1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28 #include <mdb/mdb_param.h>
29 #include <mdb/mdb_modapi.h>
30 #include <mdb/mdb_ks.h>
31 #include <mdb/mdb_ctf.h>
32
33 #include <sys/types.h>
34 #include <sys/thread.h>
35 #include <sys/session.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/var.h>
39 #include <sys/t_lock.h>
40 #include <sys/callo.h>
41 #include <sys/priocntl.h>
42 #include <sys/class.h>
43 #include <sys/regset.h>
44 #include <sys/stack.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vnode.h>
47 #include <sys/vfs.h>
48 #include <sys/flock_impl.h>
49 #include <sys/kmem_impl.h>
50 #include <sys/vmem_impl.h>
51 #include <sys/kstat.h>
52 #include <sys/dditypes.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/sysmacros.h>
55 #include <sys/sysconf.h>
56 #include <sys/task.h>
57 #include <sys/project.h>
58 #include <sys/errorq_impl.h>
59 #include <sys/cred_impl.h>
60 #include <sys/zone.h>
61 #include <sys/panic.h>
62 #include <regex.h>
63 #include <sys/port_impl.h>
64
65 #include "avl.h"
66 #include "bio.h"
67 #include "bitset.h"
68 #include "combined.h"
69 #include "contract.h"
70 #include "cpupart_mdb.h"
71 #include "cred.h"
72 #include "ctxop.h"
73 #include "cyclic.h"
74 #include "damap.h"
75 #include "ddi_periodic.h"
76 #include "devinfo.h"
77 #include "dnlc.h"
78 #include "findstack.h"
79 #include "fm.h"
80 #include "gcore.h"
81 #include "group.h"
82 #include "irm.h"
83 #include "kgrep.h"
84 #include "kmem.h"
85 #include "ldi.h"
86 #include "leaky.h"
87 #include "lgrp.h"
88 #include "list.h"
89 #include "log.h"
90 #include "mdi.h"
91 #include "memory.h"
92 #include "mmd.h"
93 #include "modhash.h"
94 #include "ndievents.h"
95 #include "net.h"
96 #include "netstack.h"
97 #include "nvpair.h"
98 #include "pci.h"
99 #include "pg.h"
100 #include "rctl.h"
101 #include "sobj.h"
102 #include "streams.h"
103 #include "sysevent.h"
104 #include "taskq.h"
105 #include "thread.h"
106 #include "tsd.h"
107 #include "tsol.h"
108 #include "typegraph.h"
109 #include "vfs.h"
110 #include "zone.h"
111 #include "hotplug.h"
112
113 /*
114 * Surely this is defined somewhere...
115 */
116 #define NINTR 16
117
118 #define KILOS 10
119 #define MEGS 20
120 #define GIGS 30
121
122 #ifndef STACK_BIAS
123 #define STACK_BIAS 0
124 #endif
125
126 static char
127 pstat2ch(uchar_t state)
128 {
129 switch (state) {
130 case SSLEEP: return ('S');
131 case SRUN: return ('R');
132 case SZOMB: return ('Z');
133 case SIDL: return ('I');
134 case SONPROC: return ('O');
135 case SSTOP: return ('T');
136 case SWAIT: return ('W');
137 default: return ('?');
138 }
139 }
140
141 #define PS_PRTTHREADS 0x1
142 #define PS_PRTLWPS 0x2
143 #define PS_PSARGS 0x4
144 #define PS_TASKS 0x8
145 #define PS_PROJECTS 0x10
146 #define PS_ZONES 0x20
147
148 static int
149 ps_threadprint(uintptr_t addr, const void *data, void *private)
150 {
151 const kthread_t *t = (const kthread_t *)data;
152 uint_t prt_flags = *((uint_t *)private);
153
154 static const mdb_bitmask_t t_state_bits[] = {
155 { "TS_FREE", UINT_MAX, TS_FREE },
156 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
157 { "TS_RUN", TS_RUN, TS_RUN },
158 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
159 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
160 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
161 { "TS_WAIT", TS_WAIT, TS_WAIT },
162 { NULL, 0, 0 }
163 };
164
165 if (prt_flags & PS_PRTTHREADS)
166 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
167
168 if (prt_flags & PS_PRTLWPS) {
169 char desc[128] = "";
170
171 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc));
172
173 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc);
174 }
175
176 return (WALK_NEXT);
177 }
178
179 typedef struct mdb_pflags_proc {
180 struct pid *p_pidp;
181 ushort_t p_pidflag;
182 uint_t p_proc_flag;
183 uint_t p_flag;
184 } mdb_pflags_proc_t;
185
186 static int
187 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
188 {
189 mdb_pflags_proc_t pr;
190 struct pid pid;
191
192 static const mdb_bitmask_t p_flag_bits[] = {
193 { "SSYS", SSYS, SSYS },
194 { "SEXITING", SEXITING, SEXITING },
195 { "SITBUSY", SITBUSY, SITBUSY },
196 { "SFORKING", SFORKING, SFORKING },
197 { "SWATCHOK", SWATCHOK, SWATCHOK },
198 { "SKILLED", SKILLED, SKILLED },
199 { "SSCONT", SSCONT, SSCONT },
200 { "SZONETOP", SZONETOP, SZONETOP },
201 { "SEXTKILLED", SEXTKILLED, SEXTKILLED },
202 { "SUGID", SUGID, SUGID },
203 { "SEXECED", SEXECED, SEXECED },
204 { "SJCTL", SJCTL, SJCTL },
205 { "SNOWAIT", SNOWAIT, SNOWAIT },
206 { "SVFORK", SVFORK, SVFORK },
207 { "SVFWAIT", SVFWAIT, SVFWAIT },
208 { "SEXITLWPS", SEXITLWPS, SEXITLWPS },
209 { "SHOLDFORK", SHOLDFORK, SHOLDFORK },
210 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 },
211 { "SCOREDUMP", SCOREDUMP, SCOREDUMP },
212 { "SMSACCT", SMSACCT, SMSACCT },
213 { "SLWPWRAP", SLWPWRAP, SLWPWRAP },
214 { "SAUTOLPG", SAUTOLPG, SAUTOLPG },
215 { "SNOCD", SNOCD, SNOCD },
216 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH },
217 { "SMSFORK", SMSFORK, SMSFORK },
218 { "SDOCORE", SDOCORE, SDOCORE },
219 { NULL, 0, 0 }
220 };
221
222 static const mdb_bitmask_t p_pidflag_bits[] = {
223 { "CLDPEND", CLDPEND, CLDPEND },
224 { "CLDCONT", CLDCONT, CLDCONT },
225 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD },
226 { "CLDWAITPID", CLDWAITPID, CLDWAITPID },
227 { NULL, 0, 0 }
228 };
229
230 static const mdb_bitmask_t p_proc_flag_bits[] = {
231 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE },
232 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE },
233 { "P_PR_FORK", P_PR_FORK, P_PR_FORK },
234 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK },
235 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC },
236 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC },
237 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ },
238 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL },
239 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL },
240 { NULL, 0, 0 }
241 };
242
243 if (!(flags & DCMD_ADDRSPEC)) {
244 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
245 mdb_warn("can't walk 'proc'");
246 return (DCMD_ERR);
247 }
248 return (DCMD_OK);
249 }
250
251 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
252 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
253 mdb_warn("cannot read proc_t or pid");
254 return (DCMD_ERR);
255 }
256
257 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
258 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag,
259 p_flag_bits);
260 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
261 p_pidflag_bits);
262 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
263 p_proc_flag_bits);
264
265 return (DCMD_OK);
266 }
267
268 typedef struct mdb_ps_proc {
269 char p_stat;
270 struct pid *p_pidp;
271 struct pid *p_pgidp;
272 struct cred *p_cred;
273 struct sess *p_sessp;
274 struct task *p_task;
275 struct zone *p_zone;
276 pid_t p_ppid;
277 uint_t p_flag;
278 struct {
279 char u_comm[MAXCOMLEN + 1];
280 char u_psargs[PSARGSZ];
281 } p_user;
282 } mdb_ps_proc_t;
283
284 int
285 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
286 {
287 uint_t prt_flags = 0;
288 mdb_ps_proc_t pr;
289 struct pid pid, pgid, sid;
290 sess_t session;
291 cred_t cred;
292 task_t tk;
293 kproject_t pj;
294 zone_t zn;
295
296 if (!(flags & DCMD_ADDRSPEC)) {
297 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
298 mdb_warn("can't walk 'proc'");
299 return (DCMD_ERR);
300 }
301 return (DCMD_OK);
302 }
303
304 if (mdb_getopts(argc, argv,
305 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
306 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
307 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
308 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
309 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
310 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
311 return (DCMD_USAGE);
312
313 if (DCMD_HDRSPEC(flags)) {
314 mdb_printf("%<u>%1s %6s %6s %6s %6s ",
315 "S", "PID", "PPID", "PGID", "SID");
316 if (prt_flags & PS_TASKS)
317 mdb_printf("%5s ", "TASK");
318 if (prt_flags & PS_PROJECTS)
319 mdb_printf("%5s ", "PROJ");
320 if (prt_flags & PS_ZONES)
321 mdb_printf("%5s ", "ZONE");
322 mdb_printf("%6s %10s %?s %s%</u>\n",
323 "UID", "FLAGS", "ADDR", "NAME");
324 }
325
326 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
327 return (DCMD_ERR);
328
329 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
330 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
331 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
332 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
333 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
334 if (prt_flags & (PS_TASKS | PS_PROJECTS))
335 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
336 if (prt_flags & PS_PROJECTS)
337 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
338 if (prt_flags & PS_ZONES)
339 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
340
341 mdb_printf("%c %6d %6d %6d %6d ",
342 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
343 sid.pid_id);
344 if (prt_flags & PS_TASKS)
345 mdb_printf("%5d ", tk.tk_tkid);
346 if (prt_flags & PS_PROJECTS)
347 mdb_printf("%5d ", pj.kpj_id);
348 if (prt_flags & PS_ZONES)
349 mdb_printf("%5d ", zn.zone_id);
350 mdb_printf("%6d 0x%08x %0?p %s\n",
351 cred.cr_uid, pr.p_flag, addr,
352 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
353
354 if (prt_flags & ~PS_PSARGS)
355 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
356
357 return (DCMD_OK);
358 }
359
360 static void
361 ps_help(void)
362 {
363 mdb_printf("Display processes.\n\n"
364 "Options:\n"
365 " -f\tDisplay command arguments\n"
366 " -l\tDisplay LWPs\n"
367 " -T\tDisplay tasks\n"
368 " -P\tDisplay projects\n"
369 " -z\tDisplay zones\n"
370 " -t\tDisplay threads\n\n");
371
372 mdb_printf("The resulting output is a table of the processes on the "
373 "system. The\n"
374 "columns in the output consist of a combination of the "
375 "following fields:\n\n");
376 mdb_printf("S\tProcess state. Possible states are:\n"
377 "\tS\tSleeping (SSLEEP)\n"
378 "\tR\tRunnable (SRUN)\n"
379 "\tZ\tZombie (SZOMB)\n"
380 "\tI\tIdle (SIDL)\n"
381 "\tO\tOn Cpu (SONPROC)\n"
382 "\tT\tStopped (SSTOP)\n"
383 "\tW\tWaiting (SWAIT)\n");
384
385 mdb_printf("PID\tProcess id.\n");
386 mdb_printf("PPID\tParent process id.\n");
387 mdb_printf("PGID\tProcess group id.\n");
388 mdb_printf("SID\tProcess id of the session leader.\n");
389 mdb_printf("TASK\tThe task id of the process.\n");
390 mdb_printf("PROJ\tThe project id of the process.\n");
391 mdb_printf("ZONE\tThe zone id of the process.\n");
392 mdb_printf("UID\tThe user id of the process.\n");
393 mdb_printf("FLAGS\tThe process flags (see ::pflags).\n");
394 mdb_printf("ADDR\tThe kernel address of the proc_t structure of the "
395 "process\n");
396 mdb_printf("NAME\tThe name (p_user.u_comm field) of the process. If "
397 "the -f flag\n"
398 "\tis specified, the arguments of the process are displayed.\n");
399 }
400
401 #define PG_NEWEST 0x0001
402 #define PG_OLDEST 0x0002
403 #define PG_PIPE_OUT 0x0004
404 #define PG_EXACT_MATCH 0x0008
405
406 typedef struct pgrep_data {
407 uint_t pg_flags;
408 uint_t pg_psflags;
409 uintptr_t pg_xaddr;
410 hrtime_t pg_xstart;
411 const char *pg_pat;
412 #ifndef _KMDB
413 regex_t pg_reg;
414 #endif
415 } pgrep_data_t;
416
417 typedef struct mdb_pgrep_proc {
418 struct {
419 timestruc_t u_start;
420 char u_comm[MAXCOMLEN + 1];
421 } p_user;
422 } mdb_pgrep_proc_t;
423
424 /*ARGSUSED*/
425 static int
426 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
427 {
428 mdb_pgrep_proc_t p;
429 pgrep_data_t *pgp = data;
430 #ifndef _KMDB
431 regmatch_t pmatch;
432 #endif
433
434 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
435 return (WALK_ERR);
436
437 /*
438 * kmdb doesn't have access to the reg* functions, so we fall back
439 * to strstr/strcmp.
440 */
441 #ifdef _KMDB
442 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
443 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
444 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
445 return (WALK_NEXT);
446 #else
447 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
448 return (WALK_NEXT);
449
450 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
451 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
452 return (WALK_NEXT);
453 #endif
454
455 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
456 hrtime_t start;
457
458 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
459 p.p_user.u_start.tv_nsec;
460
461 if (pgp->pg_flags & PG_NEWEST) {
462 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) {
463 pgp->pg_xaddr = addr;
464 pgp->pg_xstart = start;
465 }
466 } else {
467 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) {
468 pgp->pg_xaddr = addr;
469 pgp->pg_xstart = start;
470 }
471 }
472
473 } else if (pgp->pg_flags & PG_PIPE_OUT) {
474 mdb_printf("%p\n", addr);
475
476 } else {
477 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
478 mdb_warn("can't invoke 'ps'");
479 return (WALK_DONE);
480 }
481 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
482 }
483
484 return (WALK_NEXT);
485 }
486
487 /*ARGSUSED*/
488 int
489 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
490 {
491 pgrep_data_t pg;
492 int i;
493 #ifndef _KMDB
494 int err;
495 #endif
496
497 if (flags & DCMD_ADDRSPEC)
498 return (DCMD_USAGE);
499
500 pg.pg_flags = 0;
501 pg.pg_xaddr = 0;
502
503 i = mdb_getopts(argc, argv,
504 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
505 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
506 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
507 NULL);
508
509 argc -= i;
510 argv += i;
511
512 if (argc != 1)
513 return (DCMD_USAGE);
514
515 /*
516 * -n and -o are mutually exclusive.
517 */
518 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
519 return (DCMD_USAGE);
520
521 if (argv->a_type != MDB_TYPE_STRING)
522 return (DCMD_USAGE);
523
524 if (flags & DCMD_PIPE_OUT)
525 pg.pg_flags |= PG_PIPE_OUT;
526
527 pg.pg_pat = argv->a_un.a_str;
528 if (DCMD_HDRSPEC(flags))
529 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
530 else
531 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
532
533 #ifndef _KMDB
534 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
535 size_t nbytes;
536 char *buf;
537
538 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
539 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
540 (void) regerror(err, &pg.pg_reg, buf, nbytes);
541 mdb_warn("%s\n", buf);
542
543 return (DCMD_ERR);
544 }
545 #endif
546
547 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
548 mdb_warn("can't walk 'proc'");
549 return (DCMD_ERR);
550 }
551
552 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
553 if (pg.pg_flags & PG_PIPE_OUT) {
554 mdb_printf("%p\n", pg.pg_xaddr);
555 } else {
556 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
557 0, NULL) != 0) {
558 mdb_warn("can't invoke 'ps'");
559 return (DCMD_ERR);
560 }
561 }
562 }
563
564 return (DCMD_OK);
565 }
566
567 int
568 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
569 {
570 task_t tk;
571 kproject_t pj;
572
573 if (!(flags & DCMD_ADDRSPEC)) {
574 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
575 mdb_warn("can't walk task_cache");
576 return (DCMD_ERR);
577 }
578 return (DCMD_OK);
579 }
580 if (DCMD_HDRSPEC(flags)) {
581 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
582 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
583 }
584 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
585 mdb_warn("can't read task_t structure at %p", addr);
586 return (DCMD_ERR);
587 }
588 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
589 mdb_warn("can't read project_t structure at %p", addr);
590 return (DCMD_ERR);
591 }
592 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
593 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
594 tk.tk_flags);
595 return (DCMD_OK);
596 }
597
598 int
599 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
600 {
601 kproject_t pj;
602
603 if (!(flags & DCMD_ADDRSPEC)) {
604 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
605 mdb_warn("can't walk projects");
606 return (DCMD_ERR);
607 }
608 return (DCMD_OK);
609 }
610 if (DCMD_HDRSPEC(flags)) {
611 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
612 "ADDR", "PROJID", "ZONEID", "REFCNT");
613 }
614 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
615 mdb_warn("can't read kproject_t structure at %p", addr);
616 return (DCMD_ERR);
617 }
618 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
619 pj.kpj_count);
620 return (DCMD_OK);
621 }
622
623 /* walk callouts themselves, either by list or id hash. */
624 int
625 callout_walk_init(mdb_walk_state_t *wsp)
626 {
627 if (wsp->walk_addr == 0) {
628 mdb_warn("callout doesn't support global walk");
629 return (WALK_ERR);
630 }
631 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
632 return (WALK_NEXT);
633 }
634
635 #define CALLOUT_WALK_BYLIST 0
636 #define CALLOUT_WALK_BYID 1
637
638 /* the walker arg switches between walking by list (0) and walking by id (1). */
639 int
640 callout_walk_step(mdb_walk_state_t *wsp)
641 {
642 int retval;
643
644 if (wsp->walk_addr == 0) {
645 return (WALK_DONE);
646 }
647 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
648 wsp->walk_addr) == -1) {
649 mdb_warn("failed to read callout at %p", wsp->walk_addr);
650 return (WALK_DONE);
651 }
652 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
653 wsp->walk_cbdata);
654
655 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
656 wsp->walk_addr =
657 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
658 } else {
659 wsp->walk_addr =
660 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
661 }
662
663 return (retval);
664 }
665
666 void
667 callout_walk_fini(mdb_walk_state_t *wsp)
668 {
669 mdb_free(wsp->walk_data, sizeof (callout_t));
670 }
671
672 /*
673 * walker for callout lists. This is different from hashes and callouts.
