1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2019 Joyent, Inc. 24 * Copyright (c) 2016 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/asm_linkage.h> 28 #include <sys/asm_misc.h> 29 #include <sys/regset.h> 30 #include <sys/privregs.h> 31 #include <sys/psw.h> 32 #include <sys/machbrand.h> 33 34 #if defined(__lint) 35 36 #include <sys/types.h> 37 #include <sys/thread.h> 38 #include <sys/systm.h> 39 40 #else /* __lint */ 41 42 #include <sys/segments.h> 43 #include <sys/pcb.h> 44 #include <sys/trap.h> 45 #include <sys/ftrace.h> 46 #include <sys/traptrace.h> 47 #include <sys/clock.h> 48 #include <sys/model.h> 49 #include <sys/panic.h> 50 51 #if defined(__xpv) 52 #include <sys/hypervisor.h> 53 #endif 54 55 #include "assym.h" 56 57 #endif /* __lint */ 58 59 /* 60 * We implement five flavours of system call entry points 61 * 62 * - syscall/sysretq (amd64 generic) 63 * - syscall/sysretl (i386 plus SYSC bit) 64 * - sysenter/sysexit (i386 plus SEP bit) 65 * - int/iret (i386 generic) 66 * - lcall/iret (i386 generic) 67 * 68 * The current libc included in Solaris uses int/iret as the base unoptimized 69 * kernel entry method. Older libc implementations and legacy binaries may use 70 * the lcall call gate, so it must continue to be supported. 71 * 72 * System calls that use an lcall call gate are processed in trap() via a 73 * segment-not-present trap, i.e. lcalls are extremely slow(!). 74 * 75 * The basic pattern used in the 32-bit SYSC handler at this point in time is 76 * to have the bare minimum of assembler, and get to the C handlers as 77 * quickly as possible. 78 * 79 * The 64-bit handler is much closer to the sparcv9 handler; that's 80 * because of passing arguments in registers. The 32-bit world still 81 * passes arguments on the stack -- that makes that handler substantially 82 * more complex. 83 * 84 * The two handlers share a few code fragments which are broken 85 * out into preprocessor macros below. 86 * 87 * XX64 come back and speed all this up later. The 32-bit stuff looks 88 * especially easy to speed up the argument copying part .. 89 * 90 * 91 * Notes about segment register usage (c.f. the 32-bit kernel) 92 * 93 * In the 32-bit kernel, segment registers are dutifully saved and 94 * restored on all mode transitions because the kernel uses them directly. 95 * When the processor is running in 64-bit mode, segment registers are 96 * largely ignored. 97 * 98 * %cs and %ss 99 * controlled by the hardware mechanisms that make mode transitions 100 * 101 * The remaining segment registers have to either be pointing at a valid 102 * descriptor i.e. with the 'present' bit set, or they can NULL descriptors 103 * 104 * %ds and %es 105 * always ignored 106 * 107 * %fs and %gs 108 * fsbase and gsbase are used to control the place they really point at. 109 * The kernel only depends on %gs, and controls its own gsbase via swapgs 110 * 111 * Note that loading segment registers is still costly because the GDT 112 * lookup still happens (this is because the hardware can't know that we're 113 * not setting up these segment registers for a 32-bit program). Thus we 114 * avoid doing this in the syscall path, and defer them to lwp context switch 115 * handlers, so the register values remain virtualized to the lwp. 116 */ 117 118 #if defined(SYSCALLTRACE) 119 #define ORL_SYSCALLTRACE(r32) \ 120 orl syscalltrace(%rip), r32 121 #else 122 #define ORL_SYSCALLTRACE(r32) 123 #endif 124 125 /* 126 * In the 32-bit kernel, we do absolutely nothing before getting into the 127 * brand callback checks. In 64-bit land, we do swapgs and then come here. 128 * We assume that the %rsp- and %r15-stashing fields in the CPU structure 129 * are still unused. 130 * 131 * Check if a brand_mach_ops callback is defined for the specified callback_id 132 * type. If so invoke it with the kernel's %gs value loaded and the following 133 * data on the stack: 134 * 135 * stack: -------------------------------------- 136 * 32 | callback pointer | 137 * | 24 | user (or interrupt) stack pointer | 138 * | 16 | lwp pointer | 139 * v 8 | userland return address | 140 * 0 | callback wrapper return addr | 141 * -------------------------------------- 142 * 143 * Since we're pushing the userland return address onto the kernel stack 144 * we need to get that address without accessing the user's stack (since we 145 * can't trust that data). There are different ways to get the userland 146 * return address depending on how the syscall trap was made: 147 * 148 * a) For sys_syscall and sys_syscall32 the return address is in %rcx. 149 * b) For sys_sysenter the return address is in %rdx. 150 * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro, 151 * the stack pointer points at the state saved when we took the interrupt: 152 * ------------------------ 153 * | | user's %ss | 154 * | | user's %esp | 155 * | | EFLAGS register | 156 * v | user's %cs | 157 * | user's %eip | 158 * ------------------------ 159 * 160 * The 2nd parameter to the BRAND_CALLBACK macro is either the 161 * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro. These macros are 162 * used to generate the proper code to get the userland return address for 163 * each syscall entry point. 164 * 165 * The interface to the brand callbacks on the 64-bit kernel assumes %r15 166 * is available as a scratch register within the callback. If the callback 167 * returns within the kernel then this macro will restore %r15. If the 168 * callback is going to return directly to userland then it should restore 169 * %r15 before returning to userland. 