28: 2504 adcl 36(%rsi), %eax 2505 .only24: 2506 adcl 40(%rsi), %edx 2507 .only20: 2508 adcl 44(%rsi), %eax 2509 .only16: 2510 adcl 48(%rsi), %edx 2511 .only12: 2512 adcl 52(%rsi), %eax 2513 .only8: 2514 adcl 56(%rsi), %edx 2515 .only4: 2516 adcl 60(%rsi), %eax /* could be adding -1 and -1 with a carry */ 2517 .only0: 2518 adcl $0, %eax /* could be adding -1 in eax with a carry */ 2519 adcl $0, %eax 2520 2521 addq $64, %rsi 2522 testl %ecx, %ecx 2523 jnz .next_iter 2524 2525 .ip_ocsum_done: 2526 addl %eax, %edx 2527 adcl $0, %edx 2528 movl %edx, %eax /* form a 16 bit checksum by */ 2529 shrl $16, %eax /* adding two halves of 32 bit checksum */ 2530 addw %dx, %ax 2531 adcw $0, %ax 2532 andl $0xffff, %eax 2533 leave 2534 ret 2535 2536 .ip_csum_notaligned: 2537 xorl %edi, %edi 2538 movw (%rsi), %di 2539 addl %edi, %edx 2540 adcl $0, %edx 2541 addq $2, %rsi 2542 decl %ecx 2543 jmp .ip_csum_aligned 2544 2545 .less_than_32: 2546 addl $32, %ecx 2547 testl $1, %ecx 2548 jz .size_aligned 2549 andl $0xfe, %ecx 2550 movzwl (%rsi, %rcx, 2), %edi 2551 addl %edi, %edx 2552 adcl $0, %edx 2553 .size_aligned: 2554 movl %ecx, %edi 2555 shrl $1, %ecx 2556 shl $1, %edi 2557 subq $64, %rdi 2558 addq %rdi, %rsi 2559 leaq .ip_ocsum_jmptbl(%rip), %rdi 2560 leaq (%rdi, %rcx, 8), %rdi 2561 xorl %ecx, %ecx 2562 clc 2563 jmp *(%rdi) 2564 2565 .align 8 2566 .ip_ocsum_jmptbl: 2567 .quad .only0, .only4, .only8, .only12, .only16, .only20 2568 .quad .only24, .only28, .only32, .only36, .only40, .only44 2569 .quad .only48, .only52, .only56, .only60 2570 SET_SIZE(ip_ocsum) 2571 2572 #elif defined(__i386) 2573 2574 ENTRY(ip_ocsum) 2575 pushl %ebp 2576 movl %esp, %ebp 2577 pushl %ebx 2578 pushl %esi 2579 pushl %edi 2580 movl 12(%ebp), %ecx /* count of half words */ 2581 movl 16(%ebp), %edx /* partial checksum */ 2582 movl 8(%ebp), %esi 2583 xorl %eax, %eax 2584 testl %ecx, %ecx 2585 jz .ip_ocsum_done 2586 2587 testl $3, %esi 2588 jnz .ip_csum_notaligned 2589 .ip_csum_aligned: 2590 .next_iter: 2591 subl $32, %ecx 2592 jl .less_than_32 2593 2594 addl 0(%esi), %edx 2595 .only60: 2596 adcl 4(%esi), %eax 2597 .only56: 2598 adcl 8(%esi), %edx 2599 .only52: 2600 adcl 12(%esi), %eax 2601 .only48: 2602 adcl 16(%esi), %edx 2603 .only44: 2604 adcl 20(%esi), %eax 2605 .only40: 2606 adcl 24(%esi), %edx 2607 .only36: 2608 adcl 28(%esi), %eax 2609 .only32: 2610 adcl 32(%esi), %edx 2611 .only28: 2612 adcl 36(%esi), %eax 2613 .only24: 2614 adcl 40(%esi), %edx 2615 .only20: 2616 adcl 44(%esi), %eax 2617 .only16: 2618 adcl 48(%esi), %edx 2619 .only12: 2620 adcl 52(%esi), %eax 2621 .only8: 2622 adcl 56(%esi), %edx 2623 .only4: 2624 adcl 60(%esi), %eax /* We could be adding -1 and -1 with a carry */ 2625 .only0: 2626 adcl $0, %eax /* we could be adding -1 in eax with a carry */ 2627 adcl $0, %eax 2628 2629 addl $64, %esi 2630 andl %ecx, %ecx 2631 jnz .next_iter 2632 2633 .ip_ocsum_done: 2634 addl %eax, %edx 2635 adcl $0, %edx 2636 movl %edx, %eax /* form a 16 bit checksum by */ 2637 shrl $16, %eax /* adding two halves of 32 bit checksum */ 2638 addw %dx, %ax 2639 adcw $0, %ax 2640 andl $0xffff, %eax 2641 popl %edi /* restore registers */ 2642 popl %esi 2643 popl %ebx 2644 leave 2645 ret 2646 2647 .ip_csum_notaligned: 2648 xorl %edi, %edi 2649 movw (%esi), %di 2650 addl %edi, %edx 2651 adcl $0, %edx 2652 addl $2, %esi 2653 decl %ecx 2654 jmp .ip_csum_aligned 2655 2656 .less_than_32: 2657 addl $32, %ecx 2658 testl $1, %ecx 2659 jz .size_aligned 2660 andl $0xfe, %ecx 2661 movzwl (%esi, %ecx, 2), %edi 2662 addl %edi, %edx 2663 adcl $0, %edx 2664 .size_aligned: 2665 movl %ecx, %edi 2666 shrl $1, %ecx 2667 shl $1, %edi 2668 subl $64, %edi 2669 addl %edi, %esi 2670 movl $.ip_ocsum_jmptbl, %edi 2671 lea (%edi, %ecx, 4), %edi 2672 xorl %ecx, %ecx 2673 clc 2674 jmp *(%edi) 2675 SET_SIZE(ip_ocsum) 2676 2677 .data 2678 .align 4 2679 2680 .ip_ocsum_jmptbl: 2681 .long .only0, .only4, .only8, .only12, .only16, .only20 2682 .long .only24, .only28, .only32, .only36, .only40, .only44 2683 .long .only48, .only52, .only56, .only60 2684 2685 2686 #endif /* __i386 */ 2687 #endif /* __lint */ 2688 2689 /* 2690 * multiply two long numbers and yield a u_longlong_t result, callable from C. 2691 * Provided to manipulate hrtime_t values. 2692 */ 2693 #if defined(__lint) 2694 2695 /* result = a * b; */ 2696 2697 /* ARGSUSED */ 2698 unsigned long long 2699 mul32(uint_t a, uint_t b) 2700 { return (0); } 2701 2702 #else /* __lint */ 2703 2704 #if defined(__amd64) 2705 2706 ENTRY(mul32) 2707 xorl %edx, %edx /* XX64 joe, paranoia? */ 2708 movl %edi, %eax 2709 mull %esi 2710 shlq $32, %rdx 2711 orq %rdx, %rax 2712 ret 2713 SET_SIZE(mul32) 2714 2715 #elif defined(__i386) 2716 2717 ENTRY(mul32) 2718 movl 8(%esp), %eax 2719 movl 4(%esp), %ecx 2720 mull %ecx 2721 ret 2722 SET_SIZE(mul32) 2723 2724 #endif /* __i386 */ 2725 #endif /* __lint */ 2726 2727 #if defined(notused) 2728 #if defined(__lint) 2729 /* ARGSUSED */ 2730 void 2731 load_pte64(uint64_t *pte, uint64_t pte_value) 2732 {} 2733 #else /* __lint */ 2734 .globl load_pte64 2735 load_pte64: 2736 movl 4(%esp), %eax 2737 movl 8(%esp), %ecx 2738 movl 12(%esp), %edx 2739 movl %edx, 4(%eax) 2740 movl %ecx, (%eax) 2741 ret 2742 #endif /* __lint */ 2743 #endif /* notused */ 2744 2745 #if defined(__lint) 2746 2747 /*ARGSUSED*/ 2748 void 2749 scan_memory(caddr_t addr, size_t size) 2750 {} 2751 2752 #else /* __lint */ 2753 2754 #if defined(__amd64) 2755 2756 ENTRY(scan_memory) 2757 shrq $3, %rsi /* convert %rsi from byte to quadword count */ 2758 jz .scanm_done 2759 movq %rsi, %rcx /* move count into rep control