1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28 #include <mdb/mdb_param.h>
29 #include <mdb/mdb_modapi.h>
30 #include <mdb/mdb_ks.h>
31 #include <mdb/mdb_ctf.h>
32
33 #include <sys/types.h>
34 #include <sys/thread.h>
35 #include <sys/session.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/var.h>
39 #include <sys/t_lock.h>
40 #include <sys/callo.h>
41 #include <sys/priocntl.h>
42 #include <sys/class.h>
43 #include <sys/regset.h>
44 #include <sys/stack.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vnode.h>
47 #include <sys/vfs.h>
48 #include <sys/flock_impl.h>
49 #include <sys/kmem_impl.h>
50 #include <sys/vmem_impl.h>
51 #include <sys/kstat.h>
52 #include <sys/dditypes.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/sysmacros.h>
55 #include <sys/sysconf.h>
56 #include <sys/task.h>
57 #include <sys/project.h>
58 #include <sys/errorq_impl.h>
59 #include <sys/cred_impl.h>
60 #include <sys/zone.h>
61 #include <sys/panic.h>
62 #include <regex.h>
63 #include <sys/port_impl.h>
64
65 #include "avl.h"
66 #include "bio.h"
67 #include "bitset.h"
68 #include "combined.h"
69 #include "contract.h"
70 #include "cpupart_mdb.h"
71 #include "cred.h"
72 #include "ctxop.h"
73 #include "cyclic.h"
74 #include "damap.h"
75 #include "ddi_periodic.h"
76 #include "devinfo.h"
77 #include "dnlc.h"
78 #include "findstack.h"
79 #include "fm.h"
80 #include "gcore.h"
81 #include "group.h"
82 #include "irm.h"
83 #include "kgrep.h"
84 #include "kmem.h"
85 #include "ldi.h"
86 #include "leaky.h"
87 #include "lgrp.h"
88 #include "list.h"
89 #include "log.h"
90 #include "mdi.h"
91 #include "memory.h"
92 #include "mmd.h"
93 #include "modhash.h"
94 #include "ndievents.h"
95 #include "net.h"
96 #include "netstack.h"
97 #include "nvpair.h"
98 #include "pci.h"
99 #include "pg.h"
100 #include "rctl.h"
101 #include "sobj.h"
102 #include "streams.h"
103 #include "sysevent.h"
104 #include "taskq.h"
105 #include "thread.h"
106 #include "tsd.h"
107 #include "tsol.h"
108 #include "typegraph.h"
109 #include "vfs.h"
110 #include "zone.h"
111 #include "hotplug.h"
112
113 /*
114 * Surely this is defined somewhere...
115 */
116 #define NINTR 16
117
118 #define KILOS 10
119 #define MEGS 20
120 #define GIGS 30
121
122 #ifndef STACK_BIAS
123 #define STACK_BIAS 0
124 #endif
125
126 static char
127 pstat2ch(uchar_t state)
128 {
129 switch (state) {
130 case SSLEEP: return ('S');
131 case SRUN: return ('R');
132 case SZOMB: return ('Z');
133 case SIDL: return ('I');
134 case SONPROC: return ('O');
135 case SSTOP: return ('T');
136 case SWAIT: return ('W');
137 default: return ('?');
138 }
139 }
140
141 #define PS_PRTTHREADS 0x1
142 #define PS_PRTLWPS 0x2
143 #define PS_PSARGS 0x4
144 #define PS_TASKS 0x8
145 #define PS_PROJECTS 0x10
146 #define PS_ZONES 0x20
147
148 static int
149 ps_threadprint(uintptr_t addr, const void *data, void *private)
150 {
151 const kthread_t *t = (const kthread_t *)data;
152 uint_t prt_flags = *((uint_t *)private);
153
154 static const mdb_bitmask_t t_state_bits[] = {
155 { "TS_FREE", UINT_MAX, TS_FREE },
156 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
157 { "TS_RUN", TS_RUN, TS_RUN },
158 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
159 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
160 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
161 { "TS_WAIT", TS_WAIT, TS_WAIT },
162 { NULL, 0, 0 }
163 };
164
165 if (prt_flags & PS_PRTTHREADS)
166 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
167
168 if (prt_flags & PS_PRTLWPS) {
169 char desc[128] = "";
170
171 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc));
172
173 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc);
174 }
175
176 return (WALK_NEXT);
177 }
178
179 typedef struct mdb_pflags_proc {
180 struct pid *p_pidp;
181 ushort_t p_pidflag;
182 uint_t p_proc_flag;
183 uint_t p_flag;
184 } mdb_pflags_proc_t;
185
186 static int
187 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
188 {
189 mdb_pflags_proc_t pr;
190 struct pid pid;
191
192 static const mdb_bitmask_t p_flag_bits[] = {
193 { "SSYS", SSYS, SSYS },
194 { "SEXITING", SEXITING, SEXITING },
195 { "SITBUSY", SITBUSY, SITBUSY },
196 { "SFORKING", SFORKING, SFORKING },
197 { "SWATCHOK", SWATCHOK, SWATCHOK },
198 { "SKILLED", SKILLED, SKILLED },
199 { "SSCONT", SSCONT, SSCONT },
200 { "SZONETOP", SZONETOP, SZONETOP },
201 { "SEXTKILLED", SEXTKILLED, SEXTKILLED },
202 { "SUGID", SUGID, SUGID },
203 { "SEXECED", SEXECED, SEXECED },
204 { "SJCTL", SJCTL, SJCTL },
205 { "SNOWAIT", SNOWAIT, SNOWAIT },
206 { "SVFORK", SVFORK, SVFORK },
207 { "SVFWAIT", SVFWAIT, SVFWAIT },
208 { "SEXITLWPS", SEXITLWPS, SEXITLWPS },
209 { "SHOLDFORK", SHOLDFORK, SHOLDFORK },
210 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 },
211 { "SCOREDUMP", SCOREDUMP, SCOREDUMP },
212 { "SMSACCT", SMSACCT, SMSACCT },
213 { "SLWPWRAP", SLWPWRAP, SLWPWRAP },
214 { "SAUTOLPG", SAUTOLPG, SAUTOLPG },
215 { "SNOCD", SNOCD, SNOCD },
216 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH },
217 { "SMSFORK", SMSFORK, SMSFORK },
218 { "SDOCORE", SDOCORE, SDOCORE },
219 { NULL, 0, 0 }
220 };
221
222 static const mdb_bitmask_t p_pidflag_bits[] = {
223 { "CLDPEND", CLDPEND, CLDPEND },
224 { "CLDCONT", CLDCONT, CLDCONT },
225 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD },
226 { "CLDWAITPID", CLDWAITPID, CLDWAITPID },
227 { NULL, 0, 0 }
228 };
229
230 static const mdb_bitmask_t p_proc_flag_bits[] = {
231 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE },
232 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE },
233 { "P_PR_FORK", P_PR_FORK, P_PR_FORK },
234 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK },
235 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC },
236 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC },
237 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ },
238 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL },
239 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL },
240 { NULL, 0, 0 }
241 };
242
243 if (!(flags & DCMD_ADDRSPEC)) {
244 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
245 mdb_warn("can't walk 'proc'");
246 return (DCMD_ERR);
247 }
248 return (DCMD_OK);
249 }
250
251 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
252 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
253 mdb_warn("cannot read proc_t or pid");
254 return (DCMD_ERR);
255 }
256
257 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
258 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag,
259 p_flag_bits);
260 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
261 p_pidflag_bits);
262 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
263 p_proc_flag_bits);
264
265 return (DCMD_OK);
266 }
267
268 typedef struct mdb_ps_proc {
269 char p_stat;
270 struct pid *p_pidp;
271 struct pid *p_pgidp;
272 struct cred *p_cred;
273 struct sess *p_sessp;
274 struct task *p_task;
275 struct zone *p_zone;
276 pid_t p_ppid;
277 uint_t p_flag;
278 struct {
279 char u_comm[MAXCOMLEN + 1];
280 char u_psargs[PSARGSZ];
281 } p_user;
282 } mdb_ps_proc_t;
283
284 int
285 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
286 {
287 uint_t prt_flags = 0;
288 mdb_ps_proc_t pr;
289 struct pid pid, pgid, sid;
290 sess_t session;
291 cred_t cred;
292 task_t tk;
293 kproject_t pj;
294 zone_t zn;
295
296 if (!(flags & DCMD_ADDRSPEC)) {
297 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
298 mdb_warn("can't walk 'proc'");
299 return (DCMD_ERR);
300 }
301 return (DCMD_OK);
302 }
303
304 if (mdb_getopts(argc, argv,
305 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
306 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
307 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
308 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
309 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
310 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
311 return (DCMD_USAGE);
312
313 if (DCMD_HDRSPEC(flags)) {
314 mdb_printf("%<u>%1s %6s %6s %6s %6s ",
315 "S", "PID", "PPID", "PGID", "SID");
316 if (prt_flags & PS_TASKS)
317 mdb_printf("%5s ", "TASK");
318 if (prt_flags & PS_PROJECTS)
319 mdb_printf("%5s ", "PROJ");
320 if (prt_flags & PS_ZONES)
321 mdb_printf("%5s ", "ZONE");
322 mdb_printf("%6s %10s %?s %s%</u>\n",
323 "UID", "FLAGS", "ADDR", "NAME");
324 }
325
326 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
327 return (DCMD_ERR);
328
329 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
330 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
331 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
332 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
333 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
334 if (prt_flags & (PS_TASKS | PS_PROJECTS))
335 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
336 if (prt_flags & PS_PROJECTS)
337 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
338 if (prt_flags & PS_ZONES)
339 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
340
341 mdb_printf("%c %6d %6d %6d %6d ",
342 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
343 sid.pid_id);
344 if (prt_flags & PS_TASKS)
345 mdb_printf("%5d ", tk.tk_tkid);
346 if (prt_flags & PS_PROJECTS)
347 mdb_printf("%5d ", pj.kpj_id);
348 if (prt_flags & PS_ZONES)
349 mdb_printf("%5d ", zn.zone_id);
350 mdb_printf("%6d 0x%08x %0?p %s\n",
351 cred.cr_uid, pr.p_flag, addr,
352 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
353
354 if (prt_flags & ~PS_PSARGS)
355 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
356
357 return (DCMD_OK);
358 }
359
360 #define PG_NEWEST 0x0001
361 #define PG_OLDEST 0x0002
362 #define PG_PIPE_OUT 0x0004
363 #define PG_EXACT_MATCH 0x0008
364
365 typedef struct pgrep_data {
366 uint_t pg_flags;
367 uint_t pg_psflags;
368 uintptr_t pg_xaddr;
369 hrtime_t pg_xstart;
370 const char *pg_pat;
371 #ifndef _KMDB
372 regex_t pg_reg;
373 #endif
374 } pgrep_data_t;
375
376 typedef struct mdb_pgrep_proc {
377 struct {
378 timestruc_t u_start;
379 char u_comm[MAXCOMLEN + 1];
380 } p_user;
381 } mdb_pgrep_proc_t;
382
383 /*ARGSUSED*/
384 static int
385 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
386 {
387 mdb_pgrep_proc_t p;
388 pgrep_data_t *pgp = data;
389 #ifndef _KMDB
390 regmatch_t pmatch;
391 #endif
392
393 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
394 return (WALK_ERR);
395
396 /*
397 * kmdb doesn't have access to the reg* functions, so we fall back
398 * to strstr/strcmp.
399 */
400 #ifdef _KMDB
401 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
402 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
403 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
404 return (WALK_NEXT);
405 #else
406 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
407 return (WALK_NEXT);
408
409 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
410 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
411 return (WALK_NEXT);
412 #endif
413
414 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
415 hrtime_t start;
416
417 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
418 p.p_user.u_start.tv_nsec;
419
420 if (pgp->pg_flags & PG_NEWEST) {
421 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) {
422 pgp->pg_xaddr = addr;
423 pgp->pg_xstart = start;
424 }
425 } else {
426 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) {
427 pgp->pg_xaddr = addr;
428 pgp->pg_xstart = start;
429 }
430 }
431
432 } else if (pgp->pg_flags & PG_PIPE_OUT) {
433 mdb_printf("%p\n", addr);
434
435 } else {
436 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
437 mdb_warn("can't invoke 'ps'");
438 return (WALK_DONE);
439 }
440 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
441 }
442
443 return (WALK_NEXT);
444 }
445
446 /*ARGSUSED*/
447 int
448 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
449 {
450 pgrep_data_t pg;
451 int i;
452 #ifndef _KMDB
453 int err;
454 #endif
455
456 if (flags & DCMD_ADDRSPEC)
457 return (DCMD_USAGE);
458
459 pg.pg_flags = 0;
460 pg.pg_xaddr = 0;
461
462 i = mdb_getopts(argc, argv,
463 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
464 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
465 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
466 NULL);
467
468 argc -= i;
469 argv += i;
470
471 if (argc != 1)
472 return (DCMD_USAGE);
473
474 /*
475 * -n and -o are mutually exclusive.
476 */
477 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
478 return (DCMD_USAGE);
479
480 if (argv->a_type != MDB_TYPE_STRING)
481 return (DCMD_USAGE);
482
483 if (flags & DCMD_PIPE_OUT)
484 pg.pg_flags |= PG_PIPE_OUT;
485
486 pg.pg_pat = argv->a_un.a_str;
487 if (DCMD_HDRSPEC(flags))
488 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
489 else
490 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
491
492 #ifndef _KMDB
493 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
494 size_t nbytes;
495 char *buf;
496
497 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
498 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
499 (void) regerror(err, &pg.pg_reg, buf, nbytes);
500 mdb_warn("%s\n", buf);
501
502 return (DCMD_ERR);
503 }
504 #endif
505
506 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
507 mdb_warn("can't walk 'proc'");
508 return (DCMD_ERR);
509 }
510
511 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
512 if (pg.pg_flags & PG_PIPE_OUT) {
513 mdb_printf("%p\n", pg.pg_xaddr);
514 } else {
515 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
516 0, NULL) != 0) {
517 mdb_warn("can't invoke 'ps'");
518 return (DCMD_ERR);
519 }
520 }
521 }
522
523 return (DCMD_OK);
524 }
525
526 int
527 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
528 {
529 task_t tk;
530 kproject_t pj;
531
532 if (!(flags & DCMD_ADDRSPEC)) {
533 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
534 mdb_warn("can't walk task_cache");
535 return (DCMD_ERR);
536 }
537 return (DCMD_OK);
538 }
539 if (DCMD_HDRSPEC(flags)) {
540 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
541 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
542 }
543 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
544 mdb_warn("can't read task_t structure at %p", addr);
545 return (DCMD_ERR);
546 }
547 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
548 mdb_warn("can't read project_t structure at %p", addr);
549 return (DCMD_ERR);
550 }
551 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
552 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
553 tk.tk_flags);
554 return (DCMD_OK);
555 }
556
557 int
558 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
559 {
560 kproject_t pj;
561
562 if (!(flags & DCMD_ADDRSPEC)) {
563 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
564 mdb_warn("can't walk projects");
565 return (DCMD_ERR);
566 }
567 return (DCMD_OK);
568 }
569 if (DCMD_HDRSPEC(flags)) {
570 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
571 "ADDR", "PROJID", "ZONEID", "REFCNT");
572 }
573 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
574 mdb_warn("can't read kproject_t structure at %p", addr);
575 return (DCMD_ERR);
576 }
577 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
578 pj.kpj_count);
579 return (DCMD_OK);
580 }
581
582 /* walk callouts themselves, either by list or id hash. */
583 int
584 callout_walk_init(mdb_walk_state_t *wsp)
585 {
586 if (wsp->walk_addr == 0) {
587 mdb_warn("callout doesn't support global walk");
588 return (WALK_ERR);
589 }
590 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
591 return (WALK_NEXT);
592 }
593
594 #define CALLOUT_WALK_BYLIST 0
595 #define CALLOUT_WALK_BYID 1
596
597 /* the walker arg switches between walking by list (0) and walking by id (1). */
598 int
599 callout_walk_step(mdb_walk_state_t *wsp)
600 {
601 int retval;
602
603 if (wsp->walk_addr == 0) {
604 return (WALK_DONE);
605 }
606 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
607 wsp->walk_addr) == -1) {
608 mdb_warn("failed to read callout at %p", wsp->walk_addr);
609 return (WALK_DONE);
610 }
611 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
612 wsp->walk_cbdata);
613
614 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
615 wsp->walk_addr =
616 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
617 } else {
618 wsp->walk_addr =
619 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
620 }
621
622 return (retval);
623 }
624
625 void
626 callout_walk_fini(mdb_walk_state_t *wsp)
627 {
628 mdb_free(wsp->walk_data, sizeof (callout_t));
629 }
630
631 /*
632 * walker for callout lists. This is different from hashes and callouts.
633 * Thankfully, it's also simpler.
