1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright 2012 Jason King.  All rights reserved.
  27  * Use is subject to license terms.
  28  */
  29 
  30 /*
  31  * DWARF to tdata conversion
  32  *
  33  * For the most part, conversion is straightforward, proceeding in two passes.
  34  * On the first pass, we iterate through every die, creating new type nodes as
  35  * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
  36  * allowing type reference pointers to be filled in.  If the tdesc_t
  37  * corresponding to a given die can be completely filled out (sizes and offsets
  38  * calculated, and so forth) without using any referenced types, the tdesc_t is
  39  * marked as resolved.  Consider an array type.  If the type corresponding to
  40  * the array contents has not yet been processed, we will create a blank tdesc
  41  * for the contents type (only the type ID will be filled in, relying upon the
  42  * later portion of the first pass to encounter and complete the referenced
  43  * type).  We will then attempt to determine the size of the array.  If the
  44  * array has a byte size attribute, we will have completely characterized the
  45  * array type, and will be able to mark it as resolved.  The lack of a byte
  46  * size attribute, on the other hand, will prevent us from fully resolving the
  47  * type, as the size will only be calculable with reference to the contents
  48  * type, which has not, as yet, been encountered.  The array type will thus be
  49  * left without the resolved flag, and the first pass will continue.
  50  *
  51  * When we begin the second pass, we will have created tdesc_t nodes for every
  52  * type in the section.  We will traverse the tree, from the iidescs down,
  53  * processing each unresolved node.  As the referenced nodes will have been
  54  * populated, the array type used in our example above will be able to use the
  55  * size of the referenced types (if available) to determine its own type.  The
  56  * traversal will be repeated until all types have been resolved or we have
  57  * failed to make progress.  When all tdescs have been resolved, the conversion
  58  * is complete.
  59  *
  60  * There are, as always, a few special cases that are handled during the first
  61  * and second passes:
  62  *
  63  *  1. Empty enums - GCC will occasionally emit an enum without any members.
  64  *     Later on in the file, it will emit the same enum type, though this time
  65  *     with the full complement of members.  All references to the memberless
  66  *     enum need to be redirected to the full definition.  During the first
  67  *     pass, each enum is entered in dm_enumhash, along with a pointer to its
  68  *     corresponding tdesc_t.  If, during the second pass, we encounter a
  69  *     memberless enum, we use the hash to locate the full definition.  All
  70  *     tdescs referencing the empty enum are then redirected.
  71  *
  72  *  2. Forward declarations - If the compiler sees a forward declaration for
  73  *     a structure, followed by the definition of that structure, it will emit
  74  *     DWARF data for both the forward declaration and the definition.  We need
  75  *     to resolve the forward declarations when possible, by redirecting
  76  *     forward-referencing tdescs to the actual struct/union definitions.  This
  77  *     redirection is done completely within the first pass.  We begin by
  78  *     recording all forward declarations in dw_fwdhash.  When we define a
  79  *     structure, we check to see if there have been any corresponding forward
  80  *     declarations.  If so, we redirect the tdescs which referenced the forward
  81  *     declarations to the structure or union definition.
  82  *
  83  * XXX see if a post traverser will allow the elimination of repeated pass 2
  84  * traversals.
  85  */
  86 
  87 #include <stdio.h>
  88 #include <stdlib.h>
  89 #include <strings.h>
  90 #include <errno.h>
  91 #include <libelf.h>
  92 #include <libdwarf.h>
  93 #include <libgen.h>
  94 #include <dwarf.h>
  95 
  96 #include "ctf_headers.h"
  97 #include "ctftools.h"
  98 #include "memory.h"
  99 #include "list.h"
 100 #include "traverse.h"
 101 
 102 /* The version of DWARF which we support. */
 103 #define DWARF_VERSION   2
 104 
 105 /*
 106  * We need to define a couple of our own intrinsics, to smooth out some of the
 107  * differences between the GCC and DevPro DWARF emitters.  See the referenced
 108  * routines and the special cases in the file comment for more details.
 109  *
 110  * Type IDs are 32 bits wide.  We're going to use the top of that field to
 111  * indicate types that we've created ourselves.
 112  */
 113 #define TID_FILEMAX             0x3fffffff      /* highest tid from file */
 114 #define TID_VOID                0x40000001      /* see die_void() */
 115 #define TID_LONG                0x40000002      /* see die_array() */
 116 
 117 #define TID_MFGTID_BASE         0x40000003      /* first mfg'd tid */
 118 
 119 /*
 120  * To reduce the staggering amount of error-handling code that would otherwise
 121  * be required, the attribute-retrieval routines handle most of their own
 122  * errors.  If the following flag is supplied as the value of the `req'
 123  * argument, they will also handle the absence of a requested attribute by
 124  * terminating the program.
 125  */
 126 #define DW_ATTR_REQ     1
 127 
 128 #define TDESC_HASH_BUCKETS      511
 129 
 130 typedef struct dwarf {
 131         Dwarf_Debug dw_dw;              /* for libdwarf */
 132         Dwarf_Error dw_err;             /* for libdwarf */
 133         Dwarf_Unsigned dw_maxoff;       /* highest legal offset in this cu */
 134         tdata_t *dw_td;                 /* root of the tdesc/iidesc tree */
 135         hash_t *dw_tidhash;             /* hash of tdescs by t_id */
 136         hash_t *dw_fwdhash;             /* hash of fwd decls by name */
 137         hash_t *dw_enumhash;            /* hash of memberless enums by name */
 138         tdesc_t *dw_void;               /* manufactured void type */
 139         tdesc_t *dw_long;               /* manufactured long type for arrays */
 140         size_t dw_ptrsz;                /* size of a pointer in this file */
 141         tid_t dw_mfgtid_last;           /* last mfg'd type ID used */
 142         uint_t dw_nunres;               /* count of unresolved types */
 143         char *dw_cuname;                /* name of compilation unit */
 144 } dwarf_t;
 145 
 146 static void die_create_one(dwarf_t *, Dwarf_Die);
 147 static void die_create(dwarf_t *, Dwarf_Die);
 148 
 149 static tid_t
 150 mfgtid_next(dwarf_t *dw)
 151 {
 152         return (++dw->dw_mfgtid_last);
 153 }
 154 
 155 static void
 156 tdesc_add(dwarf_t *dw, tdesc_t *tdp)
 157 {
 158         hash_add(dw->dw_tidhash, tdp);
 159 }
 160 
 161 static tdesc_t *
 162 tdesc_lookup(dwarf_t *dw, int tid)
 163 {
 164         tdesc_t tmpl, *tdp;
 165 
 166         tmpl.t_id = tid;
 167 
 168         if (hash_find(dw->dw_tidhash, &tmpl, (void **)&tdp))
 169                 return (tdp);
 170         else
 171                 return (NULL);
 172 }
 173 
 174 /*
 175  * Resolve a tdesc down to a node which should have a size.  Returns the size,
 176  * zero if the size hasn't yet been determined.