674 * Thankfully, it's also simpler.
675 */
676 int
677 callout_list_walk_init(mdb_walk_state_t *wsp)
678 {
679 if (wsp->walk_addr == 0) {
680 mdb_warn("callout list doesn't support global walk");
681 return (WALK_ERR);
682 }
683 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
684 return (WALK_NEXT);
685 }
686
687 int
688 callout_list_walk_step(mdb_walk_state_t *wsp)
689 {
690 int retval;
691
692 if (wsp->walk_addr == 0) {
693 return (WALK_DONE);
694 }
695 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
696 wsp->walk_addr) != sizeof (callout_list_t)) {
697 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
698 return (WALK_ERR);
699 }
700 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
701 wsp->walk_cbdata);
702
703 wsp->walk_addr = (uintptr_t)
704 (((callout_list_t *)wsp->walk_data)->cl_next);
705
706 return (retval);
707 }
708
709 void
710 callout_list_walk_fini(mdb_walk_state_t *wsp)
711 {
712 mdb_free(wsp->walk_data, sizeof (callout_list_t));
713 }
714
715 /* routines/structs to walk callout table(s) */
716 typedef struct cot_data {
717 callout_table_t *ct0;
718 callout_table_t ct;
719 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
720 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
721 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
722 int cotndx;
723 int cotsize;
724 } cot_data_t;
725
726 int
727 callout_table_walk_init(mdb_walk_state_t *wsp)
728 {
729 int max_ncpus;
730 cot_data_t *cot_walk_data;
731
732 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
733
734 if (wsp->walk_addr == 0) {
735 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
736 mdb_warn("failed to read 'callout_table'");
737 return (WALK_ERR);
738 }
739 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
740 mdb_warn("failed to get callout_table array size");
741 return (WALK_ERR);
742 }
743 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
744 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
745 } else {
746 /* not a global walk */
747 cot_walk_data->cotsize = 1;
748 }
749
750 cot_walk_data->cotndx = 0;
751 wsp->walk_data = cot_walk_data;
752
753 return (WALK_NEXT);
754 }
755
756 int
757 callout_table_walk_step(mdb_walk_state_t *wsp)
758 {
759 int retval;
760 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
761 size_t size;
762
763 if (cotwd->cotndx >= cotwd->cotsize) {
764 return (WALK_DONE);
765 }
766 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
767 wsp->walk_addr) != sizeof (callout_table_t)) {
768 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
769 return (WALK_ERR);
770 }
771
772 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
773 if (cotwd->ct.ct_idhash != NULL) {
774 if (mdb_vread(cotwd->cot_idhash, size,
775 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
776 mdb_warn("failed to read id_hash at %p",
777 cotwd->ct.ct_idhash);
778 return (WALK_ERR);
779 }
780 }
781 if (cotwd->ct.ct_clhash != NULL) {
782 if (mdb_vread(&(cotwd->cot_clhash), size,
783 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
784 mdb_warn("failed to read cl_hash at %p",
785 cotwd->ct.ct_clhash);
786 return (WALK_ERR);
787 }
788 }
789 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
790 if (cotwd->ct.ct_kstat_data != NULL) {
791 if (mdb_vread(&(cotwd->ct_kstat_data), size,
792 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
793 mdb_warn("failed to read kstats at %p",
794 cotwd->ct.ct_kstat_data);
795 return (WALK_ERR);
796 }
797 }
798 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
799 wsp->walk_cbdata);
800
801 cotwd->cotndx++;
802 if (cotwd->cotndx >= cotwd->cotsize) {
803 return (WALK_DONE);
804 }
805 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
806 sizeof (callout_table_t));
807
808 return (retval);
809 }
810
811 void
812 callout_table_walk_fini(mdb_walk_state_t *wsp)
813 {
814 mdb_free(wsp->walk_data, sizeof (cot_data_t));
815 }
816
817 static const char *co_typenames[] = { "R", "N" };
818
819 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
820
821 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
822
823 /* callout flags, in no particular order */
824 #define COF_REAL 0x00000001
825 #define COF_NORM 0x00000002
826 #define COF_LONG 0x00000004
827 #define COF_SHORT 0x00000008
828 #define COF_EMPTY 0x00000010
829 #define COF_TIME 0x00000020
830 #define COF_BEFORE 0x00000040
831 #define COF_AFTER 0x00000080
832 #define COF_SEQID 0x00000100
833 #define COF_FUNC 0x00000200
834 #define COF_ADDR 0x00000400
835 #define COF_EXEC 0x00000800
836 #define COF_HIRES 0x00001000
837 #define COF_ABS 0x00002000
838 #define COF_TABLE 0x00004000
839 #define COF_BYIDH 0x00008000
840 #define COF_FREE 0x00010000
841 #define COF_LIST 0x00020000
842 #define COF_EXPREL 0x00040000
843 #define COF_HDR 0x00080000
844 #define COF_VERBOSE 0x00100000
845 #define COF_LONGLIST 0x00200000
846 #define COF_THDR 0x00400000
847 #define COF_LHDR 0x00800000
848 #define COF_CHDR 0x01000000
849 #define COF_PARAM 0x02000000
850 #define COF_DECODE 0x04000000
851 #define COF_HEAP 0x08000000
852 #define COF_QUEUE 0x10000000
853
854 /* show real and normal, short and long, expired and unexpired. */
855 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
856
857 #define COF_LIST_FLAGS \
858 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
859
860 /* private callout data for callback functions */
861 typedef struct callout_data {
862 uint_t flags; /* COF_* */
863 cpu_t *cpu; /* cpu pointer if given */
864 int seqid; /* cpu seqid, or -1 */
865 hrtime_t time; /* expiration time value */
866 hrtime_t atime; /* expiration before value */
867 hrtime_t btime; /* expiration after value */
868 uintptr_t funcaddr; /* function address or NULL */
869 uintptr_t param; /* parameter to function or NULL */
870 hrtime_t now; /* current system time */
871 int nsec_per_tick; /* for conversions */
872 ulong_t ctbits; /* for decoding xid */
873 callout_table_t *co_table; /* top of callout table array */
874 int ndx; /* table index. */
875 int bucket; /* which list/id bucket are we in */
876 hrtime_t exp; /* expire time */
877 int list_flags; /* copy of cl_flags */
878 } callout_data_t;
879
880 /* this callback does the actual callback itself (finally). */
881 /*ARGSUSED*/
882 static int
883 callouts_cb(uintptr_t addr, const void *data, void *priv)
884 {
885 callout_data_t *coargs = (callout_data_t *)priv;
886 callout_t *co = (callout_t *)data;
887 int tableid, list_flags;
888 callout_id_t coid;
889
890 if ((coargs == NULL) || (co == NULL)) {
891 return (WALK_ERR);
892 }
893
894 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
895 /*
896 * The callout must have been reallocated. No point in
897 * walking any more.
898 */
899 return (WALK_DONE);
900 }
901 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
902 /*
903 * The callout must have been freed. No point in
904 * walking any more.
905 */
906 return (WALK_DONE);
907 }
908 if ((coargs->flags & COF_FUNC) &&
909 (coargs->funcaddr != (uintptr_t)co->c_func)) {
910 return (WALK_NEXT);
911 }
912 if ((coargs->flags & COF_PARAM) &&
913 (coargs->param != (uintptr_t)co->c_arg)) {
914 return (WALK_NEXT);
915 }
916 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
917 return (WALK_NEXT);
918 }
919 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
920 return (WALK_NEXT);
921 }
922 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
923 return (WALK_NEXT);
924 }
925 /* it is possible we don't have the exp time or flags */
926 if (coargs->flags & COF_BYIDH) {
927 if (!(coargs->flags & COF_FREE)) {
928 /* we have to fetch the expire time ourselves. */
929 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
930 (uintptr_t)co->c_list + offsetof(callout_list_t,
931 cl_expiration)) == -1) {
932 mdb_warn("failed to read expiration "
933 "time from %p", co->c_list);
934 coargs->exp = 0;
935 }
936 /* and flags. */
937 if (mdb_vread(&coargs->list_flags, sizeof (int),
938 (uintptr_t)co->c_list + offsetof(callout_list_t,
939 cl_flags)) == -1) {
940 mdb_warn("failed to read list flags"
941 "from %p", co->c_list);
942 coargs->list_flags = 0;
943 }
944 } else {
945 /* free callouts can't use list pointer. */
946 coargs->exp = 0;
947 coargs->list_flags = 0;
948 }
949 if (coargs->exp != 0) {
950 if ((coargs->flags & COF_TIME) &&
951 (coargs->exp != coargs->time)) {
952 return (WALK_NEXT);
953 }
954 if ((coargs->flags & COF_BEFORE) &&
955 (coargs->exp > coargs->btime)) {
956 return (WALK_NEXT);
957 }
958 if ((coargs->flags & COF_AFTER) &&
959 (coargs->exp < coargs->atime)) {
960 return (WALK_NEXT);
961 }
962 }
963 /* tricky part, since both HIRES and ABS can be set */
964 list_flags = coargs->list_flags;
965 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
966 /* both flags are set, only skip "regular" ones */
967 if (! (list_flags & COF_LIST_FLAGS)) {
968 return (WALK_NEXT);
969 }
970 } else {
971 /* individual flags, or no flags */
972 if ((coargs->flags & COF_HIRES) &&
973 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
974 return (WALK_NEXT);
975 }
976 if ((coargs->flags & COF_ABS) &&
977 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
978 return (WALK_NEXT);
979 }
980 }
981 /*
982 * We do the checks for COF_HEAP and COF_QUEUE here only if we
983 * are traversing BYIDH. If the traversal is by callout list,
984 * we do this check in callout_list_cb() to be more
985 * efficient.
986 */
987 if ((coargs->flags & COF_HEAP) &&
988 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
989 return (WALK_NEXT);
990 }
991
992 if ((coargs->flags & COF_QUEUE) &&
993 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
994 return (WALK_NEXT);
995 }
996 }
997
998 #define callout_table_mask ((1 << coargs->ctbits) - 1)
999 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
1000 #undef callout_table_mask
1001 coid = CO_PLAIN_ID(co->c_xid);
1002
1003 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
1004 /*
1005 * We need to print the headers. If walking by id, then
1006 * the list header isn't printed, so we must include
1007 * that info here.
1008 */
1009 if (!(coargs->flags & COF_VERBOSE)) {
1010 mdb_printf("%<u>%3s %-1s %-14s %</u>",
1011 "SEQ", "T", "EXP");
1012 } else if (coargs->flags & COF_BYIDH) {
1013 mdb_printf("%<u>%-14s %</u>", "EXP");
1014 }
1015 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
1016 "XHAL", "XID", "FUNC(ARG)");
1017 if (coargs->flags & COF_LONGLIST) {
1018 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
1019 "PREVID", "NEXTID", "PREVL", "NEXTL");
1020 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
1021 "DONE", "UTOS", "THREAD");
1022 }
1023 mdb_printf("\n");
1024 coargs->flags &= ~COF_CHDR;
1025 coargs->flags |= (COF_THDR | COF_LHDR);
1026 }
1027
1028 if (!(coargs->flags & COF_ADDR)) {
1029 if (!(coargs->flags & COF_VERBOSE)) {
1030 mdb_printf("%-3d %1s %-14llx ",
1031 TABLE_TO_SEQID(tableid),
1032 co_typenames[tableid & CALLOUT_TYPE_MASK],
1033 (coargs->flags & COF_EXPREL) ?
1034 coargs->exp - coargs->now : coargs->exp);
1035 } else if (coargs->flags & COF_BYIDH) {
1036 mdb_printf("%-14x ",
1037 (coargs->flags & COF_EXPREL) ?
1038 coargs->exp - coargs->now : coargs->exp);
1039 }
1040 list_flags = coargs->list_flags;
1041 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
1042 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
1043 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
1044 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
1045 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
1046 (long long)coid, co->c_func, co->c_arg);
1047 if (coargs->flags & COF_LONGLIST) {
1048 mdb_printf(" %-?p %-?p %-?p %-?p",
1049 co->c_idprev, co->c_idnext, co->c_clprev,
1050 co->c_clnext);
1051 mdb_printf(" %-?p %-4d %-0?p",
1052 co->c_done, co->c_waiting, co->c_executor);
1053 }
1054 } else {
1055 /* address only */
1056 mdb_printf("%-0p", addr);
1057 }
1058 mdb_printf("\n");
1059 return (WALK_NEXT);
1060 }
1061
1062 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1063 /*ARGSUSED*/
1064 static int
1065 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1066 {
1067 callout_data_t *coargs = (callout_data_t *)priv;
1068 callout_list_t *cl = (callout_list_t *)data;
1069 callout_t *coptr;
1070 int list_flags;
1071
1072 if ((coargs == NULL) || (cl == NULL)) {
1073 return (WALK_ERR);
1074 }
1075
1076 coargs->exp = cl->cl_expiration;
1077 coargs->list_flags = cl->cl_flags;
1078 if ((coargs->flags & COF_FREE) &&
1079 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1080 /*
1081 * The callout list must have been reallocated. No point in
1082 * walking any more.
1083 */
1084 return (WALK_DONE);
1085 }
1086 if (!(coargs->flags & COF_FREE) &&
1087 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1088 /*
1089 * The callout list must have been freed. No point in
1090 * walking any more.
1091 */
1092 return (WALK_DONE);
1093 }
1094 if ((coargs->flags & COF_TIME) &&
1095 (cl->cl_expiration != coargs->time)) {
1096 return (WALK_NEXT);
1097 }
1098 if ((coargs->flags & COF_BEFORE) &&
1099 (cl->cl_expiration > coargs->btime)) {
1100 return (WALK_NEXT);
1101 }
1102 if ((coargs->flags & COF_AFTER) &&
1103 (cl->cl_expiration < coargs->atime)) {
1104 return (WALK_NEXT);
1105 }
1106 if (!(coargs->flags & COF_EMPTY) &&
1107 (cl->cl_callouts.ch_head == NULL)) {
1108 return (WALK_NEXT);
1109 }
1110 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
1111 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1112 /* both flags are set, only skip "regular" ones */
1113 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1114 return (WALK_NEXT);
1115 }
1116 } else {
1117 if ((coargs->flags & COF_HIRES) &&
1118 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1119 return (WALK_NEXT);
1120 }
1121 if ((coargs->flags & COF_ABS) &&
1122 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1123 return (WALK_NEXT);
1124 }
1125 }
1126
1127 if ((coargs->flags & COF_HEAP) &&
1128 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1129 return (WALK_NEXT);
1130 }
1131
1132 if ((coargs->flags & COF_QUEUE) &&
1133 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1134 return (WALK_NEXT);
1135 }
1136
1137 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1138 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1139 if (!(coargs->flags & COF_VERBOSE)) {
1140 /* don't be redundant again */
1141 mdb_printf("%<u>SEQ T %</u>");
1142 }
1143 mdb_printf("%<u>EXP HA BUCKET "
1144 "CALLOUTS %</u>");
1145
1146 if (coargs->flags & COF_LONGLIST) {
1147 mdb_printf("%<u> %-?s %-?s%</u>",
1148 "PREV", "NEXT");
1149 }
1150 mdb_printf("\n");
1151 coargs->flags &= ~COF_LHDR;
1152 coargs->flags |= (COF_THDR | COF_CHDR);
1153 }
1154 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1155 if (!(coargs->flags & COF_ADDR)) {
1156 if (!(coargs->flags & COF_VERBOSE)) {
1157 mdb_printf("%3d %1s ",
1158 TABLE_TO_SEQID(coargs->ndx),
1159 co_typenames[coargs->ndx &
1160 CALLOUT_TYPE_MASK]);
1161 }
1162
1163 list_flags = coargs->list_flags;
1164 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1165 (coargs->flags & COF_EXPREL) ?
1166 coargs->exp - coargs->now : coargs->exp,
1167 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1168 "H" : " ",
1169 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1170 "A" : " ",
1171 coargs->bucket, cl->cl_callouts.ch_head);
1172
1173 if (coargs->flags & COF_LONGLIST) {
1174 mdb_printf(" %-?p %-?p",
1175 cl->cl_prev, cl->cl_next);
1176 }
1177 } else {
1178 /* address only */
1179 mdb_printf("%-0p", addr);
1180 }
1181 mdb_printf("\n");
1182 if (coargs->flags & COF_LIST) {
1183 return (WALK_NEXT);
1184 }
1185 }
1186 /* yet another layer as we walk the actual callouts via list. */
1187 if (cl->cl_callouts.ch_head == NULL) {
1188 return (WALK_NEXT);
1189 }
1190 /* free list structures do not have valid callouts off of them. */
1191 if (coargs->flags & COF_FREE) {
1192 return (WALK_NEXT);
1193 }
1194 coptr = (callout_t *)cl->cl_callouts.ch_head;
1195
1196 if (coargs->flags & COF_VERBOSE) {
1197 mdb_inc_indent(4);
1198 }
1199 /*
1200 * walk callouts using yet another callback routine.
1201 * we use callouts_bytime because id hash is handled via
1202 * the callout_t_cb callback.
