1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * This file contains routines that merge one tdata_t tree, called the child, 30 * into another, called the parent. Note that these names are used mainly for 31 * convenience and to represent the direction of the merge. They are not meant 32 * to imply any relationship between the tdata_t graphs prior to the merge. 33 * 34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and 35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply 36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we 37 * clean up loose ends. 38 * 39 * The algorithm is as follows: 40 * 41 * 1. Mapping iidesc_t nodes 42 * 43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph 44 * against the tdesc_t graph in the parent. For each node in the child subgraph 45 * that exists in the parent, a mapping between the two (between their type IDs) 46 * is established. For the child nodes that cannot be mapped onto existing 47 * parent nodes, a mapping is established between the child node ID and a 48 * newly-allocated ID that the node will use when it is re-created in the 49 * parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be 50 * Added) hash, which tracks nodes that need to be created in the parent. 51 * 52 * If all of the nodes in the subgraph for an iidesc_t in the child can be 53 * mapped to existing nodes in the parent, then we can try to map the child 54 * iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent 55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s), 56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This 57 * list tracks iidesc_t nodes that are to be created in the parent. 58 * 59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a 60 * FORWARD tdesc_t) in the parent that is resolved in the child. That is, there 61 * may be a structure or union definition in the child with the same name as the 62 * forward declaration in the parent. If we find such a node, we record an 63 * association in the md_fdida (Forward => Definition ID Association) list 64 * between the parent ID of the forward declaration and the ID that the 65 * definition will use when re-created in the parent. 66 * 67 * 2. Creating new tdesc_t nodes (the md_tdtba hash) 68 * 69 * We have now attempted to map all tdesc_t nodes from the child into the 70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be 71 * created (or, as we so wittily call it, conjured) in the parent. We iterate 72 * through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t 73 * node, conjuring requires two steps - the copying of the common tdesc_t data 74 * (name, type, etc) from the child node, and the creation of links from the 75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed 76 * to by node being conjured. Note that in some cases, the targets of these 77 * links will be on the md_tdtba hash themselves, and may not have been created 78 * yet. As such, we can't establish the links from these new nodes into the 79 * parent graph. We therefore conjure them with links to nodes in the *child* 80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t 81 * To Be Remapped) hash. For example, a POINTER tdesc_t that could not be 82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr. 83 * 84 * 3. Creating new iidesc_t nodes (the md_iitba list) 85 * 86 * When we have completed step 2, all tdesc_t nodes have been created (or 87 * already existed) in the parent. Some of them may have incorrect links (the 88 * members of the md_tdtbr list), but they've all been created. As such, we can 89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph 90 * pointers correctly. We create each node, and attach the pointers to the 91 * appropriate parts of the parent tdesc_t graph. 92 * 93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list) 94 * 95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been 96 * created. Each entry in the md_tdtbr list is a pointer to where a link into 97 * the parent will be established. As saved in the md_tdtbr list, these 98 * pointers point into the child tdesc_t subgraph. We can thus get the target 99 * type ID from the child, look at the ID mapping to determine the desired link 100 * target, and redirect the link accordingly. 