 177  */
 178 static size_t
 179 tdesc_size(tdesc_t *tdp)
 180 {
 181         for (;;) {
 182                 switch (tdp->t_type) {
 183                 case INTRINSIC:
 184                 case POINTER:
 185                 case ARRAY:
 186                 case FUNCTION:
 187                 case STRUCT:
 188                 case UNION:
 189                 case ENUM:
 190                         return (tdp->t_size);
 191 
 192                 case FORWARD:
 193                         return (0);
 194 
 195                 case TYPEDEF:
 196                 case VOLATILE:
 197                 case CONST:
 198                 case RESTRICT:
 199                         tdp = tdp->t_tdesc;
 200                         continue;
 201 
 202                 case 0: /* not yet defined */
 203                         return (0);
 204 
 205                 default:
 206                         terminate("tdp %u: tdesc_size on unknown type %d\n",
 207                             tdp->t_id, tdp->t_type);
 208                 }
 209         }
 210 }
 211 
 212 static size_t
 213 tdesc_bitsize(tdesc_t *tdp)
 214 {
 215         for (;;) {
 216                 switch (tdp->t_type) {
 217                 case INTRINSIC:
 218                         return (tdp->t_intr->intr_nbits);
 219 
 220                 case ARRAY:
 221                 case FUNCTION:
 222                 case STRUCT:
 223                 case UNION:
 224                 case ENUM:
 225                 case POINTER:
 226                         return (tdp->t_size * NBBY);
 227 
 228                 case FORWARD:
 229                         return (0);
 230 
 231                 case TYPEDEF:
 232                 case VOLATILE:
 233                 case RESTRICT:
 234                 case CONST:
 235                         tdp = tdp->t_tdesc;
 236                         continue;
 237 
 238                 case 0: /* not yet defined */
 239                         return (0);
 240 
 241                 default:
 242                         terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
 243                             tdp->t_id, tdp->t_type);
 244                 }
 245         }
 246 }
 247 
 248 static tdesc_t *
 249 tdesc_basetype(tdesc_t *tdp)
 250 {
 251         for (;;) {
 252                 switch (tdp->t_type) {
 253                 case TYPEDEF:
 254                 case VOLATILE:
 255                 case RESTRICT:
 256                 case CONST:
 257                         tdp = tdp->t_tdesc;
 258                         break;
 259                 case 0: /* not yet defined */
 260                         return (NULL);
 261                 default:
 262                         return (tdp);
 263                 }
 264         }
 265 }
 266 
 267 static Dwarf_Off
 268 die_off(dwarf_t *dw, Dwarf_Die die)
 269 {
 270         Dwarf_Off off;
 271 
 272         if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
 273                 return (off);
 274 
 275         terminate("failed to get offset for die: %s\n",
 276             dwarf_errmsg(dw->dw_err));
 277         /*NOTREACHED*/
 278         return (0);
 279 }
 280 
 281 static Dwarf_Die
 282 die_sibling(dwarf_t *dw, Dwarf_Die die)
 283 {
 284         Dwarf_Die sib;
 285         int rc;
 286 
 287         if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
 288             DW_DLV_OK)
 289                 return (sib);
 290         else if (rc == DW_DLV_NO_ENTRY)
 291                 return (NULL);
 292 
 293         terminate("die %llu: failed to find type sibling: %s\n",
 294             die_off(dw, die), dwarf_errmsg(dw->dw_err));
 295         /*NOTREACHED*/
 296         return (NULL);
 297 }
 298 
 299 static Dwarf_Die
 300 die_child(dwarf_t *dw, Dwarf_Die die)
 301 {
 302         Dwarf_Die child;
 303         int rc;
 304 
 305         if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
 306                 return (child);
 307         else if (rc == DW_DLV_NO_ENTRY)
 308                 return (NULL);
 309 
 310         terminate("die %llu: failed to find type child: %s\n",
 311             die_off(dw, die), dwarf_errmsg(dw->dw_err));
 312         /*NOTREACHED*/
 313         return (NULL);
 314 }
 315 
 316 static Dwarf_Half
 317 die_tag(dwarf_t *dw, Dwarf_Die die)
 318 {
 319         Dwarf_Half tag;
 320 
 321         if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
 322                 return (tag);
 323 
 324         terminate("die %llu: failed to get tag for type: %s\n",
 325             die_off(dw, die), dwarf_errmsg(dw->dw_err));
 326         /*NOTREACHED*/
 327         return (0);
 328 }
 329 
 330 static Dwarf_Attribute
 331 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
 332 {
 333         Dwarf_Attribute attr;
 334         int rc;
 335 
 336         if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
 337                 return (attr);
 338         } else if (rc == DW_DLV_NO_ENTRY) {
 339                 if (req) {
 340                         terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
 341                             name);
 342                 } else {
 343                         return (NULL);
 344                 }
 345         }
 346 
 347         terminate("die %llu: failed to get attribute for type: %s\n",
 348             die_off(dw, die), dwarf_errmsg(dw->dw_err));
 349         /*NOTREACHED*/
 350         return (NULL);
 351 }
 352 
 353 static Dwarf_Half
 354 die_attr_form(dwarf_t *dw, Dwarf_Attribute attr)
 355 {
 356         Dwarf_Half form;
 357 
 358         if (dwarf_whatform(attr, &form, &dw->dw_err) == DW_DLV_OK)
 359                 return (form);
 360 
 361         terminate("failed to get attribute form for type: %s\n",
 362             dwarf_errmsg(dw->dw_err));
 363         /*NOTREACHED*/
 364         return (0);
 365 }
 366 
 367 /*
 368  * the following functions lookup the value of an attribute in a DIE:
 369  *
 370  * die_signed
 371  * die_unsigned
 372  * die_bool
 373  * die_string
 374  *
 375  * They all take the same parameters (with the exception of valp which is
 376  * a pointer to the type of the attribute we are looking up):
 377  *
 378  * dw - the dwarf object to look in
 379  * die - the DIE we're interested in
 380  * name - the name of the attribute to lookup
 381  * valp - pointer to where the value of the attribute is placed
 382  * req - if the value is required (0 / non-zero)
 383  *
 384  * If the attribute is not found, one of the following happens:
 385  * - program terminates (req is non-zero)
 386  * - function returns 0
 387  *
 388  * If the value is found, and in a form (class) we can handle, the function
 389  * returns 1.
 390  *
 391  * Currently, we can only handle attribute values that are stored as
 392  * constants (immediate value).  If an attribute has a form we cannot
 393  * handle (for example VLAs may store the dimensions of the array
 394  * as a DWARF expression that can compute it at runtime by reading
 395  * values off the stack or other locations in memory), it is treated
 396  * the same as if the attribute does not exist.
 397  */
 398 static int
 399 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
 400     int req)
 401 {
 402         Dwarf_Attribute attr;
 403         Dwarf_Signed val;
 404 
 405         if ((attr = die_attr(dw, die, name, req)) == NULL)
 406                 return (0); /* die_attr will terminate for us if necessary */
 407 
 408         if (dwarf_formsdata(attr, &val, &dw->dw_err) != DW_DLV_OK) {
 409                 if (req == 0)
 410                         return (0);
 411 
 412                 terminate("die %llu: failed to get signed (form 0x%x)\n",
 413                     die_off(dw, die), die_attr_form(dw, attr));
 414         }
 415 
 416         dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
 417 
 418         *valp = val;
 419         return (1);
 420 }
 421 
 422 static int
 423 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
 424     int req)
 425 {
 426         Dwarf_Attribute attr;
 427         Dwarf_Unsigned val;
 428 
 429         if ((attr = die_attr(dw, die, name, req)) == NULL)
 430                 return (0); /* die_attr will terminate for us if necessary */
 431 
 432         if (dwarf_formudata(attr, &val, &dw->dw_err) != DW_DLV_OK) {
 433                 if (req == 0)
 434                         return (0);
 435 
 436                 terminate("die %llu: failed to get unsigned (form 0x%x)\n",
 437                     die_off(dw, die), die_attr_form(dw, attr));
 438         }
 439 
 440         dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
 441 
 442         *valp = val;
 443         return (1);
 444 }
 445 
 446 static int
 447 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
 448 {
 449         Dwarf_Attribute attr;
 450         Dwarf_Bool val;
 451 
 452         if ((attr = die_attr(dw, die, name, req)) == NULL)
 453                 return (0); /* die_attr will terminate for us if necessary */
 454 
 455         if (dwarf_formflag(attr, &val, &dw->dw_err) != DW_DLV_OK) {
 456                 if (req == 0)
 457                         return (0);
 458 
 459                 terminate("die %llu: failed to get bool (form 0x%x)\n",
 460                     die_off(dw, die), die_attr_form(dw, attr));
 461         }
 462 
 463         dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
 464 
 465         *valp = val;
 466         return (1);
 467 }
 468 
 469 static int
 470 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
 471 {
 472         Dwarf_Attribute attr;
 473         char *str;
 474 
 475         if ((attr = die_attr(dw, die, name, req)) == NULL)
 476                 return (0); /* die_attr will terminate for us if necessary */
 477 
 478         if (dwarf_formstring(attr, &str, &dw->dw_err) != DW_DLV_OK) {
 479                 if (req == 0)
 480                         return (0);
 481 
 482                 terminate("die %llu: failed to get string (form 0x%x)\n",
 483                     die_off(dw, die), die_attr_form(dw, attr));
 484         }
 485 
 486         *strp = xstrdup(str);
 487         dwarf_dealloc(dw->dw_dw, str, DW_DLA_STRING);
 488 
 489         return (1);
 490 }
 491 
 492 static Dwarf_Off
 493 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
 494 {
 495         Dwarf_Attribute attr;
 496         Dwarf_Off off;
 497 
 498         attr = die_attr(dw, die, name, DW_ATTR_REQ);
 499 
 500         if (dwarf_formref(attr, &off, &dw->dw_err) != DW_DLV_OK) {
 501                 terminate("die %llu: failed to get ref (form 0x%x)\n",
 502                     die_off(dw, die), die_attr_form(dw, attr));
 503         }
 504 
 505         dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
 506 
 507         return (off);
 508 }
 509 
 510 static char *
 511 die_name(dwarf_t *dw, Dwarf_Die die)
 512 {
 513         char *str = NULL;
 514 
 515         (void) die_string(dw, die, DW_AT_name, &str, 0);
 516 
 517         return (str);
 518 }
 519 
 520 static int
 521 die_isdecl(dwarf_t *dw, Dwarf_Die die)
 522 {
 523         Dwarf_Bool val;
 524 
 525         return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
 526 }
 527 
 528 static int
 529 die_isglobal(dwarf_t *dw, Dwarf_Die die)
 530 {
 531         Dwarf_Signed vis;
 532         Dwarf_Bool ext;
 533 
 534         /*
 535          * Some compilers (gcc) use DW_AT_external to indicate function
 536          * visibility.  Others (Sun) use DW_AT_visibility.
