1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2019 Joyent, Inc. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 /* 31 * UNIX machine dependent virtual memory support. 32 */ 33 34 #ifndef _VM_DEP_H 35 #define _VM_DEP_H 36 37 38 #ifdef __cplusplus 39 extern "C" { 40 #endif 41 42 #include <sys/clock.h> 43 #include <vm/hat_pte.h> 44 #include <sys/param.h> 45 #include <sys/memnode.h> 46 47 /* 48 * WARNING: vm_dep.h is included by files in common. 49 */ 50 51 #define GETTICK() tsc_read() 52 /* 53 * Do not use this function for obtaining clock tick. This 54 * is called by callers who do not need to have a guarenteed 55 * correct tick value. The proper routine to use is tsc_read(). 56 */ 57 58 extern u_longlong_t randtick(); 59 extern uint_t page_create_update_flags_x86(uint_t); 60 61 extern size_t plcnt_sz(size_t); 62 #define PLCNT_SZ(ctrs_sz) (ctrs_sz = plcnt_sz(ctrs_sz)) 63 64 extern caddr_t plcnt_init(caddr_t); 65 #define PLCNT_INIT(addr) (addr = plcnt_init(addr)) 66 67 extern void plcnt_inc_dec(page_t *, int, int, long, int); 68 #define PLCNT_INCR(pp, mnode, mtype, szc, flags) \ 69 plcnt_inc_dec(pp, mtype, szc, 1l << PAGE_BSZS_SHIFT(szc), flags) 70 #define PLCNT_DECR(pp, mnode, mtype, szc, flags) \ 71 plcnt_inc_dec(pp, mtype, szc, \ 72 (long)(ULONG_MAX << PAGE_BSZS_SHIFT(szc)), flags) 73 74 /* 75 * macro to update page list max counts. no-op on x86. 76 */ 77 #define PLCNT_XFER_NORELOC(pp) 78 79 /* 80 * macro to modify the page list max counts when memory is added to 81 * the page lists during startup (add_physmem) or during a DR operation 82 * when memory is added (kphysm_add_memory_dynamic) or deleted 83 * (kphysm_del_cleanup). 84 */ 85 #define PLCNT_MODIFY_MAX(pfn, cnt) mtype_modify_max(pfn, cnt) 86 87 extern int memrange_num(pfn_t); 88 extern int pfn_2_mtype(pfn_t); 89 extern int mtype_func(int, int, uint_t); 90 extern void mtype_modify_max(pfn_t, long); 91 extern int mnode_pgcnt(int); 92 extern int mnode_range_cnt(int); 93 94 /* 95 * candidate counters in vm_pagelist.c are indexed by color and range 96 */ 97 #define NUM_MEM_RANGES 4 /* memory range types */ 98 #define MAX_MNODE_MRANGES NUM_MEM_RANGES 99 #define MNODE_RANGE_CNT(mnode) mnode_range_cnt(mnode) 100 #define MNODE_MAX_MRANGE(mnode) memrange_num(mem_node_config[mnode].physbase) 101 102 /* 103 * This was really badly defined, it implicitly uses mnode_maxmrange[] 104 * which is a static in vm_pagelist.c 105 */ 106 extern int mtype_2_mrange(int); 107 #define MTYPE_2_MRANGE(mnode, mtype) \ 108 (mnode_maxmrange[mnode] - mtype_2_mrange(mtype)) 109 110 /* 111 * Per page size free lists. Allocated dynamically. 112 * dimensions [mtype][mmu_page_sizes][colors] 113 * 114 * mtype specifies a physical memory range with a unique mnode. 115 */ 116 117 extern page_t ****page_freelists; 118 119 #define PAGE_FREELISTS(mnode, szc, color, mtype) \ 120 (*(page_freelists[mtype][szc] + (color))) 121 122 /* 123 * For now there is only a single size cache list. Allocated dynamically. 124 * dimensions [mtype][colors] 125 * 126 * mtype specifies a physical memory range with a unique mnode. 127 */ 128 extern page_t ***page_cachelists; 129 130 #define PAGE_CACHELISTS(mnode, color, mtype) \ 131 (*(page_cachelists[mtype] + (color))) 132 133 /* 134 * There are mutexes for both the page freelist 135 * and the page cachelist. We want enough locks to make contention 136 * reasonable, but not too many -- otherwise page_freelist_lock() gets 137 * so expensive that it becomes the bottleneck! 