1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <sys/dditypes.h> 53 #include <sys/ddi_impldefs.h> 54 #include <sys/sysmacros.h> 55 #include <sys/sysconf.h> 56 #include <sys/task.h> 57 #include <sys/project.h> 58 #include <sys/errorq_impl.h> 59 #include <sys/cred_impl.h> 60 #include <sys/zone.h> 61 #include <sys/panic.h> 62 #include <regex.h> 63 #include <sys/port_impl.h> 64 65 #include "avl.h" 66 #include "bio.h" 67 #include "bitset.h" 68 #include "combined.h" 69 #include "contract.h" 70 #include "cpupart_mdb.h" 71 #include "cred.h" 72 #include "ctxop.h" 73 #include "cyclic.h" 74 #include "damap.h" 75 #include "ddi_periodic.h" 76 #include "devinfo.h" 77 #include "dnlc.h" 78 #include "findstack.h" 79 #include "fm.h" 80 #include "gcore.h" 81 #include "group.h" 82 #include "irm.h" 83 #include "kgrep.h" 84 #include "kmem.h" 85 #include "ldi.h" 86 #include "leaky.h" 87 #include "lgrp.h" 88 #include "list.h" 89 #include "log.h" 90 #include "mdi.h" 91 #include "memory.h" 92 #include "mmd.h" 93 #include "modhash.h" 94 #include "ndievents.h" 95 #include "net.h" 96 #include "netstack.h" 97 #include "nvpair.h" 98 #include "pci.h" 99 #include "pg.h" 100 #include "rctl.h" 101 #include "sobj.h" 102 #include "streams.h" 103 #include "sysevent.h" 104 #include "taskq.h" 105 #include "thread.h" 106 #include "tsd.h" 107 #include "tsol.h" 108 #include "typegraph.h" 109 #include "vfs.h" 110 #include "zone.h" 111 #include "hotplug.h" 112 113 /* 114 * Surely this is defined somewhere... 115 */ 116 #define NINTR 16 117 118 #define KILOS 10 119 #define MEGS 20 120 #define GIGS 30 121 122 #ifndef STACK_BIAS 123 #define STACK_BIAS 0 124 #endif 125 126 static char 127 pstat2ch(uchar_t state) 128 { 129 switch (state) { 130 case SSLEEP: return ('S'); 131 case SRUN: return ('R'); 132 case SZOMB: return ('Z'); 133 case SIDL: return ('I'); 134 case SONPROC: return ('O'); 135 case SSTOP: return ('T'); 136 case SWAIT: return ('W'); 137 default: return ('?'); 138 } 139 } 140 141 #define PS_PRTTHREADS 0x1 142 #define PS_PRTLWPS 0x2 143 #define PS_PSARGS 0x4 144 #define PS_TASKS 0x8 145 #define PS_PROJECTS 0x10 146 #define PS_ZONES 0x20 147 148 static int 149 ps_threadprint(uintptr_t addr, const void *data, void *private) 150 { 151 const kthread_t *t = (const kthread_t *)data; 152 uint_t prt_flags = *((uint_t *)private); 153 154 static const mdb_bitmask_t t_state_bits[] = { 155 { "TS_FREE", UINT_MAX, TS_FREE }, 156 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 157 { "TS_RUN", TS_RUN, TS_RUN }, 158 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 159 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 160 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 161 { "TS_WAIT", TS_WAIT, TS_WAIT }, 162 { NULL, 0, 0 } 163 }; 164 165 if (prt_flags & PS_PRTTHREADS) 166 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 167 168 if (prt_flags & PS_PRTLWPS) { 169 char desc[128] = ""; 170 171 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc)); 172 173 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc); 174 } 175 176 return (WALK_NEXT); 177 } 178 179 typedef struct mdb_pflags_proc { 180 struct pid *p_pidp; 181 ushort_t p_pidflag; 182 uint_t p_proc_flag; 183 uint_t p_flag; 184 } mdb_pflags_proc_t; 185 186 static int 187 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 188 { 189 mdb_pflags_proc_t pr; 190 struct pid pid; 191 192 static const mdb_bitmask_t p_flag_bits[] = { 193 { "SSYS", SSYS, SSYS }, 194 { "SEXITING", SEXITING, SEXITING }, 195 { "SITBUSY", SITBUSY, SITBUSY }, 196 { "SFORKING", SFORKING, SFORKING }, 197 { "SWATCHOK", SWATCHOK, SWATCHOK }, 198 { "SKILLED", SKILLED, SKILLED }, 199 { "SSCONT", SSCONT, SSCONT }, 200 { "SZONETOP", SZONETOP, SZONETOP }, 201 { "SEXTKILLED", SEXTKILLED, SEXTKILLED }, 202 { "SUGID", SUGID, SUGID }, 203 { "SEXECED", SEXECED, SEXECED }, 204 { "SJCTL", SJCTL, SJCTL }, 205 { "SNOWAIT", SNOWAIT, SNOWAIT }, 206 { "SVFORK", SVFORK, SVFORK }, 207 { "SVFWAIT", SVFWAIT, SVFWAIT }, 208 { "SEXITLWPS", SEXITLWPS, SEXITLWPS }, 209 { "SHOLDFORK", SHOLDFORK, SHOLDFORK }, 210 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 }, 211 { "SCOREDUMP", SCOREDUMP, SCOREDUMP }, 212 { "SMSACCT", SMSACCT, SMSACCT }, 213 { "SLWPWRAP", SLWPWRAP, SLWPWRAP }, 214 { "SAUTOLPG", SAUTOLPG, SAUTOLPG }, 215 { "SNOCD", SNOCD, SNOCD }, 216 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH }, 217 { "SMSFORK", SMSFORK, SMSFORK }, 218 { "SDOCORE", SDOCORE, SDOCORE }, 219 { NULL, 0, 0 } 220 }; 221 222 static const mdb_bitmask_t p_pidflag_bits[] = { 223 { "CLDPEND", CLDPEND, CLDPEND }, 224 { "CLDCONT", CLDCONT, CLDCONT }, 225 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD }, 226 { "CLDWAITPID", CLDWAITPID, CLDWAITPID }, 227 { NULL, 0, 0 } 228 }; 229 230 static const mdb_bitmask_t p_proc_flag_bits[] = { 231 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE }, 232 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE }, 233 { "P_PR_FORK", P_PR_FORK, P_PR_FORK }, 234 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK }, 235 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC }, 236 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC }, 237 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ }, 238 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL }, 239 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL }, 240 { NULL, 0, 0 } 241 }; 242 243 if (!(flags & DCMD_ADDRSPEC)) { 244 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) { 245 mdb_warn("can't walk 'proc'"); 246 return (DCMD_ERR); 247 } 248 return (DCMD_OK); 249 } 250 251 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 || 252 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) { 253 mdb_warn("cannot read proc_t or pid"); 254 return (DCMD_ERR); 255 } 256 257 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id); 258 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag, 259 p_flag_bits); 260 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag, 261 p_pidflag_bits); 262 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag, 263 p_proc_flag_bits); 264 265 return (DCMD_OK); 266 } 267 268 typedef struct mdb_ps_proc { 269 char p_stat; 270 struct pid *p_pidp; 271 struct pid *p_pgidp; 272 struct cred *p_cred; 273 struct sess *p_sessp; 274 struct task *p_task; 275 struct zone *p_zone; 276 pid_t p_ppid; 277 uint_t p_flag; 278 struct { 279 char u_comm[MAXCOMLEN + 1]; 280 char u_psargs[PSARGSZ]; 281 } p_user; 282 } mdb_ps_proc_t; 283 284 int 285 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 286 { 287 uint_t prt_flags = 0; 288 mdb_ps_proc_t pr; 289 struct pid pid, pgid, sid; 290 sess_t session; 291 cred_t cred; 292 task_t tk; 293 kproject_t pj; 294 zone_t zn; 295 296 if (!(flags & DCMD_ADDRSPEC)) { 297 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 298 mdb_warn("can't walk 'proc'"); 299 return (DCMD_ERR); 300 } 301 return (DCMD_OK); 302 } 303 304 if (mdb_getopts(argc, argv, 305 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 306 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 307 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 308 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 309 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 310 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 311 return (DCMD_USAGE); 312 313 if (DCMD_HDRSPEC(flags)) { 314 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 315 "S", "PID", "PPID", "PGID", "SID"); 316 if (prt_flags & PS_TASKS) 317 mdb_printf("%5s ", "TASK"); 318 if (prt_flags & PS_PROJECTS) 319 mdb_printf("%5s ", "PROJ"); 320 if (prt_flags & PS_ZONES) 321 mdb_printf("%5s ", "ZONE"); 322 mdb_printf("%6s %10s %?s %s%</u>\n", 323 "UID", "FLAGS", "ADDR", "NAME"); 324 } 325 326 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1) 327 return (DCMD_ERR); 328 329 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 330 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 331 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 332 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 333 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 334 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 335 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 336 if (prt_flags & PS_PROJECTS) 337 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 338 if (prt_flags & PS_ZONES) 339 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone); 340 341 mdb_printf("%c %6d %6d %6d %6d ", 342 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 343 sid.pid_id); 344 if (prt_flags & PS_TASKS) 345 mdb_printf("%5d ", tk.tk_tkid); 346 if (prt_flags & PS_PROJECTS) 347 mdb_printf("%5d ", pj.kpj_id); 348 if (prt_flags & PS_ZONES) 349 mdb_printf("%5d ", zn.zone_id); 350 mdb_printf("%6d 0x%08x %0?p %s\n", 351 cred.cr_uid, pr.p_flag, addr, 352 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 353 354 if (prt_flags & ~PS_PSARGS) 355 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 356 357 return (DCMD_OK); 358 } 359 360 static void 361 ps_help(void) 362 { 363 mdb_printf("Display processes.\n\n" 364 "Options:\n" 365 " -f\tDisplay command arguments\n" 366 " -l\tDisplay LWPs\n" 367 " -T\tDisplay tasks\n" 368 " -P\tDisplay projects\n" 369 " -z\tDisplay zones\n" 370 " -t\tDisplay threads\n\n"); 371 372 mdb_printf("The resulting output is a table of the processes on the " 373 "system. The\n" 374 "columns in the output consist of a combination of the " 375 "following fields:\n\n"); 376 mdb_printf("S\tProcess state. Possible states are:\n" 377 "\tS\tSleeping (SSLEEP)\n" 378 "\tR\tRunnable (SRUN)\n" 379 "\tZ\tZombie (SZOMB)\n" 380 "\tI\tIdle (SIDL)\n" 381 "\tO\tOn Cpu (SONPROC)\n" 382 "\tT\tStopped (SSTOP)\n" 383 "\tW\tWaiting (SWAIT)\n"); 384 385 mdb_printf("PID\tProcess id.\n"); 386 mdb_printf("PPID\tParent process id.\n"); 387 mdb_printf("PGID\tProcess group id.\n"); 388 mdb_printf("SID\tProcess id of the session leader.\n"); 389 mdb_printf("TASK\tThe task id of the process.\n"); 390 mdb_printf("PROJ\tThe project id of the process.\n"); 391 mdb_printf("ZONE\tThe zone id of the process.\n"); 392 mdb_printf("UID\tThe user id of the process.\n"); 393 mdb_printf("FLAGS\tThe process flags (see ::pflags).\n"); 394 mdb_printf("ADDR\tThe kernel address of the proc_t structure of the " 395 "process\n"); 396 mdb_printf("NAME\tThe name (p_user.u_comm field) of the process. If " 397 "the -f flag\n" 398 "\tis specified, the arguments of the process are displayed.\n"); 399 } 400 401 #define PG_NEWEST 0x0001 402 #define PG_OLDEST 0x0002 403 #define PG_PIPE_OUT 0x0004 404 #define PG_EXACT_MATCH 0x0008 405 406 typedef struct pgrep_data { 407 uint_t pg_flags; 408 uint_t pg_psflags; 409 uintptr_t pg_xaddr; 410 hrtime_t pg_xstart; 411 const char *pg_pat; 412 #ifndef _KMDB 413 regex_t pg_reg; 414 #endif 415 } pgrep_data_t; 416 417 typedef struct mdb_pgrep_proc { 418 struct { 419 timestruc_t u_start; 420 char u_comm[MAXCOMLEN + 1]; 421 } p_user; 422 } mdb_pgrep_proc_t; 423 424 /*ARGSUSED*/ 425 static int 426 pgrep_cb(uintptr_t addr, const void *ignored, void *data) 427 { 428 mdb_pgrep_proc_t p; 429 pgrep_data_t *pgp = data; 430 #ifndef _KMDB 431 regmatch_t pmatch; 432 #endif 433 434 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1) 435 return (WALK_ERR); 436 437 /* 438 * kmdb doesn't have access to the reg* functions, so we fall back 439 * to strstr/strcmp. 440 */ 441 #ifdef _KMDB 442 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 443 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) : 444 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL)) 445 return (WALK_NEXT); 446 #else 447 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0) 448 return (WALK_NEXT); 449 450 if ((pgp->pg_flags & PG_EXACT_MATCH) && 451 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0')) 452 return (WALK_NEXT); 453 #endif 454 455 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 456 hrtime_t start; 457 458 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC + 459 p.p_user.u_start.tv_nsec; 460 461 if (pgp->pg_flags & PG_NEWEST) { 462 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) { 463 pgp->pg_xaddr = addr; 464 pgp->pg_xstart = start; 465 } 466 } else { 467 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) { 468 pgp->pg_xaddr = addr; 469 pgp->pg_xstart = start; 470 } 471 } 472 473 } else if (pgp->pg_flags & PG_PIPE_OUT) { 474 mdb_printf("%p\n", addr); 475 476 } else { 477 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 478 mdb_warn("can't invoke 'ps'"); 479 return (WALK_DONE); 480 } 481 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 482 } 483 484 return (WALK_NEXT); 485 } 486 487 /*ARGSUSED*/ 488 int 489 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 490 { 491 pgrep_data_t pg; 492 int i; 493 #ifndef _KMDB 494 int err; 495 #endif 496 497 if (flags & DCMD_ADDRSPEC) 498 return (DCMD_USAGE); 499 500 pg.pg_flags = 0; 501 pg.pg_xaddr = 0; 502 503 i = mdb_getopts(argc, argv, 504 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 505 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 506 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 507 NULL); 508 509 argc -= i; 510 argv += i; 511 512 if (argc != 1) 513 return (DCMD_USAGE); 514 515 /* 516 * -n and -o are mutually exclusive. 517 */ 518 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 519 return (DCMD_USAGE); 520 521 if (argv->a_type != MDB_TYPE_STRING) 522 return (DCMD_USAGE); 523 524 if (flags & DCMD_PIPE_OUT) 525 pg.pg_flags |= PG_PIPE_OUT; 526 527 pg.pg_pat = argv->a_un.a_str; 528 if (DCMD_HDRSPEC(flags)) 529 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 530 else 531 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 532 533 #ifndef _KMDB 534 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 535 size_t nbytes; 536 char *buf; 537 538 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 539 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 540 (void) regerror(err, &pg.pg_reg, buf, nbytes); 541 mdb_warn("%s\n", buf); 542 543 return (DCMD_ERR); 544 } 545 #endif 546 547 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 548 mdb_warn("can't walk 'proc'"); 549 return (DCMD_ERR); 550 } 551 552 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 553 if (pg.pg_flags & PG_PIPE_OUT) { 554 mdb_printf("%p\n", pg.pg_xaddr); 555 } else { 556 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 557 0, NULL) != 0) { 558 mdb_warn("can't invoke 'ps'"); 559 return (DCMD_ERR); 560 } 561 } 562 } 563 564 return (DCMD_OK); 565 } 566 567 int 568 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 569 { 570 task_t tk; 571 kproject_t pj; 572 573 if (!(flags & DCMD_ADDRSPEC)) { 574 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 575 mdb_warn("can't walk task_cache"); 576 return (DCMD_ERR); 577 } 578 return (DCMD_OK); 579 } 580 if (DCMD_HDRSPEC(flags)) { 581 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 582 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 583 } 584 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 585 mdb_warn("can't read task_t structure at %p", addr); 586 return (DCMD_ERR); 587 } 588 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 589 mdb_warn("can't read project_t structure at %p", addr); 590 return (DCMD_ERR); 591 } 592 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 593 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 594 tk.tk_flags); 595 return (DCMD_OK); 596 } 597 598 int 599 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 600 { 601 kproject_t pj; 602 603 if (!(flags & DCMD_ADDRSPEC)) { 604 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 605 mdb_warn("can't walk projects"); 606 return (DCMD_ERR); 607 } 608 return (DCMD_OK); 609 } 610 if (DCMD_HDRSPEC(flags)) { 611 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 612 "ADDR", "PROJID", "ZONEID", "REFCNT"); 613 } 614 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 615 mdb_warn("can't read kproject_t structure at %p", addr); 616 return (DCMD_ERR); 617 } 618 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 619 pj.kpj_count); 620 return (DCMD_OK); 621 } 622 623 /* walk callouts themselves, either by list or id hash. */ 624 int 625 callout_walk_init(mdb_walk_state_t *wsp) 626 { 627 if (wsp->walk_addr == 0) { 628 mdb_warn("callout doesn't support global walk"); 629 return (WALK_ERR); 630 } 631 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 632 return (WALK_NEXT); 633 } 634 635 #define CALLOUT_WALK_BYLIST 0 636 #define CALLOUT_WALK_BYID 1 637 638 /* the walker arg switches between walking by list (0) and walking by id (1). */ 639 int 640 callout_walk_step(mdb_walk_state_t *wsp) 641 { 642 int retval; 643 644 if (wsp->walk_addr == 0) { 645 return (WALK_DONE); 646 } 647 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 648 wsp->walk_addr) == -1) { 649 mdb_warn("failed to read callout at %p", wsp->walk_addr); 650 return (WALK_DONE); 651 } 652 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 653 wsp->walk_cbdata); 654 655 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 656 wsp->walk_addr = 657 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 658 } else { 659 wsp->walk_addr = 660 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 661 } 662 663 return (retval); 664 } 665 666 void 667 callout_walk_fini(mdb_walk_state_t *wsp) 668 { 669 mdb_free(wsp->walk_data, sizeof (callout_t)); 670 } 671 672 /* 673 * walker for callout lists. This is different from hashes and callouts. 674 * Thankfully, it's also simpler. 