1203 */
1204 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1205 (uintptr_t)coptr) == -1) {
1206 mdb_warn("cannot walk callouts at %p", coptr);
1207 return (WALK_ERR);
1208 }
1209 if (coargs->flags & COF_VERBOSE) {
1210 mdb_dec_indent(4);
1211 }
1212
1213 return (WALK_NEXT);
1214 }
1215
1216 /* this callback handles the details of callout table walking. */
1217 static int
1218 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1219 {
1220 callout_data_t *coargs = (callout_data_t *)priv;
1221 cot_data_t *cotwd = (cot_data_t *)data;
1222 callout_table_t *ct = &(cotwd->ct);
1223 int index, seqid, cotype;
1224 int i;
1225 callout_list_t *clptr;
1226 callout_t *coptr;
1227
1228 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1229 return (WALK_ERR);
1230 }
1231
1232 index = ((char *)addr - (char *)coargs->co_table) /
1233 sizeof (callout_table_t);
1234 cotype = index & CALLOUT_TYPE_MASK;
1235 seqid = TABLE_TO_SEQID(index);
1236
1237 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1238 return (WALK_NEXT);
1239 }
1240
1241 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1242 return (WALK_NEXT);
1243 }
1244
1245 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1246 return (WALK_NEXT);
1247 }
1248
1249 if (!(coargs->flags & COF_EMPTY) && (
1250 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) {
1251 return (WALK_NEXT);
1252 }
1253
1254 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1255 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1256 /* print table hdr */
1257 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1258 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1259 coargs->flags &= ~COF_THDR;
1260 coargs->flags |= (COF_LHDR | COF_CHDR);
1261 if (coargs->flags & COF_LONGLIST) {
1262 /* more info! */
1263 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1264 " %-?s %-?s %-?s%</u>",
1265 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1266 "PEND", "FREE", "LOCK");
1267 }
1268 mdb_printf("\n");
1269 }
1270 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1271 if (!(coargs->flags & COF_ADDR)) {
1272 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1273 seqid, co_typenames[cotype],
1274 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1275 ct->ct_heap);
1276 if (coargs->flags & COF_LONGLIST) {
1277 /* more info! */
1278 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1279 " %-?lld %-?lld %-?p",
1280 ct->ct_heap_num, ct->ct_heap_max,
1281 ct->ct_taskq, ct->ct_expired.ch_head,
1282 ct->ct_queue.ch_head,
1283 cotwd->ct_timeouts_pending,
1284 cotwd->ct_allocations -
1285 cotwd->ct_timeouts_pending,
1286 ct->ct_mutex);
1287 }
1288 } else {
1289 /* address only */
1290 mdb_printf("%-0?p", addr);
1291 }
1292 mdb_printf("\n");
1293 if (coargs->flags & COF_TABLE) {
1294 return (WALK_NEXT);
1295 }
1296 }
1297
1298 coargs->ndx = index;
1299 if (coargs->flags & COF_VERBOSE) {
1300 mdb_inc_indent(4);
1301 }
1302 /* keep digging. */
1303 if (!(coargs->flags & COF_BYIDH)) {
1304 /* walk the list hash table */
1305 if (coargs->flags & COF_FREE) {
1306 clptr = ct->ct_lfree;
1307 coargs->bucket = 0;
1308 if (clptr == NULL) {
1309 return (WALK_NEXT);
1310 }
1311 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1312 (uintptr_t)clptr) == -1) {
1313 mdb_warn("cannot walk callout free list at %p",
1314 clptr);
1315 return (WALK_ERR);
1316 }
1317 } else {
1318 /* first print the expired list. */
1319 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1320 if (clptr != NULL) {
1321 coargs->bucket = -1;
1322 if (mdb_pwalk("callout_list", callout_list_cb,
1323 coargs, (uintptr_t)clptr) == -1) {
1324 mdb_warn("cannot walk callout_list"
1325 " at %p", clptr);
1326 return (WALK_ERR);
1327 }
1328 }
1329 /* then, print the callout queue */
1330 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1331 if (clptr != NULL) {
1332 coargs->bucket = -1;
1333 if (mdb_pwalk("callout_list", callout_list_cb,
1334 coargs, (uintptr_t)clptr) == -1) {
1335 mdb_warn("cannot walk callout_list"
1336 " at %p", clptr);
1337 return (WALK_ERR);
1338 }
1339 }
1340 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1341 if (ct->ct_clhash == NULL) {
1342 /* nothing to do */
1343 break;
1344 }
1345 if (cotwd->cot_clhash[i].ch_head == NULL) {
1346 continue;
1347 }
1348 clptr = (callout_list_t *)
1349 cotwd->cot_clhash[i].ch_head;
1350 coargs->bucket = i;
1351 /* walk list with callback routine. */
1352 if (mdb_pwalk("callout_list", callout_list_cb,
1353 coargs, (uintptr_t)clptr) == -1) {
1354 mdb_warn("cannot walk callout_list"
1355 " at %p", clptr);
1356 return (WALK_ERR);
1357 }
1358 }
1359 }
1360 } else {
1361 /* walk the id hash table. */
1362 if (coargs->flags & COF_FREE) {
1363 coptr = ct->ct_free;
1364 coargs->bucket = 0;
1365 if (coptr == NULL) {
1366 return (WALK_NEXT);
1367 }
1368 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1369 (uintptr_t)coptr) == -1) {
1370 mdb_warn("cannot walk callout id free list"
1371 " at %p", coptr);
1372 return (WALK_ERR);
1373 }
1374 } else {
1375 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1376 if (ct->ct_idhash == NULL) {
1377 break;
1378 }
1379 coptr = (callout_t *)
1380 cotwd->cot_idhash[i].ch_head;
1381 if (coptr == NULL) {
1382 continue;
1383 }
1384 coargs->bucket = i;
1385
1386 /*
1387 * walk callouts directly by id. For id
1388 * chain, the callout list is just a header,
1389 * so there's no need to walk it.
1390 */
1391 if (mdb_pwalk("callouts_byid", callouts_cb,
1392 coargs, (uintptr_t)coptr) == -1) {
1393 mdb_warn("cannot walk callouts at %p",
1394 coptr);
1395 return (WALK_ERR);
1396 }
1397 }
1398 }
1399 }
1400 if (coargs->flags & COF_VERBOSE) {
1401 mdb_dec_indent(4);
1402 }
1403 return (WALK_NEXT);
1404 }
1405
1406 /*
1407 * initialize some common info for both callout dcmds.
1408 */
1409 int
1410 callout_common_init(callout_data_t *coargs)
1411 {
1412 /* we need a couple of things */
1413 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1414 mdb_warn("failed to read 'callout_table'");
1415 return (DCMD_ERR);
1416 }
1417 /* need to get now in nsecs. Approximate with hrtime vars */
1418 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1419 sizeof (hrtime_t)) {
1420 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1421 "hrtime_base") != sizeof (hrtime_t)) {
1422 mdb_warn("Could not determine current system time");
1423 return (DCMD_ERR);
1424 }
1425 }
1426
1427 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1428 mdb_warn("failed to read 'callout_table_bits'");
1429 return (DCMD_ERR);
1430 }
1431 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1432 mdb_warn("failed to read 'nsec_per_tick'");
1433 return (DCMD_ERR);
1434 }
1435 return (DCMD_OK);
1436 }
1437
1438 /*
1439 * dcmd to print callouts. Optional addr limits to specific table.
1440 * Parses lots of options that get passed to callbacks for walkers.
1441 * Has it's own help function.
1442 */
1443 /*ARGSUSED*/
1444 int
1445 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1446 {
1447 callout_data_t coargs;
1448 /* getopts doesn't help much with stuff like this */
1449 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1450 char *funcname = NULL;
1451 char *paramstr = NULL;
1452 uintptr_t Stmp, Ctmp; /* for getopt. */
1453 int retval;
1454
1455 coargs.flags = COF_DEFAULT;
1456 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1457 coargs.seqid = -1;
1458
1459 if (mdb_getopts(argc, argv,
1460 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1461 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1462 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1463 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1464 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1465 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1466 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1467 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1468 'd', MDB_OPT_SETBITS, 1, &dflag,
1469 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1470 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1471 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1472 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1473 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1474 'k', MDB_OPT_SETBITS, 1, &kflag,
1475 'f', MDB_OPT_STR, &funcname,
1476 'p', MDB_OPT_STR, ¶mstr,
1477 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1478 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1479 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1480 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1481 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1482 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1483 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1484 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1485 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1486 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1487 NULL) != argc) {
1488 return (DCMD_USAGE);
1489 }
1490
1491 /* initialize from kernel variables */
1492 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1493 return (retval);
1494 }
1495
1496 /* do some option post-processing */
1497 if (kflag) {
1498 coargs.time *= coargs.nsec_per_tick;
1499 coargs.atime *= coargs.nsec_per_tick;
1500 coargs.btime *= coargs.nsec_per_tick;
1501 }
1502
1503 if (dflag) {
1504 coargs.time += coargs.now;
1505 coargs.atime += coargs.now;
1506 coargs.btime += coargs.now;
1507 }
1508 if (Sflag) {
1509 if (flags & DCMD_ADDRSPEC) {
1510 mdb_printf("-S option conflicts with explicit"
1511 " address\n");
1512 return (DCMD_USAGE);
1513 }
1514 coargs.flags |= COF_SEQID;
1515 coargs.seqid = (int)Stmp;
1516 }
1517 if (Cflag) {
1518 if (flags & DCMD_ADDRSPEC) {
1519 mdb_printf("-C option conflicts with explicit"
1520 " address\n");
1521 return (DCMD_USAGE);
1522 }
1523 if (coargs.flags & COF_SEQID) {
1524 mdb_printf("-C and -S are mutually exclusive\n");
1525 return (DCMD_USAGE);
1526 }
1527 coargs.cpu = (cpu_t *)Ctmp;
1528 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1529 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1530 mdb_warn("failed to read cpu_t at %p", Ctmp);
1531 return (DCMD_ERR);
1532 }
1533 coargs.flags |= COF_SEQID;
1534 }
1535 /* avoid null outputs. */
1536 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1537 coargs.flags |= COF_REAL | COF_NORM;
1538 }
1539 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1540 coargs.flags |= COF_LONG | COF_SHORT;
1541 }
1542 if (tflag) {
1543 if (aflag || bflag) {
1544 mdb_printf("-t and -a|b are mutually exclusive\n");
1545 return (DCMD_USAGE);
1546 }
1547 coargs.flags |= COF_TIME;
1548 }
1549 if (aflag) {
1550 coargs.flags |= COF_AFTER;
1551 }
1552 if (bflag) {
1553 coargs.flags |= COF_BEFORE;
1554 }
1555 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1556 mdb_printf("value for -a must be earlier than the value"
1557 " for -b.\n");
1558 return (DCMD_USAGE);
1559 }
1560
1561 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1562 mdb_printf("-H and -Q are mutually exclusive\n");
1563 return (DCMD_USAGE);
1564 }
1565
1566 if (funcname != NULL) {
1567 GElf_Sym sym;
1568
1569 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1570 coargs.funcaddr = mdb_strtoull(funcname);
1571 } else {
1572 coargs.funcaddr = sym.st_value;
1573 }
1574 coargs.flags |= COF_FUNC;
1575 }
1576
1577 if (paramstr != NULL) {
1578 GElf_Sym sym;
1579
1580 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1581 coargs.param = mdb_strtoull(paramstr);
1582 } else {
1583 coargs.param = sym.st_value;
1584 }
1585 coargs.flags |= COF_PARAM;
1586 }
1587
1588 if (!(flags & DCMD_ADDRSPEC)) {
1589 /* don't pass "dot" if no addr. */
1590 addr = 0;
1591 }
1592 if (addr != 0) {
1593 /*
1594 * a callout table was specified. Ignore -r|n option
1595 * to avoid null output.
1596 */
1597 coargs.flags |= (COF_REAL | COF_NORM);
1598 }
1599
1600 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1601 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1602 }
1603 if (coargs.flags & COF_FREE) {
1604 coargs.flags |= COF_EMPTY;
1605 /* -F = free callouts, -FL = free lists */
1606 if (!(coargs.flags & COF_LIST)) {
1607 coargs.flags |= COF_BYIDH;
1608 }
1609 }
1610
1611 /* walk table, using specialized callback routine. */
1612 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1613 mdb_warn("cannot walk callout_table");
1614 return (DCMD_ERR);
1615 }
1616 return (DCMD_OK);
1617 }
1618
1619
1620 /*
1621 * Given an extended callout id, dump its information.
1622 */
1623 /*ARGSUSED*/
1624 int
1625 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1626 {
1627 callout_data_t coargs;
1628 callout_table_t *ctptr;
1629 callout_table_t ct;
1630 callout_id_t coid;
1631 callout_t *coptr;
1632 int tableid;
1633 callout_id_t xid;
1634 ulong_t idhash;
1635 int i, retval;
1636 const mdb_arg_t *arg;
1637 size_t size;
1638 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1639
1640 coargs.flags = COF_DEFAULT | COF_BYIDH;
1641 i = mdb_getopts(argc, argv,
1642 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1643 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1644 NULL);
1645 argc -= i;
1646 argv += i;
1647
1648 if (argc != 1) {
1649 return (DCMD_USAGE);
1650 }
1651 arg = &argv[0];
1652
1653 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1654 xid = arg->a_un.a_val;
1655 } else {
1656 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1657 }
1658
1659 if (DCMD_HDRSPEC(flags)) {
1660 coargs.flags |= COF_CHDR;
1661 }
1662
1663
1664 /* initialize from kernel variables */
1665 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1666 return (retval);
1667 }
1668
1669 /* we must massage the environment so that the macros will play nice */
1670 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1671 #define callout_table_bits coargs.ctbits
1672 #define nsec_per_tick coargs.nsec_per_tick
1673 tableid = CALLOUT_ID_TO_TABLE(xid);
1674 idhash = CALLOUT_IDHASH(xid);
1675 #undef callouts_table_bits
1676 #undef callout_table_mask
1677 #undef nsec_per_tick
1678 coid = CO_PLAIN_ID(xid);
1679
1680 if (flags & DCMD_ADDRSPEC) {
1681 mdb_printf("calloutid does not accept explicit address.\n");
1682 return (DCMD_USAGE);
1683 }
1684
1685 if (coargs.flags & COF_DECODE) {
1686 if (DCMD_HDRSPEC(flags)) {
1687 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1688 "SEQ", "T", "XL", "XID", "IDHASH");
1689 }
1690 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1691 TABLE_TO_SEQID(tableid),
1692 co_typenames[tableid & CALLOUT_TYPE_MASK],
1693 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1694 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1695 (long long)coid, idhash);
1696 return (DCMD_OK);
1697 }
1698
1699 /* get our table. Note this relies on the types being correct */
1700 ctptr = coargs.co_table + tableid;
1701 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1702 mdb_warn("failed to read callout_table at %p", ctptr);
1703 return (DCMD_ERR);
1704 }
1705 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1706 if (ct.ct_idhash != NULL) {
1707 if (mdb_vread(&(cot_idhash), size,
1708 (uintptr_t)ct.ct_idhash) == -1) {
1709 mdb_warn("failed to read id_hash at %p",
1710 ct.ct_idhash);
1711 return (WALK_ERR);
1712 }
1713 }
1714
1715 /* callout at beginning of hash chain */
1716 if (ct.ct_idhash == NULL) {
1717 mdb_printf("id hash chain for this xid is empty\n");
1718 return (DCMD_ERR);
1719 }
1720 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1721 if (coptr == NULL) {
1722 mdb_printf("id hash chain for this xid is empty\n");
1723 return (DCMD_ERR);
1724 }
1725
1726 coargs.ndx = tableid;
1727 coargs.bucket = idhash;
1728
1729 /* use the walker, luke */
1730 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1731 (uintptr_t)coptr) == -1) {
1732 mdb_warn("cannot walk callouts at %p", coptr);
1733 return (WALK_ERR);
1734 }
1735
1736 return (DCMD_OK);
1737 }
1738
1739 void
1740 callout_help(void)
1741 {
1742 mdb_printf("callout: display callouts.\n"
1743 "Given a callout table address, display callouts from table.\n"
1744 "Without an address, display callouts from all tables.\n"
1745 "options:\n"
1746 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1747 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1748 " -x : limit display to callouts which are executing\n"
1749 " -h : limit display to callouts based on hrestime\n"
1750 " -B : limit display to callouts based on absolute time\n"
1751 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1752 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1753 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1754 " -d : interpret time option to -t|a|b as delta from current time\n"
1755 " -k : use ticks instead of nanoseconds as arguments to"
1756 " -t|a|b. Note that\n ticks are less accurate and may not"
1757 " match other tick times (ie: lbolt).\n"
1758 " -D : display exiration time as delta from current time\n"
1759 " -S seqid : limit display to callouts for this cpu sequence id\n"
1760 " -C addr : limit display to callouts for this cpu pointer\n"
1761 " -f name|addr : limit display to callouts with this function\n"
1762 " -p name|addr : limit display to callouts functions with this"
1763 " parameter\n"
1764 " -T : display the callout table itself, instead of callouts\n"
1765 " -L : display callout lists instead of callouts\n"
1766 " -E : with -T or L, display empty data structures.\n"
1767 " -i : traverse callouts by id hash instead of list hash\n"
1768 " -F : walk free callout list (free list with -i) instead\n"
1769 " -v : display more info for each item\n"
1770 " -V : show details of each level of info as it is traversed\n"
1771 " -H : limit display to callouts in the callout heap\n"
1772 " -Q : limit display to callouts in the callout queue\n"
1773 " -A : show only addresses. Useful for pipelines.\n");
1774 }
1775
1776 void
1777 calloutid_help(void)
1778 {
1779 mdb_printf("calloutid: display callout by id.\n"
1780 "Given an extended callout id, display the callout infomation.\n"
1781 "options:\n"
1782 " -d : do not dereference callout, just decode the id.\n"
1783 " -v : verbose display more info about the callout\n");
1784 }
1785
1786 /*ARGSUSED*/
1787 int
1788 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1789 {
1790 long num_classes, i;
1791 sclass_t *class_tbl;
1792 GElf_Sym g_sclass;
1793 char class_name[PC_CLNMSZ];
1794 size_t tbl_size;
1795
1796 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1797 mdb_warn("failed to find symbol sclass\n");
1798 return (DCMD_ERR);
1799 }
1800
1801 tbl_size = (size_t)g_sclass.st_size;
1802 num_classes = tbl_size / (sizeof (sclass_t));
1803 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1804
1805 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1806 mdb_warn("failed to read sclass");
1807 return (DCMD_ERR);
1808 }
1809
1810 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1811 "INIT FCN", "CLASS FCN");
1812
1813 for (i = 0; i < num_classes; i++) {
1814 if (mdb_vread(class_name, sizeof (class_name),
1815 (uintptr_t)class_tbl[i].cl_name) == -1)
1816 (void) strcpy(class_name, "???");
1817
1818 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1819 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1820 }
1821
1822 return (DCMD_OK);
1823 }
1824
1825 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1826
1827 int
1828 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1829 {
1830 uintptr_t rootdir;
1831 vnode_t vn;
1832 char buf[MAXPATHLEN];
1833
1834 uint_t opt_F = FALSE;
1835
1836 if (mdb_getopts(argc, argv,
1837 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1838 return (DCMD_USAGE);
1839
1840 if (!(flags & DCMD_ADDRSPEC)) {
1841 mdb_warn("expected explicit vnode_t address before ::\n");
1842 return (DCMD_USAGE);
1843 }
1844
1845 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1846 mdb_warn("failed to read rootdir");
1847 return (DCMD_ERR);
1848 }
1849
1850 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1851 return (DCMD_ERR);
1852
1853 if (*buf == '\0') {
1854 mdb_printf("??\n");
1855 return (DCMD_OK);
1856 }
1857
1858 mdb_printf("%s", buf);
1859 if (opt_F && buf[strlen(buf)-1] != '/' &&
1860 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1861 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1862 mdb_printf("\n");
1863
1864 return (DCMD_OK);
1865 }
1866
1867 int
1868 ld_walk_init(mdb_walk_state_t *wsp)
1869 {
1870 wsp->walk_data = (void *)wsp->walk_addr;
1871 return (WALK_NEXT);
1872 }
1873
1874 int
1875 ld_walk_step(mdb_walk_state_t *wsp)
1876 {
1877 int status;
1878 lock_descriptor_t ld;
1879
1880 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1881 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1882 wsp->walk_addr);
1883 return (WALK_ERR);
1884 }
1885
1886 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1887 if (status == WALK_ERR)
1888 return (WALK_ERR);
1889
1890 wsp->walk_addr = (uintptr_t)ld.l_next;
1891 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1892 return (WALK_DONE);
1893
1894 return (status);
1895 }
1896
1897 int
1898 lg_walk_init(mdb_walk_state_t *wsp)
1899 {
1900 GElf_Sym sym;
1901
1902 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1903 mdb_warn("failed to find symbol 'lock_graph'\n");
1904 return (WALK_ERR);
1905 }
1906
1907 wsp->walk_addr = (uintptr_t)sym.st_value;
1908 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1909
1910 return (WALK_NEXT);
1911 }
1912
1913 typedef struct lg_walk_data {
1914 uintptr_t startaddr;
1915 mdb_walk_cb_t callback;
1916 void *data;
1917 } lg_walk_data_t;
1918
1919 /*
1920 * We can't use ::walk lock_descriptor directly, because the head of each graph
1921 * is really a dummy lock. Rather than trying to dynamically determine if this
1922 * is a dummy node or not, we just filter out the initial element of the
1923 * list.
