1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28 #include <mdb/mdb_param.h>
29 #include <mdb/mdb_modapi.h>
30 #include <mdb/mdb_ks.h>
31 #include <mdb/mdb_ctf.h>
32
33 #include <sys/types.h>
34 #include <sys/thread.h>
35 #include <sys/session.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/var.h>
39 #include <sys/t_lock.h>
40 #include <sys/callo.h>
41 #include <sys/priocntl.h>
42 #include <sys/class.h>
43 #include <sys/regset.h>
44 #include <sys/stack.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vnode.h>
47 #include <sys/vfs.h>
48 #include <sys/flock_impl.h>
49 #include <sys/kmem_impl.h>
50 #include <sys/vmem_impl.h>
51 #include <sys/kstat.h>
52 #include <sys/dditypes.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/sysmacros.h>
55 #include <sys/sysconf.h>
56 #include <sys/task.h>
57 #include <sys/project.h>
58 #include <sys/errorq_impl.h>
59 #include <sys/cred_impl.h>
60 #include <sys/zone.h>
61 #include <sys/panic.h>
62 #include <regex.h>
63 #include <sys/port_impl.h>
64 #include <sys/contract/process_impl.h>
65
66 #include "avl.h"
67 #include "bio.h"
68 #include "bitset.h"
69 #include "combined.h"
70 #include "contract.h"
71 #include "cpupart_mdb.h"
72 #include "cred.h"
73 #include "ctxop.h"
74 #include "cyclic.h"
75 #include "damap.h"
76 #include "ddi_periodic.h"
77 #include "devinfo.h"
78 #include "dnlc.h"
79 #include "findstack.h"
80 #include "fm.h"
81 #include "gcore.h"
82 #include "group.h"
83 #include "irm.h"
84 #include "kgrep.h"
85 #include "kmem.h"
86 #include "ldi.h"
87 #include "leaky.h"
88 #include "lgrp.h"
89 #include "list.h"
90 #include "log.h"
91 #include "mdi.h"
92 #include "memory.h"
93 #include "mmd.h"
94 #include "modhash.h"
95 #include "ndievents.h"
96 #include "net.h"
97 #include "netstack.h"
98 #include "nvpair.h"
99 #include "pci.h"
100 #include "pg.h"
101 #include "rctl.h"
102 #include "sobj.h"
103 #include "streams.h"
104 #include "sysevent.h"
105 #include "taskq.h"
106 #include "thread.h"
107 #include "tsd.h"
108 #include "tsol.h"
109 #include "typegraph.h"
110 #include "vfs.h"
111 #include "zone.h"
112 #include "hotplug.h"
113
114 /*
115 * Surely this is defined somewhere...
116 */
117 #define NINTR 16
118
119 #define KILOS 10
120 #define MEGS 20
121 #define GIGS 30
122
123 #ifndef STACK_BIAS
124 #define STACK_BIAS 0
125 #endif
126
127 static char
128 pstat2ch(uchar_t state)
129 {
130 switch (state) {
131 case SSLEEP: return ('S');
132 case SRUN: return ('R');
133 case SZOMB: return ('Z');
134 case SIDL: return ('I');
135 case SONPROC: return ('O');
136 case SSTOP: return ('T');
137 case SWAIT: return ('W');
138 default: return ('?');
139 }
140 }
141
142 #define PS_PRTTHREADS 0x1
143 #define PS_PRTLWPS 0x2
144 #define PS_PSARGS 0x4
145 #define PS_TASKS 0x8
146 #define PS_PROJECTS 0x10
147 #define PS_ZONES 0x20
148 #define PS_SERVICES 0x40
149
150 static int
151 ps_threadprint(uintptr_t addr, const void *data, void *private)
152 {
153 const kthread_t *t = (const kthread_t *)data;
154 uint_t prt_flags = *((uint_t *)private);
155
156 static const mdb_bitmask_t t_state_bits[] = {
157 { "TS_FREE", UINT_MAX, TS_FREE },
158 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
159 { "TS_RUN", TS_RUN, TS_RUN },
160 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
161 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
162 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
163 { "TS_WAIT", TS_WAIT, TS_WAIT },
164 { NULL, 0, 0 }
165 };
166
167 if (prt_flags & PS_PRTTHREADS)
168 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
169
170 if (prt_flags & PS_PRTLWPS) {
171 char desc[128] = "";
172
173 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc));
174
175 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc);
176 }
177
178 return (WALK_NEXT);
179 }
180
181 typedef struct mdb_pflags_proc {
182 struct pid *p_pidp;
183 ushort_t p_pidflag;
184 uint_t p_proc_flag;
185 uint_t p_flag;
186 } mdb_pflags_proc_t;
187
188 static int
189 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
190 {
191 mdb_pflags_proc_t pr;
192 struct pid pid;
193
194 static const mdb_bitmask_t p_flag_bits[] = {
195 { "SSYS", SSYS, SSYS },
196 { "SEXITING", SEXITING, SEXITING },
197 { "SITBUSY", SITBUSY, SITBUSY },
198 { "SFORKING", SFORKING, SFORKING },
199 { "SWATCHOK", SWATCHOK, SWATCHOK },
200 { "SKILLED", SKILLED, SKILLED },
201 { "SSCONT", SSCONT, SSCONT },
202 { "SZONETOP", SZONETOP, SZONETOP },
203 { "SEXTKILLED", SEXTKILLED, SEXTKILLED },
204 { "SUGID", SUGID, SUGID },
205 { "SEXECED", SEXECED, SEXECED },
206 { "SJCTL", SJCTL, SJCTL },
207 { "SNOWAIT", SNOWAIT, SNOWAIT },
208 { "SVFORK", SVFORK, SVFORK },
209 { "SVFWAIT", SVFWAIT, SVFWAIT },
210 { "SEXITLWPS", SEXITLWPS, SEXITLWPS },
211 { "SHOLDFORK", SHOLDFORK, SHOLDFORK },
212 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 },
213 { "SCOREDUMP", SCOREDUMP, SCOREDUMP },
214 { "SMSACCT", SMSACCT, SMSACCT },
215 { "SLWPWRAP", SLWPWRAP, SLWPWRAP },
216 { "SAUTOLPG", SAUTOLPG, SAUTOLPG },
217 { "SNOCD", SNOCD, SNOCD },
218 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH },
219 { "SMSFORK", SMSFORK, SMSFORK },
220 { "SDOCORE", SDOCORE, SDOCORE },
221 { NULL, 0, 0 }
222 };
223
224 static const mdb_bitmask_t p_pidflag_bits[] = {
225 { "CLDPEND", CLDPEND, CLDPEND },
226 { "CLDCONT", CLDCONT, CLDCONT },
227 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD },
228 { "CLDWAITPID", CLDWAITPID, CLDWAITPID },
229 { NULL, 0, 0 }
230 };
231
232 static const mdb_bitmask_t p_proc_flag_bits[] = {
233 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE },
234 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE },
235 { "P_PR_FORK", P_PR_FORK, P_PR_FORK },
236 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK },
237 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC },
238 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC },
239 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ },
240 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL },
241 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL },
242 { NULL, 0, 0 }
243 };
244
245 if (!(flags & DCMD_ADDRSPEC)) {
246 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
247 mdb_warn("can't walk 'proc'");
248 return (DCMD_ERR);
249 }
250 return (DCMD_OK);
251 }
252
253 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
254 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
255 mdb_warn("cannot read proc_t or pid");
256 return (DCMD_ERR);
257 }
258
259 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
260 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag,
261 p_flag_bits);
262 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
263 p_pidflag_bits);
264 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
265 p_proc_flag_bits);
266
267 return (DCMD_OK);
268 }
269
270 typedef struct mdb_ps_proc {
271 char p_stat;
272 struct pid *p_pidp;
273 struct pid *p_pgidp;
274 struct cred *p_cred;
275 struct sess *p_sessp;
276 struct task *p_task;
277 struct zone *p_zone;
278 struct cont_process *p_ct_process;
279 pid_t p_ppid;
280 uint_t p_flag;
281 struct {
282 char u_comm[MAXCOMLEN + 1];
283 char u_psargs[PSARGSZ];
284 } p_user;
285 } mdb_ps_proc_t;
286
287 /*
288 * A reasonable enough limit. Note that we purposefully let this column over-run
289 * if needed.
290 */
291 #define FMRI_LEN (128)
292
293 int
294 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
295 {
296 uint_t prt_flags = 0;
297 mdb_ps_proc_t pr;
298 struct pid pid, pgid, sid;
299 sess_t session;
300 cred_t cred;
301 task_t tk;
302 kproject_t pj;
303 zone_t zn;
304 struct cont_process cp;
305 char fmri[FMRI_LEN] = "";
306
307 if (!(flags & DCMD_ADDRSPEC)) {
308 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
309 mdb_warn("can't walk 'proc'");
310 return (DCMD_ERR);
311 }
312 return (DCMD_OK);
313 }
314
315 if (mdb_getopts(argc, argv,
316 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
317 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
318 's', MDB_OPT_SETBITS, PS_SERVICES, &prt_flags,
319 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
320 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
321 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
322 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
323 return (DCMD_USAGE);
324
325 if (DCMD_HDRSPEC(flags)) {
326 mdb_printf("%<u>%-1s %-6s %-6s %-6s %-6s ",
327 "S", "PID", "PPID", "PGID", "SID");
328 if (prt_flags & PS_TASKS)
329 mdb_printf("%-5s ", "TASK");
330 if (prt_flags & PS_PROJECTS)
331 mdb_printf("%-5s ", "PROJ");
332 if (prt_flags & PS_ZONES)
333 mdb_printf("%-5s ", "ZONE");
334 if (prt_flags & PS_SERVICES)
335 mdb_printf("%-40s ", "SERVICE");
336 mdb_printf("%-6s %-10s %-?s %-s%</u>\n",
337 "UID", "FLAGS", "ADDR", "NAME");
338 }
339
340 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
341 return (DCMD_ERR);
342
343 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
344 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
345 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
346 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
347 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
348 if (prt_flags & (PS_TASKS | PS_PROJECTS))
349 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
350 if (prt_flags & PS_PROJECTS)
351 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
352 if (prt_flags & PS_ZONES)
353 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
354 if ((prt_flags & PS_SERVICES) && pr.p_ct_process != NULL) {
355 mdb_vread(&cp, sizeof (cp), (uintptr_t)pr.p_ct_process);
356
357 if (mdb_read_refstr((uintptr_t)cp.conp_svc_fmri, fmri,
358 sizeof (fmri)) <= 0)
359 (void) strlcpy(fmri, "?", sizeof (fmri));
360
361 /* Strip any standard prefix and suffix. */
362 if (strncmp(fmri, "svc:/", sizeof ("svc:/") - 1) == 0) {
363 char *i = fmri;
364 char *j = fmri + sizeof ("svc:/") - 1;
365 for (; *j != '\0'; i++, j++) {
366 if (strcmp(j, ":default") == 0)
367 break;
368 *i = *j;
369 }
370
371 *i = '\0';
372 }
373 }
374
375 mdb_printf("%-c %-6d %-6d %-6d %-6d ",
376 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
377 sid.pid_id);
378 if (prt_flags & PS_TASKS)
379 mdb_printf("%-5d ", tk.tk_tkid);
380 if (prt_flags & PS_PROJECTS)
381 mdb_printf("%-5d ", pj.kpj_id);
382 if (prt_flags & PS_ZONES)
383 mdb_printf("%-5d ", zn.zone_id);
384 if (prt_flags & PS_SERVICES)
385 mdb_printf("%-40s ", fmri);
386 mdb_printf("%-6d 0x%08x %0?p %-s\n",
387 cred.cr_uid, pr.p_flag, addr,
388 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
389
390 if (prt_flags & ~PS_PSARGS)
391 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
392
393 return (DCMD_OK);
394 }
395
396 static void
397 ps_help(void)
398 {
399 mdb_printf("Display processes.\n\n"
400 "Options:\n"
401 " -f\tDisplay command arguments\n"
402 " -l\tDisplay LWPs\n"
403 " -T\tDisplay tasks\n"
404 " -P\tDisplay projects\n"
405 " -s\tDisplay SMF FMRI\n"
406 " -z\tDisplay zones\n"
407 " -t\tDisplay threads\n\n");
408
409 mdb_printf("The resulting output is a table of the processes on the "
410 "system. The\n"
411 "columns in the output consist of a combination of the "
412 "following fields:\n\n");
413 mdb_printf("S\tProcess state. Possible states are:\n"
414 "\tS\tSleeping (SSLEEP)\n"
415 "\tR\tRunnable (SRUN)\n"
416 "\tZ\tZombie (SZOMB)\n"
417 "\tI\tIdle (SIDL)\n"
418 "\tO\tOn Cpu (SONPROC)\n"
419 "\tT\tStopped (SSTOP)\n"
420 "\tW\tWaiting (SWAIT)\n");
421
422 mdb_printf("PID\tProcess id.\n");
423 mdb_printf("PPID\tParent process id.\n");
424 mdb_printf("PGID\tProcess group id.\n");
425 mdb_printf("SID\tProcess id of the session leader.\n");
426 mdb_printf("TASK\tThe task id of the process.\n");
427 mdb_printf("PROJ\tThe project id of the process.\n");
428 mdb_printf("ZONE\tThe zone id of the process.\n");
429 mdb_printf("SERVICE The SMF service FMRI of the process.\n");
430 mdb_printf("UID\tThe user id of the process.\n");
431 mdb_printf("FLAGS\tThe process flags (see ::pflags).\n");
432 mdb_printf("ADDR\tThe kernel address of the proc_t structure of the "
433 "process\n");
434 mdb_printf("NAME\tThe name (p_user.u_comm field) of the process. If "
435 "the -f flag\n"
436 "\tis specified, the arguments of the process are displayed.\n");
437 }
438
439 #define PG_NEWEST 0x0001
440 #define PG_OLDEST 0x0002
441 #define PG_PIPE_OUT 0x0004
442 #define PG_EXACT_MATCH 0x0008
443
444 typedef struct pgrep_data {
445 uint_t pg_flags;
446 uint_t pg_psflags;
447 uintptr_t pg_xaddr;
448 hrtime_t pg_xstart;
449 const char *pg_pat;
450 #ifndef _KMDB
451 regex_t pg_reg;
452 #endif
453 } pgrep_data_t;
454
455 typedef struct mdb_pgrep_proc {
456 struct {
457 timestruc_t u_start;
458 char u_comm[MAXCOMLEN + 1];
459 } p_user;
460 } mdb_pgrep_proc_t;
461
462 /*ARGSUSED*/
463 static int
464 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
465 {
466 mdb_pgrep_proc_t p;
467 pgrep_data_t *pgp = data;
468 #ifndef _KMDB
469 regmatch_t pmatch;
470 #endif
471
472 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
473 return (WALK_ERR);
474
475 /*
476 * kmdb doesn't have access to the reg* functions, so we fall back
477 * to strstr/strcmp.
478 */
479 #ifdef _KMDB
480 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
481 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
482 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
483 return (WALK_NEXT);
484 #else
485 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
486 return (WALK_NEXT);
487
488 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
489 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
490 return (WALK_NEXT);
491 #endif
492
493 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
494 hrtime_t start;
495
496 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
497 p.p_user.u_start.tv_nsec;
498
499 if (pgp->pg_flags & PG_NEWEST) {
500 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) {
501 pgp->pg_xaddr = addr;
502 pgp->pg_xstart = start;
503 }
504 } else {
505 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) {
506 pgp->pg_xaddr = addr;
507 pgp->pg_xstart = start;
508 }
509 }
510
511 } else if (pgp->pg_flags & PG_PIPE_OUT) {
512 mdb_printf("%p\n", addr);
513
514 } else {
515 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
516 mdb_warn("can't invoke 'ps'");
517 return (WALK_DONE);
518 }
519 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
520 }
521
522 return (WALK_NEXT);
523 }
524
525 /*ARGSUSED*/
526 int
527 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
528 {
529 pgrep_data_t pg;
530 int i;
531 #ifndef _KMDB
532 int err;
533 #endif
534
535 if (flags & DCMD_ADDRSPEC)
536 return (DCMD_USAGE);
537
538 pg.pg_flags = 0;
539 pg.pg_xaddr = 0;
540
541 i = mdb_getopts(argc, argv,
542 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
543 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
544 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
545 NULL);
546
547 argc -= i;
548 argv += i;
549
550 if (argc != 1)
551 return (DCMD_USAGE);
552
553 /*
554 * -n and -o are mutually exclusive.