634 */
635 int
636 callout_list_walk_init(mdb_walk_state_t *wsp)
637 {
638 if (wsp->walk_addr == 0) {
639 mdb_warn("callout list doesn't support global walk");
640 return (WALK_ERR);
641 }
642 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
643 return (WALK_NEXT);
644 }
645
646 int
647 callout_list_walk_step(mdb_walk_state_t *wsp)
648 {
649 int retval;
650
651 if (wsp->walk_addr == 0) {
652 return (WALK_DONE);
653 }
654 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
655 wsp->walk_addr) != sizeof (callout_list_t)) {
656 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
657 return (WALK_ERR);
658 }
659 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
660 wsp->walk_cbdata);
661
662 wsp->walk_addr = (uintptr_t)
663 (((callout_list_t *)wsp->walk_data)->cl_next);
664
665 return (retval);
666 }
667
668 void
669 callout_list_walk_fini(mdb_walk_state_t *wsp)
670 {
671 mdb_free(wsp->walk_data, sizeof (callout_list_t));
672 }
673
674 /* routines/structs to walk callout table(s) */
675 typedef struct cot_data {
676 callout_table_t *ct0;
677 callout_table_t ct;
678 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
679 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
680 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
681 int cotndx;
682 int cotsize;
683 } cot_data_t;
684
685 int
686 callout_table_walk_init(mdb_walk_state_t *wsp)
687 {
688 int max_ncpus;
689 cot_data_t *cot_walk_data;
690
691 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
692
693 if (wsp->walk_addr == 0) {
694 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
695 mdb_warn("failed to read 'callout_table'");
696 return (WALK_ERR);
697 }
698 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
699 mdb_warn("failed to get callout_table array size");
700 return (WALK_ERR);
701 }
702 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
703 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
704 } else {
705 /* not a global walk */
706 cot_walk_data->cotsize = 1;
707 }
708
709 cot_walk_data->cotndx = 0;
710 wsp->walk_data = cot_walk_data;
711
712 return (WALK_NEXT);
713 }
714
715 int
716 callout_table_walk_step(mdb_walk_state_t *wsp)
717 {
718 int retval;
719 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
720 size_t size;
721
722 if (cotwd->cotndx >= cotwd->cotsize) {
723 return (WALK_DONE);
724 }
725 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
726 wsp->walk_addr) != sizeof (callout_table_t)) {
727 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
728 return (WALK_ERR);
729 }
730
731 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
732 if (cotwd->ct.ct_idhash != NULL) {
733 if (mdb_vread(cotwd->cot_idhash, size,
734 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
735 mdb_warn("failed to read id_hash at %p",
736 cotwd->ct.ct_idhash);
737 return (WALK_ERR);
738 }
739 }
740 if (cotwd->ct.ct_clhash != NULL) {
741 if (mdb_vread(&(cotwd->cot_clhash), size,
742 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
743 mdb_warn("failed to read cl_hash at %p",
744 cotwd->ct.ct_clhash);
745 return (WALK_ERR);
746 }
747 }
748 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
749 if (cotwd->ct.ct_kstat_data != NULL) {
750 if (mdb_vread(&(cotwd->ct_kstat_data), size,
751 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
752 mdb_warn("failed to read kstats at %p",
753 cotwd->ct.ct_kstat_data);
754 return (WALK_ERR);
755 }
756 }
757 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
758 wsp->walk_cbdata);
759
760 cotwd->cotndx++;
761 if (cotwd->cotndx >= cotwd->cotsize) {
762 return (WALK_DONE);
763 }
764 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
765 sizeof (callout_table_t));
766
767 return (retval);
768 }
769
770 void
771 callout_table_walk_fini(mdb_walk_state_t *wsp)
772 {
773 mdb_free(wsp->walk_data, sizeof (cot_data_t));
774 }
775
776 static const char *co_typenames[] = { "R", "N" };
777
778 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
779
780 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
781
782 /* callout flags, in no particular order */
783 #define COF_REAL 0x00000001
784 #define COF_NORM 0x00000002
785 #define COF_LONG 0x00000004
786 #define COF_SHORT 0x00000008
787 #define COF_EMPTY 0x00000010
788 #define COF_TIME 0x00000020
789 #define COF_BEFORE 0x00000040
790 #define COF_AFTER 0x00000080
791 #define COF_SEQID 0x00000100
792 #define COF_FUNC 0x00000200
793 #define COF_ADDR 0x00000400
794 #define COF_EXEC 0x00000800
795 #define COF_HIRES 0x00001000
796 #define COF_ABS 0x00002000
797 #define COF_TABLE 0x00004000
798 #define COF_BYIDH 0x00008000
799 #define COF_FREE 0x00010000
800 #define COF_LIST 0x00020000
801 #define COF_EXPREL 0x00040000
802 #define COF_HDR 0x00080000
803 #define COF_VERBOSE 0x00100000
804 #define COF_LONGLIST 0x00200000
805 #define COF_THDR 0x00400000
806 #define COF_LHDR 0x00800000
807 #define COF_CHDR 0x01000000
808 #define COF_PARAM 0x02000000
809 #define COF_DECODE 0x04000000
810 #define COF_HEAP 0x08000000
811 #define COF_QUEUE 0x10000000
812
813 /* show real and normal, short and long, expired and unexpired. */
814 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
815
816 #define COF_LIST_FLAGS \
817 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
818
819 /* private callout data for callback functions */
820 typedef struct callout_data {
821 uint_t flags; /* COF_* */
822 cpu_t *cpu; /* cpu pointer if given */
823 int seqid; /* cpu seqid, or -1 */
824 hrtime_t time; /* expiration time value */
825 hrtime_t atime; /* expiration before value */
826 hrtime_t btime; /* expiration after value */
827 uintptr_t funcaddr; /* function address or NULL */
828 uintptr_t param; /* parameter to function or NULL */
829 hrtime_t now; /* current system time */
830 int nsec_per_tick; /* for conversions */
831 ulong_t ctbits; /* for decoding xid */
832 callout_table_t *co_table; /* top of callout table array */
833 int ndx; /* table index. */
834 int bucket; /* which list/id bucket are we in */
835 hrtime_t exp; /* expire time */
836 int list_flags; /* copy of cl_flags */
837 } callout_data_t;
838
839 /* this callback does the actual callback itself (finally). */
840 /*ARGSUSED*/
841 static int
842 callouts_cb(uintptr_t addr, const void *data, void *priv)
843 {
844 callout_data_t *coargs = (callout_data_t *)priv;
845 callout_t *co = (callout_t *)data;
846 int tableid, list_flags;
847 callout_id_t coid;
848
849 if ((coargs == NULL) || (co == NULL)) {
850 return (WALK_ERR);
851 }
852
853 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
854 /*
855 * The callout must have been reallocated. No point in
856 * walking any more.
857 */
858 return (WALK_DONE);
859 }
860 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
861 /*
862 * The callout must have been freed. No point in
863 * walking any more.
864 */
865 return (WALK_DONE);
866 }
867 if ((coargs->flags & COF_FUNC) &&
868 (coargs->funcaddr != (uintptr_t)co->c_func)) {
869 return (WALK_NEXT);
870 }
871 if ((coargs->flags & COF_PARAM) &&
872 (coargs->param != (uintptr_t)co->c_arg)) {
873 return (WALK_NEXT);
874 }
875 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
876 return (WALK_NEXT);
877 }
878 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
879 return (WALK_NEXT);
880 }
881 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
882 return (WALK_NEXT);
883 }
884 /* it is possible we don't have the exp time or flags */
885 if (coargs->flags & COF_BYIDH) {
886 if (!(coargs->flags & COF_FREE)) {
887 /* we have to fetch the expire time ourselves. */
888 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
889 (uintptr_t)co->c_list + offsetof(callout_list_t,
890 cl_expiration)) == -1) {
891 mdb_warn("failed to read expiration "
892 "time from %p", co->c_list);
893 coargs->exp = 0;
894 }
895 /* and flags. */
896 if (mdb_vread(&coargs->list_flags, sizeof (int),
897 (uintptr_t)co->c_list + offsetof(callout_list_t,
898 cl_flags)) == -1) {
899 mdb_warn("failed to read list flags"
900 "from %p", co->c_list);
901 coargs->list_flags = 0;
902 }
903 } else {
904 /* free callouts can't use list pointer. */
905 coargs->exp = 0;
906 coargs->list_flags = 0;
907 }
908 if (coargs->exp != 0) {
909 if ((coargs->flags & COF_TIME) &&
910 (coargs->exp != coargs->time)) {
911 return (WALK_NEXT);
912 }
913 if ((coargs->flags & COF_BEFORE) &&
914 (coargs->exp > coargs->btime)) {
915 return (WALK_NEXT);
916 }
917 if ((coargs->flags & COF_AFTER) &&
918 (coargs->exp < coargs->atime)) {
919 return (WALK_NEXT);
920 }
921 }
922 /* tricky part, since both HIRES and ABS can be set */
923 list_flags = coargs->list_flags;
924 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
925 /* both flags are set, only skip "regular" ones */
926 if (! (list_flags & COF_LIST_FLAGS)) {
927 return (WALK_NEXT);
928 }
929 } else {
930 /* individual flags, or no flags */
931 if ((coargs->flags & COF_HIRES) &&
932 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
933 return (WALK_NEXT);
934 }
935 if ((coargs->flags & COF_ABS) &&
936 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
937 return (WALK_NEXT);
938 }
939 }
940 /*
941 * We do the checks for COF_HEAP and COF_QUEUE here only if we
942 * are traversing BYIDH. If the traversal is by callout list,
943 * we do this check in callout_list_cb() to be more
944 * efficient.
945 */
946 if ((coargs->flags & COF_HEAP) &&
947 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
948 return (WALK_NEXT);
949 }
950
951 if ((coargs->flags & COF_QUEUE) &&
952 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
953 return (WALK_NEXT);
954 }
955 }
956
957 #define callout_table_mask ((1 << coargs->ctbits) - 1)
958 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
959 #undef callout_table_mask
960 coid = CO_PLAIN_ID(co->c_xid);
961
962 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
963 /*
964 * We need to print the headers. If walking by id, then
965 * the list header isn't printed, so we must include
966 * that info here.
967 */
968 if (!(coargs->flags & COF_VERBOSE)) {
969 mdb_printf("%<u>%3s %-1s %-14s %</u>",
970 "SEQ", "T", "EXP");
971 } else if (coargs->flags & COF_BYIDH) {
972 mdb_printf("%<u>%-14s %</u>", "EXP");
973 }
974 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
975 "XHAL", "XID", "FUNC(ARG)");
976 if (coargs->flags & COF_LONGLIST) {
977 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
978 "PREVID", "NEXTID", "PREVL", "NEXTL");
979 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
980 "DONE", "UTOS", "THREAD");
981 }
982 mdb_printf("\n");
983 coargs->flags &= ~COF_CHDR;
984 coargs->flags |= (COF_THDR | COF_LHDR);
985 }
986
987 if (!(coargs->flags & COF_ADDR)) {
988 if (!(coargs->flags & COF_VERBOSE)) {
989 mdb_printf("%-3d %1s %-14llx ",
990 TABLE_TO_SEQID(tableid),
991 co_typenames[tableid & CALLOUT_TYPE_MASK],
992 (coargs->flags & COF_EXPREL) ?
993 coargs->exp - coargs->now : coargs->exp);
994 } else if (coargs->flags & COF_BYIDH) {
995 mdb_printf("%-14x ",
996 (coargs->flags & COF_EXPREL) ?
997 coargs->exp - coargs->now : coargs->exp);
998 }
999 list_flags = coargs->list_flags;
1000 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
1001 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
1002 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
1003 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
1004 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
1005 (long long)coid, co->c_func, co->c_arg);
1006 if (coargs->flags & COF_LONGLIST) {
1007 mdb_printf(" %-?p %-?p %-?p %-?p",
1008 co->c_idprev, co->c_idnext, co->c_clprev,
1009 co->c_clnext);
1010 mdb_printf(" %-?p %-4d %-0?p",
1011 co->c_done, co->c_waiting, co->c_executor);
1012 }
1013 } else {
1014 /* address only */
1015 mdb_printf("%-0p", addr);
1016 }
1017 mdb_printf("\n");
1018 return (WALK_NEXT);
1019 }
1020
1021 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1022 /*ARGSUSED*/
1023 static int
1024 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1025 {
1026 callout_data_t *coargs = (callout_data_t *)priv;
1027 callout_list_t *cl = (callout_list_t *)data;
1028 callout_t *coptr;
1029 int list_flags;
1030
1031 if ((coargs == NULL) || (cl == NULL)) {
1032 return (WALK_ERR);
1033 }
1034
1035 coargs->exp = cl->cl_expiration;
1036 coargs->list_flags = cl->cl_flags;
1037 if ((coargs->flags & COF_FREE) &&
1038 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1039 /*
1040 * The callout list must have been reallocated. No point in
1041 * walking any more.
1042 */
1043 return (WALK_DONE);
1044 }
1045 if (!(coargs->flags & COF_FREE) &&
1046 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1047 /*
1048 * The callout list must have been freed. No point in
1049 * walking any more.
1050 */
1051 return (WALK_DONE);
1052 }
1053 if ((coargs->flags & COF_TIME) &&
1054 (cl->cl_expiration != coargs->time)) {
1055 return (WALK_NEXT);
1056 }
1057 if ((coargs->flags & COF_BEFORE) &&
1058 (cl->cl_expiration > coargs->btime)) {
1059 return (WALK_NEXT);
1060 }
1061 if ((coargs->flags & COF_AFTER) &&
1062 (cl->cl_expiration < coargs->atime)) {
1063 return (WALK_NEXT);
1064 }
1065 if (!(coargs->flags & COF_EMPTY) &&
1066 (cl->cl_callouts.ch_head == NULL)) {
1067 return (WALK_NEXT);
1068 }
1069 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
1070 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1071 /* both flags are set, only skip "regular" ones */
1072 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1073 return (WALK_NEXT);
1074 }
1075 } else {
1076 if ((coargs->flags & COF_HIRES) &&
1077 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1078 return (WALK_NEXT);
1079 }
1080 if ((coargs->flags & COF_ABS) &&
1081 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1082 return (WALK_NEXT);
1083 }
1084 }
1085
1086 if ((coargs->flags & COF_HEAP) &&
1087 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1088 return (WALK_NEXT);
1089 }
1090
1091 if ((coargs->flags & COF_QUEUE) &&
1092 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1093 return (WALK_NEXT);
1094 }
1095
1096 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1097 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1098 if (!(coargs->flags & COF_VERBOSE)) {
1099 /* don't be redundant again */
1100 mdb_printf("%<u>SEQ T %</u>");
1101 }
1102 mdb_printf("%<u>EXP HA BUCKET "
1103 "CALLOUTS %</u>");
1104
1105 if (coargs->flags & COF_LONGLIST) {
1106 mdb_printf("%<u> %-?s %-?s%</u>",
1107 "PREV", "NEXT");
1108 }
1109 mdb_printf("\n");
1110 coargs->flags &= ~COF_LHDR;
1111 coargs->flags |= (COF_THDR | COF_CHDR);
1112 }
1113 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1114 if (!(coargs->flags & COF_ADDR)) {
1115 if (!(coargs->flags & COF_VERBOSE)) {
1116 mdb_printf("%3d %1s ",
1117 TABLE_TO_SEQID(coargs->ndx),
1118 co_typenames[coargs->ndx &
1119 CALLOUT_TYPE_MASK]);
1120 }
1121
1122 list_flags = coargs->list_flags;
1123 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1124 (coargs->flags & COF_EXPREL) ?
1125 coargs->exp - coargs->now : coargs->exp,
1126 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1127 "H" : " ",
1128 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1129 "A" : " ",
1130 coargs->bucket, cl->cl_callouts.ch_head);
1131
1132 if (coargs->flags & COF_LONGLIST) {
1133 mdb_printf(" %-?p %-?p",
1134 cl->cl_prev, cl->cl_next);
1135 }
1136 } else {
1137 /* address only */
1138 mdb_printf("%-0p", addr);
1139 }
1140 mdb_printf("\n");
1141 if (coargs->flags & COF_LIST) {
1142 return (WALK_NEXT);
1143 }
1144 }
1145 /* yet another layer as we walk the actual callouts via list. */
1146 if (cl->cl_callouts.ch_head == NULL) {
1147 return (WALK_NEXT);
1148 }
1149 /* free list structures do not have valid callouts off of them. */
1150 if (coargs->flags & COF_FREE) {
1151 return (WALK_NEXT);
1152 }
1153 coptr = (callout_t *)cl->cl_callouts.ch_head;
1154
1155 if (coargs->flags & COF_VERBOSE) {
1156 mdb_inc_indent(4);
1157 }
1158 /*
1159 * walk callouts using yet another callback routine.
1160 * we use callouts_bytime because id hash is handled via
1161 * the callout_t_cb callback.