 537          */
 538         if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
 539                 return (vis == DW_VIS_exported);
 540         else
 541                 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
 542 }
 543 
 544 static tdesc_t *
 545 die_add(dwarf_t *dw, Dwarf_Off off)
 546 {
 547         tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
 548 
 549         tdp->t_id = off;
 550 
 551         tdesc_add(dw, tdp);
 552 
 553         return (tdp);
 554 }
 555 
 556 static tdesc_t *
 557 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
 558 {
 559         Dwarf_Off ref = die_attr_ref(dw, die, name);
 560         tdesc_t *tdp;
 561 
 562         if ((tdp = tdesc_lookup(dw, ref)) != NULL)
 563                 return (tdp);
 564 
 565         return (die_add(dw, ref));
 566 }
 567 
 568 static int
 569 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
 570     Dwarf_Unsigned *valp, int req)
 571 {
 572         Dwarf_Attribute attr;
 573         Dwarf_Locdesc *loc;
 574         Dwarf_Signed locnum;
 575 
 576         if ((attr = die_attr(dw, die, name, req)) == NULL)
 577                 return (0); /* die_attr will terminate for us if necessary */
 578 
 579         if (dwarf_loclist(attr, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) {
 580                 terminate("die %llu: failed to get mem offset location list\n",
 581                     die_off(dw, die));
 582         }
 583 
 584         dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
 585 
 586         if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
 587                 terminate("die %llu: cannot parse member offset\n",
 588                     die_off(dw, die));
 589         }
 590 
 591         *valp = loc->ld_s->lr_number;
 592 
 593         dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK);
 594         dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC);
 595 
 596         return (1);
 597 }
 598 
 599 static tdesc_t *
 600 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
 601 {
 602         tdesc_t *tdp;
 603         intr_t *intr;
 604 
 605         intr = xcalloc(sizeof (intr_t));
 606         intr->intr_type = INTR_INT;
 607         intr->intr_signed = 1;
 608         intr->intr_nbits = sz * NBBY;
 609 
 610         tdp = xcalloc(sizeof (tdesc_t));
 611         tdp->t_name = xstrdup(name);
 612         tdp->t_size = sz;
 613         tdp->t_id = tid;
 614         tdp->t_type = INTRINSIC;
 615         tdp->t_intr = intr;
 616         tdp->t_flags = TDESC_F_RESOLVED;
 617 
 618         tdesc_add(dw, tdp);
 619 
 620         return (tdp);
 621 }
 622 
 623 /*
 624  * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
 625  * type reference implies a reference to a void type.  A void *, for example
 626  * will be represented by a pointer die without a DW_AT_type.  CTF requires
 627  * that pointer nodes point to something, so we'll create a void for use as
 628  * the target.  Note that the DWARF data may already create a void type.  Ours
 629  * would then be a duplicate, but it'll be removed in the self-uniquification
 630  * merge performed at the completion of DWARF->tdesc conversion.
 631  */
 632 static tdesc_t *
 633 tdesc_intr_void(dwarf_t *dw)
 634 {
 635         if (dw->dw_void == NULL)
 636                 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
 637 
 638         return (dw->dw_void);
 639 }
 640 
 641 static tdesc_t *
 642 tdesc_intr_long(dwarf_t *dw)
 643 {
 644         if (dw->dw_long == NULL) {
 645                 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
 646                     dw->dw_ptrsz);
 647         }
 648 
 649         return (dw->dw_long);
 650 }
 651 
 652 /*
 653  * Used for creating bitfield types.  We create a copy of an existing intrinsic,
 654  * adjusting the size of the copy to match what the caller requested.  The
 655  * caller can then use the copy as the type for a bitfield structure member.
 656  */
 657 static tdesc_t *
 658 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
 659 {
 660         tdesc_t *new = xcalloc(sizeof (tdesc_t));
 661 
 662         if (!(old->t_flags & TDESC_F_RESOLVED)) {
 663                 terminate("tdp %u: attempt to make a bit field from an "
 664                     "unresolved type\n", old->t_id);
 665         }
 666 
 667         new->t_name = xstrdup(old->t_name);
 668         new->t_size = old->t_size;
 669         new->t_id = mfgtid_next(dw);
 670         new->t_type = INTRINSIC;
 671         new->t_flags = TDESC_F_RESOLVED;
 672 
 673         new->t_intr = xcalloc(sizeof (intr_t));
 674         bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
 675         new->t_intr->intr_nbits = bitsz;
 676 
 677         tdesc_add(dw, new);
 678 
 679         return (new);
 680 }
 681 
 682 static void
 683 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
 684     tdesc_t *dimtdp)
 685 {
 686         Dwarf_Unsigned uval;
 687         Dwarf_Signed sval;
 688         tdesc_t *ctdp;
 689         Dwarf_Die dim2;
 690         ardef_t *ar;
 691 
 692         if ((dim2 = die_sibling(dw, dim)) == NULL) {
 693                 ctdp = arrtdp;
 694         } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
 695                 ctdp = xcalloc(sizeof (tdesc_t));
 696                 ctdp->t_id = mfgtid_next(dw);
 697                 debug(3, "die %llu: creating new type %u for sub-dimension\n",
 698                     die_off(dw, dim2), ctdp->t_id);
 699                 tdesc_array_create(dw, dim2, arrtdp, ctdp);
 700         } else {
 701                 terminate("die %llu: unexpected non-subrange node in array\n",
 702                     die_off(dw, dim2));
 703         }
 704 
 705         dimtdp->t_type = ARRAY;
 706         dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
 707 
 708         /*
 709          * Array bounds can be signed or unsigned, but there are several kinds
 710          * of signless forms (data1, data2, etc) that take their sign from the
 711          * routine that is trying to interpret them.  That is, data1 can be
 712          * either signed or unsigned, depending on whether you use the signed or
 713          * unsigned accessor function.  GCC will use the signless forms to store
 714          * unsigned values which have their high bit set, so we need to try to
 715          * read them first as unsigned to get positive values.  We could also
 716          * try signed first, falling back to unsigned if we got a negative
 717          * value.
 718          */
 719         if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
 720                 ar->ad_nelems = uval + 1;
 721         else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
 722                 ar->ad_nelems = sval + 1;
 723         else
 724                 ar->ad_nelems = 0;
 725 
 726         /*
 727          * Different compilers use different index types.  Force the type to be
 728          * a common, known value (long).
 729          */
 730         ar->ad_idxtype = tdesc_intr_long(dw);
 731         ar->ad_contents = ctdp;
 732 
 733         if (ar->ad_contents->t_size != 0) {
 734                 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
 735                 dimtdp->t_flags |= TDESC_F_RESOLVED;
 736         }
 737 }
 738 
 739 /*
 740  * Create a tdesc from an array node.  Some arrays will come with byte size
 741  * attributes, and thus can be resolved immediately.  Others don't, and will
 742  * need to wait until the second pass for resolution.