101 * 102 * 5. Parent => child forward declaration resolution 103 * 104 * If entries were made in the md_fdida list in step 1, we have forward 105 * declarations in the parent that need to be resolved to their definitions 106 * re-created in step 2 from the child. Using the md_fdida list, we can locate 107 * the definition for the forward declaration, and we can redirect all inbound 108 * edges to the forward declaration node to the actual definition. 109 * 110 * A pox on the house of anyone who changes the algorithm without updating 111 * this comment. 112 */ 113 114 #include <stdio.h> 115 #include <strings.h> 116 #include <assert.h> 117 #include <pthread.h> 118 119 #include "ctf_headers.h" 120 #include "ctftools.h" 121 #include "list.h" 122 #include "alist.h" 123 #include "memory.h" 124 #include "traverse.h" 125 126 typedef struct equiv_data equiv_data_t; 127 typedef struct merge_cb_data merge_cb_data_t; 128 129 /* 130 * There are two traversals in this file, for equivalency and for tdesc_t 131 * re-creation, that do not fit into the tdtraverse() framework. We have our 132 * own traversal mechanism and ops vector here for those two cases. 133 */ 134 typedef struct tdesc_ops { 135 char *name; 136 int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *); 137 tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *); 138 } tdesc_ops_t; 139 extern tdesc_ops_t tdesc_ops[]; 140 141 /* 142 * The workhorse structure of tdata_t merging. Holds all lists of nodes to be 143 * processed during various phases of the merge algorithm. 144 */ 145 struct merge_cb_data { 146 tdata_t *md_parent; 147 tdata_t *md_tgt; 148 alist_t *md_ta; /* Type Association */ 149 alist_t *md_fdida; /* Forward -> Definition ID Association */ 150 list_t **md_iitba; /* iidesc_t nodes To Be Added to the parent */ 151 hash_t *md_tdtba; /* tdesc_t nodes To Be Added to the parent */ 152 list_t **md_tdtbr; /* tdesc_t nodes To Be Remapped */ 153 int md_flags; 154 }; /* merge_cb_data_t */ 155 156 /* 157 * When we first create a tdata_t from stabs data, we will have duplicate nodes. 158 * Normal merges, however, assume that the child tdata_t is already self-unique, 159 * and for speed reasons do not attempt to self-uniquify. If this flag is set, 160 * the merge algorithm will self-uniquify by avoiding the insertion of 161 * duplicates in the md_tdtdba list. 162 */ 163 #define MCD_F_SELFUNIQUIFY 0x1 164 165 /* 166 * When we merge the CTF data for the modules, we don't want it to contain any 167 * data that can be found in the reference module (usually genunix). If this 168 * flag is set, we're doing a merge between the fully merged tdata_t for this 169 * module and the tdata_t for the reference module, with the data unique to this 170 * module ending up in a third tdata_t. It is this third tdata_t that will end 171 * up in the .SUNW_ctf section for the module. 172 */ 173 #define MCD_F_REFMERGE 0x2 174 175 /* 176 * Mapping of child type IDs to parent type IDs 177 */ 178 179 static void 180 add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid) 181 { 182 debug(3, "Adding mapping %u => %u\n", srcid, tgtid); 183 184 assert(!alist_find(ta, (void *)srcid, NULL)); 185 assert(srcid != 0 && tgtid != 0); 186 187 alist_add(ta, (void *)srcid, (void *)tgtid); 188 } 189 190 static tid_t 191 get_mapping(alist_t *ta, int srcid) 192 { 193 long ltgtid; 194 195 if (alist_find(ta, (void *)srcid, (void **)<gtid)) 196 return ((int)ltgtid); 197 else 198 return (0); 199 } 200 201 /* 202 * Determining equivalence of tdesc_t subgraphs 203 */ 204 205 struct equiv_data { 206 alist_t *ed_ta; 207 tdesc_t *ed_node; 208 tdesc_t *ed_tgt; 209 210 int ed_clear_mark; 211 int ed_cur_mark; 212 int ed_selfuniquify; 213 }; /* equiv_data_t */ 214 215 static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *); 216 217 /*ARGSUSED2*/ 218 static int 219 equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 220 { 221 intr_t *si = stdp->t_intr; 222 intr_t *ti = ttdp->t_intr; 223 224 if (si->intr_type != ti->intr_type || 225 si->intr_signed != ti->intr_signed || 226 si->intr_offset != ti->intr_offset || 227 si->intr_nbits != ti->intr_nbits) 228 return (0); 229 230 if (si->intr_type == INTR_INT && 231 si->intr_iformat != ti->intr_iformat) 232 return (0); 233 else if (si->intr_type == INTR_REAL && 234 si->intr_fformat != ti->intr_fformat) 235 return (0); 236 237 return (1); 238 } 239 240 static int 241 equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 242 { 243 return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed)); 244 } 245 246 static int 247 equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 248 { 249 fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef; 250 int i; 251 252 if (fn1->fn_nargs != fn2->fn_nargs || 253 fn1->fn_vargs != fn2->fn_vargs) 254 return (0); 255 256 if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed)) 257 return (0); 258 259 for (i = 0; i < fn1->fn_nargs; i++) { 260 if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed)) 261 return (0); 262 } 263 264 return (1); 265 } 266 267 static int 268 equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 269 { 270 ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef; 271 272 if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) || 273 !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed)) 274 return (0); 275 276 if (ar1->ad_nelems != ar2->ad_nelems) 277 return (0); 278 279 return (1); 280 } 281 282 static int 283 equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 284 { 285 mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members; 286 mlist_t *olm1 = NULL; 287 288 while (ml1 && ml2) { 289 if (ml1->ml_offset != ml2->ml_offset || 290 strcmp(ml1->ml_name, ml2->ml_name) != 0) 291 return (0); 292 293 /* 294 * Don't do the recursive equivalency checking more than 295 * we have to. 296 */ 297 if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) { 298 if (ml1->ml_size != ml2->ml_size || 299 !equiv_node(ml1->ml_type, ml2->ml_type, ed)) 300 return (0); 301 } 302 303 olm1 = ml1; 304 ml1 = ml1->ml_next; 305 ml2 = ml2->ml_next; 306 } 307 308 if (ml1 || ml2) 309 return (0); 310 311 return (1); 312 } 313 314 /*ARGSUSED2*/ 315 static int 316 equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 317 { 318 elist_t *el1 = stdp->t_emem; 319 elist_t *el2 = ttdp->t_emem; 320 321 while (el1 && el2) { 322 if (el1->el_number != el2->el_number || 323 strcmp(el1->el_name, el2->el_name) != 0) 324 return (0); 325 326 el1 = el1->el_next; 327 el2 = el2->el_next; 328 } 329 330 if (el1 || el2) 331 return (0); 332 333 return (1); 334 } 335 336 /*ARGSUSED*/ 337 static int 338 equiv_assert(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 339 { 340 /* foul, evil, and very bad - this is a "shouldn't happen" */ 341 assert(1 == 0); 342 343 return (0); 344 } 345 346 static int 347 fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp) 348 { 349 tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp); 350 351 return (defn->t_type == STRUCT || defn->t_type == UNION); 352 } 353 354 static int 355 equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed) 356 { 357 int (*equiv)(); 358 int mapping; 359 360 if (ctdp->t_emark > ed->ed_clear_mark || 361 mtdp->t_emark > ed->ed_clear_mark) 362 return (ctdp->t_emark == mtdp->t_emark); 363 364 /* 365 * In normal (non-self-uniquify) mode, we don't want to do equivalency 366 * checking on a subgraph that has already been checked. If a mapping 367 * has already been established for a given child node, we can simply 368 * compare the mapping for the child node with the ID of the parent 369 * node. If we are in self-uniquify mode, then we're comparing two 370 * subgraphs within the child graph, and thus need to ignore any 371 * type mappings that have been created, as they are only valid into the 372 * parent. 