138 */ 139 140 #define NPC_MUTEX 16 141 142 extern kmutex_t *fpc_mutex[NPC_MUTEX]; 143 extern kmutex_t *cpc_mutex[NPC_MUTEX]; 144 145 extern page_t *page_get_mnode_freelist(int, uint_t, int, uchar_t, uint_t); 146 extern page_t *page_get_mnode_cachelist(uint_t, uint_t, int, int); 147 148 /* mem node iterator is not used on x86 */ 149 #define MEM_NODE_ITERATOR_DECL(it) 150 #define MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) 151 152 /* 153 * interleaved_mnodes mode is never set on x86, therefore, 154 * simply return the limits of the given mnode, which then 155 * determines the length of hpm_counters array for the mnode. 156 */ 157 #define HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first) \ 158 { \ 159 (physbase) = mem_node_config[(mnode)].physbase; \ 160 (physmax) = mem_node_config[(mnode)].physmax; \ 161 (first) = (mnode); \ 162 } 163 164 #define PAGE_CTRS_WRITE_LOCK(mnode) \ 165 { \ 166 rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER);\ 167 page_freelist_lock(mnode); \ 168 } 169 170 #define PAGE_CTRS_WRITE_UNLOCK(mnode) \ 171 { \ 172 page_freelist_unlock(mnode); \ 173 rw_exit(&page_ctrs_rwlock[(mnode)]); \ 174 } 175 176 /* 177 * macro to call page_ctrs_adjust() when memory is added 178 * during a DR operation. 179 */ 180 #define PAGE_CTRS_ADJUST(pfn, cnt, rv) { \ 181 spgcnt_t _cnt = (spgcnt_t)(cnt); \ 182 int _mn; \ 183 pgcnt_t _np; \ 184 pfn_t _pfn = (pfn); \ 185 pfn_t _endpfn = _pfn + _cnt; \ 186 while (_pfn < _endpfn) { \ 187 _mn = PFN_2_MEM_NODE(_pfn); \ 188 _np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - _pfn; \ 189 _pfn += _np; \ 190 if ((rv = page_ctrs_adjust(_mn)) != 0) \ 191 break; \ 192 } \ 193 } 194 195 #define PAGE_GET_COLOR_SHIFT(szc, nszc) \ 196 (hw_page_array[(nszc)].hp_shift - hw_page_array[(szc)].hp_shift) 197 198 #define PAGE_CONVERT_COLOR(ncolor, szc, nszc) \ 199 ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc))) 200 201 #define PFN_2_COLOR(pfn, szc, it) \ 202 (((pfn) & page_colors_mask) >> \ 203 (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) 204 205 #define PNUM_SIZE(szc) \ 206 (hw_page_array[(szc)].hp_pgcnt) 207 #define PNUM_SHIFT(szc) \ 208 (hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift) 209 #define PAGE_GET_SHIFT(szc) \ 210 (hw_page_array[(szc)].hp_shift) 211 #define PAGE_GET_PAGECOLORS(szc) \ 212 (hw_page_array[(szc)].hp_colors) 213 214 /* 215 * This macro calculates the next sequential pfn with the specified 216 * color using color equivalency mask 217 */ 218 #define PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it) \ 219 { \ 220 uint_t pfn_shift = PAGE_BSZS_SHIFT(szc); \ 221 pfn_t spfn = pfn >> pfn_shift; \ 222 pfn_t stride = (ceq_mask) + 1; \ 223 ASSERT(((color) & ~(ceq_mask)) == 0); \ 224 ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0); \ 225 if (((spfn ^ (color)) & (ceq_mask)) == 0) { \ 226 pfn += stride << pfn_shift; \ 227 } else { \ 228 pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color); \ 229 pfn = (pfn > spfn ? pfn : pfn + stride) << pfn_shift; \ 230 } \ 231 } 232 233 /* get the color equivalency mask for the next szc */ 234 #define PAGE_GET_NSZ_MASK(szc, mask) \ 235 ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) 236 237 /* get the color of the next szc */ 238 #define PAGE_GET_NSZ_COLOR(szc, color) \ 239 ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) 240 241 /* Find the bin for the given page if it was of size szc */ 242 #define PP_2_BIN_SZC(pp, szc) (PFN_2_COLOR(pp->p_pagenum, szc, NULL)) 243 244 #define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc)) 245 246 #define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum)) 247 #define PP_2_MTYPE(pp) (pfn_2_mtype(pp->p_pagenum)) 248 #define PP_2_SZC(pp) (pp->p_szc) 249 250 #define SZCPAGES(szc) (1 << PAGE_BSZS_SHIFT(szc)) 251 #define PFN_BASE(pfnum, szc) (pfnum & ~(SZCPAGES(szc) - 1)) 252 253 /* 254 * this structure is used for walking free page lists 255 * controls when to split large pages into smaller pages, 256 * and when to coalesce smaller pages into larger pages 257 */ 258 typedef struct page_list_walker { 259 uint_t plw_colors; /* num of colors for szc */ 260 uint_t plw_color_mask; /* colors-1 */ 261 uint_t plw_bin_step; /* next bin: 1 or 2 */ 262 uint_t plw_count; /* loop count */ 263 uint_t plw_bin0; /* starting bin */ 264 uint_t plw_bin_marker; /* bin after initial jump */ 265 uint_t plw_bin_split_prev; /* last bin we tried to split */ 266 uint_t plw_do_split; /* set if OK to split */ 267 uint_t plw_split_next; /* next bin to split */ 268 uint_t plw_ceq_dif; /* number of different color groups */ 269 /* to check */ 270 uint_t plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */ 271 uint_t plw_bins[MMU_PAGE_SIZES + 1]; /* num of bins */ 272 } page_list_walker_t; 273 274 void page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin, 275 int can_split, int use_ceq, page_list_walker_t *plw); 276 277 uint_t page_list_walk_next_bin(uchar_t szc, uint_t bin, 278 page_list_walker_t *plw); 279 280 extern struct cpu cpus[]; 281 #define CPU0 cpus 282 283 extern int mtype_init(vnode_t *, caddr_t, uint_t *, size_t); 284 #define MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) \ 285 (mtype = mtype_init(vp, vaddr, &(flags), pgsz)) 286 287 /* 288 * macros to loop through the mtype range (page_get_mnode_{free,cache,any}list, 289 * and page_get_contig_pages) 290 * 291 * MTYPE_START sets the initial mtype. -1 if the mtype range specified does 292 * not contain mnode. 293 * 294 * MTYPE_NEXT sets the next mtype. -1 if there are no more valid 295 * mtype in the range. 296 */ 297 298 #define MTYPE_START(mnode, mtype, flags) \ 299 (mtype = mtype_func(mnode, mtype, flags)) 300 301 #define MTYPE_NEXT(mnode, mtype, flags) { \ 302 if (flags & PGI_MT_RANGE) { \ 303 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); \ 304 } else { \ 305 mtype = -1; \ 306 } \ 307 } 308 309 extern int mtype_pgr_init(int *, page_t *, pgcnt_t); 310 #define MTYPE_PGR_INIT(mtype, flags, pp, pgcnt) \ 311 (mtype = mtype_pgr_init(&flags, pp, pgcnt)) 312 313 #define MNODE_PGCNT(mnode) mnode_pgcnt(mnode) 314 315 extern void mnodetype_2_pfn(int, int, pfn_t *, pfn_t *); 316 #define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \ 317 mnodetype_2_pfn(mnode, mtype, &pfnlo, &pfnhi) 318 319 #define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \ 320 &fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \ 321 &cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode]) 322 323 #define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode]) 324 #define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode]) 325 326 #ifdef DEBUG 327 #define CHK_LPG(pp, szc) chk_lpg(pp, szc) 328 extern void chk_lpg(page_t *, uchar_t); 329 #else 330 #define CHK_LPG(pp, szc) 331 #endif 332 333 #define FULL_REGION_CNT(rg_szc) \ 334 (LEVEL_SIZE(rg_szc) >> LEVEL_SHIFT(rg_szc - 1)) 335 336 /* Return the leader for this mapping size */ 337 #define PP_GROUPLEADER(pp, szc) \ 338 (&(pp)[-(int)((pp)->p_pagenum & (SZCPAGES(szc)-1))]) 339 340 /* Return the root page for this page based on p_szc */ 341 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 342 PP_GROUPLEADER((pp), (pp)->p_szc)) 343 344 /* 345 * The counter base must be per page_counter element to prevent 346 * races when re-indexing, and the base page size element should 347 * be aligned on a boundary of the given region size. 348 * 349 * We also round up the number of pages spanned by the counters 350 * for a given region to PC_BASE_ALIGN in certain situations to simplify 351 * the coding for some non-performance critical routines. 