 743  */
 744 static void
 745 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
 746 {
 747         tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
 748         Dwarf_Unsigned uval;
 749         Dwarf_Die dim;
 750 
 751         debug(3, "die %llu: creating array\n", off);
 752 
 753         if ((dim = die_child(dw, arr)) == NULL ||
 754             die_tag(dw, dim) != DW_TAG_subrange_type)
 755                 terminate("die %llu: failed to retrieve array bounds\n", off);
 756 
 757         tdesc_array_create(dw, dim, arrtdp, tdp);
 758 
 759         if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
 760                 tdesc_t *dimtdp;
 761                 int flags;
 762 
 763                 tdp->t_size = uval;
 764 
 765                 /*
 766                  * Ensure that sub-dimensions have sizes too before marking
 767                  * as resolved.
 768                  */
 769                 flags = TDESC_F_RESOLVED;
 770                 for (dimtdp = tdp->t_ardef->ad_contents;
 771                     dimtdp->t_type == ARRAY;
 772                     dimtdp = dimtdp->t_ardef->ad_contents) {
 773                         if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
 774                                 flags = 0;
 775                                 break;
 776                         }
 777                 }
 778 
 779                 tdp->t_flags |= flags;
 780         }
 781 
 782         debug(3, "die %llu: array nelems %u size %u\n", off,
 783             tdp->t_ardef->ad_nelems, tdp->t_size);
 784 }
 785 
 786 /*ARGSUSED1*/
 787 static int
 788 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private)
 789 {
 790         dwarf_t *dw = private;
 791         size_t sz;
 792 
 793         if (tdp->t_flags & TDESC_F_RESOLVED)
 794                 return (1);
 795 
 796         debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
 797             tdp->t_ardef->ad_contents->t_id);
 798 
 799         if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) {
 800                 debug(3, "unable to resolve array %s (%d) contents %d\n",
 801                     tdesc_name(tdp), tdp->t_id,
 802                     tdp->t_ardef->ad_contents->t_id);
 803 
 804                 dw->dw_nunres++;
 805                 return (1);
 806         }
 807 
 808         tdp->t_size = sz * tdp->t_ardef->ad_nelems;
 809         tdp->t_flags |= TDESC_F_RESOLVED;
 810 
 811         debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
 812 
 813         return (1);
 814 }
 815 
 816 /*ARGSUSED1*/
 817 static int
 818 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private)
 819 {
 820         tdesc_t *cont = tdp->t_ardef->ad_contents;
 821 
 822         if (tdp->t_flags & TDESC_F_RESOLVED)
 823                 return (1);
 824 
 825         fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
 826             tdp->t_id, tdesc_name(cont), cont->t_id);
 827 
 828         return (1);
 829 }
 830 
 831 /*
 832  * Most enums (those with members) will be resolved during this first pass.
 833  * Others - those without members (see the file comment) - won't be, and will
 834  * need to wait until the second pass when they can be matched with their full
 835  * definitions.
 836  */
 837 static void
 838 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
 839 {
 840         Dwarf_Die mem;
 841         Dwarf_Unsigned uval;
 842         Dwarf_Signed sval;
 843 
 844         debug(3, "die %llu: creating enum\n", off);
 845 
 846         tdp->t_type = ENUM;
 847 
 848         (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
 849         tdp->t_size = uval;
 850 
 851         if ((mem = die_child(dw, die)) != NULL) {
 852                 elist_t **elastp = &tdp->t_emem;
 853 
 854                 do {
 855                         elist_t *el;
 856 
 857                         if (die_tag(dw, mem) != DW_TAG_enumerator) {
 858                                 /* Nested type declaration */
 859                                 die_create_one(dw, mem);
 860                                 continue;
 861                         }
 862 
 863                         el = xcalloc(sizeof (elist_t));
 864                         el->el_name = die_name(dw, mem);
 865 
 866                         /*
 867                          * We have to be careful here: newer GCCs generate DWARF
 868                          * where an unsigned value will happily pass
 869                          * die_signed().  Since negative values will fail
 870                          * die_unsigned(), we try that first to make sure we get
 871                          * the right value.
 872                          */
 873                         if (die_unsigned(dw, mem, DW_AT_const_value,
 874                             &uval, 0)) {
 875                                 el->el_number = uval;
 876                         } else if (die_signed(dw, mem, DW_AT_const_value,
 877                             &sval, 0)) {
 878                                 el->el_number = sval;
 879                         } else {
 880                                 terminate("die %llu: enum %llu: member without "
 881                                     "value\n", off, die_off(dw, mem));
 882                         }
 883 
 884                         debug(3, "die %llu: enum %llu: created %s = %d\n", off,
 885                             die_off(dw, mem), el->el_name, el->el_number);
 886 
 887                         *elastp = el;
 888                         elastp = &el->el_next;
 889 
 890                 } while ((mem = die_sibling(dw, mem)) != NULL);
 891 
 892                 hash_add(dw->dw_enumhash, tdp);
 893 
 894                 tdp->t_flags |= TDESC_F_RESOLVED;
 895 
 896                 if (tdp->t_name != NULL) {
 897                         iidesc_t *ii = xcalloc(sizeof (iidesc_t));
 898                         ii->ii_type = II_SOU;
 899                         ii->ii_name = xstrdup(tdp->t_name);
 900                         ii->ii_dtype = tdp;
 901 
 902                         iidesc_add(dw->dw_td->td_iihash, ii);
 903                 }
 904         }
 905 }
 906 
 907 static int
 908 die_enum_match(void *arg1, void *arg2)
 909 {
 910         tdesc_t *tdp = arg1, **fullp = arg2;
 911 
 912         if (tdp->t_emem != NULL) {
 913                 *fullp = tdp;
 914                 return (-1); /* stop the iteration */
 915         }
 916 
 917         return (0);
 918 }
 919 
 920 /*ARGSUSED1*/
 921 static int
 922 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private)
 923 {
 924         dwarf_t *dw = private;
 925         tdesc_t *full = NULL;
 926 
 927         if (tdp->t_flags & TDESC_F_RESOLVED)
 928                 return (1);
 929 
 930         (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
 931 
 932         /*
 933          * The answer to this one won't change from iteration to iteration,
 934          * so don't even try.
 935          */
 936         if (full == NULL) {
 937                 terminate("tdp %u: enum %s has no members\n", tdp->t_id,
 938                     tdesc_name(tdp));
 939         }
 940 
 941         debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
 942             tdesc_name(tdp), full->t_id);
 943 
 944         tdp->t_flags |= TDESC_F_RESOLVED;
 945 
 946         return (1);
 947 }
 948 
 949 static int
 950 die_fwd_map(void *arg1, void *arg2)
 951 {
 952         tdesc_t *fwd = arg1, *sou = arg2;
 953 
 954         debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
 955             tdesc_name(fwd), sou->t_id);
 956         fwd->t_tdesc = sou;
 957 
 958         return (0);
 959 }
 960 
 961 /*
 962  * Structures and unions will never be resolved during the first pass, as we
 963  * won't be able to fully determine the member sizes.  The second pass, which
 964  * have access to sizing information, will be able to complete the resolution.
 965  */
 966 static void
 967 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
 968     int type, const char *typename)
 969 {
 970         Dwarf_Unsigned sz, bitsz, bitoff;
 971         Dwarf_Die mem;
 972         mlist_t *ml, **mlastp;
 973         iidesc_t *ii;
 974 
 975         tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
 976 
 977         debug(3, "die %llu: creating %s %s\n", off,
 978             (tdp->t_type == FORWARD ? "forward decl" : typename),
 979             tdesc_name(tdp));
 980 
 981         if (tdp->t_type == FORWARD) {
 982                 hash_add(dw->dw_fwdhash, tdp);
 983                 return;
 984         }
 985 
 986         (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
 987 
 988         (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
 989         tdp->t_size = sz;
 990 
 991         /*
 992          * GCC allows empty SOUs as an extension.
