1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Given several files containing CTF data, merge and uniquify that data into 28 * a single CTF section in an output file. 29 * 30 * Merges can proceed independently. As such, we perform the merges in parallel 31 * using a worker thread model. A given glob of CTF data (either all of the CTF 32 * data from a single input file, or the result of one or more merges) can only 33 * be involved in a single merge at any given time, so the process decreases in 34 * parallelism, especially towards the end, as more and more files are 35 * consolidated, finally resulting in a single merge of two large CTF graphs. 36 * Unfortunately, the last merge is also the slowest, as the two graphs being 37 * merged are each the product of merges of half of the input files. 38 * 39 * The algorithm consists of two phases, described in detail below. The first 40 * phase entails the merging of CTF data in groups of eight. The second phase 41 * takes the results of Phase I, and merges them two at a time. This disparity 42 * is due to an observation that the merge time increases at least quadratically 43 * with the size of the CTF data being merged. As such, merges of CTF graphs 44 * newly read from input files are much faster than merges of CTF graphs that 45 * are themselves the results of prior merges. 46 * 47 * A further complication is the need to ensure the repeatability of CTF merges. 48 * That is, a merge should produce the same output every time, given the same 49 * input. In both phases, this consistency requirement is met by imposing an 50 * ordering on the merge process, thus ensuring that a given set of input files 51 * are merged in the same order every time. 52 * 53 * Phase I 54 * 55 * The main thread reads the input files one by one, transforming the CTF 56 * data they contain into tdata structures. When a given file has been read 57 * and parsed, it is placed on the work queue for retrieval by worker threads. 58 * 59 * Central to Phase I is the Work In Progress (wip) array, which is used to 60 * merge batches of files in a predictable order. Files are read by the main 61 * thread, and are merged into wip array elements in round-robin order. When 62 * the number of files merged into a given array slot equals the batch size, 63 * the merged CTF graph in that array is added to the done slot in order by 64 * array slot. 65 * 66 * For example, consider a case where we have five input files, a batch size 67 * of two, a wip array size of two, and two worker threads (T1 and T2). 68 * 69 * 1. The wip array elements are assigned initial batch numbers 0 and 1. 70 * 2. T1 reads an input file from the input queue (wq_queue). This is the 71 * first input file, so it is placed into wip[0]. The second file is 72 * similarly read and placed into wip[1]. The wip array slots now contain 73 * one file each (wip_nmerged == 1). 74 * 3. T1 reads the third input file, which it merges into wip[0]. The 75 * number of files in wip[0] is equal to the batch size. 76 * 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1] 77 * is now full too. 78 * 5. T2 attempts to place the contents of wip[1] on the done queue 79 * (wq_done_queue), but it can't, since the batch ID for wip[1] is 1. 80 * Batch 0 needs to be on the done queue before batch 1 can be added, so 81 * T2 blocks on wip[1]'s cv. 82 * 6. T1 attempts to place the contents of wip[0] on the done queue, and 83 * succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets 84 * its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2. 85 * 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that 86 * batch 1 can now be added. It adds wip[1] to the done queue, clears 87 * wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and 88 * restarts. 