1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <sys/dditypes.h> 53 #include <sys/ddi_impldefs.h> 54 #include <sys/sysmacros.h> 55 #include <sys/sysconf.h> 56 #include <sys/task.h> 57 #include <sys/project.h> 58 #include <sys/errorq_impl.h> 59 #include <sys/cred_impl.h> 60 #include <sys/zone.h> 61 #include <sys/panic.h> 62 #include <regex.h> 63 #include <sys/port_impl.h> 64 #include <sys/contract/process_impl.h> 65 66 #include "avl.h" 67 #include "bio.h" 68 #include "bitset.h" 69 #include "combined.h" 70 #include "contract.h" 71 #include "cpupart_mdb.h" 72 #include "cred.h" 73 #include "ctxop.h" 74 #include "cyclic.h" 75 #include "damap.h" 76 #include "ddi_periodic.h" 77 #include "devinfo.h" 78 #include "dnlc.h" 79 #include "findstack.h" 80 #include "fm.h" 81 #include "gcore.h" 82 #include "group.h" 83 #include "irm.h" 84 #include "kgrep.h" 85 #include "kmem.h" 86 #include "ldi.h" 87 #include "leaky.h" 88 #include "lgrp.h" 89 #include "list.h" 90 #include "log.h" 91 #include "mdi.h" 92 #include "memory.h" 93 #include "mmd.h" 94 #include "modhash.h" 95 #include "ndievents.h" 96 #include "net.h" 97 #include "netstack.h" 98 #include "nvpair.h" 99 #include "pci.h" 100 #include "pg.h" 101 #include "rctl.h" 102 #include "sobj.h" 103 #include "streams.h" 104 #include "sysevent.h" 105 #include "taskq.h" 106 #include "thread.h" 107 #include "tsd.h" 108 #include "tsol.h" 109 #include "typegraph.h" 110 #include "vfs.h" 111 #include "zone.h" 112 #include "hotplug.h" 113 114 /* 115 * Surely this is defined somewhere... 116 */ 117 #define NINTR 16 118 119 #define KILOS 10 120 #define MEGS 20 121 #define GIGS 30 122 123 #ifndef STACK_BIAS 124 #define STACK_BIAS 0 125 #endif 126 127 static char 128 pstat2ch(uchar_t state) 129 { 130 switch (state) { 131 case SSLEEP: return ('S'); 132 case SRUN: return ('R'); 133 case SZOMB: return ('Z'); 134 case SIDL: return ('I'); 135 case SONPROC: return ('O'); 136 case SSTOP: return ('T'); 137 case SWAIT: return ('W'); 138 default: return ('?'); 139 } 140 } 141 142 #define PS_PRTTHREADS 0x1 143 #define PS_PRTLWPS 0x2 144 #define PS_PSARGS 0x4 145 #define PS_TASKS 0x8 146 #define PS_PROJECTS 0x10 147 #define PS_ZONES 0x20 148 #define PS_SERVICES 0x40 149 150 static int 151 ps_threadprint(uintptr_t addr, const void *data, void *private) 152 { 153 const kthread_t *t = (const kthread_t *)data; 154 uint_t prt_flags = *((uint_t *)private); 155 156 static const mdb_bitmask_t t_state_bits[] = { 157 { "TS_FREE", UINT_MAX, TS_FREE }, 158 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 159 { "TS_RUN", TS_RUN, TS_RUN }, 160 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 161 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 162 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 163 { "TS_WAIT", TS_WAIT, TS_WAIT }, 164 { NULL, 0, 0 } 165 }; 166 167 if (prt_flags & PS_PRTTHREADS) 168 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 169 170 if (prt_flags & PS_PRTLWPS) { 171 char desc[128] = ""; 172 173 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc)); 174 175 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc); 176 } 177 178 return (WALK_NEXT); 179 } 180 181 typedef struct mdb_pflags_proc { 182 struct pid *p_pidp; 183 ushort_t p_pidflag; 184 uint_t p_proc_flag; 185 uint_t p_flag; 186 } mdb_pflags_proc_t; 187 188 static int 189 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 190 { 191 mdb_pflags_proc_t pr; 192 struct pid pid; 193 194 static const mdb_bitmask_t p_flag_bits[] = { 195 { "SSYS", SSYS, SSYS }, 196 { "SEXITING", SEXITING, SEXITING }, 197 { "SITBUSY", SITBUSY, SITBUSY }, 198 { "SFORKING", SFORKING, SFORKING }, 199 { "SWATCHOK", SWATCHOK, SWATCHOK }, 200 { "SKILLED", SKILLED, SKILLED }, 201 { "SSCONT", SSCONT, SSCONT }, 202 { "SZONETOP", SZONETOP, SZONETOP }, 203 { "SEXTKILLED", SEXTKILLED, SEXTKILLED }, 204 { "SUGID", SUGID, SUGID }, 205 { "SEXECED", SEXECED, SEXECED }, 206 { "SJCTL", SJCTL, SJCTL }, 207 { "SNOWAIT", SNOWAIT, SNOWAIT }, 208 { "SVFORK", SVFORK, SVFORK }, 209 { "SVFWAIT", SVFWAIT, SVFWAIT }, 210 { "SEXITLWPS", SEXITLWPS, SEXITLWPS }, 211 { "SHOLDFORK", SHOLDFORK, SHOLDFORK }, 212 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 }, 213 { "SCOREDUMP", SCOREDUMP, SCOREDUMP }, 214 { "SMSACCT", SMSACCT, SMSACCT }, 215 { "SLWPWRAP", SLWPWRAP, SLWPWRAP }, 216 { "SAUTOLPG", SAUTOLPG, SAUTOLPG }, 217 { "SNOCD", SNOCD, SNOCD }, 218 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH }, 219 { "SMSFORK", SMSFORK, SMSFORK }, 220 { "SDOCORE", SDOCORE, SDOCORE }, 221 { NULL, 0, 0 } 222 }; 223 224 static const mdb_bitmask_t p_pidflag_bits[] = { 225 { "CLDPEND", CLDPEND, CLDPEND }, 226 { "CLDCONT", CLDCONT, CLDCONT }, 227 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD }, 228 { "CLDWAITPID", CLDWAITPID, CLDWAITPID }, 229 { NULL, 0, 0 } 230 }; 231 232 static const mdb_bitmask_t p_proc_flag_bits[] = { 233 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE }, 234 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE }, 235 { "P_PR_FORK", P_PR_FORK, P_PR_FORK }, 236 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK }, 237 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC }, 238 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC }, 239 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ }, 240 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL }, 241 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL }, 242 { NULL, 0, 0 } 243 }; 244 245 if (!(flags & DCMD_ADDRSPEC)) { 246 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) { 247 mdb_warn("can't walk 'proc'"); 248 return (DCMD_ERR); 249 } 250 return (DCMD_OK); 251 } 252 253 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 || 254 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) { 255 mdb_warn("cannot read proc_t or pid"); 256 return (DCMD_ERR); 257 } 258 259 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id); 260 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag, 261 p_flag_bits); 262 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag, 263 p_pidflag_bits); 264 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag, 265 p_proc_flag_bits); 266 267 return (DCMD_OK); 268 } 269 270 typedef struct mdb_ps_proc { 271 char p_stat; 272 struct pid *p_pidp; 273 struct pid *p_pgidp; 274 struct cred *p_cred; 275 struct sess *p_sessp; 276 struct task *p_task; 277 struct zone *p_zone; 278 struct cont_process *p_ct_process; 279 pid_t p_ppid; 280 uint_t p_flag; 281 struct { 282 char u_comm[MAXCOMLEN + 1]; 283 char u_psargs[PSARGSZ]; 284 } p_user; 285 } mdb_ps_proc_t; 286 287 /* 288 * A reasonable enough limit. Note that we purposefully let this column over-run 289 * if needed. 290 */ 291 #define FMRI_LEN (128) 292 293 int 294 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 295 { 296 uint_t prt_flags = 0; 297 mdb_ps_proc_t pr; 298 struct pid pid, pgid, sid; 299 sess_t session; 300 cred_t cred; 301 task_t tk; 302 kproject_t pj; 303 zone_t zn; 304 struct cont_process cp; 305 char fmri[FMRI_LEN] = ""; 306 307 if (!(flags & DCMD_ADDRSPEC)) { 308 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 309 mdb_warn("can't walk 'proc'"); 310 return (DCMD_ERR); 311 } 312 return (DCMD_OK); 313 } 314 315 if (mdb_getopts(argc, argv, 316 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 317 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 318 's', MDB_OPT_SETBITS, PS_SERVICES, &prt_flags, 319 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 320 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 321 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 322 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 323 return (DCMD_USAGE); 324 325 if (DCMD_HDRSPEC(flags)) { 326 mdb_printf("%<u>%-1s %-6s %-6s %-6s %-6s ", 327 "S", "PID", "PPID", "PGID", "SID"); 328 if (prt_flags & PS_TASKS) 329 mdb_printf("%-5s ", "TASK"); 330 if (prt_flags & PS_PROJECTS) 331 mdb_printf("%-5s ", "PROJ"); 332 if (prt_flags & PS_ZONES) 333 mdb_printf("%-5s ", "ZONE"); 334 if (prt_flags & PS_SERVICES) 335 mdb_printf("%-40s ", "SERVICE"); 336 mdb_printf("%-6s %-10s %-?s %-s%</u>\n", 337 "UID", "FLAGS", "ADDR", "NAME"); 338 } 339 340 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1) 341 return (DCMD_ERR); 342 343 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 344 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 345 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 346 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 347 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 348 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 349 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 350 if (prt_flags & PS_PROJECTS) 351 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 352 if (prt_flags & PS_ZONES) 353 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone); 354 if ((prt_flags & PS_SERVICES) && pr.p_ct_process != NULL) { 355 mdb_vread(&cp, sizeof (cp), (uintptr_t)pr.p_ct_process); 356 357 if (mdb_read_refstr((uintptr_t)cp.conp_svc_fmri, fmri, 358 sizeof (fmri)) <= 0) 359 (void) strlcpy(fmri, "?", sizeof (fmri)); 360 361 /* Strip any standard prefix and suffix. */ 362 if (strncmp(fmri, "svc:/", sizeof ("svc:/") - 1) == 0) { 363 char *i = fmri; 364 char *j = fmri + sizeof ("svc:/") - 1; 365 for (; *j != '\0'; i++, j++) { 366 if (strcmp(j, ":default") == 0) 367 break; 368 *i = *j; 369 } 370 371 *i = '\0'; 372 } 373 } 374 375 mdb_printf("%-c %-6d %-6d %-6d %-6d ", 376 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 377 sid.pid_id); 378 if (prt_flags & PS_TASKS) 379 mdb_printf("%-5d ", tk.tk_tkid); 380 if (prt_flags & PS_PROJECTS) 381 mdb_printf("%-5d ", pj.kpj_id); 382 if (prt_flags & PS_ZONES) 383 mdb_printf("%-5d ", zn.zone_id); 384 if (prt_flags & PS_SERVICES) 385 mdb_printf("%-40s ", fmri); 386 mdb_printf("%-6d 0x%08x %0?p %-s\n", 387 cred.cr_uid, pr.p_flag, addr, 388 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 389 390 if (prt_flags & ~PS_PSARGS) 391 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 392 393 return (DCMD_OK); 394 } 395 396 static void 397 ps_help(void) 398 { 399 mdb_printf("Display processes.\n\n" 400 "Options:\n" 401 " -f\tDisplay command arguments\n" 402 " -l\tDisplay LWPs\n" 403 " -T\tDisplay tasks\n" 404 " -P\tDisplay projects\n" 405 " -s\tDisplay SMF FMRI\n" 406 " -z\tDisplay zones\n" 407 " -t\tDisplay threads\n\n"); 408 409 mdb_printf("The resulting output is a table of the processes on the " 410 "system. The\n" 411 "columns in the output consist of a combination of the " 412 "following fields:\n\n"); 413 mdb_printf("S\tProcess state. Possible states are:\n" 414 "\tS\tSleeping (SSLEEP)\n" 415 "\tR\tRunnable (SRUN)\n" 416 "\tZ\tZombie (SZOMB)\n" 417 "\tI\tIdle (SIDL)\n" 418 "\tO\tOn Cpu (SONPROC)\n" 419 "\tT\tStopped (SSTOP)\n" 420 "\tW\tWaiting (SWAIT)\n"); 421 422 mdb_printf("PID\tProcess id.\n"); 423 mdb_printf("PPID\tParent process id.\n"); 424 mdb_printf("PGID\tProcess group id.\n"); 425 mdb_printf("SID\tProcess id of the session leader.\n"); 426 mdb_printf("TASK\tThe task id of the process.\n"); 427 mdb_printf("PROJ\tThe project id of the process.\n"); 428 mdb_printf("ZONE\tThe zone id of the process.\n"); 429 mdb_printf("SERVICE The SMF service FMRI of the process.\n"); 430 mdb_printf("UID\tThe user id of the process.\n"); 431 mdb_printf("FLAGS\tThe process flags (see ::pflags).\n"); 432 mdb_printf("ADDR\tThe kernel address of the proc_t structure of the " 433 "process\n"); 434 mdb_printf("NAME\tThe name (p_user.u_comm field) of the process. If " 435 "the -f flag\n" 436 "\tis specified, the arguments of the process are displayed.\n"); 437 } 438 439 #define PG_NEWEST 0x0001 440 #define PG_OLDEST 0x0002 441 #define PG_PIPE_OUT 0x0004 442 #define PG_EXACT_MATCH 0x0008 443 444 typedef struct pgrep_data { 445 uint_t pg_flags; 446 uint_t pg_psflags; 447 uintptr_t pg_xaddr; 448 hrtime_t pg_xstart; 449 const char *pg_pat; 450 #ifndef _KMDB 451 regex_t pg_reg; 452 #endif 453 } pgrep_data_t; 454 455 typedef struct mdb_pgrep_proc { 456 struct { 457 timestruc_t u_start; 458 char u_comm[MAXCOMLEN + 1]; 459 } p_user; 460 } mdb_pgrep_proc_t; 461 462 /*ARGSUSED*/ 463 static int 464 pgrep_cb(uintptr_t addr, const void *ignored, void *data) 465 { 466 mdb_pgrep_proc_t p; 467 pgrep_data_t *pgp = data; 468 #ifndef _KMDB 469 regmatch_t pmatch; 470 #endif 471 472 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1) 473 return (WALK_ERR); 474 475 /* 476 * kmdb doesn't have access to the reg* functions, so we fall back 477 * to strstr/strcmp. 478 */ 479 #ifdef _KMDB 480 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 481 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) : 482 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL)) 483 return (WALK_NEXT); 484 #else 485 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0) 486 return (WALK_NEXT); 487 488 if ((pgp->pg_flags & PG_EXACT_MATCH) && 489 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0')) 490 return (WALK_NEXT); 491 #endif 492 493 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 494 hrtime_t start; 495 496 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC + 497 p.p_user.u_start.tv_nsec; 498 499 if (pgp->pg_flags & PG_NEWEST) { 500 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) { 501 pgp->pg_xaddr = addr; 502 pgp->pg_xstart = start; 503 } 504 } else { 505 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) { 506 pgp->pg_xaddr = addr; 507 pgp->pg_xstart = start; 508 } 509 } 510 511 } else if (pgp->pg_flags & PG_PIPE_OUT) { 512 mdb_printf("%p\n", addr); 513 514 } else { 515 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 516 mdb_warn("can't invoke 'ps'"); 517 return (WALK_DONE); 518 } 519 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 520 } 521 522 return (WALK_NEXT); 523 } 524 525 /*ARGSUSED*/ 526 int 527 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 528 { 529 pgrep_data_t pg; 530 int i; 531 #ifndef _KMDB 532 int err; 533 #endif 534 535 if (flags & DCMD_ADDRSPEC) 536 return (DCMD_USAGE); 537 538 pg.pg_flags = 0; 539 pg.pg_xaddr = 0; 540 541 i = mdb_getopts(argc, argv, 542 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 543 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 544 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 545 NULL); 546 547 argc -= i; 548 argv += i; 549 550 if (argc != 1) 551 return (DCMD_USAGE); 552 553 /* 554 * -n and -o are mutually exclusive. 555 */ 556 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 557 return (DCMD_USAGE); 558 559 if (argv->a_type != MDB_TYPE_STRING) 560 return (DCMD_USAGE); 561 562 if (flags & DCMD_PIPE_OUT) 563 pg.pg_flags |= PG_PIPE_OUT; 564 565 pg.pg_pat = argv->a_un.a_str; 566 if (DCMD_HDRSPEC(flags)) 567 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 568 else 569 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 570 571 #ifndef _KMDB 572 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 573 size_t nbytes; 574 char *buf; 575 576 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 577 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 578 (void) regerror(err, &pg.pg_reg, buf, nbytes); 579 mdb_warn("%s\n", buf); 580 581 return (DCMD_ERR); 582 } 583 #endif 584 585 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 586 mdb_warn("can't walk 'proc'"); 587 return (DCMD_ERR); 588 } 589 590 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 591 if (pg.pg_flags & PG_PIPE_OUT) { 592 mdb_printf("%p\n", pg.pg_xaddr); 593 } else { 594 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 595 0, NULL) != 0) { 596 mdb_warn("can't invoke 'ps'"); 597 return (DCMD_ERR); 598 } 599 } 600 } 601 602 return (DCMD_OK); 603 } 604 605 int 606 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 607 { 608 task_t tk; 609 kproject_t pj; 610 611 if (!(flags & DCMD_ADDRSPEC)) { 612 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 613 mdb_warn("can't walk task_cache"); 614 return (DCMD_ERR); 615 } 616 return (DCMD_OK); 617 } 618 if (DCMD_HDRSPEC(flags)) { 619 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 620 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 621 } 622 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 623 mdb_warn("can't read task_t structure at %p", addr); 624 return (DCMD_ERR); 625 } 626 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 627 mdb_warn("can't read project_t structure at %p", addr); 628 return (DCMD_ERR); 629 } 630 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 631 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 632 tk.tk_flags); 633 return (DCMD_OK); 634 } 635 636 int 637 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 638 { 639 kproject_t pj; 640 641 if (!(flags & DCMD_ADDRSPEC)) { 642 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 643 mdb_warn("can't walk projects"); 644 return (DCMD_ERR); 645 } 646 return (DCMD_OK); 647 } 648 if (DCMD_HDRSPEC(flags)) { 649 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 650 "ADDR", "PROJID", "ZONEID", "REFCNT"); 651 } 652 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 653 mdb_warn("can't read kproject_t structure at %p", addr); 654 return (DCMD_ERR); 655 } 656 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 657 pj.kpj_count); 658 return (DCMD_OK); 659 } 660 661 /* walk callouts themselves, either by list or id hash. */ 662 int 663 callout_walk_init(mdb_walk_state_t *wsp) 664 { 665 if (wsp->walk_addr == 0) { 666 mdb_warn("callout doesn't support global walk"); 667 return (WALK_ERR); 668 } 669 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 670 return (WALK_NEXT); 671 } 672 673 #define CALLOUT_WALK_BYLIST 0 674 #define CALLOUT_WALK_BYID 1 675 676 /* the walker arg switches between walking by list (0) and walking by id (1). */ 677 int 678 callout_walk_step(mdb_walk_state_t *wsp) 679 { 680 int retval; 681 682 if (wsp->walk_addr == 0) { 683 return (WALK_DONE); 684 } 685 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 686 wsp->walk_addr) == -1) { 687 mdb_warn("failed to read callout at %p", wsp->walk_addr); 688 return (WALK_DONE); 689 } 690 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 691 wsp->walk_cbdata); 692 693 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 694 wsp->walk_addr = 695 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 696 } else { 697 wsp->walk_addr = 698 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 699 } 700 701 return (retval); 702 } 703 704 void 705 callout_walk_fini(mdb_walk_state_t *wsp) 706 { 707 mdb_free(wsp->walk_data, sizeof (callout_t)); 708 } 709 710 /* 711 * walker for callout lists. This is different from hashes and callouts. 