675 */ 676 int 677 callout_list_walk_init(mdb_walk_state_t *wsp) 678 { 679 if (wsp->walk_addr == 0) { 680 mdb_warn("callout list doesn't support global walk"); 681 return (WALK_ERR); 682 } 683 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 684 return (WALK_NEXT); 685 } 686 687 int 688 callout_list_walk_step(mdb_walk_state_t *wsp) 689 { 690 int retval; 691 692 if (wsp->walk_addr == 0) { 693 return (WALK_DONE); 694 } 695 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 696 wsp->walk_addr) != sizeof (callout_list_t)) { 697 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 698 return (WALK_ERR); 699 } 700 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 701 wsp->walk_cbdata); 702 703 wsp->walk_addr = (uintptr_t) 704 (((callout_list_t *)wsp->walk_data)->cl_next); 705 706 return (retval); 707 } 708 709 void 710 callout_list_walk_fini(mdb_walk_state_t *wsp) 711 { 712 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 713 } 714 715 /* routines/structs to walk callout table(s) */ 716 typedef struct cot_data { 717 callout_table_t *ct0; 718 callout_table_t ct; 719 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 720 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 721 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 722 int cotndx; 723 int cotsize; 724 } cot_data_t; 725 726 int 727 callout_table_walk_init(mdb_walk_state_t *wsp) 728 { 729 int max_ncpus; 730 cot_data_t *cot_walk_data; 731 732 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 733 734 if (wsp->walk_addr == 0) { 735 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 736 mdb_warn("failed to read 'callout_table'"); 737 return (WALK_ERR); 738 } 739 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 740 mdb_warn("failed to get callout_table array size"); 741 return (WALK_ERR); 742 } 743 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 744 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 745 } else { 746 /* not a global walk */ 747 cot_walk_data->cotsize = 1; 748 } 749 750 cot_walk_data->cotndx = 0; 751 wsp->walk_data = cot_walk_data; 752 753 return (WALK_NEXT); 754 } 755 756 int 757 callout_table_walk_step(mdb_walk_state_t *wsp) 758 { 759 int retval; 760 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 761 size_t size; 762 763 if (cotwd->cotndx >= cotwd->cotsize) { 764 return (WALK_DONE); 765 } 766 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 767 wsp->walk_addr) != sizeof (callout_table_t)) { 768 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 769 return (WALK_ERR); 770 } 771 772 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 773 if (cotwd->ct.ct_idhash != NULL) { 774 if (mdb_vread(cotwd->cot_idhash, size, 775 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 776 mdb_warn("failed to read id_hash at %p", 777 cotwd->ct.ct_idhash); 778 return (WALK_ERR); 779 } 780 } 781 if (cotwd->ct.ct_clhash != NULL) { 782 if (mdb_vread(&(cotwd->cot_clhash), size, 783 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 784 mdb_warn("failed to read cl_hash at %p", 785 cotwd->ct.ct_clhash); 786 return (WALK_ERR); 787 } 788 } 789 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 790 if (cotwd->ct.ct_kstat_data != NULL) { 791 if (mdb_vread(&(cotwd->ct_kstat_data), size, 792 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 793 mdb_warn("failed to read kstats at %p", 794 cotwd->ct.ct_kstat_data); 795 return (WALK_ERR); 796 } 797 } 798 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 799 wsp->walk_cbdata); 800 801 cotwd->cotndx++; 802 if (cotwd->cotndx >= cotwd->cotsize) { 803 return (WALK_DONE); 804 } 805 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 806 sizeof (callout_table_t)); 807 808 return (retval); 809 } 810 811 void 812 callout_table_walk_fini(mdb_walk_state_t *wsp) 813 { 814 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 815 } 816 817 static const char *co_typenames[] = { "R", "N" }; 818 819 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 820 821 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 822 823 /* callout flags, in no particular order */ 824 #define COF_REAL 0x00000001 825 #define COF_NORM 0x00000002 826 #define COF_LONG 0x00000004 827 #define COF_SHORT 0x00000008 828 #define COF_EMPTY 0x00000010 829 #define COF_TIME 0x00000020 830 #define COF_BEFORE 0x00000040 831 #define COF_AFTER 0x00000080 832 #define COF_SEQID 0x00000100 833 #define COF_FUNC 0x00000200 834 #define COF_ADDR 0x00000400 835 #define COF_EXEC 0x00000800 836 #define COF_HIRES 0x00001000 837 #define COF_ABS 0x00002000 838 #define COF_TABLE 0x00004000 839 #define COF_BYIDH 0x00008000 840 #define COF_FREE 0x00010000 841 #define COF_LIST 0x00020000 842 #define COF_EXPREL 0x00040000 843 #define COF_HDR 0x00080000 844 #define COF_VERBOSE 0x00100000 845 #define COF_LONGLIST 0x00200000 846 #define COF_THDR 0x00400000 847 #define COF_LHDR 0x00800000 848 #define COF_CHDR 0x01000000 849 #define COF_PARAM 0x02000000 850 #define COF_DECODE 0x04000000 851 #define COF_HEAP 0x08000000 852 #define COF_QUEUE 0x10000000 853 854 /* show real and normal, short and long, expired and unexpired. */ 855 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 856 857 #define COF_LIST_FLAGS \ 858 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 859 860 /* private callout data for callback functions */ 861 typedef struct callout_data { 862 uint_t flags; /* COF_* */ 863 cpu_t *cpu; /* cpu pointer if given */ 864 int seqid; /* cpu seqid, or -1 */ 865 hrtime_t time; /* expiration time value */ 866 hrtime_t atime; /* expiration before value */ 867 hrtime_t btime; /* expiration after value */ 868 uintptr_t funcaddr; /* function address or NULL */ 869 uintptr_t param; /* parameter to function or NULL */ 870 hrtime_t now; /* current system time */ 871 int nsec_per_tick; /* for conversions */ 872 ulong_t ctbits; /* for decoding xid */ 873 callout_table_t *co_table; /* top of callout table array */ 874 int ndx; /* table index. */ 875 int bucket; /* which list/id bucket are we in */ 876 hrtime_t exp; /* expire time */ 877 int list_flags; /* copy of cl_flags */ 878 } callout_data_t; 879 880 /* this callback does the actual callback itself (finally). */ 881 /*ARGSUSED*/ 882 static int 883 callouts_cb(uintptr_t addr, const void *data, void *priv) 884 { 885 callout_data_t *coargs = (callout_data_t *)priv; 886 callout_t *co = (callout_t *)data; 887 int tableid, list_flags; 888 callout_id_t coid; 889 890 if ((coargs == NULL) || (co == NULL)) { 891 return (WALK_ERR); 892 } 893 894 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 895 /* 896 * The callout must have been reallocated. No point in 897 * walking any more. 898 */ 899 return (WALK_DONE); 900 } 901 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 902 /* 903 * The callout must have been freed. No point in 904 * walking any more. 905 */ 906 return (WALK_DONE); 907 } 908 if ((coargs->flags & COF_FUNC) && 909 (coargs->funcaddr != (uintptr_t)co->c_func)) { 910 return (WALK_NEXT); 911 } 912 if ((coargs->flags & COF_PARAM) && 913 (coargs->param != (uintptr_t)co->c_arg)) { 914 return (WALK_NEXT); 915 } 916 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 917 return (WALK_NEXT); 918 } 919 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 920 return (WALK_NEXT); 921 } 922 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 923 return (WALK_NEXT); 924 } 925 /* it is possible we don't have the exp time or flags */ 926 if (coargs->flags & COF_BYIDH) { 927 if (!(coargs->flags & COF_FREE)) { 928 /* we have to fetch the expire time ourselves. */ 929 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 930 (uintptr_t)co->c_list + offsetof(callout_list_t, 931 cl_expiration)) == -1) { 932 mdb_warn("failed to read expiration " 933 "time from %p", co->c_list); 934 coargs->exp = 0; 935 } 936 /* and flags. */ 937 if (mdb_vread(&coargs->list_flags, sizeof (int), 938 (uintptr_t)co->c_list + offsetof(callout_list_t, 939 cl_flags)) == -1) { 940 mdb_warn("failed to read list flags" 941 "from %p", co->c_list); 942 coargs->list_flags = 0; 943 } 944 } else { 945 /* free callouts can't use list pointer. */ 946 coargs->exp = 0; 947 coargs->list_flags = 0; 948 } 949 if (coargs->exp != 0) { 950 if ((coargs->flags & COF_TIME) && 951 (coargs->exp != coargs->time)) { 952 return (WALK_NEXT); 953 } 954 if ((coargs->flags & COF_BEFORE) && 955 (coargs->exp > coargs->btime)) { 956 return (WALK_NEXT); 957 } 958 if ((coargs->flags & COF_AFTER) && 959 (coargs->exp < coargs->atime)) { 960 return (WALK_NEXT); 961 } 962 } 963 /* tricky part, since both HIRES and ABS can be set */ 964 list_flags = coargs->list_flags; 965 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 966 /* both flags are set, only skip "regular" ones */ 967 if (! (list_flags & COF_LIST_FLAGS)) { 968 return (WALK_NEXT); 969 } 970 } else { 971 /* individual flags, or no flags */ 972 if ((coargs->flags & COF_HIRES) && 973 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 974 return (WALK_NEXT); 975 } 976 if ((coargs->flags & COF_ABS) && 977 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 978 return (WALK_NEXT); 979 } 980 } 981 /* 982 * We do the checks for COF_HEAP and COF_QUEUE here only if we 983 * are traversing BYIDH. If the traversal is by callout list, 984 * we do this check in callout_list_cb() to be more 985 * efficient. 986 */ 987 if ((coargs->flags & COF_HEAP) && 988 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 989 return (WALK_NEXT); 990 } 991 992 if ((coargs->flags & COF_QUEUE) && 993 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 994 return (WALK_NEXT); 995 } 996 } 997 998 #define callout_table_mask ((1 << coargs->ctbits) - 1) 999 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 1000 #undef callout_table_mask 1001 coid = CO_PLAIN_ID(co->c_xid); 1002 1003 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 1004 /* 1005 * We need to print the headers. If walking by id, then 1006 * the list header isn't printed, so we must include 1007 * that info here. 1008 */ 1009 if (!(coargs->flags & COF_VERBOSE)) { 1010 mdb_printf("%<u>%3s %-1s %-14s %</u>", 1011 "SEQ", "T", "EXP"); 1012 } else if (coargs->flags & COF_BYIDH) { 1013 mdb_printf("%<u>%-14s %</u>", "EXP"); 1014 } 1015 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 1016 "XHAL", "XID", "FUNC(ARG)"); 1017 if (coargs->flags & COF_LONGLIST) { 1018 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 1019 "PREVID", "NEXTID", "PREVL", "NEXTL"); 1020 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 1021 "DONE", "UTOS", "THREAD"); 1022 } 1023 mdb_printf("\n"); 1024 coargs->flags &= ~COF_CHDR; 1025 coargs->flags |= (COF_THDR | COF_LHDR); 1026 } 1027 1028 if (!(coargs->flags & COF_ADDR)) { 1029 if (!(coargs->flags & COF_VERBOSE)) { 1030 mdb_printf("%-3d %1s %-14llx ", 1031 TABLE_TO_SEQID(tableid), 1032 co_typenames[tableid & CALLOUT_TYPE_MASK], 1033 (coargs->flags & COF_EXPREL) ? 1034 coargs->exp - coargs->now : coargs->exp); 1035 } else if (coargs->flags & COF_BYIDH) { 1036 mdb_printf("%-14x ", 1037 (coargs->flags & COF_EXPREL) ? 1038 coargs->exp - coargs->now : coargs->exp); 1039 } 1040 list_flags = coargs->list_flags; 1041 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 1042 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 1043 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 1044 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 1045 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 1046 (long long)coid, co->c_func, co->c_arg); 1047 if (coargs->flags & COF_LONGLIST) { 1048 mdb_printf(" %-?p %-?p %-?p %-?p", 1049 co->c_idprev, co->c_idnext, co->c_clprev, 1050 co->c_clnext); 1051 mdb_printf(" %-?p %-4d %-0?p", 1052 co->c_done, co->c_waiting, co->c_executor); 1053 } 1054 } else { 1055 /* address only */ 1056 mdb_printf("%-0p", addr); 1057 } 1058 mdb_printf("\n"); 1059 return (WALK_NEXT); 1060 } 1061 1062 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 1063 /*ARGSUSED*/ 1064 static int 1065 callout_list_cb(uintptr_t addr, const void *data, void *priv) 1066 { 1067 callout_data_t *coargs = (callout_data_t *)priv; 1068 callout_list_t *cl = (callout_list_t *)data; 1069 callout_t *coptr; 1070 int list_flags; 1071 1072 if ((coargs == NULL) || (cl == NULL)) { 1073 return (WALK_ERR); 1074 } 1075 1076 coargs->exp = cl->cl_expiration; 1077 coargs->list_flags = cl->cl_flags; 1078 if ((coargs->flags & COF_FREE) && 1079 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1080 /* 1081 * The callout list must have been reallocated. No point in 1082 * walking any more. 1083 */ 1084 return (WALK_DONE); 1085 } 1086 if (!(coargs->flags & COF_FREE) && 1087 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1088 /* 1089 * The callout list must have been freed. No point in 1090 * walking any more. 1091 */ 1092 return (WALK_DONE); 1093 } 1094 if ((coargs->flags & COF_TIME) && 1095 (cl->cl_expiration != coargs->time)) { 1096 return (WALK_NEXT); 1097 } 1098 if ((coargs->flags & COF_BEFORE) && 1099 (cl->cl_expiration > coargs->btime)) { 1100 return (WALK_NEXT); 1101 } 1102 if ((coargs->flags & COF_AFTER) && 1103 (cl->cl_expiration < coargs->atime)) { 1104 return (WALK_NEXT); 1105 } 1106 if (!(coargs->flags & COF_EMPTY) && 1107 (cl->cl_callouts.ch_head == NULL)) { 1108 return (WALK_NEXT); 1109 } 1110 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 1111 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1112 /* both flags are set, only skip "regular" ones */ 1113 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 1114 return (WALK_NEXT); 1115 } 1116 } else { 1117 if ((coargs->flags & COF_HIRES) && 1118 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1119 return (WALK_NEXT); 1120 } 1121 if ((coargs->flags & COF_ABS) && 1122 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1123 return (WALK_NEXT); 1124 } 1125 } 1126 1127 if ((coargs->flags & COF_HEAP) && 1128 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1129 return (WALK_NEXT); 1130 } 1131 1132 if ((coargs->flags & COF_QUEUE) && 1133 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1134 return (WALK_NEXT); 1135 } 1136 1137 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 1138 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 1139 if (!(coargs->flags & COF_VERBOSE)) { 1140 /* don't be redundant again */ 1141 mdb_printf("%<u>SEQ T %</u>"); 1142 } 1143 mdb_printf("%<u>EXP HA BUCKET " 1144 "CALLOUTS %</u>"); 1145 1146 if (coargs->flags & COF_LONGLIST) { 1147 mdb_printf("%<u> %-?s %-?s%</u>", 1148 "PREV", "NEXT"); 1149 } 1150 mdb_printf("\n"); 1151 coargs->flags &= ~COF_LHDR; 1152 coargs->flags |= (COF_THDR | COF_CHDR); 1153 } 1154 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 1155 if (!(coargs->flags & COF_ADDR)) { 1156 if (!(coargs->flags & COF_VERBOSE)) { 1157 mdb_printf("%3d %1s ", 1158 TABLE_TO_SEQID(coargs->ndx), 1159 co_typenames[coargs->ndx & 1160 CALLOUT_TYPE_MASK]); 1161 } 1162 1163 list_flags = coargs->list_flags; 1164 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 1165 (coargs->flags & COF_EXPREL) ? 1166 coargs->exp - coargs->now : coargs->exp, 1167 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1168 "H" : " ", 1169 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1170 "A" : " ", 1171 coargs->bucket, cl->cl_callouts.ch_head); 1172 1173 if (coargs->flags & COF_LONGLIST) { 1174 mdb_printf(" %-?p %-?p", 1175 cl->cl_prev, cl->cl_next); 1176 } 1177 } else { 1178 /* address only */ 1179 mdb_printf("%-0p", addr); 1180 } 1181 mdb_printf("\n"); 1182 if (coargs->flags & COF_LIST) { 1183 return (WALK_NEXT); 1184 } 1185 } 1186 /* yet another layer as we walk the actual callouts via list. */ 1187 if (cl->cl_callouts.ch_head == NULL) { 1188 return (WALK_NEXT); 1189 } 1190 /* free list structures do not have valid callouts off of them. */ 1191 if (coargs->flags & COF_FREE) { 1192 return (WALK_NEXT); 1193 } 1194 coptr = (callout_t *)cl->cl_callouts.ch_head; 1195 1196 if (coargs->flags & COF_VERBOSE) { 1197 mdb_inc_indent(4); 1198 } 1199 /* 1200 * walk callouts using yet another callback routine. 1201 * we use callouts_bytime because id hash is handled via 1202 * the callout_t_cb callback. 1203 */ 1204 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1205 (uintptr_t)coptr) == -1) { 1206 mdb_warn("cannot walk callouts at %p", coptr); 1207 return (WALK_ERR); 1208 } 1209 if (coargs->flags & COF_VERBOSE) { 1210 mdb_dec_indent(4); 1211 } 1212 1213 return (WALK_NEXT); 1214 } 1215 1216 /* this callback handles the details of callout table walking. */ 1217 static int 1218 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1219 { 1220 callout_data_t *coargs = (callout_data_t *)priv; 1221 cot_data_t *cotwd = (cot_data_t *)data; 1222 callout_table_t *ct = &(cotwd->ct); 1223 int index, seqid, cotype; 1224 int i; 1225 callout_list_t *clptr; 1226 callout_t *coptr; 1227 1228 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1229 return (WALK_ERR); 1230 } 1231 1232 index = ((char *)addr - (char *)coargs->co_table) / 1233 sizeof (callout_table_t); 1234 cotype = index & CALLOUT_TYPE_MASK; 1235 seqid = TABLE_TO_SEQID(index); 1236 1237 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1238 return (WALK_NEXT); 1239 } 1240 1241 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1242 return (WALK_NEXT); 1243 } 1244 1245 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1246 return (WALK_NEXT); 1247 } 1248 1249 if (!(coargs->flags & COF_EMPTY) && ( 1250 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) { 1251 return (WALK_NEXT); 1252 } 1253 1254 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1255 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1256 /* print table hdr */ 1257 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1258 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1259 coargs->flags &= ~COF_THDR; 1260 coargs->flags |= (COF_LHDR | COF_CHDR); 1261 if (coargs->flags & COF_LONGLIST) { 1262 /* more info! */ 1263 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1264 " %-?s %-?s %-?s%</u>", 1265 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1266 "PEND", "FREE", "LOCK"); 1267 } 1268 mdb_printf("\n"); 1269 } 1270 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1271 if (!(coargs->flags & COF_ADDR)) { 1272 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1273 seqid, co_typenames[cotype], 1274 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1275 ct->ct_heap); 1276 if (coargs->flags & COF_LONGLIST) { 1277 /* more info! */ 1278 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1279 " %-?lld %-?lld %-?p", 1280 ct->ct_heap_num, ct->ct_heap_max, 1281 ct->ct_taskq, ct->ct_expired.ch_head, 1282 ct->ct_queue.ch_head, 1283 cotwd->ct_timeouts_pending, 1284 cotwd->ct_allocations - 1285 cotwd->ct_timeouts_pending, 1286 ct->ct_mutex); 1287 } 1288 } else { 1289 /* address only */ 1290 mdb_printf("%-0?p", addr); 1291 } 1292 mdb_printf("\n"); 1293 if (coargs->flags & COF_TABLE) { 1294 return (WALK_NEXT); 1295 } 1296 } 1297 1298 coargs->ndx = index; 1299 if (coargs->flags & COF_VERBOSE) { 1300 mdb_inc_indent(4); 1301 } 1302 /* keep digging. */ 1303 if (!