89 * 90 * The above process continues until all input files have been consumed. At 91 * this point, a pair of barriers are used to allow a single thread to move 92 * any partial batches from the wip array to the done array in batch ID order. 93 * When this is complete, wq_done_queue is moved to wq_queue, and Phase II 94 * begins. 95 * 96 * Locking Semantics (Phase I) 97 * 98 * The input queue (wq_queue) and the done queue (wq_done_queue) are 99 * protected by separate mutexes - wq_queue_lock and wq_done_queue. wip 100 * array slots are protected by their own mutexes, which must be grabbed 101 * before releasing the input queue lock. The wip array lock is dropped 102 * when the thread restarts the loop. If the array slot was full, the 103 * array lock will be held while the slot contents are added to the done 104 * queue. The done queue lock is used to protect the wip slot cv's. 105 * 106 * The pow number is protected by the queue lock. The master batch ID 107 * and last completed batch (wq_lastdonebatch) counters are protected *in 108 * Phase I* by the done queue lock. 109 * 110 * Phase II 111 * 112 * When Phase II begins, the queue consists of the merged batches from the 113 * first phase. Assume we have five batches: 114 * 115 * Q: a b c d e 116 * 117 * Using the same batch ID mechanism we used in Phase I, but without the wip 118 * array, worker threads remove two entries at a time from the beginning of 119 * the queue. These two entries are merged, and are added back to the tail 120 * of the queue, as follows: 121 * 122 * Q: a b c d e # start 123 * Q: c d e ab # a, b removed, merged, added to end 124 * Q: e ab cd # c, d removed, merged, added to end 125 * Q: cd eab # e, ab removed, merged, added to end 126 * Q: cdeab # cd, eab removed, merged, added to end 127 * 128 * When one entry remains on the queue, with no merges outstanding, Phase II 129 * finishes. We pre-determine the stopping point by pre-calculating the 130 * number of nodes that will appear on the list. In the example above, the 131 * number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by 132 * signaling the main thread via wq_done_cv. 133 * 134 * Locking Semantics (Phase II) 135 * 136 * The queue (wq_queue), ninqueue, and the master batch ID and last 137 * completed batch counters are protected by wq_queue_lock. The done 138 * queue and corresponding lock are unused in Phase II as is the wip array. 139 * 140 * Uniquification 141 * 142 * We want the CTF data that goes into a given module to be as small as 143 * possible. For example, we don't want it to contain any type data that may 144 * be present in another common module. As such, after creating the master 145 * tdata_t for a given module, we can, if requested by the user, uniquify it 146 * against the tdata_t from another module (genunix in the case of the SunOS 147 * kernel). We perform a merge between the tdata_t for this module and the 148 * tdata_t from genunix. Nodes found in this module that are not present in 149 * genunix are added to a third tdata_t - the uniquified tdata_t. 150 * 151 * Additive Merges 152 * 153 * In some cases, for example if we are issuing a new version of a common 154 * module in a patch, we need to make sure that the CTF data already present 155 * in that module does not change. Changes to this data would void the CTF 156 * data in any module that uniquified against the common module. To preserve 157 * the existing data, we can perform what is known as an additive merge. In 158 * this case, a final uniquification is performed against the CTF data in the 159 * previous version of the module. The result will be the placement of new 160 * and changed data after the existing data, thus preserving the existing type 161 * ID space. 