1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright 2019 Joyent, Inc.
  24  * Copyright (c) 2016 by Delphix. All rights reserved.
  25  */
  26 
  27 #include <sys/asm_linkage.h>
  28 #include <sys/asm_misc.h>
  29 #include <sys/regset.h>
  30 #include <sys/privregs.h>
  31 #include <sys/psw.h>
  32 #include <sys/machbrand.h>
  33 
  34 #if defined(__lint)
  35 
  36 #include <sys/types.h>
  37 #include <sys/thread.h>
  38 #include <sys/systm.h>
  39 
  40 #else   /* __lint */
  41 
  42 #include <sys/segments.h>
  43 #include <sys/pcb.h>
  44 #include <sys/trap.h>
  45 #include <sys/ftrace.h>
  46 #include <sys/traptrace.h>
  47 #include <sys/clock.h>
  48 #include <sys/model.h>
  49 #include <sys/panic.h>
  50 
  51 #if defined(__xpv)
  52 #include <sys/hypervisor.h>
  53 #endif
  54 
  55 #include "assym.h"
  56 
  57 #endif  /* __lint */
  58 
  59 /*
  60  * We implement five flavours of system call entry points
  61  *
  62  * -    syscall/sysretq         (amd64 generic)
  63  * -    syscall/sysretl         (i386 plus SYSC bit)
  64  * -    sysenter/sysexit        (i386 plus SEP bit)
  65  * -    int/iret                (i386 generic)
  66  * -    lcall/iret              (i386 generic)
  67  *
  68  * The current libc included in Solaris uses int/iret as the base unoptimized
  69  * kernel entry method. Older libc implementations and legacy binaries may use
  70  * the lcall call gate, so it must continue to be supported.
  71  *
  72  * System calls that use an lcall call gate are processed in trap() via a
  73  * segment-not-present trap, i.e. lcalls are extremely slow(!).
  74  *
  75  * The basic pattern used in the 32-bit SYSC handler at this point in time is
  76  * to have the bare minimum of assembler, and get to the C handlers as
  77  * quickly as possible.
  78  *
  79  * The 64-bit handler is much closer to the sparcv9 handler; that's
  80  * because of passing arguments in registers.  The 32-bit world still
  81  * passes arguments on the stack -- that makes that handler substantially
  82  * more complex.
  83  *
  84  * The two handlers share a few code fragments which are broken
  85  * out into preprocessor macros below.
  86  *
  87  * XX64 come back and speed all this up later.  The 32-bit stuff looks
  88  * especially easy to speed up the argument copying part ..
  89  *
  90  *
  91  * Notes about segment register usage (c.f. the 32-bit kernel)
  92  *
  93  * In the 32-bit kernel, segment registers are dutifully saved and
  94  * restored on all mode transitions because the kernel uses them directly.
  95  * When the processor is running in 64-bit mode, segment registers are
  96  * largely ignored.
  97  *
  98  * %cs and %ss
  99  *      controlled by the hardware mechanisms that make mode transitions
 100  *
 101  * The remaining segment registers have to either be pointing at a valid
 102  * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
 103  *
 104  * %ds and %es
 105  *      always ignored
 106  *
 107  * %fs and %gs
 108  *      fsbase and gsbase are used to control the place they really point at.
 109  *      The kernel only depends on %gs, and controls its own gsbase via swapgs
 110  *
 111  * Note that loading segment registers is still costly because the GDT
 112  * lookup still happens (this is because the hardware can't know that we're
 113  * not setting up these segment registers for a 32-bit program).  Thus we
 114  * avoid doing this in the syscall path, and defer them to lwp context switch
 115  * handlers, so the register values remain virtualized to the lwp.
 116  */
 117 
 118 #if defined(SYSCALLTRACE)
 119 #define ORL_SYSCALLTRACE(r32)           \
 120         orl     syscalltrace(%rip), r32
 121 #else
 122 #define ORL_SYSCALLTRACE(r32)
 123 #endif
 124 
 125 /*
 126  * In the 32-bit kernel, we do absolutely nothing before getting into the
 127  * brand callback checks.  In 64-bit land, we do swapgs and then come here.
 128  * We assume that the %rsp- and %r15-stashing fields in the CPU structure
 129  * are still unused.
 130  *
 131  * Check if a brand_mach_ops callback is defined for the specified callback_id
 132  * type.  If so invoke it with the kernel's %gs value loaded and the following
 133  * data on the stack:
 134  *
 135  * stack:  --------------------------------------
 136  *      32 | callback pointer                   |
 137  *    | 24 | user (or interrupt) stack pointer  |
 138  *    | 16 | lwp pointer                        |
 139  *    v  8 | userland return address            |
 140  *       0 | callback wrapper return addr       |
 141  *         --------------------------------------
 142  *
 143  * Since we're pushing the userland return address onto the kernel stack
 144  * we need to get that address without accessing the user's stack (since we
 145  * can't trust that data).  There are different ways to get the userland
 146  * return address depending on how the syscall trap was made:
 147  *
 148  * a) For sys_syscall and sys_syscall32 the return address is in %rcx.
 149  * b) For sys_sysenter the return address is in %rdx.
 150  * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro,
 151  *    the stack pointer points at the state saved when we took the interrupt:
 152  *       ------------------------
 153  *    |  | user's %ss           |
 154  *    |  | user's %esp          |
 155  *    |  | EFLAGS register      |
 156  *    v  | user's %cs           |
 157  *       | user's %eip          |
 158  *       ------------------------
 159  *
 160  * The 2nd parameter to the BRAND_CALLBACK macro is either the
 161  * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro.  These macros are
 162  * used to generate the proper code to get the userland return address for
 163  * each syscall entry point.
 164  *
 165  * The interface to the brand callbacks on the 64-bit kernel assumes %r15
 166  * is available as a scratch register within the callback.  If the callback
 167  * returns within the kernel then this macro will restore %r15.  If the
 168  * callback is going to return directly to userland then it should restore
 169  * %r15 before returning to userland.
 170  */
 171 #define BRAND_URET_FROM_REG(rip_reg)                                    \
 172         pushq   rip_reg                 /* push the return address      */
 173 
 174 /*
 175  * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro
 176  * is currently pointing at the user return address (%eip).