(coargs->flags & COF_BYIDH)) { 1304 /* walk the list hash table */ 1305 if (coargs->flags & COF_FREE) { 1306 clptr = ct->ct_lfree; 1307 coargs->bucket = 0; 1308 if (clptr == NULL) { 1309 return (WALK_NEXT); 1310 } 1311 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1312 (uintptr_t)clptr) == -1) { 1313 mdb_warn("cannot walk callout free list at %p", 1314 clptr); 1315 return (WALK_ERR); 1316 } 1317 } else { 1318 /* first print the expired list. */ 1319 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1320 if (clptr != NULL) { 1321 coargs->bucket = -1; 1322 if (mdb_pwalk("callout_list", callout_list_cb, 1323 coargs, (uintptr_t)clptr) == -1) { 1324 mdb_warn("cannot walk callout_list" 1325 " at %p", clptr); 1326 return (WALK_ERR); 1327 } 1328 } 1329 /* then, print the callout queue */ 1330 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1331 if (clptr != NULL) { 1332 coargs->bucket = -1; 1333 if (mdb_pwalk("callout_list", callout_list_cb, 1334 coargs, (uintptr_t)clptr) == -1) { 1335 mdb_warn("cannot walk callout_list" 1336 " at %p", clptr); 1337 return (WALK_ERR); 1338 } 1339 } 1340 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1341 if (ct->ct_clhash == NULL) { 1342 /* nothing to do */ 1343 break; 1344 } 1345 if (cotwd->cot_clhash[i].ch_head == NULL) { 1346 continue; 1347 } 1348 clptr = (callout_list_t *) 1349 cotwd->cot_clhash[i].ch_head; 1350 coargs->bucket = i; 1351 /* walk list with callback routine. */ 1352 if (mdb_pwalk("callout_list", callout_list_cb, 1353 coargs, (uintptr_t)clptr) == -1) { 1354 mdb_warn("cannot walk callout_list" 1355 " at %p", clptr); 1356 return (WALK_ERR); 1357 } 1358 } 1359 } 1360 } else { 1361 /* walk the id hash table. */ 1362 if (coargs->flags & COF_FREE) { 1363 coptr = ct->ct_free; 1364 coargs->bucket = 0; 1365 if (coptr == NULL) { 1366 return (WALK_NEXT); 1367 } 1368 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1369 (uintptr_t)coptr) == -1) { 1370 mdb_warn("cannot walk callout id free list" 1371 " at %p", coptr); 1372 return (WALK_ERR); 1373 } 1374 } else { 1375 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1376 if (ct->ct_idhash == NULL) { 1377 break; 1378 } 1379 coptr = (callout_t *) 1380 cotwd->cot_idhash[i].ch_head; 1381 if (coptr == NULL) { 1382 continue; 1383 } 1384 coargs->bucket = i; 1385 1386 /* 1387 * walk callouts directly by id. For id 1388 * chain, the callout list is just a header, 1389 * so there's no need to walk it. 1390 */ 1391 if (mdb_pwalk("callouts_byid", callouts_cb, 1392 coargs, (uintptr_t)coptr) == -1) { 1393 mdb_warn("cannot walk callouts at %p", 1394 coptr); 1395 return (WALK_ERR); 1396 } 1397 } 1398 } 1399 } 1400 if (coargs->flags & COF_VERBOSE) { 1401 mdb_dec_indent(4); 1402 } 1403 return (WALK_NEXT); 1404 } 1405 1406 /* 1407 * initialize some common info for both callout dcmds. 1408 */ 1409 int 1410 callout_common_init(callout_data_t *coargs) 1411 { 1412 /* we need a couple of things */ 1413 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1414 mdb_warn("failed to read 'callout_table'"); 1415 return (DCMD_ERR); 1416 } 1417 /* need to get now in nsecs. Approximate with hrtime vars */ 1418 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1419 sizeof (hrtime_t)) { 1420 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1421 "hrtime_base") != sizeof (hrtime_t)) { 1422 mdb_warn("Could not determine current system time"); 1423 return (DCMD_ERR); 1424 } 1425 } 1426 1427 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1428 mdb_warn("failed to read 'callout_table_bits'"); 1429 return (DCMD_ERR); 1430 } 1431 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1432 mdb_warn("failed to read 'nsec_per_tick'"); 1433 return (DCMD_ERR); 1434 } 1435 return (DCMD_OK); 1436 } 1437 1438 /* 1439 * dcmd to print callouts. Optional addr limits to specific table. 1440 * Parses lots of options that get passed to callbacks for walkers. 1441 * Has it's own help function. 1442 */ 1443 /*ARGSUSED*/ 1444 int 1445 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1446 { 1447 callout_data_t coargs; 1448 /* getopts doesn't help much with stuff like this */ 1449 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1450 char *funcname = NULL; 1451 char *paramstr = NULL; 1452 uintptr_t Stmp, Ctmp; /* for getopt. */ 1453 int retval; 1454 1455 coargs.flags = COF_DEFAULT; 1456 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1457 coargs.seqid = -1; 1458 1459 if (mdb_getopts(argc, argv, 1460 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1461 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1462 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1463 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1464 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1465 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1466 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1467 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1468 'd', MDB_OPT_SETBITS, 1, &dflag, 1469 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1470 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1471 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1472 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1473 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1474 'k', MDB_OPT_SETBITS, 1, &kflag, 1475 'f', MDB_OPT_STR, &funcname, 1476 'p', MDB_OPT_STR, ¶mstr, 1477 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1478 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1479 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1480 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1481 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1482 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1483 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1484 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1485 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1486 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1487 NULL) != argc) { 1488 return (DCMD_USAGE); 1489 } 1490 1491 /* initialize from kernel variables */ 1492 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1493 return (retval); 1494 } 1495 1496 /* do some option post-processing */ 1497 if (kflag) { 1498 coargs.time *= coargs.nsec_per_tick; 1499 coargs.atime *= coargs.nsec_per_tick; 1500 coargs.btime *= coargs.nsec_per_tick; 1501 } 1502 1503 if (dflag) { 1504 coargs.time += coargs.now; 1505 coargs.atime += coargs.now; 1506 coargs.btime += coargs.now; 1507 } 1508 if (Sflag) { 1509 if (flags & DCMD_ADDRSPEC) { 1510 mdb_printf("-S option conflicts with explicit" 1511 " address\n"); 1512 return (DCMD_USAGE); 1513 } 1514 coargs.flags |= COF_SEQID; 1515 coargs.seqid = (int)Stmp; 1516 } 1517 if (Cflag) { 1518 if (flags & DCMD_ADDRSPEC) { 1519 mdb_printf("-C option conflicts with explicit" 1520 " address\n"); 1521 return (DCMD_USAGE); 1522 } 1523 if (coargs.flags & COF_SEQID) { 1524 mdb_printf("-C and -S are mutually exclusive\n"); 1525 return (DCMD_USAGE); 1526 } 1527 coargs.cpu = (cpu_t *)Ctmp; 1528 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1529 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1530 mdb_warn("failed to read cpu_t at %p", Ctmp); 1531 return (DCMD_ERR); 1532 } 1533 coargs.flags |= COF_SEQID; 1534 } 1535 /* avoid null outputs. */ 1536 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1537 coargs.flags |= COF_REAL | COF_NORM; 1538 } 1539 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1540 coargs.flags |= COF_LONG | COF_SHORT; 1541 } 1542 if (tflag) { 1543 if (aflag || bflag) { 1544 mdb_printf("-t and -a|b are mutually exclusive\n"); 1545 return (DCMD_USAGE); 1546 } 1547 coargs.flags |= COF_TIME; 1548 } 1549 if (aflag) { 1550 coargs.flags |= COF_AFTER; 1551 } 1552 if (bflag) { 1553 coargs.flags |= COF_BEFORE; 1554 } 1555 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1556 mdb_printf("value for -a must be earlier than the value" 1557 " for -b.\n"); 1558 return (DCMD_USAGE); 1559 } 1560 1561 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1562 mdb_printf("-H and -Q are mutually exclusive\n"); 1563 return (DCMD_USAGE); 1564 } 1565 1566 if (funcname != NULL) { 1567 GElf_Sym sym; 1568 1569 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1570 coargs.funcaddr = mdb_strtoull(funcname); 1571 } else { 1572 coargs.funcaddr = sym.st_value; 1573 } 1574 coargs.flags |= COF_FUNC; 1575 } 1576 1577 if (paramstr != NULL) { 1578 GElf_Sym sym; 1579 1580 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1581 coargs.param = mdb_strtoull(paramstr); 1582 } else { 1583 coargs.param = sym.st_value; 1584 } 1585 coargs.flags |= COF_PARAM; 1586 } 1587 1588 if (!(flags & DCMD_ADDRSPEC)) { 1589 /* don't pass "dot" if no addr. */ 1590 addr = 0; 1591 } 1592 if (addr != 0) { 1593 /* 1594 * a callout table was specified. Ignore -r|n option 1595 * to avoid null output. 1596 */ 1597 coargs.flags |= (COF_REAL | COF_NORM); 1598 } 1599 1600 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1601 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1602 } 1603 if (coargs.flags & COF_FREE) { 1604 coargs.flags |= COF_EMPTY; 1605 /* -F = free callouts, -FL = free lists */ 1606 if (!(coargs.flags & COF_LIST)) { 1607 coargs.flags |= COF_BYIDH; 1608 } 1609 } 1610 1611 /* walk table, using specialized callback routine. */ 1612 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1613 mdb_warn("cannot walk callout_table"); 1614 return (DCMD_ERR); 1615 } 1616 return (DCMD_OK); 1617 } 1618 1619 1620 /* 1621 * Given an extended callout id, dump its information. 1622 */ 1623 /*ARGSUSED*/ 1624 int 1625 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1626 { 1627 callout_data_t coargs; 1628 callout_table_t *ctptr; 1629 callout_table_t ct; 1630 callout_id_t coid; 1631 callout_t *coptr; 1632 int tableid; 1633 callout_id_t xid; 1634 ulong_t idhash; 1635 int i, retval; 1636 const mdb_arg_t *arg; 1637 size_t size; 1638 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1639 1640 coargs.flags = COF_DEFAULT | COF_BYIDH; 1641 i = mdb_getopts(argc, argv, 1642 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1643 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1644 NULL); 1645 argc -= i; 1646 argv += i; 1647 1648 if (argc != 1) { 1649 return (DCMD_USAGE); 1650 } 1651 arg = &argv[0]; 1652 1653 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1654 xid = arg->a_un.a_val; 1655 } else { 1656 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1657 } 1658 1659 if (DCMD_HDRSPEC(flags)) { 1660 coargs.flags |= COF_CHDR; 1661 } 1662 1663 1664 /* initialize from kernel variables */ 1665 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1666 return (retval); 1667 } 1668 1669 /* we must massage the environment so that the macros will play nice */ 1670 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1671 #define callout_table_bits coargs.ctbits 1672 #define nsec_per_tick coargs.nsec_per_tick 1673 tableid = CALLOUT_ID_TO_TABLE(xid); 1674 idhash = CALLOUT_IDHASH(xid); 1675 #undef callouts_table_bits 1676 #undef callout_table_mask 1677 #undef nsec_per_tick 1678 coid = CO_PLAIN_ID(xid); 1679 1680 if (flags & DCMD_ADDRSPEC) { 1681 mdb_printf("calloutid does not accept explicit address.\n"); 1682 return (DCMD_USAGE); 1683 } 1684 1685 if (coargs.flags & COF_DECODE) { 1686 if (DCMD_HDRSPEC(flags)) { 1687 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1688 "SEQ", "T", "XL", "XID", "IDHASH"); 1689 } 1690 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1691 TABLE_TO_SEQID(tableid), 1692 co_typenames[tableid & CALLOUT_TYPE_MASK], 1693 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1694 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1695 (long long)coid, idhash); 1696 return (DCMD_OK); 1697 } 1698 1699 /* get our table. Note this relies on the types being correct */ 1700 ctptr = coargs.co_table + tableid; 1701 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1702 mdb_warn("failed to read callout_table at %p", ctptr); 1703 return (DCMD_ERR); 1704 } 1705 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1706 if (ct.ct_idhash != NULL) { 1707 if (mdb_vread(&(cot_idhash), size, 1708 (uintptr_t)ct.ct_idhash) == -1) { 1709 mdb_warn("failed to read id_hash at %p", 1710 ct.ct_idhash); 1711 return (WALK_ERR); 1712 } 1713 } 1714 1715 /* callout at beginning of hash chain */ 1716 if (ct.ct_idhash == NULL) { 1717 mdb_printf("id hash chain for this xid is empty\n"); 1718 return (DCMD_ERR); 1719 } 1720 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1721 if (coptr == NULL) { 1722 mdb_printf("id hash chain for this xid is empty\n"); 1723 return (DCMD_ERR); 1724 } 1725 1726 coargs.ndx = tableid; 1727 coargs.bucket = idhash; 1728 1729 /* use the walker, luke */ 1730 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1731 (uintptr_t)coptr) == -1) { 1732 mdb_warn("cannot walk callouts at %p", coptr); 1733 return (WALK_ERR); 1734 } 1735 1736 return (DCMD_OK); 1737 } 1738 1739 void 1740 callout_help(void) 1741 { 1742 mdb_printf("callout: display callouts.\n" 1743 "Given a callout table address, display callouts from table.\n" 1744 "Without an address, display callouts from all tables.\n" 1745 "options:\n" 1746 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1747 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1748 " -x : limit display to callouts which are executing\n" 1749 " -h : limit display to callouts based on hrestime\n" 1750 " -B : limit display to callouts based on absolute time\n" 1751 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1752 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1753 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1754 " -d : interpret time option to -t|a|b as delta from current time\n" 1755 " -k : use ticks instead of nanoseconds as arguments to" 1756 " -t|a|b. Note that\n ticks are less accurate and may not" 1757 " match other tick times (ie: lbolt).\n" 1758 " -D : display exiration time as delta from current time\n" 1759 " -S seqid : limit display to callouts for this cpu sequence id\n" 1760 " -C addr : limit display to callouts for this cpu pointer\n" 1761 " -f name|addr : limit display to callouts with this function\n" 1762 " -p name|addr : limit display to callouts functions with this" 1763 " parameter\n" 1764 " -T : display the callout table itself, instead of callouts\n" 1765 " -L : display callout lists instead of callouts\n" 1766 " -E : with -T or L, display empty data structures.\n" 1767 " -i : traverse callouts by id hash instead of list hash\n" 1768 " -F : walk free callout list (free list with -i) instead\n" 1769 " -v : display more info for each item\n" 1770 " -V : show details of each level of info as it is traversed\n" 1771 " -H : limit display to callouts in the callout heap\n" 1772 " -Q : limit display to callouts in the callout queue\n" 1773 " -A : show only addresses. Useful for pipelines.\n"); 1774 } 1775 1776 void 1777 calloutid_help(void) 1778 { 1779 mdb_printf("calloutid: display callout by id.\n" 1780 "Given an extended callout id, display the callout infomation.\n" 1781 "options:\n" 1782 " -d : do not dereference callout, just decode the id.\n" 1783 " -v : verbose display more info about the callout\n"); 1784 } 1785 1786 /*ARGSUSED*/ 1787 int 1788 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1789 { 1790 long num_classes, i; 1791 sclass_t *class_tbl; 1792 GElf_Sym g_sclass; 1793 char class_name[PC_CLNMSZ]; 1794 size_t tbl_size; 1795 1796 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1797 mdb_warn("failed to find symbol sclass\n"); 1798 return (DCMD_ERR); 1799 } 1800 1801 tbl_size = (size_t)g_sclass.st_size; 1802 num_classes = tbl_size / (sizeof (sclass_t)); 1803 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1804 1805 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1806 mdb_warn("failed to read sclass"); 1807 return (DCMD_ERR); 1808 } 1809 1810 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1811 "INIT FCN", "CLASS FCN"); 1812 1813 for (i = 0; i < num_classes; i++) { 1814 if (mdb_vread(class_name, sizeof (class_name), 1815 (uintptr_t)class_tbl[i].cl_name) == -1) 1816 (void) strcpy(class_name, "???"); 1817 1818 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1819 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1820 } 1821 1822 return (DCMD_OK); 1823 } 1824 1825 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1826 1827 int 1828 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1829 { 1830 uintptr_t rootdir; 1831 vnode_t vn; 1832 char buf[MAXPATHLEN]; 1833 1834 uint_t opt_F = FALSE; 1835 1836 if (mdb_getopts(argc, argv, 1837 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1838 return (DCMD_USAGE); 1839 1840 if (!(flags & DCMD_ADDRSPEC)) { 1841 mdb_warn("expected explicit vnode_t address before ::\n"); 1842 return (DCMD_USAGE); 1843 } 1844 1845 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1846 mdb_warn("failed to read rootdir"); 1847 return (DCMD_ERR); 1848 } 1849 1850 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1851 return (DCMD_ERR); 1852 1853 if (*buf == '\0') { 1854 mdb_printf("??