1162 */
1163 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1164 (uintptr_t)coptr) == -1) {
1165 mdb_warn("cannot walk callouts at %p", coptr);
1166 return (WALK_ERR);
1167 }
1168 if (coargs->flags & COF_VERBOSE) {
1169 mdb_dec_indent(4);
1170 }
1171
1172 return (WALK_NEXT);
1173 }
1174
1175 /* this callback handles the details of callout table walking. */
1176 static int
1177 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1178 {
1179 callout_data_t *coargs = (callout_data_t *)priv;
1180 cot_data_t *cotwd = (cot_data_t *)data;
1181 callout_table_t *ct = &(cotwd->ct);
1182 int index, seqid, cotype;
1183 int i;
1184 callout_list_t *clptr;
1185 callout_t *coptr;
1186
1187 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1188 return (WALK_ERR);
1189 }
1190
1191 index = ((char *)addr - (char *)coargs->co_table) /
1192 sizeof (callout_table_t);
1193 cotype = index & CALLOUT_TYPE_MASK;
1194 seqid = TABLE_TO_SEQID(index);
1195
1196 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1197 return (WALK_NEXT);
1198 }
1199
1200 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1201 return (WALK_NEXT);
1202 }
1203
1204 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1205 return (WALK_NEXT);
1206 }
1207
1208 if (!(coargs->flags & COF_EMPTY) && (
1209 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) {
1210 return (WALK_NEXT);
1211 }
1212
1213 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1214 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1215 /* print table hdr */
1216 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1217 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1218 coargs->flags &= ~COF_THDR;
1219 coargs->flags |= (COF_LHDR | COF_CHDR);
1220 if (coargs->flags & COF_LONGLIST) {
1221 /* more info! */
1222 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1223 " %-?s %-?s %-?s%</u>",
1224 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1225 "PEND", "FREE", "LOCK");
1226 }
1227 mdb_printf("\n");
1228 }
1229 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1230 if (!(coargs->flags & COF_ADDR)) {
1231 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1232 seqid, co_typenames[cotype],
1233 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1234 ct->ct_heap);
1235 if (coargs->flags & COF_LONGLIST) {
1236 /* more info! */
1237 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1238 " %-?lld %-?lld %-?p",
1239 ct->ct_heap_num, ct->ct_heap_max,
1240 ct->ct_taskq, ct->ct_expired.ch_head,
1241 ct->ct_queue.ch_head,
1242 cotwd->ct_timeouts_pending,
1243 cotwd->ct_allocations -
1244 cotwd->ct_timeouts_pending,
1245 ct->ct_mutex);
1246 }
1247 } else {
1248 /* address only */
1249 mdb_printf("%-0?p", addr);
1250 }
1251 mdb_printf("\n");
1252 if (coargs->flags & COF_TABLE) {
1253 return (WALK_NEXT);
1254 }
1255 }
1256
1257 coargs->ndx = index;
1258 if (coargs->flags & COF_VERBOSE) {
1259 mdb_inc_indent(4);
1260 }
1261 /* keep digging. */
1262 if (!(coargs->flags & COF_BYIDH)) {
1263 /* walk the list hash table */
1264 if (coargs->flags & COF_FREE) {
1265 clptr = ct->ct_lfree;
1266 coargs->bucket = 0;
1267 if (clptr == NULL) {
1268 return (WALK_NEXT);
1269 }
1270 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1271 (uintptr_t)clptr) == -1) {
1272 mdb_warn("cannot walk callout free list at %p",
1273 clptr);
1274 return (WALK_ERR);
1275 }
1276 } else {
1277 /* first print the expired list. */
1278 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1279 if (clptr != NULL) {
1280 coargs->bucket = -1;
1281 if (mdb_pwalk("callout_list", callout_list_cb,
1282 coargs, (uintptr_t)clptr) == -1) {
1283 mdb_warn("cannot walk callout_list"
1284 " at %p", clptr);
1285 return (WALK_ERR);
1286 }
1287 }
1288 /* then, print the callout queue */
1289 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1290 if (clptr != NULL) {
1291 coargs->bucket = -1;
1292 if (mdb_pwalk("callout_list", callout_list_cb,
1293 coargs, (uintptr_t)clptr) == -1) {
1294 mdb_warn("cannot walk callout_list"
1295 " at %p", clptr);
1296 return (WALK_ERR);
1297 }
1298 }
1299 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1300 if (ct->ct_clhash == NULL) {
1301 /* nothing to do */
1302 break;
1303 }
1304 if (cotwd->cot_clhash[i].ch_head == NULL) {
1305 continue;
1306 }
1307 clptr = (callout_list_t *)
1308 cotwd->cot_clhash[i].ch_head;
1309 coargs->bucket = i;
1310 /* walk list with callback routine. */
1311 if (mdb_pwalk("callout_list", callout_list_cb,
1312 coargs, (uintptr_t)clptr) == -1) {
1313 mdb_warn("cannot walk callout_list"
1314 " at %p", clptr);
1315 return (WALK_ERR);
1316 }
1317 }
1318 }
1319 } else {
1320 /* walk the id hash table. */
1321 if (coargs->flags & COF_FREE) {
1322 coptr = ct->ct_free;
1323 coargs->bucket = 0;
1324 if (coptr == NULL) {
1325 return (WALK_NEXT);
1326 }
1327 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1328 (uintptr_t)coptr) == -1) {
1329 mdb_warn("cannot walk callout id free list"
1330 " at %p", coptr);
1331 return (WALK_ERR);
1332 }
1333 } else {
1334 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1335 if (ct->ct_idhash == NULL) {
1336 break;
1337 }
1338 coptr = (callout_t *)
1339 cotwd->cot_idhash[i].ch_head;
1340 if (coptr == NULL) {
1341 continue;
1342 }
1343 coargs->bucket = i;
1344
1345 /*
1346 * walk callouts directly by id. For id
1347 * chain, the callout list is just a header,
1348 * so there's no need to walk it.
1349 */
1350 if (mdb_pwalk("callouts_byid", callouts_cb,
1351 coargs, (uintptr_t)coptr) == -1) {
1352 mdb_warn("cannot walk callouts at %p",
1353 coptr);
1354 return (WALK_ERR);
1355 }
1356 }
1357 }
1358 }
1359 if (coargs->flags & COF_VERBOSE) {
1360 mdb_dec_indent(4);
1361 }
1362 return (WALK_NEXT);
1363 }
1364
1365 /*
1366 * initialize some common info for both callout dcmds.
1367 */
1368 int
1369 callout_common_init(callout_data_t *coargs)
1370 {
1371 /* we need a couple of things */
1372 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1373 mdb_warn("failed to read 'callout_table'");
1374 return (DCMD_ERR);
1375 }
1376 /* need to get now in nsecs. Approximate with hrtime vars */
1377 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1378 sizeof (hrtime_t)) {
1379 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1380 "hrtime_base") != sizeof (hrtime_t)) {
1381 mdb_warn("Could not determine current system time");
1382 return (DCMD_ERR);
1383 }
1384 }
1385
1386 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1387 mdb_warn("failed to read 'callout_table_bits'");
1388 return (DCMD_ERR);
1389 }
1390 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1391 mdb_warn("failed to read 'nsec_per_tick'");
1392 return (DCMD_ERR);
1393 }
1394 return (DCMD_OK);
1395 }
1396
1397 /*
1398 * dcmd to print callouts. Optional addr limits to specific table.
1399 * Parses lots of options that get passed to callbacks for walkers.
1400 * Has it's own help function.
1401 */
1402 /*ARGSUSED*/
1403 int
1404 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1405 {
1406 callout_data_t coargs;
1407 /* getopts doesn't help much with stuff like this */
1408 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1409 char *funcname = NULL;
1410 char *paramstr = NULL;
1411 uintptr_t Stmp, Ctmp; /* for getopt. */
1412 int retval;
1413
1414 coargs.flags = COF_DEFAULT;
1415 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1416 coargs.seqid = -1;
1417
1418 if (mdb_getopts(argc, argv,
1419 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1420 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1421 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1422 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1423 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1424 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1425 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1426 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1427 'd', MDB_OPT_SETBITS, 1, &dflag,
1428 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1429 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1430 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1431 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1432 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1433 'k', MDB_OPT_SETBITS, 1, &kflag,
1434 'f', MDB_OPT_STR, &funcname,
1435 'p', MDB_OPT_STR, ¶mstr,
1436 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1437 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1438 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1439 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1440 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1441 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1442 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1443 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1444 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1445 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1446 NULL) != argc) {
1447 return (DCMD_USAGE);
1448 }
1449
1450 /* initialize from kernel variables */
1451 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1452 return (retval);
1453 }
1454
1455 /* do some option post-processing */
1456 if (kflag) {
1457 coargs.time *= coargs.nsec_per_tick;
1458 coargs.atime *= coargs.nsec_per_tick;
1459 coargs.btime *= coargs.nsec_per_tick;
1460 }
1461
1462 if (dflag) {
1463 coargs.time += coargs.now;
1464 coargs.atime += coargs.now;
1465 coargs.btime += coargs.now;
1466 }
1467 if (Sflag) {
1468 if (flags & DCMD_ADDRSPEC) {
1469 mdb_printf("-S option conflicts with explicit"
1470 " address\n");
1471 return (DCMD_USAGE);
1472 }
1473 coargs.flags |= COF_SEQID;
1474 coargs.seqid = (int)Stmp;
1475 }
1476 if (Cflag) {
1477 if (flags & DCMD_ADDRSPEC) {
1478 mdb_printf("-C option conflicts with explicit"
1479 " address\n");
1480 return (DCMD_USAGE);
1481 }
1482 if (coargs.flags & COF_SEQID) {
1483 mdb_printf("-C and -S are mutually exclusive\n");
1484 return (DCMD_USAGE);
1485 }
1486 coargs.cpu = (cpu_t *)Ctmp;
1487 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1488 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1489 mdb_warn("failed to read cpu_t at %p", Ctmp);
1490 return (DCMD_ERR);
1491 }
1492 coargs.flags |= COF_SEQID;
1493 }
1494 /* avoid null outputs. */
1495 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1496 coargs.flags |= COF_REAL | COF_NORM;
1497 }
1498 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1499 coargs.flags |= COF_LONG | COF_SHORT;
1500 }
1501 if (tflag) {
1502 if (aflag || bflag) {
1503 mdb_printf("-t and -a|b are mutually exclusive\n");
1504 return (DCMD_USAGE);
1505 }
1506 coargs.flags |= COF_TIME;
1507 }
1508 if (aflag) {
1509 coargs.flags |= COF_AFTER;
1510 }
1511 if (bflag) {
1512 coargs.flags |= COF_BEFORE;
1513 }
1514 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1515 mdb_printf("value for -a must be earlier than the value"
1516 " for -b.\n");
1517 return (DCMD_USAGE);
1518 }
1519
1520 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1521 mdb_printf("-H and -Q are mutually exclusive\n");
1522 return (DCMD_USAGE);
1523 }
1524
1525 if (funcname != NULL) {
1526 GElf_Sym sym;
1527
1528 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1529 coargs.funcaddr = mdb_strtoull(funcname);
1530 } else {
1531 coargs.funcaddr = sym.st_value;
1532 }
1533 coargs.flags |= COF_FUNC;
1534 }
1535
1536 if (paramstr != NULL) {
1537 GElf_Sym sym;
1538
1539 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1540 coargs.param = mdb_strtoull(paramstr);
1541 } else {
1542 coargs.param = sym.st_value;
1543 }
1544 coargs.flags |= COF_PARAM;
1545 }
1546
1547 if (!(flags & DCMD_ADDRSPEC)) {
1548 /* don't pass "dot" if no addr. */
1549 addr = 0;
1550 }
1551 if (addr != 0) {
1552 /*
1553 * a callout table was specified. Ignore -r|n option
1554 * to avoid null output.
1555 */
1556 coargs.flags |= (COF_REAL | COF_NORM);
1557 }
1558
1559 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1560 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1561 }
1562 if (coargs.flags & COF_FREE) {
1563 coargs.flags |= COF_EMPTY;
1564 /* -F = free callouts, -FL = free lists */
1565 if (!(coargs.flags & COF_LIST)) {
1566 coargs.flags |= COF_BYIDH;
1567 }
1568 }
1569
1570 /* walk table, using specialized callback routine. */
1571 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1572 mdb_warn("cannot walk callout_table");
1573 return (DCMD_ERR);
1574 }
1575 return (DCMD_OK);
1576 }
1577
1578
1579 /*
1580 * Given an extended callout id, dump its information.
1581 */
1582 /*ARGSUSED*/
1583 int
1584 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1585 {
1586 callout_data_t coargs;
1587 callout_table_t *ctptr;
1588 callout_table_t ct;
1589 callout_id_t coid;
1590 callout_t *coptr;
1591 int tableid;
1592 callout_id_t xid;
1593 ulong_t idhash;
1594 int i, retval;
1595 const mdb_arg_t *arg;
1596 size_t size;
1597 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1598
1599 coargs.flags = COF_DEFAULT | COF_BYIDH;
1600 i = mdb_getopts(argc, argv,
1601 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1602 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1603 NULL);
1604 argc -= i;
1605 argv += i;
1606
1607 if (argc != 1) {
1608 return (DCMD_USAGE);
1609 }
1610 arg = &argv[0];
1611
1612 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1613 xid = arg->a_un.a_val;
1614 } else {
1615 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1616 }
1617
1618 if (DCMD_HDRSPEC(flags)) {
1619 coargs.flags |= COF_CHDR;
1620 }
1621
1622
1623 /* initialize from kernel variables */
1624 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1625 return (retval);
1626 }
1627
1628 /* we must massage the environment so that the macros will play nice */
1629 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1630 #define callout_table_bits coargs.ctbits
1631 #define nsec_per_tick coargs.nsec_per_tick
1632 tableid = CALLOUT_ID_TO_TABLE(xid);
1633 idhash = CALLOUT_IDHASH(xid);
1634 #undef callouts_table_bits
1635 #undef callout_table_mask
1636 #undef nsec_per_tick
1637 coid = CO_PLAIN_ID(xid);
1638
1639 if (flags & DCMD_ADDRSPEC) {
1640 mdb_printf("calloutid does not accept explicit address.\n");
1641 return (DCMD_USAGE);
1642 }
1643
1644 if (coargs.flags & COF_DECODE) {
1645 if (DCMD_HDRSPEC(flags)) {
1646 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1647 "SEQ", "T", "XL", "XID", "IDHASH");
1648 }
1649 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1650 TABLE_TO_SEQID(tableid),
1651 co_typenames[tableid & CALLOUT_TYPE_MASK],
1652 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1653 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1654 (long long)coid, idhash);
1655 return (DCMD_OK);
1656 }
1657
1658 /* get our table. Note this relies on the types being correct */
1659 ctptr = coargs.co_table + tableid;
1660 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1661 mdb_warn("failed to read callout_table at %p", ctptr);
1662 return (DCMD_ERR);
1663 }
1664 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1665 if (ct.ct_idhash != NULL) {
1666 if (mdb_vread(&(cot_idhash), size,
1667 (uintptr_t)ct.ct_idhash) == -1) {
1668 mdb_warn("failed to read id_hash at %p",
1669 ct.ct_idhash);
1670 return (WALK_ERR);
1671 }
1672 }
1673
1674 /* callout at beginning of hash chain */
1675 if (ct.ct_idhash == NULL) {
1676 mdb_printf("id hash chain for this xid is empty\n");
1677 return (DCMD_ERR);
1678 }
1679 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1680 if (coptr == NULL) {
1681 mdb_printf("id hash chain for this xid is empty\n");
1682 return (DCMD_ERR);
1683 }
1684
1685 coargs.ndx = tableid;
1686 coargs.bucket = idhash;
1687
1688 /* use the walker, luke */
1689 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1690 (uintptr_t)coptr) == -1) {
1691 mdb_warn("cannot walk callouts at %p", coptr);
1692 return (WALK_ERR);
1693 }
1694
1695 return (DCMD_OK);
1696 }
1697
1698 void
1699 callout_help(void)
1700 {
1701 mdb_printf("callout: display callouts.\n"
1702 "Given a callout table address, display callouts from table.\n"
1703 "Without an address, display callouts from all tables.\n"
1704 "options:\n"
1705 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1706 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1707 " -x : limit display to callouts which are executing\n"
1708 " -h : limit display to callouts based on hrestime\n"
1709 " -B : limit display to callouts based on absolute time\n"
1710 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1711 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1712 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1713 " -d : interpret time option to -t|a|b as delta from current time\n"
1714 " -k : use ticks instead of nanoseconds as arguments to"
1715 " -t|a|b. Note that\n ticks are less accurate and may not"
1716 " match other tick times (ie: lbolt).\n"
1717 " -D : display exiration time as delta from current time\n"
1718 " -S seqid : limit display to callouts for this cpu sequence id\n"
1719 " -C addr : limit display to callouts for this cpu pointer\n"
1720 " -f name|addr : limit display to callouts with this function\n"
1721 " -p name|addr : limit display to callouts functions with this"
1722 " parameter\n"
1723 " -T : display the callout table itself, instead of callouts\n"
1724 " -L : display callout lists instead of callouts\n"
1725 " -E : with -T or L, display empty data structures.\n"
1726 " -i : traverse callouts by id hash instead of list hash\n"
1727 " -F : walk free callout list (free list with -i) instead\n"
1728 " -v : display more info for each item\n"
1729 " -V : show details of each level of info as it is traversed\n"
1730 " -H : limit display to callouts in the callout heap\n"
1731 " -Q : limit display to callouts in the callout queue\n"
1732 " -A : show only addresses. Useful for pipelines.\n");
1733 }
1734
1735 void
1736 calloutid_help(void)
1737 {
1738 mdb_printf("calloutid: display callout by id.\n"
1739 "Given an extended callout id, display the callout infomation.\n"
1740 "options:\n"
1741 " -d : do not dereference callout, just decode the id.\n"
1742 " -v : verbose display more info about the callout\n");
1743 }
1744
1745 /*ARGSUSED*/
1746 int
1747 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1748 {
1749 long num_classes, i;
1750 sclass_t *class_tbl;
1751 GElf_Sym g_sclass;
1752 char class_name[PC_CLNMSZ];
1753 size_t tbl_size;
1754
1755 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1756 mdb_warn("failed to find symbol sclass\n");
1757 return (DCMD_ERR);
1758 }
1759
1760 tbl_size = (size_t)g_sclass.st_size;
1761 num_classes = tbl_size / (sizeof (sclass_t));
1762 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1763
1764 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1765 mdb_warn("failed to read sclass");
1766 return (DCMD_ERR);
1767 }
1768
1769 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1770 "INIT FCN", "CLASS FCN");
1771
1772 for (i = 0; i < num_classes; i++) {
1773 if (mdb_vread(class_name, sizeof (class_name),
1774 (uintptr_t)class_tbl[i].cl_name) == -1)
1775 (void) strcpy(class_name, "???");
1776
1777 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1778 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1779 }
1780
1781 return (DCMD_OK);
1782 }
1783
1784 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1785
1786 int
1787 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1788 {
1789 uintptr_t rootdir;
1790 vnode_t vn;
1791 char buf[MAXPATHLEN];
1792
1793 uint_t opt_F = FALSE;
1794
1795 if (mdb_getopts(argc, argv,
1796 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1797 return (DCMD_USAGE);
1798
1799 if (!(flags & DCMD_ADDRSPEC)) {
1800 mdb_warn("expected explicit vnode_t address before ::\n");
1801 return (DCMD_USAGE);
1802 }
1803
1804 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1805 mdb_warn("failed to read rootdir");
1806 return (DCMD_ERR);
1807 }
1808
1809 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1810 return (DCMD_ERR);
1811
1812 if (*buf == '\0') {
1813 mdb_printf("??\n");
1814 return (DCMD_OK);
1815 }
1816
1817 mdb_printf("%s", buf);
1818 if (opt_F && buf[strlen(buf)-1] != '/' &&
1819 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1820 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1821 mdb_printf("\n");
1822
1823 return (DCMD_OK);
1824 }
1825
1826 int
1827 ld_walk_init(mdb_walk_state_t *wsp)
1828 {
1829 wsp->walk_data = (void *)wsp->walk_addr;
1830 return (WALK_NEXT);
1831 }
1832
1833 int
1834 ld_walk_step(mdb_walk_state_t *wsp)
1835 {
1836 int status;
1837 lock_descriptor_t ld;
1838
1839 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1840 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1841 wsp->walk_addr);
1842 return (WALK_ERR);
1843 }
1844
1845 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1846 if (status == WALK_ERR)
1847 return (WALK_ERR);
1848
1849 wsp->walk_addr = (uintptr_t)ld.l_next;
1850 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1851 return (WALK_DONE);
1852
1853 return (status);
1854 }
1855
1856 int
1857 lg_walk_init(mdb_walk_state_t *wsp)
1858 {
1859 GElf_Sym sym;
1860
1861 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1862 mdb_warn("failed to find symbol 'lock_graph'\n");
1863 return (WALK_ERR);
1864 }
1865
1866 wsp->walk_addr = (uintptr_t)sym.st_value;
1867 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1868
1869 return (WALK_NEXT);
1870 }
1871
1872 typedef struct lg_walk_data {
1873 uintptr_t startaddr;
1874 mdb_walk_cb_t callback;
1875 void *data;
1876 } lg_walk_data_t;
1877
1878 /*
1879 * We can't use ::walk lock_descriptor directly, because the head of each graph
1880 * is really a dummy lock. Rather than trying to dynamically determine if this
1881 * is a dummy node or not, we just filter out the initial element of the
1882 * list.