555 */
556 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
557 return (DCMD_USAGE);
558
559 if (argv->a_type != MDB_TYPE_STRING)
560 return (DCMD_USAGE);
561
562 if (flags & DCMD_PIPE_OUT)
563 pg.pg_flags |= PG_PIPE_OUT;
564
565 pg.pg_pat = argv->a_un.a_str;
566 if (DCMD_HDRSPEC(flags))
567 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
568 else
569 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
570
571 #ifndef _KMDB
572 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
573 size_t nbytes;
574 char *buf;
575
576 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
577 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
578 (void) regerror(err, &pg.pg_reg, buf, nbytes);
579 mdb_warn("%s\n", buf);
580
581 return (DCMD_ERR);
582 }
583 #endif
584
585 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
586 mdb_warn("can't walk 'proc'");
587 return (DCMD_ERR);
588 }
589
590 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
591 if (pg.pg_flags & PG_PIPE_OUT) {
592 mdb_printf("%p\n", pg.pg_xaddr);
593 } else {
594 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
595 0, NULL) != 0) {
596 mdb_warn("can't invoke 'ps'");
597 return (DCMD_ERR);
598 }
599 }
600 }
601
602 return (DCMD_OK);
603 }
604
605 int
606 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
607 {
608 task_t tk;
609 kproject_t pj;
610
611 if (!(flags & DCMD_ADDRSPEC)) {
612 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
613 mdb_warn("can't walk task_cache");
614 return (DCMD_ERR);
615 }
616 return (DCMD_OK);
617 }
618 if (DCMD_HDRSPEC(flags)) {
619 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
620 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
621 }
622 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
623 mdb_warn("can't read task_t structure at %p", addr);
624 return (DCMD_ERR);
625 }
626 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
627 mdb_warn("can't read project_t structure at %p", addr);
628 return (DCMD_ERR);
629 }
630 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
631 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
632 tk.tk_flags);
633 return (DCMD_OK);
634 }
635
636 int
637 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
638 {
639 kproject_t pj;
640
641 if (!(flags & DCMD_ADDRSPEC)) {
642 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
643 mdb_warn("can't walk projects");
644 return (DCMD_ERR);
645 }
646 return (DCMD_OK);
647 }
648 if (DCMD_HDRSPEC(flags)) {
649 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
650 "ADDR", "PROJID", "ZONEID", "REFCNT");
651 }
652 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
653 mdb_warn("can't read kproject_t structure at %p", addr);
654 return (DCMD_ERR);
655 }
656 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
657 pj.kpj_count);
658 return (DCMD_OK);
659 }
660
661 /* walk callouts themselves, either by list or id hash. */
662 int
663 callout_walk_init(mdb_walk_state_t *wsp)
664 {
665 if (wsp->walk_addr == 0) {
666 mdb_warn("callout doesn't support global walk");
667 return (WALK_ERR);
668 }
669 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
670 return (WALK_NEXT);
671 }
672
673 #define CALLOUT_WALK_BYLIST 0
674 #define CALLOUT_WALK_BYID 1
675
676 /* the walker arg switches between walking by list (0) and walking by id (1). */
677 int
678 callout_walk_step(mdb_walk_state_t *wsp)
679 {
680 int retval;
681
682 if (wsp->walk_addr == 0) {
683 return (WALK_DONE);
684 }
685 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
686 wsp->walk_addr) == -1) {
687 mdb_warn("failed to read callout at %p", wsp->walk_addr);
688 return (WALK_DONE);
689 }
690 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
691 wsp->walk_cbdata);
692
693 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
694 wsp->walk_addr =
695 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
696 } else {
697 wsp->walk_addr =
698 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
699 }
700
701 return (retval);
702 }
703
704 void
705 callout_walk_fini(mdb_walk_state_t *wsp)
706 {
707 mdb_free(wsp->walk_data, sizeof (callout_t));
708 }
709
710 /*
711 * walker for callout lists. This is different from hashes and callouts.
712 * Thankfully, it's also simpler.
713 */
714 int
715 callout_list_walk_init(mdb_walk_state_t *wsp)
716 {
717 if (wsp->walk_addr == 0) {
718 mdb_warn("callout list doesn't support global walk");
719 return (WALK_ERR);
720 }
721 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
722 return (WALK_NEXT);
723 }
724
725 int
726 callout_list_walk_step(mdb_walk_state_t *wsp)
727 {
728 int retval;
729
730 if (wsp->walk_addr == 0) {
731 return (WALK_DONE);
732 }
733 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
734 wsp->walk_addr) != sizeof (callout_list_t)) {
735 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
736 return (WALK_ERR);
737 }
738 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
739 wsp->walk_cbdata);
740
741 wsp->walk_addr = (uintptr_t)
742 (((callout_list_t *)wsp->walk_data)->cl_next);
743
744 return (retval);
745 }
746
747 void
748 callout_list_walk_fini(mdb_walk_state_t *wsp)
749 {
750 mdb_free(wsp->walk_data, sizeof (callout_list_t));
751 }
752
753 /* routines/structs to walk callout table(s) */
754 typedef struct cot_data {
755 callout_table_t *ct0;
756 callout_table_t ct;
757 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
758 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
759 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
760 int cotndx;
761 int cotsize;
762 } cot_data_t;
763
764 int
765 callout_table_walk_init(mdb_walk_state_t *wsp)
766 {
767 int max_ncpus;
768 cot_data_t *cot_walk_data;
769
770 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
771
772 if (wsp->walk_addr == 0) {
773 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
774 mdb_warn("failed to read 'callout_table'");
775 return (WALK_ERR);
776 }
777 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
778 mdb_warn("failed to get callout_table array size");
779 return (WALK_ERR);
780 }
781 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
782 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
783 } else {
784 /* not a global walk */
785 cot_walk_data->cotsize = 1;
786 }
787
788 cot_walk_data->cotndx = 0;
789 wsp->walk_data = cot_walk_data;
790
791 return (WALK_NEXT);
792 }
793
794 int
795 callout_table_walk_step(mdb_walk_state_t *wsp)
796 {
797 int retval;
798 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
799 size_t size;
800
801 if (cotwd->cotndx >= cotwd->cotsize) {
802 return (WALK_DONE);
803 }
804 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
805 wsp->walk_addr) != sizeof (callout_table_t)) {
806 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
807 return (WALK_ERR);
808 }
809
810 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
811 if (cotwd->ct.ct_idhash != NULL) {
812 if (mdb_vread(cotwd->cot_idhash, size,
813 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
814 mdb_warn("failed to read id_hash at %p",
815 cotwd->ct.ct_idhash);
816 return (WALK_ERR);
817 }
818 }
819 if (cotwd->ct.ct_clhash != NULL) {
820 if (mdb_vread(&(cotwd->cot_clhash), size,
821 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
822 mdb_warn("failed to read cl_hash at %p",
823 cotwd->ct.ct_clhash);
824 return (WALK_ERR);
825 }
826 }
827 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
828 if (cotwd->ct.ct_kstat_data != NULL) {
829 if (mdb_vread(&(cotwd->ct_kstat_data), size,
830 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
831 mdb_warn("failed to read kstats at %p",
832 cotwd->ct.ct_kstat_data);
833 return (WALK_ERR);
834 }
835 }
836 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
837 wsp->walk_cbdata);
838
839 cotwd->cotndx++;
840 if (cotwd->cotndx >= cotwd->cotsize) {
841 return (WALK_DONE);
842 }
843 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
844 sizeof (callout_table_t));
845
846 return (retval);
847 }
848
849 void
850 callout_table_walk_fini(mdb_walk_state_t *wsp)
851 {
852 mdb_free(wsp->walk_data, sizeof (cot_data_t));
853 }
854
855 static const char *co_typenames[] = { "R", "N" };
856
857 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
858
859 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
860
861 /* callout flags, in no particular order */
862 #define COF_REAL 0x00000001
863 #define COF_NORM 0x00000002
864 #define COF_LONG 0x00000004
865 #define COF_SHORT 0x00000008
866 #define COF_EMPTY 0x00000010
867 #define COF_TIME 0x00000020
868 #define COF_BEFORE 0x00000040
869 #define COF_AFTER 0x00000080
870 #define COF_SEQID 0x00000100
871 #define COF_FUNC 0x00000200
872 #define COF_ADDR 0x00000400
873 #define COF_EXEC 0x00000800
874 #define COF_HIRES 0x00001000
875 #define COF_ABS 0x00002000
876 #define COF_TABLE 0x00004000
877 #define COF_BYIDH 0x00008000
878 #define COF_FREE 0x00010000
879 #define COF_LIST 0x00020000
880 #define COF_EXPREL 0x00040000
881 #define COF_HDR 0x00080000
882 #define COF_VERBOSE 0x00100000
883 #define COF_LONGLIST 0x00200000
884 #define COF_THDR 0x00400000
885 #define COF_LHDR 0x00800000
886 #define COF_CHDR 0x01000000
887 #define COF_PARAM 0x02000000
888 #define COF_DECODE 0x04000000
889 #define COF_HEAP 0x08000000
890 #define COF_QUEUE 0x10000000
891
892 /* show real and normal, short and long, expired and unexpired. */
893 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
894
895 #define COF_LIST_FLAGS \
896 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
897
898 /* private callout data for callback functions */
899 typedef struct callout_data {
900 uint_t flags; /* COF_* */
901 cpu_t *cpu; /* cpu pointer if given */
902 int seqid; /* cpu seqid, or -1 */
903 hrtime_t time; /* expiration time value */
904 hrtime_t atime; /* expiration before value */
905 hrtime_t btime; /* expiration after value */
906 uintptr_t funcaddr; /* function address or NULL */
907 uintptr_t param; /* parameter to function or NULL */
908 hrtime_t now; /* current system time */
909 int nsec_per_tick; /* for conversions */
910 ulong_t ctbits; /* for decoding xid */
911 callout_table_t *co_table; /* top of callout table array */
912 int ndx; /* table index. */
913 int bucket; /* which list/id bucket are we in */
914 hrtime_t exp; /* expire time */
915 int list_flags; /* copy of cl_flags */
916 } callout_data_t;
917
918 /* this callback does the actual callback itself (finally). */
919 /*ARGSUSED*/
920 static int
921 callouts_cb(uintptr_t addr, const void *data, void *priv)
922 {
923 callout_data_t *coargs = (callout_data_t *)priv;
924 callout_t *co = (callout_t *)data;
925 int tableid, list_flags;
926 callout_id_t coid;
927
928 if ((coargs == NULL) || (co == NULL)) {
929 return (WALK_ERR);
930 }
931
932 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
933 /*
934 * The callout must have been reallocated. No point in
935 * walking any more.
936 */
937 return (WALK_DONE);
938 }
939 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
940 /*
941 * The callout must have been freed. No point in
942 * walking any more.
943 */
944 return (WALK_DONE);
945 }
946 if ((coargs->flags & COF_FUNC) &&
947 (coargs->funcaddr != (uintptr_t)co->c_func)) {
948 return (WALK_NEXT);
949 }
950 if ((coargs->flags & COF_PARAM) &&
951 (coargs->param != (uintptr_t)co->c_arg)) {
952 return (WALK_NEXT);
953 }
954 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
955 return (WALK_NEXT);
956 }
957 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
958 return (WALK_NEXT);
959 }
960 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
961 return (WALK_NEXT);
962 }
963 /* it is possible we don't have the exp time or flags */
964 if (coargs->flags & COF_BYIDH) {
965 if (!(coargs->flags & COF_FREE)) {
966 /* we have to fetch the expire time ourselves. */
967 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
968 (uintptr_t)co->c_list + offsetof(callout_list_t,
969 cl_expiration)) == -1) {
970 mdb_warn("failed to read expiration "
971 "time from %p", co->c_list);
972 coargs->exp = 0;
973 }
974 /* and flags. */
975 if (mdb_vread(&coargs->list_flags, sizeof (int),
976 (uintptr_t)co->c_list + offsetof(callout_list_t,
977 cl_flags)) == -1) {
978 mdb_warn("failed to read list flags"
979 "from %p", co->c_list);
980 coargs->list_flags = 0;
981 }
982 } else {
983 /* free callouts can't use list pointer. */
984 coargs->exp = 0;
985 coargs->list_flags = 0;
986 }
987 if (coargs->exp != 0) {
988 if ((coargs->flags & COF_TIME) &&
989 (coargs->exp != coargs->time)) {
990 return (WALK_NEXT);
991 }
992 if ((coargs->flags & COF_BEFORE) &&
993 (coargs->exp > coargs->btime)) {
994 return (WALK_NEXT);
995 }
996 if ((coargs->flags & COF_AFTER) &&
997 (coargs->exp < coargs->atime)) {
998 return (WALK_NEXT);
999 }
1000 }
1001 /* tricky part, since both HIRES and ABS can be set */
1002 list_flags = coargs->list_flags;
1003 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1004 /* both flags are set, only skip "regular" ones */
1005 if (! (list_flags & COF_LIST_FLAGS)) {
1006 return (WALK_NEXT);
1007 }
1008 } else {
1009 /* individual flags, or no flags */
1010 if ((coargs->flags & COF_HIRES) &&
1011 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1012 return (WALK_NEXT);
1013 }
1014 if ((coargs->flags & COF_ABS) &&
1015 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1016 return (WALK_NEXT);
1017 }
1018 }
1019 /*
1020 * We do the checks for COF_HEAP and COF_QUEUE here only if we
1021 * are traversing BYIDH. If the traversal is by callout list,
1022 * we do this check in callout_list_cb() to be more
1023 * efficient.
1024 */
1025 if ((coargs->flags & COF_HEAP) &&
1026 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1027 return (WALK_NEXT);
1028 }
1029
1030 if ((coargs->flags & COF_QUEUE) &&
1031 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1032 return (WALK_NEXT);
1033 }
1034 }
1035
1036 #define callout_table_mask ((1 << coargs->ctbits) - 1)
1037 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
1038 #undef callout_table_mask
1039 coid = CO_PLAIN_ID(co->c_xid);
1040
1041 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
1042 /*
1043 * We need to print the headers. If walking by id, then
1044 * the list header isn't printed, so we must include
1045 * that info here.
1046 */
1047 if (!(coargs->flags & COF_VERBOSE)) {
1048 mdb_printf("%<u>%3s %-1s %-14s %</u>",
1049 "SEQ", "T", "EXP");
1050 } else if (coargs->flags & COF_BYIDH) {
1051 mdb_printf("%<u>%-14s %</u>", "EXP");
1052 }
1053 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
1054 "XHAL", "XID", "FUNC(ARG)");
1055 if (coargs->flags & COF_LONGLIST) {
1056 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
1057 "PREVID", "NEXTID", "PREVL", "NEXTL");
1058 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
1059 "DONE", "UTOS", "THREAD");
1060 }
1061 mdb_printf("\n");
1062 coargs->flags &= ~COF_CHDR;
1063 coargs->flags |= (COF_THDR | COF_LHDR);
1064 }
1065
1066 if (!(coargs->flags & COF_ADDR)) {
1067 if (!(coargs->flags & COF_VERBOSE)) {
1068 mdb_printf("%-3d %1s %-14llx ",
1069 TABLE_TO_SEQID(tableid),
1070 co_typenames[tableid & CALLOUT_TYPE_MASK],
1071 (coargs->flags & COF_EXPREL) ?
1072 coargs->exp - coargs->now : coargs->exp);
1073 } else if (coargs->flags & COF_BYIDH) {
1074 mdb_printf("%-14x ",
1075 (coargs->flags & COF_EXPREL) ?
1076 coargs->exp - coargs->now : coargs->exp);
1077 }
1078 list_flags = coargs->list_flags;
1079 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
1080 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
1081 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
1082 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
1083 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
1084 (long long)coid, co->c_func, co->c_arg);
1085 if (coargs->flags & COF_LONGLIST) {
1086 mdb_printf(" %-?p %-?p %-?p %-?p",
1087 co->c_idprev, co->c_idnext, co->c_clprev,
1088 co->c_clnext);
1089 mdb_printf(" %-?p %-4d %-0?p",
1090 co->c_done, co->c_waiting, co->c_executor);
1091 }
1092 } else {
1093 /* address only */
1094 mdb_printf("%-0p", addr);
1095 }
1096 mdb_printf("\n");
1097 return (WALK_NEXT);
1098 }
1099
1100 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1101 /*ARGSUSED*/
1102 static int
1103 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1104 {
1105 callout_data_t *coargs = (callout_data_t *)priv;
1106 callout_list_t *cl = (callout_list_t *)data;
1107 callout_t *coptr;
1108 int list_flags;
1109
1110 if ((coargs == NULL) || (cl == NULL)) {
1111 return (WALK_ERR);
1112 }
1113
1114 coargs->exp = cl->cl_expiration;
1115 coargs->list_flags = cl->cl_flags;
1116 if ((coargs->flags & COF_FREE) &&
1117 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1118 /*
1119 * The callout list must have been reallocated. No point in
1120 * walking any more.
1121 */
1122 return (WALK_DONE);
1123 }
1124 if (!(coargs->flags & COF_FREE) &&
1125 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1126 /*
1127 * The callout list must have been freed. No point in
1128 * walking any more.
1129 */
1130 return (WALK_DONE);
1131 }
1132 if ((coargs->flags & COF_TIME) &&
1133 (cl->cl_expiration != coargs->time)) {
1134 return (WALK_NEXT);
1135 }
1136 if ((coargs->flags & COF_BEFORE) &&
1137 (cl->cl_expiration > coargs->btime)) {
1138 return (WALK_NEXT);
1139 }
1140 if ((coargs->flags & COF_AFTER) &&
1141 (cl->cl_expiration < coargs->atime)) {
1142 return (WALK_NEXT);
1143 }
1144 if (!(coargs->flags & COF_EMPTY) &&
1145 (cl->cl_callouts.ch_head == NULL)) {
1146 return (WALK_NEXT);
1147 }
1148 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
1149 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1150 /* both flags are set, only skip "regular" ones */
1151 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1152 return (WALK_NEXT);
1153 }
1154 } else {
1155 if ((coargs->flags & COF_HIRES) &&
1156 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1157 return (WALK_NEXT);
1158 }
1159 if ((coargs->flags & COF_ABS) &&
1160 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1161 return (WALK_NEXT);
1162 }
1163 }
1164
1165 if ((coargs->flags & COF_HEAP) &&
1166 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1167 return (WALK_NEXT);
1168 }
1169
1170 if ((coargs->flags & COF_QUEUE) &&
1171 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1172 return (WALK_NEXT);
1173 }
1174
1175 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1176 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1177 if (!(coargs->flags & COF_VERBOSE)) {
1178 /* don't be redundant again */
1179 mdb_printf("%<u>SEQ T %</u>");
1180 }
1181 mdb_printf("%<u>EXP HA BUCKET "
1182 "CALLOUTS %</u>");
1183
1184 if (coargs->flags & COF_LONGLIST) {
1185 mdb_printf("%<u> %-?s %-?s%</u>",
1186 "PREV", "NEXT");
1187 }
1188 mdb_printf("\n");
1189 coargs->flags &= ~COF_LHDR;
1190 coargs->flags |= (COF_THDR | COF_CHDR);
1191 }
1192 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1193 if (!(coargs->flags & COF_ADDR)) {
1194 if (!(coargs->flags & COF_VERBOSE)) {
1195 mdb_printf("%3d %1s ",
1196 TABLE_TO_SEQID(coargs->ndx),
1197 co_typenames[coargs->ndx &
1198 CALLOUT_TYPE_MASK]);
1199 }
1200
1201 list_flags = coargs->list_flags;
1202 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1203 (coargs->flags & COF_EXPREL) ?