170 */ 171 #define BRAND_URET_FROM_REG(rip_reg) \ 172 pushq rip_reg /* push the return address */ 173 174 /* 175 * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro 176 * is currently pointing at the user return address (%eip). 177 */ 178 #define BRAND_URET_FROM_INTR_STACK() \ 179 movq %gs:CPU_RTMP_RSP, %r15 /* grab the intr. stack pointer */ ;\ 180 pushq (%r15) /* push the return address */ 181 182 #define BRAND_CALLBACK(callback_id, push_userland_ret) \ 183 movq %rsp, %gs:CPU_RTMP_RSP /* save the stack pointer */ ;\ 184 movq %r15, %gs:CPU_RTMP_R15 /* save %r15 */ ;\ 185 movq %gs:CPU_THREAD, %r15 /* load the thread pointer */ ;\ 186 movq T_STACK(%r15), %rsp /* switch to the kernel stack */ ;\ 187 subq $16, %rsp /* save space for 2 pointers */ ;\ 188 pushq %r14 /* save %r14 */ ;\ 189 movq %gs:CPU_RTMP_RSP, %r14 ;\ 190 movq %r14, 8(%rsp) /* stash the user stack pointer */ ;\ 191 popq %r14 /* restore %r14 */ ;\ 192 movq T_LWP(%r15), %r15 /* load the lwp pointer */ ;\ 193 pushq %r15 /* push the lwp pointer */ ;\ 194 movq LWP_PROCP(%r15), %r15 /* load the proc pointer */ ;\ 195 movq P_BRAND(%r15), %r15 /* load the brand pointer */ ;\ 196 movq B_MACHOPS(%r15), %r15 /* load the machops pointer */ ;\ 197 movq _CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15 ;\ 198 cmpq $0, %r15 ;\ 199 je 1f ;\ 200 movq %r15, 16(%rsp) /* save the callback pointer */ ;\ 201 push_userland_ret /* push the return address */ ;\ 202 movq 24(%rsp), %r15 /* load callback pointer */ ;\ 203 INDIRECT_CALL_REG(r15) /* call callback */ ;\ 204 1: movq %gs:CPU_RTMP_R15, %r15 /* restore %r15 */ ;\ 205 movq %gs:CPU_RTMP_RSP, %rsp /* restore the stack pointer */ 206 207 #define MSTATE_TRANSITION(from, to) \ 208 movl $from, %edi; \ 209 movl $to, %esi; \ 210 call syscall_mstate 211 212 /* 213 * Check to see if a simple (direct) return is possible i.e. 214 * 215 * if (t->t_post_sys_ast | syscalltrace | 216 * lwp->lwp_pcb.pcb_rupdate == 1) 217 * do full version ; 218 * 219 * Preconditions: 220 * - t is curthread 221 * Postconditions: 222 * - condition code NE is set if post-sys is too complex 223 * - rtmp is zeroed if it isn't (we rely on this!) 224 * - ltmp is smashed 225 */ 226 #define CHECK_POSTSYS_NE(t, ltmp, rtmp) \ 227 movq T_LWP(t), ltmp; \ 228 movzbl PCB_RUPDATE(ltmp), rtmp; \ 229 ORL_SYSCALLTRACE(rtmp); \ 230 orl T_POST_SYS_AST(t), rtmp; \ 231 cmpl $0, rtmp 232 233 /* 234 * Fix up the lwp, thread, and eflags for a successful return 235 * 236 * Preconditions: 237 * - zwreg contains zero 238 */ 239 #define SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg) \ 240 movb $LWP_USER, LWP_STATE(lwp); \ 241 movw zwreg, T_SYSNUM(t); \ 242 andb $_CONST(0xffff - PS_C), REGOFF_RFL(%rsp) 243 244 /* 245 * ASSERT(lwptoregs(lwp) == rp); 246 * 247 * This may seem obvious, but very odd things happen if this 248 * assertion is false 249 * 250 * Preconditions: 251 * (%rsp is ready for normal call sequence) 252 * Postconditions (if assertion is true): 253 * %r11 is smashed 254 * 255 * ASSERT(rp->r_cs == descnum) 256 * 257 * The code selector is written into the regs structure when the 258 * lwp stack is created. We use this ASSERT to validate that 259 * the regs structure really matches how we came in. 260 * 261 * Preconditions: 262 * (%rsp is ready for normal call sequence) 263 * Postconditions (if assertion is true): 264 * -none- 265 * 266 * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0); 267 * 268 * If this is false, it meant that we returned to userland without 269 * updating the segment registers as we were supposed to. 270 * 271 * Note that we must ensure no interrupts or other traps intervene 272 * between entering privileged mode and performing the assertion, 273 * otherwise we may perform a context switch on the thread, which 274 * will end up setting pcb_rupdate to 1 again. 275 * 276 * ASSERT(%cr0 & CR0_TS == 0); 277 * Preconditions: 278 * (%rsp is ready for normal call sequence) 279 * Postconditions (if assertion is true): 280 * (specified register is clobbered) 281 * 282 * Check to make sure that we are returning to user land and that CR0.TS 283 * is not set. This is required as part of the eager FPU (see 284 * uts/intel/ia32/os/fpu.c for more information). 285 */ 286 287 #if defined(DEBUG) 288 289 #if !defined(__lint) 290 291 __lwptoregs_msg: 292 .string "syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]" 293 294 __codesel_msg: 295 .string "syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld" 296 297 __no_rupdate_msg: 298 .string "syscall_asm_amd64.s:%d lwp %p, pcb_rupdate != 0" 299 300 __bad_ts_msg: 301 .string "sysscall_asm_amd64.s:%d CR0.TS set on user return" 302 303 #endif /* !__lint */ 304 305 #define ASSERT_LWPTOREGS(lwp, rp) \ 306 movq LWP_REGS(lwp), %r11; \ 307 cmpq rp, %r11; \ 308 je 7f; \ 309 leaq __lwptoregs_msg(%rip), %rdi; \ 310 movl $__LINE__, %esi; \ 311 movq lwp, %rdx; \ 312 movq %r11, %rcx; \ 313 movq rp, %r8; \ 314 xorl %eax, %eax; \ 315 call panic; \ 316 7: 317 318 #define ASSERT_NO_RUPDATE_PENDING(lwp) \ 319 testb $0x1, PCB_RUPDATE(lwp); \ 320 je 8f; \ 321 movq lwp, %rdx; \ 322 leaq __no_rupdate_msg(%rip), %rdi; \ 323 movl $__LINE__, %esi; \ 324 xorl %eax, %eax; \ 325 call panic; \ 326 8: 327 328 #define ASSERT_CR0TS_ZERO(reg) \ 329 movq %cr0, reg; \ 330 testq $CR0_TS, reg; \ 331 jz 9f; \ 332 leaq __bad_ts_msg(%rip), %rdi; \ 333 movl $__LINE__, %esi; \ 334 xorl %eax, %eax; \ 335 call panic; \ 336 9: 337 338 #else 339 #define ASSERT_LWPTOREGS(lwp, rp) 340 #define ASSERT_NO_RUPDATE_PENDING(lwp) 341 #define ASSERT_CR0TS_ZERO(reg) 342 #endif 343 344 /* 345 * Do the traptrace thing and restore any registers we used 346 * in situ. Assumes that %rsp is pointing at the base of 347 * the struct regs, obviously .. 