\n"); 1855 return (DCMD_OK); 1856 } 1857 1858 mdb_printf("%s", buf); 1859 if (opt_F && buf[strlen(buf)-1] != '/' && 1860 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1861 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1862 mdb_printf("\n"); 1863 1864 return (DCMD_OK); 1865 } 1866 1867 int 1868 ld_walk_init(mdb_walk_state_t *wsp) 1869 { 1870 wsp->walk_data = (void *)wsp->walk_addr; 1871 return (WALK_NEXT); 1872 } 1873 1874 int 1875 ld_walk_step(mdb_walk_state_t *wsp) 1876 { 1877 int status; 1878 lock_descriptor_t ld; 1879 1880 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1881 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1882 wsp->walk_addr); 1883 return (WALK_ERR); 1884 } 1885 1886 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1887 if (status == WALK_ERR) 1888 return (WALK_ERR); 1889 1890 wsp->walk_addr = (uintptr_t)ld.l_next; 1891 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1892 return (WALK_DONE); 1893 1894 return (status); 1895 } 1896 1897 int 1898 lg_walk_init(mdb_walk_state_t *wsp) 1899 { 1900 GElf_Sym sym; 1901 1902 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1903 mdb_warn("failed to find symbol 'lock_graph'\n"); 1904 return (WALK_ERR); 1905 } 1906 1907 wsp->walk_addr = (uintptr_t)sym.st_value; 1908 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1909 1910 return (WALK_NEXT); 1911 } 1912 1913 typedef struct lg_walk_data { 1914 uintptr_t startaddr; 1915 mdb_walk_cb_t callback; 1916 void *data; 1917 } lg_walk_data_t; 1918 1919 /* 1920 * We can't use ::walk lock_descriptor directly, because the head of each graph 1921 * is really a dummy lock. Rather than trying to dynamically determine if this 1922 * is a dummy node or not, we just filter out the initial element of the 1923 * list. 1924 */ 1925 static int 1926 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1927 { 1928 lg_walk_data_t *lw = priv; 1929 1930 if (addr != lw->startaddr) 1931 return (lw->callback(addr, data, lw->data)); 1932 1933 return (WALK_NEXT); 1934 } 1935 1936 int 1937 lg_walk_step(mdb_walk_state_t *wsp) 1938 { 1939 graph_t *graph; 1940 lg_walk_data_t lw; 1941 1942 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1943 return (WALK_DONE); 1944 1945 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1946 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1947 return (WALK_ERR); 1948 } 1949 1950 wsp->walk_addr += sizeof (graph); 1951 1952 if (graph == NULL) 1953 return (WALK_NEXT); 1954 1955 lw.callback = wsp->walk_callback; 1956 lw.data = wsp->walk_cbdata; 1957 1958 lw.startaddr = (uintptr_t)&(graph->active_locks); 1959 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1960 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1961 return (WALK_ERR); 1962 } 1963 1964 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1965 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1966 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1967 return (WALK_ERR); 1968 } 1969 1970 return (WALK_NEXT); 1971 } 1972 1973 /* 1974 * The space available for the path corresponding to the locked vnode depends 1975 * on whether we are printing 32- or 64-bit addresses. 1976 */ 1977 #ifdef _LP64 1978 #define LM_VNPATHLEN 20 1979 #else 1980 #define LM_VNPATHLEN 30 1981 #endif 1982 1983 typedef struct mdb_lminfo_proc { 1984 struct { 1985 char u_comm[MAXCOMLEN + 1]; 1986 } p_user; 1987 } mdb_lminfo_proc_t; 1988 1989 /*ARGSUSED*/ 1990 static int 1991 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1992 { 1993 const lock_descriptor_t *ld = data; 1994 char buf[LM_VNPATHLEN]; 1995 mdb_lminfo_proc_t p; 1996 uintptr_t paddr = 0; 1997 1998 if (ld->l_flock.l_pid != 0) 1999 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL); 2000 2001 if (paddr != 0) 2002 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0); 2003 2004 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 2005 addr, ld->l_type == F_RDLCK ? "RD" : 2006 ld->l_type == F_WRLCK ? "WR" : "??", 2007 ld->l_state, ld->l_flock.l_pid, 2008 ld->l_flock.l_pid == 0 ? "<kernel>" : 2009 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode); 2010 2011 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 2012 sizeof (buf)); 2013 mdb_printf("%s\n", buf); 2014 2015 return (WALK_NEXT); 2016 } 2017 2018 /*ARGSUSED*/ 2019 int 2020 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2021 { 2022 if (DCMD_HDRSPEC(flags)) 2023 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 2024 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 2025 2026 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0)); 2027 } 2028 2029 /*ARGSUSED*/ 2030 int 2031 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 2032 { 2033 if ((uintptr_t)f->f_vnode == *target) { 2034 mdb_printf("file %p\n", addr); 2035 *target = 0; 2036 } 2037 2038 return (WALK_NEXT); 2039 } 2040 2041 /*ARGSUSED*/ 2042 int 2043 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 2044 { 2045 uintptr_t t = *target; 2046 2047 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 2048 mdb_warn("couldn't file walk proc %p", addr); 2049 return (WALK_ERR); 2050 } 2051 2052 if (t == 0) 2053 mdb_printf("%p\n", addr); 2054 2055 return (WALK_NEXT); 2056 } 2057 2058 /*ARGSUSED*/ 2059 int 2060 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2061 { 2062 uintptr_t target = addr; 2063 2064 if (!(flags & DCMD_ADDRSPEC) || addr == 0) 2065 return (DCMD_USAGE); 2066 2067 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 2068 mdb_warn("can't proc walk"); 2069 return (DCMD_ERR); 2070 } 2071 2072 return (DCMD_OK); 2073 } 2074 2075 typedef struct datafmt { 2076 char *hdr1; 2077 char *hdr2; 2078 char *dashes; 2079 char *fmt; 2080 } datafmt_t; 2081 2082 static datafmt_t kmemfmt[] = { 2083 { "cache ", "name ", 2084 "-------------------------", "%-25s " }, 2085 { " buf", " size", "------", "%6u " }, 2086 { " buf", "in use", "------", "%6u " }, 2087 { " buf", " total", "------", "%6u " }, 2088 { " memory", " in use", "----------", "%10lu%c " }, 2089 { " alloc", " succeed", "---------", "%9u " }, 2090 { "alloc", " fail", "-----", "%5u " }, 2091 { NULL, NULL, NULL, NULL } 2092 }; 2093 2094 static datafmt_t vmemfmt[] = { 2095 { "vmem ", "name ", 2096 "-------------------------", "%-*s " }, 2097 { " memory", " in use", "----------", "%9llu%c " }, 2098 { " memory", " total", "-----------", "%10llu%c " }, 2099 { " memory", " import", "----------", "%9llu%c " }, 2100 { " alloc", " succeed", "---------", "%9llu " }, 2101 { "alloc", " fail", "-----", "%5llu " }, 2102 { NULL, NULL, NULL, NULL } 2103 }; 2104 2105 /*ARGSUSED*/ 2106 static int 2107 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2108 { 2109 short rounds, prounds; 2110 2111 if (KMEM_DUMPCC(ccp)) { 2112 rounds = ccp->cc_dump_rounds; 2113 prounds = ccp->cc_dump_prounds; 2114 } else { 2115 rounds = ccp->cc_rounds; 2116 prounds = ccp->cc_prounds; 2117 } 2118 if (rounds > 0) 2119 *avail += rounds; 2120 if (prounds > 0) 2121 *avail += prounds; 2122 2123 return (WALK_NEXT); 2124 } 2125 2126 /*ARGSUSED*/ 2127 static int 2128 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2129 { 2130 *alloc += ccp->cc_alloc; 2131 2132 return (WALK_NEXT); 2133 } 2134 2135 /*ARGSUSED*/ 2136 static int 2137 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2138 { 2139 *avail += sp->slab_chunks - sp->slab_refcnt; 2140 2141 return (WALK_NEXT); 2142 } 2143 2144 typedef struct kmastat_vmem { 2145 uintptr_t kv_addr; 2146 struct kmastat_vmem *kv_next; 2147 size_t kv_meminuse; 2148 int kv_alloc; 2149 int kv_fail; 2150 } kmastat_vmem_t; 2151 2152 typedef struct kmastat_args { 2153 kmastat_vmem_t **ka_kvpp; 2154 uint_t ka_shift; 2155 } kmastat_args_t; 2156 2157 static int 2158 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2159 { 2160 kmastat_vmem_t **kvpp = kap->ka_kvpp; 2161 kmastat_vmem_t *kv; 2162 datafmt_t *dfp = kmemfmt; 2163 int magsize; 2164 2165 int avail, alloc, total; 2166 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2167 cp->cache_slabsize; 2168 2169 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2170 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2171 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2172 2173 magsize = kmem_get_magsize(cp); 2174 2175 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2176 avail = cp->cache_full.ml_total * magsize; 2177 total = cp->cache_buftotal; 2178 2179 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2180 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2181 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2182 2183 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2184 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2185 goto out; 2186 } 2187 2188 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2189 kv->kv_next = *kvpp; 2190 kv->kv_addr = (uintptr_t)cp->cache_arena; 2191 *kvpp = kv; 2192 out: 2193 kv->kv_meminuse += meminuse; 2194 kv->kv_alloc += alloc; 2195 kv->kv_fail += cp->cache_alloc_fail; 2196 2197 mdb_printf((dfp++)->fmt, cp->cache_name); 2198 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2199 mdb_printf((dfp++)->fmt, total - avail); 2200 mdb_printf((dfp++)->fmt, total); 2201 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2202 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2203 kap->ka_shift == KILOS ? 'K' : 'B'); 2204 mdb_printf((dfp++)->fmt, alloc); 2205 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2206 mdb_printf("\n"); 2207 2208 return (WALK_NEXT); 2209 } 2210 2211 static int 2212 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2213 { 2214 kmastat_vmem_t *kv = *kap->ka_kvpp; 2215 size_t len; 2216 2217 while (kv != NULL && kv->kv_addr != addr) 2218 kv = kv->kv_next; 2219 2220 if (kv == NULL || kv->kv_alloc == 0) 2221 return (WALK_NEXT); 2222 2223 len = MIN(17, strlen(v->vm_name)); 2224 2225 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2226 17 - len, "", "", "", "", 2227 kv->kv_meminuse >> kap->ka_shift, 2228 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2229 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2230 2231 return (WALK_NEXT); 2232 } 2233 2234 /*ARGSUSED*/ 2235 static int 2236 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2237 { 2238 datafmt_t *dfp = vmemfmt; 2239 const vmem_kstat_t *vkp = &v->vm_kstat; 2240 uintptr_t paddr; 2241 vmem_t parent; 2242 int ident = 0; 2243 2244 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) { 2245 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2246 mdb_warn("couldn't trace %p's ancestry", addr); 2247 ident = 0; 2248 break; 2249 } 2250 paddr = (uintptr_t)parent.vm_source; 2251 } 2252 2253 mdb_printf("%*s", ident, ""); 2254 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2255 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2256 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2257 *shiftp == KILOS ? 'K' : 'B'); 2258 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2259 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2260 *shiftp == KILOS ? 'K' : 'B'); 2261 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2262 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2263 *shiftp == KILOS ? 'K' : 'B'); 2264 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2265 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2266 2267 mdb_printf("\n"); 2268 2269 return (WALK_NEXT); 2270 } 2271 2272 /*ARGSUSED*/ 2273 int 2274 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2275 { 2276 kmastat_vmem_t *kv = NULL; 2277 datafmt_t *dfp; 2278 kmastat_args_t ka; 2279 2280 ka.ka_shift = 0; 2281 if (mdb_getopts(argc, argv, 2282 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2283 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2284 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2285 return (DCMD_USAGE); 2286 2287 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2288 mdb_printf("%s ", dfp->hdr1); 2289 mdb_printf("\n"); 2290 2291 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2292 mdb_printf("%s ", dfp->hdr2); 2293 mdb_printf("\n"); 2294 2295 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2296 mdb_printf("%s ", dfp->dashes); 2297 mdb_printf("\n"); 2298 2299 ka.ka_kvpp = &kv; 2300 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2301 mdb_warn("can't walk 'kmem_cache'"); 2302 return (DCMD_ERR); 2303 } 2304 2305 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2306 mdb_printf("%s ", dfp->dashes); 2307 mdb_printf("\n"); 2308 2309 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2310 mdb_warn("can't walk 'vmem'"); 2311 return (DCMD_ERR); 2312 } 2313 2314 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2315 mdb_printf("%s ", dfp->dashes); 2316 mdb_printf("\n"); 2317 2318 mdb_printf("\n"); 2319 2320 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2321 mdb_printf("%s ", dfp->hdr1); 2322 mdb_printf("\n"); 2323 2324 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2325 mdb_printf("%s ", dfp->hdr2); 2326 mdb_printf("\n"); 2327 2328 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2329 mdb_printf("%s ", dfp->dashes); 2330 mdb_printf("\n"); 2331 2332 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2333 mdb_warn("can't walk 'vmem'"); 2334 return (DCMD_ERR); 2335 } 2336 2337 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2338 mdb_printf("%s ", dfp->dashes); 2339 mdb_printf("\n"); 2340 return (DCMD_OK); 2341 } 2342 2343 /* 2344 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2345 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2346 * unfortunately, a few of the segs are both large and sparse, so we could 2347 * spend quite a bit of time scanning VAs which have no backing pages. 2348 * 2349 * So for the few very sparse segs, we skip the segment itself, and scan 2350 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2351 * Currently, we do this for: 2352 * 2353 * SEG VMEM ARENA 2354 * kvseg heap_arena 2355 * kvseg32 heap32_arena 2356 * kvseg_core heap_core_arena 2357 * 2358 * In addition, we skip the segkpm segment in its entirety, since it is very 2359 * sparse, and contains no new kernel data. 2360 */ 2361 typedef struct kgrep_walk_data { 2362 kgrep_cb_func *kg_cb; 2363 void *kg_cbdata; 2364 uintptr_t kg_kvseg; 2365 uintptr_t kg_kvseg32; 2366 uintptr_t kg_kvseg_core; 2367 uintptr_t kg_segkpm; 2368 uintptr_t kg_heap_lp_base; 2369 uintptr_t kg_heap_lp_end; 2370 } kgrep_walk_data_t; 2371 2372 static int 2373 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2374 { 2375 uintptr_t base = (uintptr_t)seg->s_base; 2376 2377 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2378 addr == kg->kg_kvseg_core) 2379 return (WALK_NEXT); 2380 2381 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2382 return (WALK_NEXT); 2383 2384 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2385 } 2386 2387 /*ARGSUSED*/ 2388 static int 2389 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2390 { 2391 /* 2392 * skip large page heap address range - it is scanned by walking 2393 * allocated vmem_segs in the heap_lp_arena 2394 */ 2395 if (seg->vs_start == kg->kg_heap_lp_base && 2396 seg->vs_end == kg->kg_heap_lp_end) 2397 return (WALK_NEXT); 2398 2399 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2400 } 2401 2402 /*ARGSUSED*/ 2403 static int 2404 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2405 { 2406 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2407 } 2408 2409 static int 2410 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2411 { 2412 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2413 2414 if (strcmp(vmem->vm_name, "heap") != 0 && 2415 strcmp(vmem->vm_name, "heap32") != 0 && 2416 strcmp(vmem->vm_name, "heap_core") != 0 && 2417 strcmp(vmem->vm_name, "heap_lp") != 0) 2418 return (WALK_NEXT); 2419 2420 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2421 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2422 2423 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2424 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2425 return (WALK_ERR); 2426 } 2427 2428 return (WALK_NEXT); 2429 } 2430 2431 int 2432 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2433 { 2434 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2435 kgrep_walk_data_t kg; 2436 2437 if (mdb_get_state() == MDB_STATE_RUNNING) { 2438 mdb_warn("kgrep can only be run on a system " 2439 "dump or under kmdb; see dumpadm(1M)\n"); 2440 return (DCMD_ERR); 2441 } 2442 2443 if (mdb_lookup_by_name("kas", &kas) == -1) { 2444 mdb_warn("failed to locate 'kas' symbol\n"); 2445 return (DCMD_ERR); 2446 } 2447 2448 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2449 mdb_warn("failed to locate 'kvseg' symbol\n"); 2450 return (DCMD_ERR); 2451 } 2452 2453 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2454 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2455 return (DCMD_ERR); 2456 } 2457 2458 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2459 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2460 return (DCMD_ERR); 2461 } 2462 2463 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2464 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2465 return (DCMD_ERR); 2466 } 2467 2468 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2469 mdb_warn("failed to read 'heap_lp_base'\n"); 2470 return (DCMD_ERR); 2471 } 2472 2473 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2474 mdb_warn("failed to read 'heap_lp_end'\n"); 2475 return (DCMD_ERR); 2476 } 2477 2478 kg.kg_cb = cb; 2479 kg.kg_cbdata = cbdata; 2480 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2481 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2482 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2483 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2484 2485 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2486 &kg, kas.st_value) == -1) { 2487 mdb_warn("failed to walk kas segments"); 2488 return (DCMD_ERR); 2489 } 2490 2491 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2492 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2493 return (DCMD_ERR); 2494 } 2495 2496 return (DCMD_OK); 2497 } 2498 2499 size_t 2500 kgrep_subr_pagesize(void) 2501 { 2502 return (PAGESIZE); 2503 } 2504 2505 typedef struct file_walk_data { 2506 struct uf_entry *fw_flist; 2507 int fw_flistsz; 2508 int fw_ndx; 2509 int fw_nofiles; 2510 } file_walk_data_t; 2511 2512 typedef struct mdb_file_proc { 2513 struct { 2514 struct { 2515 int fi_nfiles; 2516 uf_entry_t *volatile fi_list; 2517 } u_finfo; 2518 } p_user; 2519 } mdb_file_proc_t; 2520 2521 int 2522 file_walk_init(mdb_walk_state_t *wsp) 2523 { 2524 file_walk_data_t *fw; 2525 mdb_file_proc_t p; 2526 2527 if (wsp->walk_addr == 0) { 2528 mdb_warn("file walk doesn't support global walks\n"); 2529 return (WALK_ERR); 2530 } 2531 2532 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2533 2534 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t", 2535 wsp->walk_addr, 0) == -1) { 2536 mdb_free(fw, sizeof (file_walk_data_t)); 2537 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2538 return (WALK_ERR); 2539 } 2540 2541 if (p.p_user.u_finfo.fi_nfiles == 0) { 2542 mdb_free(fw, sizeof (file_walk_data_t)); 2543 return (WALK_DONE); 2544 } 2545 2546 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2547 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2548 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2549 2550 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2551 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2552 mdb_warn("failed to read file array at %p", 2553 p.p_user.u_finfo.fi_list); 2554 mdb_free(fw->fw_flist, fw->fw_flistsz); 2555 mdb_free(fw, sizeof (file_walk_data_t)); 2556 return (WALK_ERR); 2557 } 2558 2559 fw->fw_ndx = 0; 2560 wsp->walk_data = fw; 2561 2562 return (WALK_NEXT); 2563 } 2564 2565 int 2566 file_walk_step(mdb_walk_state_t *wsp) 2567 { 2568 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2569 struct file file; 2570 uintptr_t fp; 2571 2572 again: 2573 if (fw->fw_ndx == fw->fw_nofiles) 2574 return (WALK_DONE); 2575 2576 