162 * 163 * Saving the result 164 * 165 * When the merges are complete, the resulting tdata_t is placed into the 166 * output file, replacing the .SUNW_ctf section (if any) already in that file. 167 * 168 * The person who changes the merging thread code in this file without updating 169 * this comment will not live to see the stock hit five. 170 */ 171 172 #include <stdio.h> 173 #include <stdlib.h> 174 #include <unistd.h> 175 #include <pthread.h> 176 #include <assert.h> 177 #include <synch.h> 178 #include <signal.h> 179 #include <libgen.h> 180 #include <string.h> 181 #include <errno.h> 182 #include <alloca.h> 183 #include <sys/param.h> 184 #include <sys/types.h> 185 #include <sys/mman.h> 186 #include <sys/sysconf.h> 187 188 #include "ctf_headers.h" 189 #include "ctftools.h" 190 #include "ctfmerge.h" 191 #include "traverse.h" 192 #include "memory.h" 193 #include "fifo.h" 194 #include "barrier.h" 195 196 #pragma init(bigheap) 197 198 #define MERGE_PHASE1_BATCH_SIZE 8 199 #define MERGE_PHASE1_MAX_SLOTS 5 200 #define MERGE_INPUT_THROTTLE_LEN 10 201 202 const char *progname; 203 static char *outfile = NULL; 204 static char *tmpname = NULL; 205 static int dynsym; 206 int debug_level = DEBUG_LEVEL; 207 static size_t maxpgsize = 0x400000; 208 209 210 void 211 usage(void) 212 { 213 (void) fprintf(stderr, 214 "Usage: %s [-fstv] -l label | -L labelenv -o outfile file ...\n" 215 " %s [-fstv] -l label | -L labelenv -o outfile -d uniqfile\n" 216 " %*s [-D uniqlabel] file ...\n" 217 " %s [-fstv] -l label | -L labelenv -o outfile -w withfile " 218 "file ...\n" 219 " %s -c srcfile destfile\n" 220 "\n" 221 " Note: if -L labelenv is specified and labelenv is not set in\n" 222 " the environment, a default value is used.\n", 223 progname, progname, strlen(progname), " ", 224 progname, progname); 225 } 226 227 static void 228 bigheap(void) 229 { 230 size_t big, *size; 231 int sizes; 232 struct memcntl_mha mha; 233 234 /* 235 * First, get the available pagesizes. 236 */ 237 if ((sizes = getpagesizes(NULL, 0)) == -1) 238 return; 239 240 if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL) 241 return; 242 243 if (getpagesizes(size, sizes) == -1) 244 return; 245 246 while (size[sizes - 1] > maxpgsize) 247 sizes--; 248 249 /* set big to the largest allowed page size */ 250 big = size[sizes - 1]; 251 if (big & (big - 1)) { 252 /* 253 * The largest page size is not a power of two for some 254 * inexplicable reason; return. 255 */ 256 return; 257 } 258 259 /* 260 * Now, align our break to the largest page size. 261 */ 262 if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0) 263 return; 264 265 /* 266 * set the preferred page size for the heap 267 */ 268 mha.mha_cmd = MHA_MAPSIZE_BSSBRK; 269 mha.mha_flags = 0; 270 mha.mha_pagesize = big; 271 272 (void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0); 273 } 274 275 static void 276 finalize_phase_one(workqueue_t *wq) 277 { 278 int startslot, i; 279 280 /* 281 * wip slots are cleared out only when maxbatchsz td's have been merged 282 * into them. We're not guaranteed that the number of files we're 283 * merging is a multiple of maxbatchsz, so there will be some partial 284 * groups in the wip array. Move them to the done queue in batch ID 285 * order, starting with the slot containing the next batch that would 286 * have been placed on the done queue, followed by the others. 287 * One thread will be doing this while the others wait at the barrier 288 * back in worker_thread(), so we don't need to worry about pesky things 289 * like locks. 