1924 */
1925 static int
1926 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1927 {
1928 lg_walk_data_t *lw = priv;
1929
1930 if (addr != lw->startaddr)
1931 return (lw->callback(addr, data, lw->data));
1932
1933 return (WALK_NEXT);
1934 }
1935
1936 int
1937 lg_walk_step(mdb_walk_state_t *wsp)
1938 {
1939 graph_t *graph;
1940 lg_walk_data_t lw;
1941
1942 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1943 return (WALK_DONE);
1944
1945 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1946 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1947 return (WALK_ERR);
1948 }
1949
1950 wsp->walk_addr += sizeof (graph);
1951
1952 if (graph == NULL)
1953 return (WALK_NEXT);
1954
1955 lw.callback = wsp->walk_callback;
1956 lw.data = wsp->walk_cbdata;
1957
1958 lw.startaddr = (uintptr_t)&(graph->active_locks);
1959 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1960 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1961 return (WALK_ERR);
1962 }
1963
1964 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1965 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1966 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1967 return (WALK_ERR);
1968 }
1969
1970 return (WALK_NEXT);
1971 }
1972
1973 /*
1974 * The space available for the path corresponding to the locked vnode depends
1975 * on whether we are printing 32- or 64-bit addresses.
1976 */
1977 #ifdef _LP64
1978 #define LM_VNPATHLEN 20
1979 #else
1980 #define LM_VNPATHLEN 30
1981 #endif
1982
1983 typedef struct mdb_lminfo_proc {
1984 struct {
1985 char u_comm[MAXCOMLEN + 1];
1986 } p_user;
1987 } mdb_lminfo_proc_t;
1988
1989 /*ARGSUSED*/
1990 static int
1991 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1992 {
1993 const lock_descriptor_t *ld = data;
1994 char buf[LM_VNPATHLEN];
1995 mdb_lminfo_proc_t p;
1996 uintptr_t paddr = 0;
1997
1998 if (ld->l_flock.l_pid != 0)
1999 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
2000
2001 if (paddr != 0)
2002 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
2003
2004 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
2005 addr, ld->l_type == F_RDLCK ? "RD" :
2006 ld->l_type == F_WRLCK ? "WR" : "??",
2007 ld->l_state, ld->l_flock.l_pid,
2008 ld->l_flock.l_pid == 0 ? "<kernel>" :
2009 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
2010
2011 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
2012 sizeof (buf));
2013 mdb_printf("%s\n", buf);
2014
2015 return (WALK_NEXT);
2016 }
2017
2018 /*ARGSUSED*/
2019 int
2020 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2021 {
2022 if (DCMD_HDRSPEC(flags))
2023 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
2024 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
2025
2026 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0));
2027 }
2028
2029 /*ARGSUSED*/
2030 int
2031 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
2032 {
2033 if ((uintptr_t)f->f_vnode == *target) {
2034 mdb_printf("file %p\n", addr);
2035 *target = 0;
2036 }
2037
2038 return (WALK_NEXT);
2039 }
2040
2041 /*ARGSUSED*/
2042 int
2043 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
2044 {
2045 uintptr_t t = *target;
2046
2047 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
2048 mdb_warn("couldn't file walk proc %p", addr);
2049 return (WALK_ERR);
2050 }
2051
2052 if (t == 0)
2053 mdb_printf("%p\n", addr);
2054
2055 return (WALK_NEXT);
2056 }
2057
2058 /*ARGSUSED*/
2059 int
2060 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2061 {
2062 uintptr_t target = addr;
2063
2064 if (!(flags & DCMD_ADDRSPEC) || addr == 0)
2065 return (DCMD_USAGE);
2066
2067 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
2068 mdb_warn("can't proc walk");
2069 return (DCMD_ERR);
2070 }
2071
2072 return (DCMD_OK);
2073 }
2074
2075 typedef struct datafmt {
2076 char *hdr1;
2077 char *hdr2;
2078 char *dashes;
2079 char *fmt;
2080 } datafmt_t;
2081
2082 static datafmt_t kmemfmt[] = {
2083 { "cache ", "name ",
2084 "-------------------------", "%-25s " },
2085 { " buf", " size", "------", "%6u " },
2086 { " buf", "in use", "------", "%6u " },
2087 { " buf", " total", "------", "%6u " },
2088 { " memory", " in use", "----------", "%10lu%c " },
2089 { " alloc", " succeed", "---------", "%9u " },
2090 { "alloc", " fail", "-----", "%5u " },
2091 { NULL, NULL, NULL, NULL }
2092 };
2093
2094 static datafmt_t vmemfmt[] = {
2095 { "vmem ", "name ",
2096 "-------------------------", "%-*s " },
2097 { " memory", " in use", "----------", "%9llu%c " },
2098 { " memory", " total", "-----------", "%10llu%c " },
2099 { " memory", " import", "----------", "%9llu%c " },
2100 { " alloc", " succeed", "---------", "%9llu " },
2101 { "alloc", " fail", "-----", "%5llu " },
2102 { NULL, NULL, NULL, NULL }
2103 };
2104
2105 /*ARGSUSED*/
2106 static int
2107 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2108 {
2109 short rounds, prounds;
2110
2111 if (KMEM_DUMPCC(ccp)) {
2112 rounds = ccp->cc_dump_rounds;
2113 prounds = ccp->cc_dump_prounds;
2114 } else {
2115 rounds = ccp->cc_rounds;
2116 prounds = ccp->cc_prounds;
2117 }
2118 if (rounds > 0)
2119 *avail += rounds;
2120 if (prounds > 0)
2121 *avail += prounds;
2122
2123 return (WALK_NEXT);
2124 }
2125
2126 /*ARGSUSED*/
2127 static int
2128 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2129 {
2130 *alloc += ccp->cc_alloc;
2131
2132 return (WALK_NEXT);
2133 }
2134
2135 /*ARGSUSED*/
2136 static int
2137 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2138 {
2139 *avail += sp->slab_chunks - sp->slab_refcnt;
2140
2141 return (WALK_NEXT);
2142 }
2143
2144 typedef struct kmastat_vmem {
2145 uintptr_t kv_addr;
2146 struct kmastat_vmem *kv_next;
2147 size_t kv_meminuse;
2148 int kv_alloc;
2149 int kv_fail;
2150 } kmastat_vmem_t;
2151
2152 typedef struct kmastat_args {
2153 kmastat_vmem_t **ka_kvpp;
2154 uint_t ka_shift;
2155 } kmastat_args_t;
2156
2157 static int
2158 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2159 {
2160 kmastat_vmem_t **kvpp = kap->ka_kvpp;
2161 kmastat_vmem_t *kv;
2162 datafmt_t *dfp = kmemfmt;
2163 int magsize;
2164
2165 int avail, alloc, total;
2166 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2167 cp->cache_slabsize;
2168
2169 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2170 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2171 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2172
2173 magsize = kmem_get_magsize(cp);
2174
2175 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2176 avail = cp->cache_full.ml_total * magsize;
2177 total = cp->cache_buftotal;
2178
2179 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2180 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2181 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2182
2183 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2184 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2185 goto out;
2186 }
2187
2188 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2189 kv->kv_next = *kvpp;
2190 kv->kv_addr = (uintptr_t)cp->cache_arena;
2191 *kvpp = kv;
2192 out:
2193 kv->kv_meminuse += meminuse;
2194 kv->kv_alloc += alloc;
2195 kv->kv_fail += cp->cache_alloc_fail;
2196
2197 mdb_printf((dfp++)->fmt, cp->cache_name);
2198 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2199 mdb_printf((dfp++)->fmt, total - avail);
2200 mdb_printf((dfp++)->fmt, total);
2201 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2202 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2203 kap->ka_shift == KILOS ? 'K' : 'B');
2204 mdb_printf((dfp++)->fmt, alloc);
2205 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2206 mdb_printf("\n");
2207
2208 return (WALK_NEXT);
2209 }
2210
2211 static int
2212 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2213 {
2214 kmastat_vmem_t *kv = *kap->ka_kvpp;
2215 size_t len;
2216
2217 while (kv != NULL && kv->kv_addr != addr)
2218 kv = kv->kv_next;
2219
2220 if (kv == NULL || kv->kv_alloc == 0)
2221 return (WALK_NEXT);
2222
2223 len = MIN(17, strlen(v->vm_name));
2224
2225 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2226 17 - len, "", "", "", "",
2227 kv->kv_meminuse >> kap->ka_shift,
2228 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2229 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2230
2231 return (WALK_NEXT);
2232 }
2233
2234 /*ARGSUSED*/
2235 static int
2236 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2237 {
2238 datafmt_t *dfp = vmemfmt;
2239 const vmem_kstat_t *vkp = &v->vm_kstat;
2240 uintptr_t paddr;
2241 vmem_t parent;
2242 int ident = 0;
2243
2244 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) {
2245 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2246 mdb_warn("couldn't trace %p's ancestry", addr);
2247 ident = 0;
2248 break;
2249 }
2250 paddr = (uintptr_t)parent.vm_source;
2251 }
2252
2253 mdb_printf("%*s", ident, "");
2254 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2255 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2256 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2257 *shiftp == KILOS ? 'K' : 'B');
2258 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2259 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2260 *shiftp == KILOS ? 'K' : 'B');
2261 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2262 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2263 *shiftp == KILOS ? 'K' : 'B');
2264 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2265 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2266
2267 mdb_printf("\n");
2268
2269 return (WALK_NEXT);
2270 }
2271
2272 /*ARGSUSED*/
2273 int
2274 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2275 {
2276 kmastat_vmem_t *kv = NULL;
2277 datafmt_t *dfp;
2278 kmastat_args_t ka;
2279
2280 ka.ka_shift = 0;
2281 if (mdb_getopts(argc, argv,
2282 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2283 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2284 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2285 return (DCMD_USAGE);
2286
2287 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2288 mdb_printf("%s ", dfp->hdr1);
2289 mdb_printf("\n");
2290
2291 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2292 mdb_printf("%s ", dfp->hdr2);
2293 mdb_printf("\n");
2294
2295 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2296 mdb_printf("%s ", dfp->dashes);
2297 mdb_printf("\n");
2298
2299 ka.ka_kvpp = &kv;
2300 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2301 mdb_warn("can't walk 'kmem_cache'");
2302 return (DCMD_ERR);
2303 }
2304
2305 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2306 mdb_printf("%s ", dfp->dashes);
2307 mdb_printf("\n");
2308
2309 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2310 mdb_warn("can't walk 'vmem'");
2311 return (DCMD_ERR);
2312 }
2313
2314 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2315 mdb_printf("%s ", dfp->dashes);
2316 mdb_printf("\n");
2317
2318 mdb_printf("\n");
2319
2320 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2321 mdb_printf("%s ", dfp->hdr1);
2322 mdb_printf("\n");
2323
2324 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2325 mdb_printf("%s ", dfp->hdr2);
2326 mdb_printf("\n");
2327
2328 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2329 mdb_printf("%s ", dfp->dashes);
2330 mdb_printf("\n");
2331
2332 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2333 mdb_warn("can't walk 'vmem'");
2334 return (DCMD_ERR);
2335 }
2336
2337 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2338 mdb_printf("%s ", dfp->dashes);
2339 mdb_printf("\n");
2340 return (DCMD_OK);
2341 }
2342
2343 /*
2344 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2345 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2346 * unfortunately, a few of the segs are both large and sparse, so we could
2347 * spend quite a bit of time scanning VAs which have no backing pages.
2348 *
2349 * So for the few very sparse segs, we skip the segment itself, and scan
2350 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2351 * Currently, we do this for:
2352 *
2353 * SEG VMEM ARENA
2354 * kvseg heap_arena
2355 * kvseg32 heap32_arena
2356 * kvseg_core heap_core_arena
2357 *
2358 * In addition, we skip the segkpm segment in its entirety, since it is very
2359 * sparse, and contains no new kernel data.