 993          */
 994         if ((mem = die_child(dw, str)) == NULL)
 995                 goto out;
 996 
 997         mlastp = &tdp->t_members;
 998 
 999         do {
1000                 Dwarf_Off memoff = die_off(dw, mem);
1001                 Dwarf_Half tag = die_tag(dw, mem);
1002                 Dwarf_Unsigned mloff;
1003 
1004                 if (tag != DW_TAG_member) {
1005                         /* Nested type declaration */
1006                         die_create_one(dw, mem);
1007                         continue;
1008                 }
1009 
1010                 debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
1011 
1012                 ml = xcalloc(sizeof (mlist_t));
1013 
1014                 /*
1015                  * This could be a GCC anon struct/union member, so we'll allow
1016                  * an empty name, even though nothing can really handle them
1017                  * properly.  Note that some versions of GCC miss out debug
1018                  * info for anon structs, though recent versions are fixed (gcc
1019                  * bug 11816).
1020                  */
1021                 if ((ml->ml_name = die_name(dw, mem)) == NULL)
1022                         ml->ml_name = "";
1023 
1024                 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
1025 
1026                 if (die_mem_offset(dw, mem, DW_AT_data_member_location,
1027                     &mloff, 0)) {
1028                         debug(3, "die %llu: got mloff %llx\n", off,
1029                             (u_longlong_t)mloff);
1030                         ml->ml_offset = mloff * 8;
1031                 }
1032 
1033                 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
1034                         ml->ml_size = bitsz;
1035                 else
1036                         ml->ml_size = tdesc_bitsize(ml->ml_type);
1037 
1038                 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
1039 #ifdef  _BIG_ENDIAN
1040                         ml->ml_offset += bitoff;
1041 #else
1042                         ml->ml_offset += tdesc_bitsize(ml->ml_type) - bitoff -
1043                             ml->ml_size;
1044 #endif
1045                 }
1046 
1047                 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
1048                     off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
1049 
1050                 *mlastp = ml;
1051                 mlastp = &ml->ml_next;
1052         } while ((mem = die_sibling(dw, mem)) != NULL);
1053 
1054         /*
1055          * GCC will attempt to eliminate unused types, thus decreasing the
1056          * size of the emitted dwarf.  That is, if you declare a foo_t in your
1057          * header, include said header in your source file, and neglect to
1058          * actually use (directly or indirectly) the foo_t in the source file,
1059          * the foo_t won't make it into the emitted DWARF.  So, at least, goes
1060          * the theory.
1061          *
1062          * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1063          * and then neglect to emit the members.  Strangely, the loner struct
1064          * tag will always be followed by a proper nested declaration of
1065          * something else.  This is clearly a bug, but we're not going to have
1066          * time to get it fixed before this goo goes back, so we'll have to work
1067          * around it.  If we see a no-membered struct with a nested declaration
1068          * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1069          * Being paranoid, we won't simply remove it from the hash.  Instead,
1070          * we'll decline to create an iidesc for it, thus ensuring that this
1071          * type won't make it into the output file.  To be safe, we'll also
1072          * change the name.
1073          */
1074         if (tdp->t_members == NULL) {
1075                 const char *old = tdesc_name(tdp);
1076                 size_t newsz = 7 + strlen(old) + 1;
1077                 char *new = xmalloc(newsz);
1078                 (void) snprintf(new, newsz, "orphan %s", old);
1079 
1080                 debug(3, "die %llu: worked around %s %s\n", off, typename, old);
1081 
1082                 if (tdp->t_name != NULL)
1083                         free(tdp->t_name);
1084                 tdp->t_name = new;
1085                 return;
1086         }
1087 
1088 out:
1089         if (tdp->t_name != NULL) {
1090                 ii = xcalloc(sizeof (iidesc_t));
1091                 ii->ii_type = II_SOU;
1092                 ii->ii_name = xstrdup(tdp->t_name);
1093                 ii->ii_dtype = tdp;
1094 
1095                 iidesc_add(dw->dw_td->td_iihash, ii);
1096         }
1097 }
1098 
1099 static void
1100 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1101 {
1102         die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1103 }
1104 
1105 static void
1106 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1107 {
1108         die_sou_create(dw, die, off, tdp, UNION, "union");
1109 }
1110 
1111 /*ARGSUSED1*/
1112 static int
1113 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private)
1114 {
1115         dwarf_t *dw = private;
1116         mlist_t *ml;
1117         tdesc_t *mt;
1118 
1119         if (tdp->t_flags & TDESC_F_RESOLVED)
1120                 return (1);
1121 
1122         debug(3, "resolving sou %s\n", tdesc_name(tdp));
1123 
1124         for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1125                 if (ml->ml_size == 0) {
1126                         mt = tdesc_basetype(ml->ml_type);
1127 
1128                         if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1129                                 continue;
1130 
1131                         /*
1132                          * For empty members, or GCC/C99 flexible array
1133                          * members, a size of 0 is correct.
1134                          */
1135                         if (mt->t_members == NULL)
1136                                 continue;
1137                         if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
1138                                 continue;
1139 
1140                         dw->dw_nunres++;
1141                         return (1);
1142                 }
1143 
1144                 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1145                         dw->dw_nunres++;
1146                         return (1);
1147                 }
1148 
1149                 if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1150                     mt->t_intr->intr_nbits != ml->ml_size) {
1151                         /*
1152                          * This member is a bitfield, and needs to reference
1153                          * an intrinsic type with the same width.  If the
1154                          * currently-referenced type isn't of the same width,
1155                          * we'll copy it, adjusting the width of the copy to
1156                          * the size we'd like.
1157                          */
1158                         debug(3, "tdp %u: creating bitfield for %d bits\n",
1159                             tdp->t_id, ml->ml_size);
1160 
1161                         ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
1162                 }
1163         }
1164 
1165         tdp->t_flags |= TDESC_F_RESOLVED;
1166 
1167         return (1);
1168 }
1169 
1170 /*ARGSUSED1*/
1171 static int
1172 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private)
1173 {
1174         const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1175         mlist_t *ml;
1176 
1177         if (tdp->t_flags & TDESC_F_RESOLVED)
1178                 return (1);
1179 
1180         for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1181                 if (ml->ml_size == 0) {
1182                         fprintf(stderr, "%s %d: failed to size member \"%s\" "
1183                             "of type %s (%d)\n", typename, tdp->t_id,
1184                             ml->ml_name, tdesc_name(ml->ml_type),
1185                             ml->ml_type->t_id);
1186                 }
1187         }
1188 
1189         return (1);
1190 }
1191 
1192 static void
1193 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1194 {
1195         Dwarf_Attribute attr;
1196         Dwarf_Half tag;
1197         Dwarf_Die arg;
1198         fndef_t *fn;
1199         int i;
1200 
1201         debug(3, "die %llu: creating function pointer\n", off);
1202 
1203         /*
1204          * We'll begin by processing any type definition nodes that may be
1205          * lurking underneath this one.
1206          */
1207         for (arg = die_child(dw, die); arg != NULL;
1208             arg = die_sibling(dw, arg)) {
1209                 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1210                     tag != DW_TAG_unspecified_parameters) {
1211                         /* Nested type declaration */
1212                         die_create_one(dw, arg);
1213                 }
1214         }
1215 
1216         if (die_isdecl(dw, die)) {
1217                 /*
1218                  * This is a prototype.  We don't add prototypes to the
1219                  * tree, so we're going to drop the tdesc.  Unfortunately,
1220                  * it has already been added to the tree.  Nobody will reference
1221                  * it, though, and it will be leaked.
1222                  */
1223                 return;
1224         }
1225 
1226         fn = xcalloc(sizeof (fndef_t));
1227 
1228         tdp->t_type = FUNCTION;
1229 
1230         if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1231                 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
1232                 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1233         } else {
1234                 fn->fn_ret = tdesc_intr_void(dw);
1235         }
1236 
1237         /*
1238          * Count the arguments to the function, then read them in.