 177  */
 178 #define BRAND_URET_FROM_INTR_STACK()                                    \
 179         movq    %gs:CPU_RTMP_RSP, %r15  /* grab the intr. stack pointer */ ;\
 180         pushq   (%r15)                  /* push the return address      */
 181 
 182 #define BRAND_CALLBACK(callback_id, push_userland_ret)                      \
 183         movq    %rsp, %gs:CPU_RTMP_RSP  /* save the stack pointer       */ ;\
 184         movq    %r15, %gs:CPU_RTMP_R15  /* save %r15                    */ ;\
 185         movq    %gs:CPU_THREAD, %r15    /* load the thread pointer      */ ;\
 186         movq    T_STACK(%r15), %rsp     /* switch to the kernel stack   */ ;\
 187         subq    $16, %rsp               /* save space for 2 pointers    */ ;\
 188         pushq   %r14                    /* save %r14                    */ ;\
 189         movq    %gs:CPU_RTMP_RSP, %r14                                     ;\
 190         movq    %r14, 8(%rsp)           /* stash the user stack pointer */ ;\
 191         popq    %r14                    /* restore %r14                 */ ;\
 192         movq    T_LWP(%r15), %r15       /* load the lwp pointer         */ ;\
 193         pushq   %r15                    /* push the lwp pointer         */ ;\
 194         movq    LWP_PROCP(%r15), %r15   /* load the proc pointer        */ ;\
 195         movq    P_BRAND(%r15), %r15     /* load the brand pointer       */ ;\
 196         movq    B_MACHOPS(%r15), %r15   /* load the machops pointer     */ ;\
 197         movq    _CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15            ;\
 198         cmpq    $0, %r15                                                   ;\
 199         je      1f                                                         ;\
 200         movq    %r15, 16(%rsp)          /* save the callback pointer    */ ;\
 201         push_userland_ret               /* push the return address      */ ;\
 202         call    *24(%rsp)               /* call callback                */ ;\
 203 1:      movq    %gs:CPU_RTMP_R15, %r15  /* restore %r15                 */ ;\
 204         movq    %gs:CPU_RTMP_RSP, %rsp  /* restore the stack pointer    */
 205 
 206 #define MSTATE_TRANSITION(from, to)             \
 207         movl    $from, %edi;                    \
 208         movl    $to, %esi;                      \
 209         call    syscall_mstate
 210 
 211 /*
 212  * Check to see if a simple (direct) return is possible i.e.
 213  *
 214  *      if (t->t_post_sys_ast | syscalltrace |
 215  *          lwp->lwp_pcb.pcb_rupdate == 1)
 216  *              do full version ;
 217  *
 218  * Preconditions:
 219  * -    t is curthread
 220  * Postconditions:
 221  * -    condition code NE is set if post-sys is too complex
 222  * -    rtmp is zeroed if it isn't (we rely on this!)
 223  * -    ltmp is smashed
 224  */
 225 #define CHECK_POSTSYS_NE(t, ltmp, rtmp)                 \
 226         movq    T_LWP(t), ltmp;                         \
 227         movzbl  PCB_RUPDATE(ltmp), rtmp;                \
 228         ORL_SYSCALLTRACE(rtmp);                         \
 229         orl     T_POST_SYS_AST(t), rtmp;                \
 230         cmpl    $0, rtmp
 231 
 232 /*
 233  * Fix up the lwp, thread, and eflags for a successful return
 234  *
 235  * Preconditions:
 236  * -    zwreg contains zero
 237  */
 238 #define SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg)           \
 239         movb    $LWP_USER, LWP_STATE(lwp);              \
 240         movw    zwreg, T_SYSNUM(t);                     \
 241         andb    $_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)
 242 
 243 /*
 244  * ASSERT(lwptoregs(lwp) == rp);
 245  *
 246  * This may seem obvious, but very odd things happen if this
 247  * assertion is false
 248  *
 249  * Preconditions:
 250  *      (%rsp is ready for normal call sequence)
 251  * Postconditions (if assertion is true):
 252  *      %r11 is smashed
 253  *
 254  * ASSERT(rp->r_cs == descnum)
 255  *
 256  * The code selector is written into the regs structure when the
 257  * lwp stack is created.  We use this ASSERT to validate that
 258  * the regs structure really matches how we came in.
 259  *
 260  * Preconditions:
 261  *      (%rsp is ready for normal call sequence)
 262  * Postconditions (if assertion is true):
 263  *      -none-
 264  *
 265  * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0);
 266  *
 267  * If this is false, it meant that we returned to userland without
 268  * updating the segment registers as we were supposed to.
 269  *
 270  * Note that we must ensure no interrupts or other traps intervene
 271  * between entering privileged mode and performing the assertion,
 272  * otherwise we may perform a context switch on the thread, which
 273  * will end up setting pcb_rupdate to 1 again.
 274  *
 275  * ASSERT(%cr0 & CR0_TS == 0);
 276  * Preconditions:
 277  *      (%rsp is ready for normal call sequence)
 278  * Postconditions (if assertion is true):
 279  *      (specified register is clobbered)
 280  *
 281  * Check to make sure that we are returning to user land and that CR0.TS
 282  * is not set. This is required as part of the eager FPU (see
 283  * uts/intel/ia32/os/fpu.c for more information).
 284  */
 285 
 286 #if defined(DEBUG)
 287 
 288 #if !defined(__lint)
 289 
 290 __lwptoregs_msg:
 291         .string "syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]"
 292 
 293 __codesel_msg:
 294         .string "syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld"
 295 
 296 __no_rupdate_msg:
 297         .string "syscall_asm_amd64.s:%d lwp %p, pcb_rupdate != 0"
 298 
 299 __bad_ts_msg:
 300         .string "sysscall_asm_amd64.s:%d CR0.TS set on user return"
 301 
 302 #endif  /* !__lint */
 303 
 304 #define ASSERT_LWPTOREGS(lwp, rp)                       \
 305         movq    LWP_REGS(lwp), %r11;                    \
 306         cmpq    rp, %r11;                               \
 307         je      7f;                                     \
 308         leaq    __lwptoregs_msg(%rip), %rdi;            \
 309         movl    $__LINE__, %esi;                        \
 310         movq    lwp, %rdx;                              \
 311         movq    %r11, %rcx;                             \
 312         movq    rp, %r8;                                \
 313         xorl    %eax, %eax;                             \
 314         call    panic;                                  \
 315 7:
 316 
 317 #define ASSERT_NO_RUPDATE_PENDING(lwp)                  \
 318         testb   $0x1, PCB_RUPDATE(lwp);                 \
 319         je      8f;                                     \
 320         movq    lwp, %rdx;                              \
 321         leaq    __no_rupdate_msg(%rip), %rdi;           \
 322         movl    $__LINE__, %esi;                        \
 323         xorl    %eax, %eax;                             \
 324         call    panic;                                  \
 325 8:
 326 
 327 #define ASSERT_CR0TS_ZERO(reg)                          \
 328         movq    %cr0, reg;                              \
 329         testq   $CR0_TS, reg;                           \
 330         jz      9f;                                     \
 331         leaq    __bad_ts_msg(%rip), %rdi;               \
 332         movl    $__LINE__, %esi;                        \
 333         xorl    %eax, %eax;                             \
 334         call    panic;                                  \
 335 9:
 336 
 337 #else
 338 #define ASSERT_LWPTOREGS(lwp, rp)
 339 #define ASSERT_NO_RUPDATE_PENDING(lwp)
 340 #define ASSERT_CR0TS_ZERO(reg)
 341 #endif
 342 
 343 /*
 344  * Do the traptrace thing and restore any registers we used
 345  * in situ.  Assumes that %rsp is pointing at the base of
 346  * the struct regs, obviously ..