1883 */
1884 static int
1885 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1886 {
1887 lg_walk_data_t *lw = priv;
1888
1889 if (addr != lw->startaddr)
1890 return (lw->callback(addr, data, lw->data));
1891
1892 return (WALK_NEXT);
1893 }
1894
1895 int
1896 lg_walk_step(mdb_walk_state_t *wsp)
1897 {
1898 graph_t *graph;
1899 lg_walk_data_t lw;
1900
1901 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1902 return (WALK_DONE);
1903
1904 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1905 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1906 return (WALK_ERR);
1907 }
1908
1909 wsp->walk_addr += sizeof (graph);
1910
1911 if (graph == NULL)
1912 return (WALK_NEXT);
1913
1914 lw.callback = wsp->walk_callback;
1915 lw.data = wsp->walk_cbdata;
1916
1917 lw.startaddr = (uintptr_t)&(graph->active_locks);
1918 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1919 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1920 return (WALK_ERR);
1921 }
1922
1923 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1924 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1925 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1926 return (WALK_ERR);
1927 }
1928
1929 return (WALK_NEXT);
1930 }
1931
1932 /*
1933 * The space available for the path corresponding to the locked vnode depends
1934 * on whether we are printing 32- or 64-bit addresses.
1935 */
1936 #ifdef _LP64
1937 #define LM_VNPATHLEN 20
1938 #else
1939 #define LM_VNPATHLEN 30
1940 #endif
1941
1942 typedef struct mdb_lminfo_proc {
1943 struct {
1944 char u_comm[MAXCOMLEN + 1];
1945 } p_user;
1946 } mdb_lminfo_proc_t;
1947
1948 /*ARGSUSED*/
1949 static int
1950 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1951 {
1952 const lock_descriptor_t *ld = data;
1953 char buf[LM_VNPATHLEN];
1954 mdb_lminfo_proc_t p;
1955 uintptr_t paddr = 0;
1956
1957 if (ld->l_flock.l_pid != 0)
1958 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
1959
1960 if (paddr != 0)
1961 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
1962
1963 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1964 addr, ld->l_type == F_RDLCK ? "RD" :
1965 ld->l_type == F_WRLCK ? "WR" : "??",
1966 ld->l_state, ld->l_flock.l_pid,
1967 ld->l_flock.l_pid == 0 ? "<kernel>" :
1968 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
1969
1970 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1971 sizeof (buf));
1972 mdb_printf("%s\n", buf);
1973
1974 return (WALK_NEXT);
1975 }
1976
1977 /*ARGSUSED*/
1978 int
1979 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1980 {
1981 if (DCMD_HDRSPEC(flags))
1982 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1983 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1984
1985 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0));
1986 }
1987
1988 /*ARGSUSED*/
1989 int
1990 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1991 {
1992 if ((uintptr_t)f->f_vnode == *target) {
1993 mdb_printf("file %p\n", addr);
1994 *target = 0;
1995 }
1996
1997 return (WALK_NEXT);
1998 }
1999
2000 /*ARGSUSED*/
2001 int
2002 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
2003 {
2004 uintptr_t t = *target;
2005
2006 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
2007 mdb_warn("couldn't file walk proc %p", addr);
2008 return (WALK_ERR);
2009 }
2010
2011 if (t == 0)
2012 mdb_printf("%p\n", addr);
2013
2014 return (WALK_NEXT);
2015 }
2016
2017 /*ARGSUSED*/
2018 int
2019 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2020 {
2021 uintptr_t target = addr;
2022
2023 if (!(flags & DCMD_ADDRSPEC) || addr == 0)
2024 return (DCMD_USAGE);
2025
2026 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
2027 mdb_warn("can't proc walk");
2028 return (DCMD_ERR);
2029 }
2030
2031 return (DCMD_OK);
2032 }
2033
2034 typedef struct datafmt {
2035 char *hdr1;
2036 char *hdr2;
2037 char *dashes;
2038 char *fmt;
2039 } datafmt_t;
2040
2041 static datafmt_t kmemfmt[] = {
2042 { "cache ", "name ",
2043 "-------------------------", "%-25s " },
2044 { " buf", " size", "------", "%6u " },
2045 { " buf", "in use", "------", "%6u " },
2046 { " buf", " total", "------", "%6u " },
2047 { " memory", " in use", "----------", "%10lu%c " },
2048 { " alloc", " succeed", "---------", "%9u " },
2049 { "alloc", " fail", "-----", "%5u " },
2050 { NULL, NULL, NULL, NULL }
2051 };
2052
2053 static datafmt_t vmemfmt[] = {
2054 { "vmem ", "name ",
2055 "-------------------------", "%-*s " },
2056 { " memory", " in use", "----------", "%9llu%c " },
2057 { " memory", " total", "-----------", "%10llu%c " },
2058 { " memory", " import", "----------", "%9llu%c " },
2059 { " alloc", " succeed", "---------", "%9llu " },
2060 { "alloc", " fail", "-----", "%5llu " },
2061 { NULL, NULL, NULL, NULL }
2062 };
2063
2064 /*ARGSUSED*/
2065 static int
2066 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2067 {
2068 short rounds, prounds;
2069
2070 if (KMEM_DUMPCC(ccp)) {
2071 rounds = ccp->cc_dump_rounds;
2072 prounds = ccp->cc_dump_prounds;
2073 } else {
2074 rounds = ccp->cc_rounds;
2075 prounds = ccp->cc_prounds;
2076 }
2077 if (rounds > 0)
2078 *avail += rounds;
2079 if (prounds > 0)
2080 *avail += prounds;
2081
2082 return (WALK_NEXT);
2083 }
2084
2085 /*ARGSUSED*/
2086 static int
2087 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2088 {
2089 *alloc += ccp->cc_alloc;
2090
2091 return (WALK_NEXT);
2092 }
2093
2094 /*ARGSUSED*/
2095 static int
2096 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2097 {
2098 *avail += sp->slab_chunks - sp->slab_refcnt;
2099
2100 return (WALK_NEXT);
2101 }
2102
2103 typedef struct kmastat_vmem {
2104 uintptr_t kv_addr;
2105 struct kmastat_vmem *kv_next;
2106 size_t kv_meminuse;
2107 int kv_alloc;
2108 int kv_fail;
2109 } kmastat_vmem_t;
2110
2111 typedef struct kmastat_args {
2112 kmastat_vmem_t **ka_kvpp;
2113 uint_t ka_shift;
2114 } kmastat_args_t;
2115
2116 static int
2117 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2118 {
2119 kmastat_vmem_t **kvpp = kap->ka_kvpp;
2120 kmastat_vmem_t *kv;
2121 datafmt_t *dfp = kmemfmt;
2122 int magsize;
2123
2124 int avail, alloc, total;
2125 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2126 cp->cache_slabsize;
2127
2128 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2129 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2130 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2131
2132 magsize = kmem_get_magsize(cp);
2133
2134 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2135 avail = cp->cache_full.ml_total * magsize;
2136 total = cp->cache_buftotal;
2137
2138 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2139 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2140 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2141
2142 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2143 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2144 goto out;
2145 }
2146
2147 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2148 kv->kv_next = *kvpp;
2149 kv->kv_addr = (uintptr_t)cp->cache_arena;
2150 *kvpp = kv;
2151 out:
2152 kv->kv_meminuse += meminuse;
2153 kv->kv_alloc += alloc;
2154 kv->kv_fail += cp->cache_alloc_fail;
2155
2156 mdb_printf((dfp++)->fmt, cp->cache_name);
2157 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2158 mdb_printf((dfp++)->fmt, total - avail);
2159 mdb_printf((dfp++)->fmt, total);
2160 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2161 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2162 kap->ka_shift == KILOS ? 'K' : 'B');
2163 mdb_printf((dfp++)->fmt, alloc);
2164 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2165 mdb_printf("\n");
2166
2167 return (WALK_NEXT);
2168 }
2169
2170 static int
2171 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2172 {
2173 kmastat_vmem_t *kv = *kap->ka_kvpp;
2174 size_t len;
2175
2176 while (kv != NULL && kv->kv_addr != addr)
2177 kv = kv->kv_next;
2178
2179 if (kv == NULL || kv->kv_alloc == 0)
2180 return (WALK_NEXT);
2181
2182 len = MIN(17, strlen(v->vm_name));
2183
2184 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2185 17 - len, "", "", "", "",
2186 kv->kv_meminuse >> kap->ka_shift,
2187 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2188 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2189
2190 return (WALK_NEXT);
2191 }
2192
2193 /*ARGSUSED*/
2194 static int
2195 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2196 {
2197 datafmt_t *dfp = vmemfmt;
2198 const vmem_kstat_t *vkp = &v->vm_kstat;
2199 uintptr_t paddr;
2200 vmem_t parent;
2201 int ident = 0;
2202
2203 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) {
2204 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2205 mdb_warn("couldn't trace %p's ancestry", addr);
2206 ident = 0;
2207 break;
2208 }
2209 paddr = (uintptr_t)parent.vm_source;
2210 }
2211
2212 mdb_printf("%*s", ident, "");
2213 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2214 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2215 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2216 *shiftp == KILOS ? 'K' : 'B');
2217 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2218 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2219 *shiftp == KILOS ? 'K' : 'B');
2220 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2221 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2222 *shiftp == KILOS ? 'K' : 'B');
2223 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2224 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2225
2226 mdb_printf("\n");
2227
2228 return (WALK_NEXT);
2229 }
2230
2231 /*ARGSUSED*/
2232 int
2233 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2234 {
2235 kmastat_vmem_t *kv = NULL;
2236 datafmt_t *dfp;
2237 kmastat_args_t ka;
2238
2239 ka.ka_shift = 0;
2240 if (mdb_getopts(argc, argv,
2241 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2242 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2243 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2244 return (DCMD_USAGE);
2245
2246 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2247 mdb_printf("%s ", dfp->hdr1);
2248 mdb_printf("\n");
2249
2250 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2251 mdb_printf("%s ", dfp->hdr2);
2252 mdb_printf("\n");
2253
2254 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2255 mdb_printf("%s ", dfp->dashes);
2256 mdb_printf("\n");
2257
2258 ka.ka_kvpp = &kv;
2259 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2260 mdb_warn("can't walk 'kmem_cache'");
2261 return (DCMD_ERR);
2262 }
2263
2264 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2265 mdb_printf("%s ", dfp->dashes);
2266 mdb_printf("\n");
2267
2268 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2269 mdb_warn("can't walk 'vmem'");
2270 return (DCMD_ERR);
2271 }
2272
2273 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2274 mdb_printf("%s ", dfp->dashes);
2275 mdb_printf("\n");
2276
2277 mdb_printf("\n");
2278
2279 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2280 mdb_printf("%s ", dfp->hdr1);
2281 mdb_printf("\n");
2282
2283 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2284 mdb_printf("%s ", dfp->hdr2);
2285 mdb_printf("\n");
2286
2287 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2288 mdb_printf("%s ", dfp->dashes);
2289 mdb_printf("\n");
2290
2291 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2292 mdb_warn("can't walk 'vmem'");
2293 return (DCMD_ERR);
2294 }
2295
2296 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2297 mdb_printf("%s ", dfp->dashes);
2298 mdb_printf("\n");
2299 return (DCMD_OK);
2300 }
2301
2302 /*
2303 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2304 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2305 * unfortunately, a few of the segs are both large and sparse, so we could
2306 * spend quite a bit of time scanning VAs which have no backing pages.
2307 *
2308 * So for the few very sparse segs, we skip the segment itself, and scan
2309 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2310 * Currently, we do this for:
2311 *
2312 * SEG VMEM ARENA
2313 * kvseg heap_arena
2314 * kvseg32 heap32_arena
2315 * kvseg_core heap_core_arena
2316 *
2317 * In addition, we skip the segkpm segment in its entirety, since it is very
2318 * sparse, and contains no new kernel data.