1239          */
1240         for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1241             arg = die_sibling(dw, arg)) {
1242                 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1243                         fn->fn_nargs++;
1244                 else if (tag == DW_TAG_unspecified_parameters &&
1245                     fn->fn_nargs > 0)
1246                         fn->fn_vargs = 1;
1247         }
1248 
1249         if (fn->fn_nargs != 0) {
1250                 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1251                     (fn->fn_nargs > 1 ? "s" : ""));
1252 
1253                 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1254                 for (i = 0, arg = die_child(dw, die);
1255                     arg != NULL && i < fn->fn_nargs;
1256                     arg = die_sibling(dw, arg)) {
1257                         if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1258                                 continue;
1259 
1260                         fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1261                             DW_AT_type);
1262                 }
1263         }
1264 
1265         tdp->t_fndef = fn;
1266         tdp->t_flags |= TDESC_F_RESOLVED;
1267 }
1268 
1269 /*
1270  * GCC and DevPro use different names for the base types.  While the terms are
1271  * the same, they are arranged in a different order.  Some terms, such as int,
1272  * are implied in one, and explicitly named in the other.  Given a base type
1273  * as input, this routine will return a common name, along with an intr_t
1274  * that reflects said name.
1275  */
1276 static intr_t *
1277 die_base_name_parse(const char *name, char **newp)
1278 {
1279         char buf[100];
1280         char *base, *c;
1281         int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1282         int sign = 1;
1283         char fmt = '\0';
1284         intr_t *intr;
1285 
1286         if (strlen(name) > sizeof (buf) - 1)
1287                 terminate("base type name \"%s\" is too long\n", name);
1288 
1289         strncpy(buf, name, sizeof (buf));
1290 
1291         for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1292                 if (strcmp(c, "signed") == 0)
1293                         sign = 1;
1294                 else if (strcmp(c, "unsigned") == 0)
1295                         sign = 0;
1296                 else if (strcmp(c, "long") == 0)
1297                         nlong++;
1298                 else if (strcmp(c, "char") == 0) {
1299                         nchar++;
1300                         fmt = 'c';
1301                 } else if (strcmp(c, "short") == 0)
1302                         nshort++;
1303                 else if (strcmp(c, "int") == 0)
1304                         nint++;
1305                 else {
1306                         /*
1307                          * If we don't recognize any of the tokens, we'll tell
1308                          * the caller to fall back to the dwarf-provided
1309                          * encoding information.
1310                          */
1311                         return (NULL);
1312                 }
1313         }
1314 
1315         if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1316                 return (NULL);
1317 
1318         if (nchar > 0) {
1319                 if (nlong > 0 || nshort > 0 || nint > 0)
1320                         return (NULL);
1321 
1322                 base = "char";
1323 
1324         } else if (nshort > 0) {
1325                 if (nlong > 0)
1326                         return (NULL);
1327 
1328                 base = "short";
1329 
1330         } else if (nlong > 0) {
1331                 base = "long";
1332 
1333         } else {
1334                 base = "int";
1335         }
1336 
1337         intr = xcalloc(sizeof (intr_t));
1338         intr->intr_type = INTR_INT;
1339         intr->intr_signed = sign;
1340         intr->intr_iformat = fmt;
1341 
1342         snprintf(buf, sizeof (buf), "%s%s%s",
1343             (sign ? "" : "unsigned "),
1344             (nlong > 1 ? "long " : ""),
1345             base);
1346 
1347         *newp = xstrdup(buf);
1348         return (intr);
1349 }
1350 
1351 typedef struct fp_size_map {
1352         size_t fsm_typesz[2];   /* size of {32,64} type */
1353         uint_t fsm_enc[3];      /* CTF_FP_* for {bare,cplx,imagry} type */
1354 } fp_size_map_t;
1355 
1356 static const fp_size_map_t fp_encodings[] = {
1357         { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1358         { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1359 #ifdef __sparc
1360         { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1361 #else
1362         { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1363 #endif
1364         { { 0, 0 } }
1365 };
1366 
1367 static uint_t
1368 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
1369 {
1370         const fp_size_map_t *map = fp_encodings;
1371         uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1372         uint_t mult = 1, col = 0;
1373 
1374         if (enc == DW_ATE_complex_float) {
1375                 mult = 2;
1376                 col = 1;
1377         } else if (enc == DW_ATE_imaginary_float ||
1378             enc == DW_ATE_SUN_imaginary_float)
1379                 col = 2;
1380 
1381         while (map->fsm_typesz[szidx] != 0) {
1382                 if (map->fsm_typesz[szidx] * mult == sz)
1383                         return (map->fsm_enc[col]);
1384                 map++;
1385         }
1386 
1387         terminate("die %llu: unrecognized real type size %u\n", off, sz);
1388         /*NOTREACHED*/
1389         return (0);
1390 }
1391 
1392 static intr_t *
1393 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1394 {
1395         intr_t *intr = xcalloc(sizeof (intr_t));
1396         Dwarf_Signed enc;
1397 
1398         (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1399 
1400         switch (enc) {
1401         case DW_ATE_unsigned:
1402         case DW_ATE_address:
1403                 intr->intr_type = INTR_INT;
1404                 break;
1405         case DW_ATE_unsigned_char:
1406                 intr->intr_type = INTR_INT;
1407                 intr->intr_iformat = 'c';
1408                 break;
1409         case DW_ATE_signed:
1410                 intr->intr_type = INTR_INT;
1411                 intr->intr_signed = 1;
1412                 break;
1413         case DW_ATE_signed_char:
1414                 intr->intr_type = INTR_INT;
1415                 intr->intr_signed = 1;
1416                 intr->intr_iformat = 'c';
1417                 break;
1418         case DW_ATE_boolean:
1419                 intr->intr_type = INTR_INT;
1420                 intr->intr_signed = 1;
1421                 intr->intr_iformat = 'b';
1422                 break;
1423         case DW_ATE_float:
1424         case DW_ATE_complex_float:
1425         case DW_ATE_imaginary_float:
1426         case DW_ATE_SUN_imaginary_float:
1427         case DW_ATE_SUN_interval_float:
1428                 intr->intr_type = INTR_REAL;
1429                 intr->intr_signed = 1;
1430                 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1431                 break;
1432         default:
1433                 terminate("die %llu: unknown base type encoding 0x%llx\n",
1434                     off, enc);
1435         }
1436 
1437         return (intr);
1438 }
1439 
1440 static void
1441 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1442 {
1443         Dwarf_Unsigned sz;
1444         intr_t *intr;
1445         char *new;
1446 
1447         debug(3, "die %llu: creating base type\n", off);
1448 
1449         /*
1450          * The compilers have their own clever (internally inconsistent) ideas
1451          * as to what base types should look like.  Some times gcc will, for
1452          * example, use DW_ATE_signed_char for char.  Other times, however, it
1453          * will use DW_ATE_signed.  Needless to say, this causes some problems
1454          * down the road, particularly with merging.  We do, however, use the
1455          * DWARF idea of type sizes, as this allows us to avoid caring about
1456          * the data model.
1457          */
1458         (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1459 
1460         if (tdp->t_name == NULL)
1461                 terminate("die %llu: base type without name\n", off);
1462 
1463         /* XXX make a name parser for float too */
1464         if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1465                 /* Found it.  We'll use the parsed version */
1466                 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1467                     tdesc_name(tdp), new);
1468 
1469                 free(tdp->t_name);
1470                 tdp->t_name = new;
1471         } else {
1472                 /*
1473                  * We didn't recognize the type, so we'll create an intr_t
1474                  * based on the DWARF data.
1475                  */
1476                 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1477                     tdesc_name(tdp));
1478 
1479                 intr = die_base_from_dwarf(dw, base, off, sz);
1480         }
1481 
1482         intr->intr_nbits = sz * 8;
1483 
1484         tdp->t_type = INTRINSIC;
1485         tdp->t_intr = intr;
1486         tdp->t_size = sz;
1487 
1488         tdp->t_flags |= TDESC_F_RESOLVED;
1489 }
1490 
1491 static void
1492 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1493     int type, const char *typename)
1494 {
1495         Dwarf_Attribute attr;
1496 
1497         debug(3, "die %llu: creating %s\n", off, typename);
1498 
1499         tdp->t_type = type;
1500 
1501         if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1502                 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
1503                 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1504         } else {
1505                 tdp->t_tdesc = tdesc_intr_void(dw);
1506         }
1507 
1508         if (type == POINTER)
1509                 tdp->t_size = dw->dw_ptrsz;
1510 
1511         tdp->t_flags |= TDESC_F_RESOLVED;
1512 
1513         if (type == TYPEDEF) {
1514                 iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1515                 ii->ii_type = II_TYPE;
1516                 ii->ii_name = xstrdup(tdp->t_name);
1517                 ii->ii_dtype = tdp;
1518 
1519                 iidesc_add(dw->dw_td->td_iihash, ii);
1520         }
1521 }
1522 
1523 static void
1524 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1525 {
1526         die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1527 }
1528 
1529 static void
1530 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1531 {
1532         die_through_create(dw, die, off, tdp, CONST, "const");
1533 }
1534 
1535 static void
1536 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1537 {
1538         die_through_create(dw, die, off, tdp, POINTER, "pointer");
1539 }
1540 
1541 static void
1542 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1543 {
1544         die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1545 }
1546 
1547 static void
1548 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1549 {
1550         die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1551 }
1552 
1553 /*ARGSUSED3*/
1554 static void
1555 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1556 {
1557         Dwarf_Die arg;
1558         Dwarf_Half tag;
1559         iidesc_t *ii;
1560         char *name;
1561 
1562         debug(3, "die %llu: creating function definition\n", off);
1563 
1564         /*
1565          * We'll begin by processing any type definition nodes that may be
1566          * lurking underneath this one.