348 */ 349 #ifdef TRAPTRACE 350 #define SYSCALL_TRAPTRACE(ttype) \ 351 TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype); \ 352 TRACE_REGS(%rdi, %rsp, %rbx, %rcx); \ 353 TRACE_STAMP(%rdi); /* rdtsc clobbers %eax, %edx */ \ 354 movq REGOFF_RAX(%rsp), %rax; \ 355 movq REGOFF_RBX(%rsp), %rbx; \ 356 movq REGOFF_RCX(%rsp), %rcx; \ 357 movq REGOFF_RDX(%rsp), %rdx; \ 358 movl %eax, TTR_SYSNUM(%rdi); \ 359 movq REGOFF_RDI(%rsp), %rdi 360 361 #define SYSCALL_TRAPTRACE32(ttype) \ 362 SYSCALL_TRAPTRACE(ttype); \ 363 /* paranoia: clean the top 32-bits of the registers */ \ 364 orl %eax, %eax; \ 365 orl %ebx, %ebx; \ 366 orl %ecx, %ecx; \ 367 orl %edx, %edx; \ 368 orl %edi, %edi 369 #else /* TRAPTRACE */ 370 #define SYSCALL_TRAPTRACE(ttype) 371 #define SYSCALL_TRAPTRACE32(ttype) 372 #endif /* TRAPTRACE */ 373 374 /* 375 * The 64-bit libc syscall wrapper does this: 376 * 377 * fn(<args>) 378 * { 379 * movq %rcx, %r10 -- because syscall smashes %rcx 380 * movl $CODE, %eax 381 * syscall 382 * <error processing> 383 * } 384 * 385 * Thus when we come into the kernel: 386 * 387 * %rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args 388 * %rax is the syscall number 389 * %r12-%r15 contain caller state 390 * 391 * The syscall instruction arranges that: 392 * 393 * %rcx contains the return %rip 394 * %r11d contains bottom 32-bits of %rflags 395 * %rflags is masked (as determined by the SFMASK msr) 396 * %cs is set to UCS_SEL (as determined by the STAR msr) 397 * %ss is set to UDS_SEL (as determined by the STAR msr) 398 * %rip is set to sys_syscall (as determined by the LSTAR msr) 399 * 400 * Or in other words, we have no registers available at all. 401 * Only swapgs can save us! 402 * 403 * Under the hypervisor, the swapgs has happened already. However, the 404 * state of the world is very different from that we're familiar with. 405 * 406 * In particular, we have a stack structure like that for interrupt 407 * gates, except that the %cs and %ss registers are modified for reasons 408 * that are not entirely clear. Critically, the %rcx/%r11 values do 409 * *not* reflect the usage of those registers under a 'real' syscall[1]; 410 * the stack, therefore, looks like this: 411 * 412 * 0x0(rsp) potentially junk %rcx 413 * 0x8(rsp) potentially junk %r11 414 * 0x10(rsp) user %rip 415 * 0x18(rsp) modified %cs 416 * 0x20(rsp) user %rflags 417 * 0x28(rsp) user %rsp 418 * 0x30(rsp) modified %ss 419 * 420 * 421 * and before continuing on, we must load the %rip into %rcx and the 422 * %rflags into %r11. 423 * 424 * [1] They used to, and we relied on it, but this was broken in 3.1.1. 425 * Sigh. 426 */ 427 #if defined(__xpv) 428 #define XPV_SYSCALL_PROD \ 429 movq 0x10(%rsp), %rcx; \ 430 movq 0x20(%rsp), %r11; \ 431 movq 0x28(%rsp), %rsp 432 #else 433 #define XPV_SYSCALL_PROD /* nothing */ 434 #endif 435 436 #if defined(__lint) 437 438 /*ARGSUSED*/ 439 void 440 sys_syscall() 441 {} 442 443 void 444 _allsyscalls() 445 {} 446 447 size_t _allsyscalls_size; 448 449 #else /* __lint */ 450 451 ENTRY_NP2(brand_sys_syscall,_allsyscalls) 452 SWAPGS /* kernel gsbase */ 453 XPV_SYSCALL_PROD 454 BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx)) 455 jmp noprod_sys_syscall 456 457 ALTENTRY(sys_syscall) 458 SWAPGS /* kernel gsbase */ 459 XPV_SYSCALL_PROD 460 461 noprod_sys_syscall: 462 movq %r15, %gs:CPU_RTMP_R15 463 movq %rsp, %gs:CPU_RTMP_RSP 464 465 movq %gs:CPU_THREAD, %r15 466 movq T_STACK(%r15), %rsp /* switch from user to kernel stack */ 467 468 ASSERT_UPCALL_MASK_IS_SET 469 470 movl $UCS_SEL, REGOFF_CS(%rsp) 471 movq %rcx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */ 472 movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */ 473 movl $UDS_SEL, REGOFF_SS(%rsp) 474 475 movl %eax, %eax /* wrapper: sysc# -> %eax */ 476 movq %rdi, REGOFF_RDI(%rsp) 477 movq %rsi, REGOFF_RSI(%rsp) 478 movq %rdx, REGOFF_RDX(%rsp) 479 movq %r10, REGOFF_RCX(%rsp) /* wrapper: %rcx -> %r10 */ 480 movq %r10, %rcx /* arg[3] for direct calls */ 481 482 movq %r8, REGOFF_R8(%rsp) 483 movq %r9, REGOFF_R9(%rsp) 484 movq %rax, REGOFF_RAX(%rsp) 485 movq %rbx, REGOFF_RBX(%rsp) 486 487 movq %rbp, REGOFF_RBP(%rsp) 488 movq %r10, REGOFF_R10(%rsp) 489 movq %gs:CPU_RTMP_RSP, %r11 490 movq %r11, REGOFF_RSP(%rsp) 491 movq %r12, REGOFF_R12(%rsp) 492 493 movq %r13, REGOFF_R13(%rsp) 494 movq %r14, REGOFF_R14(%rsp) 495 movq %gs:CPU_RTMP_R15, %r10 496 movq %r10, REGOFF_R15(%rsp) 497 movq $0, REGOFF_SAVFP(%rsp) 498 movq $0, REGOFF_SAVPC(%rsp) 499 500 /* 501 * Copy these registers here in case we end up stopped with 502 * someone (like, say, /proc) messing with our register state. 503 * We don't -restore- them unless we have to in update_sregs. 504 * 505 * Since userland -can't- change fsbase or gsbase directly, 506 * and capturing them involves two serializing instructions, 507 * we don't bother to capture them here. 508 */ 509 xorl %ebx, %ebx 510 movw %ds, %bx 511 movq %rbx, REGOFF_DS(%rsp) 512 movw %es, %bx 513 movq %rbx, REGOFF_ES(%rsp) 514 movw %fs, %bx 515 movq %rbx, REGOFF_FS(%rsp) 516 movw %gs, %bx 517 movq %rbx, REGOFF_GS(%rsp) 518 519 /* 520 * If we're trying to use TRAPTRACE though, I take that back: we're 521 * probably debugging some problem in the SWAPGS logic and want to know 522 * what the incoming gsbase was. 523 * 524 * Since we already did SWAPGS, record the KGSBASE. 