712 * Thankfully, it's also simpler. 713 */ 714 int 715 callout_list_walk_init(mdb_walk_state_t *wsp) 716 { 717 if (wsp->walk_addr == 0) { 718 mdb_warn("callout list doesn't support global walk"); 719 return (WALK_ERR); 720 } 721 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 722 return (WALK_NEXT); 723 } 724 725 int 726 callout_list_walk_step(mdb_walk_state_t *wsp) 727 { 728 int retval; 729 730 if (wsp->walk_addr == 0) { 731 return (WALK_DONE); 732 } 733 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 734 wsp->walk_addr) != sizeof (callout_list_t)) { 735 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 736 return (WALK_ERR); 737 } 738 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 739 wsp->walk_cbdata); 740 741 wsp->walk_addr = (uintptr_t) 742 (((callout_list_t *)wsp->walk_data)->cl_next); 743 744 return (retval); 745 } 746 747 void 748 callout_list_walk_fini(mdb_walk_state_t *wsp) 749 { 750 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 751 } 752 753 /* routines/structs to walk callout table(s) */ 754 typedef struct cot_data { 755 callout_table_t *ct0; 756 callout_table_t ct; 757 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 758 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 759 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 760 int cotndx; 761 int cotsize; 762 } cot_data_t; 763 764 int 765 callout_table_walk_init(mdb_walk_state_t *wsp) 766 { 767 int max_ncpus; 768 cot_data_t *cot_walk_data; 769 770 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 771 772 if (wsp->walk_addr == 0) { 773 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 774 mdb_warn("failed to read 'callout_table'"); 775 return (WALK_ERR); 776 } 777 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 778 mdb_warn("failed to get callout_table array size"); 779 return (WALK_ERR); 780 } 781 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 782 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 783 } else { 784 /* not a global walk */ 785 cot_walk_data->cotsize = 1; 786 } 787 788 cot_walk_data->cotndx = 0; 789 wsp->walk_data = cot_walk_data; 790 791 return (WALK_NEXT); 792 } 793 794 int 795 callout_table_walk_step(mdb_walk_state_t *wsp) 796 { 797 int retval; 798 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 799 size_t size; 800 801 if (cotwd->cotndx >= cotwd->cotsize) { 802 return (WALK_DONE); 803 } 804 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 805 wsp->walk_addr) != sizeof (callout_table_t)) { 806 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 807 return (WALK_ERR); 808 } 809 810 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 811 if (cotwd->ct.ct_idhash != NULL) { 812 if (mdb_vread(cotwd->cot_idhash, size, 813 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 814 mdb_warn("failed to read id_hash at %p", 815 cotwd->ct.ct_idhash); 816 return (WALK_ERR); 817 } 818 } 819 if (cotwd->ct.ct_clhash != NULL) { 820 if (mdb_vread(&(cotwd->cot_clhash), size, 821 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 822 mdb_warn("failed to read cl_hash at %p", 823 cotwd->ct.ct_clhash); 824 return (WALK_ERR); 825 } 826 } 827 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 828 if (cotwd->ct.ct_kstat_data != NULL) { 829 if (mdb_vread(&(cotwd->ct_kstat_data), size, 830 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 831 mdb_warn("failed to read kstats at %p", 832 cotwd->ct.ct_kstat_data); 833 return (WALK_ERR); 834 } 835 } 836 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 837 wsp->walk_cbdata); 838 839 cotwd->cotndx++; 840 if (cotwd->cotndx >= cotwd->cotsize) { 841 return (WALK_DONE); 842 } 843 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 844 sizeof (callout_table_t)); 845 846 return (retval); 847 } 848 849 void 850 callout_table_walk_fini(mdb_walk_state_t *wsp) 851 { 852 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 853 } 854 855 static const char *co_typenames[] = { "R", "N" }; 856 857 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 858 859 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 860 861 /* callout flags, in no particular order */ 862 #define COF_REAL 0x00000001 863 #define COF_NORM 0x00000002 864 #define COF_LONG 0x00000004 865 #define COF_SHORT 0x00000008 866 #define COF_EMPTY 0x00000010 867 #define COF_TIME 0x00000020 868 #define COF_BEFORE 0x00000040 869 #define COF_AFTER 0x00000080 870 #define COF_SEQID 0x00000100 871 #define COF_FUNC 0x00000200 872 #define COF_ADDR 0x00000400 873 #define COF_EXEC 0x00000800 874 #define COF_HIRES 0x00001000 875 #define COF_ABS 0x00002000 876 #define COF_TABLE 0x00004000 877 #define COF_BYIDH 0x00008000 878 #define COF_FREE 0x00010000 879 #define COF_LIST 0x00020000 880 #define COF_EXPREL 0x00040000 881 #define COF_HDR 0x00080000 882 #define COF_VERBOSE 0x00100000 883 #define COF_LONGLIST 0x00200000 884 #define COF_THDR 0x00400000 885 #define COF_LHDR 0x00800000 886 #define COF_CHDR 0x01000000 887 #define COF_PARAM 0x02000000 888 #define COF_DECODE 0x04000000 889 #define COF_HEAP 0x08000000 890 #define COF_QUEUE 0x10000000 891 892 /* show real and normal, short and long, expired and unexpired. */ 893 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 894 895 #define COF_LIST_FLAGS \ 896 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 897 898 /* private callout data for callback functions */ 899 typedef struct callout_data { 900 uint_t flags; /* COF_* */ 901 cpu_t *cpu; /* cpu pointer if given */ 902 int seqid; /* cpu seqid, or -1 */ 903 hrtime_t time; /* expiration time value */ 904 hrtime_t atime; /* expiration before value */ 905 hrtime_t btime; /* expiration after value */ 906 uintptr_t funcaddr; /* function address or NULL */ 907 uintptr_t param; /* parameter to function or NULL */ 908 hrtime_t now; /* current system time */ 909 int nsec_per_tick; /* for conversions */ 910 ulong_t ctbits; /* for decoding xid */ 911 callout_table_t *co_table; /* top of callout table array */ 912 int ndx; /* table index. */ 913 int bucket; /* which list/id bucket are we in */ 914 hrtime_t exp; /* expire time */ 915 int list_flags; /* copy of cl_flags */ 916 } callout_data_t; 917 918 /* this callback does the actual callback itself (finally). */ 919 /*ARGSUSED*/ 920 static int 921 callouts_cb(uintptr_t addr, const void *data, void *priv) 922 { 923 callout_data_t *coargs = (callout_data_t *)priv; 924 callout_t *co = (callout_t *)data; 925 int tableid, list_flags; 926 callout_id_t coid; 927 928 if ((coargs == NULL) || (co == NULL)) { 929 return (WALK_ERR); 930 } 931 932 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 933 /* 934 * The callout must have been reallocated. No point in 935 * walking any more. 936 */ 937 return (WALK_DONE); 938 } 939 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 940 /* 941 * The callout must have been freed. No point in 942 * walking any more. 943 */ 944 return (WALK_DONE); 945 } 946 if ((coargs->flags & COF_FUNC) && 947 (coargs->funcaddr != (uintptr_t)co->c_func)) { 948 return (WALK_NEXT); 949 } 950 if ((coargs->flags & COF_PARAM) && 951 (coargs->param != (uintptr_t)co->c_arg)) { 952 return (WALK_NEXT); 953 } 954 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 955 return (WALK_NEXT); 956 } 957 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 958 return (WALK_NEXT); 959 } 960 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 961 return (WALK_NEXT); 962 } 963 /* it is possible we don't have the exp time or flags */ 964 if (coargs->flags & COF_BYIDH) { 965 if (!(coargs->flags & COF_FREE)) { 966 /* we have to fetch the expire time ourselves. */ 967 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 968 (uintptr_t)co->c_list + offsetof(callout_list_t, 969 cl_expiration)) == -1) { 970 mdb_warn("failed to read expiration " 971 "time from %p", co->c_list); 972 coargs->exp = 0; 973 } 974 /* and flags. */ 975 if (mdb_vread(&coargs->list_flags, sizeof (int), 976 (uintptr_t)co->c_list + offsetof(callout_list_t, 977 cl_flags)) == -1) { 978 mdb_warn("failed to read list flags" 979 "from %p", co->c_list); 980 coargs->list_flags = 0; 981 } 982 } else { 983 /* free callouts can't use list pointer. */ 984 coargs->exp = 0; 985 coargs->list_flags = 0; 986 } 987 if (coargs->exp != 0) { 988 if ((coargs->flags & COF_TIME) && 989 (coargs->exp != coargs->time)) { 990 return (WALK_NEXT); 991 } 992 if ((coargs->flags & COF_BEFORE) && 993 (coargs->exp > coargs->btime)) { 994 return (WALK_NEXT); 995 } 996 if ((coargs->flags & COF_AFTER) && 997 (coargs->exp < coargs->atime)) { 998 return (WALK_NEXT); 999 } 1000 } 1001 /* tricky part, since both HIRES and ABS can be set */ 1002 list_flags = coargs->list_flags; 1003 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1004 /* both flags are set, only skip "regular" ones */ 1005 if (! (list_flags & COF_LIST_FLAGS)) { 1006 return (WALK_NEXT); 1007 } 1008 } else { 1009 /* individual flags, or no flags */ 1010 if ((coargs->flags & COF_HIRES) && 1011 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1012 return (WALK_NEXT); 1013 } 1014 if ((coargs->flags & COF_ABS) && 1015 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1016 return (WALK_NEXT); 1017 } 1018 } 1019 /* 1020 * We do the checks for COF_HEAP and COF_QUEUE here only if we 1021 * are traversing BYIDH. If the traversal is by callout list, 1022 * we do this check in callout_list_cb() to be more 1023 * efficient. 1024 */ 1025 if ((coargs->flags & COF_HEAP) && 1026 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1027 return (WALK_NEXT); 1028 } 1029 1030 if ((coargs->flags & COF_QUEUE) && 1031 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1032 return (WALK_NEXT); 1033 } 1034 } 1035 1036 #define callout_table_mask ((1 << coargs->ctbits) - 1) 1037 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 1038 #undef callout_table_mask 1039 coid = CO_PLAIN_ID(co->c_xid); 1040 1041 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 1042 /* 1043 * We need to print the headers. If walking by id, then 1044 * the list header isn't printed, so we must include 1045 * that info here. 1046 */ 1047 if (!(coargs->flags & COF_VERBOSE)) { 1048 mdb_printf("%<u>%3s %-1s %-14s %</u>", 1049 "SEQ", "T", "EXP"); 1050 } else if (coargs->flags & COF_BYIDH) { 1051 mdb_printf("%<u>%-14s %</u>", "EXP"); 1052 } 1053 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 1054 "XHAL", "XID", "FUNC(ARG)"); 1055 if (coargs->flags & COF_LONGLIST) { 1056 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 1057 "PREVID", "NEXTID", "PREVL", "NEXTL"); 1058 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 1059 "DONE", "UTOS", "THREAD"); 1060 } 1061 mdb_printf("\n"); 1062 coargs->flags &= ~COF_CHDR; 1063 coargs->flags |= (COF_THDR | COF_LHDR); 1064 } 1065 1066 if (!(coargs->flags & COF_ADDR)) { 1067 if (!(coargs->flags & COF_VERBOSE)) { 1068 mdb_printf("%-3d %1s %-14llx ", 1069 TABLE_TO_SEQID(tableid), 1070 co_typenames[tableid & CALLOUT_TYPE_MASK], 1071 (coargs->flags & COF_EXPREL) ? 1072 coargs->exp - coargs->now : coargs->exp); 1073 } else if (coargs->flags & COF_BYIDH) { 1074 mdb_printf("%-14x ", 1075 (coargs->flags & COF_EXPREL) ? 1076 coargs->exp - coargs->now : coargs->exp); 1077 } 1078 list_flags = coargs->list_flags; 1079 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 1080 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 1081 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 1082 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 1083 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 1084 (long long)coid, co->c_func, co->c_arg); 1085 if (coargs->flags & COF_LONGLIST) { 1086 mdb_printf(" %-?p %-?p %-?p %-?p", 1087 co->c_idprev, co->c_idnext, co->c_clprev, 1088 co->c_clnext); 1089 mdb_printf(" %-?p %-4d %-0?p", 1090 co->c_done, co->c_waiting, co->c_executor); 1091 } 1092 } else { 1093 /* address only */ 1094 mdb_printf("%-0p", addr); 1095 } 1096 mdb_printf("\n"); 1097 return (WALK_NEXT); 1098 } 1099 1100 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 1101 /*ARGSUSED*/ 1102 static int 1103 callout_list_cb(uintptr_t addr, const void *data, void *priv) 1104 { 1105 callout_data_t *coargs = (callout_data_t *)priv; 1106 callout_list_t *cl = (callout_list_t *)data; 1107 callout_t *coptr; 1108 int list_flags; 1109 1110 if ((coargs == NULL) || (cl == NULL)) { 1111 return (WALK_ERR); 1112 } 1113 1114 coargs->exp = cl->cl_expiration; 1115 coargs->list_flags = cl->cl_flags; 1116 if ((coargs->flags & COF_FREE) && 1117 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1118 /* 1119 * The callout list must have been reallocated. No point in 1120 * walking any more. 1121 */ 1122 return (WALK_DONE); 1123 } 1124 if (!(coargs->flags & COF_FREE) && 1125 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1126 /* 1127 * The callout list must have been freed. No point in 1128 * walking any more. 1129 */ 1130 return (WALK_DONE); 1131 } 1132 if ((coargs->flags & COF_TIME) && 1133 (cl->cl_expiration != coargs->time)) { 1134 return (WALK_NEXT); 1135 } 1136 if ((coargs->flags & COF_BEFORE) && 1137 (cl->cl_expiration > coargs->btime)) { 1138 return (WALK_NEXT); 1139 } 1140 if ((coargs->flags & COF_AFTER) && 1141 (cl->cl_expiration < coargs->atime)) { 1142 return (WALK_NEXT); 1143 } 1144 if (!(coargs->flags & COF_EMPTY) && 1145 (cl->cl_callouts.ch_head == NULL)) { 1146 return (WALK_NEXT); 1147 } 1148 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 1149 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1150 /* both flags are set, only skip "regular" ones */ 1151 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 1152 return (WALK_NEXT); 1153 } 1154 } else { 1155 if ((coargs->flags & COF_HIRES) && 1156 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1157 return (WALK_NEXT); 1158 } 1159 if ((coargs->flags & COF_ABS) && 1160 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1161 return (WALK_NEXT); 1162 } 1163 } 1164 1165 if ((coargs->flags & COF_HEAP) && 1166 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1167 return (WALK_NEXT); 1168 } 1169 1170 if ((coargs->flags & COF_QUEUE) && 1171 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1172 return (WALK_NEXT); 1173 } 1174 1175 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 1176 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 1177 if (!(coargs->flags & COF_VERBOSE)) { 1178 /* don't be redundant again */ 1179 mdb_printf("%<u>SEQ T %</u>"); 1180 } 1181 mdb_printf("%<u>EXP HA BUCKET " 1182 "CALLOUTS %</u>"); 1183 1184 if (coargs->flags & COF_LONGLIST) { 1185 mdb_printf("%<u> %-?s %-?s%</u>", 1186 "PREV", "NEXT"); 1187 } 1188 mdb_printf("\n"); 1189 coargs->flags &= ~COF_LHDR; 1190 coargs->flags |= (COF_THDR | COF_CHDR); 1191 } 1192 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 1193 if (!(coargs->flags & COF_ADDR)) { 1194 if (!(coargs->flags & COF_VERBOSE)) { 1195 mdb_printf("%3d %1s ", 1196 TABLE_TO_SEQID(coargs->ndx), 1197 co_typenames[coargs->ndx & 1198 CALLOUT_TYPE_MASK]); 1199 } 1200 1201 list_flags = coargs->list_flags; 1202 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 1203 (coargs->flags & COF_EXPREL) ? 1204 coargs->exp - coargs->now : coargs->exp, 1205 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1206 "H" : " ", 1207 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1208 "A" : " ", 1209 coargs->bucket, cl->cl_callouts.ch_head); 1210 1211 if (coargs->flags & COF_LONGLIST) { 1212 mdb_printf(" %-?p %-?p", 1213 cl->cl_prev, cl->cl_next); 1214 } 1215 } else { 1216 /* address only */ 1217 mdb_printf("%-0p", addr); 1218 } 1219 mdb_printf("\n"); 1220 if (coargs->flags & COF_LIST) { 1221 return (WALK_NEXT); 1222 } 1223 } 1224 /* yet another layer as we walk the actual callouts via list. */ 1225 if (cl->cl_callouts.ch_head == NULL) { 1226 return (WALK_NEXT); 1227 } 1228 /* free list structures do not have valid callouts off of them. */ 1229 if (coargs->flags & COF_FREE) { 1230 return (WALK_NEXT); 1231 } 1232 coptr = (callout_t *)cl->cl_callouts.ch_head; 1233 1234 if (coargs->flags & COF_VERBOSE) { 1235 mdb_inc_indent(4); 1236 } 1237 /* 1238 * walk callouts using yet another callback routine. 1239 * we use callouts_bytime because id hash is handled via 1240 * the callout_t_cb callback. 1241 */ 1242 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1243 (uintptr_t)coptr) == -1) { 1244 mdb_warn("cannot walk callouts at %p", coptr); 1245 return (WALK_ERR); 1246 } 1247 if (coargs->flags & COF_VERBOSE) { 1248 mdb_dec_indent(4); 1249 } 1250 1251 return (WALK_NEXT); 1252 } 1253 1254 /* this callback handles the details of callout table walking. */ 1255 static int 1256 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1257 { 1258 callout_data_t *coargs = (callout_data_t *)priv; 1259 cot_data_t *cotwd = (cot_data_t *)data; 1260 callout_table_t *ct = &(cotwd->ct); 1261 int index, seqid, cotype; 1262 int i; 1263 callout_list_t *clptr; 1264 callout_t *coptr; 1265 1266 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1267 return (WALK_ERR); 1268 } 1269 1270 index = ((char *)addr - (char *)coargs->co_table) / 1271 sizeof (callout_table_t); 1272 cotype = index & CALLOUT_TYPE_MASK; 1273 seqid = TABLE_TO_SEQID(index); 1274 1275 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1276 return (WALK_NEXT); 1277 } 1278 1279 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1280 return (WALK_NEXT); 1281 } 1282 1283 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1284 return (WALK_NEXT); 1285 } 1286 1287 if (!(coargs->flags & COF_EMPTY) && ( 1288 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) { 1289 return (WALK_NEXT); 1290 } 1291 1292 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1293 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1294 /* print table hdr */ 1295 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1296 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1297 coargs->flags &= ~COF_THDR; 1298 coargs->flags |= (COF_LHDR | COF_CHDR); 1299 if (coargs->flags & COF_LONGLIST) { 1300 /* more info! */ 1301 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1302 " %-?s %-?s %-?s%</u>", 1303 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1304 "PEND", "FREE", "LOCK"); 1305 } 1306 mdb_printf("\n"); 1307 } 1308 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1309 if (!