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0) 2577 goto again; 2578 2579 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2580 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2581 } 2582 2583 int 2584 allfile_walk_step(mdb_walk_state_t *wsp) 2585 { 2586 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2587 struct file file; 2588 uintptr_t fp; 2589 2590 if (fw->fw_ndx == fw->fw_nofiles) 2591 return (WALK_DONE); 2592 2593 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0) 2594 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2595 else 2596 bzero(&file, sizeof (file)); 2597 2598 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2599 } 2600 2601 void 2602 file_walk_fini(mdb_walk_state_t *wsp) 2603 { 2604 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2605 2606 mdb_free(fw->fw_flist, fw->fw_flistsz); 2607 mdb_free(fw, sizeof (file_walk_data_t)); 2608 } 2609 2610 int 2611 port_walk_init(mdb_walk_state_t *wsp) 2612 { 2613 if (wsp->walk_addr == 0) { 2614 mdb_warn("port walk doesn't support global walks\n"); 2615 return (WALK_ERR); 2616 } 2617 2618 if (mdb_layered_walk("file", wsp) == -1) { 2619 mdb_warn("couldn't walk 'file'"); 2620 return (WALK_ERR); 2621 } 2622 return (WALK_NEXT); 2623 } 2624 2625 int 2626 port_walk_step(mdb_walk_state_t *wsp) 2627 { 2628 struct vnode vn; 2629 uintptr_t vp; 2630 uintptr_t pp; 2631 struct port port; 2632 2633 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2634 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2635 mdb_warn("failed to read vnode_t at %p", vp); 2636 return (WALK_ERR); 2637 } 2638 if (vn.v_type != VPORT) 2639 return (WALK_NEXT); 2640 2641 pp = (uintptr_t)vn.v_data; 2642 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2643 mdb_warn("failed to read port_t at %p", pp); 2644 return (WALK_ERR); 2645 } 2646 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2647 } 2648 2649 typedef struct portev_walk_data { 2650 list_node_t *pev_node; 2651 list_node_t *pev_last; 2652 size_t pev_offset; 2653 } portev_walk_data_t; 2654 2655 int 2656 portev_walk_init(mdb_walk_state_t *wsp) 2657 { 2658 portev_walk_data_t *pevd; 2659 struct port port; 2660 struct vnode vn; 2661 struct list *list; 2662 uintptr_t vp; 2663 2664 if (wsp->walk_addr == 0) { 2665 mdb_warn("portev walk doesn't support global walks\n"); 2666 return (WALK_ERR); 2667 } 2668 2669 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2670 2671 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2672 mdb_free(pevd, sizeof (portev_walk_data_t)); 2673 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2674 return (WALK_ERR); 2675 } 2676 2677 vp = (uintptr_t)port.port_vnode; 2678 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2679 mdb_free(pevd, sizeof (portev_walk_data_t)); 2680 mdb_warn("failed to read vnode_t at %p", vp); 2681 return (WALK_ERR); 2682 } 2683 2684 if (vn.v_type != VPORT) { 2685 mdb_free(pevd, sizeof (portev_walk_data_t)); 2686 mdb_warn("input address (%p) does not point to an event port", 2687 wsp->walk_addr); 2688 return (WALK_ERR); 2689 } 2690 2691 if (port.port_queue.portq_nent == 0) { 2692 mdb_free(pevd, sizeof (portev_walk_data_t)); 2693 return (WALK_DONE); 2694 } 2695 list = &port.port_queue.portq_list; 2696 pevd->pev_offset = list->list_offset; 2697 pevd->pev_last = list->list_head.list_prev; 2698 pevd->pev_node = list->list_head.list_next; 2699 wsp->walk_data = pevd; 2700 return (WALK_NEXT); 2701 } 2702 2703 int 2704 portev_walk_step(mdb_walk_state_t *wsp) 2705 { 2706 portev_walk_data_t *pevd; 2707 struct port_kevent ev; 2708 uintptr_t evp; 2709 2710 pevd = (portev_walk_data_t *)wsp->walk_data; 2711 2712 if (pevd->pev_last == NULL) 2713 return (WALK_DONE); 2714 if (pevd->pev_node == pevd->pev_last) 2715 pevd->pev_last = NULL; /* last round */ 2716 2717 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2718 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2719 mdb_warn("failed to read port_kevent at %p", evp); 2720 return (WALK_DONE); 2721 } 2722 pevd->pev_node = ev.portkev_node.list_next; 2723 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2724 } 2725 2726 void 2727 portev_walk_fini(mdb_walk_state_t *wsp) 2728 { 2729 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2730 2731 if (pevd != NULL) 2732 mdb_free(pevd, sizeof (portev_walk_data_t)); 2733 } 2734 2735 typedef struct proc_walk_data { 2736 uintptr_t *pw_stack; 2737 int pw_depth; 2738 int pw_max; 2739 } proc_walk_data_t; 2740 2741 int 2742 proc_walk_init(mdb_walk_state_t *wsp) 2743 { 2744 GElf_Sym sym; 2745 proc_walk_data_t *pw; 2746 2747 if (wsp->walk_addr == 0) { 2748 if (mdb_lookup_by_name("p0", &sym) == -1) { 2749 mdb_warn("failed to read 'practive'"); 2750 return (WALK_ERR); 2751 } 2752 wsp->walk_addr = (uintptr_t)sym.st_value; 2753 } 2754 2755 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2756 2757 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2758 mdb_warn("failed to read 'nproc'"); 2759 mdb_free(pw, sizeof (pw)); 2760 return (WALK_ERR); 2761 } 2762 2763 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2764 wsp->walk_data = pw; 2765 2766 return (WALK_NEXT); 2767 } 2768 2769 typedef struct mdb_walk_proc { 2770 struct proc *p_child; 2771 struct proc *p_sibling; 2772 } mdb_walk_proc_t; 2773 2774 int 2775 proc_walk_step(mdb_walk_state_t *wsp) 2776 { 2777 proc_walk_data_t *pw = wsp->walk_data; 2778 uintptr_t addr = wsp->walk_addr; 2779 uintptr_t cld, sib; 2780 int status; 2781 mdb_walk_proc_t pr; 2782 2783 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2784 addr, 0) == -1) { 2785 mdb_warn("failed to read proc at %p", addr); 2786 return (WALK_DONE); 2787 } 2788 2789 cld = (uintptr_t)pr.p_child; 2790 sib = (uintptr_t)pr.p_sibling; 2791 2792 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2793 pw->pw_depth--; 2794 goto sib; 2795 } 2796 2797 /* 2798 * Always pass NULL as the local copy pointer. Consumers 2799 * should use mdb_ctf_vread() to read their own minimal 2800 * version of proc_t. Thus minimizing the chance of breakage 2801 * with older crash dumps. 2802 */ 2803 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata); 2804 2805 if (status != WALK_NEXT) 2806 return (status); 2807 2808 if ((wsp->walk_addr = cld) != 0) { 2809 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2810 cld, 0) == -1) { 2811 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2812 addr, cld); 2813 goto sib; 2814 } 2815 2816 pw->pw_stack[pw->pw_depth++] = addr; 2817 2818 if (pw->pw_depth == pw->pw_max) { 2819 mdb_warn("depth %d exceeds max depth; try again\n", 2820 pw->pw_depth); 2821 return (WALK_DONE); 2822 } 2823 return (WALK_NEXT); 2824 } 2825 2826 sib: 2827 /* 2828 * We know that p0 has no siblings, and if another starting proc 2829 * was given, we don't want to walk its siblings anyway. 2830 */ 2831 if (pw->pw_depth == 0) 2832 return (WALK_DONE); 2833 2834 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2835 sib, 0) == -1) { 2836 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2837 addr, sib); 2838 sib = 0; 2839 } 2840 2841 if ((wsp->walk_addr = sib) == 0) { 2842 if (pw->pw_depth > 0) { 2843 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2844 return (WALK_NEXT); 2845 } 2846 return (WALK_DONE); 2847 } 2848 2849 return (WALK_NEXT); 2850 } 2851 2852 void 2853 proc_walk_fini(mdb_walk_state_t *wsp) 2854 { 2855 proc_walk_data_t *pw = wsp->walk_data; 2856 2857 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2858 mdb_free(pw, sizeof (proc_walk_data_t)); 2859 } 2860 2861 int 2862 task_walk_init(mdb_walk_state_t *wsp) 2863 { 2864 task_t task; 2865 2866 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2867 mdb_warn("failed to read task at %p", wsp->walk_addr); 2868 return (WALK_ERR); 2869 } 2870 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2871 wsp->walk_data = task.tk_memb_list; 2872 return (WALK_NEXT); 2873 } 2874 2875 typedef struct mdb_task_proc { 2876 struct proc *p_tasknext; 2877 } mdb_task_proc_t; 2878 2879 int 2880 task_walk_step(mdb_walk_state_t *wsp) 2881 { 2882 mdb_task_proc_t proc; 2883 int status; 2884 2885 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t", 2886 wsp->walk_addr, 0) == -1) { 2887 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2888 return (WALK_DONE); 2889 } 2890 2891 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2892 2893 if (proc.p_tasknext == wsp->walk_data) 2894 return (WALK_DONE); 2895 2896 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2897 return (status); 2898 } 2899 2900 int 2901 project_walk_init(mdb_walk_state_t *wsp) 2902 { 2903 if (wsp->walk_addr == 0) { 2904 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2905 mdb_warn("failed to read 'proj0p'"); 2906 return (WALK_ERR); 2907 } 2908 } 2909 wsp->walk_data = (void *)wsp->walk_addr; 2910 return (WALK_NEXT); 2911 } 2912 2913 int 2914 project_walk_step(mdb_walk_state_t *wsp) 2915 { 2916 uintptr_t addr = wsp->walk_addr; 2917 kproject_t pj; 2918 int status; 2919 2920 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2921 mdb_warn("failed to read project at %p", addr); 2922 return (WALK_DONE); 2923 } 2924 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2925 if (status != WALK_NEXT) 2926 return (status); 2927 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2928 if ((void *)wsp->walk_addr == wsp->walk_data) 2929 return (WALK_DONE); 2930 return (WALK_NEXT); 2931 } 2932 2933 static int 2934 generic_walk_step(mdb_walk_state_t *wsp) 2935 { 2936 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2937 wsp->walk_cbdata)); 2938 } 2939 2940 static int 2941 cpu_walk_cmp(const void *l, const void *r) 2942 { 2943 uintptr_t lhs = *((uintptr_t *)l); 2944 uintptr_t rhs = *((uintptr_t *)r); 2945 cpu_t lcpu, rcpu; 2946 2947 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2948 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2949 2950 if (lcpu.cpu_id < rcpu.cpu_id) 2951 return (-1); 2952 2953 if (lcpu.cpu_id > rcpu.cpu_id) 2954 return (1); 2955 2956 return (0); 2957 } 2958 2959 typedef struct cpu_walk { 2960 uintptr_t *cw_array; 2961 int cw_ndx; 2962 } cpu_walk_t; 2963 2964 int 2965 cpu_walk_init(mdb_walk_state_t *wsp) 2966 { 2967 cpu_walk_t *cw; 2968 int max_ncpus, i = 0; 2969 uintptr_t current, first; 2970 cpu_t cpu, panic_cpu; 2971 uintptr_t panicstr, addr; 2972 GElf_Sym sym; 2973 2974 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2975 2976 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2977 mdb_warn("failed to read 'max_ncpus'"); 2978 return (WALK_ERR); 2979 } 2980 2981 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2982 mdb_warn("failed to read 'panicstr'"); 2983 return (WALK_ERR); 2984 } 2985 2986 if (panicstr != 0) { 2987 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2988 mdb_warn("failed to find 'panic_cpu'"); 2989 return (WALK_ERR); 2990 } 2991 2992 addr = (uintptr_t)sym.st_value; 2993 2994 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2995 mdb_warn("failed to read 'panic_cpu'"); 2996 return (WALK_ERR); 2997 } 2998 } 2999 3000 /* 3001 * Unfortunately, there is no platform-independent way to walk 3002 * CPUs in ID order. We therefore loop through in cpu_next order, 3003 * building an array of CPU pointers which will subsequently be 3004 * sorted. 3005 */ 3006 cw->cw_array = 3007 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 3008 3009 if (mdb_readvar(&first, "cpu_list") == -1) { 3010 mdb_warn("failed to read 'cpu_list'"); 3011 return (WALK_ERR); 3012 } 3013 3014 current = first; 3015 do { 3016 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 3017 mdb_warn("failed to read cpu at %p", current); 3018 return (WALK_ERR); 3019 } 3020 3021 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) { 3022 cw->cw_array[i++] = addr; 3023 } else { 3024 cw->cw_array[i++] = current; 3025 } 3026 } while ((current = (uintptr_t)cpu.cpu_next) != first); 3027 3028 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 3029 wsp->walk_data = cw; 3030 3031 return (WALK_NEXT); 3032 } 3033 3034 int 3035 cpu_walk_step(mdb_walk_state_t *wsp) 3036 { 3037 cpu_walk_t *cw = wsp->walk_data; 3038 cpu_t cpu; 3039 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 3040 3041 if (addr == 0) 3042 return (WALK_DONE); 3043 3044 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 3045 mdb_warn("failed to read cpu at %p", addr); 3046 return (WALK_DONE); 3047 } 3048 3049 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 3050 } 3051 3052 typedef struct cpuinfo_data { 3053 intptr_t cid_cpu; 3054 uintptr_t **cid_ithr; 3055 char cid_print_head; 3056 char cid_print_thr; 3057 char cid_print_ithr; 3058 char cid_print_flags; 3059 } cpuinfo_data_t; 3060 3061 int 3062 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 3063 { 3064 cpu_t c; 3065 int id; 3066 uint8_t pil; 3067 3068 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3069 return (WALK_NEXT); 3070 3071 if (thr->t_bound_cpu == NULL) { 3072 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3073 return (WALK_NEXT); 3074 } 3075 3076 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3077 3078 if ((id = c.cpu_id) >= NCPU) { 3079 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3080 thr->t_bound_cpu, id, NCPU); 3081 return (WALK_NEXT); 3082 } 3083 3084 if ((pil = thr->t_pil) >= NINTR) { 3085 mdb_warn("thread %p has pil (%d) greater than %d\n", 3086 addr, pil, NINTR); 3087 return (WALK_NEXT); 3088 } 3089 3090 if (cid->cid_ithr[id][pil] != 0) { 3091 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3092 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3093 return (WALK_NEXT); 3094 } 3095 3096 cid->cid_ithr[id][pil] = addr; 3097 3098 return (WALK_NEXT); 3099 } 3100 3101 #define CPUINFO_IDWIDTH 3 3102 #define CPUINFO_FLAGWIDTH 9 3103 3104 #ifdef _LP64 3105 #if defined(__amd64) 3106 #define CPUINFO_TWIDTH 16 3107 #define CPUINFO_CPUWIDTH 16 3108 #else 3109 #define CPUINFO_CPUWIDTH 11 3110 #define CPUINFO_TWIDTH 11 3111 #endif 3112 #else 3113 #define CPUINFO_CPUWIDTH 8 3114 #define CPUINFO_TWIDTH 8 3115 #endif 3116 3117 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3118 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3119 #define CPUINFO_ITHRDELT 4 3120 3121 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3122 flagline < nflaglines ? flagbuf[flagline++] : "") 3123 3124 typedef struct mdb_cpuinfo_proc { 3125 struct { 3126 char u_comm[MAXCOMLEN + 1]; 3127 } p_user; 3128 } mdb_cpuinfo_proc_t; 3129 3130 int 3131 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3132 { 3133 kthread_t t; 3134 disp_t disp; 3135 mdb_cpuinfo_proc_t p; 3136 uintptr_t pinned; 3137 char **flagbuf; 3138 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3139 3140 const char *flags[] = { 3141 "RUNNING", "READY", "QUIESCED", "EXISTS", 3142 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3143 "SPARE", "FAULTED", "DISABLED", NULL 3144 }; 3145 3146 if (cid->cid_cpu != -1) { 3147 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3148 return (WALK_NEXT); 3149 3150 /* 3151 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3152 */ 3153 cid->cid_cpu = -1; 3154 rval = WALK_DONE; 3155 } 3156 3157 if (cid->cid_print_head) { 3158 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3159 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3160 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3161 "PROC"); 3162 cid->cid_print_head = FALSE; 3163 } 3164 3165 bspl = cpu->cpu_base_spl; 3166 3167 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3168 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3169 return (WALK_ERR); 3170 } 3171 3172 mdb_printf("%3d %0*p %3x %4d %4d ", 3173 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3174 disp.disp_nrunnable, bspl); 3175 3176 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3177 mdb_printf("%3d ", t.t_pri); 3178 } else { 3179 mdb_printf("%3s ", "-"); 3180 } 3181 3182 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3183 cpu->cpu_kprunrun ? "yes" : "no"); 3184 3185 if (cpu->cpu_last_swtch) { 3186 mdb_printf("t-%-4d ", 3187 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 3188 } else { 3189 mdb_printf("%-6s ", "-"); 3190 } 3191 3192 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3193 3194 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3195 mdb_printf(" (idle)\n"); 3196 else if (cpu->cpu_thread == NULL) 3197 mdb_printf(" -\n"); 3198 else { 3199 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3200 (uintptr_t)t.t_procp, 0) != -1) { 3201 mdb_printf(" %s\n", p.p_user.u_comm); 3202 } else { 3203 mdb_printf(" ?\n"); 3204 } 3205 } 3206 3207 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3208 3209 if (cid->cid_print_flags) { 3210 int first = 1, i, j, k; 3211 char *s; 3212 3213 cid->cid_print_head = TRUE; 3214 3215 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3216 if (!