register */ 2760 movq %rdi, %rsi /* move addr into lodsq control reg. */ 2761 rep lodsq /* scan the memory range */ 2762 .scanm_done: 2763 rep; ret /* use 2 byte return instruction when branch target */ 2764 /* AMD Software Optimization Guide - Section 6.2 */ 2765 SET_SIZE(scan_memory) 2766 2767 #elif defined(__i386) 2768 2769 ENTRY(scan_memory) 2770 pushl %ecx 2771 pushl %esi 2772 movl 16(%esp), %ecx /* move 2nd arg into rep control register */ 2773 shrl $2, %ecx /* convert from byte count to word count */ 2774 jz .scanm_done 2775 movl 12(%esp), %esi /* move 1st arg into lodsw control register */ 2776 .byte 0xf3 /* rep prefix. lame assembler. sigh. */ 2777 lodsl 2778 .scanm_done: 2779 popl %esi 2780 popl %ecx 2781 ret 2782 SET_SIZE(scan_memory) 2783 2784 #endif /* __i386 */ 2785 #endif /* __lint */ 2786 2787 2788 #if defined(__lint) 2789 2790 /*ARGSUSED */ 2791 int 2792 lowbit(ulong_t i) 2793 { return (0); } 2794 2795 #else /* __lint */ 2796 2797 #if defined(__amd64) 2798 2799 ENTRY(lowbit) 2800 movl $-1, %eax 2801 bsfq %rdi, %rdi 2802 cmovnz %edi, %eax 2803 incl %eax 2804 ret 2805 SET_SIZE(lowbit) 2806 2807 #elif defined(__i386) 2808 2809 ENTRY(lowbit) 2810 bsfl 4(%esp), %eax 2811 jz 0f 2812 incl %eax 2813 ret 2814 0: 2815 xorl %eax, %eax 2816 ret 2817 SET_SIZE(lowbit) 2818 2819 #endif /* __i386 */ 2820 #endif /* __lint */ 2821 2822 #if defined(__lint) 2823 2824 /*ARGSUSED*/ 2825 int 2826 highbit(ulong_t i) 2827 { return (0); } 2828 2829 /*ARGSUSED*/ 2830 int 2831 highbit64(uint64_t i) 2832 { return (0); } 2833 2834 #else /* __lint */ 2835 2836 #if defined(__amd64) 2837 2838 ENTRY(highbit) 2839 ALTENTRY(highbit64) 2840 movl $-1, %eax 2841 bsrq %rdi, %rdi 2842 cmovnz %edi, %eax 2843 incl %eax 2844 ret 2845 SET_SIZE(highbit64) 2846 SET_SIZE(highbit) 2847 2848 #elif defined(__i386) 2849 2850 ENTRY(highbit) 2851 bsrl 4(%esp), %eax 2852 jz 0f 2853 incl %eax 2854 ret 2855 0: 2856 xorl %eax, %eax 2857 ret 2858 SET_SIZE(highbit) 2859 2860 ENTRY(highbit64) 2861 bsrl 8(%esp), %eax 2862 jz highbit 2863 addl $33, %eax 2864 ret 2865 SET_SIZE(highbit64) 2866 2867 #endif /* __i386 */ 2868 #endif /* __lint */ 2869 2870 #if defined(__lint) 2871 2872 /*ARGSUSED*/ 2873 uint64_t 2874 rdmsr(uint_t r) 2875 { return (0); } 2876 2877 /*ARGSUSED*/ 2878 void 2879 wrmsr(uint_t r, const uint64_t val) 2880 {} 2881 2882 /*ARGSUSED*/ 2883 uint64_t 2884 xrdmsr(uint_t r) 2885 { return (0); } 2886 2887 /*ARGSUSED*/ 2888 void 2889 xwrmsr(uint_t r, const uint64_t val) 2890 {} 2891 2892 void 2893 invalidate_cache(void) 2894 {} 2895 2896 /*ARGSUSED*/ 2897 uint64_t 2898 get_xcr(uint_t r) 2899 { return (0); } 2900 2901 /*ARGSUSED*/ 2902 void 2903 set_xcr(uint_t r, const uint64_t val) 2904 {} 2905 2906 #else /* __lint */ 2907 2908 #define XMSR_ACCESS_VAL $0x9c5a203a 2909 2910 #if defined(__amd64) 2911 2912 ENTRY(rdmsr) 2913 movl %edi, %ecx 2914 rdmsr 2915 shlq $32, %rdx 2916 orq %rdx, %rax 2917 ret 2918 SET_SIZE(rdmsr) 2919 2920 ENTRY(wrmsr) 2921 movq %rsi, %rdx 2922 shrq $32, %rdx 2923 movl %esi, %eax 2924 movl %edi, %ecx 2925 wrmsr 2926 ret 2927 SET_SIZE(wrmsr) 2928 2929 ENTRY(xrdmsr) 2930 pushq %rbp 2931 movq %rsp, %rbp 2932 movl %edi, %ecx 2933 movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ 2934 rdmsr 2935 shlq $32, %rdx 2936 orq %rdx, %rax 2937 leave 2938 ret 2939 SET_SIZE(xrdmsr) 2940 2941 ENTRY(xwrmsr) 2942 pushq %rbp 2943 movq %rsp, %rbp 2944 movl %edi, %ecx 2945 movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ 2946 movq %rsi, %rdx 2947 shrq $32, %rdx 2948 movl %esi, %eax 2949 wrmsr 2950 leave 2951 ret 2952 SET_SIZE(xwrmsr) 2953 2954 ENTRY(get_xcr) 2955 movl %edi, %ecx 2956 #xgetbv 2957 .byte 0x0f,0x01,0xd0 2958 shlq $32, %rdx 2959 orq %rdx, %rax 2960 ret 2961 SET_SIZE(get_xcr) 2962 2963 ENTRY(set_xcr) 2964 movq %rsi, %rdx 2965 shrq $32, %rdx 2966 movl %esi, %eax 2967 movl %edi, %ecx 2968 #xsetbv 2969 .byte 0x0f,0x01,0xd1 2970 ret 2971 SET_SIZE(set_xcr) 2972 2973 #elif defined(__i386) 2974 2975 ENTRY(rdmsr) 2976 movl 4(%esp), %ecx 2977 rdmsr 2978 ret 2979 SET_SIZE(rdmsr) 2980 2981 ENTRY(wrmsr) 2982 movl 4(%esp), %ecx 2983 movl 8(%esp), %eax 2984 movl 12(%esp), %edx 2985 wrmsr 2986 ret 2987 SET_SIZE(wrmsr) 2988 2989 ENTRY(xrdmsr) 2990 pushl %ebp 2991 movl %esp, %ebp 2992 movl 8(%esp), %ecx 2993 pushl %edi 2994 movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ 2995 rdmsr 2996 popl %edi 2997 leave 2998 ret 2999 SET_SIZE(xrdmsr) 3000 3001 ENTRY(xwrmsr) 3002 pushl %ebp 3003 movl %esp, %ebp 3004 movl 8(%esp), %ecx 3005 movl 12(%esp), %eax 3006 movl 16(%esp), %edx 3007 pushl %edi 3008 movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ 3009 wrmsr 3010 popl %edi 3011 leave 3012 ret 3013 SET_SIZE(xwrmsr) 3014 3015 ENTRY(get_xcr) 3016 movl 4(%esp), %ecx 3017 #xgetbv 3018 .byte 0x0f,0x01,0xd0 3019 ret 3020 SET_SIZE(get_xcr) 3021 3022 ENTRY(set_xcr) 3023 movl 4(%esp), %ecx 3024 movl 8(%esp), %eax 3025 movl 12(%esp), %edx 3026 #xsetbv 3027 .byte 0x0f,0x01,0xd1 3028 ret 3029 SET_SIZE(set_xcr) 3030 3031 #endif /* __i386 */ 3032 3033 ENTRY(invalidate_cache) 3034 wbinvd 3035 ret 3036 SET_SIZE(invalidate_cache) 3037 3038 #endif /* __lint */ 3039 3040 #if defined(__lint) 3041 3042 /*ARGSUSED*/ 3043 void 3044 getcregs(struct cregs *crp) 3045 {} 3046 3047 #else /* __lint */ 3048 3049 #if defined(__amd64) 3050 3051 ENTRY_NP(getcregs) 3052 #if defined(__xpv) 3053 /* 3054 * Only a few of the hardware control registers or descriptor tables 3055 * are directly accessible to us, so just zero the structure. 