(coargs->flags & COF_ADDR)) { 1310 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1311 seqid, co_typenames[cotype], 1312 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1313 ct->ct_heap); 1314 if (coargs->flags & COF_LONGLIST) { 1315 /* more info! */ 1316 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1317 " %-?lld %-?lld %-?p", 1318 ct->ct_heap_num, ct->ct_heap_max, 1319 ct->ct_taskq, ct->ct_expired.ch_head, 1320 ct->ct_queue.ch_head, 1321 cotwd->ct_timeouts_pending, 1322 cotwd->ct_allocations - 1323 cotwd->ct_timeouts_pending, 1324 ct->ct_mutex); 1325 } 1326 } else { 1327 /* address only */ 1328 mdb_printf("%-0?p", addr); 1329 } 1330 mdb_printf("\n"); 1331 if (coargs->flags & COF_TABLE) { 1332 return (WALK_NEXT); 1333 } 1334 } 1335 1336 coargs->ndx = index; 1337 if (coargs->flags & COF_VERBOSE) { 1338 mdb_inc_indent(4); 1339 } 1340 /* keep digging. */ 1341 if (!(coargs->flags & COF_BYIDH)) { 1342 /* walk the list hash table */ 1343 if (coargs->flags & COF_FREE) { 1344 clptr = ct->ct_lfree; 1345 coargs->bucket = 0; 1346 if (clptr == NULL) { 1347 return (WALK_NEXT); 1348 } 1349 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1350 (uintptr_t)clptr) == -1) { 1351 mdb_warn("cannot walk callout free list at %p", 1352 clptr); 1353 return (WALK_ERR); 1354 } 1355 } else { 1356 /* first print the expired list. */ 1357 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1358 if (clptr != NULL) { 1359 coargs->bucket = -1; 1360 if (mdb_pwalk("callout_list", callout_list_cb, 1361 coargs, (uintptr_t)clptr) == -1) { 1362 mdb_warn("cannot walk callout_list" 1363 " at %p", clptr); 1364 return (WALK_ERR); 1365 } 1366 } 1367 /* then, print the callout queue */ 1368 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1369 if (clptr != NULL) { 1370 coargs->bucket = -1; 1371 if (mdb_pwalk("callout_list", callout_list_cb, 1372 coargs, (uintptr_t)clptr) == -1) { 1373 mdb_warn("cannot walk callout_list" 1374 " at %p", clptr); 1375 return (WALK_ERR); 1376 } 1377 } 1378 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1379 if (ct->ct_clhash == NULL) { 1380 /* nothing to do */ 1381 break; 1382 } 1383 if (cotwd->cot_clhash[i].ch_head == NULL) { 1384 continue; 1385 } 1386 clptr = (callout_list_t *) 1387 cotwd->cot_clhash[i].ch_head; 1388 coargs->bucket = i; 1389 /* walk list with callback routine. */ 1390 if (mdb_pwalk("callout_list", callout_list_cb, 1391 coargs, (uintptr_t)clptr) == -1) { 1392 mdb_warn("cannot walk callout_list" 1393 " at %p", clptr); 1394 return (WALK_ERR); 1395 } 1396 } 1397 } 1398 } else { 1399 /* walk the id hash table. */ 1400 if (coargs->flags & COF_FREE) { 1401 coptr = ct->ct_free; 1402 coargs->bucket = 0; 1403 if (coptr == NULL) { 1404 return (WALK_NEXT); 1405 } 1406 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1407 (uintptr_t)coptr) == -1) { 1408 mdb_warn("cannot walk callout id free list" 1409 " at %p", coptr); 1410 return (WALK_ERR); 1411 } 1412 } else { 1413 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1414 if (ct->ct_idhash == NULL) { 1415 break; 1416 } 1417 coptr = (callout_t *) 1418 cotwd->cot_idhash[i].ch_head; 1419 if (coptr == NULL) { 1420 continue; 1421 } 1422 coargs->bucket = i; 1423 1424 /* 1425 * walk callouts directly by id. For id 1426 * chain, the callout list is just a header, 1427 * so there's no need to walk it. 1428 */ 1429 if (mdb_pwalk("callouts_byid", callouts_cb, 1430 coargs, (uintptr_t)coptr) == -1) { 1431 mdb_warn("cannot walk callouts at %p", 1432 coptr); 1433 return (WALK_ERR); 1434 } 1435 } 1436 } 1437 } 1438 if (coargs->flags & COF_VERBOSE) { 1439 mdb_dec_indent(4); 1440 } 1441 return (WALK_NEXT); 1442 } 1443 1444 /* 1445 * initialize some common info for both callout dcmds. 1446 */ 1447 int 1448 callout_common_init(callout_data_t *coargs) 1449 { 1450 /* we need a couple of things */ 1451 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1452 mdb_warn("failed to read 'callout_table'"); 1453 return (DCMD_ERR); 1454 } 1455 /* need to get now in nsecs. Approximate with hrtime vars */ 1456 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1457 sizeof (hrtime_t)) { 1458 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1459 "hrtime_base") != sizeof (hrtime_t)) { 1460 mdb_warn("Could not determine current system time"); 1461 return (DCMD_ERR); 1462 } 1463 } 1464 1465 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1466 mdb_warn("failed to read 'callout_table_bits'"); 1467 return (DCMD_ERR); 1468 } 1469 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1470 mdb_warn("failed to read 'nsec_per_tick'"); 1471 return (DCMD_ERR); 1472 } 1473 return (DCMD_OK); 1474 } 1475 1476 /* 1477 * dcmd to print callouts. Optional addr limits to specific table. 1478 * Parses lots of options that get passed to callbacks for walkers. 1479 * Has it's own help function. 1480 */ 1481 /*ARGSUSED*/ 1482 int 1483 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1484 { 1485 callout_data_t coargs; 1486 /* getopts doesn't help much with stuff like this */ 1487 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1488 char *funcname = NULL; 1489 char *paramstr = NULL; 1490 uintptr_t Stmp, Ctmp; /* for getopt. */ 1491 int retval; 1492 1493 coargs.flags = COF_DEFAULT; 1494 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1495 coargs.seqid = -1; 1496 1497 if (mdb_getopts(argc, argv, 1498 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1499 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1500 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1501 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1502 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1503 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1504 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1505 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1506 'd', MDB_OPT_SETBITS, 1, &dflag, 1507 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1508 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1509 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1510 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1511 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1512 'k', MDB_OPT_SETBITS, 1, &kflag, 1513 'f', MDB_OPT_STR, &funcname, 1514 'p', MDB_OPT_STR, ¶mstr, 1515 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1516 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1517 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1518 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1519 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1520 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1521 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1522 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1523 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1524 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1525 NULL) != argc) { 1526 return (DCMD_USAGE); 1527 } 1528 1529 /* initialize from kernel variables */ 1530 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1531 return (retval); 1532 } 1533 1534 /* do some option post-processing */ 1535 if (kflag) { 1536 coargs.time *= coargs.nsec_per_tick; 1537 coargs.atime *= coargs.nsec_per_tick; 1538 coargs.btime *= coargs.nsec_per_tick; 1539 } 1540 1541 if (dflag) { 1542 coargs.time += coargs.now; 1543 coargs.atime += coargs.now; 1544 coargs.btime += coargs.now; 1545 } 1546 if (Sflag) { 1547 if (flags & DCMD_ADDRSPEC) { 1548 mdb_printf("-S option conflicts with explicit" 1549 " address\n"); 1550 return (DCMD_USAGE); 1551 } 1552 coargs.flags |= COF_SEQID; 1553 coargs.seqid = (int)Stmp; 1554 } 1555 if (Cflag) { 1556 if (flags & DCMD_ADDRSPEC) { 1557 mdb_printf("-C option conflicts with explicit" 1558 " address\n"); 1559 return (DCMD_USAGE); 1560 } 1561 if (coargs.flags & COF_SEQID) { 1562 mdb_printf("-C and -S are mutually exclusive\n"); 1563 return (DCMD_USAGE); 1564 } 1565 coargs.cpu = (cpu_t *)Ctmp; 1566 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1567 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1568 mdb_warn("failed to read cpu_t at %p", Ctmp); 1569 return (DCMD_ERR); 1570 } 1571 coargs.flags |= COF_SEQID; 1572 } 1573 /* avoid null outputs. */ 1574 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1575 coargs.flags |= COF_REAL | COF_NORM; 1576 } 1577 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1578 coargs.flags |= COF_LONG | COF_SHORT; 1579 } 1580 if (tflag) { 1581 if (aflag || bflag) { 1582 mdb_printf("-t and -a|b are mutually exclusive\n"); 1583 return (DCMD_USAGE); 1584 } 1585 coargs.flags |= COF_TIME; 1586 } 1587 if (aflag) { 1588 coargs.flags |= COF_AFTER; 1589 } 1590 if (bflag) { 1591 coargs.flags |= COF_BEFORE; 1592 } 1593 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1594 mdb_printf("value for -a must be earlier than the value" 1595 " for -b.\n"); 1596 return (DCMD_USAGE); 1597 } 1598 1599 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1600 mdb_printf("-H and -Q are mutually exclusive\n"); 1601 return (DCMD_USAGE); 1602 } 1603 1604 if (funcname != NULL) { 1605 GElf_Sym sym; 1606 1607 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1608 coargs.funcaddr = mdb_strtoull(funcname); 1609 } else { 1610 coargs.funcaddr = sym.st_value; 1611 } 1612 coargs.flags |= COF_FUNC; 1613 } 1614 1615 if (paramstr != NULL) { 1616 GElf_Sym sym; 1617 1618 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1619 coargs.param = mdb_strtoull(paramstr); 1620 } else { 1621 coargs.param = sym.st_value; 1622 } 1623 coargs.flags |= COF_PARAM; 1624 } 1625 1626 if (!(flags & DCMD_ADDRSPEC)) { 1627 /* don't pass "dot" if no addr. */ 1628 addr = 0; 1629 } 1630 if (addr != 0) { 1631 /* 1632 * a callout table was specified. Ignore -r|n option 1633 * to avoid null output. 1634 */ 1635 coargs.flags |= (COF_REAL | COF_NORM); 1636 } 1637 1638 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1639 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1640 } 1641 if (coargs.flags & COF_FREE) { 1642 coargs.flags |= COF_EMPTY; 1643 /* -F = free callouts, -FL = free lists */ 1644 if (!(coargs.flags & COF_LIST)) { 1645 coargs.flags |= COF_BYIDH; 1646 } 1647 } 1648 1649 /* walk table, using specialized callback routine. */ 1650 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1651 mdb_warn("cannot walk callout_table"); 1652 return (DCMD_ERR); 1653 } 1654 return (DCMD_OK); 1655 } 1656 1657 1658 /* 1659 * Given an extended callout id, dump its information. 1660 */ 1661 /*ARGSUSED*/ 1662 int 1663 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1664 { 1665 callout_data_t coargs; 1666 callout_table_t *ctptr; 1667 callout_table_t ct; 1668 callout_id_t coid; 1669 callout_t *coptr; 1670 int tableid; 1671 callout_id_t xid; 1672 ulong_t idhash; 1673 int i, retval; 1674 const mdb_arg_t *arg; 1675 size_t size; 1676 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1677 1678 coargs.flags = COF_DEFAULT | COF_BYIDH; 1679 i = mdb_getopts(argc, argv, 1680 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1681 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1682 NULL); 1683 argc -= i; 1684 argv += i; 1685 1686 if (argc != 1) { 1687 return (DCMD_USAGE); 1688 } 1689 arg = &argv[0]; 1690 1691 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1692 xid = arg->a_un.a_val; 1693 } else { 1694 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1695 } 1696 1697 if (DCMD_HDRSPEC(flags)) { 1698 coargs.flags |= COF_CHDR; 1699 } 1700 1701 1702 /* initialize from kernel variables */ 1703 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1704 return (retval); 1705 } 1706 1707 /* we must massage the environment so that the macros will play nice */ 1708 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1709 #define callout_table_bits coargs.ctbits 1710 #define nsec_per_tick coargs.nsec_per_tick 1711 tableid = CALLOUT_ID_TO_TABLE(xid); 1712 idhash = CALLOUT_IDHASH(xid); 1713 #undef callouts_table_bits 1714 #undef callout_table_mask 1715 #undef nsec_per_tick 1716 coid = CO_PLAIN_ID(xid); 1717 1718 if (flags & DCMD_ADDRSPEC) { 1719 mdb_printf("calloutid does not accept explicit address.\n"); 1720 return (DCMD_USAGE); 1721 } 1722 1723 if (coargs.flags & COF_DECODE) { 1724 if (DCMD_HDRSPEC(flags)) { 1725 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1726 "SEQ", "T", "XL", "XID", "IDHASH"); 1727 } 1728 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1729 TABLE_TO_SEQID(tableid), 1730 co_typenames[tableid & CALLOUT_TYPE_MASK], 1731 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1732 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1733 (long long)coid, idhash); 1734 return (DCMD_OK); 1735 } 1736 1737 /* get our table. Note this relies on the types being correct */ 1738 ctptr = coargs.co_table + tableid; 1739 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1740 mdb_warn("failed to read callout_table at %p", ctptr); 1741 return (DCMD_ERR); 1742 } 1743 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1744 if (ct.ct_idhash != NULL) { 1745 if (mdb_vread(&(cot_idhash), size, 1746 (uintptr_t)ct.ct_idhash) == -1) { 1747 mdb_warn("failed to read id_hash at %p", 1748 ct.ct_idhash); 1749 return (WALK_ERR); 1750 } 1751 } 1752 1753 /* callout at beginning of hash chain */ 1754 if (ct.ct_idhash == NULL) { 1755 mdb_printf("id hash chain for this xid is empty\n"); 1756 return (DCMD_ERR); 1757 } 1758 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1759 if (coptr == NULL) { 1760 mdb_printf("id hash chain for this xid is empty\n"); 1761 return (DCMD_ERR); 1762 } 1763 1764 coargs.ndx = tableid; 1765 coargs.bucket = idhash; 1766 1767 /* use the walker, luke */ 1768 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1769 (uintptr_t)coptr) == -1) { 1770 mdb_warn("cannot walk callouts at %p", coptr); 1771 return (WALK_ERR); 1772 } 1773 1774 return (DCMD_OK); 1775 } 1776 1777 void 1778 callout_help(void) 1779 { 1780 mdb_printf("callout: display callouts.\n" 1781 "Given a callout table address, display callouts from table.\n" 1782 "Without an address, display callouts from all tables.\n" 1783 "options:\n" 1784 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1785 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1786 " -x : limit display to callouts which are executing\n" 1787 " -h : limit display to callouts based on hrestime\n" 1788 " -B : limit display to callouts based on absolute time\n" 1789 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1790 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1791 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1792 " -d : interpret time option to -t|a|b as delta from current time\n" 1793 " -k : use ticks instead of nanoseconds as arguments to" 1794 " -t|a|b. Note that\n ticks are less accurate and may not" 1795 " match other tick times (ie: lbolt).\n" 1796 " -D : display exiration time as delta from current time\n" 1797 " -S seqid : limit display to callouts for this cpu sequence id\n" 1798 " -C addr : limit display to callouts for this cpu pointer\n" 1799 " -f name|addr : limit display to callouts with this function\n" 1800 " -p name|addr : limit display to callouts functions with this" 1801 " parameter\n" 1802 " -T : display the callout table itself, instead of callouts\n" 1803 " -L : display callout lists instead of callouts\n" 1804 " -E : with -T or L, display empty data structures.\n" 1805 " -i : traverse callouts by id hash instead of list hash\n" 1806 " -F : walk free callout list (free list with -i) instead\n" 1807 " -v : display more info for each item\n" 1808 " -V : show details of each level of info as it is traversed\n" 1809 " -H : limit display to callouts in the callout heap\n" 1810 " -Q : limit display to callouts in the callout queue\n" 1811 " -A : show only addresses. Useful for pipelines.\n"); 1812 } 1813 1814 void 1815 calloutid_help(void) 1816 { 1817 mdb_printf("calloutid: display callout by id.\n" 1818 "Given an extended callout id, display the callout infomation.\n" 1819 "options:\n" 1820 " -d : do not dereference callout, just decode the id.\n" 1821 " -v : verbose display more info about the callout\n"); 1822 } 1823 1824 /*ARGSUSED*/ 1825 int 1826 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1827 { 1828 long num_classes, i; 1829 sclass_t *class_tbl; 1830 GElf_Sym g_sclass; 1831 char class_name[PC_CLNMSZ]; 1832 size_t tbl_size; 1833 1834 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1835 mdb_warn("failed to find symbol sclass\n"); 1836 return (DCMD_ERR); 1837 } 1838 1839 tbl_size = (size_t)g_sclass.st_size; 1840 num_classes = tbl_size / (sizeof (sclass_t)); 1841 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1842 1843 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1844 mdb_warn("failed to read sclass"); 1845 return (DCMD_ERR); 1846 } 1847 1848 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1849 "INIT FCN", "CLASS FCN"); 1850 1851 for (i = 0; i < num_classes; i++) { 1852 if (mdb_vread(class_name, sizeof (class_name), 1853 (uintptr_t)class_tbl[i].cl_name) == -1) 1854 (void) strcpy(class_name, "???"); 1855 1856 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1857 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1858 } 1859 1860 return (DCMD_OK); 1861 } 1862 1863 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1864 1865 int 1866 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1867 { 1868 uintptr_t rootdir; 1869 vnode_t vn; 1870 char buf[MAXPATHLEN]; 1871 1872 uint_t opt_F = FALSE; 1873 1874 if (mdb_getopts(argc, argv, 1875 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1876 return (DCMD_USAGE); 1877 1878 if (!(flags & DCMD_ADDRSPEC)) { 1879 mdb_warn("expected explicit vnode_t address before ::\n"); 1880 return (DCMD_USAGE); 1881 } 1882 1883 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1884 mdb_warn("failed to read rootdir"); 1885 return (DCMD_ERR); 1886 } 1887 1888 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1889 return (DCMD_ERR); 1890 1891 if (*buf == '\0') { 1892 mdb_printf("??