373 */ 374 if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 && 375 mapping == mtdp->t_id && !ed->ed_selfuniquify) 376 return (1); 377 378 if (!streq(ctdp->t_name, mtdp->t_name)) 379 return (0); 380 381 if (ctdp->t_type != mtdp->t_type) { 382 if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD) 383 return (fwd_equiv(ctdp, mtdp)); 384 else 385 return (0); 386 } 387 388 ctdp->t_emark = ed->ed_cur_mark; 389 mtdp->t_emark = ed->ed_cur_mark; 390 ed->ed_cur_mark++; 391 392 if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL) 393 return (equiv(ctdp, mtdp, ed)); 394 395 return (1); 396 } 397 398 /* 399 * We perform an equivalency check on two subgraphs by traversing through them 400 * in lockstep. If a given node is equivalent in both the parent and the child, 401 * we mark it in both subgraphs, using the t_emark field, with a monotonically 402 * increasing number. If, in the course of the traversal, we reach a node that 403 * we have visited and numbered during this equivalency check, we have a cycle. 404 * If the previously-visited nodes don't have the same emark, then the edges 405 * that brought us to these nodes are not equivalent, and so the check ends. 406 * If the emarks are the same, the edges are equivalent. We then backtrack and 407 * continue the traversal. If we have exhausted all edges in the subgraph, and 408 * have not found any inequivalent nodes, then the subgraphs are equivalent. 409 */ 410 static int 411 equiv_cb(void *bucket, void *arg) 412 { 413 equiv_data_t *ed = arg; 414 tdesc_t *mtdp = bucket; 415 tdesc_t *ctdp = ed->ed_node; 416 417 ed->ed_clear_mark = ed->ed_cur_mark + 1; 418 ed->ed_cur_mark = ed->ed_clear_mark + 1; 419 420 if (equiv_node(ctdp, mtdp, ed)) { 421 debug(3, "equiv_node matched %d %d\n", ctdp->t_id, mtdp->t_id); 422 ed->ed_tgt = mtdp; 423 /* matched. stop looking */ 424 return (-1); 425 } 426 427 return (0); 428 } 429 430 /*ARGSUSED1*/ 431 static int 432 map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp, void *private) 433 { 434 merge_cb_data_t *mcd = private; 435 436 if (get_mapping(mcd->md_ta, ctdp->t_id) > 0) 437 return (0); 438 439 return (1); 440 } 441 442 /*ARGSUSED1*/ 443 static int 444 map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private) 445 { 446 merge_cb_data_t *mcd = private; 447 equiv_data_t ed; 448 449 ed.ed_ta = mcd->md_ta; 450 ed.ed_clear_mark = mcd->md_parent->td_curemark; 451 ed.ed_cur_mark = mcd->md_parent->td_curemark + 1; 452 ed.ed_node = ctdp; 453 ed.ed_selfuniquify = 0; 454 455 debug(3, "map_td_tree_post on %d %s\n", ctdp->t_id, tdesc_name(ctdp)); 456 457 if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp, 458 equiv_cb, &ed) < 0) { 459 /* We found an equivalent node */ 460 if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) { 461 int id = mcd->md_tgt->td_nextid++; 462 463 debug(3, "Creating new defn type %d\n", id); 464 add_mapping(mcd->md_ta, ctdp->t_id, id); 465 alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt, 466 (void *)(ulong_t)id); 467 hash_add(mcd->md_tdtba, ctdp); 468 } else 469 add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id); 470 471 } else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash, 472 equiv_cb, &ed) < 0) { 473 /* 474 * We didn't find an equivalent node by looking through the 475 * layout hash, but we somehow found it by performing an 476 * exhaustive search through the entire graph. This usually 477 * means that the "name" hash function is broken. 478 */ 479 aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id, 480 tdesc_name(ctdp), ed.ed_tgt->t_id); 481 } else { 482 int id = mcd->md_tgt->td_nextid++; 483 484 debug(3, "Creating new type %d\n", id); 485 add_mapping(mcd->md_ta, ctdp->t_id, id); 486 hash_add(mcd->md_tdtba, ctdp); 487 } 488 489 mcd->md_parent->td_curemark = ed.ed_cur_mark + 1; 490 491 return (1); 492 } 493 494 /*ARGSUSED1*/ 495 static int 496 map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private) 497 { 498 merge_cb_data_t *mcd = private; 499 equiv_data_t ed; 500 501 ed.ed_ta = mcd->md_ta; 502 ed.ed_clear_mark = mcd->md_parent->td_curemark; 503 ed.ed_cur_mark = mcd->md_parent->td_curemark + 1; 504 ed.ed_node = ctdp; 505 ed.ed_selfuniquify = 1; 506 ed.ed_tgt = NULL; 507 508 if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) { 509 debug(3, "Self check found %d in %d\n", ctdp->t_id, 510 ed.ed_tgt->t_id); 511 add_mapping(mcd->md_ta, ctdp->t_id, 512 get_mapping(mcd->md_ta, ed.ed_tgt->t_id)); 513 } else if (debug_level > 1 && hash_iter(mcd->md_tdtba, 514 equiv_cb, &ed) < 0) { 515 /* 516 * We didn't find an equivalent node using the quick way (going 517 * through the hash normally), but we did find it by iterating 518 * through the entire hash. This usually means that the hash 519 * function is broken. 