3056 * 3057 * XXPV Perhaps it would be helpful for the hypervisor to return 3058 * virtualized versions of these for post-mortem use. 3059 * (Need to reevaluate - perhaps it already does!) 3060 */ 3061 pushq %rdi /* save *crp */ 3062 movq $CREGSZ, %rsi 3063 call bzero 3064 popq %rdi 3065 3066 /* 3067 * Dump what limited information we can 3068 */ 3069 movq %cr0, %rax 3070 movq %rax, CREG_CR0(%rdi) /* cr0 */ 3071 movq %cr2, %rax 3072 movq %rax, CREG_CR2(%rdi) /* cr2 */ 3073 movq %cr3, %rax 3074 movq %rax, CREG_CR3(%rdi) /* cr3 */ 3075 movq %cr4, %rax 3076 movq %rax, CREG_CR4(%rdi) /* cr4 */ 3077 3078 #else /* __xpv */ 3079 3080 #define GETMSR(r, off, d) \ 3081 movl $r, %ecx; \ 3082 rdmsr; \ 3083 movl %eax, off(d); \ 3084 movl %edx, off+4(d) 3085 3086 xorl %eax, %eax 3087 movq %rax, CREG_GDT+8(%rdi) 3088 sgdt CREG_GDT(%rdi) /* 10 bytes */ 3089 movq %rax, CREG_IDT+8(%rdi) 3090 sidt CREG_IDT(%rdi) /* 10 bytes */ 3091 movq %rax, CREG_LDT(%rdi) 3092 sldt CREG_LDT(%rdi) /* 2 bytes */ 3093 movq %rax, CREG_TASKR(%rdi) 3094 str CREG_TASKR(%rdi) /* 2 bytes */ 3095 movq %cr0, %rax 3096 movq %rax, CREG_CR0(%rdi) /* cr0 */ 3097 movq %cr2, %rax 3098 movq %rax, CREG_CR2(%rdi) /* cr2 */ 3099 movq %cr3, %rax 3100 movq %rax, CREG_CR3(%rdi) /* cr3 */ 3101 movq %cr4, %rax 3102 movq %rax, CREG_CR4(%rdi) /* cr4 */ 3103 movq %cr8, %rax 3104 movq %rax, CREG_CR8(%rdi) /* cr8 */ 3105 GETMSR(MSR_AMD_KGSBASE, CREG_KGSBASE, %rdi) 3106 GETMSR(MSR_AMD_EFER, CREG_EFER, %rdi) 3107 #endif /* __xpv */ 3108 ret 3109 SET_SIZE(getcregs) 3110 3111 #undef GETMSR 3112 3113 #elif defined(__i386) 3114 3115 ENTRY_NP(getcregs) 3116 #if defined(__xpv) 3117 /* 3118 * Only a few of the hardware control registers or descriptor tables 3119 * are directly accessible to us, so just zero the structure. 3120 * 3121 * XXPV Perhaps it would be helpful for the hypervisor to return 3122 * virtualized versions of these for post-mortem use. 3123 * (Need to reevaluate - perhaps it already does!) 3124 */ 3125 movl 4(%esp), %edx 3126 pushl $CREGSZ 3127 pushl %edx 3128 call bzero 3129 addl $8, %esp 3130 movl 4(%esp), %edx 3131 3132 /* 3133 * Dump what limited information we can 3134 */ 3135 movl %cr0, %eax 3136 movl %eax, CREG_CR0(%edx) /* cr0 */ 3137 movl %cr2, %eax 3138 movl %eax, CREG_CR2(%edx) /* cr2 */ 3139 movl %cr3, %eax 3140 movl %eax, CREG_CR3(%edx) /* cr3 */ 3141 movl %cr4, %eax 3142 movl %eax, CREG_CR4(%edx) /* cr4 */ 3143 3144 #else /* __xpv */ 3145 3146 movl 4(%esp), %edx 3147 movw $0, CREG_GDT+6(%edx) 3148 movw $0, CREG_IDT+6(%edx) 3149 sgdt CREG_GDT(%edx) /* gdt */ 3150 sidt CREG_IDT(%edx) /* idt */ 3151 sldt CREG_LDT(%edx) /* ldt */ 3152 str CREG_TASKR(%edx) /* task */ 3153 movl %cr0, %eax 3154 movl %eax, CREG_CR0(%edx) /* cr0 */ 3155 movl %cr2, %eax 3156 movl %eax, CREG_CR2(%edx) /* cr2 */ 3157 movl %cr3, %eax 3158 movl %eax, CREG_CR3(%edx) /* cr3 */ 3159 bt $X86FSET_LARGEPAGE, x86_featureset 3160 jnc .nocr4 3161 movl %cr4, %eax 3162 movl %eax, CREG_CR4(%edx) /* cr4 */ 3163 jmp .skip 3164 .nocr4: 3165 movl $0, CREG_CR4(%edx) 3166 .skip: 3167 #endif 3168 ret 3169 SET_SIZE(getcregs) 3170 3171 #endif /* __i386 */ 3172 #endif /* __lint */ 3173 3174 3175 /* 3176 * A panic trigger is a word which is updated atomically and can only be set 3177 * once. We atomically store 0xDEFACEDD and load the old value. If the 3178 * previous value was 0, we succeed and return 1; otherwise return 0. 3179 * This allows a partially corrupt trigger to still trigger correctly. DTrace 3180 * has its own version of this function to allow it to panic correctly from 3181 * probe context. 3182 */ 3183 #if defined(__lint) 3184 3185 /*ARGSUSED*/ 3186 int 3187 panic_trigger(int *tp) 3188 { return (0); } 3189 3190 /*ARGSUSED*/ 3191 int 3192 dtrace_panic_trigger(int *tp) 3193 { return (0); } 3194 3195 #else /* __lint */ 3196 3197 #if defined(__amd64) 3198 3199 ENTRY_NP(panic_trigger) 3200 xorl %eax, %eax 3201 movl $0xdefacedd, %edx 3202 lock 3203 xchgl %edx, (%rdi) 3204 cmpl $0, %edx 3205 je 0f 3206 movl $0, %eax 3207 ret 3208 0: movl $1, %eax 3209 ret 3210 SET_SIZE(panic_trigger) 3211 3212 ENTRY_NP(dtrace_panic_trigger) 3213 xorl %eax, %eax 3214 movl $0xdefacedd, %edx 3215 lock 3216 xchgl %edx, (%rdi) 3217 cmpl $0, %edx 3218 je 0f 3219 movl $0, %eax 3220 ret 3221 0: movl $1, %eax 3222 ret 3223 SET_SIZE(dtrace_panic_trigger) 3224 3225 #elif defined(__i386) 3226 3227 ENTRY_NP(panic_trigger) 3228 movl 4(%esp), %edx / %edx = address of trigger 3229 movl $0xdefacedd, %eax / %eax = 0xdefacedd 3230 lock / assert lock 3231 xchgl %eax, (%edx) / exchange %eax and the trigger 3232 cmpl $0, %eax / if (%eax == 0x0) 3233 je 0f / return (1); 3234 movl $0, %eax / else 3235 ret / return (0); 3236 0: movl $1, %eax 3237 ret 3238 SET_SIZE(panic_trigger) 3239 3240 ENTRY_NP(dtrace_panic_trigger) 3241 movl 4(%esp), %edx / %edx = address of trigger 3242 movl $0xdefacedd, %eax / %eax = 0xdefacedd 3243 lock / assert lock 3244 xchgl %eax, (%edx) / exchange %eax and the trigger 3245 cmpl $0, %eax / if (%eax == 0x0) 3246 je 0f / return (1); 3247 movl $0, %eax / else 3248 ret / return (0); 3249 0: movl $1, %eax 3250 ret 3251 SET_SIZE(dtrace_panic_trigger) 3252 3253 #endif /* __i386 */ 3254 #endif /* __lint */ 3255 3256 /* 3257 * The panic() and cmn_err() functions invoke vpanic() as a common entry point 3258 * into the panic code implemented in panicsys(). vpanic() is responsible 3259 * for passing through the format string and arguments, and constructing a 3260 * regs structure on the stack into which it saves the current register 3261 * values. If we are not dying due to a fatal trap, these registers will 3262 * then be preserved in panicbuf as the current processor state. Before 3263 * invoking panicsys(), vpanic() activates the first panic trigger (see 3264 * common/os/panic.c) and switches to the panic_stack if successful. Note that 3265 * DTrace takes a slightly different panic path if it must panic from probe 3266 * context. Instead of calling panic, it calls into dtrace_vpanic(), which 3267 * sets up the initial stack as vpanic does, calls dtrace_panic_trigger(), and 3268 * branches back into vpanic(). 