\n"); 1893 return (DCMD_OK); 1894 } 1895 1896 mdb_printf("%s", buf); 1897 if (opt_F && buf[strlen(buf)-1] != '/' && 1898 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1899 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1900 mdb_printf("\n"); 1901 1902 return (DCMD_OK); 1903 } 1904 1905 int 1906 ld_walk_init(mdb_walk_state_t *wsp) 1907 { 1908 wsp->walk_data = (void *)wsp->walk_addr; 1909 return (WALK_NEXT); 1910 } 1911 1912 int 1913 ld_walk_step(mdb_walk_state_t *wsp) 1914 { 1915 int status; 1916 lock_descriptor_t ld; 1917 1918 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1919 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1920 wsp->walk_addr); 1921 return (WALK_ERR); 1922 } 1923 1924 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1925 if (status == WALK_ERR) 1926 return (WALK_ERR); 1927 1928 wsp->walk_addr = (uintptr_t)ld.l_next; 1929 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1930 return (WALK_DONE); 1931 1932 return (status); 1933 } 1934 1935 int 1936 lg_walk_init(mdb_walk_state_t *wsp) 1937 { 1938 GElf_Sym sym; 1939 1940 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1941 mdb_warn("failed to find symbol 'lock_graph'\n"); 1942 return (WALK_ERR); 1943 } 1944 1945 wsp->walk_addr = (uintptr_t)sym.st_value; 1946 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1947 1948 return (WALK_NEXT); 1949 } 1950 1951 typedef struct lg_walk_data { 1952 uintptr_t startaddr; 1953 mdb_walk_cb_t callback; 1954 void *data; 1955 } lg_walk_data_t; 1956 1957 /* 1958 * We can't use ::walk lock_descriptor directly, because the head of each graph 1959 * is really a dummy lock. Rather than trying to dynamically determine if this 1960 * is a dummy node or not, we just filter out the initial element of the 1961 * list. 1962 */ 1963 static int 1964 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1965 { 1966 lg_walk_data_t *lw = priv; 1967 1968 if (addr != lw->startaddr) 1969 return (lw->callback(addr, data, lw->data)); 1970 1971 return (WALK_NEXT); 1972 } 1973 1974 int 1975 lg_walk_step(mdb_walk_state_t *wsp) 1976 { 1977 graph_t *graph; 1978 lg_walk_data_t lw; 1979 1980 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1981 return (WALK_DONE); 1982 1983 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1984 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1985 return (WALK_ERR); 1986 } 1987 1988 wsp->walk_addr += sizeof (graph); 1989 1990 if (graph == NULL) 1991 return (WALK_NEXT); 1992 1993 lw.callback = wsp->walk_callback; 1994 lw.data = wsp->walk_cbdata; 1995 1996 lw.startaddr = (uintptr_t)&(graph->active_locks); 1997 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1998 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1999 return (WALK_ERR); 2000 } 2001 2002 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 2003 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 2004 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 2005 return (WALK_ERR); 2006 } 2007 2008 return (WALK_NEXT); 2009 } 2010 2011 /* 2012 * The space available for the path corresponding to the locked vnode depends 2013 * on whether we are printing 32- or 64-bit addresses. 2014 */ 2015 #ifdef _LP64 2016 #define LM_VNPATHLEN 20 2017 #else 2018 #define LM_VNPATHLEN 30 2019 #endif 2020 2021 typedef struct mdb_lminfo_proc { 2022 struct { 2023 char u_comm[MAXCOMLEN + 1]; 2024 } p_user; 2025 } mdb_lminfo_proc_t; 2026 2027 /*ARGSUSED*/ 2028 static int 2029 lminfo_cb(uintptr_t addr, const void *data, void *priv) 2030 { 2031 const lock_descriptor_t *ld = data; 2032 char buf[LM_VNPATHLEN]; 2033 mdb_lminfo_proc_t p; 2034 uintptr_t paddr = 0; 2035 2036 if (ld->l_flock.l_pid != 0) 2037 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL); 2038 2039 if (paddr != 0) 2040 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0); 2041 2042 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 2043 addr, ld->l_type == F_RDLCK ? "RD" : 2044 ld->l_type == F_WRLCK ? "WR" : "??", 2045 ld->l_state, ld->l_flock.l_pid, 2046 ld->l_flock.l_pid == 0 ? "<kernel>" : 2047 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode); 2048 2049 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 2050 sizeof (buf)); 2051 mdb_printf("%s\n", buf); 2052 2053 return (WALK_NEXT); 2054 } 2055 2056 /*ARGSUSED*/ 2057 int 2058 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2059 { 2060 if (DCMD_HDRSPEC(flags)) 2061 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 2062 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 2063 2064 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0)); 2065 } 2066 2067 /*ARGSUSED*/ 2068 int 2069 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 2070 { 2071 if ((uintptr_t)f->f_vnode == *target) { 2072 mdb_printf("file %p\n", addr); 2073 *target = 0; 2074 } 2075 2076 return (WALK_NEXT); 2077 } 2078 2079 /*ARGSUSED*/ 2080 int 2081 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 2082 { 2083 uintptr_t t = *target; 2084 2085 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 2086 mdb_warn("couldn't file walk proc %p", addr); 2087 return (WALK_ERR); 2088 } 2089 2090 if (t == 0) 2091 mdb_printf("%p\n", addr); 2092 2093 return (WALK_NEXT); 2094 } 2095 2096 /*ARGSUSED*/ 2097 int 2098 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2099 { 2100 uintptr_t target = addr; 2101 2102 if (!(flags & DCMD_ADDRSPEC) || addr == 0) 2103 return (DCMD_USAGE); 2104 2105 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 2106 mdb_warn("can't proc walk"); 2107 return (DCMD_ERR); 2108 } 2109 2110 return (DCMD_OK); 2111 } 2112 2113 typedef struct datafmt { 2114 char *hdr1; 2115 char *hdr2; 2116 char *dashes; 2117 char *fmt; 2118 } datafmt_t; 2119 2120 static datafmt_t kmemfmt[] = { 2121 { "cache ", "name ", 2122 "-------------------------", "%-25s " }, 2123 { " buf", " size", "------", "%6u " }, 2124 { " buf", "in use", "------", "%6u " }, 2125 { " buf", " total", "------", "%6u " }, 2126 { " memory", " in use", "----------", "%10lu%c " }, 2127 { " alloc", " succeed", "---------", "%9u " }, 2128 { "alloc", " fail", "-----", "%5u " }, 2129 { NULL, NULL, NULL, NULL } 2130 }; 2131 2132 static datafmt_t vmemfmt[] = { 2133 { "vmem ", "name ", 2134 "-------------------------", "%-*s " }, 2135 { " memory", " in use", "----------", "%9llu%c " }, 2136 { " memory", " total", "-----------", "%10llu%c " }, 2137 { " memory", " import", "----------", "%9llu%c " }, 2138 { " alloc", " succeed", "---------", "%9llu " }, 2139 { "alloc", " fail", "-----", "%5llu " }, 2140 { NULL, NULL, NULL, NULL } 2141 }; 2142 2143 /*ARGSUSED*/ 2144 static int 2145 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2146 { 2147 short rounds, prounds; 2148 2149 if (KMEM_DUMPCC(ccp)) { 2150 rounds = ccp->cc_dump_rounds; 2151 prounds = ccp->cc_dump_prounds; 2152 } else { 2153 rounds = ccp->cc_rounds; 2154 prounds = ccp->cc_prounds; 2155 } 2156 if (rounds > 0) 2157 *avail += rounds; 2158 if (prounds > 0) 2159 *avail += prounds; 2160 2161 return (WALK_NEXT); 2162 } 2163 2164 /*ARGSUSED*/ 2165 static int 2166 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2167 { 2168 *alloc += ccp->cc_alloc; 2169 2170 return (WALK_NEXT); 2171 } 2172 2173 /*ARGSUSED*/ 2174 static int 2175 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2176 { 2177 *avail += sp->slab_chunks - sp->slab_refcnt; 2178 2179 return (WALK_NEXT); 2180 } 2181 2182 typedef struct kmastat_vmem { 2183 uintptr_t kv_addr; 2184 struct kmastat_vmem *kv_next; 2185 size_t kv_meminuse; 2186 int kv_alloc; 2187 int kv_fail; 2188 } kmastat_vmem_t; 2189 2190 typedef struct kmastat_args { 2191 kmastat_vmem_t **ka_kvpp; 2192 uint_t ka_shift; 2193 } kmastat_args_t; 2194 2195 static int 2196 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2197 { 2198 kmastat_vmem_t **kvpp = kap->ka_kvpp; 2199 kmastat_vmem_t *kv; 2200 datafmt_t *dfp = kmemfmt; 2201 int magsize; 2202 2203 int avail, alloc, total; 2204 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2205 cp->cache_slabsize; 2206 2207 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2208 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2209 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2210 2211 magsize = kmem_get_magsize(cp); 2212 2213 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2214 avail = cp->cache_full.ml_total * magsize; 2215 total = cp->cache_buftotal; 2216 2217 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2218 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2219 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2220 2221 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2222 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2223 goto out; 2224 } 2225 2226 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2227 kv->kv_next = *kvpp; 2228 kv->kv_addr = (uintptr_t)cp->cache_arena; 2229 *kvpp = kv; 2230 out: 2231 kv->kv_meminuse += meminuse; 2232 kv->kv_alloc += alloc; 2233 kv->kv_fail += cp->cache_alloc_fail; 2234 2235 mdb_printf((dfp++)->fmt, cp->cache_name); 2236 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2237 mdb_printf((dfp++)->fmt, total - avail); 2238 mdb_printf((dfp++)->fmt, total); 2239 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2240 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2241 kap->ka_shift == KILOS ? 'K' : 'B'); 2242 mdb_printf((dfp++)->fmt, alloc); 2243 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2244 mdb_printf("\n"); 2245 2246 return (WALK_NEXT); 2247 } 2248 2249 static int 2250 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2251 { 2252 kmastat_vmem_t *kv = *kap->ka_kvpp; 2253 size_t len; 2254 2255 while (kv != NULL && kv->kv_addr != addr) 2256 kv = kv->kv_next; 2257 2258 if (kv == NULL || kv->kv_alloc == 0) 2259 return (WALK_NEXT); 2260 2261 len = MIN(17, strlen(v->vm_name)); 2262 2263 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2264 17 - len, "", "", "", "", 2265 kv->kv_meminuse >> kap->ka_shift, 2266 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2267 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2268 2269 return (WALK_NEXT); 2270 } 2271 2272 /*ARGSUSED*/ 2273 static int 2274 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2275 { 2276 datafmt_t *dfp = vmemfmt; 2277 const vmem_kstat_t *vkp = &v->vm_kstat; 2278 uintptr_t paddr; 2279 vmem_t parent; 2280 int ident = 0; 2281 2282 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) { 2283 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2284 mdb_warn("couldn't trace %p's ancestry", addr); 2285 ident = 0; 2286 break; 2287 } 2288 paddr = (uintptr_t)parent.vm_source; 2289 } 2290 2291 mdb_printf("%*s", ident, ""); 2292 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2293 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2294 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2295 *shiftp == KILOS ? 'K' : 'B'); 2296 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2297 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2298 *shiftp == KILOS ? 'K' : 'B'); 2299 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2300 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2301 *shiftp == KILOS ? 'K' : 'B'); 2302 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2303 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2304 2305 mdb_printf("\n"); 2306 2307 return (WALK_NEXT); 2308 } 2309 2310 /*ARGSUSED*/ 2311 int 2312 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2313 { 2314 kmastat_vmem_t *kv = NULL; 2315 datafmt_t *dfp; 2316 kmastat_args_t ka; 2317 2318 ka.ka_shift = 0; 2319 if (mdb_getopts(argc, argv, 2320 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2321 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2322 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2323 return (DCMD_USAGE); 2324 2325 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2326 mdb_printf("%s ", dfp->hdr1); 2327 mdb_printf("\n"); 2328 2329 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2330 mdb_printf("%s ", dfp->hdr2); 2331 mdb_printf("\n"); 2332 2333 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2334 mdb_printf("%s ", dfp->dashes); 2335 mdb_printf("\n"); 2336 2337 ka.ka_kvpp = &kv; 2338 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2339 mdb_warn("can't walk 'kmem_cache'"); 2340 return (DCMD_ERR); 2341 } 2342 2343 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2344 mdb_printf("%s ", dfp->dashes); 2345 mdb_printf("\n"); 2346 2347 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2348 mdb_warn("can't walk 'vmem'"); 2349 return (DCMD_ERR); 2350 } 2351 2352 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2353 mdb_printf("%s ", dfp->dashes); 2354 mdb_printf("\n"); 2355 2356 mdb_printf("\n"); 2357 2358 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2359 mdb_printf("%s ", dfp->hdr1); 2360 mdb_printf("\n"); 2361 2362 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2363 mdb_printf("%s ", dfp->hdr2); 2364 mdb_printf("\n"); 2365 2366 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2367 mdb_printf("%s ", dfp->dashes); 2368 mdb_printf("\n"); 2369 2370 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2371 mdb_warn("can't walk 'vmem'"); 2372 return (DCMD_ERR); 2373 } 2374 2375 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2376 mdb_printf("%s ", dfp->dashes); 2377 mdb_printf("\n"); 2378 return (DCMD_OK); 2379 } 2380 2381 /* 2382 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2383 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2384 * unfortunately, a few of the segs are both large and sparse, so we could 2385 * spend quite a bit of time scanning VAs which have no backing pages. 2386 * 2387 * So for the few very sparse segs, we skip the segment itself, and scan 2388 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2389 * Currently, we do this for: 2390 * 2391 * SEG VMEM ARENA 2392 * kvseg heap_arena 2393 * kvseg32 heap32_arena 2394 * kvseg_core heap_core_arena 2395 * 2396 * In addition, we skip the segkpm segment in its entirety, since it is very 2397 * sparse, and contains no new kernel data. 2398 */ 2399 typedef struct kgrep_walk_data { 2400 kgrep_cb_func *kg_cb; 2401 void *kg_cbdata; 2402 uintptr_t kg_kvseg; 2403 uintptr_t kg_kvseg32; 2404 uintptr_t kg_kvseg_core; 2405 uintptr_t kg_segkpm; 2406 uintptr_t kg_heap_lp_base; 2407 uintptr_t kg_heap_lp_end; 2408 } kgrep_walk_data_t; 2409 2410 static int 2411 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2412 { 2413 uintptr_t base = (uintptr_t)seg->s_base; 2414 2415 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2416 addr == kg->kg_kvseg_core) 2417 return (WALK_NEXT); 2418 2419 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2420 return (WALK_NEXT); 2421 2422 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2423 } 2424 2425 /*ARGSUSED*/ 2426 static int 2427 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2428 { 2429 /* 2430 * skip large page heap address range - it is scanned by walking 2431 * allocated vmem_segs in the heap_lp_arena 2432 */ 2433 if (seg->vs_start == kg->kg_heap_lp_base && 2434 seg->vs_end == kg->kg_heap_lp_end) 2435 return (WALK_NEXT); 2436 2437 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2438 } 2439 2440 /*ARGSUSED*/ 2441 static int 2442 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2443 { 2444 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2445 } 2446 2447 static int 2448 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2449 { 2450 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2451 2452 if (strcmp(vmem->vm_name, "heap") != 0 && 2453 strcmp(vmem->vm_name, "heap32") != 0 && 2454 strcmp(vmem->vm_name, "heap_core") != 0 && 2455 strcmp(vmem->vm_name, "heap_lp") != 0) 2456 return (WALK_NEXT); 2457 2458 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2459 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2460 2461 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2462 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2463 return (WALK_ERR); 2464 } 2465 2466 return (WALK_NEXT); 2467 } 2468 2469 int 2470 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2471 { 2472 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2473 kgrep_walk_data_t kg; 2474 2475 if (mdb_get_state() == MDB_STATE_RUNNING) { 2476 mdb_warn("kgrep can only be run on a system " 2477 "dump or under kmdb; see dumpadm(1M)\n"); 2478 return (DCMD_ERR); 2479 } 2480 2481 if (mdb_lookup_by_name("kas", &kas) == -1) { 2482 mdb_warn("failed to locate 'kas' symbol\n"); 2483 return (DCMD_ERR); 2484 } 2485 2486 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2487 mdb_warn("failed to locate 'kvseg' symbol\n"); 2488 return (DCMD_ERR); 2489 } 2490 2491 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2492 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2493 return (DCMD_ERR); 2494 } 2495 2496 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2497 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2498 return (DCMD_ERR); 2499 } 2500 2501 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2502 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2503 return (DCMD_ERR); 2504 } 2505 2506 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2507 mdb_warn("failed to read 'heap_lp_base'\n"); 2508 return (DCMD_ERR); 2509 } 2510 2511 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2512 mdb_warn("failed to read 'heap_lp_end'\n"); 2513 return (DCMD_ERR); 2514 } 2515 2516 kg.kg_cb = cb; 2517 kg.kg_cbdata = cbdata; 2518 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2519 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2520 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2521 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2522 2523 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2524 &kg, kas.st_value) == -1) { 2525 mdb_warn("failed to walk kas segments"); 2526 return (DCMD_ERR); 2527 } 2528 2529 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2530 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2531 return (DCMD_ERR); 2532 } 2533 2534 return (DCMD_OK); 2535 } 2536 2537 size_t 2538 kgrep_subr_pagesize(void) 2539 { 2540 return (PAGESIZE); 2541 } 2542 2543 typedef struct file_walk_data { 2544 struct uf_entry *fw_flist; 2545 int fw_flistsz; 2546 int fw_ndx; 2547 int fw_nofiles; 2548 } file_walk_data_t; 2549 2550 typedef struct mdb_file_proc { 2551 struct { 2552 struct { 2553 int fi_nfiles; 2554 uf_entry_t *volatile fi_list; 2555 } u_finfo; 2556 } p_user; 2557 } mdb_file_proc_t; 2558 2559 int 2560 file_walk_init(mdb_walk_state_t *wsp) 2561 { 2562 file_walk_data_t *fw; 2563 mdb_file_proc_t p; 2564 2565 if (wsp->walk_addr == 0) { 2566 mdb_warn("file walk doesn't support global walks\n"); 2567 return (WALK_ERR); 2568 } 2569 2570 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2571 2572 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t", 2573 wsp->walk_addr, 0) == -1) { 2574 mdb_free(fw, sizeof (file_walk_data_t)); 2575 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2576 return (WALK_ERR); 2577 } 2578 2579 if (p.p_user.u_finfo.fi_nfiles == 0) { 2580 mdb_free(fw, sizeof (file_walk_data_t)); 2581 return (WALK_DONE); 2582 } 2583 2584 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2585 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2586 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2587 2588 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2589 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2590 mdb_warn("failed