2360 */
2361 typedef struct kgrep_walk_data {
2362 kgrep_cb_func *kg_cb;
2363 void *kg_cbdata;
2364 uintptr_t kg_kvseg;
2365 uintptr_t kg_kvseg32;
2366 uintptr_t kg_kvseg_core;
2367 uintptr_t kg_segkpm;
2368 uintptr_t kg_heap_lp_base;
2369 uintptr_t kg_heap_lp_end;
2370 } kgrep_walk_data_t;
2371
2372 static int
2373 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2374 {
2375 uintptr_t base = (uintptr_t)seg->s_base;
2376
2377 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2378 addr == kg->kg_kvseg_core)
2379 return (WALK_NEXT);
2380
2381 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2382 return (WALK_NEXT);
2383
2384 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2385 }
2386
2387 /*ARGSUSED*/
2388 static int
2389 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2390 {
2391 /*
2392 * skip large page heap address range - it is scanned by walking
2393 * allocated vmem_segs in the heap_lp_arena
2394 */
2395 if (seg->vs_start == kg->kg_heap_lp_base &&
2396 seg->vs_end == kg->kg_heap_lp_end)
2397 return (WALK_NEXT);
2398
2399 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2400 }
2401
2402 /*ARGSUSED*/
2403 static int
2404 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2405 {
2406 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2407 }
2408
2409 static int
2410 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2411 {
2412 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2413
2414 if (strcmp(vmem->vm_name, "heap") != 0 &&
2415 strcmp(vmem->vm_name, "heap32") != 0 &&
2416 strcmp(vmem->vm_name, "heap_core") != 0 &&
2417 strcmp(vmem->vm_name, "heap_lp") != 0)
2418 return (WALK_NEXT);
2419
2420 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2421 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2422
2423 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2424 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2425 return (WALK_ERR);
2426 }
2427
2428 return (WALK_NEXT);
2429 }
2430
2431 int
2432 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2433 {
2434 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2435 kgrep_walk_data_t kg;
2436
2437 if (mdb_get_state() == MDB_STATE_RUNNING) {
2438 mdb_warn("kgrep can only be run on a system "
2439 "dump or under kmdb; see dumpadm(1M)\n");
2440 return (DCMD_ERR);
2441 }
2442
2443 if (mdb_lookup_by_name("kas", &kas) == -1) {
2444 mdb_warn("failed to locate 'kas' symbol\n");
2445 return (DCMD_ERR);
2446 }
2447
2448 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2449 mdb_warn("failed to locate 'kvseg' symbol\n");
2450 return (DCMD_ERR);
2451 }
2452
2453 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2454 mdb_warn("failed to locate 'kvseg32' symbol\n");
2455 return (DCMD_ERR);
2456 }
2457
2458 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2459 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2460 return (DCMD_ERR);
2461 }
2462
2463 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2464 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2465 return (DCMD_ERR);
2466 }
2467
2468 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2469 mdb_warn("failed to read 'heap_lp_base'\n");
2470 return (DCMD_ERR);
2471 }
2472
2473 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2474 mdb_warn("failed to read 'heap_lp_end'\n");
2475 return (DCMD_ERR);
2476 }
2477
2478 kg.kg_cb = cb;
2479 kg.kg_cbdata = cbdata;
2480 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2481 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2482 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2483 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2484
2485 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2486 &kg, kas.st_value) == -1) {
2487 mdb_warn("failed to walk kas segments");
2488 return (DCMD_ERR);
2489 }
2490
2491 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2492 mdb_warn("failed to walk heap/heap32 vmem arenas");
2493 return (DCMD_ERR);
2494 }
2495
2496 return (DCMD_OK);
2497 }
2498
2499 size_t
2500 kgrep_subr_pagesize(void)
2501 {
2502 return (PAGESIZE);
2503 }
2504
2505 typedef struct file_walk_data {
2506 struct uf_entry *fw_flist;
2507 int fw_flistsz;
2508 int fw_ndx;
2509 int fw_nofiles;
2510 } file_walk_data_t;
2511
2512 typedef struct mdb_file_proc {
2513 struct {
2514 struct {
2515 int fi_nfiles;
2516 uf_entry_t *volatile fi_list;
2517 } u_finfo;
2518 } p_user;
2519 } mdb_file_proc_t;
2520
2521 int
2522 file_walk_init(mdb_walk_state_t *wsp)
2523 {
2524 file_walk_data_t *fw;
2525 mdb_file_proc_t p;
2526
2527 if (wsp->walk_addr == 0) {
2528 mdb_warn("file walk doesn't support global walks\n");
2529 return (WALK_ERR);
2530 }
2531
2532 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2533
2534 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2535 wsp->walk_addr, 0) == -1) {
2536 mdb_free(fw, sizeof (file_walk_data_t));
2537 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2538 return (WALK_ERR);
2539 }
2540
2541 if (p.p_user.u_finfo.fi_nfiles == 0) {
2542 mdb_free(fw, sizeof (file_walk_data_t));
2543 return (WALK_DONE);
2544 }
2545
2546 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2547 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2548 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2549
2550 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2551 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2552 mdb_warn("failed to read file array at %p",
2553 p.p_user.u_finfo.fi_list);
2554 mdb_free(fw->fw_flist, fw->fw_flistsz);
2555 mdb_free(fw, sizeof (file_walk_data_t));
2556 return (WALK_ERR);
2557 }
2558
2559 fw->fw_ndx = 0;
2560 wsp->walk_data = fw;
2561
2562 return (WALK_NEXT);
2563 }
2564
2565 int
2566 file_walk_step(mdb_walk_state_t *wsp)
2567 {
2568 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2569 struct file file;
2570 uintptr_t fp;
2571
2572 again:
2573 if (fw->fw_ndx == fw->fw_nofiles)
2574 return (WALK_DONE);
2575
2576 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0)
2577 goto again;
2578
2579 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2580 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2581 }
2582
2583 int
2584 allfile_walk_step(mdb_walk_state_t *wsp)
2585 {
2586 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2587 struct file file;
2588 uintptr_t fp;
2589
2590 if (fw->fw_ndx == fw->fw_nofiles)
2591 return (WALK_DONE);
2592
2593 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0)
2594 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2595 else
2596 bzero(&file, sizeof (file));
2597
2598 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2599 }
2600
2601 void
2602 file_walk_fini(mdb_walk_state_t *wsp)
2603 {
2604 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2605
2606 mdb_free(fw->fw_flist, fw->fw_flistsz);
2607 mdb_free(fw, sizeof (file_walk_data_t));
2608 }
2609
2610 int
2611 port_walk_init(mdb_walk_state_t *wsp)
2612 {
2613 if (wsp->walk_addr == 0) {
2614 mdb_warn("port walk doesn't support global walks\n");
2615 return (WALK_ERR);
2616 }
2617
2618 if (mdb_layered_walk("file", wsp) == -1) {
2619 mdb_warn("couldn't walk 'file'");
2620 return (WALK_ERR);
2621 }
2622 return (WALK_NEXT);
2623 }
2624
2625 int
2626 port_walk_step(mdb_walk_state_t *wsp)
2627 {
2628 struct vnode vn;
2629 uintptr_t vp;
2630 uintptr_t pp;
2631 struct port port;
2632
2633 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2634 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2635 mdb_warn("failed to read vnode_t at %p", vp);
2636 return (WALK_ERR);
2637 }
2638 if (vn.v_type != VPORT)
2639 return (WALK_NEXT);
2640
2641 pp = (uintptr_t)vn.v_data;
2642 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2643 mdb_warn("failed to read port_t at %p", pp);
2644 return (WALK_ERR);
2645 }
2646 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2647 }
2648
2649 typedef struct portev_walk_data {
2650 list_node_t *pev_node;
2651 list_node_t *pev_last;
2652 size_t pev_offset;
2653 } portev_walk_data_t;
2654
2655 int
2656 portev_walk_init(mdb_walk_state_t *wsp)
2657 {
2658 portev_walk_data_t *pevd;
2659 struct port port;
2660 struct vnode vn;
2661 struct list *list;
2662 uintptr_t vp;
2663
2664 if (wsp->walk_addr == 0) {
2665 mdb_warn("portev walk doesn't support global walks\n");
2666 return (WALK_ERR);
2667 }
2668
2669 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2670
2671 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2672 mdb_free(pevd, sizeof (portev_walk_data_t));
2673 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2674 return (WALK_ERR);
2675 }
2676
2677 vp = (uintptr_t)port.port_vnode;
2678 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2679 mdb_free(pevd, sizeof (portev_walk_data_t));
2680 mdb_warn("failed to read vnode_t at %p", vp);
2681 return (WALK_ERR);
2682 }
2683
2684 if (vn.v_type != VPORT) {
2685 mdb_free(pevd, sizeof (portev_walk_data_t));
2686 mdb_warn("input address (%p) does not point to an event port",
2687 wsp->walk_addr);
2688 return (WALK_ERR);
2689 }
2690
2691 if (port.port_queue.portq_nent == 0) {
2692 mdb_free(pevd, sizeof (portev_walk_data_t));
2693 return (WALK_DONE);
2694 }
2695 list = &port.port_queue.portq_list;
2696 pevd->pev_offset = list->list_offset;
2697 pevd->pev_last = list->list_head.list_prev;
2698 pevd->pev_node = list->list_head.list_next;
2699 wsp->walk_data = pevd;
2700 return (WALK_NEXT);
2701 }
2702
2703 int
2704 portev_walk_step(mdb_walk_state_t *wsp)
2705 {
2706 portev_walk_data_t *pevd;
2707 struct port_kevent ev;
2708 uintptr_t evp;
2709
2710 pevd = (portev_walk_data_t *)wsp->walk_data;
2711
2712 if (pevd->pev_last == NULL)
2713 return (WALK_DONE);
2714 if (pevd->pev_node == pevd->pev_last)
2715 pevd->pev_last = NULL; /* last round */
2716
2717 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2718 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2719 mdb_warn("failed to read port_kevent at %p", evp);
2720 return (WALK_DONE);
2721 }
2722 pevd->pev_node = ev.portkev_node.list_next;
2723 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2724 }
2725
2726 void
2727 portev_walk_fini(mdb_walk_state_t *wsp)
2728 {
2729 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2730
2731 if (pevd != NULL)
2732 mdb_free(pevd, sizeof (portev_walk_data_t));
2733 }
2734
2735 typedef struct proc_walk_data {
2736 uintptr_t *pw_stack;
2737 int pw_depth;
2738 int pw_max;
2739 } proc_walk_data_t;
2740
2741 int
2742 proc_walk_init(mdb_walk_state_t *wsp)
2743 {
2744 GElf_Sym sym;
2745 proc_walk_data_t *pw;
2746
2747 if (wsp->walk_addr == 0) {
2748 if (mdb_lookup_by_name("p0", &sym) == -1) {
2749 mdb_warn("failed to read 'practive'");
2750 return (WALK_ERR);
2751 }
2752 wsp->walk_addr = (uintptr_t)sym.st_value;
2753 }
2754
2755 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2756
2757 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2758 mdb_warn("failed to read 'nproc'");
2759 mdb_free(pw, sizeof (pw));
2760 return (WALK_ERR);
2761 }
2762
2763 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2764 wsp->walk_data = pw;
2765
2766 return (WALK_NEXT);
2767 }
2768
2769 typedef struct mdb_walk_proc {
2770 struct proc *p_child;
2771 struct proc *p_sibling;
2772 } mdb_walk_proc_t;
2773
2774 int
2775 proc_walk_step(mdb_walk_state_t *wsp)
2776 {
2777 proc_walk_data_t *pw = wsp->walk_data;
2778 uintptr_t addr = wsp->walk_addr;
2779 uintptr_t cld, sib;
2780 int status;
2781 mdb_walk_proc_t pr;
2782
2783 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2784 addr, 0) == -1) {
2785 mdb_warn("failed to read proc at %p", addr);
2786 return (WALK_DONE);
2787 }
2788
2789 cld = (uintptr_t)pr.p_child;
2790 sib = (uintptr_t)pr.p_sibling;
2791
2792 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2793 pw->pw_depth--;
2794 goto sib;
2795 }
2796
2797 /*
2798 * Always pass NULL as the local copy pointer. Consumers
2799 * should use mdb_ctf_vread() to read their own minimal
2800 * version of proc_t. Thus minimizing the chance of breakage
2801 * with older crash dumps.
2802 */
2803 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2804
2805 if (status != WALK_NEXT)
2806 return (status);
2807
2808 if ((wsp->walk_addr = cld) != 0) {
2809 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2810 cld, 0) == -1) {
2811 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2812 addr, cld);
2813 goto sib;
2814 }
2815
2816 pw->pw_stack[pw->pw_depth++] = addr;
2817
2818 if (pw->pw_depth == pw->pw_max) {
2819 mdb_warn("depth %d exceeds max depth; try again\n",
2820 pw->pw_depth);
2821 return (WALK_DONE);
2822 }
2823 return (WALK_NEXT);
2824 }
2825
2826 sib:
2827 /*
2828 * We know that p0 has no siblings, and if another starting proc
2829 * was given, we don't want to walk its siblings anyway.
2830 */
2831 if (pw->pw_depth == 0)
2832 return (WALK_DONE);
2833
2834 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2835 sib, 0) == -1) {
2836 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2837 addr, sib);
2838 sib = 0;
2839 }
2840
2841 if ((wsp->walk_addr = sib) == 0) {
2842 if (pw->pw_depth > 0) {
2843 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2844 return (WALK_NEXT);
2845 }
2846 return (WALK_DONE);
2847 }
2848
2849 return (WALK_NEXT);
2850 }
2851
2852 void
2853 proc_walk_fini(mdb_walk_state_t *wsp)
2854 {
2855 proc_walk_data_t *pw = wsp->walk_data;
2856
2857 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2858 mdb_free(pw, sizeof (proc_walk_data_t));
2859 }
2860
2861 int
2862 task_walk_init(mdb_walk_state_t *wsp)
2863 {
2864 task_t task;
2865
2866 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2867 mdb_warn("failed to read task at %p", wsp->walk_addr);
2868 return (WALK_ERR);
2869 }
2870 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2871 wsp->walk_data = task.tk_memb_list;
2872 return (WALK_NEXT);
2873 }
2874
2875 typedef struct mdb_task_proc {
2876 struct proc *p_tasknext;
2877 } mdb_task_proc_t;
2878
2879 int
2880 task_walk_step(mdb_walk_state_t *wsp)
2881 {
2882 mdb_task_proc_t proc;
2883 int status;
2884
2885 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2886 wsp->walk_addr, 0) == -1) {
2887 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2888 return (WALK_DONE);
2889 }
2890
2891 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2892
2893 if (proc.p_tasknext == wsp->walk_data)
2894 return (WALK_DONE);
2895
2896 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2897 return (status);
2898 }
2899
2900 int
2901 project_walk_init(mdb_walk_state_t *wsp)
2902 {
2903 if (wsp->walk_addr == 0) {
2904 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2905 mdb_warn("failed to read 'proj0p'");
2906 return (WALK_ERR);
2907 }
2908 }
2909 wsp->walk_data = (void *)wsp->walk_addr;
2910 return (WALK_NEXT);
2911 }
2912
2913 int
2914 project_walk_step(mdb_walk_state_t *wsp)
2915 {
2916 uintptr_t addr = wsp->walk_addr;
2917 kproject_t pj;
2918 int status;
2919
2920 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2921 mdb_warn("failed to read project at %p", addr);
2922 return (WALK_DONE);
2923 }
2924 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2925 if (status != WALK_NEXT)
2926 return (status);
2927 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2928 if ((void *)wsp->walk_addr == wsp->walk_data)
2929 return (WALK_DONE);
2930 return (WALK_NEXT);
2931 }
2932
2933 static int
2934 generic_walk_step(mdb_walk_state_t *wsp)
2935 {
2936 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2937 wsp->walk_cbdata));
2938 }
2939
2940 static int
2941 cpu_walk_cmp(const void *l, const void *r)
2942 {
2943 uintptr_t lhs = *((uintptr_t *)l);
2944 uintptr_t rhs = *((uintptr_t *)r);
2945 cpu_t lcpu, rcpu;
2946
2947 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2948 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2949
2950 if (lcpu.cpu_id < rcpu.cpu_id)
2951 return (-1);
2952
2953 if (lcpu.cpu_id > rcpu.cpu_id)
2954 return (1);
2955
2956 return (0);
2957 }
2958
2959 typedef struct cpu_walk {
2960 uintptr_t *cw_array;
2961 int cw_ndx;
2962 } cpu_walk_t;
2963
2964 int
2965 cpu_walk_init(mdb_walk_state_t *wsp)
2966 {
2967 cpu_walk_t *cw;
2968 int max_ncpus, i = 0;
2969 uintptr_t current, first;
2970 cpu_t cpu, panic_cpu;
2971 uintptr_t panicstr, addr;
2972 GElf_Sym sym;
2973
2974 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2975
2976 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2977 mdb_warn("failed to read 'max_ncpus'");
2978 return (WALK_ERR);
2979 }
2980
2981 if (mdb_readvar(&panicstr, "panicstr") == -1) {
2982 mdb_warn("failed to read 'panicstr'");
2983 return (WALK_ERR);
2984 }
2985
2986 if (panicstr != 0) {
2987 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2988 mdb_warn("failed to find 'panic_cpu'");
2989 return (WALK_ERR);
2990 }
2991
2992 addr = (uintptr_t)sym.st_value;
2993
2994 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2995 mdb_warn("failed to read 'panic_cpu'");
2996 return (WALK_ERR);
2997 }
2998 }
2999
3000 /*
3001 * Unfortunately, there is no platform-independent way to walk
3002 * CPUs in ID order. We therefore loop through in cpu_next order,
3003 * building an array of CPU pointers which will subsequently be
3004 * sorted.