3269 */ 3270 #if defined(__lint) 3271 3272 /*ARGSUSED*/ 3273 void 3274 vpanic(const char *format, va_list alist) 3275 {} 3276 3277 /*ARGSUSED*/ 3278 void 3279 dtrace_vpanic(const char *format, va_list alist) 3280 {} 3281 3282 #else /* __lint */ 3283 3284 #if defined(__amd64) 3285 3286 ENTRY_NP(vpanic) /* Initial stack layout: */ 3287 3288 pushq %rbp /* | %rip | 0x60 */ 3289 movq %rsp, %rbp /* | %rbp | 0x58 */ 3290 pushfq /* | rfl | 0x50 */ 3291 pushq %r11 /* | %r11 | 0x48 */ 3292 pushq %r10 /* | %r10 | 0x40 */ 3293 pushq %rbx /* | %rbx | 0x38 */ 3294 pushq %rax /* | %rax | 0x30 */ 3295 pushq %r9 /* | %r9 | 0x28 */ 3296 pushq %r8 /* | %r8 | 0x20 */ 3297 pushq %rcx /* | %rcx | 0x18 */ 3298 pushq %rdx /* | %rdx | 0x10 */ 3299 pushq %rsi /* | %rsi | 0x8 alist */ 3300 pushq %rdi /* | %rdi | 0x0 format */ 3301 3302 movq %rsp, %rbx /* %rbx = current %rsp */ 3303 3304 leaq panic_quiesce(%rip), %rdi /* %rdi = &panic_quiesce */ 3305 call panic_trigger /* %eax = panic_trigger() */ 3306 3307 vpanic_common: 3308 /* 3309 * The panic_trigger result is in %eax from the call above, and 3310 * dtrace_panic places it in %eax before branching here. 3311 * The rdmsr instructions that follow below will clobber %eax so 3312 * we stash the panic_trigger result in %r11d. 3313 */ 3314 movl %eax, %r11d 3315 cmpl $0, %r11d 3316 je 0f 3317 3318 /* 3319 * If panic_trigger() was successful, we are the first to initiate a 3320 * panic: we now switch to the reserved panic_stack before continuing. 3321 */ 3322 leaq panic_stack(%rip), %rsp 3323 addq $PANICSTKSIZE, %rsp 3324 0: subq $REGSIZE, %rsp 3325 /* 3326 * Now that we've got everything set up, store the register values as 3327 * they were when we entered vpanic() to the designated location in 3328 * the regs structure we allocated on the stack. 3329 */ 3330 movq 0x0(%rbx), %rcx 3331 movq %rcx, REGOFF_RDI(%rsp) 3332 movq 0x8(%rbx), %rcx 3333 movq %rcx, REGOFF_RSI(%rsp) 3334 movq 0x10(%rbx), %rcx 3335 movq %rcx, REGOFF_RDX(%rsp) 3336 movq 0x18(%rbx), %rcx 3337 movq %rcx, REGOFF_RCX(%rsp) 3338 movq 0x20(%rbx), %rcx 3339 3340 movq %rcx, REGOFF_R8(%rsp) 3341 movq 0x28(%rbx), %rcx 3342 movq %rcx, REGOFF_R9(%rsp) 3343 movq 0x30(%rbx), %rcx 3344 movq %rcx, REGOFF_RAX(%rsp) 3345 movq 0x38(%rbx), %rcx 3346 movq %rcx, REGOFF_RBX(%rsp) 3347 movq 0x58(%rbx), %rcx 3348 3349 movq %rcx, REGOFF_RBP(%rsp) 3350 movq 0x40(%rbx), %rcx 3351 movq %rcx, REGOFF_R10(%rsp) 3352 movq 0x48(%rbx), %rcx 3353 movq %rcx, REGOFF_R11(%rsp) 3354 movq %r12, REGOFF_R12(%rsp) 3355 3356 movq %r13, REGOFF_R13(%rsp) 3357 movq %r14, REGOFF_R14(%rsp) 3358 movq %r15, REGOFF_R15(%rsp) 3359 3360 xorl %ecx, %ecx 3361 movw %ds, %cx 3362 movq %rcx, REGOFF_DS(%rsp) 3363 movw %es, %cx 3364 movq %rcx, REGOFF_ES(%rsp) 3365 movw %fs, %cx 3366 movq %rcx, REGOFF_FS(%rsp) 3367 movw %gs, %cx 3368 movq %rcx, REGOFF_GS(%rsp) 3369 3370 movq $0, REGOFF_TRAPNO(%rsp) 3371 3372 movq $0, REGOFF_ERR(%rsp) 3373 leaq vpanic(%rip), %rcx 3374 movq %rcx, REGOFF_RIP(%rsp) 3375 movw %cs, %cx 3376 movzwq %cx, %rcx 3377 movq %rcx, REGOFF_CS(%rsp) 3378 movq 0x50(%rbx), %rcx 3379 movq %rcx, REGOFF_RFL(%rsp) 3380 movq %rbx, %rcx 3381 addq $0x60, %rcx 3382 movq %rcx, REGOFF_RSP(%rsp) 3383 movw %ss, %cx 3384 movzwq %cx, %rcx 3385 movq %rcx, REGOFF_SS(%rsp) 3386 3387 /* 3388 * panicsys(format, alist, rp, on_panic_stack) 3389 */ 3390 movq REGOFF_RDI(%rsp), %rdi /* format */ 3391 movq REGOFF_RSI(%rsp), %rsi /* alist */ 3392 movq %rsp, %rdx /* struct regs */ 3393 movl %r11d, %ecx /* on_panic_stack */ 3394 call panicsys 3395 addq $REGSIZE, %rsp 3396 popq %rdi 3397 popq %rsi 3398 popq %rdx 3399 popq %rcx 3400 popq %r8 3401 popq %r9 3402 popq %rax 3403 popq %rbx 3404 popq %r10 3405 popq %r11 3406 popfq 3407 leave 3408 ret 3409 SET_SIZE(vpanic) 3410 3411 ENTRY_NP(dtrace_vpanic) /* Initial stack layout: */ 3412 3413 pushq %rbp /* | %rip | 0x60 */ 3414 movq %rsp, %rbp /* | %rbp | 0x58 */ 3415 pushfq /* | rfl | 0x50 */ 3416 pushq %r11 /* | %r11 | 0x48 */ 3417 pushq %r10 /* | %r10 | 0x40 */ 3418 pushq %rbx /* | %rbx | 0x38 */ 3419 pushq %rax /* | %rax | 0x30 */ 3420 pushq %r9 /* | %r9 | 0x28 */ 3421 pushq %r8 /* | %r8 | 0x20 */ 3422 pushq %rcx /* | %rcx | 0x18 */ 3423 pushq %rdx /* | %rdx | 0x10 */ 3424 pushq %rsi /* | %rsi | 0x8 alist */ 3425 pushq %rdi /* | %rdi | 0x0 format */ 3426 3427 movq %rsp, %rbx /* %rbx = current %rsp */ 3428 3429 leaq panic_quiesce(%rip), %rdi /* %rdi = &panic_quiesce */ 3430 call dtrace_panic_trigger /* %eax = dtrace_panic_trigger() */ 3431 jmp vpanic_common 3432 3433 SET_SIZE(dtrace_vpanic) 3434 3435 #elif defined(__i386) 3436 3437 ENTRY_NP(vpanic) / Initial stack layout: 3438 3439 pushl %ebp / | %eip | 20 3440 movl %esp, %ebp / | %ebp | 16 3441 pushl %eax / | %eax | 12 3442 pushl %ebx / | %ebx | 8 3443 pushl %ecx / | %ecx | 4 3444 pushl %edx / | %edx | 0 3445 3446 movl %esp, %ebx / %ebx = current stack pointer 3447 3448 lea panic_quiesce, %eax / %eax = &panic_quiesce 3449 pushl %eax / push &panic_quiesce 3450 call panic_trigger / %eax = panic_trigger() 3451 addl $4, %esp / reset stack pointer 3452 3453 vpanic_common: 3454 cmpl $0, %eax / if (%eax == 0) 3455 je 0f / goto 0f; 3456 3457 /* 3458 * If panic_trigger() was successful, we are the first to initiate a 3459 * panic: we now switch to the reserved panic_stack before continuing. 