to read file array at %p", 2591 p.p_user.u_finfo.fi_list); 2592 mdb_free(fw->fw_flist, fw->fw_flistsz); 2593 mdb_free(fw, sizeof (file_walk_data_t)); 2594 return (WALK_ERR); 2595 } 2596 2597 fw->fw_ndx = 0; 2598 wsp->walk_data = fw; 2599 2600 return (WALK_NEXT); 2601 } 2602 2603 int 2604 file_walk_step(mdb_walk_state_t *wsp) 2605 { 2606 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2607 struct file file; 2608 uintptr_t fp; 2609 2610 again: 2611 if (fw->fw_ndx == fw->fw_nofiles) 2612 return (WALK_DONE); 2613 2614 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0) 2615 goto again; 2616 2617 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2618 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2619 } 2620 2621 int 2622 allfile_walk_step(mdb_walk_state_t *wsp) 2623 { 2624 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2625 struct file file; 2626 uintptr_t fp; 2627 2628 if (fw->fw_ndx == fw->fw_nofiles) 2629 return (WALK_DONE); 2630 2631 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0) 2632 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2633 else 2634 bzero(&file, sizeof (file)); 2635 2636 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2637 } 2638 2639 void 2640 file_walk_fini(mdb_walk_state_t *wsp) 2641 { 2642 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2643 2644 mdb_free(fw->fw_flist, fw->fw_flistsz); 2645 mdb_free(fw, sizeof (file_walk_data_t)); 2646 } 2647 2648 int 2649 port_walk_init(mdb_walk_state_t *wsp) 2650 { 2651 if (wsp->walk_addr == 0) { 2652 mdb_warn("port walk doesn't support global walks\n"); 2653 return (WALK_ERR); 2654 } 2655 2656 if (mdb_layered_walk("file", wsp) == -1) { 2657 mdb_warn("couldn't walk 'file'"); 2658 return (WALK_ERR); 2659 } 2660 return (WALK_NEXT); 2661 } 2662 2663 int 2664 port_walk_step(mdb_walk_state_t *wsp) 2665 { 2666 struct vnode vn; 2667 uintptr_t vp; 2668 uintptr_t pp; 2669 struct port port; 2670 2671 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2672 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2673 mdb_warn("failed to read vnode_t at %p", vp); 2674 return (WALK_ERR); 2675 } 2676 if (vn.v_type != VPORT) 2677 return (WALK_NEXT); 2678 2679 pp = (uintptr_t)vn.v_data; 2680 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2681 mdb_warn("failed to read port_t at %p", pp); 2682 return (WALK_ERR); 2683 } 2684 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2685 } 2686 2687 typedef struct portev_walk_data { 2688 list_node_t *pev_node; 2689 list_node_t *pev_last; 2690 size_t pev_offset; 2691 } portev_walk_data_t; 2692 2693 int 2694 portev_walk_init(mdb_walk_state_t *wsp) 2695 { 2696 portev_walk_data_t *pevd; 2697 struct port port; 2698 struct vnode vn; 2699 struct list *list; 2700 uintptr_t vp; 2701 2702 if (wsp->walk_addr == 0) { 2703 mdb_warn("portev walk doesn't support global walks\n"); 2704 return (WALK_ERR); 2705 } 2706 2707 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2708 2709 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2710 mdb_free(pevd, sizeof (portev_walk_data_t)); 2711 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2712 return (WALK_ERR); 2713 } 2714 2715 vp = (uintptr_t)port.port_vnode; 2716 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2717 mdb_free(pevd, sizeof (portev_walk_data_t)); 2718 mdb_warn("failed to read vnode_t at %p", vp); 2719 return (WALK_ERR); 2720 } 2721 2722 if (vn.v_type != VPORT) { 2723 mdb_free(pevd, sizeof (portev_walk_data_t)); 2724 mdb_warn("input address (%p) does not point to an event port", 2725 wsp->walk_addr); 2726 return (WALK_ERR); 2727 } 2728 2729 if (port.port_queue.portq_nent == 0) { 2730 mdb_free(pevd, sizeof (portev_walk_data_t)); 2731 return (WALK_DONE); 2732 } 2733 list = &port.port_queue.portq_list; 2734 pevd->pev_offset = list->list_offset; 2735 pevd->pev_last = list->list_head.list_prev; 2736 pevd->pev_node = list->list_head.list_next; 2737 wsp->walk_data = pevd; 2738 return (WALK_NEXT); 2739 } 2740 2741 int 2742 portev_walk_step(mdb_walk_state_t *wsp) 2743 { 2744 portev_walk_data_t *pevd; 2745 struct port_kevent ev; 2746 uintptr_t evp; 2747 2748 pevd = (portev_walk_data_t *)wsp->walk_data; 2749 2750 if (pevd->pev_last == NULL) 2751 return (WALK_DONE); 2752 if (pevd->pev_node == pevd->pev_last) 2753 pevd->pev_last = NULL; /* last round */ 2754 2755 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2756 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2757 mdb_warn("failed to read port_kevent at %p", evp); 2758 return (WALK_DONE); 2759 } 2760 pevd->pev_node = ev.portkev_node.list_next; 2761 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2762 } 2763 2764 void 2765 portev_walk_fini(mdb_walk_state_t *wsp) 2766 { 2767 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2768 2769 if (pevd != NULL) 2770 mdb_free(pevd, sizeof (portev_walk_data_t)); 2771 } 2772 2773 typedef struct proc_walk_data { 2774 uintptr_t *pw_stack; 2775 int pw_depth; 2776 int pw_max; 2777 } proc_walk_data_t; 2778 2779 int 2780 proc_walk_init(mdb_walk_state_t *wsp) 2781 { 2782 GElf_Sym sym; 2783 proc_walk_data_t *pw; 2784 2785 if (wsp->walk_addr == 0) { 2786 if (mdb_lookup_by_name("p0", &sym) == -1) { 2787 mdb_warn("failed to read 'practive'"); 2788 return (WALK_ERR); 2789 } 2790 wsp->walk_addr = (uintptr_t)sym.st_value; 2791 } 2792 2793 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2794 2795 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2796 mdb_warn("failed to read 'nproc'"); 2797 mdb_free(pw, sizeof (pw)); 2798 return (WALK_ERR); 2799 } 2800 2801 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2802 wsp->walk_data = pw; 2803 2804 return (WALK_NEXT); 2805 } 2806 2807 typedef struct mdb_walk_proc { 2808 struct proc *p_child; 2809 struct proc *p_sibling; 2810 } mdb_walk_proc_t; 2811 2812 int 2813 proc_walk_step(mdb_walk_state_t *wsp) 2814 { 2815 proc_walk_data_t *pw = wsp->walk_data; 2816 uintptr_t addr = wsp->walk_addr; 2817 uintptr_t cld, sib; 2818 int status; 2819 mdb_walk_proc_t pr; 2820 2821 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2822 addr, 0) == -1) { 2823 mdb_warn("failed to read proc at %p", addr); 2824 return (WALK_DONE); 2825 } 2826 2827 cld = (uintptr_t)pr.p_child; 2828 sib = (uintptr_t)pr.p_sibling; 2829 2830 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2831 pw->pw_depth--; 2832 goto sib; 2833 } 2834 2835 /* 2836 * Always pass NULL as the local copy pointer. Consumers 2837 * should use mdb_ctf_vread() to read their own minimal 2838 * version of proc_t. Thus minimizing the chance of breakage 2839 * with older crash dumps. 2840 */ 2841 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata); 2842 2843 if (status != WALK_NEXT) 2844 return (status); 2845 2846 if ((wsp->walk_addr = cld) != 0) { 2847 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2848 cld, 0) == -1) { 2849 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2850 addr, cld); 2851 goto sib; 2852 } 2853 2854 pw->pw_stack[pw->pw_depth++] = addr; 2855 2856 if (pw->pw_depth == pw->pw_max) { 2857 mdb_warn("depth %d exceeds max depth; try again\n", 2858 pw->pw_depth); 2859 return (WALK_DONE); 2860 } 2861 return (WALK_NEXT); 2862 } 2863 2864 sib: 2865 /* 2866 * We know that p0 has no siblings, and if another starting proc 2867 * was given, we don't want to walk its siblings anyway. 2868 */ 2869 if (pw->pw_depth == 0) 2870 return (WALK_DONE); 2871 2872 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2873 sib, 0) == -1) { 2874 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2875 addr, sib); 2876 sib = 0; 2877 } 2878 2879 if ((wsp->walk_addr = sib) == 0) { 2880 if (pw->pw_depth > 0) { 2881 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2882 return (WALK_NEXT); 2883 } 2884 return (WALK_DONE); 2885 } 2886 2887 return (WALK_NEXT); 2888 } 2889 2890 void 2891 proc_walk_fini(mdb_walk_state_t *wsp) 2892 { 2893 proc_walk_data_t *pw = wsp->walk_data; 2894 2895 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2896 mdb_free(pw, sizeof (proc_walk_data_t)); 2897 } 2898 2899 int 2900 task_walk_init(mdb_walk_state_t *wsp) 2901 { 2902 task_t task; 2903 2904 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2905 mdb_warn("failed to read task at %p", wsp->walk_addr); 2906 return (WALK_ERR); 2907 } 2908 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2909 wsp->walk_data = task.tk_memb_list; 2910 return (WALK_NEXT); 2911 } 2912 2913 typedef struct mdb_task_proc { 2914 struct proc *p_tasknext; 2915 } mdb_task_proc_t; 2916 2917 int 2918 task_walk_step(mdb_walk_state_t *wsp) 2919 { 2920 mdb_task_proc_t proc; 2921 int status; 2922 2923 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t", 2924 wsp->walk_addr, 0) == -1) { 2925 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2926 return (WALK_DONE); 2927 } 2928 2929 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2930 2931 if (proc.p_tasknext == wsp->walk_data) 2932 return (WALK_DONE); 2933 2934 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2935 return (status); 2936 } 2937 2938 int 2939 project_walk_init(mdb_walk_state_t *wsp) 2940 { 2941 if (wsp->walk_addr == 0) { 2942 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2943 mdb_warn("failed to read 'proj0p'"); 2944 return (WALK_ERR); 2945 } 2946 } 2947 wsp->walk_data = (void *)wsp->walk_addr; 2948 return (WALK_NEXT); 2949 } 2950 2951 int 2952 project_walk_step(mdb_walk_state_t *wsp) 2953 { 2954 uintptr_t addr = wsp->walk_addr; 2955 kproject_t pj; 2956 int status; 2957 2958 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2959 mdb_warn("failed to read project at %p", addr); 2960 return (WALK_DONE); 2961 } 2962 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2963 if (status != WALK_NEXT) 2964 return (status); 2965 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2966 if ((void *)wsp->walk_addr == wsp->walk_data) 2967 return (WALK_DONE); 2968 return (WALK_NEXT); 2969 } 2970 2971 static int 2972 generic_walk_step(mdb_walk_state_t *wsp) 2973 { 2974 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2975 wsp->walk_cbdata)); 2976 } 2977 2978 static int 2979 cpu_walk_cmp(const void *l, const void *r) 2980 { 2981 uintptr_t lhs = *((uintptr_t *)l); 2982 uintptr_t rhs = *((uintptr_t *)r); 2983 cpu_t lcpu, rcpu; 2984 2985 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2986 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2987 2988 if (lcpu.cpu_id < rcpu.cpu_id) 2989 return (-1); 2990 2991 if (lcpu.cpu_id > rcpu.cpu_id) 2992 return (1); 2993 2994 return (0); 2995 } 2996 2997 typedef struct cpu_walk { 2998 uintptr_t *cw_array; 2999 int cw_ndx; 3000 } cpu_walk_t; 3001 3002 int 3003 cpu_walk_init(mdb_walk_state_t *wsp) 3004 { 3005 cpu_walk_t *cw; 3006 int max_ncpus, i = 0; 3007 uintptr_t current, first; 3008 cpu_t cpu, panic_cpu; 3009 uintptr_t panicstr, addr; 3010 GElf_Sym sym; 3011 3012 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 3013 3014 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 3015 mdb_warn("failed to read 'max_ncpus'"); 3016 return (WALK_ERR); 3017 } 3018 3019 if (mdb_readvar(&panicstr, "panicstr") == -1) { 3020 mdb_warn("failed to read 'panicstr'"); 3021 return (WALK_ERR); 3022 } 3023 3024 if (panicstr != 0) { 3025 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 3026 mdb_warn("failed to find 'panic_cpu'"); 3027 return (WALK_ERR); 3028 } 3029 3030 addr = (uintptr_t)sym.st_value; 3031 3032 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 3033 mdb_warn("failed to read 'panic_cpu'"); 3034 return (WALK_ERR); 3035 } 3036 } 3037 3038 /* 3039 * Unfortunately, there is no platform-independent way to walk 3040 * CPUs in ID order. We therefore loop through in cpu_next order, 3041 * building an array of CPU pointers which will subsequently be 3042 * sorted. 3043 */ 3044 cw->cw_array = 3045 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 3046 3047 if (mdb_readvar(&first, "cpu_list") == -1) { 3048 mdb_warn("failed to read 'cpu_list'"); 3049 return (WALK_ERR); 3050 } 3051 3052 current = first; 3053 do { 3054 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 3055 mdb_warn("failed to read cpu at %p", current); 3056 return (WALK_ERR); 3057 } 3058 3059 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) { 3060 cw->cw_array[i++] = addr; 3061 } else { 3062 cw->cw_array[i++] = current; 3063 } 3064 } while ((current = (uintptr_t)cpu.cpu_next) != first); 3065 3066 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 3067 wsp->walk_data = cw; 3068 3069 return (WALK_NEXT); 3070 } 3071 3072 int 3073 cpu_walk_step(mdb_walk_state_t *wsp) 3074 { 3075 cpu_walk_t *cw = wsp->walk_data; 3076 cpu_t cpu; 3077 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 3078 3079 if (addr == 0) 3080 return (WALK_DONE); 3081 3082 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 3083 mdb_warn("failed to read cpu at %p", addr); 3084 return (WALK_DONE); 3085 } 3086 3087 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 3088 } 3089 3090 typedef struct cpuinfo_data { 3091 intptr_t cid_cpu; 3092 uintptr_t **cid_ithr; 3093 char cid_print_head; 3094 char cid_print_thr; 3095 char cid_print_ithr; 3096 char cid_print_flags; 3097 } cpuinfo_data_t; 3098 3099 int 3100 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 3101 { 3102 cpu_t c; 3103 int id; 3104 uint8_t pil; 3105 3106 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3107 return (WALK_NEXT); 3108 3109 if (thr->t_bound_cpu == NULL) { 3110 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3111 return (WALK_NEXT); 3112 } 3113 3114 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3115 3116 if ((id = c.cpu_id) >= NCPU) { 3117 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3118 thr->t_bound_cpu, id, NCPU); 3119 return (WALK_NEXT); 3120 } 3121 3122 if ((pil = thr->t_pil) >= NINTR) { 3123 mdb_warn("thread %p has pil (%d) greater than %d\n", 3124 addr, pil, NINTR); 3125 return (WALK_NEXT); 3126 } 3127 3128 if (cid->cid_ithr[id][pil] != 0) { 3129 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3130 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3131 return (WALK_NEXT); 3132 } 3133 3134 cid->cid_ithr[id][pil] = addr; 3135 3136 return (WALK_NEXT); 3137 } 3138 3139 #define CPUINFO_IDWIDTH 3 3140 #define CPUINFO_FLAGWIDTH 9 3141 3142 #ifdef _LP64 3143 #if defined(__amd64) 3144 #define CPUINFO_TWIDTH 16 3145 #define CPUINFO_CPUWIDTH 16 3146 #else 3147 #define CPUINFO_CPUWIDTH 11 3148 #define CPUINFO_TWIDTH 11 3149 #endif 3150 #else 3151 #define CPUINFO_CPUWIDTH 8 3152 #define CPUINFO_TWIDTH 8 3153 #endif 3154 3155 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3156 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3157 #define CPUINFO_ITHRDELT 4 3158 3159 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3160 flagline < nflaglines ? flagbuf[flagline++] : "") 3161 3162 typedef struct mdb_cpuinfo_proc { 3163 struct { 3164 char u_comm[MAXCOMLEN + 1]; 3165 } p_user; 3166 } mdb_cpuinfo_proc_t; 3167 3168 int 3169 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3170 { 3171 kthread_t t; 3172 disp_t disp; 3173 mdb_cpuinfo_proc_t p; 3174 uintptr_t pinned; 3175 char **flagbuf; 3176 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3177 3178 const char *flags[] = { 3179 "RUNNING", "READY", "QUIESCED", "EXISTS", 3180 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3181 "SPARE", "FAULTED", "DISABLED", NULL 3182 }; 3183 3184 if (cid->cid_cpu != -1) { 3185 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3186 return (WALK_NEXT); 3187 3188 /* 3189 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3190 */ 3191 cid->cid_cpu = -1; 3192 rval = WALK_DONE; 3193 } 3194 3195 if (cid->cid_print_head) { 3196 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3197 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3198 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3199 "PROC"); 3200 cid->cid_print_head = FALSE; 3201 } 3202 3203 bspl = cpu->cpu_base_spl; 3204 3205 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3206 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3207 return (WALK_ERR); 3208 } 3209 3210 mdb_printf("%3d %0*p %3x %4d %4d ", 3211 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3212 disp.disp_nrunnable, bspl); 3213 3214 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3215 mdb_printf("%3d ", t.t_pri); 3216 } else { 3217 mdb_printf("%3s ", "-"); 3218 } 3219 3220 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3221 cpu->cpu_kprunrun ? "yes" : "no"); 3222 3223 if (cpu->cpu_last_swtch) { 3224 mdb_printf("t-%-4d ", 3225 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 3226 } else { 3227 mdb_printf("%-6s ", "-"); 3228 } 3229 3230 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3231 3232 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3233 mdb_printf(" (idle)\n"); 3234 else if (cpu->cpu_thread == NULL) 3235 mdb_printf(" -\n"); 3236 else { 3237 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3238 (uintptr_t)t.t_procp, 0) != -1) { 3239 mdb_printf(" %s\n", p.p_user.u_comm); 3240 } else { 3241 mdb_printf(" ?\n"); 3242 } 3243 } 3244 3245 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3246 3247 if (cid->cid_print_flags) { 3248 int first = 1, i, j, k; 3249 char *s; 3250 3251 cid->cid_print_head = TRUE; 3252 3253 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3254 if (!