290 */ 291 292 for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) { 293 if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) { 294 startslot = i; 295 break; 296 } 297 } 298 299 assert(startslot != -1); 300 301 for (i = startslot; i < startslot + wq->wq_nwipslots; i++) { 302 int slotnum = i % wq->wq_nwipslots; 303 wip_t *wipslot = &wq->wq_wip[slotnum]; 304 305 if (wipslot->wip_td != NULL) { 306 debug(2, "clearing slot %d (%d) (saving %d)\n", 307 slotnum, i, wipslot->wip_nmerged); 308 } else 309 debug(2, "clearing slot %d (%d)\n", slotnum, i); 310 311 if (wipslot->wip_td != NULL) { 312 fifo_add(wq->wq_donequeue, wipslot->wip_td); 313 wq->wq_wip[slotnum].wip_td = NULL; 314 } 315 } 316 317 wq->wq_lastdonebatch = wq->wq_next_batchid++; 318 319 debug(2, "phase one done: donequeue has %d items\n", 320 fifo_len(wq->wq_donequeue)); 321 } 322 323 static void 324 init_phase_two(workqueue_t *wq) 325 { 326 int num; 327 328 /* 329 * We're going to continually merge the first two entries on the queue, 330 * placing the result on the end, until there's nothing left to merge. 331 * At that point, everything will have been merged into one. The 332 * initial value of ninqueue needs to be equal to the total number of 333 * entries that will show up on the queue, both at the start of the 334 * phase and as generated by merges during the phase. 335 */ 336 wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue); 337 while (num != 1) { 338 wq->wq_ninqueue += num / 2; 339 num = num / 2 + num % 2; 340 } 341 342 /* 343 * Move the done queue to the work queue. We won't be using the done 344 * queue in phase 2. 345 */ 346 assert(fifo_len(wq->wq_queue) == 0); 347 fifo_free(wq->wq_queue, NULL); 348 wq->wq_queue = wq->wq_donequeue; 349 } 350 351 static void 352 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum) 353 { 354 pthread_mutex_lock(&wq->wq_donequeue_lock); 355 356 while (wq->wq_lastdonebatch + 1 < slot->wip_batchid) 357 pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock); 358 assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid); 359 360 fifo_add(wq->wq_donequeue, slot->wip_td); 361 wq->wq_lastdonebatch++; 362 pthread_cond_signal(&wq->wq_wip[(slotnum + 1) % 363 wq->wq_nwipslots].wip_cv); 364 365 /* reset the slot for next use */ 366 slot->wip_td = NULL; 367 slot->wip_batchid = wq->wq_next_batchid++; 368 369 pthread_mutex_unlock(&wq->wq_donequeue_lock); 370 } 371 372 static void 373 wip_add_work(wip_t *slot, tdata_t *pow) 374 { 375 if (slot->wip_td == NULL) { 376 slot->wip_td = pow; 377 slot->wip_nmerged = 1; 378 } else { 379 debug(2, "%d: merging %p into %p\n", pthread_self(), 380 (void *)pow, (void *)slot->wip_td); 381 382 merge_into_master(pow, slot->wip_td, NULL, 0); 383 tdata_free(pow); 384 385 slot->wip_nmerged++; 386 } 387 } 388 389 static void 390 worker_runphase1(workqueue_t *wq) 391 { 392 wip_t *wipslot; 393 tdata_t *pow; 394 int wipslotnum, pownum; 395 396 for (;;) { 397 pthread_mutex_lock(&wq->wq_queue_lock); 398 399 while (fifo_empty(wq->wq_queue)) { 400 if (wq->wq_nomorefiles == 1) { 401 pthread_cond_broadcast(&wq->wq_work_avail); 402 pthread_mutex_unlock(&wq->wq_queue_lock); 403 404 /* on to phase 2 ... */ 405 return; 406 } 407 408 pthread_cond_wait(&wq->wq_work_avail, 409 &wq->wq_queue_lock); 410 } 411 412 /* there's work to be done! */ 413 pow = fifo_remove(wq->wq_queue); 414 pownum = wq->wq_nextpownum++; 415 pthread_cond_broadcast(&wq->wq_work_removed); 416 417 assert(pow != NULL); 418 419 /* merge it into the right slot */ 420 wipslotnum = pownum % wq->wq_nwipslots; 421 wipslot = &wq->wq_wip[wipslotnum]; 422 423 pthread_mutex_lock(&wipslot->wip_lock); 424 425 pthread_mutex_unlock(&wq->wq_queue_lock); 426 427 wip_add_work(wipslot, pow); 428 429 if (wipslot->wip_nmerged == wq->wq_maxbatchsz) 430 wip_save_work(wq, wipslot, wipslotnum); 431 432 pthread_mutex_unlock(&wipslot->wip_lock); 433 } 434 } 435 436 static void 437 worker_runphase2(workqueue_t *wq) 438 { 439 tdata_t *pow1, *pow2; 440 int batchid; 441 442 for (;;) { 443 pthread_mutex_lock(&wq->wq_queue_lock); 444 445 if (wq->wq_ninqueue == 1) { 446 pthread_cond_broadcast(&wq->wq_work_avail); 447 pthread_mutex_unlock(&wq->wq_queue_lock); 448 449 debug(2, "%d: entering p2 completion barrier\n", 450 pthread_self()); 451 if (barrier_wait(&wq->wq_bar1)) { 452 pthread_mutex_lock(&wq->wq_queue_lock); 453 wq->wq_alldone = 1; 454 pthread_cond_signal(&wq->wq_alldone_cv); 455 pthread_mutex_unlock(&wq->wq_queue_lock); 456 } 457 458 return; 459 } 460 461 if (fifo_len(wq->wq_queue) < 2) { 462 pthread_cond_wait(&wq->wq_work_avail, 463 &wq->wq_queue_lock); 464 pthread_mutex_unlock(&wq->wq_queue_lock); 465 continue; 466 } 467 468 /* there's work to be done! */ 469 pow1 = fifo_remove(wq->wq_queue); 470 pow2 = fifo_remove(wq->wq_queue); 471 wq->wq_ninqueue -= 2; 472 473 batchid = wq->wq_next_batchid++; 474 475 pthread_mutex_unlock(&wq->wq_queue_lock); 476 477 debug(2, "%d: merging %p into %p\n", pthread_self(), 478 (void *)pow1, (void *)pow2); 479 merge_into_master(pow1, pow2, NULL, 0); 480 tdata_free(pow1); 481 482 /* 483 * merging is complete. place at the tail of the queue in 484 * proper order. 485 */ 486 pthread_mutex_lock(&wq->wq_queue_lock); 487 while (wq->wq_lastdonebatch + 1 != batchid) { 488 pthread_cond_wait(&wq->wq_done_cv, 489 &wq->wq_queue_lock); 490 } 491 492 wq->wq_lastdonebatch = batchid; 493 494 fifo_add(wq->wq_queue, pow2); 495 debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n", 496 pthread_self(), (void *)pow2, fifo_len(wq->wq_queue), 497 wq->wq_ninqueue); 498 pthread_cond_broadcast(&wq->wq_done_cv); 499 pthread_cond_signal(&wq->wq_work_avail); 500 pthread_mutex_unlock(&wq->wq_queue_lock); 501 } 502 } 503 504 /* 505 * Main loop for worker threads. 506 */ 507 static void * 508 worker_thread(void *ptr) 509 { 510 workqueue_t *wq = ptr; 511 512 worker_runphase1(wq); 513 514 debug(2, "%d: entering first barrier\n", pthread_self()); 515 516 if (barrier_wait(&wq->wq_bar1)) { 517 518 debug(2, "%d: doing work in first barrier\n", pthread_self()); 519 520 finalize_phase_one(wq); 521 522 init_phase_two(wq); 523 524 debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(), 525 wq->wq_ninqueue, fifo_len(wq->wq_queue)); 526 } 527 528 debug(2, "%d: entering second barrier\n", pthread_self()); 529 530 (void) barrier_wait(&wq->wq_bar2); 531 532 debug(2, "%d: phase 1 complete\n", pthread_self()); 533 534 worker_runphase2(wq); 535 return (NULL); 536 } 537 538 /* 539 * Pass a tdata_t tree, built from an input file, off to the work queue for 540 * consumption by worker threads. 541 */ 542 static int 543 merge_ctf_cb(tdata_t *td, char *name, void *arg) 544 { 545 workqueue_t *wq = arg; 546 547 debug(3, "Adding tdata %p for processing\n", (void *)td); 548 549 pthread_mutex_lock(&wq->wq_queue_lock); 550 while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) { 551 debug(2, "Throttling input (len = %d, throttle = %d)\n", 552 fifo_len(wq->wq_queue), wq->wq_ithrottle); 553 pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock); 554 } 555 556 fifo_add(wq->wq_queue, td); 557 debug(1, "Thread %d announcing %s\n", pthread_self(), name); 558 pthread_cond_broadcast(&wq->wq_work_avail); 559 pthread_mutex_unlock(&wq->wq_queue_lock); 560 561 return (1); 562 } 563 564 /* 565 * This program is intended to be invoked from a Makefile, as part of the build. 566 * As such, in the event of a failure or user-initiated interrupt (^C), we need 567 * to ensure that a subsequent re-make will cause ctfmerge to be executed again. 568 * Unfortunately, ctfmerge will usually be invoked directly after (and as part 569 * of the same Makefile rule as) a link, and will operate on the linked file 570 * in place. If we merely exit upon receipt of a SIGINT, a subsequent make 571 * will notice that the *linked* file is newer than the object files, and thus 572 * will not reinvoke ctfmerge. The only way to ensure that a subsequent make 573 * reinvokes ctfmerge, is to remove the file to which we are adding CTF 574 * data (confusingly named the output file). This means that the link will need 575 * to happen again, but links are generally fast, and we can't allow the merge 576 * to be skipped. 