3460 */ 3461 lea panic_stack, %esp / %esp = panic_stack 3462 addl $PANICSTKSIZE, %esp / %esp += PANICSTKSIZE 3463 3464 0: subl $REGSIZE, %esp / allocate struct regs 3465 3466 /* 3467 * Now that we've got everything set up, store the register values as 3468 * they were when we entered vpanic() to the designated location in 3469 * the regs structure we allocated on the stack. 3470 */ 3471 #if !defined(__GNUC_AS__) 3472 movw %gs, %edx 3473 movl %edx, REGOFF_GS(%esp) 3474 movw %fs, %edx 3475 movl %edx, REGOFF_FS(%esp) 3476 movw %es, %edx 3477 movl %edx, REGOFF_ES(%esp) 3478 movw %ds, %edx 3479 movl %edx, REGOFF_DS(%esp) 3480 #else /* __GNUC_AS__ */ 3481 mov %gs, %edx 3482 mov %edx, REGOFF_GS(%esp) 3483 mov %fs, %edx 3484 mov %edx, REGOFF_FS(%esp) 3485 mov %es, %edx 3486 mov %edx, REGOFF_ES(%esp) 3487 mov %ds, %edx 3488 mov %edx, REGOFF_DS(%esp) 3489 #endif /* __GNUC_AS__ */ 3490 movl %edi, REGOFF_EDI(%esp) 3491 movl %esi, REGOFF_ESI(%esp) 3492 movl 16(%ebx), %ecx 3493 movl %ecx, REGOFF_EBP(%esp) 3494 movl %ebx, %ecx 3495 addl $20, %ecx 3496 movl %ecx, REGOFF_ESP(%esp) 3497 movl 8(%ebx), %ecx 3498 movl %ecx, REGOFF_EBX(%esp) 3499 movl 0(%ebx), %ecx 3500 movl %ecx, REGOFF_EDX(%esp) 3501 movl 4(%ebx), %ecx 3502 movl %ecx, REGOFF_ECX(%esp) 3503 movl 12(%ebx), %ecx 3504 movl %ecx, REGOFF_EAX(%esp) 3505 movl $0, REGOFF_TRAPNO(%esp) 3506 movl $0, REGOFF_ERR(%esp) 3507 lea vpanic, %ecx 3508 movl %ecx, REGOFF_EIP(%esp) 3509 #if !defined(__GNUC_AS__) 3510 movw %cs, %edx 3511 #else /* __GNUC_AS__ */ 3512 mov %cs, %edx 3513 #endif /* __GNUC_AS__ */ 3514 movl %edx, REGOFF_CS(%esp) 3515 pushfl 3516 popl %ecx 3517 #if defined(__xpv) 3518 /* 3519 * Synthesize the PS_IE bit from the event mask bit 3520 */ 3521 CURTHREAD(%edx) 3522 KPREEMPT_DISABLE(%edx) 3523 EVENT_MASK_TO_IE(%edx, %ecx) 3524 CURTHREAD(%edx) 3525 KPREEMPT_ENABLE_NOKP(%edx) 3526 #endif 3527 movl %ecx, REGOFF_EFL(%esp) 3528 movl $0, REGOFF_UESP(%esp) 3529 #if !defined(__GNUC_AS__) 3530 movw %ss, %edx 3531 #else /* __GNUC_AS__ */ 3532 mov %ss, %edx 3533 #endif /* __GNUC_AS__ */ 3534 movl %edx, REGOFF_SS(%esp) 3535 3536 movl %esp, %ecx / %ecx = ®s 3537 pushl %eax / push on_panic_stack 3538 pushl %ecx / push ®s 3539 movl 12(%ebp), %ecx / %ecx = alist 3540 pushl %ecx / push alist 3541 movl 8(%ebp), %ecx / %ecx = format 3542 pushl %ecx / push format 3543 call panicsys / panicsys(); 3544 addl $16, %esp / pop arguments 3545 3546 addl $REGSIZE, %esp 3547 popl %edx 3548 popl %ecx 3549 popl %ebx 3550 popl %eax 3551 leave 3552 ret 3553 SET_SIZE(vpanic) 3554 3555 ENTRY_NP(dtrace_vpanic) / Initial stack layout: 3556 3557 pushl %ebp / | %eip | 20 3558 movl %esp, %ebp / | %ebp | 16 3559 pushl %eax / | %eax | 12 3560 pushl %ebx / | %ebx | 8 3561 pushl %ecx / | %ecx | 4 3562 pushl %edx / | %edx | 0 3563 3564 movl %esp, %ebx / %ebx = current stack pointer 3565 3566 lea panic_quiesce, %eax / %eax = &panic_quiesce 3567 pushl %eax / push &panic_quiesce 3568 call dtrace_panic_trigger / %eax = dtrace_panic_trigger() 3569 addl $4, %esp / reset stack pointer 3570 jmp vpanic_common / jump back to common code 3571 3572 SET_SIZE(dtrace_vpanic) 3573 3574 #endif /* __i386 */ 3575 #endif /* __lint */ 3576 3577 #if defined(__lint) 3578 3579 void 3580 hres_tick(void) 3581 {} 3582 3583 int64_t timedelta; 3584 hrtime_t hrtime_base; 3585 3586 #else /* __lint */ 3587 3588 DGDEF3(timedelta, 8, 8) 3589 .long 0, 0 3590 3591 /* 3592 * initialized to a non zero value to make pc_gethrtime() 3593 * work correctly even before clock is initialized 3594 */ 3595 DGDEF3(hrtime_base, 8, 8) 3596 .long _MUL(NSEC_PER_CLOCK_TICK, 6), 0 3597 3598 DGDEF3(adj_shift, 4, 4) 3599 .long ADJ_SHIFT 3600 3601 #if defined(__amd64) 3602 3603 ENTRY_NP(hres_tick) 3604 pushq %rbp 3605 movq %rsp, %rbp 3606 3607 /* 3608 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously, 3609 * hres_last_tick can only be modified while holding CLOCK_LOCK). 3610 * At worst, performing this now instead of under CLOCK_LOCK may 3611 * introduce some jitter in pc_gethrestime(). 3612 */ 3613 call *gethrtimef(%rip) 3614 movq %rax, %r8 3615 3616 leaq hres_lock(%rip), %rax 3617 movb $-1, %dl 3618 .CL1: 3619 xchgb %dl, (%rax) 3620 testb %dl, %dl 3621 jz .CL3 /* got it */ 3622 .CL2: 3623 cmpb $0, (%rax) /* possible to get lock? */ 3624 pause 3625 jne .CL2 3626 jmp .CL1 /* yes, try again */ 3627 .CL3: 3628 /* 3629 * compute the interval since last time hres_tick was called 3630 * and adjust hrtime_base and hrestime accordingly 3631 * hrtime_base is an 8 byte value (in nsec), hrestime is 3632 * a timestruc_t (sec, nsec) 3633 */ 3634 leaq hres_last_tick(%rip), %rax 3635 movq %r8, %r11 3636 subq (%rax), %r8 3637 addq %r8, hrtime_base(%rip) /* add interval to hrtime_base */ 3638 addq %r8, hrestime+8(%rip) /* add interval to hrestime.tv_nsec */ 3639 /* 3640 * Now that we have CLOCK_LOCK, we can update hres_last_tick 3641 */ 3642 movq %r11, (%rax) 3643 3644 call __adj_hrestime 3645 3646 /* 3647 * release the hres_lock 3648 */ 3649 incl hres_lock(%rip) 3650 leave 3651 ret 3652 SET_SIZE(hres_tick) 3653 3654 #elif defined(__i386) 3655 3656 ENTRY_NP(hres_tick) 3657 pushl %ebp 3658 movl %esp, %ebp 3659 pushl %esi 3660 pushl %ebx 3661 3662 /* 3663 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously, 3664 * hres_last_tick can only be modified while holding CLOCK_LOCK). 3665 * At worst, performing this now instead of under CLOCK_LOCK may 3666 * introduce some jitter in pc_gethrestime(). 