1204 coargs->exp - coargs->now : coargs->exp,
1205 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1206 "H" : " ",
1207 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1208 "A" : " ",
1209 coargs->bucket, cl->cl_callouts.ch_head);
1210
1211 if (coargs->flags & COF_LONGLIST) {
1212 mdb_printf(" %-?p %-?p",
1213 cl->cl_prev, cl->cl_next);
1214 }
1215 } else {
1216 /* address only */
1217 mdb_printf("%-0p", addr);
1218 }
1219 mdb_printf("\n");
1220 if (coargs->flags & COF_LIST) {
1221 return (WALK_NEXT);
1222 }
1223 }
1224 /* yet another layer as we walk the actual callouts via list. */
1225 if (cl->cl_callouts.ch_head == NULL) {
1226 return (WALK_NEXT);
1227 }
1228 /* free list structures do not have valid callouts off of them. */
1229 if (coargs->flags & COF_FREE) {
1230 return (WALK_NEXT);
1231 }
1232 coptr = (callout_t *)cl->cl_callouts.ch_head;
1233
1234 if (coargs->flags & COF_VERBOSE) {
1235 mdb_inc_indent(4);
1236 }
1237 /*
1238 * walk callouts using yet another callback routine.
1239 * we use callouts_bytime because id hash is handled via
1240 * the callout_t_cb callback.
1241 */
1242 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1243 (uintptr_t)coptr) == -1) {
1244 mdb_warn("cannot walk callouts at %p", coptr);
1245 return (WALK_ERR);
1246 }
1247 if (coargs->flags & COF_VERBOSE) {
1248 mdb_dec_indent(4);
1249 }
1250
1251 return (WALK_NEXT);
1252 }
1253
1254 /* this callback handles the details of callout table walking. */
1255 static int
1256 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1257 {
1258 callout_data_t *coargs = (callout_data_t *)priv;
1259 cot_data_t *cotwd = (cot_data_t *)data;
1260 callout_table_t *ct = &(cotwd->ct);
1261 int index, seqid, cotype;
1262 int i;
1263 callout_list_t *clptr;
1264 callout_t *coptr;
1265
1266 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1267 return (WALK_ERR);
1268 }
1269
1270 index = ((char *)addr - (char *)coargs->co_table) /
1271 sizeof (callout_table_t);
1272 cotype = index & CALLOUT_TYPE_MASK;
1273 seqid = TABLE_TO_SEQID(index);
1274
1275 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1276 return (WALK_NEXT);
1277 }
1278
1279 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1280 return (WALK_NEXT);
1281 }
1282
1283 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1284 return (WALK_NEXT);
1285 }
1286
1287 if (!(coargs->flags & COF_EMPTY) && (
1288 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) {
1289 return (WALK_NEXT);
1290 }
1291
1292 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1293 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1294 /* print table hdr */
1295 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1296 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1297 coargs->flags &= ~COF_THDR;
1298 coargs->flags |= (COF_LHDR | COF_CHDR);
1299 if (coargs->flags & COF_LONGLIST) {
1300 /* more info! */
1301 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1302 " %-?s %-?s %-?s%</u>",
1303 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1304 "PEND", "FREE", "LOCK");
1305 }
1306 mdb_printf("\n");
1307 }
1308 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1309 if (!(coargs->flags & COF_ADDR)) {
1310 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1311 seqid, co_typenames[cotype],
1312 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1313 ct->ct_heap);
1314 if (coargs->flags & COF_LONGLIST) {
1315 /* more info! */
1316 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1317 " %-?lld %-?lld %-?p",
1318 ct->ct_heap_num, ct->ct_heap_max,
1319 ct->ct_taskq, ct->ct_expired.ch_head,
1320 ct->ct_queue.ch_head,
1321 cotwd->ct_timeouts_pending,
1322 cotwd->ct_allocations -
1323 cotwd->ct_timeouts_pending,
1324 ct->ct_mutex);
1325 }
1326 } else {
1327 /* address only */
1328 mdb_printf("%-0?p", addr);
1329 }
1330 mdb_printf("\n");
1331 if (coargs->flags & COF_TABLE) {
1332 return (WALK_NEXT);
1333 }
1334 }
1335
1336 coargs->ndx = index;
1337 if (coargs->flags & COF_VERBOSE) {
1338 mdb_inc_indent(4);
1339 }
1340 /* keep digging. */
1341 if (!(coargs->flags & COF_BYIDH)) {
1342 /* walk the list hash table */
1343 if (coargs->flags & COF_FREE) {
1344 clptr = ct->ct_lfree;
1345 coargs->bucket = 0;
1346 if (clptr == NULL) {
1347 return (WALK_NEXT);
1348 }
1349 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1350 (uintptr_t)clptr) == -1) {
1351 mdb_warn("cannot walk callout free list at %p",
1352 clptr);
1353 return (WALK_ERR);
1354 }
1355 } else {
1356 /* first print the expired list. */
1357 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1358 if (clptr != NULL) {
1359 coargs->bucket = -1;
1360 if (mdb_pwalk("callout_list", callout_list_cb,
1361 coargs, (uintptr_t)clptr) == -1) {
1362 mdb_warn("cannot walk callout_list"
1363 " at %p", clptr);
1364 return (WALK_ERR);
1365 }
1366 }
1367 /* then, print the callout queue */
1368 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1369 if (clptr != NULL) {
1370 coargs->bucket = -1;
1371 if (mdb_pwalk("callout_list", callout_list_cb,
1372 coargs, (uintptr_t)clptr) == -1) {
1373 mdb_warn("cannot walk callout_list"
1374 " at %p", clptr);
1375 return (WALK_ERR);
1376 }
1377 }
1378 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1379 if (ct->ct_clhash == NULL) {
1380 /* nothing to do */
1381 break;
1382 }
1383 if (cotwd->cot_clhash[i].ch_head == NULL) {
1384 continue;
1385 }
1386 clptr = (callout_list_t *)
1387 cotwd->cot_clhash[i].ch_head;
1388 coargs->bucket = i;
1389 /* walk list with callback routine. */
1390 if (mdb_pwalk("callout_list", callout_list_cb,
1391 coargs, (uintptr_t)clptr) == -1) {
1392 mdb_warn("cannot walk callout_list"
1393 " at %p", clptr);
1394 return (WALK_ERR);
1395 }
1396 }
1397 }
1398 } else {
1399 /* walk the id hash table. */
1400 if (coargs->flags & COF_FREE) {
1401 coptr = ct->ct_free;
1402 coargs->bucket = 0;
1403 if (coptr == NULL) {
1404 return (WALK_NEXT);
1405 }
1406 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1407 (uintptr_t)coptr) == -1) {
1408 mdb_warn("cannot walk callout id free list"
1409 " at %p", coptr);
1410 return (WALK_ERR);
1411 }
1412 } else {
1413 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1414 if (ct->ct_idhash == NULL) {
1415 break;
1416 }
1417 coptr = (callout_t *)
1418 cotwd->cot_idhash[i].ch_head;
1419 if (coptr == NULL) {
1420 continue;
1421 }
1422 coargs->bucket = i;
1423
1424 /*
1425 * walk callouts directly by id. For id
1426 * chain, the callout list is just a header,
1427 * so there's no need to walk it.
1428 */
1429 if (mdb_pwalk("callouts_byid", callouts_cb,
1430 coargs, (uintptr_t)coptr) == -1) {
1431 mdb_warn("cannot walk callouts at %p",
1432 coptr);
1433 return (WALK_ERR);
1434 }
1435 }
1436 }
1437 }
1438 if (coargs->flags & COF_VERBOSE) {
1439 mdb_dec_indent(4);
1440 }
1441 return (WALK_NEXT);
1442 }
1443
1444 /*
1445 * initialize some common info for both callout dcmds.
1446 */
1447 int
1448 callout_common_init(callout_data_t *coargs)
1449 {
1450 /* we need a couple of things */
1451 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1452 mdb_warn("failed to read 'callout_table'");
1453 return (DCMD_ERR);
1454 }
1455 /* need to get now in nsecs. Approximate with hrtime vars */
1456 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1457 sizeof (hrtime_t)) {
1458 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1459 "hrtime_base") != sizeof (hrtime_t)) {
1460 mdb_warn("Could not determine current system time");
1461 return (DCMD_ERR);
1462 }
1463 }
1464
1465 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1466 mdb_warn("failed to read 'callout_table_bits'");
1467 return (DCMD_ERR);
1468 }
1469 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1470 mdb_warn("failed to read 'nsec_per_tick'");
1471 return (DCMD_ERR);
1472 }
1473 return (DCMD_OK);
1474 }
1475
1476 /*
1477 * dcmd to print callouts. Optional addr limits to specific table.
1478 * Parses lots of options that get passed to callbacks for walkers.
1479 * Has it's own help function.
1480 */
1481 /*ARGSUSED*/
1482 int
1483 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1484 {
1485 callout_data_t coargs;
1486 /* getopts doesn't help much with stuff like this */
1487 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1488 char *funcname = NULL;
1489 char *paramstr = NULL;
1490 uintptr_t Stmp, Ctmp; /* for getopt. */
1491 int retval;
1492
1493 coargs.flags = COF_DEFAULT;
1494 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1495 coargs.seqid = -1;
1496
1497 if (mdb_getopts(argc, argv,
1498 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1499 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1500 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1501 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1502 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1503 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1504 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1505 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1506 'd', MDB_OPT_SETBITS, 1, &dflag,
1507 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1508 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1509 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1510 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1511 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1512 'k', MDB_OPT_SETBITS, 1, &kflag,
1513 'f', MDB_OPT_STR, &funcname,
1514 'p', MDB_OPT_STR, ¶mstr,
1515 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1516 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1517 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1518 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1519 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1520 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1521 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1522 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1523 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1524 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1525 NULL) != argc) {
1526 return (DCMD_USAGE);
1527 }
1528
1529 /* initialize from kernel variables */
1530 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1531 return (retval);
1532 }
1533
1534 /* do some option post-processing */
1535 if (kflag) {
1536 coargs.time *= coargs.nsec_per_tick;
1537 coargs.atime *= coargs.nsec_per_tick;
1538 coargs.btime *= coargs.nsec_per_tick;
1539 }
1540
1541 if (dflag) {
1542 coargs.time += coargs.now;
1543 coargs.atime += coargs.now;
1544 coargs.btime += coargs.now;
1545 }
1546 if (Sflag) {
1547 if (flags & DCMD_ADDRSPEC) {
1548 mdb_printf("-S option conflicts with explicit"
1549 " address\n");
1550 return (DCMD_USAGE);
1551 }
1552 coargs.flags |= COF_SEQID;
1553 coargs.seqid = (int)Stmp;
1554 }
1555 if (Cflag) {
1556 if (flags & DCMD_ADDRSPEC) {
1557 mdb_printf("-C option conflicts with explicit"
1558 " address\n");
1559 return (DCMD_USAGE);
1560 }
1561 if (coargs.flags & COF_SEQID) {
1562 mdb_printf("-C and -S are mutually exclusive\n");
1563 return (DCMD_USAGE);
1564 }
1565 coargs.cpu = (cpu_t *)Ctmp;
1566 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1567 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1568 mdb_warn("failed to read cpu_t at %p", Ctmp);
1569 return (DCMD_ERR);
1570 }
1571 coargs.flags |= COF_SEQID;
1572 }
1573 /* avoid null outputs. */
1574 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1575 coargs.flags |= COF_REAL | COF_NORM;
1576 }
1577 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1578 coargs.flags |= COF_LONG | COF_SHORT;
1579 }
1580 if (tflag) {
1581 if (aflag || bflag) {
1582 mdb_printf("-t and -a|b are mutually exclusive\n");
1583 return (DCMD_USAGE);
1584 }
1585 coargs.flags |= COF_TIME;
1586 }
1587 if (aflag) {
1588 coargs.flags |= COF_AFTER;
1589 }
1590 if (bflag) {
1591 coargs.flags |= COF_BEFORE;
1592 }
1593 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1594 mdb_printf("value for -a must be earlier than the value"
1595 " for -b.\n");
1596 return (DCMD_USAGE);
1597 }
1598
1599 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1600 mdb_printf("-H and -Q are mutually exclusive\n");
1601 return (DCMD_USAGE);
1602 }
1603
1604 if (funcname != NULL) {
1605 GElf_Sym sym;
1606
1607 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1608 coargs.funcaddr = mdb_strtoull(funcname);
1609 } else {
1610 coargs.funcaddr = sym.st_value;
1611 }
1612 coargs.flags |= COF_FUNC;
1613 }
1614
1615 if (paramstr != NULL) {
1616 GElf_Sym sym;
1617
1618 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1619 coargs.param = mdb_strtoull(paramstr);
1620 } else {
1621 coargs.param = sym.st_value;
1622 }
1623 coargs.flags |= COF_PARAM;
1624 }
1625
1626 if (!(flags & DCMD_ADDRSPEC)) {
1627 /* don't pass "dot" if no addr. */
1628 addr = 0;
1629 }
1630 if (addr != 0) {
1631 /*
1632 * a callout table was specified. Ignore -r|n option
1633 * to avoid null output.
1634 */
1635 coargs.flags |= (COF_REAL | COF_NORM);
1636 }
1637
1638 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1639 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1640 }
1641 if (coargs.flags & COF_FREE) {
1642 coargs.flags |= COF_EMPTY;
1643 /* -F = free callouts, -FL = free lists */
1644 if (!(coargs.flags & COF_LIST)) {
1645 coargs.flags |= COF_BYIDH;
1646 }
1647 }
1648
1649 /* walk table, using specialized callback routine. */
1650 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1651 mdb_warn("cannot walk callout_table");
1652 return (DCMD_ERR);
1653 }
1654 return (DCMD_OK);
1655 }
1656
1657
1658 /*
1659 * Given an extended callout id, dump its information.
1660 */
1661 /*ARGSUSED*/
1662 int
1663 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1664 {
1665 callout_data_t coargs;
1666 callout_table_t *ctptr;
1667 callout_table_t ct;
1668 callout_id_t coid;
1669 callout_t *coptr;
1670 int tableid;
1671 callout_id_t xid;
1672 ulong_t idhash;
1673 int i, retval;
1674 const mdb_arg_t *arg;
1675 size_t size;
1676 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1677
1678 coargs.flags = COF_DEFAULT | COF_BYIDH;
1679 i = mdb_getopts(argc, argv,
1680 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1681 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1682 NULL);
1683 argc -= i;
1684 argv += i;
1685
1686 if (argc != 1) {
1687 return (DCMD_USAGE);
1688 }
1689 arg = &argv[0];
1690
1691 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1692 xid = arg->a_un.a_val;
1693 } else {
1694 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1695 }
1696
1697 if (DCMD_HDRSPEC(flags)) {
1698 coargs.flags |= COF_CHDR;
1699 }
1700
1701
1702 /* initialize from kernel variables */
1703 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1704 return (retval);
1705 }
1706
1707 /* we must massage the environment so that the macros will play nice */
1708 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1709 #define callout_table_bits coargs.ctbits
1710 #define nsec_per_tick coargs.nsec_per_tick
1711 tableid = CALLOUT_ID_TO_TABLE(xid);
1712 idhash = CALLOUT_IDHASH(xid);
1713 #undef callouts_table_bits
1714 #undef callout_table_mask
1715 #undef nsec_per_tick
1716 coid = CO_PLAIN_ID(xid);
1717
1718 if (flags & DCMD_ADDRSPEC) {
1719 mdb_printf("calloutid does not accept explicit address.\n");
1720 return (DCMD_USAGE);
1721 }
1722
1723 if (coargs.flags & COF_DECODE) {
1724 if (DCMD_HDRSPEC(flags)) {
1725 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1726 "SEQ", "T", "XL", "XID", "IDHASH");
1727 }
1728 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1729 TABLE_TO_SEQID(tableid),
1730 co_typenames[tableid & CALLOUT_TYPE_MASK],
1731 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1732 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1733 (long long)coid, idhash);
1734 return (DCMD_OK);
1735 }
1736
1737 /* get our table. Note this relies on the types being correct */
1738 ctptr = coargs.co_table + tableid;
1739 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1740 mdb_warn("failed to read callout_table at %p", ctptr);
1741 return (DCMD_ERR);
1742 }
1743 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1744 if (ct.ct_idhash != NULL) {
1745 if (mdb_vread(&(cot_idhash), size,
1746 (uintptr_t)ct.ct_idhash) == -1) {
1747 mdb_warn("failed to read id_hash at %p",
1748 ct.ct_idhash);
1749 return (WALK_ERR);
1750 }
1751 }
1752
1753 /* callout at beginning of hash chain */
1754 if (ct.ct_idhash == NULL) {
1755 mdb_printf("id hash chain for this xid is empty\n");
1756 return (DCMD_ERR);
1757 }
1758 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1759 if (coptr == NULL) {
1760 mdb_printf("id hash chain for this xid is empty\n");
1761 return (DCMD_ERR);
1762 }
1763
1764 coargs.ndx = tableid;
1765 coargs.bucket = idhash;
1766
1767 /* use the walker, luke */
1768 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1769 (uintptr_t)coptr) == -1) {
1770 mdb_warn("cannot walk callouts at %p", coptr);
1771 return (WALK_ERR);
1772 }
1773
1774 return (DCMD_OK);
1775 }
1776
1777 void
1778 callout_help(void)
1779 {
1780 mdb_printf("callout: display callouts.\n"
1781 "Given a callout table address, display callouts from table.\n"
1782 "Without an address, display callouts from all tables.\n"
1783 "options:\n"
1784 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1785 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1786 " -x : limit display to callouts which are executing\n"
1787 " -h : limit display to callouts based on hrestime\n"
1788 " -B : limit display to callouts based on absolute time\n"
1789 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1790 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1791 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1792 " -d : interpret time option to -t|a|b as delta from current time\n"
1793 " -k : use ticks instead of nanoseconds as arguments to"
1794 " -t|a|b. Note that\n ticks are less accurate and may not"
1795 " match other tick times (ie: lbolt).\n"
1796 " -D : display exiration time as delta from current time\n"
1797 " -S seqid : limit display to callouts for this cpu sequence id\n"
1798 " -C addr : limit display to callouts for this cpu pointer\n"
1799 " -f name|addr : limit display to callouts with this function\n"
1800 " -p name|addr : limit display to callouts functions with this"
1801 " parameter\n"
1802 " -T : display the callout table itself, instead of callouts\n"
1803 " -L : display callout lists instead of callouts\n"
1804 " -E : with -T or L, display empty data structures.\n"
1805 " -i : traverse callouts by id hash instead of list hash\n"
1806 " -F : walk free callout list (free list with -i) instead\n"
1807 " -v : display more info for each item\n"
1808 " -V : show details of each level of info as it is traversed\n"
1809 " -H : limit display to callouts in the callout heap\n"
1810 " -Q : limit display to callouts in the callout queue\n"
1811 " -A : show only addresses. Useful for pipelines.\n");
1812 }
1813
1814 void
1815 calloutid_help(void)
1816 {
1817 mdb_printf("calloutid: display callout by id.\n"
1818 "Given an extended callout id, display the callout infomation.\n"
1819 "options:\n"
1820 " -d : do not dereference callout, just decode the id.\n"
1821 " -v : verbose display more info about the callout\n");
1822 }
1823
1824 /*ARGSUSED*/
1825 int
1826 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1827 {
1828 long num_classes, i;
1829 sclass_t *class_tbl;
1830 GElf_Sym g_sclass;
1831 char class_name[PC_CLNMSZ];
1832 size_t tbl_size;
1833
1834 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1835 mdb_warn("failed to find symbol sclass\n");
1836 return (DCMD_ERR);
1837 }
1838
1839 tbl_size = (size_t)g_sclass.st_size;
1840 num_classes = tbl_size / (sizeof (sclass_t));
1841 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1842
1843 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1844 mdb_warn("failed to read sclass");
1845 return (DCMD_ERR);
1846 }
1847
1848 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1849 "INIT FCN", "CLASS FCN");
1850
1851 for (i = 0; i < num_classes; i++) {
1852 if (mdb_vread(class_name, sizeof (class_name),
1853 (uintptr_t)class_tbl[i].cl_name) == -1)
1854 (void) strcpy(class_name, "???");
1855
1856 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1857 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1858 }
1859
1860 return (DCMD_OK);
1861 }
1862
1863 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1864
1865 int
1866 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1867 {
1868 uintptr_t rootdir;
1869 vnode_t vn;
1870 char buf[MAXPATHLEN];
1871
1872 uint_t opt_F = FALSE;
1873
1874 if (mdb_getopts(argc, argv,
1875 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1876 return (DCMD_USAGE);
1877
1878 if (!(flags & DCMD_ADDRSPEC)) {
1879 mdb_warn("expected explicit vnode_t address before ::\n");
1880 return (DCMD_USAGE);
1881 }
1882
1883 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1884 mdb_warn("failed to read rootdir");
1885 return (DCMD_ERR);
1886 }
1887
1888 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1889 return (DCMD_ERR);
1890
1891 if (*buf == '\0') {
1892 mdb_printf("??\n");
1893 return (DCMD_OK);
1894 }
1895
1896 mdb_printf("%s", buf);
1897 if (opt_F && buf[strlen(buf)-1] != '/' &&
1898 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1899 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1900 mdb_printf("\n");
1901
1902 return (DCMD_OK);
1903 }
1904
1905 int
1906 ld_walk_init(mdb_walk_state_t *wsp)
1907 {
1908 wsp->walk_data = (void *)wsp->walk_addr;
1909 return (WALK_NEXT);
1910 }
1911
1912 int
1913 ld_walk_step(mdb_walk_state_t *wsp)
1914 {
1915 int status;
1916 lock_descriptor_t ld;
1917
1918 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1919 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1920 wsp->walk_addr);
1921 return (WALK_ERR);
1922 }
1923
1924 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1925 if (status == WALK_ERR)
1926 return (WALK_ERR);
1927
1928 wsp->walk_addr = (uintptr_t)ld.l_next;
1929 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1930 return (WALK_DONE);
1931
1932 return (status);
1933 }
1934
1935 int
1936 lg_walk_init(mdb_walk_state_t *wsp)
1937 {
1938 GElf_Sym sym;
1939
1940 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1941 mdb_warn("failed to find symbol 'lock_graph'\n");
1942 return (WALK_ERR);
1943 }
1944
1945 wsp->walk_addr = (uintptr_t)sym.st_value;
1946 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1947
1948 return (WALK_NEXT);
1949 }
1950
1951 typedef struct lg_walk_data {
1952 uintptr_t startaddr;
1953 mdb_walk_cb_t callback;
1954 void *data;
1955 } lg_walk_data_t;
1956
1957 /*
1958 * We can't use ::walk lock_descriptor directly, because the head of each graph
1959 * is really a dummy lock. Rather than trying to dynamically determine if this
1960 * is a dummy node or not, we just filter out the initial element of the
1961 * list.