 347  */
 348 #ifdef TRAPTRACE
 349 #define SYSCALL_TRAPTRACE(ttype)                                \
 350         TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype);               \
 351         TRACE_REGS(%rdi, %rsp, %rbx, %rcx);                     \
 352         TRACE_STAMP(%rdi);      /* rdtsc clobbers %eax, %edx */ \
 353         movq    REGOFF_RAX(%rsp), %rax;                         \
 354         movq    REGOFF_RBX(%rsp), %rbx;                         \
 355         movq    REGOFF_RCX(%rsp), %rcx;                         \
 356         movq    REGOFF_RDX(%rsp), %rdx;                         \
 357         movl    %eax, TTR_SYSNUM(%rdi);                         \
 358         movq    REGOFF_RDI(%rsp), %rdi
 359 
 360 #define SYSCALL_TRAPTRACE32(ttype)                              \
 361         SYSCALL_TRAPTRACE(ttype);                               \
 362         /* paranoia: clean the top 32-bits of the registers */  \
 363         orl     %eax, %eax;                                     \
 364         orl     %ebx, %ebx;                                     \
 365         orl     %ecx, %ecx;                                     \
 366         orl     %edx, %edx;                                     \
 367         orl     %edi, %edi
 368 #else   /* TRAPTRACE */
 369 #define SYSCALL_TRAPTRACE(ttype)
 370 #define SYSCALL_TRAPTRACE32(ttype)
 371 #endif  /* TRAPTRACE */
 372 
 373 /*
 374  * The 64-bit libc syscall wrapper does this:
 375  *
 376  * fn(<args>)
 377  * {
 378  *      movq    %rcx, %r10      -- because syscall smashes %rcx
 379  *      movl    $CODE, %eax
 380  *      syscall
 381  *      <error processing>
 382  * }
 383  *
 384  * Thus when we come into the kernel:
 385  *
 386  *      %rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
 387  *      %rax is the syscall number
 388  *      %r12-%r15 contain caller state
 389  *
 390  * The syscall instruction arranges that:
 391  *
 392  *      %rcx contains the return %rip
 393  *      %r11d contains bottom 32-bits of %rflags
 394  *      %rflags is masked (as determined by the SFMASK msr)
 395  *      %cs is set to UCS_SEL (as determined by the STAR msr)
 396  *      %ss is set to UDS_SEL (as determined by the STAR msr)
 397  *      %rip is set to sys_syscall (as determined by the LSTAR msr)
 398  *
 399  * Or in other words, we have no registers available at all.
 400  * Only swapgs can save us!
 401  *
 402  * Under the hypervisor, the swapgs has happened already.  However, the
 403  * state of the world is very different from that we're familiar with.
 404  *
 405  * In particular, we have a stack structure like that for interrupt
 406  * gates, except that the %cs and %ss registers are modified for reasons
 407  * that are not entirely clear.  Critically, the %rcx/%r11 values do
 408  * *not* reflect the usage of those registers under a 'real' syscall[1];
 409  * the stack, therefore, looks like this:
 410  *
 411  *      0x0(rsp)        potentially junk %rcx
 412  *      0x8(rsp)        potentially junk %r11
 413  *      0x10(rsp)       user %rip
 414  *      0x18(rsp)       modified %cs
 415  *      0x20(rsp)       user %rflags
 416  *      0x28(rsp)       user %rsp
 417  *      0x30(rsp)       modified %ss
 418  *
 419  *
 420  * and before continuing on, we must load the %rip into %rcx and the
 421  * %rflags into %r11.
 422  *
 423  * [1] They used to, and we relied on it, but this was broken in 3.1.1.
 424  * Sigh.
 425  */
 426 #if defined(__xpv)
 427 #define XPV_SYSCALL_PROD                                                \
 428         movq    0x10(%rsp), %rcx;                                       \
 429         movq    0x20(%rsp), %r11;                                       \
 430         movq    0x28(%rsp), %rsp
 431 #else
 432 #define XPV_SYSCALL_PROD /* nothing */
 433 #endif
 434 
 435 #if defined(__lint)
 436 
 437 /*ARGSUSED*/
 438 void
 439 sys_syscall()
 440 {}
 441 
 442 void
 443 _allsyscalls()
 444 {}
 445 
 446 size_t _allsyscalls_size;
 447 
 448 #else   /* __lint */
 449 
 450         ENTRY_NP2(brand_sys_syscall,_allsyscalls)
 451         SWAPGS                          /* kernel gsbase */
 452         XPV_SYSCALL_PROD
 453         BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx))
 454         jmp     noprod_sys_syscall
 455 
 456         ALTENTRY(sys_syscall)
 457         SWAPGS                          /* kernel gsbase */
 458         XPV_SYSCALL_PROD
 459 
 460 noprod_sys_syscall:
 461         movq    %r15, %gs:CPU_RTMP_R15
 462         movq    %rsp, %gs:CPU_RTMP_RSP
 463 
 464         movq    %gs:CPU_THREAD, %r15
 465         movq    T_STACK(%r15), %rsp     /* switch from user to kernel stack */
 466 
 467         ASSERT_UPCALL_MASK_IS_SET
 468 
 469         movl    $UCS_SEL, REGOFF_CS(%rsp)
 470         movq    %rcx, REGOFF_RIP(%rsp)          /* syscall: %rip -> %rcx */
 471         movq    %r11, REGOFF_RFL(%rsp)          /* syscall: %rfl -> %r11d */
 472         movl    $UDS_SEL, REGOFF_SS(%rsp)
 473 
 474         movl    %eax, %eax                      /* wrapper: sysc# -> %eax */
 475         movq    %rdi, REGOFF_RDI(%rsp)
 476         movq    %rsi, REGOFF_RSI(%rsp)
 477         movq    %rdx, REGOFF_RDX(%rsp)
 478         movq    %r10, REGOFF_RCX(%rsp)          /* wrapper: %rcx -> %r10 */
 479         movq    %r10, %rcx                      /* arg[3] for direct calls */
 480 
 481         movq    %r8, REGOFF_R8(%rsp)
 482         movq    %r9, REGOFF_R9(%rsp)
 483         movq    %rax, REGOFF_RAX(%rsp)
 484         movq    %rbx, REGOFF_RBX(%rsp)
 485 
 486         movq    %rbp, REGOFF_RBP(%rsp)
 487         movq    %r10, REGOFF_R10(%rsp)
 488         movq    %gs:CPU_RTMP_RSP, %r11
 489         movq    %r11, REGOFF_RSP(%rsp)
 490         movq    %r12, REGOFF_R12(%rsp)
 491 
 492         movq    %r13, REGOFF_R13(%rsp)
 493         movq    %r14, REGOFF_R14(%rsp)
 494         movq    %gs:CPU_RTMP_R15, %r10
 495         movq    %r10, REGOFF_R15(%rsp)
 496         movq    $0, REGOFF_SAVFP(%rsp)
 497         movq    $0, REGOFF_SAVPC(%rsp)
 498 
 499         /*
 500          * Copy these registers here in case we end up stopped with
 501          * someone (like, say, /proc) messing with our register state.
 502          * We don't -restore- them unless we have to in update_sregs.
 503          *
 504          * Since userland -can't- change fsbase or gsbase directly,
 505          * and capturing them involves two serializing instructions,
 506          * we don't bother to capture them here.
 507          */
 508         xorl    %ebx, %ebx
 509         movw    %ds, %bx
 510         movq    %rbx, REGOFF_DS(%rsp)
 511         movw    %es, %bx
 512         movq    %rbx, REGOFF_ES(%rsp)
 513         movw    %fs, %bx
 514         movq    %rbx, REGOFF_FS(%rsp)
 515         movw    %gs, %bx
 516         movq    %rbx, REGOFF_GS(%rsp)
 517 
 518         /*
 519          * If we're trying to use TRAPTRACE though, I take that back: we're
 520          * probably debugging some problem in the SWAPGS logic and want to know
 521          * what the incoming gsbase was.