525 */ 526 #if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv) 527 movl $MSR_AMD_KGSBASE, %ecx 528 rdmsr 529 movl %eax, REGOFF_GSBASE(%rsp) 530 movl %edx, REGOFF_GSBASE+4(%rsp) 531 #endif 532 533 /* 534 * Machine state saved in the regs structure on the stack 535 * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9 536 * %eax is the syscall number 537 * %rsp is the thread's stack, %r15 is curthread 538 * REG_RSP(%rsp) is the user's stack 539 */ 540 541 SYSCALL_TRAPTRACE($TT_SYSC64) 542 543 movq %rsp, %rbp 544 545 movq T_LWP(%r15), %r14 546 ASSERT_NO_RUPDATE_PENDING(%r14) 547 ENABLE_INTR_FLAGS 548 549 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 550 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */ 551 552 ASSERT_LWPTOREGS(%r14, %rsp) 553 554 movb $LWP_SYS, LWP_STATE(%r14) 555 incq LWP_RU_SYSC(%r14) 556 movb $NORMALRETURN, LWP_EOSYS(%r14) 557 558 incq %gs:CPU_STATS_SYS_SYSCALL 559 560 movw %ax, T_SYSNUM(%r15) 561 movzbl T_PRE_SYS(%r15), %ebx 562 ORL_SYSCALLTRACE(%ebx) 563 testl %ebx, %ebx 564 jne _syscall_pre 565 566 _syscall_invoke: 567 movq REGOFF_RDI(%rbp), %rdi 568 movq REGOFF_RSI(%rbp), %rsi 569 movq REGOFF_RDX(%rbp), %rdx 570 movq REGOFF_RCX(%rbp), %rcx 571 movq REGOFF_R8(%rbp), %r8 572 movq REGOFF_R9(%rbp), %r9 573 574 cmpl $NSYSCALL, %eax 575 jae _syscall_ill 576 shll $SYSENT_SIZE_SHIFT, %eax 577 leaq sysent(%rax), %rbx 578 579 movq SY_CALLC(%rbx), %rax 580 INDIRECT_CALL_REG(rax) 581 582 movq %rax, %r12 583 movq %rdx, %r13 584 585 /* 586 * If the handler returns two ints, then we need to split the 587 * 64-bit return value into two 32-bit values. 588 */ 589 testw $SE_32RVAL2, SY_FLAGS(%rbx) 590 je 5f 591 movq %r12, %r13 592 shrq $32, %r13 /* upper 32-bits into %edx */ 593 movl %r12d, %r12d /* lower 32-bits into %eax */ 594 5: 595 /* 596 * Optimistically assume that there's no post-syscall 597 * work to do. (This is to avoid having to call syscall_mstate() 598 * with interrupts disabled) 599 */ 600 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 601 602 /* 603 * We must protect ourselves from being descheduled here; 604 * If we were, and we ended up on another cpu, or another 605 * lwp got in ahead of us, it could change the segment 606 * registers without us noticing before we return to userland. 607 */ 608 CLI(%r14) 609 CHECK_POSTSYS_NE(%r15, %r14, %ebx) 610 jne _syscall_post 611 612 /* 613 * We need to protect ourselves against non-canonical return values 614 * because Intel doesn't check for them on sysret (AMD does). Canonical 615 * addresses on current amd64 processors only use 48-bits for VAs; an 616 * address is canonical if all upper bits (47-63) are identical. If we 617 * find a non-canonical %rip, we opt to go through the full 618 * _syscall_post path which takes us into an iretq which is not 619 * susceptible to the same problems sysret is. 620 * 621 * We're checking for a canonical address by first doing an arithmetic 622 * shift. This will fill in the remaining bits with the value of bit 63. 623 * If the address were canonical, the register would now have either all 624 * zeroes or all ones in it. Therefore we add one (inducing overflow) 625 * and compare against 1. A canonical address will either be zero or one 626 * at this point, hence the use of ja. 627 * 628 * At this point, r12 and r13 have the return value so we can't use 629 * those registers. 630 */ 631 movq REGOFF_RIP(%rsp), %rcx 632 sarq $47, %rcx 633 incq %rcx 634 cmpq $1, %rcx 635 ja _syscall_post 636 637 638 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx) 639 640 movq %r12, REGOFF_RAX(%rsp) 641 movq %r13, REGOFF_RDX(%rsp) 642 643 /* 644 * Clobber %r11 as we check CR0.TS. 645 */ 646 ASSERT_CR0TS_ZERO(%r11) 647 648 /* 649 * Unlike other cases, because we need to restore the user stack pointer 650 * before exiting the kernel we must clear the microarch state before 651 * getting here. This should be safe because it means that the only 652 * values on the bus after this are based on the user's registers and 653 * potentially the addresses where we stored them. Given the constraints 654 * of sysret, that's how it has to be. 655 */ 656 call x86_md_clear 657 658 /* 659 * To get back to userland, we need the return %rip in %rcx and 660 * the return %rfl in %r11d. The sysretq instruction also arranges 661 * to fix up %cs and %ss; everything else is our responsibility. 662 */ 663 movq REGOFF_RDI(%rsp), %rdi 664 movq REGOFF_RSI(%rsp), %rsi 665 movq REGOFF_RDX(%rsp), %rdx 666 /* %rcx used to restore %rip value */ 667 668 movq REGOFF_R8(%rsp), %r8 669 movq REGOFF_R9(%rsp), %r9 670 movq REGOFF_RAX(%rsp), %rax 671 movq REGOFF_RBX(%rsp), %rbx 672 673 movq REGOFF_RBP(%rsp), %rbp 674 movq REGOFF_R10(%rsp), %r10 675 /* %r11 used to restore %rfl value */ 676 movq REGOFF_R12(%rsp), %r12 677 678 movq REGOFF_R13(%rsp), %r13 679 movq REGOFF_R14(%rsp), %r14 680 movq REGOFF_R15(%rsp), %r15 681 682 movq REGOFF_RIP(%rsp), %rcx 683 movl REGOFF_RFL(%rsp), %r11d 684 685 #if defined(__xpv) 686 addq $REGOFF_RIP, %rsp 687 #else 688 movq REGOFF_RSP(%rsp), %rsp 689 #endif 690 691 /* 692 * There can be no instructions between the ALTENTRY below and 693 * SYSRET or we could end up breaking brand support. See label usage 694 * in sn1_brand_syscall_callback for an example. 