2319 */
2320 typedef struct kgrep_walk_data {
2321 kgrep_cb_func *kg_cb;
2322 void *kg_cbdata;
2323 uintptr_t kg_kvseg;
2324 uintptr_t kg_kvseg32;
2325 uintptr_t kg_kvseg_core;
2326 uintptr_t kg_segkpm;
2327 uintptr_t kg_heap_lp_base;
2328 uintptr_t kg_heap_lp_end;
2329 } kgrep_walk_data_t;
2330
2331 static int
2332 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2333 {
2334 uintptr_t base = (uintptr_t)seg->s_base;
2335
2336 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2337 addr == kg->kg_kvseg_core)
2338 return (WALK_NEXT);
2339
2340 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2341 return (WALK_NEXT);
2342
2343 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2344 }
2345
2346 /*ARGSUSED*/
2347 static int
2348 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2349 {
2350 /*
2351 * skip large page heap address range - it is scanned by walking
2352 * allocated vmem_segs in the heap_lp_arena
2353 */
2354 if (seg->vs_start == kg->kg_heap_lp_base &&
2355 seg->vs_end == kg->kg_heap_lp_end)
2356 return (WALK_NEXT);
2357
2358 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2359 }
2360
2361 /*ARGSUSED*/
2362 static int
2363 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2364 {
2365 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2366 }
2367
2368 static int
2369 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2370 {
2371 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2372
2373 if (strcmp(vmem->vm_name, "heap") != 0 &&
2374 strcmp(vmem->vm_name, "heap32") != 0 &&
2375 strcmp(vmem->vm_name, "heap_core") != 0 &&
2376 strcmp(vmem->vm_name, "heap_lp") != 0)
2377 return (WALK_NEXT);
2378
2379 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2380 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2381
2382 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2383 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2384 return (WALK_ERR);
2385 }
2386
2387 return (WALK_NEXT);
2388 }
2389
2390 int
2391 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2392 {
2393 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2394 kgrep_walk_data_t kg;
2395
2396 if (mdb_get_state() == MDB_STATE_RUNNING) {
2397 mdb_warn("kgrep can only be run on a system "
2398 "dump or under kmdb; see dumpadm(1M)\n");
2399 return (DCMD_ERR);
2400 }
2401
2402 if (mdb_lookup_by_name("kas", &kas) == -1) {
2403 mdb_warn("failed to locate 'kas' symbol\n");
2404 return (DCMD_ERR);
2405 }
2406
2407 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2408 mdb_warn("failed to locate 'kvseg' symbol\n");
2409 return (DCMD_ERR);
2410 }
2411
2412 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2413 mdb_warn("failed to locate 'kvseg32' symbol\n");
2414 return (DCMD_ERR);
2415 }
2416
2417 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2418 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2419 return (DCMD_ERR);
2420 }
2421
2422 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2423 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2424 return (DCMD_ERR);
2425 }
2426
2427 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2428 mdb_warn("failed to read 'heap_lp_base'\n");
2429 return (DCMD_ERR);
2430 }
2431
2432 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2433 mdb_warn("failed to read 'heap_lp_end'\n");
2434 return (DCMD_ERR);
2435 }
2436
2437 kg.kg_cb = cb;
2438 kg.kg_cbdata = cbdata;
2439 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2440 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2441 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2442 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2443
2444 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2445 &kg, kas.st_value) == -1) {
2446 mdb_warn("failed to walk kas segments");
2447 return (DCMD_ERR);
2448 }
2449
2450 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2451 mdb_warn("failed to walk heap/heap32 vmem arenas");
2452 return (DCMD_ERR);
2453 }
2454
2455 return (DCMD_OK);
2456 }
2457
2458 size_t
2459 kgrep_subr_pagesize(void)
2460 {
2461 return (PAGESIZE);
2462 }
2463
2464 typedef struct file_walk_data {
2465 struct uf_entry *fw_flist;
2466 int fw_flistsz;
2467 int fw_ndx;
2468 int fw_nofiles;
2469 } file_walk_data_t;
2470
2471 typedef struct mdb_file_proc {
2472 struct {
2473 struct {
2474 int fi_nfiles;
2475 uf_entry_t *volatile fi_list;
2476 } u_finfo;
2477 } p_user;
2478 } mdb_file_proc_t;
2479
2480 int
2481 file_walk_init(mdb_walk_state_t *wsp)
2482 {
2483 file_walk_data_t *fw;
2484 mdb_file_proc_t p;
2485
2486 if (wsp->walk_addr == 0) {
2487 mdb_warn("file walk doesn't support global walks\n");
2488 return (WALK_ERR);
2489 }
2490
2491 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2492
2493 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2494 wsp->walk_addr, 0) == -1) {
2495 mdb_free(fw, sizeof (file_walk_data_t));
2496 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2497 return (WALK_ERR);
2498 }
2499
2500 if (p.p_user.u_finfo.fi_nfiles == 0) {
2501 mdb_free(fw, sizeof (file_walk_data_t));
2502 return (WALK_DONE);
2503 }
2504
2505 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2506 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2507 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2508
2509 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2510 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2511 mdb_warn("failed to read file array at %p",
2512 p.p_user.u_finfo.fi_list);
2513 mdb_free(fw->fw_flist, fw->fw_flistsz);
2514 mdb_free(fw, sizeof (file_walk_data_t));
2515 return (WALK_ERR);
2516 }
2517
2518 fw->fw_ndx = 0;
2519 wsp->walk_data = fw;
2520
2521 return (WALK_NEXT);
2522 }
2523
2524 int
2525 file_walk_step(mdb_walk_state_t *wsp)
2526 {
2527 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2528 struct file file;
2529 uintptr_t fp;
2530
2531 again:
2532 if (fw->fw_ndx == fw->fw_nofiles)
2533 return (WALK_DONE);
2534
2535 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0)
2536 goto again;
2537
2538 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2539 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2540 }
2541
2542 int
2543 allfile_walk_step(mdb_walk_state_t *wsp)
2544 {
2545 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2546 struct file file;
2547 uintptr_t fp;
2548
2549 if (fw->fw_ndx == fw->fw_nofiles)
2550 return (WALK_DONE);
2551
2552 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0)
2553 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2554 else
2555 bzero(&file, sizeof (file));
2556
2557 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2558 }
2559
2560 void
2561 file_walk_fini(mdb_walk_state_t *wsp)
2562 {
2563 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2564
2565 mdb_free(fw->fw_flist, fw->fw_flistsz);
2566 mdb_free(fw, sizeof (file_walk_data_t));
2567 }
2568
2569 int
2570 port_walk_init(mdb_walk_state_t *wsp)
2571 {
2572 if (wsp->walk_addr == 0) {
2573 mdb_warn("port walk doesn't support global walks\n");
2574 return (WALK_ERR);
2575 }
2576
2577 if (mdb_layered_walk("file", wsp) == -1) {
2578 mdb_warn("couldn't walk 'file'");
2579 return (WALK_ERR);
2580 }
2581 return (WALK_NEXT);
2582 }
2583
2584 int
2585 port_walk_step(mdb_walk_state_t *wsp)
2586 {
2587 struct vnode vn;
2588 uintptr_t vp;
2589 uintptr_t pp;
2590 struct port port;
2591
2592 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2593 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2594 mdb_warn("failed to read vnode_t at %p", vp);
2595 return (WALK_ERR);
2596 }
2597 if (vn.v_type != VPORT)
2598 return (WALK_NEXT);
2599
2600 pp = (uintptr_t)vn.v_data;
2601 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2602 mdb_warn("failed to read port_t at %p", pp);
2603 return (WALK_ERR);
2604 }
2605 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2606 }
2607
2608 typedef struct portev_walk_data {
2609 list_node_t *pev_node;
2610 list_node_t *pev_last;
2611 size_t pev_offset;
2612 } portev_walk_data_t;
2613
2614 int
2615 portev_walk_init(mdb_walk_state_t *wsp)
2616 {
2617 portev_walk_data_t *pevd;
2618 struct port port;
2619 struct vnode vn;
2620 struct list *list;
2621 uintptr_t vp;
2622
2623 if (wsp->walk_addr == 0) {
2624 mdb_warn("portev walk doesn't support global walks\n");
2625 return (WALK_ERR);
2626 }
2627
2628 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2629
2630 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2631 mdb_free(pevd, sizeof (portev_walk_data_t));
2632 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2633 return (WALK_ERR);
2634 }
2635
2636 vp = (uintptr_t)port.port_vnode;
2637 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2638 mdb_free(pevd, sizeof (portev_walk_data_t));
2639 mdb_warn("failed to read vnode_t at %p", vp);
2640 return (WALK_ERR);
2641 }
2642
2643 if (vn.v_type != VPORT) {
2644 mdb_free(pevd, sizeof (portev_walk_data_t));
2645 mdb_warn("input address (%p) does not point to an event port",
2646 wsp->walk_addr);
2647 return (WALK_ERR);
2648 }
2649
2650 if (port.port_queue.portq_nent == 0) {
2651 mdb_free(pevd, sizeof (portev_walk_data_t));
2652 return (WALK_DONE);
2653 }
2654 list = &port.port_queue.portq_list;
2655 pevd->pev_offset = list->list_offset;
2656 pevd->pev_last = list->list_head.list_prev;
2657 pevd->pev_node = list->list_head.list_next;
2658 wsp->walk_data = pevd;
2659 return (WALK_NEXT);
2660 }
2661
2662 int
2663 portev_walk_step(mdb_walk_state_t *wsp)
2664 {
2665 portev_walk_data_t *pevd;
2666 struct port_kevent ev;
2667 uintptr_t evp;
2668
2669 pevd = (portev_walk_data_t *)wsp->walk_data;
2670
2671 if (pevd->pev_last == NULL)
2672 return (WALK_DONE);
2673 if (pevd->pev_node == pevd->pev_last)
2674 pevd->pev_last = NULL; /* last round */
2675
2676 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2677 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2678 mdb_warn("failed to read port_kevent at %p", evp);
2679 return (WALK_DONE);
2680 }
2681 pevd->pev_node = ev.portkev_node.list_next;
2682 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2683 }
2684
2685 void
2686 portev_walk_fini(mdb_walk_state_t *wsp)
2687 {
2688 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2689
2690 if (pevd != NULL)
2691 mdb_free(pevd, sizeof (portev_walk_data_t));
2692 }
2693
2694 typedef struct proc_walk_data {
2695 uintptr_t *pw_stack;
2696 int pw_depth;
2697 int pw_max;
2698 } proc_walk_data_t;
2699
2700 int
2701 proc_walk_init(mdb_walk_state_t *wsp)
2702 {
2703 GElf_Sym sym;
2704 proc_walk_data_t *pw;
2705
2706 if (wsp->walk_addr == 0) {
2707 if (mdb_lookup_by_name("p0", &sym) == -1) {
2708 mdb_warn("failed to read 'practive'");
2709 return (WALK_ERR);
2710 }
2711 wsp->walk_addr = (uintptr_t)sym.st_value;
2712 }
2713
2714 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2715
2716 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2717 mdb_warn("failed to read 'nproc'");
2718 mdb_free(pw, sizeof (pw));
2719 return (WALK_ERR);
2720 }
2721
2722 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2723 wsp->walk_data = pw;
2724
2725 return (WALK_NEXT);
2726 }
2727
2728 typedef struct mdb_walk_proc {
2729 struct proc *p_child;
2730 struct proc *p_sibling;
2731 } mdb_walk_proc_t;
2732
2733 int
2734 proc_walk_step(mdb_walk_state_t *wsp)
2735 {
2736 proc_walk_data_t *pw = wsp->walk_data;
2737 uintptr_t addr = wsp->walk_addr;
2738 uintptr_t cld, sib;
2739 int status;
2740 mdb_walk_proc_t pr;
2741
2742 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2743 addr, 0) == -1) {
2744 mdb_warn("failed to read proc at %p", addr);
2745 return (WALK_DONE);
2746 }
2747
2748 cld = (uintptr_t)pr.p_child;
2749 sib = (uintptr_t)pr.p_sibling;
2750
2751 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2752 pw->pw_depth--;
2753 goto sib;
2754 }
2755
2756 /*
2757 * Always pass NULL as the local copy pointer. Consumers
2758 * should use mdb_ctf_vread() to read their own minimal
2759 * version of proc_t. Thus minimizing the chance of breakage
2760 * with older crash dumps.
2761 */
2762 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2763
2764 if (status != WALK_NEXT)
2765 return (status);
2766
2767 if ((wsp->walk_addr = cld) != 0) {
2768 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2769 cld, 0) == -1) {
2770 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2771 addr, cld);
2772 goto sib;
2773 }
2774
2775 pw->pw_stack[pw->pw_depth++] = addr;
2776
2777 if (pw->pw_depth == pw->pw_max) {
2778 mdb_warn("depth %d exceeds max depth; try again\n",
2779 pw->pw_depth);
2780 return (WALK_DONE);
2781 }
2782 return (WALK_NEXT);
2783 }
2784
2785 sib:
2786 /*
2787 * We know that p0 has no siblings, and if another starting proc
2788 * was given, we don't want to walk its siblings anyway.
2789 */
2790 if (pw->pw_depth == 0)
2791 return (WALK_DONE);
2792
2793 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2794 sib, 0) == -1) {
2795 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2796 addr, sib);
2797 sib = 0;
2798 }
2799
2800 if ((wsp->walk_addr = sib) == 0) {
2801 if (pw->pw_depth > 0) {
2802 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2803 return (WALK_NEXT);
2804 }
2805 return (WALK_DONE);
2806 }
2807
2808 return (WALK_NEXT);
2809 }
2810
2811 void
2812 proc_walk_fini(mdb_walk_state_t *wsp)
2813 {
2814 proc_walk_data_t *pw = wsp->walk_data;
2815
2816 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2817 mdb_free(pw, sizeof (proc_walk_data_t));
2818 }
2819
2820 int
2821 task_walk_init(mdb_walk_state_t *wsp)
2822 {
2823 task_t task;
2824
2825 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2826 mdb_warn("failed to read task at %p", wsp->walk_addr);
2827 return (WALK_ERR);
2828 }
2829 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2830 wsp->walk_data = task.tk_memb_list;
2831 return (WALK_NEXT);
2832 }
2833
2834 typedef struct mdb_task_proc {
2835 struct proc *p_tasknext;
2836 } mdb_task_proc_t;
2837
2838 int
2839 task_walk_step(mdb_walk_state_t *wsp)
2840 {
2841 mdb_task_proc_t proc;
2842 int status;
2843
2844 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2845 wsp->walk_addr, 0) == -1) {
2846 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2847 return (WALK_DONE);
2848 }
2849
2850 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2851
2852 if (proc.p_tasknext == wsp->walk_data)
2853 return (WALK_DONE);
2854
2855 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2856 return (status);
2857 }
2858
2859 int
2860 project_walk_init(mdb_walk_state_t *wsp)
2861 {
2862 if (wsp->walk_addr == 0) {
2863 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2864 mdb_warn("failed to read 'proj0p'");
2865 return (WALK_ERR);
2866 }
2867 }
2868 wsp->walk_data = (void *)wsp->walk_addr;
2869 return (WALK_NEXT);
2870 }
2871
2872 int
2873 project_walk_step(mdb_walk_state_t *wsp)
2874 {
2875 uintptr_t addr = wsp->walk_addr;
2876 kproject_t pj;
2877 int status;
2878
2879 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2880 mdb_warn("failed to read project at %p", addr);
2881 return (WALK_DONE);
2882 }
2883 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2884 if (status != WALK_NEXT)
2885 return (status);
2886 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2887 if ((void *)wsp->walk_addr == wsp->walk_data)
2888 return (WALK_DONE);
2889 return (WALK_NEXT);
2890 }
2891
2892 static int
2893 generic_walk_step(mdb_walk_state_t *wsp)
2894 {
2895 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2896 wsp->walk_cbdata));
2897 }
2898
2899 static int
2900 cpu_walk_cmp(const void *l, const void *r)
2901 {
2902 uintptr_t lhs = *((uintptr_t *)l);
2903 uintptr_t rhs = *((uintptr_t *)r);
2904 cpu_t lcpu, rcpu;
2905
2906 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2907 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2908
2909 if (lcpu.cpu_id < rcpu.cpu_id)
2910 return (-1);
2911
2912 if (lcpu.cpu_id > rcpu.cpu_id)
2913 return (1);
2914
2915 return (0);
2916 }
2917
2918 typedef struct cpu_walk {
2919 uintptr_t *cw_array;
2920 int cw_ndx;
2921 } cpu_walk_t;
2922
2923 int
2924 cpu_walk_init(mdb_walk_state_t *wsp)
2925 {
2926 cpu_walk_t *cw;
2927 int max_ncpus, i = 0;
2928 uintptr_t current, first;
2929 cpu_t cpu, panic_cpu;
2930 uintptr_t panicstr, addr;
2931 GElf_Sym sym;
2932
2933 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2934
2935 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2936 mdb_warn("failed to read 'max_ncpus'");
2937 return (WALK_ERR);
2938 }
2939
2940 if (mdb_readvar(&panicstr, "panicstr") == -1) {
2941 mdb_warn("failed to read 'panicstr'");
2942 return (WALK_ERR);
2943 }
2944
2945 if (panicstr != 0) {
2946 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2947 mdb_warn("failed to find 'panic_cpu'");
2948 return (WALK_ERR);
2949 }
2950
2951 addr = (uintptr_t)sym.st_value;
2952
2953 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2954 mdb_warn("failed to read 'panic_cpu'");
2955 return (WALK_ERR);
2956 }
2957 }
2958
2959 /*
2960 * Unfortunately, there is no platform-independent way to walk
2961 * CPUs in ID order. We therefore loop through in cpu_next order,
2962 * building an array of CPU pointers which will subsequently be
2963 * sorted.