 522          *
 523          * Since we already did SWAPGS, record the KGSBASE.
 524          */
 525 #if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv)
 526         movl    $MSR_AMD_KGSBASE, %ecx
 527         rdmsr
 528         movl    %eax, REGOFF_GSBASE(%rsp)
 529         movl    %edx, REGOFF_GSBASE+4(%rsp)
 530 #endif
 531 
 532         /*
 533          * Machine state saved in the regs structure on the stack
 534          * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
 535          * %eax is the syscall number
 536          * %rsp is the thread's stack, %r15 is curthread
 537          * REG_RSP(%rsp) is the user's stack
 538          */
 539 
 540         SYSCALL_TRAPTRACE($TT_SYSC64)
 541 
 542         movq    %rsp, %rbp
 543 
 544         movq    T_LWP(%r15), %r14
 545         ASSERT_NO_RUPDATE_PENDING(%r14)
 546         ENABLE_INTR_FLAGS
 547 
 548         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
 549         movl    REGOFF_RAX(%rsp), %eax  /* (%rax damaged by mstate call) */
 550 
 551         ASSERT_LWPTOREGS(%r14, %rsp)
 552 
 553         movb    $LWP_SYS, LWP_STATE(%r14)
 554         incq    LWP_RU_SYSC(%r14)
 555         movb    $NORMALRETURN, LWP_EOSYS(%r14)
 556 
 557         incq    %gs:CPU_STATS_SYS_SYSCALL
 558 
 559         movw    %ax, T_SYSNUM(%r15)
 560         movzbl  T_PRE_SYS(%r15), %ebx
 561         ORL_SYSCALLTRACE(%ebx)
 562         testl   %ebx, %ebx
 563         jne     _syscall_pre
 564 
 565 _syscall_invoke:
 566         movq    REGOFF_RDI(%rbp), %rdi
 567         movq    REGOFF_RSI(%rbp), %rsi
 568         movq    REGOFF_RDX(%rbp), %rdx
 569         movq    REGOFF_RCX(%rbp), %rcx
 570         movq    REGOFF_R8(%rbp), %r8
 571         movq    REGOFF_R9(%rbp), %r9
 572 
 573         cmpl    $NSYSCALL, %eax
 574         jae     _syscall_ill
 575         shll    $SYSENT_SIZE_SHIFT, %eax
 576         leaq    sysent(%rax), %rbx
 577 
 578         call    *SY_CALLC(%rbx)
 579 
 580         movq    %rax, %r12
 581         movq    %rdx, %r13
 582 
 583         /*
 584          * If the handler returns two ints, then we need to split the
 585          * 64-bit return value into two 32-bit values.
 586          */
 587         testw   $SE_32RVAL2, SY_FLAGS(%rbx)
 588         je      5f
 589         movq    %r12, %r13
 590         shrq    $32, %r13       /* upper 32-bits into %edx */
 591         movl    %r12d, %r12d    /* lower 32-bits into %eax */
 592 5:
 593         /*
 594          * Optimistically assume that there's no post-syscall
 595          * work to do.  (This is to avoid having to call syscall_mstate()
 596          * with interrupts disabled)
 597          */
 598         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
 599 
 600         /*
 601          * We must protect ourselves from being descheduled here;
 602          * If we were, and we ended up on another cpu, or another
 603          * lwp got in ahead of us, it could change the segment
 604          * registers without us noticing before we return to userland.
 605          */
 606         CLI(%r14)
 607         CHECK_POSTSYS_NE(%r15, %r14, %ebx)
 608         jne     _syscall_post
 609 
 610         /*
 611          * We need to protect ourselves against non-canonical return values
 612          * because Intel doesn't check for them on sysret (AMD does).  Canonical
 613          * addresses on current amd64 processors only use 48-bits for VAs; an
 614          * address is canonical if all upper bits (47-63) are identical. If we
 615          * find a non-canonical %rip, we opt to go through the full
 616          * _syscall_post path which takes us into an iretq which is not
 617          * susceptible to the same problems sysret is.
 618          *
 619          * We're checking for a canonical address by first doing an arithmetic
 620          * shift. This will fill in the remaining bits with the value of bit 63.
 621          * If the address were canonical, the register would now have either all
 622          * zeroes or all ones in it. Therefore we add one (inducing overflow)
 623          * and compare against 1. A canonical address will either be zero or one
 624          * at this point, hence the use of ja.
 625          *
 626          * At this point, r12 and r13 have the return value so we can't use
 627          * those registers.
 628          */
 629         movq    REGOFF_RIP(%rsp), %rcx
 630         sarq    $47, %rcx
 631         incq    %rcx
 632         cmpq    $1, %rcx
 633         ja      _syscall_post
 634 
 635 
 636         SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
 637 
 638         movq    %r12, REGOFF_RAX(%rsp)
 639         movq    %r13, REGOFF_RDX(%rsp)
 640 
 641         /*
 642          * Clobber %r11 as we check CR0.TS.
 643          */
 644         ASSERT_CR0TS_ZERO(%r11)
 645 
 646         /*
 647          * Unlike other cases, because we need to restore the user stack pointer
 648          * before exiting the kernel we must clear the microarch state before
 649          * getting here. This should be safe because it means that the only
 650          * values on the bus after this are based on the user's registers and
 651          * potentially the addresses where we stored them. Given the constraints
 652          * of sysret, that's how it has to be.
 653          */
 654         call    *x86_md_clear
 655 
 656         /*
 657          * To get back to userland, we need the return %rip in %rcx and
 658          * the return %rfl in %r11d.  The sysretq instruction also arranges
 659          * to fix up %cs and %ss; everything else is our responsibility.
 660          */
 661         movq    REGOFF_RDI(%rsp), %rdi
 662         movq    REGOFF_RSI(%rsp), %rsi
 663         movq    REGOFF_RDX(%rsp), %rdx
 664         /* %rcx used to restore %rip value */
 665 
 666         movq    REGOFF_R8(%rsp), %r8
 667         movq    REGOFF_R9(%rsp), %r9
 668         movq    REGOFF_RAX(%rsp), %rax
 669         movq    REGOFF_RBX(%rsp), %rbx
 670 
 671         movq    REGOFF_RBP(%rsp), %rbp
 672         movq    REGOFF_R10(%rsp), %r10
 673         /* %r11 used to restore %rfl value */
 674         movq    REGOFF_R12(%rsp), %r12
 675 
 676         movq    REGOFF_R13(%rsp), %r13
 677         movq    REGOFF_R14(%rsp), %r14
 678         movq    REGOFF_R15(%rsp), %r15
 679 
 680         movq    REGOFF_RIP(%rsp), %rcx
 681         movl    REGOFF_RFL(%rsp), %r11d
 682 
 683 #if defined(__xpv)
 684         addq    $REGOFF_RIP, %rsp
 685 #else
 686         movq    REGOFF_RSP(%rsp), %rsp
 687 #endif
 688 
 689         /*
 690          * There can be no instructions between the ALTENTRY below and
 691          * SYSRET or we could end up breaking brand support. See label usage
 692          * in sn1_brand_syscall_callback for an example.