695 */ 696 ASSERT_UPCALL_MASK_IS_SET 697 #if defined(__xpv) 698 SYSRETQ 699 ALTENTRY(nopop_sys_syscall_swapgs_sysretq) 700 701 /* 702 * We can only get here after executing a brand syscall 703 * interposition callback handler and simply need to 704 * "sysretq" back to userland. On the hypervisor this 705 * involves the iret hypercall which requires us to construct 706 * just enough of the stack needed for the hypercall. 707 * (rip, cs, rflags, rsp, ss). 708 */ 709 movq %rsp, %gs:CPU_RTMP_RSP /* save user's rsp */ 710 movq %gs:CPU_THREAD, %r11 711 movq T_STACK(%r11), %rsp 712 713 movq %rcx, REGOFF_RIP(%rsp) 714 movl $UCS_SEL, REGOFF_CS(%rsp) 715 movq %gs:CPU_RTMP_RSP, %r11 716 movq %r11, REGOFF_RSP(%rsp) 717 pushfq 718 popq %r11 /* hypercall enables ints */ 719 movq %r11, REGOFF_RFL(%rsp) 720 movl $UDS_SEL, REGOFF_SS(%rsp) 721 addq $REGOFF_RIP, %rsp 722 /* 723 * XXPV: see comment in SYSRETQ definition for future optimization 724 * we could take. 725 */ 726 ASSERT_UPCALL_MASK_IS_SET 727 SYSRETQ 728 #else 729 ALTENTRY(nopop_sys_syscall_swapgs_sysretq) 730 jmp tr_sysretq 731 #endif 732 /*NOTREACHED*/ 733 SET_SIZE(nopop_sys_syscall_swapgs_sysretq) 734 735 _syscall_pre: 736 call pre_syscall 737 movl %eax, %r12d 738 testl %eax, %eax 739 jne _syscall_post_call 740 /* 741 * Didn't abort, so reload the syscall args and invoke the handler. 742 */ 743 movzwl T_SYSNUM(%r15), %eax 744 jmp _syscall_invoke 745 746 _syscall_ill: 747 call nosys 748 movq %rax, %r12 749 movq %rdx, %r13 750 jmp _syscall_post_call 751 752 _syscall_post: 753 STI 754 /* 755 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM 756 * so that we can account for the extra work it takes us to finish. 757 */ 758 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 759 _syscall_post_call: 760 movq %r12, %rdi 761 movq %r13, %rsi 762 call post_syscall 763 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 764 jmp _sys_rtt 765 SET_SIZE(sys_syscall) 766 SET_SIZE(brand_sys_syscall) 767 768 #endif /* __lint */ 769 770 #if defined(__lint) 771 772 /*ARGSUSED*/ 773 void 774 sys_syscall32() 775 {} 776 777 #else /* __lint */ 778 779 ENTRY_NP(brand_sys_syscall32) 780 SWAPGS /* kernel gsbase */ 781 XPV_TRAP_POP 782 BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx)) 783 jmp nopop_sys_syscall32 784 785 ALTENTRY(sys_syscall32) 786 SWAPGS /* kernel gsbase */ 787 XPV_TRAP_POP 788 789 nopop_sys_syscall32: 790 movl %esp, %r10d 791 movq %gs:CPU_THREAD, %r15 792 movq T_STACK(%r15), %rsp 793 movl %eax, %eax 794 795 movl $U32CS_SEL, REGOFF_CS(%rsp) 796 movl %ecx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */ 797 movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */ 798 movq %r10, REGOFF_RSP(%rsp) 799 movl $UDS_SEL, REGOFF_SS(%rsp) 800 801 _syscall32_save: 802 movl %edi, REGOFF_RDI(%rsp) 803 movl %esi, REGOFF_RSI(%rsp) 804 movl %ebp, REGOFF_RBP(%rsp) 805 movl %ebx, REGOFF_RBX(%rsp) 806 movl %edx, REGOFF_RDX(%rsp) 807 movl %ecx, REGOFF_RCX(%rsp) 808 movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */ 809 movq $0, REGOFF_SAVFP(%rsp) 810 movq $0, REGOFF_SAVPC(%rsp) 811 812 /* 813 * Copy these registers here in case we end up stopped with 814 * someone (like, say, /proc) messing with our register state. 815 * We don't -restore- them unless we have to in update_sregs. 816 * 817 * Since userland -can't- change fsbase or gsbase directly, 818 * we don't bother to capture them here. 819 */ 820 xorl %ebx, %ebx 821 movw %ds, %bx 822 movq %rbx, REGOFF_DS(%rsp) 823 movw %es, %bx 824 movq %rbx, REGOFF_ES(%rsp) 825 movw %fs, %bx 826 movq %rbx, REGOFF_FS(%rsp) 827 movw %gs, %bx 828 movq %rbx, REGOFF_GS(%rsp) 829 830 /* 831 * If we're trying to use TRAPTRACE though, I take that back: we're 832 * probably debugging some problem in the SWAPGS logic and want to know 833 * what the incoming gsbase was. 834 * 835 * Since we already did SWAPGS, record the KGSBASE. 836 */ 837 #if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv) 838 movl $MSR_AMD_KGSBASE, %ecx 839 rdmsr 840 movl %eax, REGOFF_GSBASE(%rsp) 841 movl %edx, REGOFF_GSBASE+4(%rsp) 842 #endif 843 844 /* 845 * Application state saved in the regs structure on the stack 846 * %eax is the syscall number 847 * %rsp is the thread's stack, %r15 is curthread 848 * REG_RSP(%rsp) is the user's stack 849 */ 850 851 SYSCALL_TRAPTRACE32($TT_SYSC) 852 853 movq %rsp, %rbp 854 855 movq T_LWP(%r15), %r14 856 ASSERT_NO_RUPDATE_PENDING(%r14) 857 858 ENABLE_INTR_FLAGS 859 860 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 861 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */ 862 863 ASSERT_LWPTOREGS(%r14, %rsp) 864 865 incq %gs:CPU_STATS_SYS_SYSCALL 866 867 /* 868 * Make some space for MAXSYSARGS (currently 8) 32-bit args placed 869 * into 64-bit (long) arg slots, maintaining 16 byte alignment. Or 870 * more succinctly: 871 * 872 * SA(MAXSYSARGS * sizeof (long)) == 64 873 */ 874 #define SYS_DROP 64 /* drop for args */ 875 subq $SYS_DROP, %rsp 876 movb $LWP_SYS, LWP_STATE(%r14) 877 movq %r15, %rdi 878 movq %rsp, %rsi 879 call syscall_entry 880 881 /* 882 * Fetch the arguments copied onto the kernel stack and put 883 * them in the right registers to invoke a C-style syscall handler. 884 * %rax contains the handler address. 885 * 886 * Ideas for making all this go faster of course include simply 887 * forcibly fetching 6 arguments from the user stack under lofault 888 * protection, reverting to copyin_args only when watchpoints 889 * are in effect. 890 * 891 * (If we do this, make sure that exec and libthread leave 892 * enough space at the top of the stack to ensure that we'll 893 * never do a fetch from an invalid page.) 894 * 895 * Lots of ideas here, but they won't really help with bringup B-) 896 * Correctness can't wait, performance can wait a little longer .. 