3005 */
3006 cw->cw_array =
3007 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
3008
3009 if (mdb_readvar(&first, "cpu_list") == -1) {
3010 mdb_warn("failed to read 'cpu_list'");
3011 return (WALK_ERR);
3012 }
3013
3014 current = first;
3015 do {
3016 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
3017 mdb_warn("failed to read cpu at %p", current);
3018 return (WALK_ERR);
3019 }
3020
3021 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) {
3022 cw->cw_array[i++] = addr;
3023 } else {
3024 cw->cw_array[i++] = current;
3025 }
3026 } while ((current = (uintptr_t)cpu.cpu_next) != first);
3027
3028 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
3029 wsp->walk_data = cw;
3030
3031 return (WALK_NEXT);
3032 }
3033
3034 int
3035 cpu_walk_step(mdb_walk_state_t *wsp)
3036 {
3037 cpu_walk_t *cw = wsp->walk_data;
3038 cpu_t cpu;
3039 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
3040
3041 if (addr == 0)
3042 return (WALK_DONE);
3043
3044 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3045 mdb_warn("failed to read cpu at %p", addr);
3046 return (WALK_DONE);
3047 }
3048
3049 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3050 }
3051
3052 typedef struct cpuinfo_data {
3053 intptr_t cid_cpu;
3054 uintptr_t **cid_ithr;
3055 char cid_print_head;
3056 char cid_print_thr;
3057 char cid_print_ithr;
3058 char cid_print_flags;
3059 } cpuinfo_data_t;
3060
3061 int
3062 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3063 {
3064 cpu_t c;
3065 int id;
3066 uint8_t pil;
3067
3068 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3069 return (WALK_NEXT);
3070
3071 if (thr->t_bound_cpu == NULL) {
3072 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3073 return (WALK_NEXT);
3074 }
3075
3076 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3077
3078 if ((id = c.cpu_id) >= NCPU) {
3079 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3080 thr->t_bound_cpu, id, NCPU);
3081 return (WALK_NEXT);
3082 }
3083
3084 if ((pil = thr->t_pil) >= NINTR) {
3085 mdb_warn("thread %p has pil (%d) greater than %d\n",
3086 addr, pil, NINTR);
3087 return (WALK_NEXT);
3088 }
3089
3090 if (cid->cid_ithr[id][pil] != 0) {
3091 mdb_warn("CPU %d has multiple threads at pil %d (at least "
3092 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3093 return (WALK_NEXT);
3094 }
3095
3096 cid->cid_ithr[id][pil] = addr;
3097
3098 return (WALK_NEXT);
3099 }
3100
3101 #define CPUINFO_IDWIDTH 3
3102 #define CPUINFO_FLAGWIDTH 9
3103
3104 #ifdef _LP64
3105 #if defined(__amd64)
3106 #define CPUINFO_TWIDTH 16
3107 #define CPUINFO_CPUWIDTH 16
3108 #else
3109 #define CPUINFO_CPUWIDTH 11
3110 #define CPUINFO_TWIDTH 11
3111 #endif
3112 #else
3113 #define CPUINFO_CPUWIDTH 8
3114 #define CPUINFO_TWIDTH 8
3115 #endif
3116
3117 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3118 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3119 #define CPUINFO_ITHRDELT 4
3120
3121 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
3122 flagline < nflaglines ? flagbuf[flagline++] : "")
3123
3124 typedef struct mdb_cpuinfo_proc {
3125 struct {
3126 char u_comm[MAXCOMLEN + 1];
3127 } p_user;
3128 } mdb_cpuinfo_proc_t;
3129
3130 int
3131 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3132 {
3133 kthread_t t;
3134 disp_t disp;
3135 mdb_cpuinfo_proc_t p;
3136 uintptr_t pinned;
3137 char **flagbuf;
3138 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3139
3140 const char *flags[] = {
3141 "RUNNING", "READY", "QUIESCED", "EXISTS",
3142 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3143 "SPARE", "FAULTED", "DISABLED", NULL
3144 };
3145
3146 if (cid->cid_cpu != -1) {
3147 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3148 return (WALK_NEXT);
3149
3150 /*
3151 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3152 */
3153 cid->cid_cpu = -1;
3154 rval = WALK_DONE;
3155 }
3156
3157 if (cid->cid_print_head) {
3158 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3159 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3160 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3161 "PROC");
3162 cid->cid_print_head = FALSE;
3163 }
3164
3165 bspl = cpu->cpu_base_spl;
3166
3167 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3168 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3169 return (WALK_ERR);
3170 }
3171
3172 mdb_printf("%3d %0*p %3x %4d %4d ",
3173 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3174 disp.disp_nrunnable, bspl);
3175
3176 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3177 mdb_printf("%3d ", t.t_pri);
3178 } else {
3179 mdb_printf("%3s ", "-");
3180 }
3181
3182 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3183 cpu->cpu_kprunrun ? "yes" : "no");
3184
3185 if (cpu->cpu_last_swtch) {
3186 mdb_printf("t-%-4d ",
3187 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3188 } else {
3189 mdb_printf("%-6s ", "-");
3190 }
3191
3192 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3193
3194 if (cpu->cpu_thread == cpu->cpu_idle_thread)
3195 mdb_printf(" (idle)\n");
3196 else if (cpu->cpu_thread == NULL)
3197 mdb_printf(" -\n");
3198 else {
3199 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3200 (uintptr_t)t.t_procp, 0) != -1) {
3201 mdb_printf(" %s\n", p.p_user.u_comm);
3202 } else {
3203 mdb_printf(" ?\n");
3204 }
3205 }
3206
3207 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3208
3209 if (cid->cid_print_flags) {
3210 int first = 1, i, j, k;
3211 char *s;
3212
3213 cid->cid_print_head = TRUE;
3214
3215 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3216 if (!(cpu->cpu_flags & i))
3217 continue;
3218
3219 if (first) {
3220 s = mdb_alloc(CPUINFO_THRDELT + 1,
3221 UM_GC | UM_SLEEP);
3222
3223 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3224 "%*s|%*s", CPUINFO_FLAGDELT, "",
3225 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3226 flagbuf[nflaglines++] = s;
3227 }
3228
3229 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3230 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3231 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3232 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3233 first ? "<--+" : "");
3234
3235 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3236 s[k] = ' ';
3237 s[k] = '\0';
3238
3239 flagbuf[nflaglines++] = s;
3240 first = 0;
3241 }
3242 }
3243
3244 if (cid->cid_print_ithr) {
3245 int i, found_one = FALSE;
3246 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3247
3248 for (i = NINTR - 1; i >= 0; i--) {
3249 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3250
3251 if (iaddr == 0)
3252 continue;
3253
3254 if (!found_one) {
3255 found_one = TRUE;
3256
3257 CPUINFO_INDENT;
3258 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3259 CPUINFO_ITHRDELT, "");
3260
3261 CPUINFO_INDENT;
3262 mdb_printf("%c%*s+--> %3s %s\n",
3263 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3264 "", "PIL", "THREAD");
3265 }
3266
3267 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3268 mdb_warn("failed to read kthread_t at %p",
3269 iaddr);
3270 return (WALK_ERR);
3271 }
3272
3273 CPUINFO_INDENT;
3274 mdb_printf("%c%*s %3d %0*p\n",
3275 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3276 t.t_pil, CPUINFO_TWIDTH, iaddr);
3277
3278 pinned = (uintptr_t)t.t_intr;
3279 }
3280
3281 if (found_one && pinned != 0) {
3282 cid->cid_print_head = TRUE;
3283 (void) strcpy(p.p_user.u_comm, "?");
3284
3285 if (mdb_vread(&t, sizeof (t),
3286 (uintptr_t)pinned) == -1) {
3287 mdb_warn("failed to read kthread_t at %p",
3288 pinned);
3289 return (WALK_ERR);
3290 }
3291 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3292 (uintptr_t)t.t_procp, 0) == -1) {
3293 mdb_warn("failed to read proc_t at %p",
3294 t.t_procp);
3295 return (WALK_ERR);
3296 }
3297
3298 CPUINFO_INDENT;
3299 mdb_printf("%c%*s %3s %0*p %s\n",
3300 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3301 CPUINFO_TWIDTH, pinned,
3302 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3303 "(idle)" : p.p_user.u_comm);
3304 }
3305 }
3306
3307 if (disp.disp_nrunnable && cid->cid_print_thr) {
3308 dispq_t *dq;
3309
3310 int i, npri = disp.disp_npri;
3311
3312 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3313
3314 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3315 (uintptr_t)disp.disp_q) == -1) {
3316 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3317 return (WALK_ERR);
3318 }
3319
3320 CPUINFO_INDENT;
3321 mdb_printf("|\n");
3322
3323 CPUINFO_INDENT;
3324 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3325 CPUINFO_TWIDTH, "THREAD", "PROC");
3326
3327 for (i = npri - 1; i >= 0; i--) {
3328 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3329
3330 while (taddr != 0) {
3331 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3332 mdb_warn("failed to read kthread_t "
3333 "at %p", taddr);
3334 return (WALK_ERR);
3335 }
3336 if (mdb_ctf_vread(&p, "proc_t",
3337 "mdb_cpuinfo_proc_t",
3338 (uintptr_t)t.t_procp, 0) == -1) {
3339 mdb_warn("failed to read proc_t at %p",
3340 t.t_procp);
3341 return (WALK_ERR);
3342 }
3343
3344 CPUINFO_INDENT;
3345 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3346 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3347
3348 taddr = (uintptr_t)t.t_link;
3349 }
3350 }
3351 cid->cid_print_head = TRUE;
3352 }
3353
3354 while (flagline < nflaglines)
3355 mdb_printf("%s\n", flagbuf[flagline++]);
3356
3357 if (cid->cid_print_head)
3358 mdb_printf("\n");
3359
3360 return (rval);
3361 }
3362
3363 int
3364 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3365 {
3366 uint_t verbose = FALSE;
3367 cpuinfo_data_t cid;
3368
3369 cid.cid_print_ithr = FALSE;
3370 cid.cid_print_thr = FALSE;
3371 cid.cid_print_flags = FALSE;
3372 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3373 cid.cid_cpu = -1;
3374
3375 if (flags & DCMD_ADDRSPEC)
3376 cid.cid_cpu = addr;
3377
3378 if (mdb_getopts(argc, argv,
3379 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3380 return (DCMD_USAGE);
3381
3382 if (verbose) {
3383 cid.cid_print_ithr = TRUE;
3384 cid.cid_print_thr = TRUE;
3385 cid.cid_print_flags = TRUE;
3386 cid.cid_print_head = TRUE;
3387 }
3388
3389 if (cid.cid_print_ithr) {
3390 int i;
3391
3392 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3393 * NCPU, UM_SLEEP | UM_GC);
3394
3395 for (i = 0; i < NCPU; i++)
3396 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3397 NINTR, UM_SLEEP | UM_GC);
3398
3399 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3400 &cid) == -1) {
3401 mdb_warn("couldn't walk thread");
3402 return (DCMD_ERR);
3403 }
3404 }
3405
3406 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3407 mdb_warn("can't walk cpus");
3408 return (DCMD_ERR);
3409 }
3410
3411 if (cid.cid_cpu != -1) {
3412 /*
3413 * We didn't find this CPU when we walked through the CPUs
3414 * (i.e. the address specified doesn't show up in the "cpu"
3415 * walk). However, the specified address may still correspond
3416 * to a valid cpu_t (for example, if the specified address is
3417 * the actual panicking cpu_t and not the cached panic_cpu).
3418 * Point is: even if we didn't find it, we still want to try
3419 * to print the specified address as a cpu_t.
3420 */
3421 cpu_t cpu;
3422
3423 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3424 mdb_warn("%p is neither a valid CPU ID nor a "
3425 "valid cpu_t address\n", cid.cid_cpu);
3426 return (DCMD_ERR);
3427 }
3428
3429 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3430 }
3431
3432 return (DCMD_OK);
3433 }
3434
3435 /*ARGSUSED*/
3436 int
3437 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3438 {
3439 int i;
3440
3441 if (!(flags & DCMD_ADDRSPEC))
3442 return (DCMD_USAGE);
3443
3444 for (i = 0; i < sizeof (addr) * NBBY; i++)
3445 mdb_printf("%p\n", addr ^ (1UL << i));
3446
3447 return (DCMD_OK);
3448 }
3449
3450 typedef struct mdb_as2proc_proc {
3451 struct as *p_as;
3452 } mdb_as2proc_proc_t;
3453
3454 /*ARGSUSED*/
3455 int
3456 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3457 {
3458 mdb_as2proc_proc_t p;
3459
3460 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3461
3462 if (p.p_as == *asp)
3463 mdb_printf("%p\n", addr);
3464 return (WALK_NEXT);
3465 }
3466
3467 /*ARGSUSED*/
3468 int
3469 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3470 {
3471 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3472 return (DCMD_USAGE);
3473
3474 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3475 mdb_warn("failed to walk proc");
3476 return (DCMD_ERR);
3477 }
3478
3479 return (DCMD_OK);
3480 }
3481
3482 typedef struct mdb_ptree_proc {
3483 struct proc *p_parent;
3484 struct {
3485 char u_comm[MAXCOMLEN + 1];
3486 } p_user;
3487 } mdb_ptree_proc_t;
3488
3489 /*ARGSUSED*/
3490 int
3491 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3492 {
3493 mdb_ptree_proc_t proc;
3494 mdb_ptree_proc_t parent;
3495 int ident = 0;
3496 uintptr_t paddr;
3497
3498 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3499
3500 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) {
3501 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3502 paddr = (uintptr_t)parent.p_parent;
3503 }
3504
3505 mdb_inc_indent(ident);
3506 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm);
3507 mdb_dec_indent(ident);
3508
3509 return (WALK_NEXT);
3510 }
3511
3512 void
3513 ptree_ancestors(uintptr_t addr, uintptr_t start)
3514 {
3515 mdb_ptree_proc_t p;
3516
3517 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3518 mdb_warn("couldn't read ancestor at %p", addr);
3519 return;
3520 }
3521
3522 if (p.p_parent != NULL)
3523 ptree_ancestors((uintptr_t)p.p_parent, start);
3524
3525 if (addr != start)
3526 (void) ptree_walk(addr, &p, NULL);
3527 }
3528
3529 /*ARGSUSED*/
3530 int
3531 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3532 {
3533 if (!(flags & DCMD_ADDRSPEC))
3534 addr = 0;
3535 else
3536 ptree_ancestors(addr, addr);
3537
3538 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3539 mdb_warn("couldn't walk 'proc'");
3540 return (DCMD_ERR);
3541 }
3542
3543 return (DCMD_OK);
3544 }
3545
3546 typedef struct mdb_fd_proc {
3547 struct {
3548 struct {
3549 int fi_nfiles;
3550 uf_entry_t *volatile fi_list;
3551 } u_finfo;
3552 } p_user;
3553 } mdb_fd_proc_t;
3554
3555 /*ARGSUSED*/
3556 static int
3557 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3558 {
3559 int fdnum;
3560 const mdb_arg_t *argp = &argv[0];
3561 mdb_fd_proc_t p;
3562 uf_entry_t uf;
3563
3564 if ((flags & DCMD_ADDRSPEC) == 0) {
3565 mdb_warn("fd doesn't give global information\n");
3566 return (DCMD_ERR);
3567 }
3568 if (argc != 1)
3569 return (DCMD_USAGE);
3570
3571 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3572 fdnum = argp->a_un.a_val;
3573 else
3574 fdnum = mdb_strtoull(argp->a_un.a_str);
3575
3576 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3577 mdb_warn("couldn't read proc_t at %p", addr);
3578 return (DCMD_ERR);
3579 }
3580 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3581 mdb_warn("process %p only has %d files open.\n",
3582 addr, p.p_user.u_finfo.fi_nfiles);
3583 return (DCMD_ERR);
3584 }
3585 if (mdb_vread(&uf, sizeof (uf_entry_t),
3586 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3587 mdb_warn("couldn't read uf_entry_t at %p",
3588 &p.p_user.u_finfo.fi_list[fdnum]);
3589 return (DCMD_ERR);
3590 }
3591
3592 mdb_printf("%p\n", uf.uf_file);
3593 return (DCMD_OK);
3594 }
3595
3596 /*ARGSUSED*/
3597 static int
3598 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3599 {
3600 pid_t pid = (pid_t)addr;
3601
3602 if (argc != 0)
3603 return (DCMD_USAGE);
3604
3605 if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3606 mdb_warn("PID 0t%d not found\n", pid);
3607 return (DCMD_ERR);
3608 }
3609
3610 mdb_printf("%p\n", addr);
3611 return (DCMD_OK);
3612 }
3613
3614 static char *sysfile_cmd[] = {
3615 "exclude:",
3616 "include:",
3617 "forceload:",
3618 "rootdev:",
3619 "rootfs:",
3620 "swapdev:",
3621 "swapfs:",
3622 "moddir:",
3623 "set",
3624 "unknown",
3625 };
3626
3627 static char *sysfile_ops[] = { "", "=", "&", "|" };
3628
3629 /*ARGSUSED*/
3630 static int
3631 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3632 {
3633 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3634 *target = NULL;
3635 return (WALK_DONE);
3636 }
3637 return (WALK_NEXT);
3638 }
3639
3640 /*ARGSUSED*/
3641 static int
3642 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3643 {
3644 struct sysparam *sysp, sys;
3645 char var[256];
3646 char modname[256];
3647 char val[256];
3648 char strval[256];
3649 vmem_t *mod_sysfile_arena;
3650 void *straddr;
3651
3652 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3653 mdb_warn("failed to read sysparam_hd");
3654 return (DCMD_ERR);
3655 }
3656
3657 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3658 mdb_warn("failed to read mod_sysfile_arena");
3659 return (DCMD_ERR);
3660 }
3661
3662 while (sysp != NULL) {
3663 var[0] = '\0';
3664 val[0] = '\0';
3665 modname[0] = '\0';
3666 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3667 mdb_warn("couldn't read sysparam %p", sysp);
3668 return (DCMD_ERR);
3669 }
3670 if (sys.sys_modnam != NULL &&
3671 mdb_readstr(modname, 256,
3672 (uintptr_t)sys.sys_modnam) == -1) {
3673 mdb_warn("couldn't read modname in %p", sysp);
3674 return (DCMD_ERR);
3675 }
3676 if (sys.sys_ptr != NULL &&
3677 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3678 mdb_warn("couldn't read ptr in %p", sysp);
3679 return (DCMD_ERR);
3680 }
3681 if (sys.sys_op != SETOP_NONE) {
3682 /*
3683 * Is this an int or a string? We determine this
3684 * by checking whether straddr is contained in
3685 * mod_sysfile_arena. If so, the walker will set
3686 * straddr to NULL.
3687 */
3688 straddr = (void *)(uintptr_t)sys.sys_info;
3689 if (sys.sys_op == SETOP_ASSIGN &&
3690 sys.sys_info != 0 &&
3691 mdb_pwalk("vmem_seg",
3692 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3693 (uintptr_t)mod_sysfile_arena) == 0 &&
3694 straddr == NULL &&
3695 mdb_readstr(strval, 256,
3696 (uintptr_t)sys.sys_info) != -1) {
3697 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3698 strval);
3699 } else {
3700 (void) mdb_snprintf(val, sizeof (val),
3701 "0x%llx [0t%llu]", sys.sys_info,
3702 sys.sys_info);
3703 }
3704 }
3705 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3706 modname, modname[0] == '\0' ? "" : ":",
3707 var, sysfile_ops[sys.sys_op], val);
3708
3709 sysp = sys.sys_next;
3710 }
3711
3712 return (DCMD_OK);
3713 }
3714
3715 int
3716 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3717 {
3718
3719 if (*didp == thr->t_did) {
3720 mdb_printf("%p\n", addr);
3721 return (WALK_DONE);
3722 } else
3723 return (WALK_NEXT);
3724 }
3725
3726 /*ARGSUSED*/
3727 int
3728 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3729 {
3730 const mdb_arg_t *argp = &argv[0];
3731 kt_did_t did;
3732
3733 if (argc != 1)
3734 return (DCMD_USAGE);
3735
3736 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3737
3738 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3739 mdb_warn("failed to walk thread");
3740 return (DCMD_ERR);
3741
3742 }
3743 return (DCMD_OK);
3744
3745 }
3746
3747 static int
3748 errorq_walk_init(mdb_walk_state_t *wsp)
3749 {
3750 if (wsp->walk_addr == 0 &&
3751 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3752 mdb_warn("failed to read errorq_list");
3753 return (WALK_ERR);
3754 }
3755
3756 return (WALK_NEXT);
3757 }
3758
3759 static int
3760 errorq_walk_step(mdb_walk_state_t *wsp)
3761 {
3762 uintptr_t addr = wsp->walk_addr;
3763 errorq_t eq;
3764
3765 if (addr == 0)
3766 return (WALK_DONE);
3767
3768 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3769 mdb_warn("failed to read errorq at %p", addr);
3770 return (WALK_ERR);
3771 }
3772
3773 wsp->walk_addr = (uintptr_t)eq.eq_next;
3774 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3775 }
3776
3777 typedef struct eqd_walk_data {
3778 uintptr_t *eqd_stack;
3779 void *eqd_buf;
3780 ulong_t eqd_qpos;
3781 ulong_t eqd_qlen;
3782 size_t eqd_size;
3783 } eqd_walk_data_t;
3784
3785 /*
3786 * In order to walk the list of pending error queue elements, we push the
3787 * addresses of the corresponding data buffers in to the eqd_stack array.