1567          */
1568         for (arg = die_child(dw, die); arg != NULL;
1569             arg = die_sibling(dw, arg)) {
1570                 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1571                     tag != DW_TAG_variable) {
1572                         /* Nested type declaration */
1573                         die_create_one(dw, arg);
1574                 }
1575         }
1576 
1577         if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1578                 /*
1579                  * We process neither prototypes nor subprograms without
1580                  * names.
1581                  */
1582                 return;
1583         }
1584 
1585         ii = xcalloc(sizeof (iidesc_t));
1586         ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1587         ii->ii_name = name;
1588         if (ii->ii_type == II_SFUN)
1589                 ii->ii_owner = xstrdup(dw->dw_cuname);
1590 
1591         debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1592             (ii->ii_type == II_GFUN ? "global" : "static"));
1593 
1594         if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1595                 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1596         else
1597                 ii->ii_dtype = tdesc_intr_void(dw);
1598 
1599         for (arg = die_child(dw, die); arg != NULL;
1600             arg = die_sibling(dw, arg)) {
1601                 char *name;
1602 
1603                 debug(3, "die %llu: looking at sub member at %llu\n",
1604                     off, die_off(dw, die));
1605 
1606                 if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1607                         continue;
1608 
1609                 if ((name = die_name(dw, arg)) == NULL) {
1610                         terminate("die %llu: func arg %d has no name\n",
1611                             off, ii->ii_nargs + 1);
1612                 }
1613 
1614                 if (strcmp(name, "...") == 0) {
1615                         free(name);
1616                         ii->ii_vargs = 1;
1617                         continue;
1618                 }
1619 
1620                 ii->ii_nargs++;
1621         }
1622 
1623         if (ii->ii_nargs > 0) {
1624                 int i;
1625 
1626                 debug(3, "die %llu: function has %d argument%s\n", off,
1627                     ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1628 
1629                 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1630 
1631                 for (arg = die_child(dw, die), i = 0;
1632                     arg != NULL && i < ii->ii_nargs;
1633                     arg = die_sibling(dw, arg)) {
1634                         if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1635                                 continue;
1636 
1637                         ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1638                             DW_AT_type);
1639                 }
1640         }
1641 
1642         iidesc_add(dw->dw_td->td_iihash, ii);
1643 }
1644 
1645 /*ARGSUSED3*/
1646 static void
1647 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1648 {
1649         iidesc_t *ii;
1650         char *name;
1651 
1652         debug(3, "die %llu: creating object definition\n", off);
1653 
1654         /* Skip "Non-Defining Declarations" */
1655         if (die_isdecl(dw, die))
1656                 return;
1657 
1658         /*
1659          * If we find a DIE of "Declarations Completing Non-Defining
1660          * Declarations", we will use the referenced type's DIE.  This isn't
1661          * quite correct, e.g. DW_AT_decl_line will be the forward declaration
1662          * not this site.  It's sufficient for what we need, however: in
1663          * particular, we should find DW_AT_external as needed there.
1664          */
1665         if (die_attr(dw, die, DW_AT_specification, 0) != NULL) {
1666                 Dwarf_Die sdie;
1667                 Dwarf_Off soff;
1668 
1669                 soff = die_attr_ref(dw, die, DW_AT_specification);
1670 
1671                 if (dwarf_offdie(dw->dw_dw, soff,
1672                     &sdie, &dw->dw_err) != DW_DLV_OK) {
1673                         terminate("dwarf_offdie(%llu) failed: %s\n",
1674                             soff, dwarf_errmsg(dw->dw_err));
1675                 }
1676 
1677                 die = sdie;
1678         }
1679 
1680         if ((name = die_name(dw, die)) == NULL)
1681                 return;
1682 
1683         ii = xcalloc(sizeof (iidesc_t));
1684         ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1685         ii->ii_name = name;
1686         ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1687         if (ii->ii_type == II_SVAR)
1688                 ii->ii_owner = xstrdup(dw->dw_cuname);
1689 
1690         iidesc_add(dw->dw_td->td_iihash, ii);
1691 }
1692 
1693 /*ARGSUSED2*/
1694 static int
1695 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private)
1696 {
1697         if (fwd->t_flags & TDESC_F_RESOLVED)
1698                 return (1);
1699 
1700         if (fwd->t_tdesc != NULL) {
1701                 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1702                     tdesc_name(fwd));
1703                 *fwdp = fwd->t_tdesc;
1704         }
1705 
1706         fwd->t_flags |= TDESC_F_RESOLVED;
1707 
1708         return (1);
1709 }
1710 
1711 /*ARGSUSED*/
1712 static void
1713 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1714 {
1715         Dwarf_Die child = die_child(dw, die);
1716 
1717         if (child != NULL)
1718                 die_create(dw, child);
1719 }
1720 
1721 /*
1722  * Used to map the die to a routine which can parse it, using the tag to do the
1723  * mapping.  While the processing of most tags entails the creation of a tdesc,
1724  * there are a few which don't - primarily those which result in the creation of
1725  * iidescs which refer to existing tdescs.