897 */ 898 899 movq %rax, %rbx 900 movl 0(%rsp), %edi 901 movl 8(%rsp), %esi 902 movl 0x10(%rsp), %edx 903 movl 0x18(%rsp), %ecx 904 movl 0x20(%rsp), %r8d 905 movl 0x28(%rsp), %r9d 906 907 movq SY_CALLC(%rbx), %rax 908 INDIRECT_CALL_REG(rax) 909 910 movq %rbp, %rsp /* pop the args */ 911 912 /* 913 * amd64 syscall handlers -always- return a 64-bit value in %rax. 914 * On the 32-bit kernel, they always return that value in %eax:%edx 915 * as required by the 32-bit ABI. 916 * 917 * Simulate the same behaviour by unconditionally splitting the 918 * return value in the same way. 919 */ 920 movq %rax, %r13 921 shrq $32, %r13 /* upper 32-bits into %edx */ 922 movl %eax, %r12d /* lower 32-bits into %eax */ 923 924 /* 925 * Optimistically assume that there's no post-syscall 926 * work to do. (This is to avoid having to call syscall_mstate() 927 * with interrupts disabled) 928 */ 929 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 930 931 /* 932 * We must protect ourselves from being descheduled here; 933 * If we were, and we ended up on another cpu, or another 934 * lwp got in ahead of us, it could change the segment 935 * registers without us noticing before we return to userland. 936 */ 937 CLI(%r14) 938 CHECK_POSTSYS_NE(%r15, %r14, %ebx) 939 jne _full_syscall_postsys32 940 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx) 941 942 /* 943 * Clobber %r11 as we check CR0.TS. 944 */ 945 ASSERT_CR0TS_ZERO(%r11) 946 947 /* 948 * Unlike other cases, because we need to restore the user stack pointer 949 * before exiting the kernel we must clear the microarch state before 950 * getting here. This should be safe because it means that the only 951 * values on the bus after this are based on the user's registers and 952 * potentially the addresses where we stored them. Given the constraints 953 * of sysret, that's how it has to be. 954 */ 955 call x86_md_clear 956 957 /* 958 * To get back to userland, we need to put the return %rip in %rcx and 959 * the return %rfl in %r11d. The sysret instruction also arranges 960 * to fix up %cs and %ss; everything else is our responsibility. 961 */ 962 963 movl %r12d, %eax /* %eax: rval1 */ 964 movl REGOFF_RBX(%rsp), %ebx 965 /* %ecx used for return pointer */ 966 movl %r13d, %edx /* %edx: rval2 */ 967 movl REGOFF_RBP(%rsp), %ebp 968 movl REGOFF_RSI(%rsp), %esi 969 movl REGOFF_RDI(%rsp), %edi 970 971 movl REGOFF_RFL(%rsp), %r11d /* %r11 -> eflags */ 972 movl REGOFF_RIP(%rsp), %ecx /* %ecx -> %eip */ 973 movl REGOFF_RSP(%rsp), %esp 974 975 ASSERT_UPCALL_MASK_IS_SET 976 ALTENTRY(nopop_sys_syscall32_swapgs_sysretl) 977 jmp tr_sysretl 978 SET_SIZE(nopop_sys_syscall32_swapgs_sysretl) 979 /*NOTREACHED*/ 980 981 _full_syscall_postsys32: 982 STI 983 /* 984 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM 985 * so that we can account for the extra work it takes us to finish. 986 */ 987 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 988 movq %r15, %rdi 989 movq %r12, %rsi /* rval1 - %eax */ 990 movq %r13, %rdx /* rval2 - %edx */ 991 call syscall_exit 992 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 993 jmp _sys_rtt 994 SET_SIZE(sys_syscall32) 995 SET_SIZE(brand_sys_syscall32) 996 997 #endif /* __lint */ 998 999 /* 1000 * System call handler via the sysenter instruction 1001 * Used only for 32-bit system calls on the 64-bit kernel. 1002 * 1003 * The caller in userland has arranged that: 1004 * 1005 * - %eax contains the syscall number 1006 * - %ecx contains the user %esp 1007 * - %edx contains the return %eip 1008 * - the user stack contains the args to the syscall 1009 * 1010 * Hardware and (privileged) initialization code have arranged that by 1011 * the time the sysenter instructions completes: 1012 * 1013 * - %rip is pointing to sys_sysenter (below). 1014 * - %cs and %ss are set to kernel text and stack (data) selectors. 1015 * - %rsp is pointing at the lwp's stack 1016 * - interrupts have been disabled. 1017 * 1018 * Note that we are unable to return both "rvals" to userland with 1019 * this call, as %edx is used by the sysexit instruction. 1020 * 1021 * One final complication in this routine is its interaction with 1022 * single-stepping in a debugger. For most of the system call mechanisms, the 1023 * CPU automatically clears the single-step flag before we enter the kernel. 1024 * The sysenter mechanism does not clear the flag, so a user single-stepping 1025 * through a libc routine may suddenly find themself single-stepping through the 1026 * kernel. To detect this, kmdb and trap() both compare the trap %pc to the 1027 * [brand_]sys_enter addresses on each single-step trap. If it finds that we 1028 * have single-stepped to a sysenter entry point, it explicitly clears the flag 1029 * and executes the sys_sysenter routine. 1030 * 1031 * One final complication in this final complication is the fact that we have 1032 * two different entry points for sysenter: brand_sys_sysenter and sys_sysenter. 1033 * If we enter at brand_sys_sysenter and start single-stepping through the 1034 * kernel with kmdb, we will eventually hit the instruction at sys_sysenter. 1035 * kmdb cannot distinguish between that valid single-step and the undesirable 1036 * one mentioned above. To avoid this situation, we simply add a jump over the 1037 * instruction at sys_sysenter to make it impossible to single-step to it. 1038 */ 1039 #if defined(__lint) 1040 1041 void 1042 sys_sysenter() 1043 {} 1044 1045 #else /* __lint */ 1046 1047 ENTRY_NP(brand_sys_sysenter) 1048 SWAPGS /* kernel gsbase */ 1049 ALTENTRY(_brand_sys_sysenter_post_swapgs) 1050 1051 BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx)) 1052 /* 1053 * Jump over sys_sysenter to allow single-stepping as described 1054 * above. 