3788 * The error lists are in reverse chronological order when iterating using
3789 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3790 * walker client gets addresses in order from oldest error to newest error.
3791 */
3792 static void
3793 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3794 {
3795 errorq_elem_t eqe;
3796
3797 while (addr != 0) {
3798 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3799 mdb_warn("failed to read errorq element at %p", addr);
3800 break;
3801 }
3802
3803 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3804 mdb_warn("errorq is overfull -- more than %lu "
3805 "elems found\n", eqdp->eqd_qlen);
3806 break;
3807 }
3808
3809 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3810 addr = (uintptr_t)eqe.eqe_prev;
3811 }
3812 }
3813
3814 static int
3815 eqd_walk_init(mdb_walk_state_t *wsp)
3816 {
3817 eqd_walk_data_t *eqdp;
3818 errorq_elem_t eqe, *addr;
3819 errorq_t eq;
3820 ulong_t i;
3821
3822 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3823 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3824 return (WALK_ERR);
3825 }
3826
3827 if (eq.eq_ptail != NULL &&
3828 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3829 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3830 return (WALK_ERR);
3831 }
3832
3833 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3834 wsp->walk_data = eqdp;
3835
3836 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3837 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3838 eqdp->eqd_qlen = eq.eq_qlen;
3839 eqdp->eqd_qpos = 0;
3840 eqdp->eqd_size = eq.eq_size;
3841
3842 /*
3843 * The newest elements in the queue are on the pending list, so we
3844 * push those on to our stack first.
3845 */
3846 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3847
3848 /*
3849 * If eq_ptail is set, it may point to a subset of the errors on the
3850 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3851 * data is already in our stack, NULL out eq_ptail and ignore it.
3852 */
3853 if (eq.eq_ptail != NULL) {
3854 for (i = 0; i < eqdp->eqd_qpos; i++) {
3855 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3856 eq.eq_ptail = NULL;
3857 break;
3858 }
3859 }
3860 }
3861
3862 /*
3863 * If eq_phead is set, it has the processing list in order from oldest
3864 * to newest. Use this to recompute eq_ptail as best we can and then
3865 * we nicely fall into eqd_push_list() of eq_ptail below.
3866 */
3867 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3868 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3869 eq.eq_ptail = addr;
3870
3871 /*
3872 * The oldest elements in the queue are on the processing list, subject
3873 * to machinations in the if-clauses above. Push any such elements.
3874 */
3875 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3876 return (WALK_NEXT);
3877 }
3878
3879 static int
3880 eqd_walk_step(mdb_walk_state_t *wsp)
3881 {
3882 eqd_walk_data_t *eqdp = wsp->walk_data;
3883 uintptr_t addr;
3884
3885 if (eqdp->eqd_qpos == 0)
3886 return (WALK_DONE);
3887
3888 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3889
3890 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3891 mdb_warn("failed to read errorq data at %p", addr);
3892 return (WALK_ERR);
3893 }
3894
3895 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3896 }
3897
3898 static void
3899 eqd_walk_fini(mdb_walk_state_t *wsp)
3900 {
3901 eqd_walk_data_t *eqdp = wsp->walk_data;
3902
3903 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3904 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3905 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3906 }
3907
3908 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3909
3910 static int
3911 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3912 {
3913 int i;
3914 errorq_t eq;
3915 uint_t opt_v = FALSE;
3916
3917 if (!(flags & DCMD_ADDRSPEC)) {
3918 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3919 mdb_warn("can't walk 'errorq'");
3920 return (DCMD_ERR);
3921 }
3922 return (DCMD_OK);
3923 }
3924
3925 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3926 argc -= i;
3927 argv += i;
3928
3929 if (argc != 0)
3930 return (DCMD_USAGE);
3931
3932 if (opt_v || DCMD_HDRSPEC(flags)) {
3933 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3934 "ADDR", "NAME", "S", "V", "N");
3935 if (!opt_v) {
3936 mdb_printf("%7s %7s %7s%</u>\n",
3937 "ACCEPT", "DROP", "LOG");
3938 } else {
3939 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3940 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3941 }
3942 }
3943
3944 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3945 mdb_warn("failed to read errorq at %p", addr);
3946 return (DCMD_ERR);
3947 }
3948
3949 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3950 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3951 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3952 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3953
3954 if (!opt_v) {
3955 mdb_printf("%7llu %7llu %7llu\n",
3956 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3957 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3958 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3959 } else {
3960 mdb_printf("%5s %6lu %6lu %3u %a\n",
3961 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3962 mdb_printf("%38s\n%41s"
3963 "%12s %llu\n"
3964 "%53s %llu\n"
3965 "%53s %llu\n"
3966 "%53s %llu\n"
3967 "%53s %llu\n"
3968 "%53s %llu\n"
3969 "%53s %llu\n"
3970 "%53s %llu\n\n",
3971 "|", "+-> ",
3972 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
3973 "DROPPED", EQKSVAL(eq, eqk_dropped),
3974 "LOGGED", EQKSVAL(eq, eqk_logged),
3975 "RESERVED", EQKSVAL(eq, eqk_reserved),
3976 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
3977 "COMMITTED", EQKSVAL(eq, eqk_committed),
3978 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
3979 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
3980 }
3981
3982 return (DCMD_OK);
3983 }
3984
3985 /*ARGSUSED*/
3986 static int
3987 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3988 {
3989 cpu_t panic_cpu;
3990 kthread_t *panic_thread;
3991 void *buf;
3992 panic_data_t *pd;
3993 int i, n;
3994
3995 if (!mdb_prop_postmortem) {
3996 mdb_warn("panicinfo can only be run on a system "
3997 "dump; see dumpadm(1M)\n");
3998 return (DCMD_ERR);
3999 }
4000
4001 if (flags & DCMD_ADDRSPEC || argc != 0)
4002 return (DCMD_USAGE);
4003
4004 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
4005 mdb_warn("failed to read 'panic_cpu'");
4006 else
4007 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
4008
4009 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
4010 mdb_warn("failed to read 'panic_thread'");
4011 else
4012 mdb_printf("%16s %?p\n", "thread", panic_thread);
4013
4014 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
4015 pd = (panic_data_t *)buf;
4016
4017 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
4018 pd->pd_version != PANICBUFVERS) {
4019 mdb_warn("failed to read 'panicbuf'");
4020 mdb_free(buf, PANICBUFSIZE);
4021 return (DCMD_ERR);
4022 }
4023
4024 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
4025
4026 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
4027 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
4028
4029 for (i = 0; i < n; i++)
4030 mdb_printf("%16s %?llx\n",
4031 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
4032
4033 mdb_free(buf, PANICBUFSIZE);
4034 return (DCMD_OK);
4035 }
4036
4037 /*
4038 * ::time dcmd, which will print a hires timestamp of when we entered the
4039 * debugger, or the lbolt value if used with the -l option.
4040 *
4041 */
4042 /*ARGSUSED*/
4043 static int
4044 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4045 {
4046 uint_t opt_dec = FALSE;
4047 uint_t opt_lbolt = FALSE;
4048 uint_t opt_hex = FALSE;
4049 const char *fmt;
4050 hrtime_t result;
4051
4052 if (mdb_getopts(argc, argv,
4053 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4054 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4055 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4056 NULL) != argc)
4057 return (DCMD_USAGE);
4058
4059 if (opt_dec && opt_hex)
4060 return (DCMD_USAGE);
4061
4062 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4063 fmt =
4064 opt_hex ? "0x%llx\n" :
4065 opt_dec ? "0t%lld\n" : "%#llr\n";
4066
4067 mdb_printf(fmt, result);
4068 return (DCMD_OK);
4069 }
4070
4071 void
4072 time_help(void)
4073 {
4074 mdb_printf("Prints the system time in nanoseconds.\n\n"
4075 "::time will return the timestamp at which we dropped into, \n"
4076 "if called from, kmdb(1); the core dump's high resolution \n"
4077 "time if inspecting one; or the running hires time if we're \n"
4078 "looking at a live system.\n\n"
4079 "Switches:\n"
4080 " -d report times in decimal\n"
4081 " -l prints the number of clock ticks since system boot\n"
4082 " -x report times in hexadecimal\n");
4083 }
4084
4085 static const mdb_dcmd_t dcmds[] = {
4086
4087 /* from genunix.c */
4088 { "as2proc", ":", "convert as to proc_t address", as2proc },
4089 { "binding_hash_entry", ":", "print driver names hash table entry",
4090 binding_hash_entry },
4091 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4092 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4093 " [-FivVA]",
4094 "display callouts", callout, callout_help },
4095 { "calloutid", "[-d|v] xid", "print callout by extended id",
4096 calloutid, calloutid_help },
4097 { "class", NULL, "print process scheduler classes", class },
4098 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4099 { "did2thread", "? kt_did", "find kernel thread for this id",
4100 did2thread },
4101 { "errorq", "?[-v]", "display kernel error queues", errorq },
4102 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
4103 { "flipone", ":", "the vik_rev_level 2 special", flipone },
4104 { "lminfo", NULL, "print lock manager information", lminfo },
4105 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4106 { "panicinfo", NULL, "print panic information", panicinfo },
4107 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4108 { "project", NULL, "display kernel project(s)", project },
4109 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps,
4110 ps_help },
4111 { "pflags", NULL, "display various proc_t flags", pflags },
4112 { "pgrep", "[-x] [-n | -o] pattern",
4113 "pattern match against all processes", pgrep },
4114 { "ptree", NULL, "print process tree", ptree },
4115 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4116 sysevent},
4117 { "sysevent_channel", "?", "print sysevent channel database",
4118 sysevent_channel},
4119 { "sysevent_class_list", ":", "print sysevent class list",
4120 sysevent_class_list},
4121 { "sysevent_subclass_list", ":",
4122 "print sysevent subclass list", sysevent_subclass_list},
4123 { "system", NULL, "print contents of /etc/system file", sysfile },
4124 { "task", NULL, "display kernel task(s)", task },
4125 { "time", "[-dlx]", "display system time", time, time_help },
4126 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4127 { "whereopen", ":", "given a vnode, dumps procs which have it open",
4128 whereopen },
4129
4130 /* from bio.c */
4131 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4132
4133 /* from bitset.c */
4134 { "bitset", ":", "display a bitset", bitset, bitset_help },
4135
4136 /* from contract.c */
4137 { "contract", "?", "display a contract", cmd_contract },
4138 { "ctevent", ":", "display a contract event", cmd_ctevent },
4139 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4140
4141 /* from cpupart.c */
4142 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
4143
4144 /* from cred.c */
4145 { "cred", ":[-v]", "display a credential", cmd_cred },
4146 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4147 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4148 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4149
4150 /* from cyclic.c */
4151 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
4152 { "cycid", "?", "dump a cyclic id", cycid },
4153 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4154 { "cyclic", ":", "developer information", cyclic },
4155 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4156
4157 /* from damap.c */
4158 { "damap", ":", "display a damap_t", damap, damap_help },
4159
4160 /* from ddi_periodic.c */
4161 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4162
4163 /* from devinfo.c */
4164 { "devbindings", "?[-qs] [device-name | major-num]",
4165 "print devinfo nodes bound to device-name or major-num",
4166 devbindings, devinfo_help },
4167 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node",
4168 devinfo, devinfo_help },
4169 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4170 devinfo_audit },
4171 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4172 devinfo_audit_log },
4173 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4174 devinfo_audit_node },
4175 { "devinfo2driver", ":", "find driver name for this devinfo node",
4176 devinfo2driver },
4177 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
4178 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
4179 dev2major },
4180 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4181 dev2minor },
4182 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4183 devt },
4184 { "major2name", "?<major-num>", "convert major number to dev name",
4185 major2name },
4186 { "minornodes", ":", "given a devinfo node, print its minor nodes",
4187 minornodes },
4188 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
4189 modctl2devinfo },
4190 { "name2major", "<dev-name>", "convert dev name to major number",
4191 name2major },
4192 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree",
4193 prtconf, prtconf_help },
4194 { "softstate", ":<instance>", "retrieve soft-state pointer",
4195 softstate },
4196 { "devinfo_fm", ":", "devinfo fault managment configuration",
4197 devinfo_fm },
4198 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
4199 devinfo_fmce},
4200
4201 /* from findstack.c */
4202 { "findstack", ":[-v]", "find kernel thread stack", findstack },
4203 { "findstack_debug", NULL, "toggle findstack debugging",
4204 findstack_debug },
4205 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4206 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
4207 "print unique kernel thread stacks",
4208 stacks, stacks_help },
4209
4210 /* from fm.c */
4211 { "ereport", "[-v]", "print ereports logged in dump",
4212 ereport },
4213
4214 /* from group.c */
4215 { "group", "?[-q]", "display a group", group},
4216
4217 /* from hotplug.c */
4218 { "hotplug", "?[-p]", "display a registered hotplug attachment",
4219 hotplug, hotplug_help },
4220
4221 /* from irm.c */
4222 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4223 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4224 irmreqs_dcmd },
4225 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4226
4227 /* from kgrep.c + genunix.c */
4228 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4229 kgrep_help },
4230
4231 /* from kmem.c */
4232 { "allocdby", ":", "given a thread, print its allocated buffers",
4233 allocdby },
4234 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4235 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4236 { "freedby", ":", "given a thread, print its freed buffers", freedby },
4237 { "kmalog", "?[ fail | slab ]",
4238 "display kmem transaction log and stack traces", kmalog },
4239 { "kmastat", "[-kmg]", "kernel memory allocator stats",
4240 kmastat },
4241 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4242 "of the kmem allocator", kmausers, kmausers_help },
4243 { "kmem_cache", "?[-n name]",
4244 "print kernel memory caches", kmem_cache, kmem_cache_help},
4245 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4246 "[-B minbinsize]", "display slab usage per kmem cache",
4247 kmem_slabs, kmem_slabs_help },
4248 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4249 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4250 { "kmem_verify", "?", "check integrity of kmem-managed memory",
4251 kmem_verify },
4252 { "vmem", "?", "print a vmem_t", vmem },
4253 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4254 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
4255 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4256 { "whatthread", ":[-v]", "print threads whose stack contains the "
4257 "given address", whatthread },
4258
4259 /* from ldi.c */
4260 { "ldi_handle", "?[-i]", "display a layered driver handle",
4261 ldi_handle, ldi_handle_help },
4262 { "ldi_ident", NULL, "display a layered driver identifier",
4263 ldi_ident, ldi_ident_help },
4264
4265 /* from leaky.c + leaky_subr.c */
4266 { "findleaks", FINDLEAKS_USAGE,
4267 "search for potential kernel memory leaks", findleaks,
4268 findleaks_help },
4269
4270 /* from lgrp.c */
4271 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4272 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4273
4274 /* from log.c */
4275 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4276
4277 /* from mdi.c */
4278 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4279 "and detailed pi_prop list", mdipi },
4280 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4281 mdiprops },
4282 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4283 "list all paths", mdiphci },
4284 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4285 "all phcis", mdivhci },
4286 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4287 "client links", mdiclient_paths },
4288 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4289 "phci links", mdiphci_paths },
4290 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4291 mdiphcis },
4292
4293 /* from memory.c */
4294 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4295 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4296 { "memstat", NULL, "display memory usage summary", memstat },
4297 { "page", "?", "display a summarized page_t", page },
4298 { "pagelookup", "?[-v vp] [-o offset]",
4299 "find the page_t with the name {vp, offset}",
4300 pagelookup, pagelookup_help },
4301 { "page_num2pp", ":", "find the page_t for a given page frame number",
4302 page_num2pp },
4303 { "pmap", ":[-q]", "print process memory map", pmap },
4304 { "seg", ":", "print address space segment", seg },
4305 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4306 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4307
4308 /* from mmd.c */
4309 { "multidata", ":[-sv]", "display a summarized multidata_t",
4310 multidata },
4311 { "pattbl", ":", "display a summarized multidata attribute table",
4312 pattbl },
4313 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4314 pattr2multidata },
4315 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4316 pdesc2slab },
4317 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4318 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4319 slab2multidata },
4320
4321 /* from modhash.c */
4322 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4323 "display information about one or all mod_hash structures",
4324 modhash, modhash_help },
4325 { "modent", ":[-k | -v | -t type]",
4326 "display information about a mod_hash_entry", modent,
4327 modent_help },
4328
4329 /* from net.c */
4330 { "dladm", "?<sub-command> [flags]", "show data link information",
4331 dladm, dladm_help },
4332 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4333 mi },
4334 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4335 "show network statistics", netstat },
4336 { "sonode", "?[-f inet | inet6 | unix | #] "
4337 "[-t stream | dgram | raw | #] [-p #]",
4338 "filter and display sonode", sonode },
4339
4340 /* from netstack.c */
4341 { "netstack", "", "show stack instances", netstack },
4342 { "netstackid2netstack", ":",
4343 "translate a netstack id to its netstack_t",
4344 netstackid2netstack },
4345
4346 /* from nvpair.c */
4347 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4348 nvpair_print },
4349 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4350 print_nvlist },
4351
4352 /* from pg.c */
4353 { "pg", "?[-q]", "display a pg", pg},
4354
4355 /* from rctl.c */
4356 { "rctl_dict", "?", "print systemwide default rctl definitions",
4357 rctl_dict },
4358 { "rctl_list", ":[handle]", "print rctls for the given proc",
4359 rctl_list },
4360 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4361 rctl },
4362 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4363 "sequence", rctl_validate },
4364
4365 /* from sobj.c */
4366 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4367 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4368 mutex_help },
4369 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4370 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4371 { "turnstile", "?", "display a turnstile", turnstile },
4372
4373 /* from stream.c */
4374 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4375 "print an mblk", mblk_prt, mblk_help },
4376 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4377 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4378 mblk2dblk },
4379 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4380 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4381 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4382 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4383 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4384 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4385 "filter and display STREAM queue", queue, queue_help },
4386 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4387 "filter and display STREAM head", stdata, stdata_help },
4388 { "str2mate", ":", "print mate of this stream", str2mate },
4389 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4390 { "stream", ":", "display STREAM", stream },
4391 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4392 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4393 "filter and display STREAM sync queue", syncq, syncq_help },
4394 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4395
4396 /* from taskq.c */
4397 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4398 "display a taskq", taskq, taskq_help },
4399 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4400
4401 /* from thread.c */
4402 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4403 thread_help },
4404 { "threadlist", "?[-t] [-v [count]]",
4405 "display threads and associated C stack traces", threadlist,
4406 threadlist_help },
4407 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4408 stackinfo_help },
4409
4410 /* from tsd.c */
4411 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4412 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4413
4414 /*
4415 * typegraph does not work under kmdb, as it requires too much memory
4416 * for its internal data structures.