 693          */
 694         ASSERT_UPCALL_MASK_IS_SET
 695 #if defined(__xpv)
 696         SYSRETQ
 697         ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
 698 
 699         /*
 700          * We can only get here after executing a brand syscall
 701          * interposition callback handler and simply need to
 702          * "sysretq" back to userland. On the hypervisor this
 703          * involves the iret hypercall which requires us to construct
 704          * just enough of the stack needed for the hypercall.
 705          * (rip, cs, rflags, rsp, ss).
 706          */
 707         movq    %rsp, %gs:CPU_RTMP_RSP          /* save user's rsp */
 708         movq    %gs:CPU_THREAD, %r11
 709         movq    T_STACK(%r11), %rsp
 710 
 711         movq    %rcx, REGOFF_RIP(%rsp)
 712         movl    $UCS_SEL, REGOFF_CS(%rsp)
 713         movq    %gs:CPU_RTMP_RSP, %r11
 714         movq    %r11, REGOFF_RSP(%rsp)
 715         pushfq
 716         popq    %r11                            /* hypercall enables ints */
 717         movq    %r11, REGOFF_RFL(%rsp)
 718         movl    $UDS_SEL, REGOFF_SS(%rsp)
 719         addq    $REGOFF_RIP, %rsp
 720         /*
 721          * XXPV: see comment in SYSRETQ definition for future optimization
 722          *       we could take.
 723          */
 724         ASSERT_UPCALL_MASK_IS_SET
 725         SYSRETQ
 726 #else
 727         ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
 728         jmp     tr_sysretq
 729 #endif
 730         /*NOTREACHED*/
 731         SET_SIZE(nopop_sys_syscall_swapgs_sysretq)
 732 
 733 _syscall_pre:
 734         call    pre_syscall
 735         movl    %eax, %r12d
 736         testl   %eax, %eax
 737         jne     _syscall_post_call
 738         /*
 739          * Didn't abort, so reload the syscall args and invoke the handler.
 740          */
 741         movzwl  T_SYSNUM(%r15), %eax
 742         jmp     _syscall_invoke
 743 
 744 _syscall_ill:
 745         call    nosys
 746         movq    %rax, %r12
 747         movq    %rdx, %r13
 748         jmp     _syscall_post_call
 749 
 750 _syscall_post:
 751         STI
 752         /*
 753          * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
 754          * so that we can account for the extra work it takes us to finish.
 755          */
 756         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
 757 _syscall_post_call:
 758         movq    %r12, %rdi
 759         movq    %r13, %rsi
 760         call    post_syscall
 761         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
 762         jmp     _sys_rtt
 763         SET_SIZE(sys_syscall)
 764         SET_SIZE(brand_sys_syscall)
 765 
 766 #endif  /* __lint */
 767 
 768 #if defined(__lint)
 769 
 770 /*ARGSUSED*/
 771 void
 772 sys_syscall32()
 773 {}
 774 
 775 #else   /* __lint */
 776 
 777         ENTRY_NP(brand_sys_syscall32)
 778         SWAPGS                          /* kernel gsbase */
 779         XPV_TRAP_POP
 780         BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx))
 781         jmp     nopop_sys_syscall32
 782 
 783         ALTENTRY(sys_syscall32)
 784         SWAPGS                          /* kernel gsbase */
 785         XPV_TRAP_POP
 786 
 787 nopop_sys_syscall32:
 788         movl    %esp, %r10d
 789         movq    %gs:CPU_THREAD, %r15
 790         movq    T_STACK(%r15), %rsp
 791         movl    %eax, %eax
 792 
 793         movl    $U32CS_SEL, REGOFF_CS(%rsp)
 794         movl    %ecx, REGOFF_RIP(%rsp)          /* syscall: %rip -> %rcx */
 795         movq    %r11, REGOFF_RFL(%rsp)          /* syscall: %rfl -> %r11d */
 796         movq    %r10, REGOFF_RSP(%rsp)
 797         movl    $UDS_SEL, REGOFF_SS(%rsp)
 798 
 799 _syscall32_save:
 800         movl    %edi, REGOFF_RDI(%rsp)
 801         movl    %esi, REGOFF_RSI(%rsp)
 802         movl    %ebp, REGOFF_RBP(%rsp)
 803         movl    %ebx, REGOFF_RBX(%rsp)
 804         movl    %edx, REGOFF_RDX(%rsp)
 805         movl    %ecx, REGOFF_RCX(%rsp)
 806         movl    %eax, REGOFF_RAX(%rsp)          /* wrapper: sysc# -> %eax */
 807         movq    $0, REGOFF_SAVFP(%rsp)
 808         movq    $0, REGOFF_SAVPC(%rsp)
 809 
 810         /*
 811          * Copy these registers here in case we end up stopped with
 812          * someone (like, say, /proc) messing with our register state.
 813          * We don't -restore- them unless we have to in update_sregs.
 814          *
 815          * Since userland -can't- change fsbase or gsbase directly,
 816          * we don't bother to capture them here.
 817          */
 818         xorl    %ebx, %ebx
 819         movw    %ds, %bx
 820         movq    %rbx, REGOFF_DS(%rsp)
 821         movw    %es, %bx
 822         movq    %rbx, REGOFF_ES(%rsp)
 823         movw    %fs, %bx
 824         movq    %rbx, REGOFF_FS(%rsp)
 825         movw    %gs, %bx
 826         movq    %rbx, REGOFF_GS(%rsp)
 827 
 828         /*
 829          * If we're trying to use TRAPTRACE though, I take that back: we're
 830          * probably debugging some problem in the SWAPGS logic and want to know
 831          * what the incoming gsbase was.
 832          *
 833          * Since we already did SWAPGS, record the KGSBASE.
 834          */
 835 #if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv)
 836         movl    $MSR_AMD_KGSBASE, %ecx
 837         rdmsr
 838         movl    %eax, REGOFF_GSBASE(%rsp)
 839         movl    %edx, REGOFF_GSBASE+4(%rsp)
 840 #endif
 841 
 842         /*
 843          * Application state saved in the regs structure on the stack
 844          * %eax is the syscall number
 845          * %rsp is the thread's stack, %r15 is curthread
 846          * REG_RSP(%rsp) is the user's stack
 847          */
 848 
 849         SYSCALL_TRAPTRACE32($TT_SYSC)
 850 
 851         movq    %rsp, %rbp
 852 
 853         movq    T_LWP(%r15), %r14
 854         ASSERT_NO_RUPDATE_PENDING(%r14)
 855 
 856         ENABLE_INTR_FLAGS
 857 
 858         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
 859         movl    REGOFF_RAX(%rsp), %eax  /* (%rax damaged by mstate call) */
 860 
 861         ASSERT_LWPTOREGS(%r14, %rsp)
 862 
 863         incq     %gs:CPU_STATS_SYS_SYSCALL
 864 
 865         /*
 866          * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
 867          * into 64-bit (long) arg slots, maintaining 16 byte alignment.  Or
 868          * more succinctly:
 869          *
 870          *      SA(MAXSYSARGS * sizeof (long)) == 64
 871          */
 872 #define SYS_DROP        64                      /* drop for args */
 873         subq    $SYS_DROP, %rsp
 874         movb    $LWP_SYS, LWP_STATE(%r14)
 875         movq    %r15, %rdi
 876         movq    %rsp, %rsi
 877         call    syscall_entry
 878 
 879         /*
 880          * Fetch the arguments copied onto the kernel stack and put
 881          * them in the right registers to invoke a C-style syscall handler.