1055 */ 1056 jmp _sys_sysenter_post_swapgs 1057 1058 ALTENTRY(sys_sysenter) 1059 SWAPGS /* kernel gsbase */ 1060 ALTENTRY(_sys_sysenter_post_swapgs) 1061 1062 movq %gs:CPU_THREAD, %r15 1063 1064 movl $U32CS_SEL, REGOFF_CS(%rsp) 1065 movl %ecx, REGOFF_RSP(%rsp) /* wrapper: %esp -> %ecx */ 1066 movl %edx, REGOFF_RIP(%rsp) /* wrapper: %eip -> %edx */ 1067 /* 1068 * NOTE: none of the instructions that run before we get here should 1069 * clobber bits in (R)FLAGS! This includes the kpti trampoline. 1070 */ 1071 pushfq 1072 popq %r10 1073 movl $UDS_SEL, REGOFF_SS(%rsp) 1074 1075 /* 1076 * Set the interrupt flag before storing the flags to the 1077 * flags image on the stack so we can return to user with 1078 * interrupts enabled if we return via sys_rtt_syscall32 1079 */ 1080 orq $PS_IE, %r10 1081 movq %r10, REGOFF_RFL(%rsp) 1082 1083 movl %edi, REGOFF_RDI(%rsp) 1084 movl %esi, REGOFF_RSI(%rsp) 1085 movl %ebp, REGOFF_RBP(%rsp) 1086 movl %ebx, REGOFF_RBX(%rsp) 1087 movl %edx, REGOFF_RDX(%rsp) 1088 movl %ecx, REGOFF_RCX(%rsp) 1089 movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */ 1090 movq $0, REGOFF_SAVFP(%rsp) 1091 movq $0, REGOFF_SAVPC(%rsp) 1092 1093 /* 1094 * Copy these registers here in case we end up stopped with 1095 * someone (like, say, /proc) messing with our register state. 1096 * We don't -restore- them unless we have to in update_sregs. 1097 * 1098 * Since userland -can't- change fsbase or gsbase directly, 1099 * we don't bother to capture them here. 1100 */ 1101 xorl %ebx, %ebx 1102 movw %ds, %bx 1103 movq %rbx, REGOFF_DS(%rsp) 1104 movw %es, %bx 1105 movq %rbx, REGOFF_ES(%rsp) 1106 movw %fs, %bx 1107 movq %rbx, REGOFF_FS(%rsp) 1108 movw %gs, %bx 1109 movq %rbx, REGOFF_GS(%rsp) 1110 1111 /* 1112 * If we're trying to use TRAPTRACE though, I take that back: we're 1113 * probably debugging some problem in the SWAPGS logic and want to know 1114 * what the incoming gsbase was. 1115 * 1116 * Since we already did SWAPGS, record the KGSBASE. 1117 */ 1118 #if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv) 1119 movl $MSR_AMD_KGSBASE, %ecx 1120 rdmsr 1121 movl %eax, REGOFF_GSBASE(%rsp) 1122 movl %edx, REGOFF_GSBASE+4(%rsp) 1123 #endif 1124 1125 /* 1126 * Application state saved in the regs structure on the stack 1127 * %eax is the syscall number 1128 * %rsp is the thread's stack, %r15 is curthread 1129 * REG_RSP(%rsp) is the user's stack 1130 */ 1131 1132 SYSCALL_TRAPTRACE($TT_SYSENTER) 1133 1134 movq %rsp, %rbp 1135 1136 movq T_LWP(%r15), %r14 1137 ASSERT_NO_RUPDATE_PENDING(%r14) 1138 1139 ENABLE_INTR_FLAGS 1140 1141 /* 1142 * Catch 64-bit process trying to issue sysenter instruction 1143 * on Nocona based systems. 1144 */ 1145 movq LWP_PROCP(%r14), %rax 1146 cmpq $DATAMODEL_ILP32, P_MODEL(%rax) 1147 je 7f 1148 1149 /* 1150 * For a non-32-bit process, simulate a #ud, since that's what 1151 * native hardware does. The traptrace entry (above) will 1152 * let you know what really happened. 1153 */ 1154 movq $T_ILLINST, REGOFF_TRAPNO(%rsp) 1155 movq REGOFF_CS(%rsp), %rdi 1156 movq %rdi, REGOFF_ERR(%rsp) 1157 movq %rsp, %rdi 1158 movq REGOFF_RIP(%rsp), %rsi 1159 movl %gs:CPU_ID, %edx 1160 call trap 1161 jmp _sys_rtt 1162 7: 1163 1164 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 1165 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate calls) */ 1166 1167 ASSERT_LWPTOREGS(%r14, %rsp) 1168 1169 incq %gs:CPU_STATS_SYS_SYSCALL 1170 1171 /* 1172 * Make some space for MAXSYSARGS (currently 8) 32-bit args 1173 * placed into 64-bit (long) arg slots, plus one 64-bit 1174 * (long) arg count, maintaining 16 byte alignment. 1175 */ 1176 subq $SYS_DROP, %rsp 1177 movb $LWP_SYS, LWP_STATE(%r14) 1178 movq %r15, %rdi 1179 movq %rsp, %rsi 1180 call syscall_entry 1181 1182 /* 1183 * Fetch the arguments copied onto the kernel stack and put 1184 * them in the right registers to invoke a C-style syscall handler. 1185 * %rax contains the handler address. 1186 */ 1187 movq %rax, %rbx 1188 movl 0(%rsp), %edi 1189 movl 8(%rsp), %esi 1190 movl 0x10(%rsp), %edx 1191 movl 0x18(%rsp), %ecx 1192 movl 0x20(%rsp), %r8d 1193 movl 0x28(%rsp), %r9d 1194 1195 movq SY_CALLC(%rbx), %rax 1196 INDIRECT_CALL_REG(rax) 1197 1198 movq %rbp, %rsp /* pop the args */ 1199 1200 /* 1201 * amd64 syscall handlers -always- return a 64-bit value in %rax. 1202 * On the 32-bit kernel, the always return that value in %eax:%edx 1203 * as required by the 32-bit ABI. 1204 * 1205 * Simulate the same behaviour by unconditionally splitting the 1206 * return value in the same way. 1207 */ 1208 movq %rax, %r13 1209 shrq $32, %r13 /* upper 32-bits into %edx */ 1210 movl %eax, %r12d /* lower 32-bits into %eax */ 1211 1212 /* 1213 * Optimistically assume that there's no post-syscall 1214 * work to do. (This is to avoid having to call syscall_mstate() 1215 * with interrupts disabled) 1216 */ 1217 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 1218 1219 /* 1220 * We must protect ourselves from being descheduled here; 1221 * If we were, and we ended up on another cpu, or another 1222 * lwp got int ahead of us, it could change the segment 1223 * registers without us noticing before we return to userland. 