1962 */
1963 static int
1964 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1965 {
1966 lg_walk_data_t *lw = priv;
1967
1968 if (addr != lw->startaddr)
1969 return (lw->callback(addr, data, lw->data));
1970
1971 return (WALK_NEXT);
1972 }
1973
1974 int
1975 lg_walk_step(mdb_walk_state_t *wsp)
1976 {
1977 graph_t *graph;
1978 lg_walk_data_t lw;
1979
1980 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1981 return (WALK_DONE);
1982
1983 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1984 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1985 return (WALK_ERR);
1986 }
1987
1988 wsp->walk_addr += sizeof (graph);
1989
1990 if (graph == NULL)
1991 return (WALK_NEXT);
1992
1993 lw.callback = wsp->walk_callback;
1994 lw.data = wsp->walk_cbdata;
1995
1996 lw.startaddr = (uintptr_t)&(graph->active_locks);
1997 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1998 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1999 return (WALK_ERR);
2000 }
2001
2002 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
2003 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
2004 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
2005 return (WALK_ERR);
2006 }
2007
2008 return (WALK_NEXT);
2009 }
2010
2011 /*
2012 * The space available for the path corresponding to the locked vnode depends
2013 * on whether we are printing 32- or 64-bit addresses.
2014 */
2015 #ifdef _LP64
2016 #define LM_VNPATHLEN 20
2017 #else
2018 #define LM_VNPATHLEN 30
2019 #endif
2020
2021 typedef struct mdb_lminfo_proc {
2022 struct {
2023 char u_comm[MAXCOMLEN + 1];
2024 } p_user;
2025 } mdb_lminfo_proc_t;
2026
2027 /*ARGSUSED*/
2028 static int
2029 lminfo_cb(uintptr_t addr, const void *data, void *priv)
2030 {
2031 const lock_descriptor_t *ld = data;
2032 char buf[LM_VNPATHLEN];
2033 mdb_lminfo_proc_t p;
2034 uintptr_t paddr = 0;
2035
2036 if (ld->l_flock.l_pid != 0)
2037 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
2038
2039 if (paddr != 0)
2040 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
2041
2042 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
2043 addr, ld->l_type == F_RDLCK ? "RD" :
2044 ld->l_type == F_WRLCK ? "WR" : "??",
2045 ld->l_state, ld->l_flock.l_pid,
2046 ld->l_flock.l_pid == 0 ? "<kernel>" :
2047 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
2048
2049 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
2050 sizeof (buf));
2051 mdb_printf("%s\n", buf);
2052
2053 return (WALK_NEXT);
2054 }
2055
2056 /*ARGSUSED*/
2057 int
2058 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2059 {
2060 if (DCMD_HDRSPEC(flags))
2061 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
2062 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
2063
2064 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0));
2065 }
2066
2067 /*ARGSUSED*/
2068 int
2069 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
2070 {
2071 if ((uintptr_t)f->f_vnode == *target) {
2072 mdb_printf("file %p\n", addr);
2073 *target = 0;
2074 }
2075
2076 return (WALK_NEXT);
2077 }
2078
2079 /*ARGSUSED*/
2080 int
2081 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
2082 {
2083 uintptr_t t = *target;
2084
2085 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
2086 mdb_warn("couldn't file walk proc %p", addr);
2087 return (WALK_ERR);
2088 }
2089
2090 if (t == 0)
2091 mdb_printf("%p\n", addr);
2092
2093 return (WALK_NEXT);
2094 }
2095
2096 /*ARGSUSED*/
2097 int
2098 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2099 {
2100 uintptr_t target = addr;
2101
2102 if (!(flags & DCMD_ADDRSPEC) || addr == 0)
2103 return (DCMD_USAGE);
2104
2105 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
2106 mdb_warn("can't proc walk");
2107 return (DCMD_ERR);
2108 }
2109
2110 return (DCMD_OK);
2111 }
2112
2113 typedef struct datafmt {
2114 char *hdr1;
2115 char *hdr2;
2116 char *dashes;
2117 char *fmt;
2118 } datafmt_t;
2119
2120 static datafmt_t kmemfmt[] = {
2121 { "cache ", "name ",
2122 "-------------------------", "%-25s " },
2123 { " buf", " size", "------", "%6u " },
2124 { " buf", "in use", "------", "%6u " },
2125 { " buf", " total", "------", "%6u " },
2126 { " memory", " in use", "----------", "%10lu%c " },
2127 { " alloc", " succeed", "---------", "%9u " },
2128 { "alloc", " fail", "-----", "%5u " },
2129 { NULL, NULL, NULL, NULL }
2130 };
2131
2132 static datafmt_t vmemfmt[] = {
2133 { "vmem ", "name ",
2134 "-------------------------", "%-*s " },
2135 { " memory", " in use", "----------", "%9llu%c " },
2136 { " memory", " total", "-----------", "%10llu%c " },
2137 { " memory", " import", "----------", "%9llu%c " },
2138 { " alloc", " succeed", "---------", "%9llu " },
2139 { "alloc", " fail", "-----", "%5llu " },
2140 { NULL, NULL, NULL, NULL }
2141 };
2142
2143 /*ARGSUSED*/
2144 static int
2145 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2146 {
2147 short rounds, prounds;
2148
2149 if (KMEM_DUMPCC(ccp)) {
2150 rounds = ccp->cc_dump_rounds;
2151 prounds = ccp->cc_dump_prounds;
2152 } else {
2153 rounds = ccp->cc_rounds;
2154 prounds = ccp->cc_prounds;
2155 }
2156 if (rounds > 0)
2157 *avail += rounds;
2158 if (prounds > 0)
2159 *avail += prounds;
2160
2161 return (WALK_NEXT);
2162 }
2163
2164 /*ARGSUSED*/
2165 static int
2166 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2167 {
2168 *alloc += ccp->cc_alloc;
2169
2170 return (WALK_NEXT);
2171 }
2172
2173 /*ARGSUSED*/
2174 static int
2175 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2176 {
2177 *avail += sp->slab_chunks - sp->slab_refcnt;
2178
2179 return (WALK_NEXT);
2180 }
2181
2182 typedef struct kmastat_vmem {
2183 uintptr_t kv_addr;
2184 struct kmastat_vmem *kv_next;
2185 size_t kv_meminuse;
2186 int kv_alloc;
2187 int kv_fail;
2188 } kmastat_vmem_t;
2189
2190 typedef struct kmastat_args {
2191 kmastat_vmem_t **ka_kvpp;
2192 uint_t ka_shift;
2193 } kmastat_args_t;
2194
2195 static int
2196 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2197 {
2198 kmastat_vmem_t **kvpp = kap->ka_kvpp;
2199 kmastat_vmem_t *kv;
2200 datafmt_t *dfp = kmemfmt;
2201 int magsize;
2202
2203 int avail, alloc, total;
2204 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2205 cp->cache_slabsize;
2206
2207 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2208 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2209 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2210
2211 magsize = kmem_get_magsize(cp);
2212
2213 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2214 avail = cp->cache_full.ml_total * magsize;
2215 total = cp->cache_buftotal;
2216
2217 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2218 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2219 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2220
2221 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2222 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2223 goto out;
2224 }
2225
2226 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2227 kv->kv_next = *kvpp;
2228 kv->kv_addr = (uintptr_t)cp->cache_arena;
2229 *kvpp = kv;
2230 out:
2231 kv->kv_meminuse += meminuse;
2232 kv->kv_alloc += alloc;
2233 kv->kv_fail += cp->cache_alloc_fail;
2234
2235 mdb_printf((dfp++)->fmt, cp->cache_name);
2236 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2237 mdb_printf((dfp++)->fmt, total - avail);
2238 mdb_printf((dfp++)->fmt, total);
2239 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2240 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2241 kap->ka_shift == KILOS ? 'K' : 'B');
2242 mdb_printf((dfp++)->fmt, alloc);
2243 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2244 mdb_printf("\n");
2245
2246 return (WALK_NEXT);
2247 }
2248
2249 static int
2250 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2251 {
2252 kmastat_vmem_t *kv = *kap->ka_kvpp;
2253 size_t len;
2254
2255 while (kv != NULL && kv->kv_addr != addr)
2256 kv = kv->kv_next;
2257
2258 if (kv == NULL || kv->kv_alloc == 0)
2259 return (WALK_NEXT);
2260
2261 len = MIN(17, strlen(v->vm_name));
2262
2263 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2264 17 - len, "", "", "", "",
2265 kv->kv_meminuse >> kap->ka_shift,
2266 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2267 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2268
2269 return (WALK_NEXT);
2270 }
2271
2272 /*ARGSUSED*/
2273 static int
2274 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2275 {
2276 datafmt_t *dfp = vmemfmt;
2277 const vmem_kstat_t *vkp = &v->vm_kstat;
2278 uintptr_t paddr;
2279 vmem_t parent;
2280 int ident = 0;
2281
2282 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) {
2283 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2284 mdb_warn("couldn't trace %p's ancestry", addr);
2285 ident = 0;
2286 break;
2287 }
2288 paddr = (uintptr_t)parent.vm_source;
2289 }
2290
2291 mdb_printf("%*s", ident, "");
2292 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2293 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2294 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2295 *shiftp == KILOS ? 'K' : 'B');
2296 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2297 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2298 *shiftp == KILOS ? 'K' : 'B');
2299 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2300 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2301 *shiftp == KILOS ? 'K' : 'B');
2302 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2303 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2304
2305 mdb_printf("\n");
2306
2307 return (WALK_NEXT);
2308 }
2309
2310 /*ARGSUSED*/
2311 int
2312 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2313 {
2314 kmastat_vmem_t *kv = NULL;
2315 datafmt_t *dfp;
2316 kmastat_args_t ka;
2317
2318 ka.ka_shift = 0;
2319 if (mdb_getopts(argc, argv,
2320 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2321 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2322 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2323 return (DCMD_USAGE);
2324
2325 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2326 mdb_printf("%s ", dfp->hdr1);
2327 mdb_printf("\n");
2328
2329 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2330 mdb_printf("%s ", dfp->hdr2);
2331 mdb_printf("\n");
2332
2333 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2334 mdb_printf("%s ", dfp->dashes);
2335 mdb_printf("\n");
2336
2337 ka.ka_kvpp = &kv;
2338 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2339 mdb_warn("can't walk 'kmem_cache'");
2340 return (DCMD_ERR);
2341 }
2342
2343 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2344 mdb_printf("%s ", dfp->dashes);
2345 mdb_printf("\n");
2346
2347 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2348 mdb_warn("can't walk 'vmem'");
2349 return (DCMD_ERR);
2350 }
2351
2352 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2353 mdb_printf("%s ", dfp->dashes);
2354 mdb_printf("\n");
2355
2356 mdb_printf("\n");
2357
2358 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2359 mdb_printf("%s ", dfp->hdr1);
2360 mdb_printf("\n");
2361
2362 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2363 mdb_printf("%s ", dfp->hdr2);
2364 mdb_printf("\n");
2365
2366 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2367 mdb_printf("%s ", dfp->dashes);
2368 mdb_printf("\n");
2369
2370 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2371 mdb_warn("can't walk 'vmem'");
2372 return (DCMD_ERR);
2373 }
2374
2375 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2376 mdb_printf("%s ", dfp->dashes);
2377 mdb_printf("\n");
2378 return (DCMD_OK);
2379 }
2380
2381 /*
2382 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2383 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2384 * unfortunately, a few of the segs are both large and sparse, so we could
2385 * spend quite a bit of time scanning VAs which have no backing pages.
2386 *
2387 * So for the few very sparse segs, we skip the segment itself, and scan
2388 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2389 * Currently, we do this for:
2390 *
2391 * SEG VMEM ARENA
2392 * kvseg heap_arena
2393 * kvseg32 heap32_arena
2394 * kvseg_core heap_core_arena
2395 *
2396 * In addition, we skip the segkpm segment in its entirety, since it is very
2397 * sparse, and contains no new kernel data.