(cpu->cpu_flags & i)) 3255 continue; 3256 3257 if (first) { 3258 s = mdb_alloc(CPUINFO_THRDELT + 1, 3259 UM_GC | UM_SLEEP); 3260 3261 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3262 "%*s|%*s", CPUINFO_FLAGDELT, "", 3263 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3264 flagbuf[nflaglines++] = s; 3265 } 3266 3267 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3268 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3269 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3270 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3271 first ? "<--+" : ""); 3272 3273 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3274 s[k] = ' '; 3275 s[k] = '\0'; 3276 3277 flagbuf[nflaglines++] = s; 3278 first = 0; 3279 } 3280 } 3281 3282 if (cid->cid_print_ithr) { 3283 int i, found_one = FALSE; 3284 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3285 3286 for (i = NINTR - 1; i >= 0; i--) { 3287 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3288 3289 if (iaddr == 0) 3290 continue; 3291 3292 if (!found_one) { 3293 found_one = TRUE; 3294 3295 CPUINFO_INDENT; 3296 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3297 CPUINFO_ITHRDELT, ""); 3298 3299 CPUINFO_INDENT; 3300 mdb_printf("%c%*s+--> %3s %s\n", 3301 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3302 "", "PIL", "THREAD"); 3303 } 3304 3305 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3306 mdb_warn("failed to read kthread_t at %p", 3307 iaddr); 3308 return (WALK_ERR); 3309 } 3310 3311 CPUINFO_INDENT; 3312 mdb_printf("%c%*s %3d %0*p\n", 3313 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3314 t.t_pil, CPUINFO_TWIDTH, iaddr); 3315 3316 pinned = (uintptr_t)t.t_intr; 3317 } 3318 3319 if (found_one && pinned != 0) { 3320 cid->cid_print_head = TRUE; 3321 (void) strcpy(p.p_user.u_comm, "?"); 3322 3323 if (mdb_vread(&t, sizeof (t), 3324 (uintptr_t)pinned) == -1) { 3325 mdb_warn("failed to read kthread_t at %p", 3326 pinned); 3327 return (WALK_ERR); 3328 } 3329 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3330 (uintptr_t)t.t_procp, 0) == -1) { 3331 mdb_warn("failed to read proc_t at %p", 3332 t.t_procp); 3333 return (WALK_ERR); 3334 } 3335 3336 CPUINFO_INDENT; 3337 mdb_printf("%c%*s %3s %0*p %s\n", 3338 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3339 CPUINFO_TWIDTH, pinned, 3340 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3341 "(idle)" : p.p_user.u_comm); 3342 } 3343 } 3344 3345 if (disp.disp_nrunnable && cid->cid_print_thr) { 3346 dispq_t *dq; 3347 3348 int i, npri = disp.disp_npri; 3349 3350 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3351 3352 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3353 (uintptr_t)disp.disp_q) == -1) { 3354 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3355 return (WALK_ERR); 3356 } 3357 3358 CPUINFO_INDENT; 3359 mdb_printf("|\n"); 3360 3361 CPUINFO_INDENT; 3362 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3363 CPUINFO_TWIDTH, "THREAD", "PROC"); 3364 3365 for (i = npri - 1; i >= 0; i--) { 3366 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3367 3368 while (taddr != 0) { 3369 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3370 mdb_warn("failed to read kthread_t " 3371 "at %p", taddr); 3372 return (WALK_ERR); 3373 } 3374 if (mdb_ctf_vread(&p, "proc_t", 3375 "mdb_cpuinfo_proc_t", 3376 (uintptr_t)t.t_procp, 0) == -1) { 3377 mdb_warn("failed to read proc_t at %p", 3378 t.t_procp); 3379 return (WALK_ERR); 3380 } 3381 3382 CPUINFO_INDENT; 3383 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3384 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3385 3386 taddr = (uintptr_t)t.t_link; 3387 } 3388 } 3389 cid->cid_print_head = TRUE; 3390 } 3391 3392 while (flagline < nflaglines) 3393 mdb_printf("%s\n", flagbuf[flagline++]); 3394 3395 if (cid->cid_print_head) 3396 mdb_printf("\n"); 3397 3398 return (rval); 3399 } 3400 3401 int 3402 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3403 { 3404 uint_t verbose = FALSE; 3405 cpuinfo_data_t cid; 3406 3407 cid.cid_print_ithr = FALSE; 3408 cid.cid_print_thr = FALSE; 3409 cid.cid_print_flags = FALSE; 3410 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3411 cid.cid_cpu = -1; 3412 3413 if (flags & DCMD_ADDRSPEC) 3414 cid.cid_cpu = addr; 3415 3416 if (mdb_getopts(argc, argv, 3417 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3418 return (DCMD_USAGE); 3419 3420 if (verbose) { 3421 cid.cid_print_ithr = TRUE; 3422 cid.cid_print_thr = TRUE; 3423 cid.cid_print_flags = TRUE; 3424 cid.cid_print_head = TRUE; 3425 } 3426 3427 if (cid.cid_print_ithr) { 3428 int i; 3429 3430 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3431 * NCPU, UM_SLEEP | UM_GC); 3432 3433 for (i = 0; i < NCPU; i++) 3434 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3435 NINTR, UM_SLEEP | UM_GC); 3436 3437 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3438 &cid) == -1) { 3439 mdb_warn("couldn't walk thread"); 3440 return (DCMD_ERR); 3441 } 3442 } 3443 3444 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3445 mdb_warn("can't walk cpus"); 3446 return (DCMD_ERR); 3447 } 3448 3449 if (cid.cid_cpu != -1) { 3450 /* 3451 * We didn't find this CPU when we walked through the CPUs 3452 * (i.e. the address specified doesn't show up in the "cpu" 3453 * walk). However, the specified address may still correspond 3454 * to a valid cpu_t (for example, if the specified address is 3455 * the actual panicking cpu_t and not the cached panic_cpu). 3456 * Point is: even if we didn't find it, we still want to try 3457 * to print the specified address as a cpu_t. 3458 */ 3459 cpu_t cpu; 3460 3461 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3462 mdb_warn("%p is neither a valid CPU ID nor a " 3463 "valid cpu_t address\n", cid.cid_cpu); 3464 return (DCMD_ERR); 3465 } 3466 3467 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3468 } 3469 3470 return (DCMD_OK); 3471 } 3472 3473 /*ARGSUSED*/ 3474 int 3475 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3476 { 3477 int i; 3478 3479 if (!(flags & DCMD_ADDRSPEC)) 3480 return (DCMD_USAGE); 3481 3482 for (i = 0; i < sizeof (addr) * NBBY; i++) 3483 mdb_printf("%p\n", addr ^ (1UL << i)); 3484 3485 return (DCMD_OK); 3486 } 3487 3488 typedef struct mdb_as2proc_proc { 3489 struct as *p_as; 3490 } mdb_as2proc_proc_t; 3491 3492 /*ARGSUSED*/ 3493 int 3494 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp) 3495 { 3496 mdb_as2proc_proc_t p; 3497 3498 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0); 3499 3500 if (p.p_as == *asp) 3501 mdb_printf("%p\n", addr); 3502 return (WALK_NEXT); 3503 } 3504 3505 /*ARGSUSED*/ 3506 int 3507 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3508 { 3509 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3510 return (DCMD_USAGE); 3511 3512 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3513 mdb_warn("failed to walk proc"); 3514 return (DCMD_ERR); 3515 } 3516 3517 return (DCMD_OK); 3518 } 3519 3520 typedef struct mdb_ptree_proc { 3521 struct proc *p_parent; 3522 struct { 3523 char u_comm[MAXCOMLEN + 1]; 3524 } p_user; 3525 } mdb_ptree_proc_t; 3526 3527 /*ARGSUSED*/ 3528 int 3529 ptree_walk(uintptr_t addr, const void *ignored, void *data) 3530 { 3531 mdb_ptree_proc_t proc; 3532 mdb_ptree_proc_t parent; 3533 int ident = 0; 3534 uintptr_t paddr; 3535 3536 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0); 3537 3538 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) { 3539 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0); 3540 paddr = (uintptr_t)parent.p_parent; 3541 } 3542 3543 mdb_inc_indent(ident); 3544 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm); 3545 mdb_dec_indent(ident); 3546 3547 return (WALK_NEXT); 3548 } 3549 3550 void 3551 ptree_ancestors(uintptr_t addr, uintptr_t start) 3552 { 3553 mdb_ptree_proc_t p; 3554 3555 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) { 3556 mdb_warn("couldn't read ancestor at %p", addr); 3557 return; 3558 } 3559 3560 if (p.p_parent != NULL) 3561 ptree_ancestors((uintptr_t)p.p_parent, start); 3562 3563 if (addr != start) 3564 (void) ptree_walk(addr, &p, NULL); 3565 } 3566 3567 /*ARGSUSED*/ 3568 int 3569 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3570 { 3571 if (!(flags & DCMD_ADDRSPEC)) 3572 addr = 0; 3573 else 3574 ptree_ancestors(addr, addr); 3575 3576 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3577 mdb_warn("couldn't walk 'proc'"); 3578 return (DCMD_ERR); 3579 } 3580 3581 return (DCMD_OK); 3582 } 3583 3584 typedef struct mdb_fd_proc { 3585 struct { 3586 struct { 3587 int fi_nfiles; 3588 uf_entry_t *volatile fi_list; 3589 } u_finfo; 3590 } p_user; 3591 } mdb_fd_proc_t; 3592 3593 /*ARGSUSED*/ 3594 static int 3595 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3596 { 3597 int fdnum; 3598 const mdb_arg_t *argp = &argv[0]; 3599 mdb_fd_proc_t p; 3600 uf_entry_t uf; 3601 3602 if ((flags & DCMD_ADDRSPEC) == 0) { 3603 mdb_warn("fd doesn't give global information\n"); 3604 return (DCMD_ERR); 3605 } 3606 if (argc != 1) 3607 return (DCMD_USAGE); 3608 3609 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3610 fdnum = argp->a_un.a_val; 3611 else 3612 fdnum = mdb_strtoull(argp->a_un.a_str); 3613 3614 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) { 3615 mdb_warn("couldn't read proc_t at %p", addr); 3616 return (DCMD_ERR); 3617 } 3618 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3619 mdb_warn("process %p only has %d files open.\n", 3620 addr, p.p_user.u_finfo.fi_nfiles); 3621 return (DCMD_ERR); 3622 } 3623 if (mdb_vread(&uf, sizeof (uf_entry_t), 3624 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3625 mdb_warn("couldn't read uf_entry_t at %p", 3626 &p.p_user.u_finfo.fi_list[fdnum]); 3627 return (DCMD_ERR); 3628 } 3629 3630 mdb_printf("%p\n", uf.uf_file); 3631 return (DCMD_OK); 3632 } 3633 3634 /*ARGSUSED*/ 3635 static int 3636 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3637 { 3638 pid_t pid = (pid_t)addr; 3639 3640 if (argc != 0) 3641 return (DCMD_USAGE); 3642 3643 if ((addr = mdb_pid2proc(pid, NULL)) == 0) { 3644 mdb_warn("PID 0t%d not found\n", pid); 3645 return (DCMD_ERR); 3646 } 3647 3648 mdb_printf("%p\n", addr); 3649 return (DCMD_OK); 3650 } 3651 3652 static char *sysfile_cmd[] = { 3653 "exclude:", 3654 "include:", 3655 "forceload:", 3656 "rootdev:", 3657 "rootfs:", 3658 "swapdev:", 3659 "swapfs:", 3660 "moddir:", 3661 "set", 3662 "unknown", 3663 }; 3664 3665 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3666 3667 /*ARGSUSED*/ 3668 static int 3669 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3670 { 3671 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3672 *target = NULL; 3673 return (WALK_DONE); 3674 } 3675 return (WALK_NEXT); 3676 } 3677 3678 /*ARGSUSED*/ 3679 static int 3680 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3681 { 3682 struct sysparam *sysp, sys; 3683 char var[256]; 3684 char modname[256]; 3685 char val[256]; 3686 char strval[256]; 3687 vmem_t *mod_sysfile_arena; 3688 void *straddr; 3689 3690 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3691 mdb_warn("failed to read sysparam_hd"); 3692 return (DCMD_ERR); 3693 } 3694 3695 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3696 mdb_warn("failed to read mod_sysfile_arena"); 3697 return (DCMD_ERR); 3698 } 3699 3700 while (sysp != NULL) { 3701 var[0] = '\0'; 3702 val[0] = '\0'; 3703 modname[0] = '\0'; 3704 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3705 mdb_warn("couldn't read sysparam %p", sysp); 3706 return (DCMD_ERR); 3707 } 3708 if (sys.sys_modnam != NULL && 3709 mdb_readstr(modname, 256, 3710 (uintptr_t)sys.sys_modnam) == -1) { 3711 mdb_warn("couldn't read modname in %p", sysp); 3712 return (DCMD_ERR); 3713 } 3714 if (sys.sys_ptr != NULL && 3715 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3716 mdb_warn("couldn't read ptr in %p", sysp); 3717 return (DCMD_ERR); 3718 } 3719 if (sys.sys_op != SETOP_NONE) { 3720 /* 3721 * Is this an int or a string? We determine this 3722 * by checking whether straddr is contained in 3723 * mod_sysfile_arena. If so, the walker will set 3724 * straddr to NULL. 3725 */ 3726 straddr = (void *)(uintptr_t)sys.sys_info; 3727 if (sys.sys_op == SETOP_ASSIGN && 3728 sys.sys_info != 0 && 3729 mdb_pwalk("vmem_seg", 3730 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3731 (uintptr_t)mod_sysfile_arena) == 0 && 3732 straddr == NULL && 3733 mdb_readstr(strval, 256, 3734 (uintptr_t)sys.sys_info) != -1) { 3735 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3736 strval); 3737 } else { 3738 (void) mdb_snprintf(val, sizeof (val), 3739 "0x%llx [0t%llu]", sys.sys_info, 3740 sys.sys_info); 3741 } 3742 } 3743 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3744 modname, modname[0] == '\0' ? "" : ":", 3745 var, sysfile_ops[sys.sys_op], val); 3746 3747 sysp = sys.sys_next; 3748 } 3749 3750 return (DCMD_OK); 3751 } 3752 3753 int 3754 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3755 { 3756 3757 if (*didp == thr->t_did) { 3758 mdb_printf("%p\n", addr); 3759 return (WALK_DONE); 3760 } else 3761 return (WALK_NEXT); 3762 } 3763 3764 /*ARGSUSED*/ 3765 int 3766 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3767 { 3768 const mdb_arg_t *argp = &argv[0]; 3769 kt_did_t did; 3770 3771 if (argc != 1) 3772 return (DCMD_USAGE); 3773 3774 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3775 3776 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3777 mdb_warn("failed to walk thread"); 3778 return (DCMD_ERR); 3779 3780 } 3781 return (DCMD_OK); 3782 3783 } 3784 3785 static int 3786 errorq_walk_init(mdb_walk_state_t *wsp) 3787 { 3788 if (wsp->walk_addr == 0 && 3789 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3790 mdb_warn("failed to read errorq_list"); 3791 return (WALK_ERR); 3792 } 3793 3794 return (WALK_NEXT); 3795 } 3796 3797 static int 3798 errorq_walk_step(mdb_walk_state_t *wsp) 3799 { 3800 uintptr_t addr = wsp->walk_addr; 3801 errorq_t eq; 3802 3803 if (addr == 0) 3804 return (WALK_DONE); 3805 3806 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3807 mdb_warn("failed to read errorq at %p", addr); 3808 return (WALK_ERR); 3809 } 3810 3811 wsp->walk_addr = (uintptr_t)eq.eq_next; 3812 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3813 } 3814 3815 typedef struct eqd_walk_data { 3816 uintptr_t *eqd_stack; 3817 void *eqd_buf; 3818 ulong_t eqd_qpos; 3819 ulong_t eqd_qlen; 3820 size_t eqd_size; 3821 } eqd_walk_data_t; 3822 3823 /* 3824 * In order to walk the list of pending error queue elements, we push the 3825 * addresses of the corresponding data buffers in to the eqd_stack array. 3826 * The error lists are in reverse chronological order when iterating using 3827 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3828 * walker client gets addresses in order from oldest error to newest error. 3829 */ 3830 static void 3831 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3832 { 3833 errorq_elem_t eqe; 3834 3835 while (addr != 0) { 3836 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3837 mdb_warn("failed to read errorq element at %p", addr); 3838 break; 3839 } 3840 3841 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3842 mdb_warn("errorq is overfull -- more than %lu " 3843 "elems found\n", eqdp->eqd_qlen); 3844 break; 3845 } 3846 3847 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3848 addr = (uintptr_t)eqe.eqe_prev; 3849 } 3850 } 3851 3852 static int 3853 eqd_walk_init(mdb_walk_state_t *wsp) 3854 { 3855 eqd_walk_data_t *eqdp; 3856 errorq_elem_t eqe, *addr; 3857 errorq_t eq; 3858 ulong_t i; 3859 3860 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3861 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3862 return (WALK_ERR); 3863 } 3864 3865 if (eq.eq_ptail != NULL && 3866 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3867 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3868 return (WALK_ERR); 3869 } 3870 3871 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3872 wsp->walk_data = eqdp; 3873 3874 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3875 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3876 eqdp->eqd_qlen = eq.eq_qlen; 3877 eqdp->eqd_qpos = 0; 3878 eqdp->eqd_size = eq.eq_size; 3879 3880 /* 3881 * The newest elements in the queue are on the pending list, so we 3882 * push those on to our stack first. 3883 */ 3884 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3885 3886 /* 3887 * If eq_ptail is set, it may point to a subset of the errors on the 3888 * pending list in the event a atomic_cas_ptr() failed; if ptail's 3889 * data is already in our stack, NULL out eq_ptail and ignore it. 3890 */ 3891 if (eq.eq_ptail != NULL) { 3892 for (i = 0; i < eqdp->eqd_qpos; i++) { 3893 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3894 eq.eq_ptail = NULL; 3895 break; 3896 } 3897 } 3898 } 3899 3900 /* 3901 * If eq_phead is set, it has the processing list in order from oldest 3902 * to newest. Use this to recompute eq_ptail as best we can and then 3903 * we nicely fall into eqd_push_list() of eq_ptail below. 3904 */ 3905 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3906 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3907 eq.eq_ptail = addr; 3908 3909 /* 3910 * The oldest elements in the queue are on the processing list, subject 3911 * to machinations in the if-clauses above. Push any such elements. 3912 */ 3913 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3914 return (WALK_NEXT); 3915 } 3916 3917 static int 3918 eqd_walk_step(mdb_walk_state_t *wsp) 3919 { 3920 eqd_walk_data_t *eqdp = wsp->walk_data; 3921 uintptr_t addr; 3922 3923 if (eqdp->eqd_qpos == 0) 3924 return (WALK_DONE); 3925 3926 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3927 3928 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3929 mdb_warn("failed to read errorq data at %p", addr); 3930 return (WALK_ERR); 3931 } 3932 3933 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3934 } 3935 3936 static void 3937 eqd_walk_fini(mdb_walk_state_t *wsp) 3938 { 3939 eqd_walk_data_t *eqdp = wsp->walk_data; 3940 3941 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3942 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3943 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3944 } 3945 3946 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3947 3948 static int 3949 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3950 { 3951 int i; 3952 errorq_t eq; 3953 uint_t opt_v = FALSE; 3954 3955 if (!