 882          * %rax contains the handler address.
 883          *
 884          * Ideas for making all this go faster of course include simply
 885          * forcibly fetching 6 arguments from the user stack under lofault
 886          * protection, reverting to copyin_args only when watchpoints
 887          * are in effect.
 888          *
 889          * (If we do this, make sure that exec and libthread leave
 890          * enough space at the top of the stack to ensure that we'll
 891          * never do a fetch from an invalid page.)
 892          *
 893          * Lots of ideas here, but they won't really help with bringup B-)
 894          * Correctness can't wait, performance can wait a little longer ..
 895          */
 896 
 897         movq    %rax, %rbx
 898         movl    0(%rsp), %edi
 899         movl    8(%rsp), %esi
 900         movl    0x10(%rsp), %edx
 901         movl    0x18(%rsp), %ecx
 902         movl    0x20(%rsp), %r8d
 903         movl    0x28(%rsp), %r9d
 904 
 905         call    *SY_CALLC(%rbx)
 906 
 907         movq    %rbp, %rsp      /* pop the args */
 908 
 909         /*
 910          * amd64 syscall handlers -always- return a 64-bit value in %rax.
 911          * On the 32-bit kernel, they always return that value in %eax:%edx
 912          * as required by the 32-bit ABI.
 913          *
 914          * Simulate the same behaviour by unconditionally splitting the
 915          * return value in the same way.
 916          */
 917         movq    %rax, %r13
 918         shrq    $32, %r13       /* upper 32-bits into %edx */
 919         movl    %eax, %r12d     /* lower 32-bits into %eax */
 920 
 921         /*
 922          * Optimistically assume that there's no post-syscall
 923          * work to do.  (This is to avoid having to call syscall_mstate()
 924          * with interrupts disabled)
 925          */
 926         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
 927 
 928         /*
 929          * We must protect ourselves from being descheduled here;
 930          * If we were, and we ended up on another cpu, or another
 931          * lwp got in ahead of us, it could change the segment
 932          * registers without us noticing before we return to userland.
 933          */
 934         CLI(%r14)
 935         CHECK_POSTSYS_NE(%r15, %r14, %ebx)
 936         jne     _full_syscall_postsys32
 937         SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
 938 
 939         /*
 940          * Clobber %r11 as we check CR0.TS.
 941          */
 942         ASSERT_CR0TS_ZERO(%r11)
 943 
 944         /*
 945          * Unlike other cases, because we need to restore the user stack pointer
 946          * before exiting the kernel we must clear the microarch state before
 947          * getting here. This should be safe because it means that the only
 948          * values on the bus after this are based on the user's registers and
 949          * potentially the addresses where we stored them. Given the constraints
 950          * of sysret, that's how it has to be.
 951          */
 952         call    *x86_md_clear
 953 
 954         /*
 955          * To get back to userland, we need to put the return %rip in %rcx and
 956          * the return %rfl in %r11d.  The sysret instruction also arranges
 957          * to fix up %cs and %ss; everything else is our responsibility.
 958          */
 959 
 960         movl    %r12d, %eax                     /* %eax: rval1 */
 961         movl    REGOFF_RBX(%rsp), %ebx
 962         /* %ecx used for return pointer */
 963         movl    %r13d, %edx                     /* %edx: rval2 */
 964         movl    REGOFF_RBP(%rsp), %ebp
 965         movl    REGOFF_RSI(%rsp), %esi
 966         movl    REGOFF_RDI(%rsp), %edi
 967 
 968         movl    REGOFF_RFL(%rsp), %r11d         /* %r11 -> eflags */
 969         movl    REGOFF_RIP(%rsp), %ecx          /* %ecx -> %eip */
 970         movl    REGOFF_RSP(%rsp), %esp
 971 
 972         ASSERT_UPCALL_MASK_IS_SET
 973         ALTENTRY(nopop_sys_syscall32_swapgs_sysretl)
 974         jmp     tr_sysretl
 975         SET_SIZE(nopop_sys_syscall32_swapgs_sysretl)
 976         /*NOTREACHED*/
 977 
 978 _full_syscall_postsys32:
 979         STI
 980         /*
 981          * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
 982          * so that we can account for the extra work it takes us to finish.
 983          */
 984         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
 985         movq    %r15, %rdi
 986         movq    %r12, %rsi                      /* rval1 - %eax */
 987         movq    %r13, %rdx                      /* rval2 - %edx */
 988         call    syscall_exit
 989         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
 990         jmp     _sys_rtt
 991         SET_SIZE(sys_syscall32)
 992         SET_SIZE(brand_sys_syscall32)
 993 
 994 #endif  /* __lint */
 995 
 996 /*
 997  * System call handler via the sysenter instruction
 998  * Used only for 32-bit system calls on the 64-bit kernel.
 999  *
1000  * The caller in userland has arranged that:
1001  *
1002  * -    %eax contains the syscall number
1003  * -    %ecx contains the user %esp
1004  * -    %edx contains the return %eip
1005  * -    the user stack contains the args to the syscall
1006  *
1007  * Hardware and (privileged) initialization code have arranged that by
1008  * the time the sysenter instructions completes:
1009  *
1010  * - %rip is pointing to sys_sysenter (below).
1011  * - %cs and %ss are set to kernel text and stack (data) selectors.
1012  * - %rsp is pointing at the lwp's stack
1013  * - interrupts have been disabled.
1014  *
1015  * Note that we are unable to return both "rvals" to userland with
1016  * this call, as %edx is used by the sysexit instruction.
1017  *
1018  * One final complication in this routine is its interaction with
1019  * single-stepping in a debugger.  For most of the system call mechanisms, the
1020  * CPU automatically clears the single-step flag before we enter the kernel.
1021  * The sysenter mechanism does not clear the flag, so a user single-stepping
1022  * through a libc routine may suddenly find themself single-stepping through the
1023  * kernel.  To detect this, kmdb and trap() both compare the trap %pc to the
1024  * [brand_]sys_enter addresses on each single-step trap.  If it finds that we
1025  * have single-stepped to a sysenter entry point, it explicitly clears the flag
1026  * and executes the sys_sysenter routine.
1027  *
1028  * One final complication in this final complication is the fact that we have
1029  * two different entry points for sysenter: brand_sys_sysenter and sys_sysenter.
1030  * If we enter at brand_sys_sysenter and start single-stepping through the
1031  * kernel with kmdb, we will eventually hit the instruction at sys_sysenter.
1032  * kmdb cannot distinguish between that valid single-step and the undesirable
1033  * one mentioned above.  To avoid this situation, we simply add a jump over the
1034  * instruction at sys_sysenter to make it impossible to single-step to it.
1035  */
1036 #if defined(__lint)
1037 
1038 void
1039 sys_sysenter()
1040 {}
1041 
1042 #else   /* __lint */
1043 
1044         ENTRY_NP(brand_sys_sysenter)
1045         SWAPGS                          /* kernel gsbase */
1046         ALTENTRY(_brand_sys_sysenter_post_swapgs)
1047 
1048         BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx))
1049         /*
1050          * Jump over sys_sysenter to allow single-stepping as described
1051          * above.