2398 */
2399 typedef struct kgrep_walk_data {
2400 kgrep_cb_func *kg_cb;
2401 void *kg_cbdata;
2402 uintptr_t kg_kvseg;
2403 uintptr_t kg_kvseg32;
2404 uintptr_t kg_kvseg_core;
2405 uintptr_t kg_segkpm;
2406 uintptr_t kg_heap_lp_base;
2407 uintptr_t kg_heap_lp_end;
2408 } kgrep_walk_data_t;
2409
2410 static int
2411 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2412 {
2413 uintptr_t base = (uintptr_t)seg->s_base;
2414
2415 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2416 addr == kg->kg_kvseg_core)
2417 return (WALK_NEXT);
2418
2419 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2420 return (WALK_NEXT);
2421
2422 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2423 }
2424
2425 /*ARGSUSED*/
2426 static int
2427 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2428 {
2429 /*
2430 * skip large page heap address range - it is scanned by walking
2431 * allocated vmem_segs in the heap_lp_arena
2432 */
2433 if (seg->vs_start == kg->kg_heap_lp_base &&
2434 seg->vs_end == kg->kg_heap_lp_end)
2435 return (WALK_NEXT);
2436
2437 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2438 }
2439
2440 /*ARGSUSED*/
2441 static int
2442 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2443 {
2444 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2445 }
2446
2447 static int
2448 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2449 {
2450 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2451
2452 if (strcmp(vmem->vm_name, "heap") != 0 &&
2453 strcmp(vmem->vm_name, "heap32") != 0 &&
2454 strcmp(vmem->vm_name, "heap_core") != 0 &&
2455 strcmp(vmem->vm_name, "heap_lp") != 0)
2456 return (WALK_NEXT);
2457
2458 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2459 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2460
2461 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2462 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2463 return (WALK_ERR);
2464 }
2465
2466 return (WALK_NEXT);
2467 }
2468
2469 int
2470 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2471 {
2472 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2473 kgrep_walk_data_t kg;
2474
2475 if (mdb_get_state() == MDB_STATE_RUNNING) {
2476 mdb_warn("kgrep can only be run on a system "
2477 "dump or under kmdb; see dumpadm(1M)\n");
2478 return (DCMD_ERR);
2479 }
2480
2481 if (mdb_lookup_by_name("kas", &kas) == -1) {
2482 mdb_warn("failed to locate 'kas' symbol\n");
2483 return (DCMD_ERR);
2484 }
2485
2486 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2487 mdb_warn("failed to locate 'kvseg' symbol\n");
2488 return (DCMD_ERR);
2489 }
2490
2491 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2492 mdb_warn("failed to locate 'kvseg32' symbol\n");
2493 return (DCMD_ERR);
2494 }
2495
2496 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2497 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2498 return (DCMD_ERR);
2499 }
2500
2501 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2502 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2503 return (DCMD_ERR);
2504 }
2505
2506 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2507 mdb_warn("failed to read 'heap_lp_base'\n");
2508 return (DCMD_ERR);
2509 }
2510
2511 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2512 mdb_warn("failed to read 'heap_lp_end'\n");
2513 return (DCMD_ERR);
2514 }
2515
2516 kg.kg_cb = cb;
2517 kg.kg_cbdata = cbdata;
2518 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2519 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2520 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2521 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2522
2523 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2524 &kg, kas.st_value) == -1) {
2525 mdb_warn("failed to walk kas segments");
2526 return (DCMD_ERR);
2527 }
2528
2529 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2530 mdb_warn("failed to walk heap/heap32 vmem arenas");
2531 return (DCMD_ERR);
2532 }
2533
2534 return (DCMD_OK);
2535 }
2536
2537 size_t
2538 kgrep_subr_pagesize(void)
2539 {
2540 return (PAGESIZE);
2541 }
2542
2543 typedef struct file_walk_data {
2544 struct uf_entry *fw_flist;
2545 int fw_flistsz;
2546 int fw_ndx;
2547 int fw_nofiles;
2548 } file_walk_data_t;
2549
2550 typedef struct mdb_file_proc {
2551 struct {
2552 struct {
2553 int fi_nfiles;
2554 uf_entry_t *volatile fi_list;
2555 } u_finfo;
2556 } p_user;
2557 } mdb_file_proc_t;
2558
2559 int
2560 file_walk_init(mdb_walk_state_t *wsp)
2561 {
2562 file_walk_data_t *fw;
2563 mdb_file_proc_t p;
2564
2565 if (wsp->walk_addr == 0) {
2566 mdb_warn("file walk doesn't support global walks\n");
2567 return (WALK_ERR);
2568 }
2569
2570 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2571
2572 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2573 wsp->walk_addr, 0) == -1) {
2574 mdb_free(fw, sizeof (file_walk_data_t));
2575 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2576 return (WALK_ERR);
2577 }
2578
2579 if (p.p_user.u_finfo.fi_nfiles == 0) {
2580 mdb_free(fw, sizeof (file_walk_data_t));
2581 return (WALK_DONE);
2582 }
2583
2584 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2585 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2586 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2587
2588 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2589 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2590 mdb_warn("failed to read file array at %p",
2591 p.p_user.u_finfo.fi_list);
2592 mdb_free(fw->fw_flist, fw->fw_flistsz);
2593 mdb_free(fw, sizeof (file_walk_data_t));
2594 return (WALK_ERR);
2595 }
2596
2597 fw->fw_ndx = 0;
2598 wsp->walk_data = fw;
2599
2600 return (WALK_NEXT);
2601 }
2602
2603 int
2604 file_walk_step(mdb_walk_state_t *wsp)
2605 {
2606 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2607 struct file file;
2608 uintptr_t fp;
2609
2610 again:
2611 if (fw->fw_ndx == fw->fw_nofiles)
2612 return (WALK_DONE);
2613
2614 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0)
2615 goto again;
2616
2617 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2618 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2619 }
2620
2621 int
2622 allfile_walk_step(mdb_walk_state_t *wsp)
2623 {
2624 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2625 struct file file;
2626 uintptr_t fp;
2627
2628 if (fw->fw_ndx == fw->fw_nofiles)
2629 return (WALK_DONE);
2630
2631 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0)
2632 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2633 else
2634 bzero(&file, sizeof (file));
2635
2636 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2637 }
2638
2639 void
2640 file_walk_fini(mdb_walk_state_t *wsp)
2641 {
2642 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2643
2644 mdb_free(fw->fw_flist, fw->fw_flistsz);
2645 mdb_free(fw, sizeof (file_walk_data_t));
2646 }
2647
2648 int
2649 port_walk_init(mdb_walk_state_t *wsp)
2650 {
2651 if (wsp->walk_addr == 0) {
2652 mdb_warn("port walk doesn't support global walks\n");
2653 return (WALK_ERR);
2654 }
2655
2656 if (mdb_layered_walk("file", wsp) == -1) {
2657 mdb_warn("couldn't walk 'file'");
2658 return (WALK_ERR);
2659 }
2660 return (WALK_NEXT);
2661 }
2662
2663 int
2664 port_walk_step(mdb_walk_state_t *wsp)
2665 {
2666 struct vnode vn;
2667 uintptr_t vp;
2668 uintptr_t pp;
2669 struct port port;
2670
2671 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2672 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2673 mdb_warn("failed to read vnode_t at %p", vp);
2674 return (WALK_ERR);
2675 }
2676 if (vn.v_type != VPORT)
2677 return (WALK_NEXT);
2678
2679 pp = (uintptr_t)vn.v_data;
2680 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2681 mdb_warn("failed to read port_t at %p", pp);
2682 return (WALK_ERR);
2683 }
2684 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2685 }
2686
2687 typedef struct portev_walk_data {
2688 list_node_t *pev_node;
2689 list_node_t *pev_last;
2690 size_t pev_offset;
2691 } portev_walk_data_t;
2692
2693 int
2694 portev_walk_init(mdb_walk_state_t *wsp)
2695 {
2696 portev_walk_data_t *pevd;
2697 struct port port;
2698 struct vnode vn;
2699 struct list *list;
2700 uintptr_t vp;
2701
2702 if (wsp->walk_addr == 0) {
2703 mdb_warn("portev walk doesn't support global walks\n");
2704 return (WALK_ERR);
2705 }
2706
2707 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2708
2709 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2710 mdb_free(pevd, sizeof (portev_walk_data_t));
2711 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2712 return (WALK_ERR);
2713 }
2714
2715 vp = (uintptr_t)port.port_vnode;
2716 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2717 mdb_free(pevd, sizeof (portev_walk_data_t));
2718 mdb_warn("failed to read vnode_t at %p", vp);
2719 return (WALK_ERR);
2720 }
2721
2722 if (vn.v_type != VPORT) {
2723 mdb_free(pevd, sizeof (portev_walk_data_t));
2724 mdb_warn("input address (%p) does not point to an event port",
2725 wsp->walk_addr);
2726 return (WALK_ERR);
2727 }
2728
2729 if (port.port_queue.portq_nent == 0) {
2730 mdb_free(pevd, sizeof (portev_walk_data_t));
2731 return (WALK_DONE);
2732 }
2733 list = &port.port_queue.portq_list;
2734 pevd->pev_offset = list->list_offset;
2735 pevd->pev_last = list->list_head.list_prev;
2736 pevd->pev_node = list->list_head.list_next;
2737 wsp->walk_data = pevd;
2738 return (WALK_NEXT);
2739 }
2740
2741 int
2742 portev_walk_step(mdb_walk_state_t *wsp)
2743 {
2744 portev_walk_data_t *pevd;
2745 struct port_kevent ev;
2746 uintptr_t evp;
2747
2748 pevd = (portev_walk_data_t *)wsp->walk_data;
2749
2750 if (pevd->pev_last == NULL)
2751 return (WALK_DONE);
2752 if (pevd->pev_node == pevd->pev_last)
2753 pevd->pev_last = NULL; /* last round */
2754
2755 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2756 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2757 mdb_warn("failed to read port_kevent at %p", evp);
2758 return (WALK_DONE);
2759 }
2760 pevd->pev_node = ev.portkev_node.list_next;
2761 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2762 }
2763
2764 void
2765 portev_walk_fini(mdb_walk_state_t *wsp)
2766 {
2767 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2768
2769 if (pevd != NULL)
2770 mdb_free(pevd, sizeof (portev_walk_data_t));
2771 }
2772
2773 typedef struct proc_walk_data {
2774 uintptr_t *pw_stack;
2775 int pw_depth;
2776 int pw_max;
2777 } proc_walk_data_t;
2778
2779 int
2780 proc_walk_init(mdb_walk_state_t *wsp)
2781 {
2782 GElf_Sym sym;
2783 proc_walk_data_t *pw;
2784
2785 if (wsp->walk_addr == 0) {
2786 if (mdb_lookup_by_name("p0", &sym) == -1) {
2787 mdb_warn("failed to read 'practive'");
2788 return (WALK_ERR);
2789 }
2790 wsp->walk_addr = (uintptr_t)sym.st_value;
2791 }
2792
2793 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2794
2795 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2796 mdb_warn("failed to read 'nproc'");
2797 mdb_free(pw, sizeof (pw));
2798 return (WALK_ERR);
2799 }
2800
2801 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2802 wsp->walk_data = pw;
2803
2804 return (WALK_NEXT);
2805 }
2806
2807 typedef struct mdb_walk_proc {
2808 struct proc *p_child;
2809 struct proc *p_sibling;
2810 } mdb_walk_proc_t;
2811
2812 int
2813 proc_walk_step(mdb_walk_state_t *wsp)
2814 {
2815 proc_walk_data_t *pw = wsp->walk_data;
2816 uintptr_t addr = wsp->walk_addr;
2817 uintptr_t cld, sib;
2818 int status;
2819 mdb_walk_proc_t pr;
2820
2821 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2822 addr, 0) == -1) {
2823 mdb_warn("failed to read proc at %p", addr);
2824 return (WALK_DONE);
2825 }
2826
2827 cld = (uintptr_t)pr.p_child;
2828 sib = (uintptr_t)pr.p_sibling;
2829
2830 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2831 pw->pw_depth--;
2832 goto sib;
2833 }
2834
2835 /*
2836 * Always pass NULL as the local copy pointer. Consumers
2837 * should use mdb_ctf_vread() to read their own minimal
2838 * version of proc_t. Thus minimizing the chance of breakage
2839 * with older crash dumps.
2840 */
2841 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2842
2843 if (status != WALK_NEXT)
2844 return (status);
2845
2846 if ((wsp->walk_addr = cld) != 0) {
2847 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2848 cld, 0) == -1) {
2849 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2850 addr, cld);
2851 goto sib;
2852 }
2853
2854 pw->pw_stack[pw->pw_depth++] = addr;
2855
2856 if (pw->pw_depth == pw->pw_max) {
2857 mdb_warn("depth %d exceeds max depth; try again\n",
2858 pw->pw_depth);
2859 return (WALK_DONE);
2860 }
2861 return (WALK_NEXT);
2862 }
2863
2864 sib:
2865 /*
2866 * We know that p0 has no siblings, and if another starting proc
2867 * was given, we don't want to walk its siblings anyway.
2868 */
2869 if (pw->pw_depth == 0)
2870 return (WALK_DONE);
2871
2872 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2873 sib, 0) == -1) {
2874 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2875 addr, sib);
2876 sib = 0;
2877 }
2878
2879 if ((wsp->walk_addr = sib) == 0) {
2880 if (pw->pw_depth > 0) {
2881 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2882 return (WALK_NEXT);
2883 }
2884 return (WALK_DONE);
2885 }
2886
2887 return (WALK_NEXT);
2888 }
2889
2890 void
2891 proc_walk_fini(mdb_walk_state_t *wsp)
2892 {
2893 proc_walk_data_t *pw = wsp->walk_data;
2894
2895 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2896 mdb_free(pw, sizeof (proc_walk_data_t));
2897 }
2898
2899 int
2900 task_walk_init(mdb_walk_state_t *wsp)
2901 {
2902 task_t task;
2903
2904 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2905 mdb_warn("failed to read task at %p", wsp->walk_addr);
2906 return (WALK_ERR);
2907 }
2908 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2909 wsp->walk_data = task.tk_memb_list;
2910 return (WALK_NEXT);
2911 }
2912
2913 typedef struct mdb_task_proc {
2914 struct proc *p_tasknext;
2915 } mdb_task_proc_t;
2916
2917 int
2918 task_walk_step(mdb_walk_state_t *wsp)
2919 {
2920 mdb_task_proc_t proc;
2921 int status;
2922
2923 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2924 wsp->walk_addr, 0) == -1) {
2925 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2926 return (WALK_DONE);
2927 }
2928
2929 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2930
2931 if (proc.p_tasknext == wsp->walk_data)
2932 return (WALK_DONE);
2933
2934 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2935 return (status);
2936 }
2937
2938 int
2939 project_walk_init(mdb_walk_state_t *wsp)
2940 {
2941 if (wsp->walk_addr == 0) {
2942 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2943 mdb_warn("failed to read 'proj0p'");
2944 return (WALK_ERR);
2945 }
2946 }
2947 wsp->walk_data = (void *)wsp->walk_addr;
2948 return (WALK_NEXT);
2949 }
2950
2951 int
2952 project_walk_step(mdb_walk_state_t *wsp)
2953 {
2954 uintptr_t addr = wsp->walk_addr;
2955 kproject_t pj;
2956 int status;
2957
2958 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2959 mdb_warn("failed to read project at %p", addr);
2960 return (WALK_DONE);
2961 }
2962 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2963 if (status != WALK_NEXT)
2964 return (status);
2965 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2966 if ((void *)wsp->walk_addr == wsp->walk_data)
2967 return (WALK_DONE);
2968 return (WALK_NEXT);
2969 }
2970
2971 static int
2972 generic_walk_step(mdb_walk_state_t *wsp)
2973 {
2974 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2975 wsp->walk_cbdata));
2976 }
2977
2978 static int
2979 cpu_walk_cmp(const void *l, const void *r)
2980 {
2981 uintptr_t lhs = *((uintptr_t *)l);
2982 uintptr_t rhs = *((uintptr_t *)r);
2983 cpu_t lcpu, rcpu;
2984
2985 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2986 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2987
2988 if (lcpu.cpu_id < rcpu.cpu_id)
2989 return (-1);
2990
2991 if (lcpu.cpu_id > rcpu.cpu_id)
2992 return (1);
2993
2994 return (0);
2995 }
2996
2997 typedef struct cpu_walk {
2998 uintptr_t *cw_array;
2999 int cw_ndx;
3000 } cpu_walk_t;
3001
3002 int
3003 cpu_walk_init(mdb_walk_state_t *wsp)
3004 {
3005 cpu_walk_t *cw;
3006 int max_ncpus, i = 0;
3007 uintptr_t current, first;
3008 cpu_t cpu, panic_cpu;
3009 uintptr_t panicstr, addr;
3010 GElf_Sym sym;
3011
3012 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
3013
3014 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
3015 mdb_warn("failed to read 'max_ncpus'");
3016 return (WALK_ERR);
3017 }
3018
3019 if (mdb_readvar(&panicstr, "panicstr") == -1) {
3020 mdb_warn("failed to read 'panicstr'");
3021 return (WALK_ERR);
3022 }
3023
3024 if (panicstr != 0) {
3025 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
3026 mdb_warn("failed to find 'panic_cpu'");
3027 return (WALK_ERR);
3028 }
3029
3030 addr = (uintptr_t)sym.st_value;
3031
3032 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
3033 mdb_warn("failed to read 'panic_cpu'");
3034 return (WALK_ERR);
3035 }
3036 }
3037
3038 /*
3039 * Unfortunately, there is no platform-independent way to walk
3040 * CPUs in ID order. We therefore loop through in cpu_next order,
3041 * building an array of CPU pointers which will subsequently be
3042 * sorted.