4417 */
4418 #ifndef _KMDB
4419 /* from typegraph.c */
4420 { "findlocks", ":", "find locks held by specified thread", findlocks },
4421 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4422 findfalse },
4423 { "typegraph", NULL, "build type graph", typegraph },
4424 { "istype", ":type", "manually set object type", istype },
4425 { "notype", ":", "manually clear object type", notype },
4426 { "whattype", ":", "determine object type", whattype },
4427 #endif
4428
4429 /* from vfs.c */
4430 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4431 { "pfiles", ":[-fp]", "print process file information", pfiles,
4432 pfiles_help },
4433
4434 /* from zone.c */
4435 { "zid2zone", ":", "find the zone_t with the given zone id",
4436 zid2zone },
4437 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4438 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4439 "selected zones", zsd },
4440
4441 #ifndef _KMDB
4442 { "gcore", NULL, "generate a user core for the given process",
4443 gcore_dcmd },
4444 #endif
4445
4446 { NULL }
4447 };
4448
4449 static const mdb_walker_t walkers[] = {
4450
4451 /* from genunix.c */
4452 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4453 callout_walk_init, callout_walk_step, callout_walk_fini,
4454 (void *)CALLOUT_WALK_BYLIST },
4455 { "callouts_byid", "walk callouts by id hash chain",
4456 callout_walk_init, callout_walk_step, callout_walk_fini,
4457 (void *)CALLOUT_WALK_BYID },
4458 { "callout_list", "walk a callout list", callout_list_walk_init,
4459 callout_list_walk_step, callout_list_walk_fini },
4460 { "callout_table", "walk callout table array", callout_table_walk_init,
4461 callout_table_walk_step, callout_table_walk_fini },
4462 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4463 { "dnlc", "walk dnlc entries",
4464 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4465 { "ereportq_dump", "walk list of ereports in dump error queue",
4466 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4467 { "ereportq_pend", "walk list of ereports in pending error queue",
4468 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4469 { "errorq", "walk list of system error queues",
4470 errorq_walk_init, errorq_walk_step, NULL },
4471 { "errorq_data", "walk pending error queue data buffers",
4472 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4473 { "allfile", "given a proc pointer, list all file pointers",
4474 file_walk_init, allfile_walk_step, file_walk_fini },
4475 { "file", "given a proc pointer, list of open file pointers",
4476 file_walk_init, file_walk_step, file_walk_fini },
4477 { "lock_descriptor", "walk lock_descriptor_t structures",
4478 ld_walk_init, ld_walk_step, NULL },
4479 { "lock_graph", "walk lock graph",
4480 lg_walk_init, lg_walk_step, NULL },
4481 { "port", "given a proc pointer, list of created event ports",
4482 port_walk_init, port_walk_step, NULL },
4483 { "portev", "given a port pointer, list of events in the queue",
4484 portev_walk_init, portev_walk_step, portev_walk_fini },
4485 { "proc", "list of active proc_t structures",
4486 proc_walk_init, proc_walk_step, proc_walk_fini },
4487 { "projects", "walk a list of kernel projects",
4488 project_walk_init, project_walk_step, NULL },
4489 { "sysevent_pend", "walk sysevent pending queue",
4490 sysevent_pend_walk_init, sysevent_walk_step,
4491 sysevent_walk_fini},
4492 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4493 sysevent_walk_step, sysevent_walk_fini},
4494 { "sysevent_channel", "walk sysevent channel subscriptions",
4495 sysevent_channel_walk_init, sysevent_channel_walk_step,
4496 sysevent_channel_walk_fini},
4497 { "sysevent_class_list", "walk sysevent subscription's class list",
4498 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4499 sysevent_class_list_walk_fini},
4500 { "sysevent_subclass_list",
4501 "walk sysevent subscription's subclass list",
4502 sysevent_subclass_list_walk_init,
4503 sysevent_subclass_list_walk_step,
4504 sysevent_subclass_list_walk_fini},
4505 { "task", "given a task pointer, walk its processes",
4506 task_walk_init, task_walk_step, NULL },
4507
4508 /* from avl.c */
4509 { AVL_WALK_NAME, AVL_WALK_DESC,
4510 avl_walk_init, avl_walk_step, avl_walk_fini },
4511
4512 /* from bio.c */
4513 { "buf", "walk the bio buf hash",
4514 buf_walk_init, buf_walk_step, buf_walk_fini },
4515
4516 /* from contract.c */
4517 { "contract", "walk all contracts, or those of the specified type",
4518 ct_walk_init, generic_walk_step, NULL },
4519 { "ct_event", "walk events on a contract event queue",
4520 ct_event_walk_init, generic_walk_step, NULL },
4521 { "ct_listener", "walk contract event queue listeners",
4522 ct_listener_walk_init, generic_walk_step, NULL },
4523
4524 /* from cpupart.c */
4525 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4526 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4527 NULL },
4528 { "cpupart_walk", "walk the set of cpu partitions",
4529 cpupart_walk_init, cpupart_walk_step, NULL },
4530
4531 /* from ctxop.c */
4532 { "ctxop", "walk list of context ops on a thread",
4533 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4534
4535 /* from cyclic.c */
4536 { "cyccpu", "walk per-CPU cyc_cpu structures",
4537 cyccpu_walk_init, cyccpu_walk_step, NULL },
4538 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4539 cycomni_walk_init, cycomni_walk_step, NULL },
4540 { "cyctrace", "walk cyclic trace buffer",
4541 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4542
4543 /* from devinfo.c */
4544 { "binding_hash", "walk all entries in binding hash table",
4545 binding_hash_walk_init, binding_hash_walk_step, NULL },
4546 { "devinfo", "walk devinfo tree or subtree",
4547 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4548 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4549 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4550 devinfo_audit_log_walk_fini},
4551 { "devinfo_audit_node", "walk per-devinfo audit history",
4552 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4553 devinfo_audit_node_walk_fini},
4554 { "devinfo_children", "walk children of devinfo node",
4555 devinfo_children_walk_init, devinfo_children_walk_step,
4556 devinfo_children_walk_fini },
4557 { "devinfo_parents", "walk ancestors of devinfo node",
4558 devinfo_parents_walk_init, devinfo_parents_walk_step,
4559 devinfo_parents_walk_fini },
4560 { "devinfo_siblings", "walk siblings of devinfo node",
4561 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4562 { "devi_next", "walk devinfo list",
4563 NULL, devi_next_walk_step, NULL },
4564 { "devnames", "walk devnames array",
4565 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4566 { "minornode", "given a devinfo node, walk minor nodes",
4567 minornode_walk_init, minornode_walk_step, NULL },
4568 { "softstate",
4569 "given an i_ddi_soft_state*, list all in-use driver stateps",
4570 soft_state_walk_init, soft_state_walk_step,
4571 NULL, NULL },
4572 { "softstate_all",
4573 "given an i_ddi_soft_state*, list all driver stateps",
4574 soft_state_walk_init, soft_state_all_walk_step,
4575 NULL, NULL },
4576 { "devinfo_fmc",
4577 "walk a fault management handle cache active list",
4578 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4579
4580 /* from group.c */
4581 { "group", "walk all elements of a group",
4582 group_walk_init, group_walk_step, NULL },
4583
4584 /* from irm.c */
4585 { "irmpools", "walk global list of interrupt pools",
4586 irmpools_walk_init, list_walk_step, list_walk_fini },
4587 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4588 irmreqs_walk_init, list_walk_step, list_walk_fini },
4589
4590 /* from kmem.c */
4591 { "allocdby", "given a thread, walk its allocated bufctls",
4592 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4593 { "bufctl", "walk a kmem cache's bufctls",
4594 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4595 { "bufctl_history", "walk the available history of a bufctl",
4596 bufctl_history_walk_init, bufctl_history_walk_step,
4597 bufctl_history_walk_fini },
4598 { "freedby", "given a thread, walk its freed bufctls",
4599 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4600 { "freectl", "walk a kmem cache's free bufctls",
4601 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4602 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4603 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4604 { "freemem", "walk a kmem cache's free memory",
4605 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4606 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4607 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4608 { "kmem", "walk a kmem cache",
4609 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4610 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4611 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4612 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4613 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4614 { "kmem_log", "walk the kmem transaction log",
4615 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4616 { "kmem_slab", "given a kmem cache, walk its slabs",
4617 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4618 { "kmem_slab_partial",
4619 "given a kmem cache, walk its partially allocated slabs (min 1)",
4620 kmem_slab_walk_partial_init, combined_walk_step,
4621 combined_walk_fini },
4622 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4623 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4624 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4625 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4626 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4627 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4628 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4629 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4630 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4631 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4632 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4633 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4634
4635 /* from ldi.c */
4636 { "ldi_handle", "walk the layered driver handle hash",
4637 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4638 { "ldi_ident", "walk the layered driver identifier hash",
4639 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4640
4641 /* from leaky.c + leaky_subr.c */
4642 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4643 "stack trace",
4644 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4645 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4646 "leaks w/ same stack trace",
4647 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4648
4649 /* from lgrp.c */
4650 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4651 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4652 { "lgrptbl", "walk lgroup table",
4653 lgrp_walk_init, lgrp_walk_step, NULL },
4654 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4655 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4656 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4657 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4658 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4659 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4660
4661 /* from list.c */
4662 { LIST_WALK_NAME, LIST_WALK_DESC,
4663 list_walk_init, list_walk_step, list_walk_fini },
4664
4665 /* from mdi.c */
4666 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4667 mdi_pi_client_link_walk_init,
4668 mdi_pi_client_link_walk_step,
4669 mdi_pi_client_link_walk_fini },
4670 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4671 mdi_pi_phci_link_walk_init,
4672 mdi_pi_phci_link_walk_step,
4673 mdi_pi_phci_link_walk_fini },
4674 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4675 mdi_phci_ph_next_walk_init,
4676 mdi_phci_ph_next_walk_step,
4677 mdi_phci_ph_next_walk_fini },
4678
4679 /* from memory.c */
4680 { "allpages", "walk all pages, including free pages",
4681 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4682 { "anon", "given an amp, list allocated anon structures",
4683 anon_walk_init, anon_walk_step, anon_walk_fini,
4684 ANON_WALK_ALLOC },
4685 { "anon_all", "given an amp, list contents of all anon slots",
4686 anon_walk_init, anon_walk_step, anon_walk_fini,
4687 ANON_WALK_ALL },
4688 { "memlist", "walk specified memlist",
4689 NULL, memlist_walk_step, NULL },
4690 { "page", "walk all pages, or those from the specified vnode",
4691 page_walk_init, page_walk_step, page_walk_fini },
4692 { "seg", "given an as, list of segments",
4693 seg_walk_init, avl_walk_step, avl_walk_fini },
4694 { "segvn_anon",
4695 "given a struct segvn_data, list allocated anon structures",
4696 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4697 ANON_WALK_ALLOC },
4698 { "segvn_anon_all",
4699 "given a struct segvn_data, list contents of all anon slots",
4700 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4701 ANON_WALK_ALL },
4702 { "segvn_pages",
4703 "given a struct segvn_data, list resident pages in "
4704 "offset order",
4705 segvn_pages_walk_init, segvn_pages_walk_step,
4706 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4707 { "segvn_pages_all",
4708 "for each offset in a struct segvn_data, give page_t pointer "
4709 "(if resident), or NULL.",
4710 segvn_pages_walk_init, segvn_pages_walk_step,
4711 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4712 { "swapinfo", "walk swapinfo structures",
4713 swap_walk_init, swap_walk_step, NULL },
4714
4715 /* from mmd.c */
4716 { "pattr", "walk pattr_t structures", pattr_walk_init,
4717 mmdq_walk_step, mmdq_walk_fini },
4718 { "pdesc", "walk pdesc_t structures",
4719 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4720 { "pdesc_slab", "walk pdesc_slab_t structures",
4721 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4722
4723 /* from modhash.c */
4724 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4725 modhash_walk_step, NULL },
4726 { "modent", "walk list of entries in a given mod_hash",
4727 modent_walk_init, modent_walk_step, modent_walk_fini },
4728 { "modchain", "walk list of entries in a given mod_hash_entry",
4729 NULL, modchain_walk_step, NULL },
4730
4731 /* from net.c */
4732 { "icmp", "walk ICMP control structures using MI for all stacks",
4733 mi_payload_walk_init, mi_payload_walk_step, NULL,
4734 &mi_icmp_arg },
4735 { "mi", "given a MI_O, walk the MI",
4736 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4737 { "sonode", "given a sonode, walk its children",
4738 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4739 { "icmp_stacks", "walk all the icmp_stack_t",
4740 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4741 { "tcp_stacks", "walk all the tcp_stack_t",
4742 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4743 { "udp_stacks", "walk all the udp_stack_t",
4744 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4745
4746 /* from netstack.c */
4747 { "netstack", "walk a list of kernel netstacks",
4748 netstack_walk_init, netstack_walk_step, NULL },
4749
4750 /* from nvpair.c */
4751 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4752 nvpair_walk_init, nvpair_walk_step, NULL },
4753
4754 /* from pci.c */
4755 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init,
4756 pcie_bus_walk_step, NULL },
4757
4758 /* from rctl.c */
4759 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4760 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4761 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4762 rctl_set_walk_step, NULL },
4763 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4764 rctl_val_walk_init, rctl_val_walk_step },
4765
4766 /* from sobj.c */
4767 { "blocked", "walk threads blocked on a given sobj",
4768 blocked_walk_init, blocked_walk_step, NULL },
4769 { "wchan", "given a wchan, list of blocked threads",
4770 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4771
4772 /* from stream.c */
4773 { "b_cont", "walk mblk_t list using b_cont",
4774 mblk_walk_init, b_cont_step, mblk_walk_fini },
4775 { "b_next", "walk mblk_t list using b_next",
4776 mblk_walk_init, b_next_step, mblk_walk_fini },
4777 { "qlink", "walk queue_t list using q_link",
4778 queue_walk_init, queue_link_step, queue_walk_fini },
4779 { "qnext", "walk queue_t list using q_next",
4780 queue_walk_init, queue_next_step, queue_walk_fini },
4781 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4782 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4783 { "readq", "walk read queue side of stdata",
4784 str_walk_init, strr_walk_step, str_walk_fini },
4785 { "writeq", "walk write queue side of stdata",
4786 str_walk_init, strw_walk_step, str_walk_fini },
4787
4788 /* from taskq.c */
4789 { "taskq_thread", "given a taskq_t, list all of its threads",
4790 taskq_thread_walk_init,
4791 taskq_thread_walk_step,
4792 taskq_thread_walk_fini },
4793 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4794 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4795
4796 /* from thread.c */
4797 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4798 deathrow_walk_init, deathrow_walk_step, NULL },
4799 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4800 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4801 { "cpupart_dispq",
4802 "given a cpupart_t, walk threads in dispatcher queues",
4803 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4804 { "lwp_deathrow", "walk lwp_deathrow",
4805 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4806 { "thread", "global or per-process kthread_t structures",
4807 thread_walk_init, thread_walk_step, thread_walk_fini },
4808 { "thread_deathrow", "walk threads on thread_deathrow",
4809 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4810
4811 /* from tsd.c */
4812 { "tsd", "walk list of thread-specific data",
4813 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4814
4815 /* from tsol.c */
4816 { "tnrh", "walk remote host cache structures",
4817 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4818 { "tnrhtp", "walk remote host template structures",
4819 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4820
4821 /*
4822 * typegraph does not work under kmdb, as it requires too much memory
4823 * for its internal data structures.
4824 */
4825 #ifndef _KMDB
4826 /* from typegraph.c */
4827 { "typeconflict", "walk buffers with conflicting type inferences",
4828 typegraph_walk_init, typeconflict_walk_step },
4829 { "typeunknown", "walk buffers with unknown types",
4830 typegraph_walk_init, typeunknown_walk_step },
4831 #endif
4832
4833 /* from vfs.c */
4834 { "vfs", "walk file system list",
4835 vfs_walk_init, vfs_walk_step },
4836
4837 /* from zone.c */
4838 { "zone", "walk a list of kernel zones",
4839 zone_walk_init, zone_walk_step, NULL },
4840 { "zsd", "walk list of zsd entries for a zone",
4841 zsd_walk_init, zsd_walk_step, NULL },
4842
4843 { NULL }
4844 };
4845
4846 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4847
4848 /*ARGSUSED*/
4849 static void
4850 genunix_statechange_cb(void *ignored)
4851 {
4852 /*
4853 * Force ::findleaks and ::stacks to let go any cached state.
4854 */
4855 leaky_cleanup(1);
4856 stacks_cleanup(1);
4857
4858 kmem_statechange(); /* notify kmem */
4859 }
4860
4861 const mdb_modinfo_t *
4862 _mdb_init(void)
4863 {
4864 kmem_init();
4865
4866 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4867 genunix_statechange_cb, NULL);
4868
4869 #ifndef _KMDB
4870 gcore_init();
4871 #endif
4872
4873 return (&modinfo);
4874 }
4875
4876 void
4877 _mdb_fini(void)
4878 {
4879 leaky_cleanup(1);
4880 stacks_cleanup(1);
4881 }