577 * 578 * Another possibility would be to block SIGINT entirely - to always run to 579 * completion. The run time of ctfmerge can, however, be measured in minutes 580 * in some cases, so this is not a valid option. 581 */ 582 static void 583 handle_sig(int sig) 584 { 585 terminate("Caught signal %d - exiting\n", sig); 586 } 587 588 static void 589 terminate_cleanup(void) 590 { 591 int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1; 592 593 if (tmpname != NULL && dounlink) 594 unlink(tmpname); 595 596 if (outfile == NULL) 597 return; 598 599 if (dounlink) { 600 fprintf(stderr, "Removing %s\n", outfile); 601 unlink(outfile); 602 } 603 } 604 605 static void 606 copy_ctf_data(char *srcfile, char *destfile) 607 { 608 tdata_t *srctd; 609 610 if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0) 611 terminate("No CTF data found in source file %s\n", srcfile); 612 613 tmpname = mktmpname(destfile, ".ctf"); 614 write_ctf(srctd, destfile, tmpname, CTF_COMPRESS); 615 if (rename(tmpname, destfile) != 0) { 616 terminate("Couldn't rename temp file %s to %s", tmpname, 617 destfile); 618 } 619 free(tmpname); 620 tdata_free(srctd); 621 } 622 623 static void 624 wq_init(workqueue_t *wq, int nfiles) 625 { 626 int throttle, nslots, i; 627 628 if (getenv("CTFMERGE_MAX_SLOTS")) 629 nslots = atoi(getenv("CTFMERGE_MAX_SLOTS")); 630 else 631 nslots = MERGE_PHASE1_MAX_SLOTS; 632 633 if (getenv("CTFMERGE_PHASE1_BATCH_SIZE")) 634 wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE")); 635 else 636 wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE; 637 638 nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) / 639 wq->wq_maxbatchsz); 640 641 wq->wq_wip = xcalloc(sizeof (wip_t) * nslots); 642 wq->wq_nwipslots = nslots; 643 wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots); 644 wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads); 645 646 if (getenv("CTFMERGE_INPUT_THROTTLE")) 647 throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE")); 648 else 649 throttle = MERGE_INPUT_THROTTLE_LEN; 650 wq->wq_ithrottle = throttle * wq->wq_nthreads; 651 652 debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots, 653 wq->wq_nthreads); 654 655 wq->wq_next_batchid = 0; 656 657 for (i = 0; i < nslots; i++) { 658 pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL); 659 wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++; 660 } 661 662 pthread_mutex_init(&wq->wq_queue_lock, NULL); 663 wq->wq_queue = fifo_new(); 664 pthread_cond_init(&wq->wq_work_avail, NULL); 665 pthread_cond_init(&wq->wq_work_removed, NULL); 666 wq->wq_ninqueue = nfiles; 667 wq->wq_nextpownum = 0; 668 669 pthread_mutex_init(&wq->wq_donequeue_lock, NULL); 670 wq->wq_donequeue = fifo_new(); 671 wq->wq_lastdonebatch = -1; 672 673 pthread_cond_init(&wq->wq_done_cv, NULL); 674 675 pthread_cond_init(&wq->wq_alldone_cv, NULL); 676 wq->wq_alldone = 0; 677 678 barrier_init(&wq->wq_bar1, wq->wq_nthreads); 679 barrier_init(&wq->wq_bar2, wq->wq_nthreads); 680 681 wq->wq_nomorefiles = 0; 682 } 683 684 static void 685 start_threads(workqueue_t *wq) 686 { 687 sigset_t sets; 688 int i; 689 690 sigemptyset(&sets); 691 sigaddset(&sets, SIGINT); 692 sigaddset(&sets, SIGQUIT); 693 sigaddset(&sets, SIGTERM); 694 pthread_sigmask(SIG_BLOCK, &sets, NULL); 695 696 for (i = 0; i < wq->wq_nthreads; i++) { 697 pthread_create(&wq->wq_thread[i], NULL, 698 worker_thread, wq); 699 } 700 701 sigset(SIGINT, handle_sig); 702 sigset(SIGQUIT, handle_sig); 703 sigset(SIGTERM, handle_sig); 704 pthread_sigmask(SIG_UNBLOCK, &sets, NULL); 705 } 706 707 static void 708 join_threads(workqueue_t *wq) 709 { 710 int i; 711 712 for (i = 0; i < wq->wq_nthreads; i++) { 713 pthread_join(wq->wq_thread[i], NULL); 714 } 715 } 716 717 static int 718 strcompare(const void *p1, const void *p2) 719 { 720 char *s1 = *((char **)p1); 721 char *s2 = *((char **)p2); 722 723 return (strcmp(s1, s2)); 724 } 725 726 /* 727 * Core work queue structure; passed to worker threads on thread creation 728 * as the main point of coordination. Allocate as a static structure; we 729 * could have put this into a local variable in main, but passing a pointer 730 * into your stack to another thread is fragile at best and leads to some 731 * hard-to-debug failure modes. 