520 */ 521 aborterr("Self-unique second pass for %d (%s) == %d\n", 522 ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id); 523 } else { 524 int id = mcd->md_tgt->td_nextid++; 525 526 debug(3, "Creating new type %d\n", id); 527 add_mapping(mcd->md_ta, ctdp->t_id, id); 528 hash_add(mcd->md_tdtba, ctdp); 529 } 530 531 mcd->md_parent->td_curemark = ed.ed_cur_mark + 1; 532 533 return (1); 534 } 535 536 static tdtrav_cb_f map_pre[] = { 537 NULL, 538 map_td_tree_pre, /* intrinsic */ 539 map_td_tree_pre, /* pointer */ 540 map_td_tree_pre, /* array */ 541 map_td_tree_pre, /* function */ 542 map_td_tree_pre, /* struct */ 543 map_td_tree_pre, /* union */ 544 map_td_tree_pre, /* enum */ 545 map_td_tree_pre, /* forward */ 546 map_td_tree_pre, /* typedef */ 547 tdtrav_assert, /* typedef_unres */ 548 map_td_tree_pre, /* volatile */ 549 map_td_tree_pre, /* const */ 550 map_td_tree_pre /* restrict */ 551 }; 552 553 static tdtrav_cb_f map_post[] = { 554 NULL, 555 map_td_tree_post, /* intrinsic */ 556 map_td_tree_post, /* pointer */ 557 map_td_tree_post, /* array */ 558 map_td_tree_post, /* function */ 559 map_td_tree_post, /* struct */ 560 map_td_tree_post, /* union */ 561 map_td_tree_post, /* enum */ 562 map_td_tree_post, /* forward */ 563 map_td_tree_post, /* typedef */ 564 tdtrav_assert, /* typedef_unres */ 565 map_td_tree_post, /* volatile */ 566 map_td_tree_post, /* const */ 567 map_td_tree_post /* restrict */ 568 }; 569 570 static tdtrav_cb_f map_self_post[] = { 571 NULL, 572 map_td_tree_self_post, /* intrinsic */ 573 map_td_tree_self_post, /* pointer */ 574 map_td_tree_self_post, /* array */ 575 map_td_tree_self_post, /* function */ 576 map_td_tree_self_post, /* struct */ 577 map_td_tree_self_post, /* union */ 578 map_td_tree_self_post, /* enum */ 579 map_td_tree_self_post, /* forward */ 580 map_td_tree_self_post, /* typedef */ 581 tdtrav_assert, /* typedef_unres */ 582 map_td_tree_self_post, /* volatile */ 583 map_td_tree_self_post, /* const */ 584 map_td_tree_self_post /* restrict */ 585 }; 586 587 /* 588 * Determining equivalence of iidesc_t nodes 589 */ 590 591 typedef struct iifind_data { 592 iidesc_t *iif_template; 593 alist_t *iif_ta; 594 int iif_newidx; 595 int iif_refmerge; 596 } iifind_data_t; 597 598 /* 599 * Check to see if this iidesc_t (node) - the current one on the list we're 600 * iterating through - matches the target one (iif->iif_template). Return -1 601 * if it matches, to stop the iteration. 602 */ 603 static int 604 iidesc_match(void *data, void *arg) 605 { 606 iidesc_t *node = data; 607 iifind_data_t *iif = arg; 608 int i; 609 610 if (node->ii_type != iif->iif_template->ii_type || 611 !streq(node->ii_name, iif->iif_template->ii_name) || 612 node->ii_dtype->t_id != iif->iif_newidx) 613 return (0); 614 615 if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) && 616 !streq(node->ii_owner, iif->iif_template->ii_owner)) 617 return (0); 618 619 if (node->ii_nargs != iif->iif_template->ii_nargs) 620 return (0); 621 622 for (i = 0; i < node->ii_nargs; i++) { 623 if (get_mapping(iif->iif_ta, 624 iif->iif_template->ii_args[i]->t_id) != 625 node->ii_args[i]->t_id) 626 return (0); 627 } 628 629 if (iif->iif_refmerge) { 630 switch (iif->iif_template->ii_type) { 631 case II_GFUN: 632 case II_SFUN: 633 case II_GVAR: 634 case II_SVAR: 635 debug(3, "suppressing duping of %d %s from %s\n", 636 iif->iif_template->ii_type, 637 iif->iif_template->ii_name, 638 (iif->iif_template->ii_owner ? 