3043 */
3044 cw->cw_array =
3045 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
3046
3047 if (mdb_readvar(&first, "cpu_list") == -1) {
3048 mdb_warn("failed to read 'cpu_list'");
3049 return (WALK_ERR);
3050 }
3051
3052 current = first;
3053 do {
3054 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
3055 mdb_warn("failed to read cpu at %p", current);
3056 return (WALK_ERR);
3057 }
3058
3059 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) {
3060 cw->cw_array[i++] = addr;
3061 } else {
3062 cw->cw_array[i++] = current;
3063 }
3064 } while ((current = (uintptr_t)cpu.cpu_next) != first);
3065
3066 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
3067 wsp->walk_data = cw;
3068
3069 return (WALK_NEXT);
3070 }
3071
3072 int
3073 cpu_walk_step(mdb_walk_state_t *wsp)
3074 {
3075 cpu_walk_t *cw = wsp->walk_data;
3076 cpu_t cpu;
3077 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
3078
3079 if (addr == 0)
3080 return (WALK_DONE);
3081
3082 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3083 mdb_warn("failed to read cpu at %p", addr);
3084 return (WALK_DONE);
3085 }
3086
3087 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3088 }
3089
3090 typedef struct cpuinfo_data {
3091 intptr_t cid_cpu;
3092 uintptr_t **cid_ithr;
3093 char cid_print_head;
3094 char cid_print_thr;
3095 char cid_print_ithr;
3096 char cid_print_flags;
3097 } cpuinfo_data_t;
3098
3099 int
3100 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3101 {
3102 cpu_t c;
3103 int id;
3104 uint8_t pil;
3105
3106 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3107 return (WALK_NEXT);
3108
3109 if (thr->t_bound_cpu == NULL) {
3110 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3111 return (WALK_NEXT);
3112 }
3113
3114 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3115
3116 if ((id = c.cpu_id) >= NCPU) {
3117 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3118 thr->t_bound_cpu, id, NCPU);
3119 return (WALK_NEXT);
3120 }
3121
3122 if ((pil = thr->t_pil) >= NINTR) {
3123 mdb_warn("thread %p has pil (%d) greater than %d\n",
3124 addr, pil, NINTR);
3125 return (WALK_NEXT);
3126 }
3127
3128 if (cid->cid_ithr[id][pil] != 0) {
3129 mdb_warn("CPU %d has multiple threads at pil %d (at least "
3130 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3131 return (WALK_NEXT);
3132 }
3133
3134 cid->cid_ithr[id][pil] = addr;
3135
3136 return (WALK_NEXT);
3137 }
3138
3139 #define CPUINFO_IDWIDTH 3
3140 #define CPUINFO_FLAGWIDTH 9
3141
3142 #ifdef _LP64
3143 #if defined(__amd64)
3144 #define CPUINFO_TWIDTH 16
3145 #define CPUINFO_CPUWIDTH 16
3146 #else
3147 #define CPUINFO_CPUWIDTH 11
3148 #define CPUINFO_TWIDTH 11
3149 #endif
3150 #else
3151 #define CPUINFO_CPUWIDTH 8
3152 #define CPUINFO_TWIDTH 8
3153 #endif
3154
3155 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3156 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3157 #define CPUINFO_ITHRDELT 4
3158
3159 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
3160 flagline < nflaglines ? flagbuf[flagline++] : "")
3161
3162 typedef struct mdb_cpuinfo_proc {
3163 struct {
3164 char u_comm[MAXCOMLEN + 1];
3165 } p_user;
3166 } mdb_cpuinfo_proc_t;
3167
3168 int
3169 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3170 {
3171 kthread_t t;
3172 disp_t disp;
3173 mdb_cpuinfo_proc_t p;
3174 uintptr_t pinned;
3175 char **flagbuf;
3176 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3177
3178 const char *flags[] = {
3179 "RUNNING", "READY", "QUIESCED", "EXISTS",
3180 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3181 "SPARE", "FAULTED", "DISABLED", NULL
3182 };
3183
3184 if (cid->cid_cpu != -1) {
3185 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3186 return (WALK_NEXT);
3187
3188 /*
3189 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3190 */
3191 cid->cid_cpu = -1;
3192 rval = WALK_DONE;
3193 }
3194
3195 if (cid->cid_print_head) {
3196 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3197 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3198 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3199 "PROC");
3200 cid->cid_print_head = FALSE;
3201 }
3202
3203 bspl = cpu->cpu_base_spl;
3204
3205 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3206 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3207 return (WALK_ERR);
3208 }
3209
3210 mdb_printf("%3d %0*p %3x %4d %4d ",
3211 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3212 disp.disp_nrunnable, bspl);
3213
3214 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3215 mdb_printf("%3d ", t.t_pri);
3216 } else {
3217 mdb_printf("%3s ", "-");
3218 }
3219
3220 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3221 cpu->cpu_kprunrun ? "yes" : "no");
3222
3223 if (cpu->cpu_last_swtch) {
3224 mdb_printf("t-%-4d ",
3225 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3226 } else {
3227 mdb_printf("%-6s ", "-");
3228 }
3229
3230 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3231
3232 if (cpu->cpu_thread == cpu->cpu_idle_thread)
3233 mdb_printf(" (idle)\n");
3234 else if (cpu->cpu_thread == NULL)
3235 mdb_printf(" -\n");
3236 else {
3237 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3238 (uintptr_t)t.t_procp, 0) != -1) {
3239 mdb_printf(" %s\n", p.p_user.u_comm);
3240 } else {
3241 mdb_printf(" ?\n");
3242 }
3243 }
3244
3245 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3246
3247 if (cid->cid_print_flags) {
3248 int first = 1, i, j, k;
3249 char *s;
3250
3251 cid->cid_print_head = TRUE;
3252
3253 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3254 if (!(cpu->cpu_flags & i))
3255 continue;
3256
3257 if (first) {
3258 s = mdb_alloc(CPUINFO_THRDELT + 1,
3259 UM_GC | UM_SLEEP);
3260
3261 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3262 "%*s|%*s", CPUINFO_FLAGDELT, "",
3263 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3264 flagbuf[nflaglines++] = s;
3265 }
3266
3267 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3268 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3269 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3270 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3271 first ? "<--+" : "");
3272
3273 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3274 s[k] = ' ';
3275 s[k] = '\0';
3276
3277 flagbuf[nflaglines++] = s;
3278 first = 0;
3279 }
3280 }
3281
3282 if (cid->cid_print_ithr) {
3283 int i, found_one = FALSE;
3284 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3285
3286 for (i = NINTR - 1; i >= 0; i--) {
3287 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3288
3289 if (iaddr == 0)
3290 continue;
3291
3292 if (!found_one) {
3293 found_one = TRUE;
3294
3295 CPUINFO_INDENT;
3296 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3297 CPUINFO_ITHRDELT, "");
3298
3299 CPUINFO_INDENT;
3300 mdb_printf("%c%*s+--> %3s %s\n",
3301 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3302 "", "PIL", "THREAD");
3303 }
3304
3305 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3306 mdb_warn("failed to read kthread_t at %p",
3307 iaddr);
3308 return (WALK_ERR);
3309 }
3310
3311 CPUINFO_INDENT;
3312 mdb_printf("%c%*s %3d %0*p\n",
3313 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3314 t.t_pil, CPUINFO_TWIDTH, iaddr);
3315
3316 pinned = (uintptr_t)t.t_intr;
3317 }
3318
3319 if (found_one && pinned != 0) {
3320 cid->cid_print_head = TRUE;
3321 (void) strcpy(p.p_user.u_comm, "?");
3322
3323 if (mdb_vread(&t, sizeof (t),
3324 (uintptr_t)pinned) == -1) {
3325 mdb_warn("failed to read kthread_t at %p",
3326 pinned);
3327 return (WALK_ERR);
3328 }
3329 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3330 (uintptr_t)t.t_procp, 0) == -1) {
3331 mdb_warn("failed to read proc_t at %p",
3332 t.t_procp);
3333 return (WALK_ERR);
3334 }
3335
3336 CPUINFO_INDENT;
3337 mdb_printf("%c%*s %3s %0*p %s\n",
3338 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3339 CPUINFO_TWIDTH, pinned,
3340 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3341 "(idle)" : p.p_user.u_comm);
3342 }
3343 }
3344
3345 if (disp.disp_nrunnable && cid->cid_print_thr) {
3346 dispq_t *dq;
3347
3348 int i, npri = disp.disp_npri;
3349
3350 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3351
3352 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3353 (uintptr_t)disp.disp_q) == -1) {
3354 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3355 return (WALK_ERR);
3356 }
3357
3358 CPUINFO_INDENT;
3359 mdb_printf("|\n");
3360
3361 CPUINFO_INDENT;
3362 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3363 CPUINFO_TWIDTH, "THREAD", "PROC");
3364
3365 for (i = npri - 1; i >= 0; i--) {
3366 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3367
3368 while (taddr != 0) {
3369 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3370 mdb_warn("failed to read kthread_t "
3371 "at %p", taddr);
3372 return (WALK_ERR);
3373 }
3374 if (mdb_ctf_vread(&p, "proc_t",
3375 "mdb_cpuinfo_proc_t",
3376 (uintptr_t)t.t_procp, 0) == -1) {
3377 mdb_warn("failed to read proc_t at %p",
3378 t.t_procp);
3379 return (WALK_ERR);
3380 }
3381
3382 CPUINFO_INDENT;
3383 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3384 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3385
3386 taddr = (uintptr_t)t.t_link;
3387 }
3388 }
3389 cid->cid_print_head = TRUE;
3390 }
3391
3392 while (flagline < nflaglines)
3393 mdb_printf("%s\n", flagbuf[flagline++]);
3394
3395 if (cid->cid_print_head)
3396 mdb_printf("\n");
3397
3398 return (rval);
3399 }
3400
3401 int
3402 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3403 {
3404 uint_t verbose = FALSE;
3405 cpuinfo_data_t cid;
3406
3407 cid.cid_print_ithr = FALSE;
3408 cid.cid_print_thr = FALSE;
3409 cid.cid_print_flags = FALSE;
3410 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3411 cid.cid_cpu = -1;
3412
3413 if (flags & DCMD_ADDRSPEC)
3414 cid.cid_cpu = addr;
3415
3416 if (mdb_getopts(argc, argv,
3417 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3418 return (DCMD_USAGE);
3419
3420 if (verbose) {
3421 cid.cid_print_ithr = TRUE;
3422 cid.cid_print_thr = TRUE;
3423 cid.cid_print_flags = TRUE;
3424 cid.cid_print_head = TRUE;
3425 }
3426
3427 if (cid.cid_print_ithr) {
3428 int i;
3429
3430 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3431 * NCPU, UM_SLEEP | UM_GC);
3432
3433 for (i = 0; i < NCPU; i++)
3434 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3435 NINTR, UM_SLEEP | UM_GC);
3436
3437 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3438 &cid) == -1) {
3439 mdb_warn("couldn't walk thread");
3440 return (DCMD_ERR);
3441 }
3442 }
3443
3444 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3445 mdb_warn("can't walk cpus");
3446 return (DCMD_ERR);
3447 }
3448
3449 if (cid.cid_cpu != -1) {
3450 /*
3451 * We didn't find this CPU when we walked through the CPUs
3452 * (i.e. the address specified doesn't show up in the "cpu"
3453 * walk). However, the specified address may still correspond
3454 * to a valid cpu_t (for example, if the specified address is
3455 * the actual panicking cpu_t and not the cached panic_cpu).
3456 * Point is: even if we didn't find it, we still want to try
3457 * to print the specified address as a cpu_t.
3458 */
3459 cpu_t cpu;
3460
3461 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3462 mdb_warn("%p is neither a valid CPU ID nor a "
3463 "valid cpu_t address\n", cid.cid_cpu);
3464 return (DCMD_ERR);
3465 }
3466
3467 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3468 }
3469
3470 return (DCMD_OK);
3471 }
3472
3473 /*ARGSUSED*/
3474 int
3475 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3476 {
3477 int i;
3478
3479 if (!(flags & DCMD_ADDRSPEC))
3480 return (DCMD_USAGE);
3481
3482 for (i = 0; i < sizeof (addr) * NBBY; i++)
3483 mdb_printf("%p\n", addr ^ (1UL << i));
3484
3485 return (DCMD_OK);
3486 }
3487
3488 typedef struct mdb_as2proc_proc {
3489 struct as *p_as;
3490 } mdb_as2proc_proc_t;
3491
3492 /*ARGSUSED*/
3493 int
3494 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3495 {
3496 mdb_as2proc_proc_t p;
3497
3498 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3499
3500 if (p.p_as == *asp)
3501 mdb_printf("%p\n", addr);
3502 return (WALK_NEXT);
3503 }
3504
3505 /*ARGSUSED*/
3506 int
3507 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3508 {
3509 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3510 return (DCMD_USAGE);
3511
3512 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3513 mdb_warn("failed to walk proc");
3514 return (DCMD_ERR);
3515 }
3516
3517 return (DCMD_OK);
3518 }
3519
3520 typedef struct mdb_ptree_proc {
3521 struct proc *p_parent;
3522 struct {
3523 char u_comm[MAXCOMLEN + 1];
3524 } p_user;
3525 } mdb_ptree_proc_t;
3526
3527 /*ARGSUSED*/
3528 int
3529 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3530 {
3531 mdb_ptree_proc_t proc;
3532 mdb_ptree_proc_t parent;
3533 int ident = 0;
3534 uintptr_t paddr;
3535
3536 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3537
3538 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) {
3539 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3540 paddr = (uintptr_t)parent.p_parent;
3541 }
3542
3543 mdb_inc_indent(ident);
3544 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm);
3545 mdb_dec_indent(ident);
3546
3547 return (WALK_NEXT);
3548 }
3549
3550 void
3551 ptree_ancestors(uintptr_t addr, uintptr_t start)
3552 {
3553 mdb_ptree_proc_t p;
3554
3555 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3556 mdb_warn("couldn't read ancestor at %p", addr);
3557 return;
3558 }
3559
3560 if (p.p_parent != NULL)
3561 ptree_ancestors((uintptr_t)p.p_parent, start);
3562
3563 if (addr != start)
3564 (void) ptree_walk(addr, &p, NULL);
3565 }
3566
3567 /*ARGSUSED*/
3568 int
3569 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3570 {
3571 if (!(flags & DCMD_ADDRSPEC))
3572 addr = 0;
3573 else
3574 ptree_ancestors(addr, addr);
3575
3576 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3577 mdb_warn("couldn't walk 'proc'");
3578 return (DCMD_ERR);
3579 }
3580
3581 return (DCMD_OK);
3582 }
3583
3584 typedef struct mdb_fd_proc {
3585 struct {
3586 struct {
3587 int fi_nfiles;
3588 uf_entry_t *volatile fi_list;
3589 } u_finfo;
3590 } p_user;
3591 } mdb_fd_proc_t;
3592
3593 /*ARGSUSED*/
3594 static int
3595 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3596 {
3597 int fdnum;
3598 const mdb_arg_t *argp = &argv[0];
3599 mdb_fd_proc_t p;
3600 uf_entry_t uf;
3601
3602 if ((flags & DCMD_ADDRSPEC) == 0) {
3603 mdb_warn("fd doesn't give global information\n");
3604 return (DCMD_ERR);
3605 }
3606 if (argc != 1)
3607 return (DCMD_USAGE);
3608
3609 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3610 fdnum = argp->a_un.a_val;
3611 else
3612 fdnum = mdb_strtoull(argp->a_un.a_str);
3613
3614 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3615 mdb_warn("couldn't read proc_t at %p", addr);
3616 return (DCMD_ERR);
3617 }
3618 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3619 mdb_warn("process %p only has %d files open.\n",
3620 addr, p.p_user.u_finfo.fi_nfiles);
3621 return (DCMD_ERR);
3622 }
3623 if (mdb_vread(&uf, sizeof (uf_entry_t),
3624 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3625 mdb_warn("couldn't read uf_entry_t at %p",
3626 &p.p_user.u_finfo.fi_list[fdnum]);
3627 return (DCMD_ERR);
3628 }
3629
3630 mdb_printf("%p\n", uf.uf_file);
3631 return (DCMD_OK);
3632 }
3633
3634 /*ARGSUSED*/
3635 static int
3636 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3637 {
3638 pid_t pid = (pid_t)addr;
3639
3640 if (argc != 0)
3641 return (DCMD_USAGE);
3642
3643 if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3644 mdb_warn("PID 0t%d not found\n", pid);
3645 return (DCMD_ERR);
3646 }
3647
3648 mdb_printf("%p\n", addr);
3649 return (DCMD_OK);
3650 }
3651
3652 static char *sysfile_cmd[] = {
3653 "exclude:",
3654 "include:",
3655 "forceload:",
3656 "rootdev:",
3657 "rootfs:",
3658 "swapdev:",
3659 "swapfs:",
3660 "moddir:",
3661 "set",
3662 "unknown",
3663 };
3664
3665 static char *sysfile_ops[] = { "", "=", "&", "|" };
3666
3667 /*ARGSUSED*/
3668 static int
3669 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3670 {
3671 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3672 *target = NULL;
3673 return (WALK_DONE);
3674 }
3675 return (WALK_NEXT);
3676 }
3677
3678 /*ARGSUSED*/
3679 static int
3680 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3681 {
3682 struct sysparam *sysp, sys;
3683 char var[256];
3684 char modname[256];
3685 char val[256];
3686 char strval[256];
3687 vmem_t *mod_sysfile_arena;
3688 void *straddr;
3689
3690 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3691 mdb_warn("failed to read sysparam_hd");
3692 return (DCMD_ERR);
3693 }
3694
3695 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3696 mdb_warn("failed to read mod_sysfile_arena");
3697 return (DCMD_ERR);
3698 }
3699
3700 while (sysp != NULL) {
3701 var[0] = '\0';
3702 val[0] = '\0';
3703 modname[0] = '\0';
3704 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3705 mdb_warn("couldn't read sysparam %p", sysp);
3706 return (DCMD_ERR);
3707 }
3708 if (sys.sys_modnam != NULL &&
3709 mdb_readstr(modname, 256,
3710 (uintptr_t)sys.sys_modnam) == -1) {
3711 mdb_warn("couldn't read modname in %p", sysp);
3712 return (DCMD_ERR);
3713 }
3714 if (sys.sys_ptr != NULL &&
3715 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3716 mdb_warn("couldn't read ptr in %p", sysp);
3717 return (DCMD_ERR);
3718 }
3719 if (sys.sys_op != SETOP_NONE) {
3720 /*
3721 * Is this an int or a string? We determine this
3722 * by checking whether straddr is contained in
3723 * mod_sysfile_arena. If so, the walker will set
3724 * straddr to NULL.
3725 */
3726 straddr = (void *)(uintptr_t)sys.sys_info;
3727 if (sys.sys_op == SETOP_ASSIGN &&
3728 sys.sys_info != 0 &&
3729 mdb_pwalk("vmem_seg",
3730 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3731 (uintptr_t)mod_sysfile_arena) == 0 &&
3732 straddr == NULL &&
3733 mdb_readstr(strval, 256,
3734 (uintptr_t)sys.sys_info) != -1) {
3735 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3736 strval);
3737 } else {
3738 (void) mdb_snprintf(val, sizeof (val),
3739 "0x%llx [0t%llu]", sys.sys_info,
3740 sys.sys_info);
3741 }
3742 }
3743 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3744 modname, modname[0] == '\0' ? "" : ":",
3745 var, sysfile_ops[sys.sys_op], val);
3746
3747 sysp = sys.sys_next;
3748 }
3749
3750 return (DCMD_OK);
3751 }
3752
3753 int
3754 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3755 {
3756
3757 if (*didp == thr->t_did) {
3758 mdb_printf("%p\n", addr);
3759 return (WALK_DONE);
3760 } else
3761 return (WALK_NEXT);
3762 }
3763
3764 /*ARGSUSED*/
3765 int
3766 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3767 {
3768 const mdb_arg_t *argp = &argv[0];
3769 kt_did_t did;
3770
3771 if (argc != 1)
3772 return (DCMD_USAGE);
3773
3774 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3775
3776 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3777 mdb_warn("failed to walk thread");
3778 return (DCMD_ERR);
3779
3780 }
3781 return (DCMD_OK);
3782
3783 }
3784
3785 static int
3786 errorq_walk_init(mdb_walk_state_t *wsp)
3787 {
3788 if (wsp->walk_addr == 0 &&
3789 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3790 mdb_warn("failed to read errorq_list");
3791 return (WALK_ERR);
3792 }
3793
3794 return (WALK_NEXT);
3795 }
3796
3797 static int
3798 errorq_walk_step(mdb_walk_state_t *wsp)
3799 {
3800 uintptr_t addr = wsp->walk_addr;
3801 errorq_t eq;
3802
3803 if (addr == 0)
3804 return (WALK_DONE);
3805
3806 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3807 mdb_warn("failed to read errorq at %p", addr);
3808 return (WALK_ERR);
3809 }
3810
3811 wsp->walk_addr = (uintptr_t)eq.eq_next;
3812 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3813 }
3814
3815 typedef struct eqd_walk_data {
3816 uintptr_t *eqd_stack;
3817 void *eqd_buf;
3818 ulong_t eqd_qpos;
3819 ulong_t eqd_qlen;
3820 size_t eqd_size;
3821 } eqd_walk_data_t;
3822
3823 /*
3824 * In order to walk the list of pending error queue elements, we push the
3825 * addresses of the corresponding data buffers in to the eqd_stack array.