1726  */
1727 
1728 #define DW_F_NOTDP      0x1     /* Don't create a tdesc for the creator */
1729 
1730 typedef struct die_creator {
1731         Dwarf_Half dc_tag;
1732         uint16_t dc_flags;
1733         void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1734 } die_creator_t;
1735 
1736 static const die_creator_t die_creators[] = {
1737         { DW_TAG_array_type,            0,              die_array_create },
1738         { DW_TAG_enumeration_type,      0,              die_enum_create },
1739         { DW_TAG_lexical_block,         DW_F_NOTDP,     die_lexblk_descend },
1740         { DW_TAG_pointer_type,          0,              die_pointer_create },
1741         { DW_TAG_structure_type,        0,              die_struct_create },
1742         { DW_TAG_subroutine_type,       0,              die_funcptr_create },
1743         { DW_TAG_typedef,               0,              die_typedef_create },
1744         { DW_TAG_union_type,            0,              die_union_create },
1745         { DW_TAG_base_type,             0,              die_base_create },
1746         { DW_TAG_const_type,            0,              die_const_create },
1747         { DW_TAG_subprogram,            DW_F_NOTDP,     die_function_create },
1748         { DW_TAG_variable,              DW_F_NOTDP,     die_variable_create },
1749         { DW_TAG_volatile_type,         0,              die_volatile_create },
1750         { DW_TAG_restrict_type,         0,              die_restrict_create },
1751         { 0, 0, NULL }
1752 };
1753 
1754 static const die_creator_t *
1755 die_tag2ctor(Dwarf_Half tag)
1756 {
1757         const die_creator_t *dc;
1758 
1759         for (dc = die_creators; dc->dc_create != NULL; dc++) {
1760                 if (dc->dc_tag == tag)
1761                         return (dc);
1762         }
1763 
1764         return (NULL);
1765 }
1766 
1767 static void
1768 die_create_one(dwarf_t *dw, Dwarf_Die die)
1769 {
1770         Dwarf_Off off = die_off(dw, die);
1771         const die_creator_t *dc;
1772         Dwarf_Half tag;
1773         tdesc_t *tdp;
1774 
1775         debug(3, "die %llu: create_one\n", off);
1776 
1777         if (off > dw->dw_maxoff) {
1778                 terminate("illegal die offset %llu (max %llu)\n", off,
1779                     dw->dw_maxoff);
1780         }
1781 
1782         tag = die_tag(dw, die);
1783 
1784         if ((dc = die_tag2ctor(tag)) == NULL) {
1785                 debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1786                 return;
1787         }
1788 
1789         if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1790             !(dc->dc_flags & DW_F_NOTDP)) {
1791                 tdp = xcalloc(sizeof (tdesc_t));
1792                 tdp->t_id = off;
1793                 tdesc_add(dw, tdp);
1794         }
1795 
1796         if (tdp != NULL)
1797                 tdp->t_name = die_name(dw, die);
1798 
1799         dc->dc_create(dw, die, off, tdp);
1800 }
1801 
1802 static void
1803 die_create(dwarf_t *dw, Dwarf_Die die)
1804 {
1805         do {
1806                 die_create_one(dw, die);
1807         } while ((die = die_sibling(dw, die)) != NULL);
1808 }
1809 
1810 static tdtrav_cb_f die_resolvers[] = {
1811         NULL,
1812         NULL,                   /* intrinsic */
1813         NULL,                   /* pointer */
1814         die_array_resolve,      /* array */
1815         NULL,                   /* function */
1816         die_sou_resolve,        /* struct */
1817         die_sou_resolve,        /* union */
1818         die_enum_resolve,       /* enum */
1819         die_fwd_resolve,        /* forward */
1820         NULL,                   /* typedef */
1821         NULL,                   /* typedef unres */
1822         NULL,                   /* volatile */
1823         NULL,                   /* const */
1824         NULL,                   /* restrict */
1825 };
1826 
1827 static tdtrav_cb_f die_fail_reporters[] = {
1828         NULL,
1829         NULL,                   /* intrinsic */
1830         NULL,                   /* pointer */
1831         die_array_failed,       /* array */
1832         NULL,                   /* function */
1833         die_sou_failed,         /* struct */
1834         die_sou_failed,         /* union */
1835         NULL,                   /* enum */
1836         NULL,                   /* forward */
1837         NULL,                   /* typedef */
1838         NULL,                   /* typedef unres */
1839         NULL,                   /* volatile */
1840         NULL,                   /* const */
1841         NULL,                   /* restrict */
1842 };
1843 
1844 static void
1845 die_resolve(dwarf_t *dw)
1846 {
1847         int last = -1;
1848         int pass = 0;
1849 
1850         do {
1851                 pass++;
1852                 dw->dw_nunres = 0;
1853 
1854                 (void) iitraverse_hash(dw->dw_td->td_iihash,
1855                     &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1856 
1857                 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1858 
1859                 if (dw->dw_nunres == last) {
1860                         fprintf(stderr, "%s: failed to resolve the following "
1861                             "types:\n", progname);
1862 
1863                         (void) iitraverse_hash(dw->dw_td->td_iihash,
1864                             &dw->dw_td->td_curvgen, NULL, NULL,
1865                             die_fail_reporters, dw);
1866 
1867                         terminate("failed to resolve types\n");
1868                 }
1869 
1870                 last = dw->dw_nunres;
1871 
1872         } while (dw->dw_nunres != 0);
1873 }
1874 
1875 /*
1876  * Any object containing a function or object symbol at any scope should also
1877  * contain DWARF data.
1878  */
1879 static boolean_t
1880 should_have_dwarf(Elf *elf)
1881 {
1882         Elf_Scn *scn = NULL;
1883         Elf_Data *data = NULL;
1884         GElf_Shdr shdr;
1885         GElf_Sym sym;
1886         uint32_t symdx = 0;
1887         size_t nsyms = 0;
1888         boolean_t found = B_FALSE;
1889 
1890         while ((scn = elf_nextscn(elf, scn)) != NULL) {
1891                 gelf_getshdr(scn, &shdr);
1892 
1893                 if (shdr.sh_type == SHT_SYMTAB) {
1894                         found = B_TRUE;
1895                         break;
1896                 }
1897         }
1898 
1899         if (!found)
1900                 terminate("cannot convert stripped objects\n");
1901 
1902         data = elf_getdata(scn, NULL);
1903         nsyms = shdr.sh_size / shdr.sh_entsize;
1904 
1905         for (symdx = 0; symdx < nsyms; symdx++) {
1906                 gelf_getsym(data, symdx, &sym);
1907 
1908                 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
1909                     (GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
1910                     (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
1911                         char *name;
1912 
1913                         name = elf_strptr(elf, shdr.sh_link, sym.st_name);
1914 
1915                         /* Studio emits these local symbols regardless */
1916                         if ((strcmp(name, "Bbss.bss") != 0) &&
1917                             (strcmp(name, "Ttbss.bss") != 0) &&
1918                             (strcmp(name, "Ddata.data") != 0) &&
1919                             (strcmp(name, "Ttdata.data") != 0) &&
1920                             (strcmp(name, "Drodata.rodata") != 0))
1921                                 return (B_TRUE);
1922                 }
1923         }
1924 
1925         return (B_FALSE);
1926 }
1927 
1928 /*ARGSUSED*/
1929 int
1930 dw_read(tdata_t *td, Elf *elf, const char *filename)
1931 {
1932         Dwarf_Unsigned abboff, hdrlen, nxthdr;
1933         Dwarf_Half vers, addrsz;
1934         Dwarf_Die cu, child;
1935         dwarf_t dw;
1936         char *prod = NULL;
1937         int rc;
1938 
1939         bzero(&dw, sizeof (dwarf_t));
1940         dw.dw_td = td;
1941         dw.dw_ptrsz = elf_ptrsz(elf);
1942         dw.dw_mfgtid_last = TID_MFGTID_BASE;
1943         dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1944         dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1945             tdesc_namecmp);
1946         dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1947             tdesc_namecmp);
1948 
1949         if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw,
1950             &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1951                 if (should_have_dwarf(elf)) {
1952                         errno = ENOENT;
1953                         return (-1);
1954                 } else {
1955                         return (0);
1956                 }
1957         } else if (rc != DW_DLV_OK) {
1958                 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1959                         /*
1960                          * There's no type data in the DWARF section, but
1961                          * libdwarf is too clever to handle that properly.
1962                          */
1963                         return (0);
1964                 }
1965 
1966                 terminate("failed to initialize DWARF: %s\n",
1967                     dwarf_errmsg(dw.dw_err));
1968         }
1969 
1970         if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1971             &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK)
1972                 terminate("file does not contain valid DWARF data: %s\n",
1973                     dwarf_errmsg(dw.dw_err));
1974 
1975         /*
1976          * Some compilers emit no DWARF for empty files, others emit an empty
1977          * compilation unit.
1978          */
1979         if ((cu = die_sibling(&dw, NULL)) == NULL ||
1980             ((child = die_child(&dw, cu)) == NULL) &&
1981             should_have_dwarf(elf)) {
1982                 terminate("file does not contain dwarf type data "
1983                     "(try compiling with -g)\n");
1984         } else if (child == NULL) {
1985                 return (0);
1986         }
1987 
1988         dw.dw_maxoff = nxthdr - 1;
1989 
1990         if (dw.dw_maxoff > TID_FILEMAX)
1991                 terminate("file contains too many types\n");
1992 
1993         debug(1, "DWARF version: %d\n", vers);
1994         if (vers != DWARF_VERSION) {
1995                 terminate("file contains incompatible version %d DWARF code "
1996                     "(version 2 required)\n", vers);
1997         }
1998 
1999         if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
2000                 debug(1, "DWARF emitter: %s\n", prod);
2001                 free(prod);
2002         }
2003 
2004         if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
2005                 char *base = xstrdup(basename(dw.dw_cuname));
2006                 free(dw.dw_cuname);
2007                 dw.dw_cuname = base;
2008 
2009                 debug(1, "CU name: %s\n", dw.dw_cuname);
2010         }
2011 
2012         die_create(&dw, child);
2013 
2014         if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
2015             &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
2016                 terminate("multiple compilation units not supported\n");
2017 
2018         (void) dwarf_finish(dw.dw_dw, &dw.dw_err);
2019 
2020         die_resolve(&dw);
2021 
2022         cvt_fixups(td, dw.dw_ptrsz);
2023 
2024         /* leak the dwarf_t */
2025 
2026         return (0);
2027 }