732 */ 733 static workqueue_t wq; 734 735 int 736 main(int argc, char **argv) 737 { 738 tdata_t *mstrtd, *savetd; 739 char *uniqfile = NULL, *uniqlabel = NULL; 740 char *withfile = NULL; 741 char *label = NULL; 742 char **ifiles, **tifiles; 743 int verbose = 0, docopy = 0; 744 int write_fuzzy_match = 0; 745 int require_ctf = 0; 746 int nifiles, nielems; 747 int c, i, idx, tidx, err; 748 749 progname = basename(argv[0]); 750 751 ctf_altexec("CTFMERGE_ALTEXEC", argc, argv); 752 753 if (getenv("CTFMERGE_DEBUG_LEVEL")) 754 debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL")); 755 756 err = 0; 757 while ((c = getopt(argc, argv, ":cd:D:fl:L:o:tvw:s")) != EOF) { 758 switch (c) { 759 case 'c': 760 docopy = 1; 761 break; 762 case 'd': 763 /* Uniquify against `uniqfile' */ 764 uniqfile = optarg; 765 break; 766 case 'D': 767 /* Uniquify against label `uniqlabel' in `uniqfile' */ 768 uniqlabel = optarg; 769 break; 770 case 'f': 771 write_fuzzy_match = CTF_FUZZY_MATCH; 772 break; 773 case 'l': 774 /* Label merged types with `label' */ 775 label = optarg; 776 break; 777 case 'L': 778 /* Label merged types with getenv(`label`) */ 779 if ((label = getenv(optarg)) == NULL) 780 label = CTF_DEFAULT_LABEL; 781 break; 782 case 'o': 783 /* Place merged types in CTF section in `outfile' */ 784 outfile = optarg; 785 break; 786 case 't': 787 /* Insist *all* object files built from C have CTF */ 788 require_ctf = 1; 789 break; 790 case 'v': 791 /* More debugging information */ 792 verbose = 1; 793 break; 794 case 'w': 795 /* Additive merge with data from `withfile' */ 796 withfile = optarg; 797 break; 798 case 's': 799 /* use the dynsym rather than the symtab */ 800 dynsym = CTF_USE_DYNSYM; 801 break; 802 default: 803 usage(); 804 exit(2); 805 } 806 } 807 808 /* Validate arguments */ 809 if (docopy) { 810 if (uniqfile != NULL || uniqlabel != NULL || label != NULL || 811 outfile != NULL || withfile != NULL || dynsym != 0) 812 err++; 813 814 if (argc - optind != 2) 815 err++; 816 } else { 817 if (uniqfile != NULL && withfile != NULL) 818 err++; 819 820 if (uniqlabel != NULL && uniqfile == NULL) 821 err++; 822 823 if (outfile == NULL || label == NULL) 824 err++; 825 826 if (argc - optind == 0) 827 err++; 828 } 829 830 if (err) { 831 usage(); 832 exit(2); 833 } 834 835 if (uniqfile && access(uniqfile, R_OK) != 0) { 836 warning("Uniquification file %s couldn't be opened and " 837 "will be ignored.\n", uniqfile); 838 uniqfile = NULL; 839 } 840 if (withfile && access(withfile, R_OK) != 0) { 841 warning("With file %s couldn't be opened and will be " 842 "ignored.\n", withfile); 843 withfile = NULL; 844 } 845 if (outfile && access(outfile, R_OK|W_OK) != 0) 846 terminate("Cannot open output file %s for r/w", outfile); 847 848 /* 849 * This is ugly, but we don't want to have to have a separate tool 850 * (yet) just for copying an ELF section with our specific requirements, 851 * so we shoe-horn a copier into ctfmerge. 