352 */ 353 354 #define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(MMU_PAGE_SIZES-1)) 355 #define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1) 356 357 /* 358 * cpu/mmu-dependent vm variables 359 */ 360 extern uint_t mmu_page_sizes; 361 extern uint_t mmu_exported_page_sizes; 362 /* 363 * page sizes that legacy applications can see via getpagesizes(3c). 364 * Used to prevent legacy applications from inadvertantly using the 365 * 'new' large pagesizes (1g and above). 366 */ 367 extern uint_t mmu_legacy_page_sizes; 368 369 /* For x86, userszc is the same as the kernel's szc */ 370 #define USERSZC_2_SZC(userszc) (userszc) 371 #define SZC_2_USERSZC(szc) (szc) 372 373 /* 374 * for hw_page_map_t, sized to hold the ratio of large page to base 375 * pagesize (1024 max) 376 */ 377 typedef short hpmctr_t; 378 379 /* 380 * get the setsize of the current cpu - assume homogenous for x86 381 */ 382 extern int l2cache_sz, l2cache_linesz, l2cache_assoc; 383 384 #define L2CACHE_ALIGN l2cache_linesz 385 #define L2CACHE_ALIGN_MAX 64 386 #define CPUSETSIZE() \ 387 (l2cache_assoc ? (l2cache_sz / l2cache_assoc) : MMU_PAGESIZE) 388 389 /* 390 * Return the log2(pagesize(szc) / MMU_PAGESIZE) --- or the shift count 391 * for the number of base pages in this pagesize 392 */ 393 #define PAGE_BSZS_SHIFT(szc) (LEVEL_SHIFT(szc) - MMU_PAGESHIFT) 394 395 /* 396 * Internal PG_ flags. 397 */ 398 #define PGI_RELOCONLY 0x010000 /* opposite of PG_NORELOC */ 399 #define PGI_NOCAGE 0x020000 /* cage is disabled */ 400 #define PGI_PGCPHIPRI 0x040000 /* page_get_contig_page pri alloc */ 401 #define PGI_PGCPSZC0 0x080000 /* relocate base pagesize page */ 402 403 /* 404 * PGI range flags - should not overlap PGI flags 405 */ 406 #define PGI_MT_RANGE0 0x1000000 /* mtype range to 0 */ 407 #define PGI_MT_RANGE16M 0x2000000 /* mtype range to 16m */ 408 #define PGI_MT_RANGE4G 0x4000000 /* mtype range to 4g */ 409 #define PGI_MT_NEXT 0x8000000 /* get next mtype */ 410 #define PGI_MT_RANGE (PGI_MT_RANGE0 | PGI_MT_RANGE16M | PGI_MT_RANGE4G) 411 412 413 /* 414 * Maximum and default values for user heap, stack, private and shared 415 * anonymous memory, and user text and initialized data. 416 * Used by map_pgsz*() routines. 417 */ 418 extern size_t max_uheap_lpsize; 419 extern size_t default_uheap_lpsize; 420 extern size_t max_ustack_lpsize; 421 extern size_t default_ustack_lpsize; 422 extern size_t max_privmap_lpsize; 423 extern size_t max_uidata_lpsize; 424 extern size_t max_utext_lpsize; 425 extern size_t max_shm_lpsize; 426 extern size_t mcntl0_lpsize; 427 428 /* 429 * Sanity control. Don't use large pages regardless of user 430 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 431 * The units for this variable are 8K pages. 432 */ 433 extern pgcnt_t privm_lpg_min_physmem; 434 extern pgcnt_t shm_lpg_min_physmem; 435 436 /* 437 * hash as and addr to get a bin. 438 */ 439 440 #define AS_2_BIN(as, seg, vp, addr, bin, szc) \ 441 bin = (((((uintptr_t)(addr) >> PAGESHIFT) + ((uintptr_t)(as) >> 4)) \ 442 & page_colors_mask) >> \ 443 (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) 444 445 /* 446 * cpu private vm data - accessed thru CPU->cpu_vm_data 447 * vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock() 448 * vc_pnext_memseg: tracks last memseg visited in page_nextn() 449 * vc_kmptr: orignal unaligned kmem pointer for this vm_cpu_data_t 450 * vc_kmsize: orignal kmem size for this vm_cpu_data_t 451 */ 452 453 typedef struct { 454 struct memseg *vc_pnum_memseg; 455 struct memseg *vc_pnext_memseg; 456 void *vc_kmptr; 457 size_t vc_kmsize; 458 } vm_cpu_data_t; 459 460 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */ 461 #define VM_CPU_DATA_PADSIZE \ 462 (P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX)) 463 464 /* 465 * When a bin is empty, and we can't satisfy a color request correctly, 466 * we scan. If we assume that the programs have reasonable spatial 467 * behavior, then it will not be a good idea to use the adjacent color. 