639 iif->iif_template->ii_owner : "NULL")); 640 return (0); 641 case II_NOT: 642 case II_PSYM: 643 case II_SOU: 644 case II_TYPE: 645 break; 646 } 647 } 648 649 return (-1); 650 } 651 652 static int 653 merge_type_cb(void *data, void *arg) 654 { 655 iidesc_t *sii = data; 656 merge_cb_data_t *mcd = arg; 657 iifind_data_t iif; 658 tdtrav_cb_f *post; 659 660 post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post); 661 662 /* Map the tdesc nodes */ 663 (void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post, 664 mcd); 665 666 /* Map the iidesc nodes */ 667 iif.iif_template = sii; 668 iif.iif_ta = mcd->md_ta; 669 iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id); 670 iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE); 671 672 if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match, 673 &iif) == 1) 674 /* successfully mapped */ 675 return (1); 676 677 debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"), 678 sii->ii_type); 679 680 list_add(mcd->md_iitba, sii); 681 682 return (0); 683 } 684 685 static int 686 remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself, 687 merge_cb_data_t *mcd) 688 { 689 tdesc_t *tgt = NULL; 690 tdesc_t template; 691 int oldid = oldtgt->t_id; 692 693 if (oldid == selftid) { 694 *tgtp = newself; 695 return (1); 696 } 697 698 if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0) 699 aborterr("failed to get mapping for tid %d\n", oldid); 700 701 if (!hash_find(mcd->md_parent->td_idhash, (void *)&template, 702 (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) || 703 !hash_find(mcd->md_tgt->td_idhash, (void *)&template, 704 (void *)&tgt))) { 705 debug(3, "Remap couldn't find %d (from %d)\n", template.t_id, 706 oldid); 707 *tgtp = oldtgt; 708 list_add(mcd->md_tdtbr, tgtp); 709 return (0); 710 } 711 712 *tgtp = tgt; 713 return (1); 714 } 715 716 static tdesc_t * 717 conjure_template(tdesc_t *old, int newselfid) 718 { 719 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 720 721 new->t_name = old->t_name ? xstrdup(old->t_name) : NULL; 722 new->t_type = old->t_type; 723 new->t_size = old->t_size; 724 new->t_id = newselfid; 725 new->t_flags = old->t_flags; 726 727 return (new); 728 } 729 730 /*ARGSUSED2*/ 731 static tdesc_t * 732 conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 733 { 734 tdesc_t *new = conjure_template(old, newselfid); 735 736 new->t_intr = xmalloc(sizeof (intr_t)); 737 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 738 739 return (new); 740 } 741 742 static tdesc_t * 743 conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 744 { 745 tdesc_t *new = conjure_template(old, newselfid); 746 747 (void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd); 748 749 return (new); 750 } 751 752 static tdesc_t * 753 conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 754 { 755 tdesc_t *new = conjure_template(old, newselfid); 756 fndef_t *nfn = xmalloc(sizeof (fndef_t)); 757 fndef_t *ofn = old->t_fndef; 758 int i; 759 760 (void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd); 761 762 nfn->fn_nargs = ofn->fn_nargs; 763 nfn->fn_vargs = ofn->fn_vargs; 764 765 if (nfn->fn_nargs > 0) 766 nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs); 767 768 for (i = 0; i < ofn->fn_nargs; i++) { 769 (void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id, 770 new, mcd); 771 } 772 773 new->t_fndef = nfn; 774 775 return (new); 776 } 777 778 static tdesc_t * 779 conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 780 { 781 tdesc_t *new = conjure_template(old, newselfid); 782 ardef_t *nar = xmalloc(sizeof (ardef_t)); 783 ardef_t *oar = old->t_ardef; 784 785 (void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new, 786 mcd); 787 (void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new, 788 mcd); 789 790 nar->ad_nelems = oar->ad_nelems; 791 792 new->t_ardef = nar; 793 794 return (new); 795 } 796 797 static tdesc_t * 798 conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 799 { 800 tdesc_t *new = conjure_template(old, newselfid); 801 mlist_t *omem, **nmemp; 802 803 for (omem = old->t_members, nmemp = &new->t_members; 804 omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) { 805 *nmemp = xmalloc(sizeof (mlist_t)); 806 (*nmemp)->ml_offset = omem->ml_offset; 807 (*nmemp)->ml_size = omem->ml_size; 808 (*nmemp)->ml_name = xstrdup(omem->ml_name); 809 (void) remap_node(&((*nmemp)->ml_type), omem->ml_type, 810 old->t_id, new, mcd); 811 } 812 *nmemp = NULL; 813 814 return (new); 815 } 816 817 /*ARGSUSED2*/ 818 static tdesc_t * 819 conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 820 { 821 tdesc_t *new = conjure_template(old, newselfid); 822 elist_t *oel, **nelp; 823 824 for (oel = old->t_emem, nelp = &new->t_emem; 