(cpu->cpu_flags & i)) 3217 continue; 3218 3219 if (first) { 3220 s = mdb_alloc(CPUINFO_THRDELT + 1, 3221 UM_GC | UM_SLEEP); 3222 3223 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3224 "%*s|%*s", CPUINFO_FLAGDELT, "", 3225 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3226 flagbuf[nflaglines++] = s; 3227 } 3228 3229 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3230 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3231 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3232 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3233 first ? "<--+" : ""); 3234 3235 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3236 s[k] = ' '; 3237 s[k] = '\0'; 3238 3239 flagbuf[nflaglines++] = s; 3240 first = 0; 3241 } 3242 } 3243 3244 if (cid->cid_print_ithr) { 3245 int i, found_one = FALSE; 3246 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3247 3248 for (i = NINTR - 1; i >= 0; i--) { 3249 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3250 3251 if (iaddr == 0) 3252 continue; 3253 3254 if (!found_one) { 3255 found_one = TRUE; 3256 3257 CPUINFO_INDENT; 3258 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3259 CPUINFO_ITHRDELT, ""); 3260 3261 CPUINFO_INDENT; 3262 mdb_printf("%c%*s+--> %3s %s\n", 3263 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3264 "", "PIL", "THREAD"); 3265 } 3266 3267 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3268 mdb_warn("failed to read kthread_t at %p", 3269 iaddr); 3270 return (WALK_ERR); 3271 } 3272 3273 CPUINFO_INDENT; 3274 mdb_printf("%c%*s %3d %0*p\n", 3275 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3276 t.t_pil, CPUINFO_TWIDTH, iaddr); 3277 3278 pinned = (uintptr_t)t.t_intr; 3279 } 3280 3281 if (found_one && pinned != 0) { 3282 cid->cid_print_head = TRUE; 3283 (void) strcpy(p.p_user.u_comm, "?"); 3284 3285 if (mdb_vread(&t, sizeof (t), 3286 (uintptr_t)pinned) == -1) { 3287 mdb_warn("failed to read kthread_t at %p", 3288 pinned); 3289 return (WALK_ERR); 3290 } 3291 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3292 (uintptr_t)t.t_procp, 0) == -1) { 3293 mdb_warn("failed to read proc_t at %p", 3294 t.t_procp); 3295 return (WALK_ERR); 3296 } 3297 3298 CPUINFO_INDENT; 3299 mdb_printf("%c%*s %3s %0*p %s\n", 3300 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3301 CPUINFO_TWIDTH, pinned, 3302 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3303 "(idle)" : p.p_user.u_comm); 3304 } 3305 } 3306 3307 if (disp.disp_nrunnable && cid->cid_print_thr) { 3308 dispq_t *dq; 3309 3310 int i, npri = disp.disp_npri; 3311 3312 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3313 3314 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3315 (uintptr_t)disp.disp_q) == -1) { 3316 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3317 return (WALK_ERR); 3318 } 3319 3320 CPUINFO_INDENT; 3321 mdb_printf("|\n"); 3322 3323 CPUINFO_INDENT; 3324 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3325 CPUINFO_TWIDTH, "THREAD", "PROC"); 3326 3327 for (i = npri - 1; i >= 0; i--) { 3328 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3329 3330 while (taddr != 0) { 3331 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3332 mdb_warn("failed to read kthread_t " 3333 "at %p", taddr); 3334 return (WALK_ERR); 3335 } 3336 if (mdb_ctf_vread(&p, "proc_t", 3337 "mdb_cpuinfo_proc_t", 3338 (uintptr_t)t.t_procp, 0) == -1) { 3339 mdb_warn("failed to read proc_t at %p", 3340 t.t_procp); 3341 return (WALK_ERR); 3342 } 3343 3344 CPUINFO_INDENT; 3345 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3346 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3347 3348 taddr = (uintptr_t)t.t_link; 3349 } 3350 } 3351 cid->cid_print_head = TRUE; 3352 } 3353 3354 while (flagline < nflaglines) 3355 mdb_printf("%s\n", flagbuf[flagline++]); 3356 3357 if (cid->cid_print_head) 3358 mdb_printf("\n"); 3359 3360 return (rval); 3361 } 3362 3363 int 3364 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3365 { 3366 uint_t verbose = FALSE; 3367 cpuinfo_data_t cid; 3368 3369 cid.cid_print_ithr = FALSE; 3370 cid.cid_print_thr = FALSE; 3371 cid.cid_print_flags = FALSE; 3372 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3373 cid.cid_cpu = -1; 3374 3375 if (flags & DCMD_ADDRSPEC) 3376 cid.cid_cpu = addr; 3377 3378 if (mdb_getopts(argc, argv, 3379 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3380 return (DCMD_USAGE); 3381 3382 if (verbose) { 3383 cid.cid_print_ithr = TRUE; 3384 cid.cid_print_thr = TRUE; 3385 cid.cid_print_flags = TRUE; 3386 cid.cid_print_head = TRUE; 3387 } 3388 3389 if (cid.cid_print_ithr) { 3390 int i; 3391 3392 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3393 * NCPU, UM_SLEEP | UM_GC); 3394 3395 for (i = 0; i < NCPU; i++) 3396 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3397 NINTR, UM_SLEEP | UM_GC); 3398 3399 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3400 &cid) == -1) { 3401 mdb_warn("couldn't walk thread"); 3402 return (DCMD_ERR); 3403 } 3404 } 3405 3406 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3407 mdb_warn("can't walk cpus"); 3408 return (DCMD_ERR); 3409 } 3410 3411 if (cid.cid_cpu != -1) { 3412 /* 3413 * We didn't find this CPU when we walked through the CPUs 3414 * (i.e. the address specified doesn't show up in the "cpu" 3415 * walk). However, the specified address may still correspond 3416 * to a valid cpu_t (for example, if the specified address is 3417 * the actual panicking cpu_t and not the cached panic_cpu). 3418 * Point is: even if we didn't find it, we still want to try 3419 * to print the specified address as a cpu_t. 3420 */ 3421 cpu_t cpu; 3422 3423 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3424 mdb_warn("%p is neither a valid CPU ID nor a " 3425 "valid cpu_t address\n", cid.cid_cpu); 3426 return (DCMD_ERR); 3427 } 3428 3429 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3430 } 3431 3432 return (DCMD_OK); 3433 } 3434 3435 /*ARGSUSED*/ 3436 int 3437 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3438 { 3439 int i; 3440 3441 if (!(flags & DCMD_ADDRSPEC)) 3442 return (DCMD_USAGE); 3443 3444 for (i = 0; i < sizeof (addr) * NBBY; i++) 3445 mdb_printf("%p\n", addr ^ (1UL << i)); 3446 3447 return (DCMD_OK); 3448 } 3449 3450 typedef struct mdb_as2proc_proc { 3451 struct as *p_as; 3452 } mdb_as2proc_proc_t; 3453 3454 /*ARGSUSED*/ 3455 int 3456 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp) 3457 { 3458 mdb_as2proc_proc_t p; 3459 3460 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0); 3461 3462 if (p.p_as == *asp) 3463 mdb_printf("%p\n", addr); 3464 return (WALK_NEXT); 3465 } 3466 3467 /*ARGSUSED*/ 3468 int 3469 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3470 { 3471 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3472 return (DCMD_USAGE); 3473 3474 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3475 mdb_warn("failed to walk proc"); 3476 return (DCMD_ERR); 3477 } 3478 3479 return (DCMD_OK); 3480 } 3481 3482 typedef struct mdb_ptree_proc { 3483 struct proc *p_parent; 3484 struct { 3485 char u_comm[MAXCOMLEN + 1]; 3486 } p_user; 3487 } mdb_ptree_proc_t; 3488 3489 /*ARGSUSED*/ 3490 int 3491 ptree_walk(uintptr_t addr, const void *ignored, void *data) 3492 { 3493 mdb_ptree_proc_t proc; 3494 mdb_ptree_proc_t parent; 3495 int ident = 0; 3496 uintptr_t paddr; 3497 3498 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0); 3499 3500 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) { 3501 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0); 3502 paddr = (uintptr_t)parent.p_parent; 3503 } 3504 3505 mdb_inc_indent(ident); 3506 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm); 3507 mdb_dec_indent(ident); 3508 3509 return (WALK_NEXT); 3510 } 3511 3512 void 3513 ptree_ancestors(uintptr_t addr, uintptr_t start) 3514 { 3515 mdb_ptree_proc_t p; 3516 3517 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) { 3518 mdb_warn("couldn't read ancestor at %p", addr); 3519 return; 3520 } 3521 3522 if (p.p_parent != NULL) 3523 ptree_ancestors((uintptr_t)p.p_parent, start); 3524 3525 if (addr != start) 3526 (void) ptree_walk(addr, &p, NULL); 3527 } 3528 3529 /*ARGSUSED*/ 3530 int 3531 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3532 { 3533 if (!(flags & DCMD_ADDRSPEC)) 3534 addr = 0; 3535 else 3536 ptree_ancestors(addr, addr); 3537 3538 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3539 mdb_warn("couldn't walk 'proc'"); 3540 return (DCMD_ERR); 3541 } 3542 3543 return (DCMD_OK); 3544 } 3545 3546 typedef struct mdb_fd_proc { 3547 struct { 3548 struct { 3549 int fi_nfiles; 3550 uf_entry_t *volatile fi_list; 3551 } u_finfo; 3552 } p_user; 3553 } mdb_fd_proc_t; 3554 3555 /*ARGSUSED*/ 3556 static int 3557 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3558 { 3559 int fdnum; 3560 const mdb_arg_t *argp = &argv[0]; 3561 mdb_fd_proc_t p; 3562 uf_entry_t uf; 3563 3564 if ((flags & DCMD_ADDRSPEC) == 0) { 3565 mdb_warn("fd doesn't give global information\n"); 3566 return (DCMD_ERR); 3567 } 3568 if (argc != 1) 3569 return (DCMD_USAGE); 3570 3571 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3572 fdnum = argp->a_un.a_val; 3573 else 3574 fdnum = mdb_strtoull(argp->a_un.a_str); 3575 3576 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) { 3577 mdb_warn("couldn't read proc_t at %p", addr); 3578 return (DCMD_ERR); 3579 } 3580 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3581 mdb_warn("process %p only has %d files open.\n", 3582 addr, p.p_user.u_finfo.fi_nfiles); 3583 return (DCMD_ERR); 3584 } 3585 if (mdb_vread(&uf, sizeof (uf_entry_t), 3586 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3587 mdb_warn("couldn't read uf_entry_t at %p", 3588 &p.p_user.u_finfo.fi_list[fdnum]); 3589 return (DCMD_ERR); 3590 } 3591 3592 mdb_printf("%p\n", uf.uf_file); 3593 return (DCMD_OK); 3594 } 3595 3596 /*ARGSUSED*/ 3597 static int 3598 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3599 { 3600 pid_t pid = (pid_t)addr; 3601 3602 if (argc != 0) 3603 return (DCMD_USAGE); 3604 3605 if ((addr = mdb_pid2proc(pid, NULL)) == 0) { 3606 mdb_warn("PID 0t%d not found\n", pid); 3607 return (DCMD_ERR); 3608 } 3609 3610 mdb_printf("%p\n", addr); 3611 return (DCMD_OK); 3612 } 3613 3614 static char *sysfile_cmd[] = { 3615 "exclude:", 3616 "include:", 3617 "forceload:", 3618 "rootdev:", 3619 "rootfs:", 3620 "swapdev:", 3621 "swapfs:", 3622 "moddir:", 3623 "set", 3624 "unknown", 3625 }; 3626 3627 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3628 3629 /*ARGSUSED*/ 3630 static int 3631 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3632 { 3633 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3634 *target = NULL; 3635 return (WALK_DONE); 3636 } 3637 return (WALK_NEXT); 3638 } 3639 3640 /*ARGSUSED*/ 3641 static int 3642 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3643 { 3644 struct sysparam *sysp, sys; 3645 char var[256]; 3646 char modname[256]; 3647 char val[256]; 3648 char strval[256]; 3649 vmem_t *mod_sysfile_arena; 3650 void *straddr; 3651 3652 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3653 mdb_warn("failed to read sysparam_hd"); 3654 return (DCMD_ERR); 3655 } 3656 3657 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3658 mdb_warn("failed to read mod_sysfile_arena"); 3659 return (DCMD_ERR); 3660 } 3661 3662 while (sysp != NULL) { 3663 var[0] = '\0'; 3664 val[0] = '\0'; 3665 modname[0] = '\0'; 3666 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3667 mdb_warn("couldn't read sysparam %p", sysp); 3668 return (DCMD_ERR); 3669 } 3670 if (sys.sys_modnam != NULL && 3671 mdb_readstr(modname, 256, 3672 (uintptr_t)sys.sys_modnam) == -1) { 3673 mdb_warn("couldn't read modname in %p", sysp); 3674 return (DCMD_ERR); 3675 } 3676 if (sys.sys_ptr != NULL && 3677 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3678 mdb_warn("couldn't read ptr in %p", sysp); 3679 return (DCMD_ERR); 3680 } 3681 if (sys.sys_op != SETOP_NONE) { 3682 /* 3683 * Is this an int or a string? We determine this 3684 * by checking whether straddr is contained in 3685 * mod_sysfile_arena. If so, the walker will set 3686 * straddr to NULL. 3687 */ 3688 straddr = (void *)(uintptr_t)sys.sys_info; 3689 if (sys.sys_op == SETOP_ASSIGN && 3690 sys.sys_info != 0 && 3691 mdb_pwalk("vmem_seg", 3692 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3693 (uintptr_t)mod_sysfile_arena) == 0 && 3694 straddr == NULL && 3695 mdb_readstr(strval, 256, 3696 (uintptr_t)sys.sys_info) != -1) { 3697 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3698 strval); 3699 } else { 3700 (void) mdb_snprintf(val, sizeof (val), 3701 "0x%llx [0t%llu]", sys.sys_info, 3702 sys.sys_info); 3703 } 3704 } 3705 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3706 modname, modname[0] == '\0' ? "" : ":", 3707 var, sysfile_ops[sys.sys_op], val); 3708 3709 sysp = sys.sys_next; 3710 } 3711 3712 return (DCMD_OK); 3713 } 3714 3715 int 3716 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3717 { 3718 3719 if (*didp == thr->t_did) { 3720 mdb_printf("%p\n", addr); 3721 return (WALK_DONE); 3722 } else 3723 return (WALK_NEXT); 3724 } 3725 3726 /*ARGSUSED*/ 3727 int 3728 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3729 { 3730 const mdb_arg_t *argp = &argv[0]; 3731 kt_did_t did; 3732 3733 if (argc != 1) 3734 return (DCMD_USAGE); 3735 3736 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3737 3738 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3739 mdb_warn("failed to walk thread"); 3740 return (DCMD_ERR); 3741 3742 } 3743 return (DCMD_OK); 3744 3745 } 3746 3747 static int 3748 errorq_walk_init(mdb_walk_state_t *wsp) 3749 { 3750 if (wsp->walk_addr == 0 && 3751 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3752 mdb_warn("failed to read errorq_list"); 3753 return (WALK_ERR); 3754 } 3755 3756 return (WALK_NEXT); 3757 } 3758 3759 static int 3760 errorq_walk_step(mdb_walk_state_t *wsp) 3761 { 3762 uintptr_t addr = wsp->walk_addr; 3763 errorq_t eq; 3764 3765 if (addr == 0) 3766 return (WALK_DONE); 3767 3768 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3769 mdb_warn("failed to read errorq at %p", addr); 3770 return (WALK_ERR); 3771 } 3772 3773 wsp->walk_addr = (uintptr_t)eq.eq_next; 3774 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3775 } 3776 3777 typedef struct eqd_walk_data { 3778 uintptr_t *eqd_stack; 3779 void *eqd_buf; 3780 ulong_t eqd_qpos; 3781 ulong_t eqd_qlen; 3782 size_t eqd_size; 3783 } eqd_walk_data_t; 3784 3785 /* 3786 * In order to walk the list of pending error queue elements, we push the 3787 * addresses of the corresponding data buffers in to the eqd_stack array. 3788 * The error lists are in reverse chronological order when iterating using 3789 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3790 * walker client gets addresses in order from oldest error to newest error. 3791 */ 3792 static void 3793 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3794 { 3795 errorq_elem_t eqe; 3796 3797 while (addr != 0) { 3798 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3799 mdb_warn("failed to read errorq element at %p", addr); 3800 break; 3801 } 3802 3803 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3804 mdb_warn("errorq is overfull -- more than %lu " 3805 "elems found\n", eqdp->eqd_qlen); 3806 break; 3807 } 3808 3809 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3810 addr = (uintptr_t)eqe.eqe_prev; 3811 } 3812 } 3813 3814 static int 3815 eqd_walk_init(mdb_walk_state_t *wsp) 3816 { 3817 eqd_walk_data_t *eqdp; 3818 errorq_elem_t eqe, *addr; 3819 errorq_t eq; 3820 ulong_t i; 3821 3822 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3823 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3824 return (WALK_ERR); 3825 } 3826 3827 if (eq.eq_ptail != NULL && 3828 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3829 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3830 return (WALK_ERR); 3831 } 3832 3833 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3834 wsp->walk_data = eqdp; 3835 3836 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3837 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3838 eqdp->eqd_qlen = eq.eq_qlen; 3839 eqdp->eqd_qpos = 0; 3840 eqdp->eqd_size = eq.eq_size; 3841 3842 /* 3843 * The newest elements in the queue are on the pending list, so we 3844 * push those on to our stack first. 3845 */ 3846 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3847 3848 /* 3849 * If eq_ptail is set, it may point to a subset of the errors on the 3850 * pending list in the event a atomic_cas_ptr() failed; if ptail's 3851 * data is already in our stack, NULL out eq_ptail and ignore it. 3852 */ 3853 if (eq.eq_ptail != NULL) { 3854 for (i = 0; i < eqdp->eqd_qpos; i++) { 3855 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3856 eq.eq_ptail = NULL; 3857 break; 3858 } 3859 } 3860 } 3861 3862 /* 3863 * If eq_phead is set, it has the processing list in order from oldest 3864 * to newest. Use this to recompute eq_ptail as best we can and then 3865 * we nicely fall into eqd_push_list() of eq_ptail below. 3866 */ 3867 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3868 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3869 eq.eq_ptail = addr; 3870 3871 /* 3872 * The oldest elements in the queue are on the processing list, subject 3873 * to machinations in the if-clauses above. Push any such elements. 3874 */ 3875 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3876 return (WALK_NEXT); 3877 } 3878 3879 static int 3880 eqd_walk_step(mdb_walk_state_t *wsp) 3881 { 3882 eqd_walk_data_t *eqdp = wsp->walk_data; 3883 uintptr_t addr; 3884 3885 if (eqdp->eqd_qpos == 0) 3886 return (WALK_DONE); 3887 3888 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3889 3890 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3891 mdb_warn("failed to read errorq data at %p", addr); 3892 return (WALK_ERR); 3893 } 3894 3895 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3896 } 3897 3898 static void 3899 eqd_walk_fini(mdb_walk_state_t *wsp) 3900 { 3901 eqd_walk_data_t *eqdp = wsp->walk_data; 3902 3903 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3904 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3905 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3906 } 3907 3908 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3909 3910 static int 3911 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3912 { 3913 int i; 3914 errorq_t eq; 3915 uint_t opt_v = FALSE; 3916 3917 if (!