(flags & DCMD_ADDRSPEC)) { 3956 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3957 mdb_warn("can't walk 'errorq'"); 3958 return (DCMD_ERR); 3959 } 3960 return (DCMD_OK); 3961 } 3962 3963 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3964 argc -= i; 3965 argv += i; 3966 3967 if (argc != 0) 3968 return (DCMD_USAGE); 3969 3970 if (opt_v || DCMD_HDRSPEC(flags)) { 3971 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3972 "ADDR", "NAME", "S", "V", "N"); 3973 if (!opt_v) { 3974 mdb_printf("%7s %7s %7s%</u>\n", 3975 "ACCEPT", "DROP", "LOG"); 3976 } else { 3977 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3978 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3979 } 3980 } 3981 3982 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3983 mdb_warn("failed to read errorq at %p", addr); 3984 return (DCMD_ERR); 3985 } 3986 3987 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3988 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3989 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3990 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3991 3992 if (!opt_v) { 3993 mdb_printf("%7llu %7llu %7llu\n", 3994 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3995 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3996 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3997 } else { 3998 mdb_printf("%5s %6lu %6lu %3u %a\n", 3999 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 4000 mdb_printf("%38s\n%41s" 4001 "%12s %llu\n" 4002 "%53s %llu\n" 4003 "%53s %llu\n" 4004 "%53s %llu\n" 4005 "%53s %llu\n" 4006 "%53s %llu\n" 4007 "%53s %llu\n" 4008 "%53s %llu\n\n", 4009 "|", "+-> ", 4010 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 4011 "DROPPED", EQKSVAL(eq, eqk_dropped), 4012 "LOGGED", EQKSVAL(eq, eqk_logged), 4013 "RESERVED", EQKSVAL(eq, eqk_reserved), 4014 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 4015 "COMMITTED", EQKSVAL(eq, eqk_committed), 4016 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 4017 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 4018 } 4019 4020 return (DCMD_OK); 4021 } 4022 4023 /*ARGSUSED*/ 4024 static int 4025 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4026 { 4027 cpu_t panic_cpu; 4028 kthread_t *panic_thread; 4029 void *buf; 4030 panic_data_t *pd; 4031 int i, n; 4032 4033 if (!mdb_prop_postmortem) { 4034 mdb_warn("panicinfo can only be run on a system " 4035 "dump; see dumpadm(1M)\n"); 4036 return (DCMD_ERR); 4037 } 4038 4039 if (flags & DCMD_ADDRSPEC || argc != 0) 4040 return (DCMD_USAGE); 4041 4042 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 4043 mdb_warn("failed to read 'panic_cpu'"); 4044 else 4045 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 4046 4047 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 4048 mdb_warn("failed to read 'panic_thread'"); 4049 else 4050 mdb_printf("%16s %?p\n", "thread", panic_thread); 4051 4052 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 4053 pd = (panic_data_t *)buf; 4054 4055 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 4056 pd->pd_version != PANICBUFVERS) { 4057 mdb_warn("failed to read 'panicbuf'"); 4058 mdb_free(buf, PANICBUFSIZE); 4059 return (DCMD_ERR); 4060 } 4061 4062 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 4063 4064 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 4065 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 4066 4067 for (i = 0; i < n; i++) 4068 mdb_printf("%16s %?llx\n", 4069 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 4070 4071 mdb_free(buf, PANICBUFSIZE); 4072 return (DCMD_OK); 4073 } 4074 4075 /* 4076 * ::time dcmd, which will print a hires timestamp of when we entered the 4077 * debugger, or the lbolt value if used with the -l option. 4078 * 4079 */ 4080 /*ARGSUSED*/ 4081 static int 4082 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4083 { 4084 uint_t opt_dec = FALSE; 4085 uint_t opt_lbolt = FALSE; 4086 uint_t opt_hex = FALSE; 4087 const char *fmt; 4088 hrtime_t result; 4089 4090 if (mdb_getopts(argc, argv, 4091 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 4092 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 4093 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 4094 NULL) != argc) 4095 return (DCMD_USAGE); 4096 4097 if (opt_dec && opt_hex) 4098 return (DCMD_USAGE); 4099 4100 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 4101 fmt = 4102 opt_hex ? "0x%llx\n" : 4103 opt_dec ? "0t%lld\n" : "%#llr\n"; 4104 4105 mdb_printf(fmt, result); 4106 return (DCMD_OK); 4107 } 4108 4109 void 4110 time_help(void) 4111 { 4112 mdb_printf("Prints the system time in nanoseconds.\n\n" 4113 "::time will return the timestamp at which we dropped into, \n" 4114 "if called from, kmdb(1); the core dump's high resolution \n" 4115 "time if inspecting one; or the running hires time if we're \n" 4116 "looking at a live system.\n\n" 4117 "Switches:\n" 4118 " -d report times in decimal\n" 4119 " -l prints the number of clock ticks since system boot\n" 4120 " -x report times in hexadecimal\n"); 4121 } 4122 4123 extern int cmd_refstr(uintptr_t, uint_t, int, const mdb_arg_t *); 4124 4125 static const mdb_dcmd_t dcmds[] = { 4126 4127 /* from genunix.c */ 4128 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4129 { "binding_hash_entry", ":", "print driver names hash table entry", 4130 binding_hash_entry }, 4131 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 4132 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4133 " [-FivVA]", 4134 "display callouts", callout, callout_help }, 4135 { "calloutid", "[-d|v] xid", "print callout by extended id", 4136 calloutid, calloutid_help }, 4137 { "class", NULL, "print process scheduler classes", class }, 4138 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4139 { "did2thread", "? kt_did", "find kernel thread for this id", 4140 did2thread }, 4141 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4142 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4143 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4144 { "lminfo", NULL, "print lock manager information", lminfo }, 4145 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4146 { "panicinfo", NULL, "print panic information", panicinfo }, 4147 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4148 { "project", NULL, "display kernel project(s)", project }, 4149 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps, 4150 ps_help }, 4151 { "pflags", NULL, "display various proc_t flags", pflags }, 4152 { "pgrep", "[-x] [-n | -o] pattern", 4153 "pattern match against all processes", pgrep }, 4154 { "ptree", NULL, "print process tree", ptree }, 4155 { "refstr", NULL, "print string from a refstr_t", cmd_refstr, NULL }, 4156 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4157 sysevent}, 4158 { "sysevent_channel", "?", "print sysevent channel database", 4159 sysevent_channel}, 4160 { "sysevent_class_list", ":", "print sysevent class list", 4161 sysevent_class_list}, 4162 { "sysevent_subclass_list", ":", 4163 "print sysevent subclass list", sysevent_subclass_list}, 4164 { "system", NULL, "print contents of /etc/system file", sysfile }, 4165 { "task", NULL, "display kernel task(s)", task }, 4166 { "time", "[-dlx]", "display system time", time, time_help }, 4167 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4168 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4169 whereopen }, 4170 4171 /* from bio.c */ 4172 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4173 4174 /* from bitset.c */ 4175 { "bitset", ":", "display a bitset", bitset, bitset_help }, 4176 4177 /* from contract.c */ 4178 { "contract", "?", "display a contract", cmd_contract }, 4179 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4180 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4181 4182 /* from cpupart.c */ 4183 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4184 4185 /* from cred.c */ 4186 { "cred", ":[-v]", "display a credential", cmd_cred }, 4187 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 4188 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 4189 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 4190 4191 /* from cyclic.c */ 4192 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4193 { "cycid", "?", "dump a cyclic id", cycid }, 4194 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4195 { "cyclic", ":", "developer information", cyclic }, 4196 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4197 4198 /* from damap.c */ 4199 { "damap", ":", "display a damap_t", damap, damap_help }, 4200 4201 /* from ddi_periodic.c */ 4202 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 4203 4204 /* from devinfo.c */ 4205 { "devbindings", "?[-qs] [device-name | major-num]", 4206 "print devinfo nodes bound to device-name or major-num", 4207 devbindings, devinfo_help }, 4208 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node", 4209 devinfo, devinfo_help }, 4210 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4211 devinfo_audit }, 4212 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4213 devinfo_audit_log }, 4214 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4215 devinfo_audit_node }, 4216 { "devinfo2driver", ":", "find driver name for this devinfo node", 4217 devinfo2driver }, 4218 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4219 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4220 dev2major }, 4221 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4222 dev2minor }, 4223 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4224 devt }, 4225 { "major2name", "?<major-num>", "convert major number to dev name", 4226 major2name }, 4227 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4228 minornodes }, 4229 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4230 modctl2devinfo }, 4231 { "name2major", "<dev-name>", "convert dev name to major number", 4232 name2major }, 4233 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree", 4234 prtconf, prtconf_help }, 4235 { "softstate", ":<instance>", "retrieve soft-state pointer", 4236 softstate }, 4237 { "devinfo_fm", ":", "devinfo fault managment configuration", 4238 devinfo_fm }, 4239 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4240 devinfo_fmce}, 4241 4242 /* from findstack.c */ 4243 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4244 { "findstack_debug", NULL, "toggle findstack debugging", 4245 findstack_debug }, 4246 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4247 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4248 "print unique kernel thread stacks", 4249 stacks, stacks_help }, 4250 4251 /* from fm.c */ 4252 { "ereport", "[-v]", "print ereports logged in dump", 4253 ereport }, 4254 4255 /* from group.c */ 4256 { "group", "?[-q]", "display a group", group}, 4257 4258 /* from hotplug.c */ 4259 { "hotplug", "?[-p]", "display a registered hotplug attachment", 4260 hotplug, hotplug_help }, 4261 4262 /* from irm.c */ 4263 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4264 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4265 irmreqs_dcmd }, 4266 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4267 4268 /* from kgrep.c + genunix.c */ 4269 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4270 kgrep_help }, 4271 4272 /* from kmem.c */ 4273 { "allocdby", ":", "given a thread, print its allocated buffers", 4274 allocdby }, 4275 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4276 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4277 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4278 { "kmalog", "?[ fail | slab ]", 4279 "display kmem transaction log and stack traces", kmalog }, 4280 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4281 kmastat }, 4282 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4283 "of the kmem allocator", kmausers, kmausers_help }, 4284 { "kmem_cache", "?[-n name]", 4285 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4286 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4287 "[-B minbinsize]", "display slab usage per kmem cache", 4288 kmem_slabs, kmem_slabs_help }, 4289 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4290 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4291 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4292 kmem_verify }, 4293 { "vmem", "?", "print a vmem_t", vmem }, 4294 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4295 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4296 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4297 { "whatthread", ":[-v]", "print threads whose stack contains the " 4298 "given address", whatthread }, 4299 4300 /* from ldi.c */ 4301 { "ldi_handle", "?[-i]", "display a layered driver handle", 4302 ldi_handle, ldi_handle_help }, 4303 { "ldi_ident", NULL, "display a layered driver identifier", 4304 ldi_ident, ldi_ident_help }, 4305 4306 /* from leaky.c + leaky_subr.c */ 4307 { "findleaks", FINDLEAKS_USAGE, 4308 "search for potential kernel memory leaks", findleaks, 4309 findleaks_help }, 4310 4311 /* from lgrp.c */ 4312 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4313 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4314 4315 /* from log.c */ 4316 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4317 4318 /* from mdi.c */ 4319 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4320 "and detailed pi_prop list", mdipi }, 4321 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4322 mdiprops }, 4323 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4324 "list all paths", mdiphci }, 4325 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4326 "all phcis", mdivhci }, 4327 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4328 "client links", mdiclient_paths }, 4329 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4330 "phci links", mdiphci_paths }, 4331 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4332 mdiphcis }, 4333 4334 /* from memory.c */ 4335 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4336 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4337 { "memstat", NULL, "display memory usage summary", memstat }, 4338 { "page", "?", "display a summarized page_t", page }, 4339 { "pagelookup", "?[-v vp] [-o offset]", 4340 "find the page_t with the name {vp, offset}", 4341 pagelookup, pagelookup_help }, 4342 { "page_num2pp", ":", "find the page_t for a given page frame number", 4343 page_num2pp }, 4344 { "pmap", ":[-q]", "print process memory map", pmap }, 4345 { "seg", ":", "print address space segment", seg }, 4346 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4347 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4348 4349 /* from mmd.c */ 4350 { "multidata", ":[-sv]", "display a summarized multidata_t", 4351 multidata }, 4352 { "pattbl", ":", "display a summarized multidata attribute table", 4353 pattbl }, 4354 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4355 pattr2multidata }, 4356 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4357 pdesc2slab }, 4358 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4359 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4360 slab2multidata }, 4361 4362 /* from modhash.c */ 4363 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4364 "display information about one or all mod_hash structures", 4365 modhash, modhash_help }, 4366 { "modent", ":[-k | -v | -t type]", 4367 "display information about a mod_hash_entry", modent, 4368 modent_help }, 4369 4370 /* from net.c */ 4371 { "dladm", "?<sub-command> [flags]", "show data link information", 4372 dladm, dladm_help }, 4373 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4374 mi }, 4375 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4376 "show network statistics", netstat }, 4377 { "sonode", "?[-f inet | inet6 | unix | #] " 4378 "[-t stream | dgram | raw | #] [-p #]", 4379 "filter and display sonode", sonode }, 4380 4381 /* from netstack.c */ 4382 { "netstack", "", "show stack instances", netstack }, 4383 { "netstackid2netstack", ":", 4384 "translate a netstack id to its netstack_t", 4385 netstackid2netstack }, 4386 4387 /* from nvpair.c */ 4388 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4389 nvpair_print }, 4390 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4391 print_nvlist }, 4392 4393 /* from pg.c */ 4394 { "pg", "?[-q]", "display a pg", pg}, 4395 4396 /* from rctl.c */ 4397 { "rctl_dict", "?", "print systemwide default rctl definitions", 4398 rctl_dict }, 4399 { "rctl_list", ":[handle]", "print rctls for the given proc", 4400 rctl_list }, 4401 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4402 rctl }, 4403 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4404 "sequence", rctl_validate }, 4405 4406 /* from sobj.c */ 4407 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4408 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4409 mutex_help }, 4410 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4411 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4412 { "turnstile", "?", "display a turnstile", turnstile }, 4413 4414 /* from stream.c */ 4415 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4416 "print an mblk", mblk_prt, mblk_help }, 4417 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4418 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4419 mblk2dblk }, 4420 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4421 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4422 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4423 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4424 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4425 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4426 "filter and display STREAM queue", queue, queue_help }, 4427 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4428 "filter and display STREAM head", stdata, stdata_help }, 4429 { "str2mate", ":", "print mate of this stream", str2mate }, 4430 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4431 { "stream", ":", "display STREAM", stream }, 4432 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4433 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4434 "filter and display STREAM sync queue", syncq, syncq_help }, 4435 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4436 4437 /* from taskq.c */ 4438 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4439 "display a taskq", taskq, taskq_help }, 4440 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4441 4442 /* from thread.c */ 4443 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4444 thread_help }, 4445 { "threadlist", "?[-t] [-v [count]]", 4446 "display threads and associated C stack traces", threadlist, 4447 threadlist_help }, 4448 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4449 stackinfo_help }, 4450 4451 /* from tsd.c */ 4452 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4453 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4454 4455 /* 4456 * typegraph does not work under kmdb, as it requires too much memory 4457 * for its internal data structures. 