3826 * The error lists are in reverse chronological order when iterating using
3827 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3828 * walker client gets addresses in order from oldest error to newest error.
3829 */
3830 static void
3831 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3832 {
3833 errorq_elem_t eqe;
3834
3835 while (addr != 0) {
3836 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3837 mdb_warn("failed to read errorq element at %p", addr);
3838 break;
3839 }
3840
3841 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3842 mdb_warn("errorq is overfull -- more than %lu "
3843 "elems found\n", eqdp->eqd_qlen);
3844 break;
3845 }
3846
3847 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3848 addr = (uintptr_t)eqe.eqe_prev;
3849 }
3850 }
3851
3852 static int
3853 eqd_walk_init(mdb_walk_state_t *wsp)
3854 {
3855 eqd_walk_data_t *eqdp;
3856 errorq_elem_t eqe, *addr;
3857 errorq_t eq;
3858 ulong_t i;
3859
3860 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3861 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3862 return (WALK_ERR);
3863 }
3864
3865 if (eq.eq_ptail != NULL &&
3866 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3867 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3868 return (WALK_ERR);
3869 }
3870
3871 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3872 wsp->walk_data = eqdp;
3873
3874 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3875 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3876 eqdp->eqd_qlen = eq.eq_qlen;
3877 eqdp->eqd_qpos = 0;
3878 eqdp->eqd_size = eq.eq_size;
3879
3880 /*
3881 * The newest elements in the queue are on the pending list, so we
3882 * push those on to our stack first.
3883 */
3884 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3885
3886 /*
3887 * If eq_ptail is set, it may point to a subset of the errors on the
3888 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3889 * data is already in our stack, NULL out eq_ptail and ignore it.
3890 */
3891 if (eq.eq_ptail != NULL) {
3892 for (i = 0; i < eqdp->eqd_qpos; i++) {
3893 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3894 eq.eq_ptail = NULL;
3895 break;
3896 }
3897 }
3898 }
3899
3900 /*
3901 * If eq_phead is set, it has the processing list in order from oldest
3902 * to newest. Use this to recompute eq_ptail as best we can and then
3903 * we nicely fall into eqd_push_list() of eq_ptail below.
3904 */
3905 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3906 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3907 eq.eq_ptail = addr;
3908
3909 /*
3910 * The oldest elements in the queue are on the processing list, subject
3911 * to machinations in the if-clauses above. Push any such elements.
3912 */
3913 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3914 return (WALK_NEXT);
3915 }
3916
3917 static int
3918 eqd_walk_step(mdb_walk_state_t *wsp)
3919 {
3920 eqd_walk_data_t *eqdp = wsp->walk_data;
3921 uintptr_t addr;
3922
3923 if (eqdp->eqd_qpos == 0)
3924 return (WALK_DONE);
3925
3926 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3927
3928 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3929 mdb_warn("failed to read errorq data at %p", addr);
3930 return (WALK_ERR);
3931 }
3932
3933 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3934 }
3935
3936 static void
3937 eqd_walk_fini(mdb_walk_state_t *wsp)
3938 {
3939 eqd_walk_data_t *eqdp = wsp->walk_data;
3940
3941 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3942 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3943 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3944 }
3945
3946 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3947
3948 static int
3949 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3950 {
3951 int i;
3952 errorq_t eq;
3953 uint_t opt_v = FALSE;
3954
3955 if (!(flags & DCMD_ADDRSPEC)) {
3956 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3957 mdb_warn("can't walk 'errorq'");
3958 return (DCMD_ERR);
3959 }
3960 return (DCMD_OK);
3961 }
3962
3963 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3964 argc -= i;
3965 argv += i;
3966
3967 if (argc != 0)
3968 return (DCMD_USAGE);
3969
3970 if (opt_v || DCMD_HDRSPEC(flags)) {
3971 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3972 "ADDR", "NAME", "S", "V", "N");
3973 if (!opt_v) {
3974 mdb_printf("%7s %7s %7s%</u>\n",
3975 "ACCEPT", "DROP", "LOG");
3976 } else {
3977 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3978 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3979 }
3980 }
3981
3982 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3983 mdb_warn("failed to read errorq at %p", addr);
3984 return (DCMD_ERR);
3985 }
3986
3987 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3988 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3989 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3990 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3991
3992 if (!opt_v) {
3993 mdb_printf("%7llu %7llu %7llu\n",
3994 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3995 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3996 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3997 } else {
3998 mdb_printf("%5s %6lu %6lu %3u %a\n",
3999 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
4000 mdb_printf("%38s\n%41s"
4001 "%12s %llu\n"
4002 "%53s %llu\n"
4003 "%53s %llu\n"
4004 "%53s %llu\n"
4005 "%53s %llu\n"
4006 "%53s %llu\n"
4007 "%53s %llu\n"
4008 "%53s %llu\n\n",
4009 "|", "+-> ",
4010 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
4011 "DROPPED", EQKSVAL(eq, eqk_dropped),
4012 "LOGGED", EQKSVAL(eq, eqk_logged),
4013 "RESERVED", EQKSVAL(eq, eqk_reserved),
4014 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
4015 "COMMITTED", EQKSVAL(eq, eqk_committed),
4016 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
4017 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
4018 }
4019
4020 return (DCMD_OK);
4021 }
4022
4023 /*ARGSUSED*/
4024 static int
4025 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4026 {
4027 cpu_t panic_cpu;
4028 kthread_t *panic_thread;
4029 void *buf;
4030 panic_data_t *pd;
4031 int i, n;
4032
4033 if (!mdb_prop_postmortem) {
4034 mdb_warn("panicinfo can only be run on a system "
4035 "dump; see dumpadm(1M)\n");
4036 return (DCMD_ERR);
4037 }
4038
4039 if (flags & DCMD_ADDRSPEC || argc != 0)
4040 return (DCMD_USAGE);
4041
4042 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
4043 mdb_warn("failed to read 'panic_cpu'");
4044 else
4045 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
4046
4047 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
4048 mdb_warn("failed to read 'panic_thread'");
4049 else
4050 mdb_printf("%16s %?p\n", "thread", panic_thread);
4051
4052 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
4053 pd = (panic_data_t *)buf;
4054
4055 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
4056 pd->pd_version != PANICBUFVERS) {
4057 mdb_warn("failed to read 'panicbuf'");
4058 mdb_free(buf, PANICBUFSIZE);
4059 return (DCMD_ERR);
4060 }
4061
4062 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
4063
4064 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
4065 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
4066
4067 for (i = 0; i < n; i++)
4068 mdb_printf("%16s %?llx\n",
4069 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
4070
4071 mdb_free(buf, PANICBUFSIZE);
4072 return (DCMD_OK);
4073 }
4074
4075 /*
4076 * ::time dcmd, which will print a hires timestamp of when we entered the
4077 * debugger, or the lbolt value if used with the -l option.
4078 *
4079 */
4080 /*ARGSUSED*/
4081 static int
4082 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4083 {
4084 uint_t opt_dec = FALSE;
4085 uint_t opt_lbolt = FALSE;
4086 uint_t opt_hex = FALSE;
4087 const char *fmt;
4088 hrtime_t result;
4089
4090 if (mdb_getopts(argc, argv,
4091 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4092 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4093 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4094 NULL) != argc)
4095 return (DCMD_USAGE);
4096
4097 if (opt_dec && opt_hex)
4098 return (DCMD_USAGE);
4099
4100 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4101 fmt =
4102 opt_hex ? "0x%llx\n" :
4103 opt_dec ? "0t%lld\n" : "%#llr\n";
4104
4105 mdb_printf(fmt, result);
4106 return (DCMD_OK);
4107 }
4108
4109 void
4110 time_help(void)
4111 {
4112 mdb_printf("Prints the system time in nanoseconds.\n\n"
4113 "::time will return the timestamp at which we dropped into, \n"
4114 "if called from, kmdb(1); the core dump's high resolution \n"
4115 "time if inspecting one; or the running hires time if we're \n"
4116 "looking at a live system.\n\n"
4117 "Switches:\n"
4118 " -d report times in decimal\n"
4119 " -l prints the number of clock ticks since system boot\n"
4120 " -x report times in hexadecimal\n");
4121 }
4122
4123 extern int cmd_refstr(uintptr_t, uint_t, int, const mdb_arg_t *);
4124
4125 static const mdb_dcmd_t dcmds[] = {
4126
4127 /* from genunix.c */
4128 { "as2proc", ":", "convert as to proc_t address", as2proc },
4129 { "binding_hash_entry", ":", "print driver names hash table entry",
4130 binding_hash_entry },
4131 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4132 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4133 " [-FivVA]",
4134 "display callouts", callout, callout_help },
4135 { "calloutid", "[-d|v] xid", "print callout by extended id",
4136 calloutid, calloutid_help },
4137 { "class", NULL, "print process scheduler classes", class },
4138 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4139 { "did2thread", "? kt_did", "find kernel thread for this id",
4140 did2thread },
4141 { "errorq", "?[-v]", "display kernel error queues", errorq },
4142 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
4143 { "flipone", ":", "the vik_rev_level 2 special", flipone },
4144 { "lminfo", NULL, "print lock manager information", lminfo },
4145 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4146 { "panicinfo", NULL, "print panic information", panicinfo },
4147 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4148 { "project", NULL, "display kernel project(s)", project },
4149 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps,
4150 ps_help },
4151 { "pflags", NULL, "display various proc_t flags", pflags },
4152 { "pgrep", "[-x] [-n | -o] pattern",
4153 "pattern match against all processes", pgrep },
4154 { "ptree", NULL, "print process tree", ptree },
4155 { "refstr", NULL, "print string from a refstr_t", cmd_refstr, NULL },
4156 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4157 sysevent},
4158 { "sysevent_channel", "?", "print sysevent channel database",
4159 sysevent_channel},
4160 { "sysevent_class_list", ":", "print sysevent class list",
4161 sysevent_class_list},
4162 { "sysevent_subclass_list", ":",
4163 "print sysevent subclass list", sysevent_subclass_list},
4164 { "system", NULL, "print contents of /etc/system file", sysfile },
4165 { "task", NULL, "display kernel task(s)", task },
4166 { "time", "[-dlx]", "display system time", time, time_help },
4167 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4168 { "whereopen", ":", "given a vnode, dumps procs which have it open",
4169 whereopen },
4170
4171 /* from bio.c */
4172 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4173
4174 /* from bitset.c */
4175 { "bitset", ":", "display a bitset", bitset, bitset_help },
4176
4177 /* from contract.c */
4178 { "contract", "?", "display a contract", cmd_contract },
4179 { "ctevent", ":", "display a contract event", cmd_ctevent },
4180 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4181
4182 /* from cpupart.c */
4183 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
4184
4185 /* from cred.c */
4186 { "cred", ":[-v]", "display a credential", cmd_cred },
4187 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4188 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4189 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4190
4191 /* from cyclic.c */
4192 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
4193 { "cycid", "?", "dump a cyclic id", cycid },
4194 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4195 { "cyclic", ":", "developer information", cyclic },
4196 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4197
4198 /* from damap.c */
4199 { "damap", ":", "display a damap_t", damap, damap_help },
4200
4201 /* from ddi_periodic.c */
4202 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4203
4204 /* from devinfo.c */
4205 { "devbindings", "?[-qs] [device-name | major-num]",
4206 "print devinfo nodes bound to device-name or major-num",
4207 devbindings, devinfo_help },
4208 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node",
4209 devinfo, devinfo_help },
4210 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4211 devinfo_audit },
4212 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4213 devinfo_audit_log },
4214 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4215 devinfo_audit_node },
4216 { "devinfo2driver", ":", "find driver name for this devinfo node",
4217 devinfo2driver },
4218 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
4219 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
4220 dev2major },
4221 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4222 dev2minor },
4223 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4224 devt },
4225 { "major2name", "?<major-num>", "convert major number to dev name",
4226 major2name },
4227 { "minornodes", ":", "given a devinfo node, print its minor nodes",
4228 minornodes },
4229 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
4230 modctl2devinfo },
4231 { "name2major", "<dev-name>", "convert dev name to major number",
4232 name2major },
4233 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree",
4234 prtconf, prtconf_help },
4235 { "softstate", ":<instance>", "retrieve soft-state pointer",
4236 softstate },
4237 { "devinfo_fm", ":", "devinfo fault managment configuration",
4238 devinfo_fm },
4239 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
4240 devinfo_fmce},
4241
4242 /* from findstack.c */
4243 { "findstack", ":[-v]", "find kernel thread stack", findstack },
4244 { "findstack_debug", NULL, "toggle findstack debugging",
4245 findstack_debug },
4246 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4247 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
4248 "print unique kernel thread stacks",
4249 stacks, stacks_help },
4250
4251 /* from fm.c */
4252 { "ereport", "[-v]", "print ereports logged in dump",
4253 ereport },
4254
4255 /* from group.c */
4256 { "group", "?[-q]", "display a group", group},
4257
4258 /* from hotplug.c */
4259 { "hotplug", "?[-p]", "display a registered hotplug attachment",
4260 hotplug, hotplug_help },
4261
4262 /* from irm.c */
4263 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4264 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4265 irmreqs_dcmd },
4266 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4267
4268 /* from kgrep.c + genunix.c */
4269 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4270 kgrep_help },
4271
4272 /* from kmem.c */
4273 { "allocdby", ":", "given a thread, print its allocated buffers",
4274 allocdby },
4275 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4276 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4277 { "freedby", ":", "given a thread, print its freed buffers", freedby },
4278 { "kmalog", "?[ fail | slab ]",
4279 "display kmem transaction log and stack traces", kmalog },
4280 { "kmastat", "[-kmg]", "kernel memory allocator stats",
4281 kmastat },
4282 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4283 "of the kmem allocator", kmausers, kmausers_help },
4284 { "kmem_cache", "?[-n name]",
4285 "print kernel memory caches", kmem_cache, kmem_cache_help},
4286 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4287 "[-B minbinsize]", "display slab usage per kmem cache",
4288 kmem_slabs, kmem_slabs_help },
4289 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4290 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4291 { "kmem_verify", "?", "check integrity of kmem-managed memory",
4292 kmem_verify },
4293 { "vmem", "?", "print a vmem_t", vmem },
4294 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4295 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
4296 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4297 { "whatthread", ":[-v]", "print threads whose stack contains the "
4298 "given address", whatthread },
4299
4300 /* from ldi.c */
4301 { "ldi_handle", "?[-i]", "display a layered driver handle",
4302 ldi_handle, ldi_handle_help },
4303 { "ldi_ident", NULL, "display a layered driver identifier",
4304 ldi_ident, ldi_ident_help },
4305
4306 /* from leaky.c + leaky_subr.c */
4307 { "findleaks", FINDLEAKS_USAGE,
4308 "search for potential kernel memory leaks", findleaks,
4309 findleaks_help },
4310
4311 /* from lgrp.c */
4312 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4313 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4314
4315 /* from log.c */
4316 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4317
4318 /* from mdi.c */
4319 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4320 "and detailed pi_prop list", mdipi },
4321 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4322 mdiprops },
4323 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4324 "list all paths", mdiphci },
4325 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4326 "all phcis", mdivhci },
4327 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4328 "client links", mdiclient_paths },
4329 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4330 "phci links", mdiphci_paths },
4331 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4332 mdiphcis },
4333
4334 /* from memory.c */
4335 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4336 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4337 { "memstat", NULL, "display memory usage summary", memstat },
4338 { "page", "?", "display a summarized page_t", page },
4339 { "pagelookup", "?[-v vp] [-o offset]",
4340 "find the page_t with the name {vp, offset}",
4341 pagelookup, pagelookup_help },
4342 { "page_num2pp", ":", "find the page_t for a given page frame number",
4343 page_num2pp },
4344 { "pmap", ":[-q]", "print process memory map", pmap },
4345 { "seg", ":", "print address space segment", seg },
4346 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4347 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4348
4349 /* from mmd.c */
4350 { "multidata", ":[-sv]", "display a summarized multidata_t",
4351 multidata },
4352 { "pattbl", ":", "display a summarized multidata attribute table",
4353 pattbl },
4354 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4355 pattr2multidata },
4356 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4357 pdesc2slab },
4358 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4359 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4360 slab2multidata },
4361
4362 /* from modhash.c */
4363 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4364 "display information about one or all mod_hash structures",
4365 modhash, modhash_help },
4366 { "modent", ":[-k | -v | -t type]",
4367 "display information about a mod_hash_entry", modent,
4368 modent_help },
4369
4370 /* from net.c */
4371 { "dladm", "?<sub-command> [flags]", "show data link information",
4372 dladm, dladm_help },
4373 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4374 mi },
4375 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4376 "show network statistics", netstat },
4377 { "sonode", "?[-f inet | inet6 | unix | #] "
4378 "[-t stream | dgram | raw | #] [-p #]",
4379 "filter and display sonode", sonode },
4380
4381 /* from netstack.c */
4382 { "netstack", "", "show stack instances", netstack },
4383 { "netstackid2netstack", ":",
4384 "translate a netstack id to its netstack_t",
4385 netstackid2netstack },
4386
4387 /* from nvpair.c */
4388 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4389 nvpair_print },
4390 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4391 print_nvlist },
4392
4393 /* from pg.c */
4394 { "pg", "?[-q]", "display a pg", pg},
4395
4396 /* from rctl.c */
4397 { "rctl_dict", "?", "print systemwide default rctl definitions",
4398 rctl_dict },
4399 { "rctl_list", ":[handle]", "print rctls for the given proc",
4400 rctl_list },
4401 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4402 rctl },
4403 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4404 "sequence", rctl_validate },
4405
4406 /* from sobj.c */
4407 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4408 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4409 mutex_help },
4410 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4411 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4412 { "turnstile", "?", "display a turnstile", turnstile },
4413
4414 /* from stream.c */
4415 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4416 "print an mblk", mblk_prt, mblk_help },
4417 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4418 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4419 mblk2dblk },
4420 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4421 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4422 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4423 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4424 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4425 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4426 "filter and display STREAM queue", queue, queue_help },
4427 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4428 "filter and display STREAM head", stdata, stdata_help },
4429 { "str2mate", ":", "print mate of this stream", str2mate },
4430 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4431 { "stream", ":", "display STREAM", stream },
4432 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4433 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4434 "filter and display STREAM sync queue", syncq, syncq_help },
4435 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4436
4437 /* from taskq.c */
4438 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4439 "display a taskq", taskq, taskq_help },
4440 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4441
4442 /* from thread.c */
4443 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4444 thread_help },
4445 { "threadlist", "?[-t] [-v [count]]",
4446 "display threads and associated C stack traces", threadlist,
4447 threadlist_help },
4448 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4449 stackinfo_help },
4450
4451 /* from tsd.c */
4452 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4453 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4454
4455 /*
4456 * typegraph does not work under kmdb, as it requires too much memory
4457 * for its internal data structures.