3667 */ 3668 call *gethrtimef 3669 movl %eax, %ebx 3670 movl %edx, %esi 3671 3672 movl $hres_lock, %eax 3673 movl $-1, %edx 3674 .CL1: 3675 xchgb %dl, (%eax) 3676 testb %dl, %dl 3677 jz .CL3 / got it 3678 .CL2: 3679 cmpb $0, (%eax) / possible to get lock? 3680 pause 3681 jne .CL2 3682 jmp .CL1 / yes, try again 3683 .CL3: 3684 /* 3685 * compute the interval since last time hres_tick was called 3686 * and adjust hrtime_base and hrestime accordingly 3687 * hrtime_base is an 8 byte value (in nsec), hrestime is 3688 * timestruc_t (sec, nsec) 3689 */ 3690 3691 lea hres_last_tick, %eax 3692 3693 movl %ebx, %edx 3694 movl %esi, %ecx 3695 3696 subl (%eax), %edx 3697 sbbl 4(%eax), %ecx 3698 3699 addl %edx, hrtime_base / add interval to hrtime_base 3700 adcl %ecx, hrtime_base+4 3701 3702 addl %edx, hrestime+4 / add interval to hrestime.tv_nsec 3703 3704 / 3705 / Now that we have CLOCK_LOCK, we can update hres_last_tick. 3706 / 3707 movl %ebx, (%eax) 3708 movl %esi, 4(%eax) 3709 3710 / get hrestime at this moment. used as base for pc_gethrestime 3711 / 3712 / Apply adjustment, if any 3713 / 3714 / #define HRES_ADJ (NSEC_PER_CLOCK_TICK >> ADJ_SHIFT) 3715 / (max_hres_adj) 3716 / 3717 / void 3718 / adj_hrestime() 3719 / { 3720 / long long adj; 3721 / 3722 / if (hrestime_adj == 0) 3723 / adj = 0; 3724 / else if (hrestime_adj > 0) { 3725 / if (hrestime_adj < HRES_ADJ) 3726 / adj = hrestime_adj; 3727 / else 3728 / adj = HRES_ADJ; 3729 / } 3730 / else { 3731 / if (hrestime_adj < -(HRES_ADJ)) 3732 / adj = -(HRES_ADJ); 3733 / else 3734 / adj = hrestime_adj; 3735 / } 3736 / 3737 / timedelta -= adj; 3738 / hrestime_adj = timedelta; 3739 / hrestime.tv_nsec += adj; 3740 / 3741 / while (hrestime.tv_nsec >= NANOSEC) { 3742 / one_sec++; 3743 / hrestime.tv_sec++; 3744 / hrestime.tv_nsec -= NANOSEC; 3745 / } 3746 / } 3747 __adj_hrestime: 3748 movl hrestime_adj, %esi / if (hrestime_adj == 0) 3749 movl hrestime_adj+4, %edx 3750 andl %esi, %esi 3751 jne .CL4 / no 3752 andl %edx, %edx 3753 jne .CL4 / no 3754 subl %ecx, %ecx / yes, adj = 0; 3755 subl %edx, %edx 3756 jmp .CL5 3757 .CL4: 3758 subl %ecx, %ecx 3759 subl %eax, %eax 3760 subl %esi, %ecx 3761 sbbl %edx, %eax 3762 andl %eax, %eax / if (hrestime_adj > 0) 3763 jge .CL6 3764 3765 / In the following comments, HRES_ADJ is used, while in the code 3766 / max_hres_adj is used. 3767 / 3768 / The test for "hrestime_adj < HRES_ADJ" is complicated because 3769 / hrestime_adj is 64-bits, while HRES_ADJ is 32-bits. We rely 3770 / on the logical equivalence of: 3771 / 3772 / !(hrestime_adj < HRES_ADJ) 3773 / 3774 / and the two step sequence: 3775 / 3776 / (HRES_ADJ - lsw(hrestime_adj)) generates a Borrow/Carry 3777 / 3778 / which computes whether or not the least significant 32-bits 3779 / of hrestime_adj is greater than HRES_ADJ, followed by: 3780 / 3781 / Previous Borrow/Carry + -1 + msw(hrestime_adj) generates a Carry 3782 / 3783 / which generates a carry whenever step 1 is true or the most 3784 / significant long of the longlong hrestime_adj is non-zero. 3785 3786 movl max_hres_adj, %ecx / hrestime_adj is positive 3787 subl %esi, %ecx 3788 movl %edx, %eax 3789 adcl $-1, %eax 3790 jnc .CL7 3791 movl max_hres_adj, %ecx / adj = HRES_ADJ; 3792 subl %edx, %edx 3793 jmp .CL5 3794 3795 / The following computation is similar to the one above. 3796 / 3797 / The test for "hrestime_adj < -(HRES_ADJ)" is complicated because 3798 / hrestime_adj is 64-bits, while HRES_ADJ is 32-bits. We rely 3799 / on the logical equivalence of: 3800 / 3801 / (hrestime_adj > -HRES_ADJ) 3802 / 3803 / and the two step sequence: 3804 / 3805 / (HRES_ADJ + lsw(hrestime_adj)) generates a Carry 3806 / 3807 / which means the least significant 32-bits of hrestime_adj is 3808 / greater than -HRES_ADJ, followed by: 3809 / 3810 / Previous Carry + 0 + msw(hrestime_adj) generates a Carry 3811 / 3812 / which generates a carry only when step 1 is true and the most 3813 / significant long of the longlong hrestime_adj is -1. 3814 3815 .CL6: / hrestime_adj is negative 3816 movl %esi, %ecx 3817 addl max_hres_adj, %ecx 3818 movl %edx, %eax 3819 adcl $0, %eax 3820 jc .CL7 3821 xor %ecx, %ecx 3822 subl max_hres_adj, %ecx / adj = -(HRES_ADJ); 3823 movl $-1, %edx 3824 jmp .CL5 3825 .CL7: 3826 movl %esi, %ecx / adj = hrestime_adj; 3827 .CL5: 3828 movl timedelta, %esi 3829 subl %ecx, %esi 3830 movl timedelta+4, %eax 3831 sbbl %edx, %eax 3832 movl %esi, timedelta 3833 movl %eax, timedelta+4 / timedelta -= adj; 3834 movl %esi, hrestime_adj 3835 movl %eax, hrestime_adj+4 / hrestime_adj = timedelta; 3836 addl hrestime+4, %ecx 3837 3838 movl %ecx, %eax / eax = tv_nsec 3839 1: 3840 cmpl $NANOSEC, %eax / if ((unsigned long)tv_nsec >= NANOSEC) 3841 jb .CL8 / no 3842 incl one_sec / yes, one_sec++; 3843 incl hrestime / hrestime.tv_sec++; 3844 addl $-NANOSEC, %eax / tv_nsec -= NANOSEC 3845 jmp 1b / check for more seconds 3846 3847 .CL8: 3848 movl %eax, hrestime+4 / store final into hrestime.tv_nsec 3849 incl hres_lock / release the hres_lock 3850 3851 popl %ebx 3852 popl %esi 3853 leave 3854 ret 3855 SET_SIZE(hres_tick) 3856 3857 #endif /* __i386 */ 3858 #endif /* __lint */ 3859 3860 /* 3861 * void prefetch_smap_w(void *) 3862 * 3863 * Prefetch ahead within a linear list of smap structures. 3864 * Not implemented for ia32. Stub for compatibility. 