1224 * 1225 * This cli is undone in the tr_sysexit trampoline code. 1226 */ 1227 cli 1228 CHECK_POSTSYS_NE(%r15, %r14, %ebx) 1229 jne _full_syscall_postsys32 1230 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx) 1231 1232 /* 1233 * To get back to userland, load up the 32-bit registers and 1234 * sysexit back where we came from. 1235 */ 1236 1237 /* 1238 * Interrupts will be turned on by the 'sti' executed just before 1239 * sysexit. The following ensures that restoring the user's rflags 1240 * doesn't enable interrupts too soon. 1241 */ 1242 andq $_BITNOT(PS_IE), REGOFF_RFL(%rsp) 1243 1244 /* 1245 * Clobber %r11 as we check CR0.TS. 1246 */ 1247 ASSERT_CR0TS_ZERO(%r11) 1248 1249 /* 1250 * (There's no point in loading up %edx because the sysexit 1251 * mechanism smashes it.) 1252 */ 1253 movl %r12d, %eax 1254 movl REGOFF_RBX(%rsp), %ebx 1255 movl REGOFF_RBP(%rsp), %ebp 1256 movl REGOFF_RSI(%rsp), %esi 1257 movl REGOFF_RDI(%rsp), %edi 1258 1259 movl REGOFF_RIP(%rsp), %edx /* sysexit: %edx -> %eip */ 1260 pushq REGOFF_RFL(%rsp) 1261 popfq 1262 movl REGOFF_RSP(%rsp), %ecx /* sysexit: %ecx -> %esp */ 1263 ALTENTRY(sys_sysenter_swapgs_sysexit) 1264 call x86_md_clear 1265 jmp tr_sysexit 1266 SET_SIZE(sys_sysenter_swapgs_sysexit) 1267 SET_SIZE(sys_sysenter) 1268 SET_SIZE(_sys_sysenter_post_swapgs) 1269 SET_SIZE(brand_sys_sysenter) 1270 1271 #endif /* __lint */ 1272 1273 /* 1274 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by 1275 * the generic i386 libc to do system calls. We do a small amount of setup 1276 * before jumping into the existing sys_syscall32 path. 1277 */ 1278 #if defined(__lint) 1279 1280 /*ARGSUSED*/ 1281 void 1282 sys_syscall_int() 1283 {} 1284 1285 #else /* __lint */ 1286 1287 ENTRY_NP(brand_sys_syscall_int) 1288 SWAPGS /* kernel gsbase */ 1289 XPV_TRAP_POP 1290 call smap_enable 1291 BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK()) 1292 jmp nopop_syscall_int 1293 1294 ALTENTRY(sys_syscall_int) 1295 SWAPGS /* kernel gsbase */ 1296 XPV_TRAP_POP 1297 call smap_enable 1298 1299 nopop_syscall_int: 1300 movq %gs:CPU_THREAD, %r15 1301 movq T_STACK(%r15), %rsp 1302 movl %eax, %eax 1303 /* 1304 * Set t_post_sys on this thread to force ourselves out via the slow 1305 * path. It might be possible at some later date to optimize this out 1306 * and use a faster return mechanism. 1307 */ 1308 movb $1, T_POST_SYS(%r15) 1309 CLEAN_CS 1310 jmp _syscall32_save 1311 /* 1312 * There should be no instructions between this label and SWAPGS/IRET 1313 * or we could end up breaking branded zone support. See the usage of 1314 * this label in lx_brand_int80_callback and sn1_brand_int91_callback 1315 * for examples. 1316 * 1317 * We want to swapgs to maintain the invariant that all entries into 1318 * tr_iret_user are done on the user gsbase. 1319 */ 1320 ALTENTRY(sys_sysint_swapgs_iret) 1321 call x86_md_clear 1322 SWAPGS 1323 jmp tr_iret_user 1324 /*NOTREACHED*/ 1325 SET_SIZE(sys_sysint_swapgs_iret) 1326 SET_SIZE(sys_syscall_int) 1327 SET_SIZE(brand_sys_syscall_int) 1328 1329 #endif /* __lint */ 1330 1331 /* 1332 * Legacy 32-bit applications and old libc implementations do lcalls; 1333 * we should never get here because the LDT entry containing the syscall 1334 * segment descriptor has the "segment present" bit cleared, which means 1335 * we end up processing those system calls in trap() via a not-present trap. 1336 * 1337 * We do it this way because a call gate unhelpfully does -nothing- to the 1338 * interrupt flag bit, so an interrupt can run us just after the lcall 1339 * completes, but just before the swapgs takes effect. Thus the INTR_PUSH and 1340 * INTR_POP paths would have to be slightly more complex to dance around 1341 * this problem, and end up depending explicitly on the first 1342 * instruction of this handler being either swapgs or cli. 1343 */ 1344 1345 #if defined(__lint) 1346 1347 /*ARGSUSED*/ 1348 void 1349 sys_lcall32() 1350 {} 1351 1352 #else /* __lint */ 1353 1354 ENTRY_NP(sys_lcall32) 1355 SWAPGS /* kernel gsbase */ 1356 pushq $0 1357 pushq %rbp 1358 movq %rsp, %rbp 1359 leaq __lcall_panic_str(%rip), %rdi 1360 xorl %eax, %eax 1361 call panic 1362 SET_SIZE(sys_lcall32) 1363 1364 __lcall_panic_str: 1365 .string "sys_lcall32: shouldn't be here!" 1366 1367 /* 1368 * Declare a uintptr_t which covers the entire pc range of syscall 1369 * handlers for the stack walkers that need this. 1370 */ 1371 .align CPTRSIZE 1372 .globl _allsyscalls_size 1373 .type _allsyscalls_size, @object 1374 _allsyscalls_size: 1375 .NWORD . - _allsyscalls 1376 SET_SIZE(_allsyscalls_size) 1377 1378 #endif /* __lint */ 1379 1380 /* 1381 * These are the thread context handlers for lwps using sysenter/sysexit. 1382 */ 1383 1384 #if defined(__lint) 1385 1386 /*ARGSUSED*/ 1387 void 1388 sep_save(void *ksp) 1389 {} 1390 1391 /*ARGSUSED*/ 1392 void 1393 sep_restore(void *ksp) 1394 {} 1395 1396 #else /* __lint */ 1397 1398 /* 1399 * setting this value to zero as we switch away causes the 1400 * stack-pointer-on-sysenter to be NULL, ensuring that we 1401 * don't silently corrupt another (preempted) thread stack 1402 * when running an lwp that (somehow) didn't get sep_restore'd 1403 */ 1404 ENTRY_NP(sep_save) 1405 xorl %edx, %edx 1406 xorl %eax, %eax 1407 movl $MSR_INTC_SEP_ESP, %ecx 1408 wrmsr 1409 ret 1410 SET_SIZE(sep_save) 1411 1412 /* 1413 * Update the kernel stack pointer as we resume onto this cpu. 1414 */ 1415 ENTRY_NP(sep_restore) 1416 movq %rdi, %rdx 1417 shrq $32, %rdx 1418 movl %edi, %eax 1419 movl $MSR_INTC_SEP_ESP, %ecx 1420 wrmsr 1421 ret 1422 SET_SIZE(sep_restore) 1423 1424 #endif /* __lint */