1052          */
1053         jmp     _sys_sysenter_post_swapgs
1054 
1055         ALTENTRY(sys_sysenter)
1056         SWAPGS                          /* kernel gsbase */
1057         ALTENTRY(_sys_sysenter_post_swapgs)
1058 
1059         movq    %gs:CPU_THREAD, %r15
1060 
1061         movl    $U32CS_SEL, REGOFF_CS(%rsp)
1062         movl    %ecx, REGOFF_RSP(%rsp)          /* wrapper: %esp -> %ecx */
1063         movl    %edx, REGOFF_RIP(%rsp)          /* wrapper: %eip -> %edx */
1064         /*
1065          * NOTE: none of the instructions that run before we get here should
1066          * clobber bits in (R)FLAGS! This includes the kpti trampoline.
1067          */
1068         pushfq
1069         popq    %r10
1070         movl    $UDS_SEL, REGOFF_SS(%rsp)
1071 
1072         /*
1073          * Set the interrupt flag before storing the flags to the
1074          * flags image on the stack so we can return to user with
1075          * interrupts enabled if we return via sys_rtt_syscall32
1076          */
1077         orq     $PS_IE, %r10
1078         movq    %r10, REGOFF_RFL(%rsp)
1079 
1080         movl    %edi, REGOFF_RDI(%rsp)
1081         movl    %esi, REGOFF_RSI(%rsp)
1082         movl    %ebp, REGOFF_RBP(%rsp)
1083         movl    %ebx, REGOFF_RBX(%rsp)
1084         movl    %edx, REGOFF_RDX(%rsp)
1085         movl    %ecx, REGOFF_RCX(%rsp)
1086         movl    %eax, REGOFF_RAX(%rsp)          /* wrapper: sysc# -> %eax */
1087         movq    $0, REGOFF_SAVFP(%rsp)
1088         movq    $0, REGOFF_SAVPC(%rsp)
1089 
1090         /*
1091          * Copy these registers here in case we end up stopped with
1092          * someone (like, say, /proc) messing with our register state.
1093          * We don't -restore- them unless we have to in update_sregs.
1094          *
1095          * Since userland -can't- change fsbase or gsbase directly,
1096          * we don't bother to capture them here.
1097          */
1098         xorl    %ebx, %ebx
1099         movw    %ds, %bx
1100         movq    %rbx, REGOFF_DS(%rsp)
1101         movw    %es, %bx
1102         movq    %rbx, REGOFF_ES(%rsp)
1103         movw    %fs, %bx
1104         movq    %rbx, REGOFF_FS(%rsp)
1105         movw    %gs, %bx
1106         movq    %rbx, REGOFF_GS(%rsp)
1107 
1108         /*
1109          * If we're trying to use TRAPTRACE though, I take that back: we're
1110          * probably debugging some problem in the SWAPGS logic and want to know
1111          * what the incoming gsbase was.
1112          *
1113          * Since we already did SWAPGS, record the KGSBASE.
1114          */
1115 #if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv)
1116         movl    $MSR_AMD_KGSBASE, %ecx
1117         rdmsr
1118         movl    %eax, REGOFF_GSBASE(%rsp)
1119         movl    %edx, REGOFF_GSBASE+4(%rsp)
1120 #endif
1121 
1122         /*
1123          * Application state saved in the regs structure on the stack
1124          * %eax is the syscall number
1125          * %rsp is the thread's stack, %r15 is curthread
1126          * REG_RSP(%rsp) is the user's stack
1127          */
1128 
1129         SYSCALL_TRAPTRACE($TT_SYSENTER)
1130 
1131         movq    %rsp, %rbp
1132 
1133         movq    T_LWP(%r15), %r14
1134         ASSERT_NO_RUPDATE_PENDING(%r14)
1135 
1136         ENABLE_INTR_FLAGS
1137 
1138         /*
1139          * Catch 64-bit process trying to issue sysenter instruction
1140          * on Nocona based systems.
1141          */
1142         movq    LWP_PROCP(%r14), %rax
1143         cmpq    $DATAMODEL_ILP32, P_MODEL(%rax)
1144         je      7f
1145 
1146         /*
1147          * For a non-32-bit process, simulate a #ud, since that's what
1148          * native hardware does.  The traptrace entry (above) will
1149          * let you know what really happened.
1150          */
1151         movq    $T_ILLINST, REGOFF_TRAPNO(%rsp)
1152         movq    REGOFF_CS(%rsp), %rdi
1153         movq    %rdi, REGOFF_ERR(%rsp)
1154         movq    %rsp, %rdi
1155         movq    REGOFF_RIP(%rsp), %rsi
1156         movl    %gs:CPU_ID, %edx
1157         call    trap
1158         jmp     _sys_rtt
1159 7:
1160 
1161         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
1162         movl    REGOFF_RAX(%rsp), %eax  /* (%rax damaged by mstate calls) */
1163 
1164         ASSERT_LWPTOREGS(%r14, %rsp)
1165 
1166         incq    %gs:CPU_STATS_SYS_SYSCALL
1167 
1168         /*
1169          * Make some space for MAXSYSARGS (currently 8) 32-bit args
1170          * placed into 64-bit (long) arg slots, plus one 64-bit
1171          * (long) arg count, maintaining 16 byte alignment.
1172          */
1173         subq    $SYS_DROP, %rsp
1174         movb    $LWP_SYS, LWP_STATE(%r14)
1175         movq    %r15, %rdi
1176         movq    %rsp, %rsi
1177         call    syscall_entry
1178 
1179         /*
1180          * Fetch the arguments copied onto the kernel stack and put
1181          * them in the right registers to invoke a C-style syscall handler.
1182          * %rax contains the handler address.
1183          */
1184         movq    %rax, %rbx
1185         movl    0(%rsp), %edi
1186         movl    8(%rsp), %esi
1187         movl    0x10(%rsp), %edx
1188         movl    0x18(%rsp), %ecx
1189         movl    0x20(%rsp), %r8d
1190         movl    0x28(%rsp), %r9d
1191 
1192         call    *SY_CALLC(%rbx)
1193 
1194         movq    %rbp, %rsp      /* pop the args */
1195 
1196         /*
1197          * amd64 syscall handlers -always- return a 64-bit value in %rax.
1198          * On the 32-bit kernel, the always return that value in %eax:%edx
1199          * as required by the 32-bit ABI.
1200          *
1201          * Simulate the same behaviour by unconditionally splitting the
1202          * return value in the same way.
1203          */
1204         movq    %rax, %r13
1205         shrq    $32, %r13       /* upper 32-bits into %edx */
1206         movl    %eax, %r12d     /* lower 32-bits into %eax */
1207 
1208         /*
1209          * Optimistically assume that there's no post-syscall
1210          * work to do.  (This is to avoid having to call syscall_mstate()
1211          * with interrupts disabled)
1212          */
1213         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
1214 
1215         /*
1216          * We must protect ourselves from being descheduled here;
1217          * If we were, and we ended up on another cpu, or another
1218          * lwp got int ahead of us, it could change the segment
1219          * registers without us noticing before we return to userland.
1220          *
1221          * This cli is undone in the tr_sysexit trampoline code.