2964 */
2965 cw->cw_array =
2966 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2967
2968 if (mdb_readvar(&first, "cpu_list") == -1) {
2969 mdb_warn("failed to read 'cpu_list'");
2970 return (WALK_ERR);
2971 }
2972
2973 current = first;
2974 do {
2975 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2976 mdb_warn("failed to read cpu at %p", current);
2977 return (WALK_ERR);
2978 }
2979
2980 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) {
2981 cw->cw_array[i++] = addr;
2982 } else {
2983 cw->cw_array[i++] = current;
2984 }
2985 } while ((current = (uintptr_t)cpu.cpu_next) != first);
2986
2987 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2988 wsp->walk_data = cw;
2989
2990 return (WALK_NEXT);
2991 }
2992
2993 int
2994 cpu_walk_step(mdb_walk_state_t *wsp)
2995 {
2996 cpu_walk_t *cw = wsp->walk_data;
2997 cpu_t cpu;
2998 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2999
3000 if (addr == 0)
3001 return (WALK_DONE);
3002
3003 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3004 mdb_warn("failed to read cpu at %p", addr);
3005 return (WALK_DONE);
3006 }
3007
3008 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3009 }
3010
3011 typedef struct cpuinfo_data {
3012 intptr_t cid_cpu;
3013 uintptr_t **cid_ithr;
3014 char cid_print_head;
3015 char cid_print_thr;
3016 char cid_print_ithr;
3017 char cid_print_flags;
3018 } cpuinfo_data_t;
3019
3020 int
3021 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3022 {
3023 cpu_t c;
3024 int id;
3025 uint8_t pil;
3026
3027 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3028 return (WALK_NEXT);
3029
3030 if (thr->t_bound_cpu == NULL) {
3031 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3032 return (WALK_NEXT);
3033 }
3034
3035 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3036
3037 if ((id = c.cpu_id) >= NCPU) {
3038 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3039 thr->t_bound_cpu, id, NCPU);
3040 return (WALK_NEXT);
3041 }
3042
3043 if ((pil = thr->t_pil) >= NINTR) {
3044 mdb_warn("thread %p has pil (%d) greater than %d\n",
3045 addr, pil, NINTR);
3046 return (WALK_NEXT);
3047 }
3048
3049 if (cid->cid_ithr[id][pil] != 0) {
3050 mdb_warn("CPU %d has multiple threads at pil %d (at least "
3051 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3052 return (WALK_NEXT);
3053 }
3054
3055 cid->cid_ithr[id][pil] = addr;
3056
3057 return (WALK_NEXT);
3058 }
3059
3060 #define CPUINFO_IDWIDTH 3
3061 #define CPUINFO_FLAGWIDTH 9
3062
3063 #ifdef _LP64
3064 #if defined(__amd64)
3065 #define CPUINFO_TWIDTH 16
3066 #define CPUINFO_CPUWIDTH 16
3067 #else
3068 #define CPUINFO_CPUWIDTH 11
3069 #define CPUINFO_TWIDTH 11
3070 #endif
3071 #else
3072 #define CPUINFO_CPUWIDTH 8
3073 #define CPUINFO_TWIDTH 8
3074 #endif
3075
3076 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3077 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3078 #define CPUINFO_ITHRDELT 4
3079
3080 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
3081 flagline < nflaglines ? flagbuf[flagline++] : "")
3082
3083 typedef struct mdb_cpuinfo_proc {
3084 struct {
3085 char u_comm[MAXCOMLEN + 1];
3086 } p_user;
3087 } mdb_cpuinfo_proc_t;
3088
3089 int
3090 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3091 {
3092 kthread_t t;
3093 disp_t disp;
3094 mdb_cpuinfo_proc_t p;
3095 uintptr_t pinned;
3096 char **flagbuf;
3097 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3098
3099 const char *flags[] = {
3100 "RUNNING", "READY", "QUIESCED", "EXISTS",
3101 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3102 "SPARE", "FAULTED", "DISABLED", NULL
3103 };
3104
3105 if (cid->cid_cpu != -1) {
3106 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3107 return (WALK_NEXT);
3108
3109 /*
3110 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3111 */
3112 cid->cid_cpu = -1;
3113 rval = WALK_DONE;
3114 }
3115
3116 if (cid->cid_print_head) {
3117 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3118 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3119 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3120 "PROC");
3121 cid->cid_print_head = FALSE;
3122 }
3123
3124 bspl = cpu->cpu_base_spl;
3125
3126 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3127 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3128 return (WALK_ERR);
3129 }
3130
3131 mdb_printf("%3d %0*p %3x %4d %4d ",
3132 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3133 disp.disp_nrunnable, bspl);
3134
3135 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3136 mdb_printf("%3d ", t.t_pri);
3137 } else {
3138 mdb_printf("%3s ", "-");
3139 }
3140
3141 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3142 cpu->cpu_kprunrun ? "yes" : "no");
3143
3144 if (cpu->cpu_last_swtch) {
3145 mdb_printf("t-%-4d ",
3146 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3147 } else {
3148 mdb_printf("%-6s ", "-");
3149 }
3150
3151 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3152
3153 if (cpu->cpu_thread == cpu->cpu_idle_thread)
3154 mdb_printf(" (idle)\n");
3155 else if (cpu->cpu_thread == NULL)
3156 mdb_printf(" -\n");
3157 else {
3158 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3159 (uintptr_t)t.t_procp, 0) != -1) {
3160 mdb_printf(" %s\n", p.p_user.u_comm);
3161 } else {
3162 mdb_printf(" ?\n");
3163 }
3164 }
3165
3166 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3167
3168 if (cid->cid_print_flags) {
3169 int first = 1, i, j, k;
3170 char *s;
3171
3172 cid->cid_print_head = TRUE;
3173
3174 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3175 if (!(cpu->cpu_flags & i))
3176 continue;
3177
3178 if (first) {
3179 s = mdb_alloc(CPUINFO_THRDELT + 1,
3180 UM_GC | UM_SLEEP);
3181
3182 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3183 "%*s|%*s", CPUINFO_FLAGDELT, "",
3184 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3185 flagbuf[nflaglines++] = s;
3186 }
3187
3188 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3189 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3190 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3191 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3192 first ? "<--+" : "");
3193
3194 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3195 s[k] = ' ';
3196 s[k] = '\0';
3197
3198 flagbuf[nflaglines++] = s;
3199 first = 0;
3200 }
3201 }
3202
3203 if (cid->cid_print_ithr) {
3204 int i, found_one = FALSE;
3205 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3206
3207 for (i = NINTR - 1; i >= 0; i--) {
3208 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3209
3210 if (iaddr == 0)
3211 continue;
3212
3213 if (!found_one) {
3214 found_one = TRUE;
3215
3216 CPUINFO_INDENT;
3217 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3218 CPUINFO_ITHRDELT, "");
3219
3220 CPUINFO_INDENT;
3221 mdb_printf("%c%*s+--> %3s %s\n",
3222 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3223 "", "PIL", "THREAD");
3224 }
3225
3226 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3227 mdb_warn("failed to read kthread_t at %p",
3228 iaddr);
3229 return (WALK_ERR);
3230 }
3231
3232 CPUINFO_INDENT;
3233 mdb_printf("%c%*s %3d %0*p\n",
3234 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3235 t.t_pil, CPUINFO_TWIDTH, iaddr);
3236
3237 pinned = (uintptr_t)t.t_intr;
3238 }
3239
3240 if (found_one && pinned != 0) {
3241 cid->cid_print_head = TRUE;
3242 (void) strcpy(p.p_user.u_comm, "?");
3243
3244 if (mdb_vread(&t, sizeof (t),
3245 (uintptr_t)pinned) == -1) {
3246 mdb_warn("failed to read kthread_t at %p",
3247 pinned);
3248 return (WALK_ERR);
3249 }
3250 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3251 (uintptr_t)t.t_procp, 0) == -1) {
3252 mdb_warn("failed to read proc_t at %p",
3253 t.t_procp);
3254 return (WALK_ERR);
3255 }
3256
3257 CPUINFO_INDENT;
3258 mdb_printf("%c%*s %3s %0*p %s\n",
3259 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3260 CPUINFO_TWIDTH, pinned,
3261 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3262 "(idle)" : p.p_user.u_comm);
3263 }
3264 }
3265
3266 if (disp.disp_nrunnable && cid->cid_print_thr) {
3267 dispq_t *dq;
3268
3269 int i, npri = disp.disp_npri;
3270
3271 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3272
3273 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3274 (uintptr_t)disp.disp_q) == -1) {
3275 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3276 return (WALK_ERR);
3277 }
3278
3279 CPUINFO_INDENT;
3280 mdb_printf("|\n");
3281
3282 CPUINFO_INDENT;
3283 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3284 CPUINFO_TWIDTH, "THREAD", "PROC");
3285
3286 for (i = npri - 1; i >= 0; i--) {
3287 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3288
3289 while (taddr != 0) {
3290 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3291 mdb_warn("failed to read kthread_t "
3292 "at %p", taddr);
3293 return (WALK_ERR);
3294 }
3295 if (mdb_ctf_vread(&p, "proc_t",
3296 "mdb_cpuinfo_proc_t",
3297 (uintptr_t)t.t_procp, 0) == -1) {
3298 mdb_warn("failed to read proc_t at %p",
3299 t.t_procp);
3300 return (WALK_ERR);
3301 }
3302
3303 CPUINFO_INDENT;
3304 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3305 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3306
3307 taddr = (uintptr_t)t.t_link;
3308 }
3309 }
3310 cid->cid_print_head = TRUE;
3311 }
3312
3313 while (flagline < nflaglines)
3314 mdb_printf("%s\n", flagbuf[flagline++]);
3315
3316 if (cid->cid_print_head)
3317 mdb_printf("\n");
3318
3319 return (rval);
3320 }
3321
3322 int
3323 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3324 {
3325 uint_t verbose = FALSE;
3326 cpuinfo_data_t cid;
3327
3328 cid.cid_print_ithr = FALSE;
3329 cid.cid_print_thr = FALSE;
3330 cid.cid_print_flags = FALSE;
3331 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3332 cid.cid_cpu = -1;
3333
3334 if (flags & DCMD_ADDRSPEC)
3335 cid.cid_cpu = addr;
3336
3337 if (mdb_getopts(argc, argv,
3338 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3339 return (DCMD_USAGE);
3340
3341 if (verbose) {
3342 cid.cid_print_ithr = TRUE;
3343 cid.cid_print_thr = TRUE;
3344 cid.cid_print_flags = TRUE;
3345 cid.cid_print_head = TRUE;
3346 }
3347
3348 if (cid.cid_print_ithr) {
3349 int i;
3350
3351 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3352 * NCPU, UM_SLEEP | UM_GC);
3353
3354 for (i = 0; i < NCPU; i++)
3355 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3356 NINTR, UM_SLEEP | UM_GC);
3357
3358 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3359 &cid) == -1) {
3360 mdb_warn("couldn't walk thread");
3361 return (DCMD_ERR);
3362 }
3363 }
3364
3365 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3366 mdb_warn("can't walk cpus");
3367 return (DCMD_ERR);
3368 }
3369
3370 if (cid.cid_cpu != -1) {
3371 /*
3372 * We didn't find this CPU when we walked through the CPUs
3373 * (i.e. the address specified doesn't show up in the "cpu"
3374 * walk). However, the specified address may still correspond
3375 * to a valid cpu_t (for example, if the specified address is
3376 * the actual panicking cpu_t and not the cached panic_cpu).
3377 * Point is: even if we didn't find it, we still want to try
3378 * to print the specified address as a cpu_t.
3379 */
3380 cpu_t cpu;
3381
3382 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3383 mdb_warn("%p is neither a valid CPU ID nor a "
3384 "valid cpu_t address\n", cid.cid_cpu);
3385 return (DCMD_ERR);
3386 }
3387
3388 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3389 }
3390
3391 return (DCMD_OK);
3392 }
3393
3394 /*ARGSUSED*/
3395 int
3396 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3397 {
3398 int i;
3399
3400 if (!(flags & DCMD_ADDRSPEC))
3401 return (DCMD_USAGE);
3402
3403 for (i = 0; i < sizeof (addr) * NBBY; i++)
3404 mdb_printf("%p\n", addr ^ (1UL << i));
3405
3406 return (DCMD_OK);
3407 }
3408
3409 typedef struct mdb_as2proc_proc {
3410 struct as *p_as;
3411 } mdb_as2proc_proc_t;
3412
3413 /*ARGSUSED*/
3414 int
3415 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3416 {
3417 mdb_as2proc_proc_t p;
3418
3419 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3420
3421 if (p.p_as == *asp)
3422 mdb_printf("%p\n", addr);
3423 return (WALK_NEXT);
3424 }
3425
3426 /*ARGSUSED*/
3427 int
3428 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3429 {
3430 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3431 return (DCMD_USAGE);
3432
3433 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3434 mdb_warn("failed to walk proc");
3435 return (DCMD_ERR);
3436 }
3437
3438 return (DCMD_OK);
3439 }
3440
3441 typedef struct mdb_ptree_proc {
3442 struct proc *p_parent;
3443 struct {
3444 char u_comm[MAXCOMLEN + 1];
3445 } p_user;
3446 } mdb_ptree_proc_t;
3447
3448 /*ARGSUSED*/
3449 int
3450 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3451 {
3452 mdb_ptree_proc_t proc;
3453 mdb_ptree_proc_t parent;
3454 int ident = 0;
3455 uintptr_t paddr;
3456
3457 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3458
3459 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) {
3460 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3461 paddr = (uintptr_t)parent.p_parent;
3462 }
3463
3464 mdb_inc_indent(ident);
3465 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm);
3466 mdb_dec_indent(ident);
3467
3468 return (WALK_NEXT);
3469 }
3470
3471 void
3472 ptree_ancestors(uintptr_t addr, uintptr_t start)
3473 {
3474 mdb_ptree_proc_t p;
3475
3476 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3477 mdb_warn("couldn't read ancestor at %p", addr);
3478 return;
3479 }
3480
3481 if (p.p_parent != NULL)
3482 ptree_ancestors((uintptr_t)p.p_parent, start);
3483
3484 if (addr != start)
3485 (void) ptree_walk(addr, &p, NULL);
3486 }
3487
3488 /*ARGSUSED*/
3489 int
3490 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3491 {
3492 if (!(flags & DCMD_ADDRSPEC))
3493 addr = 0;
3494 else
3495 ptree_ancestors(addr, addr);
3496
3497 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3498 mdb_warn("couldn't walk 'proc'");
3499 return (DCMD_ERR);
3500 }
3501
3502 return (DCMD_OK);
3503 }
3504
3505 typedef struct mdb_fd_proc {
3506 struct {
3507 struct {
3508 int fi_nfiles;
3509 uf_entry_t *volatile fi_list;
3510 } u_finfo;
3511 } p_user;
3512 } mdb_fd_proc_t;
3513
3514 /*ARGSUSED*/
3515 static int
3516 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3517 {
3518 int fdnum;
3519 const mdb_arg_t *argp = &argv[0];
3520 mdb_fd_proc_t p;
3521 uf_entry_t uf;
3522
3523 if ((flags & DCMD_ADDRSPEC) == 0) {
3524 mdb_warn("fd doesn't give global information\n");
3525 return (DCMD_ERR);
3526 }
3527 if (argc != 1)
3528 return (DCMD_USAGE);
3529
3530 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3531 fdnum = argp->a_un.a_val;
3532 else
3533 fdnum = mdb_strtoull(argp->a_un.a_str);
3534
3535 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3536 mdb_warn("couldn't read proc_t at %p", addr);
3537 return (DCMD_ERR);
3538 }
3539 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3540 mdb_warn("process %p only has %d files open.\n",
3541 addr, p.p_user.u_finfo.fi_nfiles);
3542 return (DCMD_ERR);
3543 }
3544 if (mdb_vread(&uf, sizeof (uf_entry_t),
3545 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3546 mdb_warn("couldn't read uf_entry_t at %p",
3547 &p.p_user.u_finfo.fi_list[fdnum]);
3548 return (DCMD_ERR);
3549 }
3550
3551 mdb_printf("%p\n", uf.uf_file);
3552 return (DCMD_OK);
3553 }
3554
3555 /*ARGSUSED*/
3556 static int
3557 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3558 {
3559 pid_t pid = (pid_t)addr;
3560
3561 if (argc != 0)
3562 return (DCMD_USAGE);
3563
3564 if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3565 mdb_warn("PID 0t%d not found\n", pid);
3566 return (DCMD_ERR);
3567 }
3568
3569 mdb_printf("%p\n", addr);
3570 return (DCMD_OK);
3571 }
3572
3573 static char *sysfile_cmd[] = {
3574 "exclude:",
3575 "include:",
3576 "forceload:",
3577 "rootdev:",
3578 "rootfs:",
3579 "swapdev:",
3580 "swapfs:",
3581 "moddir:",
3582 "set",
3583 "unknown",
3584 };
3585
3586 static char *sysfile_ops[] = { "", "=", "&", "|" };
3587
3588 /*ARGSUSED*/
3589 static int
3590 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3591 {
3592 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3593 *target = NULL;
3594 return (WALK_DONE);
3595 }
3596 return (WALK_NEXT);
3597 }
3598
3599 /*ARGSUSED*/
3600 static int
3601 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3602 {
3603 struct sysparam *sysp, sys;
3604 char var[256];
3605 char modname[256];
3606 char val[256];
3607 char strval[256];
3608 vmem_t *mod_sysfile_arena;
3609 void *straddr;
3610
3611 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3612 mdb_warn("failed to read sysparam_hd");
3613 return (DCMD_ERR);
3614 }
3615
3616 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3617 mdb_warn("failed to read mod_sysfile_arena");
3618 return (DCMD_ERR);
3619 }
3620
3621 while (sysp != NULL) {
3622 var[0] = '\0';
3623 val[0] = '\0';
3624 modname[0] = '\0';
3625 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3626 mdb_warn("couldn't read sysparam %p", sysp);
3627 return (DCMD_ERR);
3628 }
3629 if (sys.sys_modnam != NULL &&
3630 mdb_readstr(modname, 256,
3631 (uintptr_t)sys.sys_modnam) == -1) {
3632 mdb_warn("couldn't read modname in %p", sysp);
3633 return (DCMD_ERR);
3634 }
3635 if (sys.sys_ptr != NULL &&
3636 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3637 mdb_warn("couldn't read ptr in %p", sysp);
3638 return (DCMD_ERR);
3639 }
3640 if (sys.sys_op != SETOP_NONE) {
3641 /*
3642 * Is this an int or a string? We determine this
3643 * by checking whether straddr is contained in
3644 * mod_sysfile_arena. If so, the walker will set
3645 * straddr to NULL.
3646 */
3647 straddr = (void *)(uintptr_t)sys.sys_info;
3648 if (sys.sys_op == SETOP_ASSIGN &&
3649 sys.sys_info != 0 &&
3650 mdb_pwalk("vmem_seg",
3651 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3652 (uintptr_t)mod_sysfile_arena) == 0 &&
3653 straddr == NULL &&
3654 mdb_readstr(strval, 256,
3655 (uintptr_t)sys.sys_info) != -1) {
3656 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3657 strval);
3658 } else {
3659 (void) mdb_snprintf(val, sizeof (val),
3660 "0x%llx [0t%llu]", sys.sys_info,
3661 sys.sys_info);
3662 }
3663 }
3664 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3665 modname, modname[0] == '\0' ? "" : ":",
3666 var, sysfile_ops[sys.sys_op], val);
3667
3668 sysp = sys.sys_next;
3669 }
3670
3671 return (DCMD_OK);
3672 }
3673
3674 int
3675 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3676 {
3677
3678 if (*didp == thr->t_did) {
3679 mdb_printf("%p\n", addr);
3680 return (WALK_DONE);
3681 } else
3682 return (WALK_NEXT);
3683 }
3684
3685 /*ARGSUSED*/
3686 int
3687 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3688 {
3689 const mdb_arg_t *argp = &argv[0];
3690 kt_did_t did;
3691
3692 if (argc != 1)
3693 return (DCMD_USAGE);
3694
3695 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3696
3697 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3698 mdb_warn("failed to walk thread");
3699 return (DCMD_ERR);
3700
3701 }
3702 return (DCMD_OK);
3703
3704 }
3705
3706 static int
3707 errorq_walk_init(mdb_walk_state_t *wsp)
3708 {
3709 if (wsp->walk_addr == 0 &&
3710 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3711 mdb_warn("failed to read errorq_list");
3712 return (WALK_ERR);
3713 }
3714
3715 return (WALK_NEXT);
3716 }
3717
3718 static int
3719 errorq_walk_step(mdb_walk_state_t *wsp)
3720 {
3721 uintptr_t addr = wsp->walk_addr;
3722 errorq_t eq;
3723
3724 if (addr == 0)
3725 return (WALK_DONE);
3726
3727 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3728 mdb_warn("failed to read errorq at %p", addr);
3729 return (WALK_ERR);
3730 }
3731
3732 wsp->walk_addr = (uintptr_t)eq.eq_next;
3733 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3734 }
3735
3736 typedef struct eqd_walk_data {
3737 uintptr_t *eqd_stack;
3738 void *eqd_buf;
3739 ulong_t eqd_qpos;
3740 ulong_t eqd_qlen;
3741 size_t eqd_size;
3742 } eqd_walk_data_t;
3743
3744 /*
3745 * In order to walk the list of pending error queue elements, we push the
3746 * addresses of the corresponding data buffers in to the eqd_stack array.
3747 * The error lists are in reverse chronological order when iterating using
3748 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3749 * walker client gets addresses in order from oldest error to newest error.