4458 */
4459 #ifndef _KMDB
4460 /* from typegraph.c */
4461 { "findlocks", ":", "find locks held by specified thread", findlocks },
4462 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4463 findfalse },
4464 { "typegraph", NULL, "build type graph", typegraph },
4465 { "istype", ":type", "manually set object type", istype },
4466 { "notype", ":", "manually clear object type", notype },
4467 { "whattype", ":", "determine object type", whattype },
4468 #endif
4469
4470 /* from vfs.c */
4471 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4472 { "pfiles", ":[-fp]", "print process file information", pfiles,
4473 pfiles_help },
4474
4475 /* from zone.c */
4476 { "zid2zone", ":", "find the zone_t with the given zone id",
4477 zid2zone },
4478 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4479 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4480 "selected zones", zsd },
4481
4482 #ifndef _KMDB
4483 { "gcore", NULL, "generate a user core for the given process",
4484 gcore_dcmd },
4485 #endif
4486
4487 { NULL }
4488 };
4489
4490 static const mdb_walker_t walkers[] = {
4491
4492 /* from genunix.c */
4493 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4494 callout_walk_init, callout_walk_step, callout_walk_fini,
4495 (void *)CALLOUT_WALK_BYLIST },
4496 { "callouts_byid", "walk callouts by id hash chain",
4497 callout_walk_init, callout_walk_step, callout_walk_fini,
4498 (void *)CALLOUT_WALK_BYID },
4499 { "callout_list", "walk a callout list", callout_list_walk_init,
4500 callout_list_walk_step, callout_list_walk_fini },
4501 { "callout_table", "walk callout table array", callout_table_walk_init,
4502 callout_table_walk_step, callout_table_walk_fini },
4503 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4504 { "dnlc", "walk dnlc entries",
4505 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4506 { "ereportq_dump", "walk list of ereports in dump error queue",
4507 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4508 { "ereportq_pend", "walk list of ereports in pending error queue",
4509 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4510 { "errorq", "walk list of system error queues",
4511 errorq_walk_init, errorq_walk_step, NULL },
4512 { "errorq_data", "walk pending error queue data buffers",
4513 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4514 { "allfile", "given a proc pointer, list all file pointers",
4515 file_walk_init, allfile_walk_step, file_walk_fini },
4516 { "file", "given a proc pointer, list of open file pointers",
4517 file_walk_init, file_walk_step, file_walk_fini },
4518 { "lock_descriptor", "walk lock_descriptor_t structures",
4519 ld_walk_init, ld_walk_step, NULL },
4520 { "lock_graph", "walk lock graph",
4521 lg_walk_init, lg_walk_step, NULL },
4522 { "port", "given a proc pointer, list of created event ports",
4523 port_walk_init, port_walk_step, NULL },
4524 { "portev", "given a port pointer, list of events in the queue",
4525 portev_walk_init, portev_walk_step, portev_walk_fini },
4526 { "proc", "list of active proc_t structures",
4527 proc_walk_init, proc_walk_step, proc_walk_fini },
4528 { "projects", "walk a list of kernel projects",
4529 project_walk_init, project_walk_step, NULL },
4530 { "sysevent_pend", "walk sysevent pending queue",
4531 sysevent_pend_walk_init, sysevent_walk_step,
4532 sysevent_walk_fini},
4533 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4534 sysevent_walk_step, sysevent_walk_fini},
4535 { "sysevent_channel", "walk sysevent channel subscriptions",
4536 sysevent_channel_walk_init, sysevent_channel_walk_step,
4537 sysevent_channel_walk_fini},
4538 { "sysevent_class_list", "walk sysevent subscription's class list",
4539 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4540 sysevent_class_list_walk_fini},
4541 { "sysevent_subclass_list",
4542 "walk sysevent subscription's subclass list",
4543 sysevent_subclass_list_walk_init,
4544 sysevent_subclass_list_walk_step,
4545 sysevent_subclass_list_walk_fini},
4546 { "task", "given a task pointer, walk its processes",
4547 task_walk_init, task_walk_step, NULL },
4548
4549 /* from avl.c */
4550 { AVL_WALK_NAME, AVL_WALK_DESC,
4551 avl_walk_init, avl_walk_step, avl_walk_fini },
4552
4553 /* from bio.c */
4554 { "buf", "walk the bio buf hash",
4555 buf_walk_init, buf_walk_step, buf_walk_fini },
4556
4557 /* from contract.c */
4558 { "contract", "walk all contracts, or those of the specified type",
4559 ct_walk_init, generic_walk_step, NULL },
4560 { "ct_event", "walk events on a contract event queue",
4561 ct_event_walk_init, generic_walk_step, NULL },
4562 { "ct_listener", "walk contract event queue listeners",
4563 ct_listener_walk_init, generic_walk_step, NULL },
4564
4565 /* from cpupart.c */
4566 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4567 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4568 NULL },
4569 { "cpupart_walk", "walk the set of cpu partitions",
4570 cpupart_walk_init, cpupart_walk_step, NULL },
4571
4572 /* from ctxop.c */
4573 { "ctxop", "walk list of context ops on a thread",
4574 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4575
4576 /* from cyclic.c */
4577 { "cyccpu", "walk per-CPU cyc_cpu structures",
4578 cyccpu_walk_init, cyccpu_walk_step, NULL },
4579 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4580 cycomni_walk_init, cycomni_walk_step, NULL },
4581 { "cyctrace", "walk cyclic trace buffer",
4582 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4583
4584 /* from devinfo.c */
4585 { "binding_hash", "walk all entries in binding hash table",
4586 binding_hash_walk_init, binding_hash_walk_step, NULL },
4587 { "devinfo", "walk devinfo tree or subtree",
4588 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4589 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4590 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4591 devinfo_audit_log_walk_fini},
4592 { "devinfo_audit_node", "walk per-devinfo audit history",
4593 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4594 devinfo_audit_node_walk_fini},
4595 { "devinfo_children", "walk children of devinfo node",
4596 devinfo_children_walk_init, devinfo_children_walk_step,
4597 devinfo_children_walk_fini },
4598 { "devinfo_parents", "walk ancestors of devinfo node",
4599 devinfo_parents_walk_init, devinfo_parents_walk_step,
4600 devinfo_parents_walk_fini },
4601 { "devinfo_siblings", "walk siblings of devinfo node",
4602 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4603 { "devi_next", "walk devinfo list",
4604 NULL, devi_next_walk_step, NULL },
4605 { "devnames", "walk devnames array",
4606 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4607 { "minornode", "given a devinfo node, walk minor nodes",
4608 minornode_walk_init, minornode_walk_step, NULL },
4609 { "softstate",
4610 "given an i_ddi_soft_state*, list all in-use driver stateps",
4611 soft_state_walk_init, soft_state_walk_step,
4612 NULL, NULL },
4613 { "softstate_all",
4614 "given an i_ddi_soft_state*, list all driver stateps",
4615 soft_state_walk_init, soft_state_all_walk_step,
4616 NULL, NULL },
4617 { "devinfo_fmc",
4618 "walk a fault management handle cache active list",
4619 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4620
4621 /* from group.c */
4622 { "group", "walk all elements of a group",
4623 group_walk_init, group_walk_step, NULL },
4624
4625 /* from irm.c */
4626 { "irmpools", "walk global list of interrupt pools",
4627 irmpools_walk_init, list_walk_step, list_walk_fini },
4628 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4629 irmreqs_walk_init, list_walk_step, list_walk_fini },
4630
4631 /* from kmem.c */
4632 { "allocdby", "given a thread, walk its allocated bufctls",
4633 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4634 { "bufctl", "walk a kmem cache's bufctls",
4635 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4636 { "bufctl_history", "walk the available history of a bufctl",
4637 bufctl_history_walk_init, bufctl_history_walk_step,
4638 bufctl_history_walk_fini },
4639 { "freedby", "given a thread, walk its freed bufctls",
4640 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4641 { "freectl", "walk a kmem cache's free bufctls",
4642 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4643 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4644 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4645 { "freemem", "walk a kmem cache's free memory",
4646 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4647 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4648 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4649 { "kmem", "walk a kmem cache",
4650 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4651 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4652 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4653 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4654 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4655 { "kmem_log", "walk the kmem transaction log",
4656 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4657 { "kmem_slab", "given a kmem cache, walk its slabs",
4658 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4659 { "kmem_slab_partial",
4660 "given a kmem cache, walk its partially allocated slabs (min 1)",
4661 kmem_slab_walk_partial_init, combined_walk_step,
4662 combined_walk_fini },
4663 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4664 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4665 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4666 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4667 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4668 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4669 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4670 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4671 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4672 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4673 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4674 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4675
4676 /* from ldi.c */
4677 { "ldi_handle", "walk the layered driver handle hash",
4678 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4679 { "ldi_ident", "walk the layered driver identifier hash",
4680 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4681
4682 /* from leaky.c + leaky_subr.c */
4683 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4684 "stack trace",
4685 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4686 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4687 "leaks w/ same stack trace",
4688 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4689
4690 /* from lgrp.c */
4691 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4692 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4693 { "lgrptbl", "walk lgroup table",
4694 lgrp_walk_init, lgrp_walk_step, NULL },
4695 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4696 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4697 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4698 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4699 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4700 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4701
4702 /* from list.c */
4703 { LIST_WALK_NAME, LIST_WALK_DESC,
4704 list_walk_init, list_walk_step, list_walk_fini },
4705
4706 /* from mdi.c */
4707 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4708 mdi_pi_client_link_walk_init,
4709 mdi_pi_client_link_walk_step,
4710 mdi_pi_client_link_walk_fini },
4711 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4712 mdi_pi_phci_link_walk_init,
4713 mdi_pi_phci_link_walk_step,
4714 mdi_pi_phci_link_walk_fini },
4715 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4716 mdi_phci_ph_next_walk_init,
4717 mdi_phci_ph_next_walk_step,
4718 mdi_phci_ph_next_walk_fini },
4719
4720 /* from memory.c */
4721 { "allpages", "walk all pages, including free pages",
4722 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4723 { "anon", "given an amp, list allocated anon structures",
4724 anon_walk_init, anon_walk_step, anon_walk_fini,
4725 ANON_WALK_ALLOC },
4726 { "anon_all", "given an amp, list contents of all anon slots",
4727 anon_walk_init, anon_walk_step, anon_walk_fini,
4728 ANON_WALK_ALL },
4729 { "memlist", "walk specified memlist",
4730 NULL, memlist_walk_step, NULL },
4731 { "page", "walk all pages, or those from the specified vnode",
4732 page_walk_init, page_walk_step, page_walk_fini },
4733 { "seg", "given an as, list of segments",
4734 seg_walk_init, avl_walk_step, avl_walk_fini },
4735 { "segvn_anon",
4736 "given a struct segvn_data, list allocated anon structures",
4737 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4738 ANON_WALK_ALLOC },
4739 { "segvn_anon_all",
4740 "given a struct segvn_data, list contents of all anon slots",
4741 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4742 ANON_WALK_ALL },
4743 { "segvn_pages",
4744 "given a struct segvn_data, list resident pages in "
4745 "offset order",
4746 segvn_pages_walk_init, segvn_pages_walk_step,
4747 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4748 { "segvn_pages_all",
4749 "for each offset in a struct segvn_data, give page_t pointer "
4750 "(if resident), or NULL.",
4751 segvn_pages_walk_init, segvn_pages_walk_step,
4752 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4753 { "swapinfo", "walk swapinfo structures",
4754 swap_walk_init, swap_walk_step, NULL },
4755
4756 /* from mmd.c */
4757 { "pattr", "walk pattr_t structures", pattr_walk_init,
4758 mmdq_walk_step, mmdq_walk_fini },
4759 { "pdesc", "walk pdesc_t structures",
4760 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4761 { "pdesc_slab", "walk pdesc_slab_t structures",
4762 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4763
4764 /* from modhash.c */
4765 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4766 modhash_walk_step, NULL },
4767 { "modent", "walk list of entries in a given mod_hash",
4768 modent_walk_init, modent_walk_step, modent_walk_fini },
4769 { "modchain", "walk list of entries in a given mod_hash_entry",
4770 NULL, modchain_walk_step, NULL },
4771
4772 /* from net.c */
4773 { "icmp", "walk ICMP control structures using MI for all stacks",
4774 mi_payload_walk_init, mi_payload_walk_step, NULL,
4775 &mi_icmp_arg },
4776 { "mi", "given a MI_O, walk the MI",
4777 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4778 { "sonode", "given a sonode, walk its children",
4779 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4780 { "icmp_stacks", "walk all the icmp_stack_t",
4781 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4782 { "tcp_stacks", "walk all the tcp_stack_t",
4783 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4784 { "udp_stacks", "walk all the udp_stack_t",
4785 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4786
4787 /* from netstack.c */
4788 { "netstack", "walk a list of kernel netstacks",
4789 netstack_walk_init, netstack_walk_step, NULL },
4790
4791 /* from nvpair.c */
4792 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4793 nvpair_walk_init, nvpair_walk_step, NULL },
4794
4795 /* from pci.c */
4796 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init,
4797 pcie_bus_walk_step, NULL },
4798
4799 /* from rctl.c */
4800 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4801 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4802 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4803 rctl_set_walk_step, NULL },
4804 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4805 rctl_val_walk_init, rctl_val_walk_step },
4806
4807 /* from sobj.c */
4808 { "blocked", "walk threads blocked on a given sobj",
4809 blocked_walk_init, blocked_walk_step, NULL },
4810 { "wchan", "given a wchan, list of blocked threads",
4811 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4812
4813 /* from stream.c */
4814 { "b_cont", "walk mblk_t list using b_cont",
4815 mblk_walk_init, b_cont_step, mblk_walk_fini },
4816 { "b_next", "walk mblk_t list using b_next",
4817 mblk_walk_init, b_next_step, mblk_walk_fini },
4818 { "qlink", "walk queue_t list using q_link",
4819 queue_walk_init, queue_link_step, queue_walk_fini },
4820 { "qnext", "walk queue_t list using q_next",
4821 queue_walk_init, queue_next_step, queue_walk_fini },
4822 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4823 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4824 { "readq", "walk read queue side of stdata",
4825 str_walk_init, strr_walk_step, str_walk_fini },
4826 { "writeq", "walk write queue side of stdata",
4827 str_walk_init, strw_walk_step, str_walk_fini },
4828
4829 /* from taskq.c */
4830 { "taskq_thread", "given a taskq_t, list all of its threads",
4831 taskq_thread_walk_init,
4832 taskq_thread_walk_step,
4833 taskq_thread_walk_fini },
4834 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4835 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4836
4837 /* from thread.c */
4838 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4839 deathrow_walk_init, deathrow_walk_step, NULL },
4840 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4841 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4842 { "cpupart_dispq",
4843 "given a cpupart_t, walk threads in dispatcher queues",
4844 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4845 { "lwp_deathrow", "walk lwp_deathrow",
4846 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4847 { "thread", "global or per-process kthread_t structures",
4848 thread_walk_init, thread_walk_step, thread_walk_fini },
4849 { "thread_deathrow", "walk threads on thread_deathrow",
4850 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4851
4852 /* from tsd.c */
4853 { "tsd", "walk list of thread-specific data",
4854 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4855
4856 /* from tsol.c */
4857 { "tnrh", "walk remote host cache structures",
4858 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4859 { "tnrhtp", "walk remote host template structures",
4860 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4861
4862 /*
4863 * typegraph does not work under kmdb, as it requires too much memory
4864 * for its internal data structures.
4865 */
4866 #ifndef _KMDB
4867 /* from typegraph.c */
4868 { "typeconflict", "walk buffers with conflicting type inferences",
4869 typegraph_walk_init, typeconflict_walk_step },
4870 { "typeunknown", "walk buffers with unknown types",
4871 typegraph_walk_init, typeunknown_walk_step },
4872 #endif
4873
4874 /* from vfs.c */
4875 { "vfs", "walk file system list",
4876 vfs_walk_init, vfs_walk_step },
4877
4878 /* from zone.c */
4879 { "zone", "walk a list of kernel zones",
4880 zone_walk_init, zone_walk_step, NULL },
4881 { "zsd", "walk list of zsd entries for a zone",
4882 zsd_walk_init, zsd_walk_step, NULL },
4883
4884 { NULL }
4885 };
4886
4887 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4888
4889 /*ARGSUSED*/
4890 static void
4891 genunix_statechange_cb(void *ignored)
4892 {
4893 /*
4894 * Force ::findleaks and ::stacks to let go any cached state.
4895 */
4896 leaky_cleanup(1);
4897 stacks_cleanup(1);
4898
4899 kmem_statechange(); /* notify kmem */
4900 }
4901
4902 const mdb_modinfo_t *
4903 _mdb_init(void)
4904 {
4905 kmem_init();
4906
4907 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4908 genunix_statechange_cb, NULL);
4909
4910 #ifndef _KMDB
4911 gcore_init();
4912 #endif
4913
4914 return (&modinfo);
4915 }
4916
4917 void
4918 _mdb_fini(void)
4919 {
4920 leaky_cleanup(1);
4921 stacks_cleanup(1);
4922 }