825 oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) { 826 *nelp = xmalloc(sizeof (elist_t)); 827 (*nelp)->el_name = xstrdup(oel->el_name); 828 (*nelp)->el_number = oel->el_number; 829 } 830 *nelp = NULL; 831 832 return (new); 833 } 834 835 /*ARGSUSED2*/ 836 static tdesc_t * 837 conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 838 { 839 tdesc_t *new = conjure_template(old, newselfid); 840 841 list_add(&mcd->md_tgt->td_fwdlist, new); 842 843 return (new); 844 } 845 846 /*ARGSUSED*/ 847 static tdesc_t * 848 conjure_assert(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 849 { 850 assert(1 == 0); 851 return (NULL); 852 } 853 854 static iidesc_t * 855 conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd) 856 { 857 iidesc_t *new = iidesc_dup(old); 858 int i; 859 860 (void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd); 861 for (i = 0; i < new->ii_nargs; i++) { 862 (void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL, 863 mcd); 864 } 865 866 return (new); 867 } 868 869 static int 870 fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private) 871 { 872 alist_t *map = private; 873 tdesc_t *defn; 874 875 if (!alist_find(map, (void *)fwd, (void **)&defn)) 876 return (0); 877 878 debug(3, "Redirecting an edge to %s\n", tdesc_name(defn)); 879 880 *fwdp = defn; 881 882 return (1); 883 } 884 885 static tdtrav_cb_f fwd_redir_cbs[] = { 886 NULL, 887 NULL, /* intrinsic */ 888 NULL, /* pointer */ 889 NULL, /* array */ 890 NULL, /* function */ 891 NULL, /* struct */ 892 NULL, /* union */ 893 NULL, /* enum */ 894 fwd_redir, /* forward */ 895 NULL, /* typedef */ 896 tdtrav_assert, /* typedef_unres */ 897 NULL, /* volatile */ 898 NULL, /* const */ 899 NULL /* restrict */ 900 }; 901 902 typedef struct redir_mstr_data { 903 tdata_t *rmd_tgt; 904 alist_t *rmd_map; 905 } redir_mstr_data_t; 906 907 static int 908 redir_mstr_fwd_cb(void *name, void *value, void *arg) 909 { 910 tdesc_t *fwd = name; 911 int defnid = (int)value; 912 redir_mstr_data_t *rmd = arg; 913 tdesc_t template; 914 tdesc_t *defn; 915 916 template.t_id = defnid; 917 918 if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template, 919 (void *)&defn)) { 920 aborterr("Couldn't unforward %d (%s)\n", defnid, 921 tdesc_name(defn)); 922 } 923 924 debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn)); 925 926 alist_add(rmd->rmd_map, (void *)fwd, (void *)defn); 927 928 return (1); 929 } 930 931 static void 932 redir_mstr_fwds(merge_cb_data_t *mcd) 933 { 934 redir_mstr_data_t rmd; 935 alist_t *map = alist_new(NULL, NULL); 936 937 rmd.rmd_tgt = mcd->md_tgt; 938 rmd.rmd_map = map; 939 940 if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) { 941 (void) iitraverse_hash(mcd->md_tgt->td_iihash, 942 &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map); 943 } 944 945 alist_free(map); 946 } 947 948 static int 949 add_iitba_cb(void *data, void *private) 950 { 951 merge_cb_data_t *mcd = private; 952 iidesc_t *tba = data; 953 iidesc_t *new; 954 iifind_data_t iif; 955 int newidx; 956 957 newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id); 958 assert(newidx != -1); 959 960 (void) list_remove(mcd->md_iitba, data, NULL, NULL); 961 962 iif.iif_template = tba; 963 iif.iif_ta = mcd->md_ta; 964 iif.iif_newidx = newidx; 965 iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE); 966 967 if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match, 968 &iif) == 1) { 969 debug(3, "iidesc_t %s already exists\n", 970 (tba->ii_name ? tba->ii_name : "(anon)")); 971 return (1); 972 } 973 974 new = conjure_iidesc(tba, mcd); 975 hash_add(mcd->md_tgt->td_iihash, new); 976 977 return (1); 978 } 979 980 static int 981 add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd) 982 { 983 tdesc_t *newtdp; 984 tdesc_t template; 985 986 template.t_id = newid; 987 assert(hash_find(mcd->md_parent->td_idhash, 988 (void *)&template, NULL) == 0); 989 990 debug(3, "trying to conjure %d %s (%d) as %d\n", 991 oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id, newid); 992 993 if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid, 994 mcd)) == NULL) 995 /* couldn't map everything */ 996 return (0); 997 998 