(flags & DCMD_ADDRSPEC)) { 3918 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3919 mdb_warn("can't walk 'errorq'"); 3920 return (DCMD_ERR); 3921 } 3922 return (DCMD_OK); 3923 } 3924 3925 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3926 argc -= i; 3927 argv += i; 3928 3929 if (argc != 0) 3930 return (DCMD_USAGE); 3931 3932 if (opt_v || DCMD_HDRSPEC(flags)) { 3933 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3934 "ADDR", "NAME", "S", "V", "N"); 3935 if (!opt_v) { 3936 mdb_printf("%7s %7s %7s%</u>\n", 3937 "ACCEPT", "DROP", "LOG"); 3938 } else { 3939 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3940 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3941 } 3942 } 3943 3944 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3945 mdb_warn("failed to read errorq at %p", addr); 3946 return (DCMD_ERR); 3947 } 3948 3949 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3950 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3951 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3952 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3953 3954 if (!opt_v) { 3955 mdb_printf("%7llu %7llu %7llu\n", 3956 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3957 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3958 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3959 } else { 3960 mdb_printf("%5s %6lu %6lu %3u %a\n", 3961 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3962 mdb_printf("%38s\n%41s" 3963 "%12s %llu\n" 3964 "%53s %llu\n" 3965 "%53s %llu\n" 3966 "%53s %llu\n" 3967 "%53s %llu\n" 3968 "%53s %llu\n" 3969 "%53s %llu\n" 3970 "%53s %llu\n\n", 3971 "|", "+-> ", 3972 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3973 "DROPPED", EQKSVAL(eq, eqk_dropped), 3974 "LOGGED", EQKSVAL(eq, eqk_logged), 3975 "RESERVED", EQKSVAL(eq, eqk_reserved), 3976 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3977 "COMMITTED", EQKSVAL(eq, eqk_committed), 3978 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3979 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3980 } 3981 3982 return (DCMD_OK); 3983 } 3984 3985 /*ARGSUSED*/ 3986 static int 3987 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3988 { 3989 cpu_t panic_cpu; 3990 kthread_t *panic_thread; 3991 void *buf; 3992 panic_data_t *pd; 3993 int i, n; 3994 3995 if (!mdb_prop_postmortem) { 3996 mdb_warn("panicinfo can only be run on a system " 3997 "dump; see dumpadm(1M)\n"); 3998 return (DCMD_ERR); 3999 } 4000 4001 if (flags & DCMD_ADDRSPEC || argc != 0) 4002 return (DCMD_USAGE); 4003 4004 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 4005 mdb_warn("failed to read 'panic_cpu'"); 4006 else 4007 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 4008 4009 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 4010 mdb_warn("failed to read 'panic_thread'"); 4011 else 4012 mdb_printf("%16s %?p\n", "thread", panic_thread); 4013 4014 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 4015 pd = (panic_data_t *)buf; 4016 4017 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 4018 pd->pd_version != PANICBUFVERS) { 4019 mdb_warn("failed to read 'panicbuf'"); 4020 mdb_free(buf, PANICBUFSIZE); 4021 return (DCMD_ERR); 4022 } 4023 4024 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 4025 4026 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 4027 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 4028 4029 for (i = 0; i < n; i++) 4030 mdb_printf("%16s %?llx\n", 4031 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 4032 4033 mdb_free(buf, PANICBUFSIZE); 4034 return (DCMD_OK); 4035 } 4036 4037 /* 4038 * ::time dcmd, which will print a hires timestamp of when we entered the 4039 * debugger, or the lbolt value if used with the -l option. 4040 * 4041 */ 4042 /*ARGSUSED*/ 4043 static int 4044 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4045 { 4046 uint_t opt_dec = FALSE; 4047 uint_t opt_lbolt = FALSE; 4048 uint_t opt_hex = FALSE; 4049 const char *fmt; 4050 hrtime_t result; 4051 4052 if (mdb_getopts(argc, argv, 4053 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 4054 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 4055 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 4056 NULL) != argc) 4057 return (DCMD_USAGE); 4058 4059 if (opt_dec && opt_hex) 4060 return (DCMD_USAGE); 4061 4062 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 4063 fmt = 4064 opt_hex ? "0x%llx\n" : 4065 opt_dec ? "0t%lld\n" : "%#llr\n"; 4066 4067 mdb_printf(fmt, result); 4068 return (DCMD_OK); 4069 } 4070 4071 void 4072 time_help(void) 4073 { 4074 mdb_printf("Prints the system time in nanoseconds.\n\n" 4075 "::time will return the timestamp at which we dropped into, \n" 4076 "if called from, kmdb(1); the core dump's high resolution \n" 4077 "time if inspecting one; or the running hires time if we're \n" 4078 "looking at a live system.\n\n" 4079 "Switches:\n" 4080 " -d report times in decimal\n" 4081 " -l prints the number of clock ticks since system boot\n" 4082 " -x report times in hexadecimal\n"); 4083 } 4084 4085 static const mdb_dcmd_t dcmds[] = { 4086 4087 /* from genunix.c */ 4088 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4089 { "binding_hash_entry", ":", "print driver names hash table entry", 4090 binding_hash_entry }, 4091 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 4092 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4093 " [-FivVA]", 4094 "display callouts", callout, callout_help }, 4095 { "calloutid", "[-d|v] xid", "print callout by extended id", 4096 calloutid, calloutid_help }, 4097 { "class", NULL, "print process scheduler classes", class }, 4098 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4099 { "did2thread", "? kt_did", "find kernel thread for this id", 4100 did2thread }, 4101 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4102 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4103 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4104 { "lminfo", NULL, "print lock manager information", lminfo }, 4105 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4106 { "panicinfo", NULL, "print panic information", panicinfo }, 4107 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4108 { "project", NULL, "display kernel project(s)", project }, 4109 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps, 4110 ps_help }, 4111 { "pflags", NULL, "display various proc_t flags", pflags }, 4112 { "pgrep", "[-x] [-n | -o] pattern", 4113 "pattern match against all processes", pgrep }, 4114 { "ptree", NULL, "print process tree", ptree }, 4115 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4116 sysevent}, 4117 { "sysevent_channel", "?", "print sysevent channel database", 4118 sysevent_channel}, 4119 { "sysevent_class_list", ":", "print sysevent class list", 4120 sysevent_class_list}, 4121 { "sysevent_subclass_list", ":", 4122 "print sysevent subclass list", sysevent_subclass_list}, 4123 { "system", NULL, "print contents of /etc/system file", sysfile }, 4124 { "task", NULL, "display kernel task(s)", task }, 4125 { "time", "[-dlx]", "display system time", time, time_help }, 4126 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4127 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4128 whereopen }, 4129 4130 /* from bio.c */ 4131 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4132 4133 /* from bitset.c */ 4134 { "bitset", ":", "display a bitset", bitset, bitset_help }, 4135 4136 /* from contract.c */ 4137 { "contract", "?", "display a contract", cmd_contract }, 4138 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4139 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4140 4141 /* from cpupart.c */ 4142 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4143 4144 /* from cred.c */ 4145 { "cred", ":[-v]", "display a credential", cmd_cred }, 4146 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 4147 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 4148 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 4149 4150 /* from cyclic.c */ 4151 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4152 { "cycid", "?", "dump a cyclic id", cycid }, 4153 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4154 { "cyclic", ":", "developer information", cyclic }, 4155 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4156 4157 /* from damap.c */ 4158 { "damap", ":", "display a damap_t", damap, damap_help }, 4159 4160 /* from ddi_periodic.c */ 4161 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 4162 4163 /* from devinfo.c */ 4164 { "devbindings", "?[-qs] [device-name | major-num]", 4165 "print devinfo nodes bound to device-name or major-num", 4166 devbindings, devinfo_help }, 4167 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node", 4168 devinfo, devinfo_help }, 4169 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4170 devinfo_audit }, 4171 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4172 devinfo_audit_log }, 4173 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4174 devinfo_audit_node }, 4175 { "devinfo2driver", ":", "find driver name for this devinfo node", 4176 devinfo2driver }, 4177 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4178 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4179 dev2major }, 4180 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4181 dev2minor }, 4182 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4183 devt }, 4184 { "major2name", "?<major-num>", "convert major number to dev name", 4185 major2name }, 4186 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4187 minornodes }, 4188 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4189 modctl2devinfo }, 4190 { "name2major", "<dev-name>", "convert dev name to major number", 4191 name2major }, 4192 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree", 4193 prtconf, prtconf_help }, 4194 { "softstate", ":<instance>", "retrieve soft-state pointer", 4195 softstate }, 4196 { "devinfo_fm", ":", "devinfo fault managment configuration", 4197 devinfo_fm }, 4198 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4199 devinfo_fmce}, 4200 4201 /* from findstack.c */ 4202 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4203 { "findstack_debug", NULL, "toggle findstack debugging", 4204 findstack_debug }, 4205 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4206 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4207 "print unique kernel thread stacks", 4208 stacks, stacks_help }, 4209 4210 /* from fm.c */ 4211 { "ereport", "[-v]", "print ereports logged in dump", 4212 ereport }, 4213 4214 /* from group.c */ 4215 { "group", "?[-q]", "display a group", group}, 4216 4217 /* from hotplug.c */ 4218 { "hotplug", "?[-p]", "display a registered hotplug attachment", 4219 hotplug, hotplug_help }, 4220 4221 /* from irm.c */ 4222 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4223 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4224 irmreqs_dcmd }, 4225 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4226 4227 /* from kgrep.c + genunix.c */ 4228 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4229 kgrep_help }, 4230 4231 /* from kmem.c */ 4232 { "allocdby", ":", "given a thread, print its allocated buffers", 4233 allocdby }, 4234 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4235 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4236 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4237 { "kmalog", "?[ fail | slab ]", 4238 "display kmem transaction log and stack traces", kmalog }, 4239 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4240 kmastat }, 4241 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4242 "of the kmem allocator", kmausers, kmausers_help }, 4243 { "kmem_cache", "?[-n name]", 4244 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4245 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4246 "[-B minbinsize]", "display slab usage per kmem cache", 4247 kmem_slabs, kmem_slabs_help }, 4248 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4249 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4250 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4251 kmem_verify }, 4252 { "vmem", "?", "print a vmem_t", vmem }, 4253 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4254 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4255 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4256 { "whatthread", ":[-v]", "print threads whose stack contains the " 4257 "given address", whatthread }, 4258 4259 /* from ldi.c */ 4260 { "ldi_handle", "?[-i]", "display a layered driver handle", 4261 ldi_handle, ldi_handle_help }, 4262 { "ldi_ident", NULL, "display a layered driver identifier", 4263 ldi_ident, ldi_ident_help }, 4264 4265 /* from leaky.c + leaky_subr.c */ 4266 { "findleaks", FINDLEAKS_USAGE, 4267 "search for potential kernel memory leaks", findleaks, 4268 findleaks_help }, 4269 4270 /* from lgrp.c */ 4271 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4272 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4273 4274 /* from log.c */ 4275 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4276 4277 /* from mdi.c */ 4278 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4279 "and detailed pi_prop list", mdipi }, 4280 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4281 mdiprops }, 4282 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4283 "list all paths", mdiphci }, 4284 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4285 "all phcis", mdivhci }, 4286 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4287 "client links", mdiclient_paths }, 4288 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4289 "phci links", mdiphci_paths }, 4290 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4291 mdiphcis }, 4292 4293 /* from memory.c */ 4294 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4295 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4296 { "memstat", NULL, "display memory usage summary", memstat }, 4297 { "page", "?", "display a summarized page_t", page }, 4298 { "pagelookup", "?[-v vp] [-o offset]", 4299 "find the page_t with the name {vp, offset}", 4300 pagelookup, pagelookup_help }, 4301 { "page_num2pp", ":", "find the page_t for a given page frame number", 4302 page_num2pp }, 4303 { "pmap", ":[-q]", "print process memory map", pmap }, 4304 { "seg", ":", "print address space segment", seg }, 4305 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4306 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4307 4308 /* from mmd.c */ 4309 { "multidata", ":[-sv]", "display a summarized multidata_t", 4310 multidata }, 4311 { "pattbl", ":", "display a summarized multidata attribute table", 4312 pattbl }, 4313 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4314 pattr2multidata }, 4315 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4316 pdesc2slab }, 4317 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4318 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4319 slab2multidata }, 4320 4321 /* from modhash.c */ 4322 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4323 "display information about one or all mod_hash structures", 4324 modhash, modhash_help }, 4325 { "modent", ":[-k | -v | -t type]", 4326 "display information about a mod_hash_entry", modent, 4327 modent_help }, 4328 4329 /* from net.c */ 4330 { "dladm", "?<sub-command> [flags]", "show data link information", 4331 dladm, dladm_help }, 4332 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4333 mi }, 4334 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4335 "show network statistics", netstat }, 4336 { "sonode", "?[-f inet | inet6 | unix | #] " 4337 "[-t stream | dgram | raw | #] [-p #]", 4338 "filter and display sonode", sonode }, 4339 4340 /* from netstack.c */ 4341 { "netstack", "", "show stack instances", netstack }, 4342 { "netstackid2netstack", ":", 4343 "translate a netstack id to its netstack_t", 4344 netstackid2netstack }, 4345 4346 /* from nvpair.c */ 4347 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4348 nvpair_print }, 4349 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4350 print_nvlist }, 4351 4352 /* from pg.c */ 4353 { "pg", "?[-q]", "display a pg", pg}, 4354 4355 /* from rctl.c */ 4356 { "rctl_dict", "?", "print systemwide default rctl definitions", 4357 rctl_dict }, 4358 { "rctl_list", ":[handle]", "print rctls for the given proc", 4359 rctl_list }, 4360 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4361 rctl }, 4362 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4363 "sequence", rctl_validate }, 4364 4365 /* from sobj.c */ 4366 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4367 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4368 mutex_help }, 4369 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4370 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4371 { "turnstile", "?", "display a turnstile", turnstile }, 4372 4373 /* from stream.c */ 4374 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4375 "print an mblk", mblk_prt, mblk_help }, 4376 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4377 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4378 mblk2dblk }, 4379 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4380 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4381 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4382 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4383 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4384 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4385 "filter and display STREAM queue", queue, queue_help }, 4386 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4387 "filter and display STREAM head", stdata, stdata_help }, 4388 { "str2mate", ":", "print mate of this stream", str2mate }, 4389 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4390 { "stream", ":", "display STREAM", stream }, 4391 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4392 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4393 "filter and display STREAM sync queue", syncq, syncq_help }, 4394 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4395 4396 /* from taskq.c */ 4397 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4398 "display a taskq", taskq, taskq_help }, 4399 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4400 4401 /* from thread.c */ 4402 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4403 thread_help }, 4404 { "threadlist", "?[-t] [-v [count]]", 4405 "display threads and associated C stack traces", threadlist, 4406 threadlist_help }, 4407 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4408 stackinfo_help }, 4409 4410 /* from tsd.c */ 4411 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4412 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4413 4414 /* 4415 * typegraph does not work under kmdb, as it requires too much memory 4416 * for its internal data structures. 