3865 */ 3866 3867 #if defined(__lint) 3868 3869 /*ARGSUSED*/ 3870 void prefetch_smap_w(void *smp) 3871 {} 3872 3873 #else /* __lint */ 3874 3875 ENTRY(prefetch_smap_w) 3876 rep; ret /* use 2 byte return instruction when branch target */ 3877 /* AMD Software Optimization Guide - Section 6.2 */ 3878 SET_SIZE(prefetch_smap_w) 3879 3880 #endif /* __lint */ 3881 3882 /* 3883 * prefetch_page_r(page_t *) 3884 * issue prefetch instructions for a page_t 3885 */ 3886 #if defined(__lint) 3887 3888 /*ARGSUSED*/ 3889 void 3890 prefetch_page_r(void *pp) 3891 {} 3892 3893 #else /* __lint */ 3894 3895 ENTRY(prefetch_page_r) 3896 rep; ret /* use 2 byte return instruction when branch target */ 3897 /* AMD Software Optimization Guide - Section 6.2 */ 3898 SET_SIZE(prefetch_page_r) 3899 3900 #endif /* __lint */ 3901 3902 #if defined(__lint) 3903 3904 /*ARGSUSED*/ 3905 int 3906 bcmp(const void *s1, const void *s2, size_t count) 3907 { return (0); } 3908 3909 #else /* __lint */ 3910 3911 #if defined(__amd64) 3912 3913 ENTRY(bcmp) 3914 pushq %rbp 3915 movq %rsp, %rbp 3916 #ifdef DEBUG 3917 testq %rdx,%rdx 3918 je 1f 3919 movq postbootkernelbase(%rip), %r11 3920 cmpq %r11, %rdi 3921 jb 0f 3922 cmpq %r11, %rsi 3923 jnb 1f 3924 0: leaq .bcmp_panic_msg(%rip), %rdi 3925 xorl %eax, %eax 3926 call panic 3927 1: 3928 #endif /* DEBUG */ 3929 call memcmp 3930 testl %eax, %eax 3931 setne %dl 3932 leave 3933 movzbl %dl, %eax 3934 ret 3935 SET_SIZE(bcmp) 3936 3937 #elif defined(__i386) 3938 3939 #define ARG_S1 8 3940 #define ARG_S2 12 3941 #define ARG_LENGTH 16 3942 3943 ENTRY(bcmp) 3944 pushl %ebp 3945 movl %esp, %ebp / create new stack frame 3946 #ifdef DEBUG 3947 cmpl $0, ARG_LENGTH(%ebp) 3948 je 1f 3949 movl postbootkernelbase, %eax 3950 cmpl %eax, ARG_S1(%ebp) 3951 jb 0f 3952 cmpl %eax, ARG_S2(%ebp) 3953 jnb 1f 3954 0: pushl $.bcmp_panic_msg 3955 call panic 3956 1: 3957 #endif /* DEBUG */ 3958 3959 pushl %edi / save register variable 3960 movl ARG_S1(%ebp), %eax / %eax = address of string 1 3961 movl ARG_S2(%ebp), %ecx / %ecx = address of string 2 3962 cmpl %eax, %ecx / if the same string 3963 je .equal / goto .equal 3964 movl ARG_LENGTH(%ebp), %edi / %edi = length in bytes 3965 cmpl $4, %edi / if %edi < 4 3966 jb .byte_check / goto .byte_check 3967 .align 4 3968 .word_loop: 3969 movl (%ecx), %edx / move 1 word from (%ecx) to %edx 3970 leal -4(%edi), %edi / %edi -= 4 3971 cmpl (%eax), %edx / compare 1 word from (%eax) with %edx 3972 jne .word_not_equal / if not equal, goto .word_not_equal 3973 leal 4(%ecx), %ecx / %ecx += 4 (next word) 3974 leal 4(%eax), %eax / %eax += 4 (next word) 3975 cmpl $4, %edi / if %edi >= 4 3976 jae .word_loop / goto .word_loop 3977 .byte_check: 3978 cmpl $0, %edi / if %edi == 0 3979 je .equal / goto .equal 3980 jmp .byte_loop / goto .byte_loop (checks in bytes) 3981 .word_not_equal: 3982 leal 4(%edi), %edi / %edi += 4 (post-decremented) 3983 .align 4 3984 .byte_loop: 3985 movb (%ecx), %dl / move 1 byte from (%ecx) to %dl 3986 cmpb %dl, (%eax) / compare %dl with 1 byte from (%eax) 3987 jne .not_equal / if not equal, goto .not_equal 3988 incl %ecx / %ecx++ (next byte) 3989 incl %eax / %eax++ (next byte) 3990 decl %edi / %edi-- 3991 jnz .byte_loop / if not zero, goto .byte_loop 3992 .equal: 3993 xorl %eax, %eax / %eax = 0 3994 popl %edi / restore register variable 3995 leave / restore old stack frame 3996 ret / return (NULL) 3997 .align 4 3998 .not_equal: 3999 movl $1, %eax / return 1 4000 popl %edi / restore register variable 4001 leave / restore old stack frame 4002 ret / return (NULL) 4003 SET_SIZE(bcmp) 4004 4005 #endif /* __i386 */ 4006 4007 #ifdef DEBUG 4008 .text 4009 .bcmp_panic_msg: 4010 .string "bcmp: arguments below kernelbase" 4011 #endif /* DEBUG */ 4012 4013 #endif /* __lint */ 4014 4015 #if defined(__lint) 4016 4017 uint_t 4018 bsrw_insn(uint16_t mask) 4019 { 4020 uint_t index = sizeof (mask) * NBBY - 1; 4021 4022 while ((mask & (1 << index)) == 0) 4023 index--; 4024 return (index); 4025 } 4026 4027 #else /* __lint */ 4028 4029 #if defined(__amd64) 4030 4031 ENTRY_NP(bsrw_insn) 4032 xorl %eax, %eax 4033 bsrw %di, %ax 4034 ret 4035 SET_SIZE(bsrw_insn) 4036 4037 #elif defined(__i386) 4038 4039 ENTRY_NP(bsrw_insn) 4040 movw 4(%esp), %cx 4041 xorl %eax, %eax 4042 bsrw %cx, %ax 4043 ret 4044 SET_SIZE(bsrw_insn) 4045 4046 #endif /* __i386 */ 4047 #endif /* __lint */ 4048 4049 #if defined(__lint) 4050 4051 uint_t 4052 atomic_btr32(uint32_t *pending, uint_t pil) 4053 { 4054 return (*pending &= ~(1 << pil)); 4055 } 4056 4057 #else /* __lint */ 4058 4059 #if defined(__i386) 4060 4061 ENTRY_NP(atomic_btr32) 4062 movl 4(%esp), %ecx 4063 movl 8(%esp), %edx 4064 xorl %eax, %eax 4065 lock 4066 btrl %edx, (%ecx) 4067 setc %al 4068 ret 4069 SET_SIZE(atomic_btr32) 4070 4071 #endif /* __i386 */ 4072 #endif /* __lint */ 4073 4074 #if defined(__lint) 4075 4076 /*ARGSUSED*/ 4077 void 4078 switch_sp_and_call(void *newsp, void (*func)(uint_t, uint_t), uint_t arg1, 4079 uint_t arg2) 4080 {} 4081 4082 #else /* __lint */ 4083 4084 #if defined(__amd64) 4085 4086 ENTRY_NP(switch_sp_and_call) 4087 pushq %rbp 4088 movq %rsp, %rbp /* set up stack frame */ 4089 movq %rdi, %rsp /* switch stack pointer */ 4090 movq %rdx, %rdi /* pass func arg 1 */ 4091 movq %rsi, %r11 /* save function to call */ 4092 movq %rcx, %rsi /* pass func arg 2 */ 4093 call *%r11 /* call function */ 4094 leave /* restore stack */ 4095 ret 4096 SET_SIZE(switch_sp_and_call) 4097 4098 #elif defined(__i386) 4099 4100 ENTRY_NP(switch_sp_and_call) 4101 pushl %ebp 4102 mov %esp, %ebp /* set up stack frame */ 4103 movl 8(%ebp), %esp /* switch stack pointer */ 4104 pushl 20(%ebp) /* push func arg 2 */ 4105 pushl 16(%ebp) /* push func arg 1 */ 4106 call *12(%ebp) /* call function */ 4107 addl $8, %esp /* pop arguments */ 4108 leave /* restore