debug(3, "succeeded\n"); 999 1000 hash_add(mcd->md_tgt->td_idhash, newtdp); 1001 hash_add(mcd->md_tgt->td_layouthash, newtdp); 1002 1003 return (1); 1004 } 1005 1006 static int 1007 add_tdtba_cb(void *data, void *arg) 1008 { 1009 tdesc_t *tdp = data; 1010 merge_cb_data_t *mcd = arg; 1011 int newid; 1012 int rc; 1013 1014 newid = get_mapping(mcd->md_ta, tdp->t_id); 1015 assert(newid != -1); 1016 1017 if ((rc = add_tdesc(tdp, newid, mcd))) 1018 hash_remove(mcd->md_tdtba, (void *)tdp); 1019 1020 return (rc); 1021 } 1022 1023 static int 1024 add_tdtbr_cb(void *data, void *arg) 1025 { 1026 tdesc_t **tdpp = data; 1027 merge_cb_data_t *mcd = arg; 1028 1029 debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id); 1030 1031 if (!remap_node(tdpp, *tdpp, -1, NULL, mcd)) 1032 return (0); 1033 1034 (void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL); 1035 return (1); 1036 } 1037 1038 static void 1039 merge_types(hash_t *src, merge_cb_data_t *mcd) 1040 { 1041 list_t *iitba = NULL; 1042 list_t *tdtbr = NULL; 1043 int iirc, tdrc; 1044 1045 mcd->md_iitba = &iitba; 1046 mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash, 1047 tdesc_layoutcmp); 1048 mcd->md_tdtbr = &tdtbr; 1049 1050 (void) hash_iter(src, merge_type_cb, mcd); 1051 1052 tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, (void *)mcd); 1053 debug(3, "add_tdtba_cb added %d items\n", tdrc); 1054 1055 iirc = list_iter(*mcd->md_iitba, add_iitba_cb, (void *)mcd); 1056 debug(3, "add_iitba_cb added %d items\n", iirc); 1057 1058 assert(list_count(*mcd->md_iitba) == 0 && 1059 hash_count(mcd->md_tdtba) == 0); 1060 1061 tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, (void *)mcd); 1062 debug(3, "add_tdtbr_cb added %d items\n", tdrc); 1063 1064 if (list_count(*mcd->md_tdtbr) != 0) 1065 aborterr("Couldn't remap all nodes\n"); 1066 1067 /* 1068 * We now have an alist of master forwards and the ids of the new master 1069 * definitions for those forwards in mcd->md_fdida. By this point, 1070 * we're guaranteed that all of the master definitions referenced in 1071 * fdida have been added to the master tree. We now traverse through 1072 * the master tree, redirecting all edges inbound to forwards that have 1073 * definitions to those definitions. 1074 */ 1075 if (mcd->md_parent == mcd->md_tgt) { 1076 redir_mstr_fwds(mcd); 1077 } 1078 } 1079 1080 void 1081 merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify) 1082 { 1083 merge_cb_data_t mcd; 1084 1085 cur->td_ref++; 1086 mstr->td_ref++; 1087 if (tgt) 1088 tgt->td_ref++; 1089 1090 assert(cur->td_ref == 1 && mstr->td_ref == 1 && 1091 (tgt == NULL || tgt->td_ref == 1)); 1092 1093 mcd.md_parent = mstr; 1094 mcd.md_tgt = (tgt ? tgt : mstr); 1095 mcd.md_ta = alist_new(NULL, NULL); 1096 mcd.md_fdida = alist_new(NULL, NULL); 1097 mcd.md_flags = 0; 1098 1099 if (selfuniquify) 1100 mcd.md_flags |= MCD_F_SELFUNIQUIFY; 1101 if (tgt) 1102 mcd.md_flags |= MCD_F_REFMERGE; 1103 1104 mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen); 1105 mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark); 1106 1107 merge_types(cur->td_iihash, &mcd); 1108 1109 if (debug_level >= 3) { 1110 debug(3, "Type association stats\n"); 1111 alist_stats(mcd.md_ta, 0); 1112 debug(3, "Layout hash stats\n"); 1113 hash_stats(mcd.md_tgt->td_layouthash, 1); 1114 } 1115 1116 alist_free(mcd.md_fdida); 1117 alist_free(mcd.md_ta); 1118 1119 cur->td_ref--; 1120 mstr->td_ref--; 1121 if (tgt) 1122 tgt->td_ref--; 1123 } 1124 1125 tdesc_ops_t tdesc_ops[] = { 1126 { "ERROR! BAD tdesc TYPE", NULL, NULL }, 1127 { "intrinsic", equiv_intrinsic, conjure_intrinsic }, 1128 { "pointer", equiv_plain, conjure_plain }, 1129 { "array", equiv_array, conjure_array }, 1130 { "function", equiv_function, conjure_function }, 1131 { "struct", equiv_su, conjure_su }, 1132 { "union", equiv_su, conjure_su }, 1133 { "enum", equiv_enum, conjure_enum }, 1134 { "forward", NULL, conjure_forward }, 1135 { "typedef", equiv_plain, conjure_plain }, 1136 { "typedef_unres", equiv_assert, conjure_assert }, 1137 { "volatile", equiv_plain, conjure_plain }, 1138 { "const", equiv_plain, conjure_plain }, 1139 { "restrict", equiv_plain, conjure_plain } 1140 };