4417 */ 4418 #ifndef _KMDB 4419 /* from typegraph.c */ 4420 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4421 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4422 findfalse }, 4423 { "typegraph", NULL, "build type graph", typegraph }, 4424 { "istype", ":type", "manually set object type", istype }, 4425 { "notype", ":", "manually clear object type", notype }, 4426 { "whattype", ":", "determine object type", whattype }, 4427 #endif 4428 4429 /* from vfs.c */ 4430 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4431 { "pfiles", ":[-fp]", "print process file information", pfiles, 4432 pfiles_help }, 4433 4434 /* from zone.c */ 4435 { "zid2zone", ":", "find the zone_t with the given zone id", 4436 zid2zone }, 4437 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4438 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4439 "selected zones", zsd }, 4440 4441 #ifndef _KMDB 4442 { "gcore", NULL, "generate a user core for the given process", 4443 gcore_dcmd }, 4444 #endif 4445 4446 { NULL } 4447 }; 4448 4449 static const mdb_walker_t walkers[] = { 4450 4451 /* from genunix.c */ 4452 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4453 callout_walk_init, callout_walk_step, callout_walk_fini, 4454 (void *)CALLOUT_WALK_BYLIST }, 4455 { "callouts_byid", "walk callouts by id hash chain", 4456 callout_walk_init, callout_walk_step, callout_walk_fini, 4457 (void *)CALLOUT_WALK_BYID }, 4458 { "callout_list", "walk a callout list", callout_list_walk_init, 4459 callout_list_walk_step, callout_list_walk_fini }, 4460 { "callout_table", "walk callout table array", callout_table_walk_init, 4461 callout_table_walk_step, callout_table_walk_fini }, 4462 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4463 { "dnlc", "walk dnlc entries", 4464 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini }, 4465 { "ereportq_dump", "walk list of ereports in dump error queue", 4466 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4467 { "ereportq_pend", "walk list of ereports in pending error queue", 4468 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4469 { "errorq", "walk list of system error queues", 4470 errorq_walk_init, errorq_walk_step, NULL }, 4471 { "errorq_data", "walk pending error queue data buffers", 4472 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4473 { "allfile", "given a proc pointer, list all file pointers", 4474 file_walk_init, allfile_walk_step, file_walk_fini }, 4475 { "file", "given a proc pointer, list of open file pointers", 4476 file_walk_init, file_walk_step, file_walk_fini }, 4477 { "lock_descriptor", "walk lock_descriptor_t structures", 4478 ld_walk_init, ld_walk_step, NULL }, 4479 { "lock_graph", "walk lock graph", 4480 lg_walk_init, lg_walk_step, NULL }, 4481 { "port", "given a proc pointer, list of created event ports", 4482 port_walk_init, port_walk_step, NULL }, 4483 { "portev", "given a port pointer, list of events in the queue", 4484 portev_walk_init, portev_walk_step, portev_walk_fini }, 4485 { "proc", "list of active proc_t structures", 4486 proc_walk_init, proc_walk_step, proc_walk_fini }, 4487 { "projects", "walk a list of kernel projects", 4488 project_walk_init, project_walk_step, NULL }, 4489 { "sysevent_pend", "walk sysevent pending queue", 4490 sysevent_pend_walk_init, sysevent_walk_step, 4491 sysevent_walk_fini}, 4492 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4493 sysevent_walk_step, sysevent_walk_fini}, 4494 { "sysevent_channel", "walk sysevent channel subscriptions", 4495 sysevent_channel_walk_init, sysevent_channel_walk_step, 4496 sysevent_channel_walk_fini}, 4497 { "sysevent_class_list", "walk sysevent subscription's class list", 4498 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4499 sysevent_class_list_walk_fini}, 4500 { "sysevent_subclass_list", 4501 "walk sysevent subscription's subclass list", 4502 sysevent_subclass_list_walk_init, 4503 sysevent_subclass_list_walk_step, 4504 sysevent_subclass_list_walk_fini}, 4505 { "task", "given a task pointer, walk its processes", 4506 task_walk_init, task_walk_step, NULL }, 4507 4508 /* from avl.c */ 4509 { AVL_WALK_NAME, AVL_WALK_DESC, 4510 avl_walk_init, avl_walk_step, avl_walk_fini }, 4511 4512 /* from bio.c */ 4513 { "buf", "walk the bio buf hash", 4514 buf_walk_init, buf_walk_step, buf_walk_fini }, 4515 4516 /* from contract.c */ 4517 { "contract", "walk all contracts, or those of the specified type", 4518 ct_walk_init, generic_walk_step, NULL }, 4519 { "ct_event", "walk events on a contract event queue", 4520 ct_event_walk_init, generic_walk_step, NULL }, 4521 { "ct_listener", "walk contract event queue listeners", 4522 ct_listener_walk_init, generic_walk_step, NULL }, 4523 4524 /* from cpupart.c */ 4525 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4526 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4527 NULL }, 4528 { "cpupart_walk", "walk the set of cpu partitions", 4529 cpupart_walk_init, cpupart_walk_step, NULL }, 4530 4531 /* from ctxop.c */ 4532 { "ctxop", "walk list of context ops on a thread", 4533 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4534 4535 /* from cyclic.c */ 4536 { "cyccpu", "walk per-CPU cyc_cpu structures", 4537 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4538 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4539 cycomni_walk_init, cycomni_walk_step, NULL }, 4540 { "cyctrace", "walk cyclic trace buffer", 4541 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4542 4543 /* from devinfo.c */ 4544 { "binding_hash", "walk all entries in binding hash table", 4545 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4546 { "devinfo", "walk devinfo tree or subtree", 4547 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4548 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4549 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4550 devinfo_audit_log_walk_fini}, 4551 { "devinfo_audit_node", "walk per-devinfo audit history", 4552 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4553 devinfo_audit_node_walk_fini}, 4554 { "devinfo_children", "walk children of devinfo node", 4555 devinfo_children_walk_init, devinfo_children_walk_step, 4556 devinfo_children_walk_fini }, 4557 { "devinfo_parents", "walk ancestors of devinfo node", 4558 devinfo_parents_walk_init, devinfo_parents_walk_step, 4559 devinfo_parents_walk_fini }, 4560 { "devinfo_siblings", "walk siblings of devinfo node", 4561 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4562 { "devi_next", "walk devinfo list", 4563 NULL, devi_next_walk_step, NULL }, 4564 { "devnames", "walk devnames array", 4565 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4566 { "minornode", "given a devinfo node, walk minor nodes", 4567 minornode_walk_init, minornode_walk_step, NULL }, 4568 { "softstate", 4569 "given an i_ddi_soft_state*, list all in-use driver stateps", 4570 soft_state_walk_init, soft_state_walk_step, 4571 NULL, NULL }, 4572 { "softstate_all", 4573 "given an i_ddi_soft_state*, list all driver stateps", 4574 soft_state_walk_init, soft_state_all_walk_step, 4575 NULL, NULL }, 4576 { "devinfo_fmc", 4577 "walk a fault management handle cache active list", 4578 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4579 4580 /* from group.c */ 4581 { "group", "walk all elements of a group", 4582 group_walk_init, group_walk_step, NULL }, 4583 4584 /* from irm.c */ 4585 { "irmpools", "walk global list of interrupt pools", 4586 irmpools_walk_init, list_walk_step, list_walk_fini }, 4587 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4588 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4589 4590 /* from kmem.c */ 4591 { "allocdby", "given a thread, walk its allocated bufctls", 4592 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4593 { "bufctl", "walk a kmem cache's bufctls", 4594 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4595 { "bufctl_history", "walk the available history of a bufctl", 4596 bufctl_history_walk_init, bufctl_history_walk_step, 4597 bufctl_history_walk_fini }, 4598 { "freedby", "given a thread, walk its freed bufctls", 4599 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4600 { "freectl", "walk a kmem cache's free bufctls", 4601 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4602 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4603 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4604 { "freemem", "walk a kmem cache's free memory", 4605 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4606 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4607 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4608 { "kmem", "walk a kmem cache", 4609 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4610 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4611 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4612 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4613 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4614 { "kmem_log", "walk the kmem transaction log", 4615 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4616 { "kmem_slab", "given a kmem cache, walk its slabs", 4617 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4618 { "kmem_slab_partial", 4619 "given a kmem cache, walk its partially allocated slabs (min 1)", 4620 kmem_slab_walk_partial_init, combined_walk_step, 4621 combined_walk_fini }, 4622 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4623 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4624 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4625 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4626 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4627 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4628 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4629 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4630 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4631 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4632 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4633 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4634 4635 /* from ldi.c */ 4636 { "ldi_handle", "walk the layered driver handle hash", 4637 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4638 { "ldi_ident", "walk the layered driver identifier hash", 4639 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4640 4641 /* from leaky.c + leaky_subr.c */ 4642 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4643 "stack trace", 4644 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4645 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4646 "leaks w/ same stack trace", 4647 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4648 4649 /* from lgrp.c */ 4650 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4651 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4652 { "lgrptbl", "walk lgroup table", 4653 lgrp_walk_init, lgrp_walk_step, NULL }, 4654 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4655 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4656 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4657 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4658 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4659 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4660 4661 /* from list.c */ 4662 { LIST_WALK_NAME, LIST_WALK_DESC, 4663 list_walk_init, list_walk_step, list_walk_fini }, 4664 4665 /* from mdi.c */ 4666 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4667 mdi_pi_client_link_walk_init, 4668 mdi_pi_client_link_walk_step, 4669 mdi_pi_client_link_walk_fini }, 4670 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4671 mdi_pi_phci_link_walk_init, 4672 mdi_pi_phci_link_walk_step, 4673 mdi_pi_phci_link_walk_fini }, 4674 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4675 mdi_phci_ph_next_walk_init, 4676 mdi_phci_ph_next_walk_step, 4677 mdi_phci_ph_next_walk_fini }, 4678 4679 /* from memory.c */ 4680 { "allpages", "walk all pages, including free pages", 4681 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4682 { "anon", "given an amp, list allocated anon structures", 4683 anon_walk_init, anon_walk_step, anon_walk_fini, 4684 ANON_WALK_ALLOC }, 4685 { "anon_all", "given an amp, list contents of all anon slots", 4686 anon_walk_init, anon_walk_step, anon_walk_fini, 4687 ANON_WALK_ALL }, 4688 { "memlist", "walk specified memlist", 4689 NULL, memlist_walk_step, NULL }, 4690 { "page", "walk all pages, or those from the specified vnode", 4691 page_walk_init, page_walk_step, page_walk_fini }, 4692 { "seg", "given an as, list of segments", 4693 seg_walk_init, avl_walk_step, avl_walk_fini }, 4694 { "segvn_anon", 4695 "given a struct segvn_data, list allocated anon structures", 4696 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4697 ANON_WALK_ALLOC }, 4698 { "segvn_anon_all", 4699 "given a struct segvn_data, list contents of all anon slots", 4700 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4701 ANON_WALK_ALL }, 4702 { "segvn_pages", 4703 "given a struct segvn_data, list resident pages in " 4704 "offset order", 4705 segvn_pages_walk_init, segvn_pages_walk_step, 4706 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4707 { "segvn_pages_all", 4708 "for each offset in a struct segvn_data, give page_t pointer " 4709 "(if resident), or NULL.", 4710 segvn_pages_walk_init, segvn_pages_walk_step, 4711 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4712 { "swapinfo", "walk swapinfo structures", 4713 swap_walk_init, swap_walk_step, NULL }, 4714 4715 /* from mmd.c */ 4716 { "pattr", "walk pattr_t structures", pattr_walk_init, 4717 mmdq_walk_step, mmdq_walk_fini }, 4718 { "pdesc", "walk pdesc_t structures", 4719 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4720 { "pdesc_slab", "walk pdesc_slab_t structures", 4721 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4722 4723 /* from modhash.c */ 4724 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4725 modhash_walk_step, NULL }, 4726 { "modent", "walk list of entries in a given mod_hash", 4727 modent_walk_init, modent_walk_step, modent_walk_fini }, 4728 { "modchain", "walk list of entries in a given mod_hash_entry", 4729 NULL, modchain_walk_step, NULL }, 4730 4731 /* from net.c */ 4732 { "icmp", "walk ICMP control structures using MI for all stacks", 4733 mi_payload_walk_init, mi_payload_walk_step, NULL, 4734 &mi_icmp_arg }, 4735 { "mi", "given a MI_O, walk the MI", 4736 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4737 { "sonode", "given a sonode, walk its children", 4738 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4739 { "icmp_stacks", "walk all the icmp_stack_t", 4740 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4741 { "tcp_stacks", "walk all the tcp_stack_t", 4742 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4743 { "udp_stacks", "walk all the udp_stack_t", 4744 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4745 4746 /* from netstack.c */ 4747 { "netstack", "walk a list of kernel netstacks", 4748 netstack_walk_init, netstack_walk_step, NULL }, 4749 4750 /* from nvpair.c */ 4751 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4752 nvpair_walk_init, nvpair_walk_step, NULL }, 4753 4754 /* from pci.c */ 4755 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init, 4756 pcie_bus_walk_step, NULL }, 4757 4758 /* from rctl.c */ 4759 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4760 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4761 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4762 rctl_set_walk_step, NULL }, 4763 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4764 rctl_val_walk_init, rctl_val_walk_step }, 4765 4766 /* from sobj.c */ 4767 { "blocked", "walk threads blocked on a given sobj", 4768 blocked_walk_init, blocked_walk_step, NULL }, 4769 { "wchan", "given a wchan, list of blocked threads", 4770 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4771 4772 /* from stream.c */ 4773 { "b_cont", "walk mblk_t list using b_cont", 4774 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4775 { "b_next", "walk mblk_t list using b_next", 4776 mblk_walk_init, b_next_step, mblk_walk_fini }, 4777 { "qlink", "walk queue_t list using q_link", 4778 queue_walk_init, queue_link_step, queue_walk_fini }, 4779 { "qnext", "walk queue_t list using q_next", 4780 queue_walk_init, queue_next_step, queue_walk_fini }, 4781 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4782 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4783 { "readq", "walk read queue side of stdata", 4784 str_walk_init, strr_walk_step, str_walk_fini }, 4785 { "writeq", "walk write queue side of stdata", 4786 str_walk_init, strw_walk_step, str_walk_fini }, 4787 4788 /* from taskq.c */ 4789 { "taskq_thread", "given a taskq_t, list all of its threads", 4790 taskq_thread_walk_init, 4791 taskq_thread_walk_step, 4792 taskq_thread_walk_fini }, 4793 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4794 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4795 4796 /* from thread.c */ 4797 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4798 deathrow_walk_init, deathrow_walk_step, NULL }, 4799 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4800 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4801 { "cpupart_dispq", 4802 "given a cpupart_t, walk threads in dispatcher queues", 4803 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4804 { "lwp_deathrow", "walk lwp_deathrow", 4805 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4806 { "thread", "global or per-process kthread_t structures", 4807 thread_walk_init, thread_walk_step, thread_walk_fini }, 4808 { "thread_deathrow", "walk threads on thread_deathrow", 4809 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4810 4811 /* from tsd.c */ 4812 { "tsd", "walk list of thread-specific data", 4813 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4814 4815 /* from tsol.c */ 4816 { "tnrh", "walk remote host cache structures", 4817 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4818 { "tnrhtp", "walk remote host template structures", 4819 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4820 4821 /* 4822 * typegraph does not work under kmdb, as it requires too much memory 4823 * for its internal data structures. 4824 */ 4825 #ifndef _KMDB 4826 /* from typegraph.c */ 4827 { "typeconflict", "walk buffers with conflicting type inferences", 4828 typegraph_walk_init, typeconflict_walk_step }, 4829 { "typeunknown", "walk buffers with unknown types", 4830 typegraph_walk_init, typeunknown_walk_step }, 4831 #endif 4832 4833 /* from vfs.c */ 4834 { "vfs", "walk file system list", 4835 vfs_walk_init, vfs_walk_step }, 4836 4837 /* from zone.c */ 4838 { "zone", "walk a list of kernel zones", 4839 zone_walk_init, zone_walk_step, NULL }, 4840 { "zsd", "walk list of zsd entries for a zone", 4841 zsd_walk_init, zsd_walk_step, NULL }, 4842 4843 { NULL } 4844 }; 4845 4846 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4847 4848 /*ARGSUSED*/ 4849 static void 4850 genunix_statechange_cb(void *ignored) 4851 { 4852 /* 4853 * Force ::findleaks and ::stacks to let go any cached state. 4854 */ 4855 leaky_cleanup(1); 4856 stacks_cleanup(1); 4857 4858 kmem_statechange(); /* notify kmem */ 4859 } 4860 4861 const mdb_modinfo_t * 4862 _mdb_init(void) 4863 { 4864 kmem_init(); 4865 4866 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4867 genunix_statechange_cb, NULL); 4868 4869 #ifndef _KMDB 4870 gcore_init(); 4871 #endif 4872 4873 return (&modinfo); 4874 } 4875 4876 void 4877 _mdb_fini(void) 4878 { 4879 leaky_cleanup(1); 4880 stacks_cleanup(1); 4881 }