stack */ 4109 ret 4110 SET_SIZE(switch_sp_and_call) 4111 4112 #endif /* __i386 */ 4113 #endif /* __lint */ 4114 4115 #if defined(__lint) 4116 4117 void 4118 kmdb_enter(void) 4119 {} 4120 4121 #else /* __lint */ 4122 4123 #if defined(__amd64) 4124 4125 ENTRY_NP(kmdb_enter) 4126 pushq %rbp 4127 movq %rsp, %rbp 4128 4129 /* 4130 * Save flags, do a 'cli' then return the saved flags 4131 */ 4132 call intr_clear 4133 4134 int $T_DBGENTR 4135 4136 /* 4137 * Restore the saved flags 4138 */ 4139 movq %rax, %rdi 4140 call intr_restore 4141 4142 leave 4143 ret 4144 SET_SIZE(kmdb_enter) 4145 4146 #elif defined(__i386) 4147 4148 ENTRY_NP(kmdb_enter) 4149 pushl %ebp 4150 movl %esp, %ebp 4151 4152 /* 4153 * Save flags, do a 'cli' then return the saved flags 4154 */ 4155 call intr_clear 4156 4157 int $T_DBGENTR 4158 4159 /* 4160 * Restore the saved flags 4161 */ 4162 pushl %eax 4163 call intr_restore 4164 addl $4, %esp 4165 4166 leave 4167 ret 4168 SET_SIZE(kmdb_enter) 4169 4170 #endif /* __i386 */ 4171 #endif /* __lint */ 4172 4173 #if defined(__lint) 4174 4175 void 4176 return_instr(void) 4177 {} 4178 4179 #else /* __lint */ 4180 4181 ENTRY_NP(return_instr) 4182 rep; ret /* use 2 byte instruction when branch target */ 4183 /* AMD Software Optimization Guide - Section 6.2 */ 4184 SET_SIZE(return_instr) 4185 4186 #endif /* __lint */ 4187 4188 #if defined(__lint) 4189 4190 ulong_t 4191 getflags(void) 4192 { 4193 return (0); 4194 } 4195 4196 #else /* __lint */ 4197 4198 #if defined(__amd64) 4199 4200 ENTRY(getflags) 4201 pushfq 4202 popq %rax 4203 #if defined(__xpv) 4204 CURTHREAD(%rdi) 4205 KPREEMPT_DISABLE(%rdi) 4206 /* 4207 * Synthesize the PS_IE bit from the event mask bit 4208 */ 4209 CURVCPU(%r11) 4210 andq $_BITNOT(PS_IE), %rax 4211 XEN_TEST_UPCALL_MASK(%r11) 4212 jnz 1f 4213 orq $PS_IE, %rax 4214 1: 4215 KPREEMPT_ENABLE_NOKP(%rdi) 4216 #endif 4217 ret 4218 SET_SIZE(getflags) 4219 4220 #elif defined(__i386) 4221 4222 ENTRY(getflags) 4223 pushfl 4224 popl %eax 4225 #if defined(__xpv) 4226 CURTHREAD(%ecx) 4227 KPREEMPT_DISABLE(%ecx) 4228 /* 4229 * Synthesize the PS_IE bit from the event mask bit 4230 */ 4231 CURVCPU(%edx) 4232 andl $_BITNOT(PS_IE), %eax 4233 XEN_TEST_UPCALL_MASK(%edx) 4234 jnz 1f 4235 orl $PS_IE, %eax 4236 1: 4237 KPREEMPT_ENABLE_NOKP(%ecx) 4238 #endif 4239 ret 4240 SET_SIZE(getflags) 4241 4242 #endif /* __i386 */ 4243 4244 #endif /* __lint */ 4245 4246 #if defined(__lint) 4247 4248 ftrace_icookie_t 4249 ftrace_interrupt_disable(void) 4250 { return (0); } 4251 4252 #else /* __lint */ 4253 4254 #if defined(__amd64) 4255 4256 ENTRY(ftrace_interrupt_disable) 4257 pushfq 4258 popq %rax 4259 CLI(%rdx) 4260 ret 4261 SET_SIZE(ftrace_interrupt_disable) 4262 4263 #elif defined(__i386) 4264 4265 ENTRY(ftrace_interrupt_disable) 4266 pushfl 4267 popl %eax 4268 CLI(%edx) 4269 ret 4270 SET_SIZE(ftrace_interrupt_disable) 4271 4272 #endif /* __i386 */ 4273 #endif /* __lint */ 4274 4275 #if defined(__lint) 4276 4277 /*ARGSUSED*/ 4278 void 4279 ftrace_interrupt_enable(ftrace_icookie_t cookie) 4280 {} 4281 4282 #else /* __lint */ 4283 4284 #if defined(__amd64) 4285 4286 ENTRY(ftrace_interrupt_enable) 4287 pushq %rdi 4288 popfq 4289 ret 4290 SET_SIZE(ftrace_interrupt_enable) 4291 4292 #elif defined(__i386) 4293 4294 ENTRY(ftrace_interrupt_enable) 4295 movl 4(%esp), %eax 4296 pushl %eax 4297 popfl 4298 ret 4299 SET_SIZE(ftrace_interrupt_enable) 4300 4301 #endif /* __i386 */ 4302 #endif /* __lint */ 4303 4304 #if defined (__lint) 4305 4306 /*ARGSUSED*/ 4307 void 4308 clflush_insn(caddr_t addr) 4309 {} 4310 4311 #else /* __lint */ 4312 4313 #if defined (__amd64) 4314 ENTRY(clflush_insn) 4315 clflush (%rdi) 4316 ret 4317 SET_SIZE(clflush_insn) 4318 #elif defined (__i386) 4319 ENTRY(clflush_insn) 4320 movl 4(%esp), %eax 4321 clflush (%eax) 4322 ret 4323 SET_SIZE(clflush_insn) 4324 4325 #endif /* __i386 */ 4326 #endif /* __lint */ 4327 4328 #if defined (__lint) 4329 /*ARGSUSED*/ 4330 void 4331 mfence_insn(void) 4332 {} 4333 4334 #else /* __lint */ 4335 4336 #if defined (__amd64) 4337 ENTRY(mfence_insn) 4338 mfence 4339 ret 4340 SET_SIZE(mfence_insn) 4341 #elif defined (__i386) 4342 ENTRY(mfence_insn) 4343 mfence 4344 ret 4345 SET_SIZE(mfence_insn) 4346 4347 #endif /* __i386 */ 4348 #endif /* __lint */ 4349 4350 /* 4351 * VMware implements an I/O port that programs can query to detect if software 4352 * is running in a VMware hypervisor. This hypervisor port behaves differently 4353 * depending on magic values in certain registers and modifies some registers 4354 * as a side effect. 4355 * 4356 * References: http://kb.vmware.com/kb/1009458 4357 */ 4358 4359 #if defined(__lint) 4360 4361 /* ARGSUSED */ 4362 void 4363 vmware_port(int cmd, uint32_t *regs) { return; } 4364 4365 #else 4366 4367 #if defined(__amd64) 4368 4369 ENTRY(vmware_port) 4370 pushq %rbx 4371 movl $VMWARE_HVMAGIC, %eax 4372 movl $0xffffffff, %ebx 4373 movl %edi, %ecx 4374 movl $VMWARE_HVPORT, %edx 4375 inl (%dx) 4376 movl %eax, (%rsi) 4377 movl %ebx, 4(%rsi) 4378 movl %ecx, 8(%rsi) 4379 movl %edx, 12(%rsi) 4380 popq %rbx 4381 ret 4382 SET_SIZE(vmware_port) 4383 4384 #elif defined(__i386) 4385 4386 ENTRY(vmware_port) 4387 pushl %ebx 4388 pushl %esi 4389 movl $VMWARE_HVMAGIC, %eax 4390 movl $0xffffffff, %ebx 4391 movl 12(%esp), %ecx 4392 movl $VMWARE_HVPORT, %edx 4393 inl (%dx) 4394 movl 16(%esp), %esi 4395 movl %eax, (%esi) 4396 movl %ebx, 4(%esi) 4397 movl %ecx, 8(%esi) 4398 movl %edx, 12(%esi) 4399 popl %esi 4400 popl %ebx 4401 ret 4402 SET_SIZE(vmware_port) 4403 4404 #endif /* __i386 */ 4405 #endif /* __lint */