3750 */
3751 static void
3752 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3753 {
3754 errorq_elem_t eqe;
3755
3756 while (addr != 0) {
3757 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3758 mdb_warn("failed to read errorq element at %p", addr);
3759 break;
3760 }
3761
3762 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3763 mdb_warn("errorq is overfull -- more than %lu "
3764 "elems found\n", eqdp->eqd_qlen);
3765 break;
3766 }
3767
3768 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3769 addr = (uintptr_t)eqe.eqe_prev;
3770 }
3771 }
3772
3773 static int
3774 eqd_walk_init(mdb_walk_state_t *wsp)
3775 {
3776 eqd_walk_data_t *eqdp;
3777 errorq_elem_t eqe, *addr;
3778 errorq_t eq;
3779 ulong_t i;
3780
3781 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3782 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3783 return (WALK_ERR);
3784 }
3785
3786 if (eq.eq_ptail != NULL &&
3787 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3788 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3789 return (WALK_ERR);
3790 }
3791
3792 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3793 wsp->walk_data = eqdp;
3794
3795 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3796 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3797 eqdp->eqd_qlen = eq.eq_qlen;
3798 eqdp->eqd_qpos = 0;
3799 eqdp->eqd_size = eq.eq_size;
3800
3801 /*
3802 * The newest elements in the queue are on the pending list, so we
3803 * push those on to our stack first.
3804 */
3805 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3806
3807 /*
3808 * If eq_ptail is set, it may point to a subset of the errors on the
3809 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3810 * data is already in our stack, NULL out eq_ptail and ignore it.
3811 */
3812 if (eq.eq_ptail != NULL) {
3813 for (i = 0; i < eqdp->eqd_qpos; i++) {
3814 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3815 eq.eq_ptail = NULL;
3816 break;
3817 }
3818 }
3819 }
3820
3821 /*
3822 * If eq_phead is set, it has the processing list in order from oldest
3823 * to newest. Use this to recompute eq_ptail as best we can and then
3824 * we nicely fall into eqd_push_list() of eq_ptail below.
3825 */
3826 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3827 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3828 eq.eq_ptail = addr;
3829
3830 /*
3831 * The oldest elements in the queue are on the processing list, subject
3832 * to machinations in the if-clauses above. Push any such elements.
3833 */
3834 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3835 return (WALK_NEXT);
3836 }
3837
3838 static int
3839 eqd_walk_step(mdb_walk_state_t *wsp)
3840 {
3841 eqd_walk_data_t *eqdp = wsp->walk_data;
3842 uintptr_t addr;
3843
3844 if (eqdp->eqd_qpos == 0)
3845 return (WALK_DONE);
3846
3847 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3848
3849 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3850 mdb_warn("failed to read errorq data at %p", addr);
3851 return (WALK_ERR);
3852 }
3853
3854 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3855 }
3856
3857 static void
3858 eqd_walk_fini(mdb_walk_state_t *wsp)
3859 {
3860 eqd_walk_data_t *eqdp = wsp->walk_data;
3861
3862 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3863 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3864 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3865 }
3866
3867 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3868
3869 static int
3870 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3871 {
3872 int i;
3873 errorq_t eq;
3874 uint_t opt_v = FALSE;
3875
3876 if (!(flags & DCMD_ADDRSPEC)) {
3877 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3878 mdb_warn("can't walk 'errorq'");
3879 return (DCMD_ERR);
3880 }
3881 return (DCMD_OK);
3882 }
3883
3884 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3885 argc -= i;
3886 argv += i;
3887
3888 if (argc != 0)
3889 return (DCMD_USAGE);
3890
3891 if (opt_v || DCMD_HDRSPEC(flags)) {
3892 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3893 "ADDR", "NAME", "S", "V", "N");
3894 if (!opt_v) {
3895 mdb_printf("%7s %7s %7s%</u>\n",
3896 "ACCEPT", "DROP", "LOG");
3897 } else {
3898 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3899 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3900 }
3901 }
3902
3903 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3904 mdb_warn("failed to read errorq at %p", addr);
3905 return (DCMD_ERR);
3906 }
3907
3908 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3909 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3910 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3911 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3912
3913 if (!opt_v) {
3914 mdb_printf("%7llu %7llu %7llu\n",
3915 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3916 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3917 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3918 } else {
3919 mdb_printf("%5s %6lu %6lu %3u %a\n",
3920 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3921 mdb_printf("%38s\n%41s"
3922 "%12s %llu\n"
3923 "%53s %llu\n"
3924 "%53s %llu\n"
3925 "%53s %llu\n"
3926 "%53s %llu\n"
3927 "%53s %llu\n"
3928 "%53s %llu\n"
3929 "%53s %llu\n\n",
3930 "|", "+-> ",
3931 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
3932 "DROPPED", EQKSVAL(eq, eqk_dropped),
3933 "LOGGED", EQKSVAL(eq, eqk_logged),
3934 "RESERVED", EQKSVAL(eq, eqk_reserved),
3935 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
3936 "COMMITTED", EQKSVAL(eq, eqk_committed),
3937 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
3938 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
3939 }
3940
3941 return (DCMD_OK);
3942 }
3943
3944 /*ARGSUSED*/
3945 static int
3946 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3947 {
3948 cpu_t panic_cpu;
3949 kthread_t *panic_thread;
3950 void *buf;
3951 panic_data_t *pd;
3952 int i, n;
3953
3954 if (!mdb_prop_postmortem) {
3955 mdb_warn("panicinfo can only be run on a system "
3956 "dump; see dumpadm(1M)\n");
3957 return (DCMD_ERR);
3958 }
3959
3960 if (flags & DCMD_ADDRSPEC || argc != 0)
3961 return (DCMD_USAGE);
3962
3963 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3964 mdb_warn("failed to read 'panic_cpu'");
3965 else
3966 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3967
3968 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3969 mdb_warn("failed to read 'panic_thread'");
3970 else
3971 mdb_printf("%16s %?p\n", "thread", panic_thread);
3972
3973 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3974 pd = (panic_data_t *)buf;
3975
3976 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3977 pd->pd_version != PANICBUFVERS) {
3978 mdb_warn("failed to read 'panicbuf'");
3979 mdb_free(buf, PANICBUFSIZE);
3980 return (DCMD_ERR);
3981 }
3982
3983 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
3984
3985 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3986 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3987
3988 for (i = 0; i < n; i++)
3989 mdb_printf("%16s %?llx\n",
3990 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3991
3992 mdb_free(buf, PANICBUFSIZE);
3993 return (DCMD_OK);
3994 }
3995
3996 /*
3997 * ::time dcmd, which will print a hires timestamp of when we entered the
3998 * debugger, or the lbolt value if used with the -l option.
3999 *
4000 */
4001 /*ARGSUSED*/
4002 static int
4003 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4004 {
4005 uint_t opt_dec = FALSE;
4006 uint_t opt_lbolt = FALSE;
4007 uint_t opt_hex = FALSE;
4008 const char *fmt;
4009 hrtime_t result;
4010
4011 if (mdb_getopts(argc, argv,
4012 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4013 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4014 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4015 NULL) != argc)
4016 return (DCMD_USAGE);
4017
4018 if (opt_dec && opt_hex)
4019 return (DCMD_USAGE);
4020
4021 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4022 fmt =
4023 opt_hex ? "0x%llx\n" :
4024 opt_dec ? "0t%lld\n" : "%#llr\n";
4025
4026 mdb_printf(fmt, result);
4027 return (DCMD_OK);
4028 }
4029
4030 void
4031 time_help(void)
4032 {
4033 mdb_printf("Prints the system time in nanoseconds.\n\n"
4034 "::time will return the timestamp at which we dropped into, \n"
4035 "if called from, kmdb(1); the core dump's high resolution \n"
4036 "time if inspecting one; or the running hires time if we're \n"
4037 "looking at a live system.\n\n"
4038 "Switches:\n"
4039 " -d report times in decimal\n"
4040 " -l prints the number of clock ticks since system boot\n"
4041 " -x report times in hexadecimal\n");
4042 }
4043
4044 static const mdb_dcmd_t dcmds[] = {
4045
4046 /* from genunix.c */
4047 { "as2proc", ":", "convert as to proc_t address", as2proc },
4048 { "binding_hash_entry", ":", "print driver names hash table entry",
4049 binding_hash_entry },
4050 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4051 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4052 " [-FivVA]",
4053 "display callouts", callout, callout_help },
4054 { "calloutid", "[-d|v] xid", "print callout by extended id",
4055 calloutid, calloutid_help },
4056 { "class", NULL, "print process scheduler classes", class },
4057 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4058 { "did2thread", "? kt_did", "find kernel thread for this id",
4059 did2thread },
4060 { "errorq", "?[-v]", "display kernel error queues", errorq },
4061 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
4062 { "flipone", ":", "the vik_rev_level 2 special", flipone },
4063 { "lminfo", NULL, "print lock manager information", lminfo },
4064 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4065 { "panicinfo", NULL, "print panic information", panicinfo },
4066 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4067 { "project", NULL, "display kernel project(s)", project },
4068 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
4069 { "pflags", NULL, "display various proc_t flags", pflags },
4070 { "pgrep", "[-x] [-n | -o] pattern",
4071 "pattern match against all processes", pgrep },
4072 { "ptree", NULL, "print process tree", ptree },
4073 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4074 sysevent},
4075 { "sysevent_channel", "?", "print sysevent channel database",
4076 sysevent_channel},
4077 { "sysevent_class_list", ":", "print sysevent class list",
4078 sysevent_class_list},
4079 { "sysevent_subclass_list", ":",
4080 "print sysevent subclass list", sysevent_subclass_list},
4081 { "system", NULL, "print contents of /etc/system file", sysfile },
4082 { "task", NULL, "display kernel task(s)", task },
4083 { "time", "[-dlx]", "display system time", time, time_help },
4084 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4085 { "whereopen", ":", "given a vnode, dumps procs which have it open",
4086 whereopen },
4087
4088 /* from bio.c */
4089 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4090
4091 /* from bitset.c */
4092 { "bitset", ":", "display a bitset", bitset, bitset_help },
4093
4094 /* from contract.c */
4095 { "contract", "?", "display a contract", cmd_contract },
4096 { "ctevent", ":", "display a contract event", cmd_ctevent },
4097 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4098
4099 /* from cpupart.c */
4100 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
4101
4102 /* from cred.c */
4103 { "cred", ":[-v]", "display a credential", cmd_cred },
4104 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4105 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4106 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4107
4108 /* from cyclic.c */
4109 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
4110 { "cycid", "?", "dump a cyclic id", cycid },
4111 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4112 { "cyclic", ":", "developer information", cyclic },
4113 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4114
4115 /* from damap.c */
4116 { "damap", ":", "display a damap_t", damap, damap_help },
4117
4118 /* from ddi_periodic.c */
4119 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4120
4121 /* from devinfo.c */
4122 { "devbindings", "?[-qs] [device-name | major-num]",
4123 "print devinfo nodes bound to device-name or major-num",
4124 devbindings, devinfo_help },
4125 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node",
4126 devinfo, devinfo_help },
4127 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4128 devinfo_audit },
4129 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4130 devinfo_audit_log },
4131 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4132 devinfo_audit_node },
4133 { "devinfo2driver", ":", "find driver name for this devinfo node",
4134 devinfo2driver },
4135 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
4136 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
4137 dev2major },
4138 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4139 dev2minor },
4140 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4141 devt },
4142 { "major2name", "?<major-num>", "convert major number to dev name",
4143 major2name },
4144 { "minornodes", ":", "given a devinfo node, print its minor nodes",
4145 minornodes },
4146 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
4147 modctl2devinfo },
4148 { "name2major", "<dev-name>", "convert dev name to major number",
4149 name2major },
4150 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree",
4151 prtconf, prtconf_help },
4152 { "softstate", ":<instance>", "retrieve soft-state pointer",
4153 softstate },
4154 { "devinfo_fm", ":", "devinfo fault managment configuration",
4155 devinfo_fm },
4156 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
4157 devinfo_fmce},
4158
4159 /* from findstack.c */
4160 { "findstack", ":[-v]", "find kernel thread stack", findstack },
4161 { "findstack_debug", NULL, "toggle findstack debugging",
4162 findstack_debug },
4163 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4164 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
4165 "print unique kernel thread stacks",
4166 stacks, stacks_help },
4167
4168 /* from fm.c */
4169 { "ereport", "[-v]", "print ereports logged in dump",
4170 ereport },
4171
4172 /* from group.c */
4173 { "group", "?[-q]", "display a group", group},
4174
4175 /* from hotplug.c */
4176 { "hotplug", "?[-p]", "display a registered hotplug attachment",
4177 hotplug, hotplug_help },
4178
4179 /* from irm.c */
4180 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4181 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4182 irmreqs_dcmd },
4183 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4184
4185 /* from kgrep.c + genunix.c */
4186 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4187 kgrep_help },
4188
4189 /* from kmem.c */
4190 { "allocdby", ":", "given a thread, print its allocated buffers",
4191 allocdby },
4192 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4193 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4194 { "freedby", ":", "given a thread, print its freed buffers", freedby },
4195 { "kmalog", "?[ fail | slab ]",
4196 "display kmem transaction log and stack traces", kmalog },
4197 { "kmastat", "[-kmg]", "kernel memory allocator stats",
4198 kmastat },
4199 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4200 "of the kmem allocator", kmausers, kmausers_help },
4201 { "kmem_cache", "?[-n name]",
4202 "print kernel memory caches", kmem_cache, kmem_cache_help},
4203 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4204 "[-B minbinsize]", "display slab usage per kmem cache",
4205 kmem_slabs, kmem_slabs_help },
4206 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4207 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4208 { "kmem_verify", "?", "check integrity of kmem-managed memory",
4209 kmem_verify },
4210 { "vmem", "?", "print a vmem_t", vmem },
4211 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4212 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
4213 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4214 { "whatthread", ":[-v]", "print threads whose stack contains the "
4215 "given address", whatthread },
4216
4217 /* from ldi.c */
4218 { "ldi_handle", "?[-i]", "display a layered driver handle",
4219 ldi_handle, ldi_handle_help },
4220 { "ldi_ident", NULL, "display a layered driver identifier",
4221 ldi_ident, ldi_ident_help },
4222
4223 /* from leaky.c + leaky_subr.c */
4224 { "findleaks", FINDLEAKS_USAGE,
4225 "search for potential kernel memory leaks", findleaks,
4226 findleaks_help },
4227
4228 /* from lgrp.c */
4229 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4230 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4231
4232 /* from log.c */
4233 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4234
4235 /* from mdi.c */
4236 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4237 "and detailed pi_prop list", mdipi },
4238 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4239 mdiprops },
4240 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4241 "list all paths", mdiphci },
4242 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4243 "all phcis", mdivhci },
4244 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4245 "client links", mdiclient_paths },
4246 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4247 "phci links", mdiphci_paths },
4248 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4249 mdiphcis },
4250
4251 /* from memory.c */
4252 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4253 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4254 { "memstat", NULL, "display memory usage summary", memstat },
4255 { "page", "?", "display a summarized page_t", page },
4256 { "pagelookup", "?[-v vp] [-o offset]",
4257 "find the page_t with the name {vp, offset}",
4258 pagelookup, pagelookup_help },
4259 { "page_num2pp", ":", "find the page_t for a given page frame number",
4260 page_num2pp },
4261 { "pmap", ":[-q]", "print process memory map", pmap },
4262 { "seg", ":", "print address space segment", seg },
4263 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4264 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4265
4266 /* from mmd.c */
4267 { "multidata", ":[-sv]", "display a summarized multidata_t",
4268 multidata },
4269 { "pattbl", ":", "display a summarized multidata attribute table",
4270 pattbl },
4271 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4272 pattr2multidata },
4273 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4274 pdesc2slab },
4275 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4276 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4277 slab2multidata },
4278
4279 /* from modhash.c */
4280 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4281 "display information about one or all mod_hash structures",
4282 modhash, modhash_help },
4283 { "modent", ":[-k | -v | -t type]",
4284 "display information about a mod_hash_entry", modent,
4285 modent_help },
4286
4287 /* from net.c */
4288 { "dladm", "?<sub-command> [flags]", "show data link information",
4289 dladm, dladm_help },
4290 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4291 mi },
4292 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4293 "show network statistics", netstat },
4294 { "sonode", "?[-f inet | inet6 | unix | #] "
4295 "[-t stream | dgram | raw | #] [-p #]",
4296 "filter and display sonode", sonode },
4297
4298 /* from netstack.c */
4299 { "netstack", "", "show stack instances", netstack },
4300 { "netstackid2netstack", ":",
4301 "translate a netstack id to its netstack_t",
4302 netstackid2netstack },
4303
4304 /* from nvpair.c */
4305 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4306 nvpair_print },
4307 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4308 print_nvlist },
4309
4310 /* from pg.c */
4311 { "pg", "?[-q]", "display a pg", pg},
4312
4313 /* from rctl.c */
4314 { "rctl_dict", "?", "print systemwide default rctl definitions",
4315 rctl_dict },
4316 { "rctl_list", ":[handle]", "print rctls for the given proc",
4317 rctl_list },
4318 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4319 rctl },
4320 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4321 "sequence", rctl_validate },
4322
4323 /* from sobj.c */
4324 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4325 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4326 mutex_help },
4327 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4328 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4329 { "turnstile", "?", "display a turnstile", turnstile },
4330
4331 /* from stream.c */
4332 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4333 "print an mblk", mblk_prt, mblk_help },
4334 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4335 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4336 mblk2dblk },
4337 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4338 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4339 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4340 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4341 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4342 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4343 "filter and display STREAM queue", queue, queue_help },
4344 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4345 "filter and display STREAM head", stdata, stdata_help },
4346 { "str2mate", ":", "print mate of this stream", str2mate },
4347 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4348 { "stream", ":", "display STREAM", stream },
4349 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4350 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4351 "filter and display STREAM sync queue", syncq, syncq_help },
4352 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4353
4354 /* from taskq.c */
4355 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4356 "display a taskq", taskq, taskq_help },
4357 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4358
4359 /* from thread.c */
4360 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4361 thread_help },
4362 { "threadlist", "?[-t] [-v [count]]",
4363 "display threads and associated C stack traces", threadlist,
4364 threadlist_help },
4365 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4366 stackinfo_help },
4367
4368 /* from tsd.c */
4369 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4370 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4371
4372 /*
4373 * typegraph does not work under kmdb, as it requires too much memory
4374 * for its internal data structures.