4458 */ 4459 #ifndef _KMDB 4460 /* from typegraph.c */ 4461 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4462 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4463 findfalse }, 4464 { "typegraph", NULL, "build type graph", typegraph }, 4465 { "istype", ":type", "manually set object type", istype }, 4466 { "notype", ":", "manually clear object type", notype }, 4467 { "whattype", ":", "determine object type", whattype }, 4468 #endif 4469 4470 /* from vfs.c */ 4471 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4472 { "pfiles", ":[-fp]", "print process file information", pfiles, 4473 pfiles_help }, 4474 4475 /* from zone.c */ 4476 { "zid2zone", ":", "find the zone_t with the given zone id", 4477 zid2zone }, 4478 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4479 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4480 "selected zones", zsd }, 4481 4482 #ifndef _KMDB 4483 { "gcore", NULL, "generate a user core for the given process", 4484 gcore_dcmd }, 4485 #endif 4486 4487 { NULL } 4488 }; 4489 4490 static const mdb_walker_t walkers[] = { 4491 4492 /* from genunix.c */ 4493 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4494 callout_walk_init, callout_walk_step, callout_walk_fini, 4495 (void *)CALLOUT_WALK_BYLIST }, 4496 { "callouts_byid", "walk callouts by id hash chain", 4497 callout_walk_init, callout_walk_step, callout_walk_fini, 4498 (void *)CALLOUT_WALK_BYID }, 4499 { "callout_list", "walk a callout list", callout_list_walk_init, 4500 callout_list_walk_step, callout_list_walk_fini }, 4501 { "callout_table", "walk callout table array", callout_table_walk_init, 4502 callout_table_walk_step, callout_table_walk_fini }, 4503 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4504 { "dnlc", "walk dnlc entries", 4505 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini }, 4506 { "ereportq_dump", "walk list of ereports in dump error queue", 4507 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4508 { "ereportq_pend", "walk list of ereports in pending error queue", 4509 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4510 { "errorq", "walk list of system error queues", 4511 errorq_walk_init, errorq_walk_step, NULL }, 4512 { "errorq_data", "walk pending error queue data buffers", 4513 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4514 { "allfile", "given a proc pointer, list all file pointers", 4515 file_walk_init, allfile_walk_step, file_walk_fini }, 4516 { "file", "given a proc pointer, list of open file pointers", 4517 file_walk_init, file_walk_step, file_walk_fini }, 4518 { "lock_descriptor", "walk lock_descriptor_t structures", 4519 ld_walk_init, ld_walk_step, NULL }, 4520 { "lock_graph", "walk lock graph", 4521 lg_walk_init, lg_walk_step, NULL }, 4522 { "port", "given a proc pointer, list of created event ports", 4523 port_walk_init, port_walk_step, NULL }, 4524 { "portev", "given a port pointer, list of events in the queue", 4525 portev_walk_init, portev_walk_step, portev_walk_fini }, 4526 { "proc", "list of active proc_t structures", 4527 proc_walk_init, proc_walk_step, proc_walk_fini }, 4528 { "projects", "walk a list of kernel projects", 4529 project_walk_init, project_walk_step, NULL }, 4530 { "sysevent_pend", "walk sysevent pending queue", 4531 sysevent_pend_walk_init, sysevent_walk_step, 4532 sysevent_walk_fini}, 4533 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4534 sysevent_walk_step, sysevent_walk_fini}, 4535 { "sysevent_channel", "walk sysevent channel subscriptions", 4536 sysevent_channel_walk_init, sysevent_channel_walk_step, 4537 sysevent_channel_walk_fini}, 4538 { "sysevent_class_list", "walk sysevent subscription's class list", 4539 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4540 sysevent_class_list_walk_fini}, 4541 { "sysevent_subclass_list", 4542 "walk sysevent subscription's subclass list", 4543 sysevent_subclass_list_walk_init, 4544 sysevent_subclass_list_walk_step, 4545 sysevent_subclass_list_walk_fini}, 4546 { "task", "given a task pointer, walk its processes", 4547 task_walk_init, task_walk_step, NULL }, 4548 4549 /* from avl.c */ 4550 { AVL_WALK_NAME, AVL_WALK_DESC, 4551 avl_walk_init, avl_walk_step, avl_walk_fini }, 4552 4553 /* from bio.c */ 4554 { "buf", "walk the bio buf hash", 4555 buf_walk_init, buf_walk_step, buf_walk_fini }, 4556 4557 /* from contract.c */ 4558 { "contract", "walk all contracts, or those of the specified type", 4559 ct_walk_init, generic_walk_step, NULL }, 4560 { "ct_event", "walk events on a contract event queue", 4561 ct_event_walk_init, generic_walk_step, NULL }, 4562 { "ct_listener", "walk contract event queue listeners", 4563 ct_listener_walk_init, generic_walk_step, NULL }, 4564 4565 /* from cpupart.c */ 4566 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4567 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4568 NULL }, 4569 { "cpupart_walk", "walk the set of cpu partitions", 4570 cpupart_walk_init, cpupart_walk_step, NULL }, 4571 4572 /* from ctxop.c */ 4573 { "ctxop", "walk list of context ops on a thread", 4574 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4575 4576 /* from cyclic.c */ 4577 { "cyccpu", "walk per-CPU cyc_cpu structures", 4578 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4579 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4580 cycomni_walk_init, cycomni_walk_step, NULL }, 4581 { "cyctrace", "walk cyclic trace buffer", 4582 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4583 4584 /* from devinfo.c */ 4585 { "binding_hash", "walk all entries in binding hash table", 4586 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4587 { "devinfo", "walk devinfo tree or subtree", 4588 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4589 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4590 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4591 devinfo_audit_log_walk_fini}, 4592 { "devinfo_audit_node", "walk per-devinfo audit history", 4593 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4594 devinfo_audit_node_walk_fini}, 4595 { "devinfo_children", "walk children of devinfo node", 4596 devinfo_children_walk_init, devinfo_children_walk_step, 4597 devinfo_children_walk_fini }, 4598 { "devinfo_parents", "walk ancestors of devinfo node", 4599 devinfo_parents_walk_init, devinfo_parents_walk_step, 4600 devinfo_parents_walk_fini }, 4601 { "devinfo_siblings", "walk siblings of devinfo node", 4602 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4603 { "devi_next", "walk devinfo list", 4604 NULL, devi_next_walk_step, NULL }, 4605 { "devnames", "walk devnames array", 4606 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4607 { "minornode", "given a devinfo node, walk minor nodes", 4608 minornode_walk_init, minornode_walk_step, NULL }, 4609 { "softstate", 4610 "given an i_ddi_soft_state*, list all in-use driver stateps", 4611 soft_state_walk_init, soft_state_walk_step, 4612 NULL, NULL }, 4613 { "softstate_all", 4614 "given an i_ddi_soft_state*, list all driver stateps", 4615 soft_state_walk_init, soft_state_all_walk_step, 4616 NULL, NULL }, 4617 { "devinfo_fmc", 4618 "walk a fault management handle cache active list", 4619 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4620 4621 /* from group.c */ 4622 { "group", "walk all elements of a group", 4623 group_walk_init, group_walk_step, NULL }, 4624 4625 /* from irm.c */ 4626 { "irmpools", "walk global list of interrupt pools", 4627 irmpools_walk_init, list_walk_step, list_walk_fini }, 4628 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4629 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4630 4631 /* from kmem.c */ 4632 { "allocdby", "given a thread, walk its allocated bufctls", 4633 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4634 { "bufctl", "walk a kmem cache's bufctls", 4635 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4636 { "bufctl_history", "walk the available history of a bufctl", 4637 bufctl_history_walk_init, bufctl_history_walk_step, 4638 bufctl_history_walk_fini }, 4639 { "freedby", "given a thread, walk its freed bufctls", 4640 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4641 { "freectl", "walk a kmem cache's free bufctls", 4642 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4643 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4644 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4645 { "freemem", "walk a kmem cache's free memory", 4646 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4647 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4648 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4649 { "kmem", "walk a kmem cache", 4650 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4651 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4652 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4653 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4654 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4655 { "kmem_log", "walk the kmem transaction log", 4656 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4657 { "kmem_slab", "given a kmem cache, walk its slabs", 4658 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4659 { "kmem_slab_partial", 4660 "given a kmem cache, walk its partially allocated slabs (min 1)", 4661 kmem_slab_walk_partial_init, combined_walk_step, 4662 combined_walk_fini }, 4663 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4664 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4665 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4666 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4667 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4668 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4669 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4670 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4671 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4672 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4673 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4674 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4675 4676 /* from ldi.c */ 4677 { "ldi_handle", "walk the layered driver handle hash", 4678 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4679 { "ldi_ident", "walk the layered driver identifier hash", 4680 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4681 4682 /* from leaky.c + leaky_subr.c */ 4683 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4684 "stack trace", 4685 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4686 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4687 "leaks w/ same stack trace", 4688 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4689 4690 /* from lgrp.c */ 4691 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4692 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4693 { "lgrptbl", "walk lgroup table", 4694 lgrp_walk_init, lgrp_walk_step, NULL }, 4695 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4696 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4697 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4698 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4699 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4700 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4701 4702 /* from list.c */ 4703 { LIST_WALK_NAME, LIST_WALK_DESC, 4704 list_walk_init, list_walk_step, list_walk_fini }, 4705 4706 /* from mdi.c */ 4707 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4708 mdi_pi_client_link_walk_init, 4709 mdi_pi_client_link_walk_step, 4710 mdi_pi_client_link_walk_fini }, 4711 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4712 mdi_pi_phci_link_walk_init, 4713 mdi_pi_phci_link_walk_step, 4714 mdi_pi_phci_link_walk_fini }, 4715 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4716 mdi_phci_ph_next_walk_init, 4717 mdi_phci_ph_next_walk_step, 4718 mdi_phci_ph_next_walk_fini }, 4719 4720 /* from memory.c */ 4721 { "allpages", "walk all pages, including free pages", 4722 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4723 { "anon", "given an amp, list allocated anon structures", 4724 anon_walk_init, anon_walk_step, anon_walk_fini, 4725 ANON_WALK_ALLOC }, 4726 { "anon_all", "given an amp, list contents of all anon slots", 4727 anon_walk_init, anon_walk_step, anon_walk_fini, 4728 ANON_WALK_ALL }, 4729 { "memlist", "walk specified memlist", 4730 NULL, memlist_walk_step, NULL }, 4731 { "page", "walk all pages, or those from the specified vnode", 4732 page_walk_init, page_walk_step, page_walk_fini }, 4733 { "seg", "given an as, list of segments", 4734 seg_walk_init, avl_walk_step, avl_walk_fini }, 4735 { "segvn_anon", 4736 "given a struct segvn_data, list allocated anon structures", 4737 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4738 ANON_WALK_ALLOC }, 4739 { "segvn_anon_all", 4740 "given a struct segvn_data, list contents of all anon slots", 4741 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4742 ANON_WALK_ALL }, 4743 { "segvn_pages", 4744 "given a struct segvn_data, list resident pages in " 4745 "offset order", 4746 segvn_pages_walk_init, segvn_pages_walk_step, 4747 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4748 { "segvn_pages_all", 4749 "for each offset in a struct segvn_data, give page_t pointer " 4750 "(if resident), or NULL.", 4751 segvn_pages_walk_init, segvn_pages_walk_step, 4752 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4753 { "swapinfo", "walk swapinfo structures", 4754 swap_walk_init, swap_walk_step, NULL }, 4755 4756 /* from mmd.c */ 4757 { "pattr", "walk pattr_t structures", pattr_walk_init, 4758 mmdq_walk_step, mmdq_walk_fini }, 4759 { "pdesc", "walk pdesc_t structures", 4760 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4761 { "pdesc_slab", "walk pdesc_slab_t structures", 4762 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4763 4764 /* from modhash.c */ 4765 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4766 modhash_walk_step, NULL }, 4767 { "modent", "walk list of entries in a given mod_hash", 4768 modent_walk_init, modent_walk_step, modent_walk_fini }, 4769 { "modchain", "walk list of entries in a given mod_hash_entry", 4770 NULL, modchain_walk_step, NULL }, 4771 4772 /* from net.c */ 4773 { "icmp", "walk ICMP control structures using MI for all stacks", 4774 mi_payload_walk_init, mi_payload_walk_step, NULL, 4775 &mi_icmp_arg }, 4776 { "mi", "given a MI_O, walk the MI", 4777 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4778 { "sonode", "given a sonode, walk its children", 4779 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4780 { "icmp_stacks", "walk all the icmp_stack_t", 4781 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4782 { "tcp_stacks", "walk all the tcp_stack_t", 4783 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4784 { "udp_stacks", "walk all the udp_stack_t", 4785 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4786 4787 /* from netstack.c */ 4788 { "netstack", "walk a list of kernel netstacks", 4789 netstack_walk_init, netstack_walk_step, NULL }, 4790 4791 /* from nvpair.c */ 4792 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4793 nvpair_walk_init, nvpair_walk_step, NULL }, 4794 4795 /* from pci.c */ 4796 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init, 4797 pcie_bus_walk_step, NULL }, 4798 4799 /* from rctl.c */ 4800 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4801 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4802 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4803 rctl_set_walk_step, NULL }, 4804 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4805 rctl_val_walk_init, rctl_val_walk_step }, 4806 4807 /* from sobj.c */ 4808 { "blocked", "walk threads blocked on a given sobj", 4809 blocked_walk_init, blocked_walk_step, NULL }, 4810 { "wchan", "given a wchan, list of blocked threads", 4811 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4812 4813 /* from stream.c */ 4814 { "b_cont", "walk mblk_t list using b_cont", 4815 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4816 { "b_next", "walk mblk_t list using b_next", 4817 mblk_walk_init, b_next_step, mblk_walk_fini }, 4818 { "qlink", "walk queue_t list using q_link", 4819 queue_walk_init, queue_link_step, queue_walk_fini }, 4820 { "qnext", "walk queue_t list using q_next", 4821 queue_walk_init, queue_next_step, queue_walk_fini }, 4822 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4823 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4824 { "readq", "walk read queue side of stdata", 4825 str_walk_init, strr_walk_step, str_walk_fini }, 4826 { "writeq", "walk write queue side of stdata", 4827 str_walk_init, strw_walk_step, str_walk_fini }, 4828 4829 /* from taskq.c */ 4830 { "taskq_thread", "given a taskq_t, list all of its threads", 4831 taskq_thread_walk_init, 4832 taskq_thread_walk_step, 4833 taskq_thread_walk_fini }, 4834 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4835 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4836 4837 /* from thread.c */ 4838 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4839 deathrow_walk_init, deathrow_walk_step, NULL }, 4840 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4841 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4842 { "cpupart_dispq", 4843 "given a cpupart_t, walk threads in dispatcher queues", 4844 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4845 { "lwp_deathrow", "walk lwp_deathrow", 4846 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4847 { "thread", "global or per-process kthread_t structures", 4848 thread_walk_init, thread_walk_step, thread_walk_fini }, 4849 { "thread_deathrow", "walk threads on thread_deathrow", 4850 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4851 4852 /* from tsd.c */ 4853 { "tsd", "walk list of thread-specific data", 4854 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4855 4856 /* from tsol.c */ 4857 { "tnrh", "walk remote host cache structures", 4858 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4859 { "tnrhtp", "walk remote host template structures", 4860 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4861 4862 /* 4863 * typegraph does not work under kmdb, as it requires too much memory 4864 * for its internal data structures. 4865 */ 4866 #ifndef _KMDB 4867 /* from typegraph.c */ 4868 { "typeconflict", "walk buffers with conflicting type inferences", 4869 typegraph_walk_init, typeconflict_walk_step }, 4870 { "typeunknown", "walk buffers with unknown types", 4871 typegraph_walk_init, typeunknown_walk_step }, 4872 #endif 4873 4874 /* from vfs.c */ 4875 { "vfs", "walk file system list", 4876 vfs_walk_init, vfs_walk_step }, 4877 4878 /* from zone.c */ 4879 { "zone", "walk a list of kernel zones", 4880 zone_walk_init, zone_walk_step, NULL }, 4881 { "zsd", "walk list of zsd entries for a zone", 4882 zsd_walk_init, zsd_walk_step, NULL }, 4883 4884 { NULL } 4885 }; 4886 4887 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4888 4889 /*ARGSUSED*/ 4890 static void 4891 genunix_statechange_cb(void *ignored) 4892 { 4893 /* 4894 * Force ::findleaks and ::stacks to let go any cached state. 4895 */ 4896 leaky_cleanup(1); 4897 stacks_cleanup(1); 4898 4899 kmem_statechange(); /* notify kmem */ 4900 } 4901 4902 const mdb_modinfo_t * 4903 _mdb_init(void) 4904 { 4905 kmem_init(); 4906 4907 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4908 genunix_statechange_cb, NULL); 4909 4910 #ifndef _KMDB 4911 gcore_init(); 4912 #endif 4913 4914 return (&modinfo); 4915 } 4916 4917 void 4918 _mdb_fini(void) 4919 { 4920 leaky_cleanup(1); 4921 stacks_cleanup(1); 4922 }