852 */ 853 if (docopy) { 854 copy_ctf_data(argv[optind], argv[optind + 1]); 855 856 exit(0); 857 } 858 859 set_terminate_cleanup(terminate_cleanup); 860 861 /* Sort the input files and strip out duplicates */ 862 nifiles = argc - optind; 863 ifiles = xmalloc(sizeof (char *) * nifiles); 864 tifiles = xmalloc(sizeof (char *) * nifiles); 865 866 for (i = 0; i < nifiles; i++) 867 tifiles[i] = argv[optind + i]; 868 qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare); 869 870 ifiles[0] = tifiles[0]; 871 for (idx = 0, tidx = 1; tidx < nifiles; tidx++) { 872 if (strcmp(ifiles[idx], tifiles[tidx]) != 0) 873 ifiles[++idx] = tifiles[tidx]; 874 } 875 nifiles = idx + 1; 876 877 /* Make sure they all exist */ 878 if ((nielems = count_files(ifiles, nifiles)) < 0) 879 terminate("Some input files were inaccessible\n"); 880 881 /* Prepare for the merge */ 882 wq_init(&wq, nielems); 883 884 start_threads(&wq); 885 886 /* 887 * Start the merge 888 * 889 * We're reading everything from each of the object files, so we 890 * don't need to specify labels. 891 */ 892 if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb, 893 &wq, require_ctf) == 0) { 894 /* 895 * If we're verifying that C files have CTF, it's safe to 896 * assume that in this case, we're building only from assembly 897 * inputs. 898 */ 899 if (require_ctf) 900 exit(0); 901 terminate("No ctf sections found to merge\n"); 902 } 903 904 pthread_mutex_lock(&wq.wq_queue_lock); 905 wq.wq_nomorefiles = 1; 906 pthread_cond_broadcast(&wq.wq_work_avail); 907 pthread_mutex_unlock(&wq.wq_queue_lock); 908 909 pthread_mutex_lock(&wq.wq_queue_lock); 910 while (wq.wq_alldone == 0) 911 pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock); 912 pthread_mutex_unlock(&wq.wq_queue_lock); 913 914 join_threads(&wq); 915 916 /* 917 * All requested files have been merged, with the resulting tree in 918 * mstrtd. savetd is the tree that will be placed into the output file. 919 * 920 * Regardless of whether we're doing a normal uniquification or an 921 * additive merge, we need a type tree that has been uniquified 922 * against uniqfile or withfile, as appropriate. 923 * 924 * If we're doing a uniquification, we stuff the resulting tree into 925 * outfile. Otherwise, we add the tree to the tree already in withfile. 926 */ 927 assert(fifo_len(wq.wq_queue) == 1); 928 mstrtd = fifo_remove(wq.wq_queue); 929 930 if (verbose || debug_level) { 931 debug(2, "Statistics for td %p\n", (void *)mstrtd); 932 933 iidesc_stats(mstrtd->td_iihash); 934 } 935 936 if (uniqfile != NULL || withfile != NULL) { 937 char *reffile, *reflabel = NULL; 938 tdata_t *reftd; 939 940 if (uniqfile != NULL) { 941 reffile = uniqfile; 942 reflabel = uniqlabel; 943 } else 944 reffile = withfile; 945 946 if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb, 947 &reftd, require_ctf) == 0) { 948 terminate("No CTF data found in reference file %s\n", 949 reffile); 950 } 951 952 savetd = tdata_new(); 953 954 if (CTF_TYPE_ISCHILD(reftd->td_nextid)) 955 terminate("No room for additional types in master\n"); 956 957 savetd->td_nextid = withfile ? reftd->td_nextid : 958 CTF_INDEX_TO_TYPE(1, TRUE); 959 merge_into_master(mstrtd, reftd, savetd, 0); 960 961 tdata_label_add(savetd, label, CTF_LABEL_LASTIDX); 962 963 if (withfile) { 964 /* 965 * savetd holds the new data to be added to the withfile 966 */ 967 tdata_t *withtd = reftd; 968 969 tdata_merge(withtd, savetd); 970 971 savetd = withtd; 972 } else { 973 char uniqname[MAXPATHLEN]; 974 labelent_t *parle; 975 976 parle = tdata_label_top(reftd); 977 978 savetd->td_parlabel = xstrdup(parle->le_name); 979 980 strncpy(uniqname, reffile, sizeof (uniqname)); 981 uniqname[MAXPATHLEN - 1] = '\0'; 982 savetd->td_parname = xstrdup(basename(uniqname)); 983 } 984 985 } else { 986 /* 987 * No post processing. Write the merged tree as-is into the 988 * output file. 989 */ 990 tdata_label_free(mstrtd); 991 tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX); 992 993 savetd = mstrtd; 994 } 995 996 tmpname = mktmpname(outfile, ".ctf"); 997 write_ctf(savetd, outfile, tmpname, 998 CTF_COMPRESS | write_fuzzy_match | dynsym); 999 if (rename(tmpname, outfile) != 0) 1000 terminate("Couldn't rename output temp file %s", tmpname); 1001 free(tmpname); 1002 1003 return (0); 1004 }