4375 */
4376 #ifndef _KMDB
4377 /* from typegraph.c */
4378 { "findlocks", ":", "find locks held by specified thread", findlocks },
4379 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4380 findfalse },
4381 { "typegraph", NULL, "build type graph", typegraph },
4382 { "istype", ":type", "manually set object type", istype },
4383 { "notype", ":", "manually clear object type", notype },
4384 { "whattype", ":", "determine object type", whattype },
4385 #endif
4386
4387 /* from vfs.c */
4388 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4389 { "pfiles", ":[-fp]", "print process file information", pfiles,
4390 pfiles_help },
4391
4392 /* from zone.c */
4393 { "zid2zone", ":", "find the zone_t with the given zone id",
4394 zid2zone },
4395 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4396 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4397 "selected zones", zsd },
4398
4399 #ifndef _KMDB
4400 { "gcore", NULL, "generate a user core for the given process",
4401 gcore_dcmd },
4402 #endif
4403
4404 { NULL }
4405 };
4406
4407 static const mdb_walker_t walkers[] = {
4408
4409 /* from genunix.c */
4410 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4411 callout_walk_init, callout_walk_step, callout_walk_fini,
4412 (void *)CALLOUT_WALK_BYLIST },
4413 { "callouts_byid", "walk callouts by id hash chain",
4414 callout_walk_init, callout_walk_step, callout_walk_fini,
4415 (void *)CALLOUT_WALK_BYID },
4416 { "callout_list", "walk a callout list", callout_list_walk_init,
4417 callout_list_walk_step, callout_list_walk_fini },
4418 { "callout_table", "walk callout table array", callout_table_walk_init,
4419 callout_table_walk_step, callout_table_walk_fini },
4420 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4421 { "dnlc", "walk dnlc entries",
4422 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4423 { "ereportq_dump", "walk list of ereports in dump error queue",
4424 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4425 { "ereportq_pend", "walk list of ereports in pending error queue",
4426 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4427 { "errorq", "walk list of system error queues",
4428 errorq_walk_init, errorq_walk_step, NULL },
4429 { "errorq_data", "walk pending error queue data buffers",
4430 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4431 { "allfile", "given a proc pointer, list all file pointers",
4432 file_walk_init, allfile_walk_step, file_walk_fini },
4433 { "file", "given a proc pointer, list of open file pointers",
4434 file_walk_init, file_walk_step, file_walk_fini },
4435 { "lock_descriptor", "walk lock_descriptor_t structures",
4436 ld_walk_init, ld_walk_step, NULL },
4437 { "lock_graph", "walk lock graph",
4438 lg_walk_init, lg_walk_step, NULL },
4439 { "port", "given a proc pointer, list of created event ports",
4440 port_walk_init, port_walk_step, NULL },
4441 { "portev", "given a port pointer, list of events in the queue",
4442 portev_walk_init, portev_walk_step, portev_walk_fini },
4443 { "proc", "list of active proc_t structures",
4444 proc_walk_init, proc_walk_step, proc_walk_fini },
4445 { "projects", "walk a list of kernel projects",
4446 project_walk_init, project_walk_step, NULL },
4447 { "sysevent_pend", "walk sysevent pending queue",
4448 sysevent_pend_walk_init, sysevent_walk_step,
4449 sysevent_walk_fini},
4450 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4451 sysevent_walk_step, sysevent_walk_fini},
4452 { "sysevent_channel", "walk sysevent channel subscriptions",
4453 sysevent_channel_walk_init, sysevent_channel_walk_step,
4454 sysevent_channel_walk_fini},
4455 { "sysevent_class_list", "walk sysevent subscription's class list",
4456 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4457 sysevent_class_list_walk_fini},
4458 { "sysevent_subclass_list",
4459 "walk sysevent subscription's subclass list",
4460 sysevent_subclass_list_walk_init,
4461 sysevent_subclass_list_walk_step,
4462 sysevent_subclass_list_walk_fini},
4463 { "task", "given a task pointer, walk its processes",
4464 task_walk_init, task_walk_step, NULL },
4465
4466 /* from avl.c */
4467 { AVL_WALK_NAME, AVL_WALK_DESC,
4468 avl_walk_init, avl_walk_step, avl_walk_fini },
4469
4470 /* from bio.c */
4471 { "buf", "walk the bio buf hash",
4472 buf_walk_init, buf_walk_step, buf_walk_fini },
4473
4474 /* from contract.c */
4475 { "contract", "walk all contracts, or those of the specified type",
4476 ct_walk_init, generic_walk_step, NULL },
4477 { "ct_event", "walk events on a contract event queue",
4478 ct_event_walk_init, generic_walk_step, NULL },
4479 { "ct_listener", "walk contract event queue listeners",
4480 ct_listener_walk_init, generic_walk_step, NULL },
4481
4482 /* from cpupart.c */
4483 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4484 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4485 NULL },
4486 { "cpupart_walk", "walk the set of cpu partitions",
4487 cpupart_walk_init, cpupart_walk_step, NULL },
4488
4489 /* from ctxop.c */
4490 { "ctxop", "walk list of context ops on a thread",
4491 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4492
4493 /* from cyclic.c */
4494 { "cyccpu", "walk per-CPU cyc_cpu structures",
4495 cyccpu_walk_init, cyccpu_walk_step, NULL },
4496 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4497 cycomni_walk_init, cycomni_walk_step, NULL },
4498 { "cyctrace", "walk cyclic trace buffer",
4499 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4500
4501 /* from devinfo.c */
4502 { "binding_hash", "walk all entries in binding hash table",
4503 binding_hash_walk_init, binding_hash_walk_step, NULL },
4504 { "devinfo", "walk devinfo tree or subtree",
4505 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4506 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4507 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4508 devinfo_audit_log_walk_fini},
4509 { "devinfo_audit_node", "walk per-devinfo audit history",
4510 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4511 devinfo_audit_node_walk_fini},
4512 { "devinfo_children", "walk children of devinfo node",
4513 devinfo_children_walk_init, devinfo_children_walk_step,
4514 devinfo_children_walk_fini },
4515 { "devinfo_parents", "walk ancestors of devinfo node",
4516 devinfo_parents_walk_init, devinfo_parents_walk_step,
4517 devinfo_parents_walk_fini },
4518 { "devinfo_siblings", "walk siblings of devinfo node",
4519 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4520 { "devi_next", "walk devinfo list",
4521 NULL, devi_next_walk_step, NULL },
4522 { "devnames", "walk devnames array",
4523 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4524 { "minornode", "given a devinfo node, walk minor nodes",
4525 minornode_walk_init, minornode_walk_step, NULL },
4526 { "softstate",
4527 "given an i_ddi_soft_state*, list all in-use driver stateps",
4528 soft_state_walk_init, soft_state_walk_step,
4529 NULL, NULL },
4530 { "softstate_all",
4531 "given an i_ddi_soft_state*, list all driver stateps",
4532 soft_state_walk_init, soft_state_all_walk_step,
4533 NULL, NULL },
4534 { "devinfo_fmc",
4535 "walk a fault management handle cache active list",
4536 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4537
4538 /* from group.c */
4539 { "group", "walk all elements of a group",
4540 group_walk_init, group_walk_step, NULL },
4541
4542 /* from irm.c */
4543 { "irmpools", "walk global list of interrupt pools",
4544 irmpools_walk_init, list_walk_step, list_walk_fini },
4545 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4546 irmreqs_walk_init, list_walk_step, list_walk_fini },
4547
4548 /* from kmem.c */
4549 { "allocdby", "given a thread, walk its allocated bufctls",
4550 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4551 { "bufctl", "walk a kmem cache's bufctls",
4552 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4553 { "bufctl_history", "walk the available history of a bufctl",
4554 bufctl_history_walk_init, bufctl_history_walk_step,
4555 bufctl_history_walk_fini },
4556 { "freedby", "given a thread, walk its freed bufctls",
4557 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4558 { "freectl", "walk a kmem cache's free bufctls",
4559 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4560 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4561 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4562 { "freemem", "walk a kmem cache's free memory",
4563 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4564 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4565 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4566 { "kmem", "walk a kmem cache",
4567 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4568 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4569 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4570 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4571 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4572 { "kmem_log", "walk the kmem transaction log",
4573 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4574 { "kmem_slab", "given a kmem cache, walk its slabs",
4575 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4576 { "kmem_slab_partial",
4577 "given a kmem cache, walk its partially allocated slabs (min 1)",
4578 kmem_slab_walk_partial_init, combined_walk_step,
4579 combined_walk_fini },
4580 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4581 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4582 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4583 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4584 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4585 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4586 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4587 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4588 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4589 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4590 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4591 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4592
4593 /* from ldi.c */
4594 { "ldi_handle", "walk the layered driver handle hash",
4595 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4596 { "ldi_ident", "walk the layered driver identifier hash",
4597 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4598
4599 /* from leaky.c + leaky_subr.c */
4600 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4601 "stack trace",
4602 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4603 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4604 "leaks w/ same stack trace",
4605 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4606
4607 /* from lgrp.c */
4608 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4609 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4610 { "lgrptbl", "walk lgroup table",
4611 lgrp_walk_init, lgrp_walk_step, NULL },
4612 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4613 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4614 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4615 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4616 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4617 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4618
4619 /* from list.c */
4620 { LIST_WALK_NAME, LIST_WALK_DESC,
4621 list_walk_init, list_walk_step, list_walk_fini },
4622
4623 /* from mdi.c */
4624 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4625 mdi_pi_client_link_walk_init,
4626 mdi_pi_client_link_walk_step,
4627 mdi_pi_client_link_walk_fini },
4628 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4629 mdi_pi_phci_link_walk_init,
4630 mdi_pi_phci_link_walk_step,
4631 mdi_pi_phci_link_walk_fini },
4632 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4633 mdi_phci_ph_next_walk_init,
4634 mdi_phci_ph_next_walk_step,
4635 mdi_phci_ph_next_walk_fini },
4636
4637 /* from memory.c */
4638 { "allpages", "walk all pages, including free pages",
4639 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4640 { "anon", "given an amp, list allocated anon structures",
4641 anon_walk_init, anon_walk_step, anon_walk_fini,
4642 ANON_WALK_ALLOC },
4643 { "anon_all", "given an amp, list contents of all anon slots",
4644 anon_walk_init, anon_walk_step, anon_walk_fini,
4645 ANON_WALK_ALL },
4646 { "memlist", "walk specified memlist",
4647 NULL, memlist_walk_step, NULL },
4648 { "page", "walk all pages, or those from the specified vnode",
4649 page_walk_init, page_walk_step, page_walk_fini },
4650 { "seg", "given an as, list of segments",
4651 seg_walk_init, avl_walk_step, avl_walk_fini },
4652 { "segvn_anon",
4653 "given a struct segvn_data, list allocated anon structures",
4654 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4655 ANON_WALK_ALLOC },
4656 { "segvn_anon_all",
4657 "given a struct segvn_data, list contents of all anon slots",
4658 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4659 ANON_WALK_ALL },
4660 { "segvn_pages",
4661 "given a struct segvn_data, list resident pages in "
4662 "offset order",
4663 segvn_pages_walk_init, segvn_pages_walk_step,
4664 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4665 { "segvn_pages_all",
4666 "for each offset in a struct segvn_data, give page_t pointer "
4667 "(if resident), or NULL.",
4668 segvn_pages_walk_init, segvn_pages_walk_step,
4669 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4670 { "swapinfo", "walk swapinfo structures",
4671 swap_walk_init, swap_walk_step, NULL },
4672
4673 /* from mmd.c */
4674 { "pattr", "walk pattr_t structures", pattr_walk_init,
4675 mmdq_walk_step, mmdq_walk_fini },
4676 { "pdesc", "walk pdesc_t structures",
4677 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4678 { "pdesc_slab", "walk pdesc_slab_t structures",
4679 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4680
4681 /* from modhash.c */
4682 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4683 modhash_walk_step, NULL },
4684 { "modent", "walk list of entries in a given mod_hash",
4685 modent_walk_init, modent_walk_step, modent_walk_fini },
4686 { "modchain", "walk list of entries in a given mod_hash_entry",
4687 NULL, modchain_walk_step, NULL },
4688
4689 /* from net.c */
4690 { "icmp", "walk ICMP control structures using MI for all stacks",
4691 mi_payload_walk_init, mi_payload_walk_step, NULL,
4692 &mi_icmp_arg },
4693 { "mi", "given a MI_O, walk the MI",
4694 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4695 { "sonode", "given a sonode, walk its children",
4696 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4697 { "icmp_stacks", "walk all the icmp_stack_t",
4698 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4699 { "tcp_stacks", "walk all the tcp_stack_t",
4700 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4701 { "udp_stacks", "walk all the udp_stack_t",
4702 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4703
4704 /* from netstack.c */
4705 { "netstack", "walk a list of kernel netstacks",
4706 netstack_walk_init, netstack_walk_step, NULL },
4707
4708 /* from nvpair.c */
4709 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4710 nvpair_walk_init, nvpair_walk_step, NULL },
4711
4712 /* from pci.c */
4713 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init,
4714 pcie_bus_walk_step, NULL },
4715
4716 /* from rctl.c */
4717 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4718 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4719 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4720 rctl_set_walk_step, NULL },
4721 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4722 rctl_val_walk_init, rctl_val_walk_step },
4723
4724 /* from sobj.c */
4725 { "blocked", "walk threads blocked on a given sobj",
4726 blocked_walk_init, blocked_walk_step, NULL },
4727 { "wchan", "given a wchan, list of blocked threads",
4728 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4729
4730 /* from stream.c */
4731 { "b_cont", "walk mblk_t list using b_cont",
4732 mblk_walk_init, b_cont_step, mblk_walk_fini },
4733 { "b_next", "walk mblk_t list using b_next",
4734 mblk_walk_init, b_next_step, mblk_walk_fini },
4735 { "qlink", "walk queue_t list using q_link",
4736 queue_walk_init, queue_link_step, queue_walk_fini },
4737 { "qnext", "walk queue_t list using q_next",
4738 queue_walk_init, queue_next_step, queue_walk_fini },
4739 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4740 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4741 { "readq", "walk read queue side of stdata",
4742 str_walk_init, strr_walk_step, str_walk_fini },
4743 { "writeq", "walk write queue side of stdata",
4744 str_walk_init, strw_walk_step, str_walk_fini },
4745
4746 /* from taskq.c */
4747 { "taskq_thread", "given a taskq_t, list all of its threads",
4748 taskq_thread_walk_init,
4749 taskq_thread_walk_step,
4750 taskq_thread_walk_fini },
4751 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4752 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4753
4754 /* from thread.c */
4755 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4756 deathrow_walk_init, deathrow_walk_step, NULL },
4757 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4758 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4759 { "cpupart_dispq",
4760 "given a cpupart_t, walk threads in dispatcher queues",
4761 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4762 { "lwp_deathrow", "walk lwp_deathrow",
4763 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4764 { "thread", "global or per-process kthread_t structures",
4765 thread_walk_init, thread_walk_step, thread_walk_fini },
4766 { "thread_deathrow", "walk threads on thread_deathrow",
4767 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4768
4769 /* from tsd.c */
4770 { "tsd", "walk list of thread-specific data",
4771 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4772
4773 /* from tsol.c */
4774 { "tnrh", "walk remote host cache structures",
4775 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4776 { "tnrhtp", "walk remote host template structures",
4777 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4778
4779 /*
4780 * typegraph does not work under kmdb, as it requires too much memory
4781 * for its internal data structures.
4782 */
4783 #ifndef _KMDB
4784 /* from typegraph.c */
4785 { "typeconflict", "walk buffers with conflicting type inferences",
4786 typegraph_walk_init, typeconflict_walk_step },
4787 { "typeunknown", "walk buffers with unknown types",
4788 typegraph_walk_init, typeunknown_walk_step },
4789 #endif
4790
4791 /* from vfs.c */
4792 { "vfs", "walk file system list",
4793 vfs_walk_init, vfs_walk_step },
4794
4795 /* from zone.c */
4796 { "zone", "walk a list of kernel zones",
4797 zone_walk_init, zone_walk_step, NULL },
4798 { "zsd", "walk list of zsd entries for a zone",
4799 zsd_walk_init, zsd_walk_step, NULL },
4800
4801 { NULL }
4802 };
4803
4804 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4805
4806 /*ARGSUSED*/
4807 static void
4808 genunix_statechange_cb(void *ignored)
4809 {
4810 /*
4811 * Force ::findleaks and ::stacks to let go any cached state.
4812 */
4813 leaky_cleanup(1);
4814 stacks_cleanup(1);
4815
4816 kmem_statechange(); /* notify kmem */
4817 }
4818
4819 const mdb_modinfo_t *
4820 _mdb_init(void)
4821 {
4822 kmem_init();
4823
4824 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4825 genunix_statechange_cb, NULL);
4826
4827 #ifndef _KMDB
4828 gcore_init();
4829 #endif
4830
4831 return (&modinfo);
4832 }
4833
4834 void
4835 _mdb_fini(void)
4836 {
4837 leaky_cleanup(1);
4838 stacks_cleanup(1);
4839 }