1222          */
1223         cli
1224         CHECK_POSTSYS_NE(%r15, %r14, %ebx)
1225         jne     _full_syscall_postsys32
1226         SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
1227 
1228         /*
1229          * To get back to userland, load up the 32-bit registers and
1230          * sysexit back where we came from.
1231          */
1232 
1233         /*
1234          * Interrupts will be turned on by the 'sti' executed just before
1235          * sysexit.  The following ensures that restoring the user's rflags
1236          * doesn't enable interrupts too soon.
1237          */
1238         andq    $_BITNOT(PS_IE), REGOFF_RFL(%rsp)
1239 
1240         /*
1241          * Clobber %r11 as we check CR0.TS.
1242          */
1243         ASSERT_CR0TS_ZERO(%r11)
1244 
1245         /*
1246          * (There's no point in loading up %edx because the sysexit
1247          * mechanism smashes it.)
1248          */
1249         movl    %r12d, %eax
1250         movl    REGOFF_RBX(%rsp), %ebx
1251         movl    REGOFF_RBP(%rsp), %ebp
1252         movl    REGOFF_RSI(%rsp), %esi
1253         movl    REGOFF_RDI(%rsp), %edi
1254 
1255         movl    REGOFF_RIP(%rsp), %edx  /* sysexit: %edx -> %eip */
1256         pushq   REGOFF_RFL(%rsp)
1257         popfq
1258         movl    REGOFF_RSP(%rsp), %ecx  /* sysexit: %ecx -> %esp */
1259         ALTENTRY(sys_sysenter_swapgs_sysexit)
1260         call    *x86_md_clear
1261         jmp     tr_sysexit
1262         SET_SIZE(sys_sysenter_swapgs_sysexit)
1263         SET_SIZE(sys_sysenter)
1264         SET_SIZE(_sys_sysenter_post_swapgs)
1265         SET_SIZE(brand_sys_sysenter)
1266 
1267 #endif  /* __lint */
1268 
1269 /*
1270  * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1271  * the generic i386 libc to do system calls. We do a small amount of setup
1272  * before jumping into the existing sys_syscall32 path.
1273  */
1274 #if defined(__lint)
1275 
1276 /*ARGSUSED*/
1277 void
1278 sys_syscall_int()
1279 {}
1280 
1281 #else   /* __lint */
1282 
1283         ENTRY_NP(brand_sys_syscall_int)
1284         SWAPGS                          /* kernel gsbase */
1285         XPV_TRAP_POP
1286         call    smap_enable
1287         BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK())
1288         jmp     nopop_syscall_int
1289 
1290         ALTENTRY(sys_syscall_int)
1291         SWAPGS                          /* kernel gsbase */
1292         XPV_TRAP_POP
1293         call    smap_enable
1294 
1295 nopop_syscall_int:
1296         movq    %gs:CPU_THREAD, %r15
1297         movq    T_STACK(%r15), %rsp
1298         movl    %eax, %eax
1299         /*
1300          * Set t_post_sys on this thread to force ourselves out via the slow
1301          * path. It might be possible at some later date to optimize this out
1302          * and use a faster return mechanism.
1303          */
1304         movb    $1, T_POST_SYS(%r15)
1305         CLEAN_CS
1306         jmp     _syscall32_save
1307         /*
1308          * There should be no instructions between this label and SWAPGS/IRET
1309          * or we could end up breaking branded zone support. See the usage of
1310          * this label in lx_brand_int80_callback and sn1_brand_int91_callback
1311          * for examples.
1312          *
1313          * We want to swapgs to maintain the invariant that all entries into
1314          * tr_iret_user are done on the user gsbase.
1315          */
1316         ALTENTRY(sys_sysint_swapgs_iret)
1317         call    *x86_md_clear
1318         SWAPGS
1319         jmp     tr_iret_user
1320         /*NOTREACHED*/
1321         SET_SIZE(sys_sysint_swapgs_iret)
1322         SET_SIZE(sys_syscall_int)
1323         SET_SIZE(brand_sys_syscall_int)
1324 
1325 #endif  /* __lint */
1326 
1327 /*
1328  * Legacy 32-bit applications and old libc implementations do lcalls;
1329  * we should never get here because the LDT entry containing the syscall
1330  * segment descriptor has the "segment present" bit cleared, which means
1331  * we end up processing those system calls in trap() via a not-present trap.
1332  *
1333  * We do it this way because a call gate unhelpfully does -nothing- to the
1334  * interrupt flag bit, so an interrupt can run us just after the lcall
1335  * completes, but just before the swapgs takes effect.   Thus the INTR_PUSH and
1336  * INTR_POP paths would have to be slightly more complex to dance around
1337  * this problem, and end up depending explicitly on the first
1338  * instruction of this handler being either swapgs or cli.
1339  */
1340 
1341 #if defined(__lint)
1342 
1343 /*ARGSUSED*/
1344 void
1345 sys_lcall32()
1346 {}
1347 
1348 #else   /* __lint */
1349 
1350         ENTRY_NP(sys_lcall32)
1351         SWAPGS                          /* kernel gsbase */
1352         pushq   $0
1353         pushq   %rbp
1354         movq    %rsp, %rbp
1355         leaq    __lcall_panic_str(%rip), %rdi
1356         xorl    %eax, %eax
1357         call    panic
1358         SET_SIZE(sys_lcall32)
1359 
1360 __lcall_panic_str:
1361         .string "sys_lcall32: shouldn't be here!"
1362 
1363 /*
1364  * Declare a uintptr_t which covers the entire pc range of syscall
1365  * handlers for the stack walkers that need this.
1366  */
1367         .align  CPTRSIZE
1368         .globl  _allsyscalls_size
1369         .type   _allsyscalls_size, @object
1370 _allsyscalls_size:
1371         .NWORD  . - _allsyscalls
1372         SET_SIZE(_allsyscalls_size)
1373 
1374 #endif  /* __lint */
1375 
1376 /*
1377  * These are the thread context handlers for lwps using sysenter/sysexit.
1378  */
1379 
1380 #if defined(__lint)
1381 
1382 /*ARGSUSED*/
1383 void
1384 sep_save(void *ksp)
1385 {}
1386 
1387 /*ARGSUSED*/
1388 void
1389 sep_restore(void *ksp)
1390 {}
1391 
1392 #else   /* __lint */
1393 
1394         /*
1395          * setting this value to zero as we switch away causes the
1396          * stack-pointer-on-sysenter to be NULL, ensuring that we
1397          * don't silently corrupt another (preempted) thread stack
1398          * when running an lwp that (somehow) didn't get sep_restore'd
1399          */
1400         ENTRY_NP(sep_save)
1401         xorl    %edx, %edx
1402         xorl    %eax, %eax
1403         movl    $MSR_INTC_SEP_ESP, %ecx
1404         wrmsr
1405         ret
1406         SET_SIZE(sep_save)
1407 
1408         /*
1409          * Update the kernel stack pointer as we resume onto this cpu.
1410          */
1411         ENTRY_NP(sep_restore)
1412         movq    %rdi, %rdx
1413         shrq    $32, %rdx
1414         movl    %edi, %eax
1415         movl    $MSR_INTC_SEP_ESP, %ecx
1416         wrmsr
1417         ret
1418         SET_SIZE(sep_restore)
1419 
1420 #endif  /* __lint */