468 * Using the adjacent color would result in virtually adjacent addresses 469 * mapping into the same spot in the cache. So, if we stumble across 470 * an empty bin, skip a bunch before looking. After the first skip, 471 * then just look one bin at a time so we don't miss our cache on 472 * every look. Be sure to check every bin. Page_create() will panic 473 * if we miss a page. 474 * 475 * This also explains the `<=' in the for loops in both page_get_freelist() 476 * and page_get_cachelist(). Since we checked the target bin, skipped 477 * a bunch, then continued one a time, we wind up checking the target bin 478 * twice to make sure we get all of them bins. 479 */ 480 #define BIN_STEP 19 481 482 #ifdef VM_STATS 483 struct vmm_vmstats_str { 484 ulong_t pgf_alloc[MMU_PAGE_SIZES]; /* page_get_freelist */ 485 ulong_t pgf_allocok[MMU_PAGE_SIZES]; 486 ulong_t pgf_allocokrem[MMU_PAGE_SIZES]; 487 ulong_t pgf_allocfailed[MMU_PAGE_SIZES]; 488 ulong_t pgf_allocdeferred; 489 ulong_t pgf_allocretry[MMU_PAGE_SIZES]; 490 ulong_t pgc_alloc; /* page_get_cachelist */ 491 ulong_t pgc_allocok; 492 ulong_t pgc_allocokrem; 493 ulong_t pgc_allocokdeferred; 494 ulong_t pgc_allocfailed; 495 ulong_t pgcp_alloc[MMU_PAGE_SIZES]; /* page_get_contig_pages */ 496 ulong_t pgcp_allocfailed[MMU_PAGE_SIZES]; 497 ulong_t pgcp_allocempty[MMU_PAGE_SIZES]; 498 ulong_t pgcp_allocok[MMU_PAGE_SIZES]; 499 ulong_t ptcp[MMU_PAGE_SIZES]; /* page_trylock_contig_pages */ 500 ulong_t ptcpfreethresh[MMU_PAGE_SIZES]; 501 ulong_t ptcpfailexcl[MMU_PAGE_SIZES]; 502 ulong_t ptcpfailszc[MMU_PAGE_SIZES]; 503 ulong_t ptcpfailcage[MMU_PAGE_SIZES]; 504 ulong_t ptcpok[MMU_PAGE_SIZES]; 505 ulong_t pgmf_alloc[MMU_PAGE_SIZES]; /* page_get_mnode_freelist */ 506 ulong_t pgmf_allocfailed[MMU_PAGE_SIZES]; 507 ulong_t pgmf_allocempty[MMU_PAGE_SIZES]; 508 ulong_t pgmf_allocok[MMU_PAGE_SIZES]; 509 ulong_t pgmc_alloc; /* page_get_mnode_cachelist */ 510 ulong_t pgmc_allocfailed; 511 ulong_t pgmc_allocempty; 512 ulong_t pgmc_allocok; 513 ulong_t pladd_free[MMU_PAGE_SIZES]; /* page_list_add/sub */ 514 ulong_t plsub_free[MMU_PAGE_SIZES]; 515 ulong_t pladd_cache; 516 ulong_t plsub_cache; 517 ulong_t plsubpages_szcbig; 518 ulong_t plsubpages_szc0; 519 ulong_t pfs_req[MMU_PAGE_SIZES]; /* page_freelist_split */ 520 ulong_t pfs_demote[MMU_PAGE_SIZES]; 521 ulong_t pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 522 ulong_t ppr_reloc[MMU_PAGE_SIZES]; /* page_relocate */ 523 ulong_t ppr_relocnoroot[MMU_PAGE_SIZES]; 524 ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES]; 525 ulong_t ppr_relocnolock[MMU_PAGE_SIZES]; 526 ulong_t ppr_relocnomem[MMU_PAGE_SIZES]; 527 ulong_t ppr_relocok[MMU_PAGE_SIZES]; 528 ulong_t ppr_copyfail; 529 /* page coalesce counter */ 530 ulong_t page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 531 /* candidates useful */ 532 ulong_t page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 533 /* ctrs changed after locking */ 534 ulong_t page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 535 /* page_freelist_coalesce failed */ 536 ulong_t page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 537 ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */ 538 ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */ 539 ulong_t restrict4gcnt; 540 ulong_t unrestrict16mcnt; /* non-DMA 16m allocs allowed */ 541 ulong_t pgpanicalloc; /* PG_PANIC allocation */ 542 ulong_t pcf_deny[MMU_PAGE_SIZES]; /* page_chk_freelist */ 543 ulong_t pcf_allow[MMU_PAGE_SIZES]; 544 }; 545 extern struct vmm_vmstats_str vmm_vmstats; 546 #endif /* VM_STATS */ 547 548 extern size_t page_ctrs_sz(void); 549 extern caddr_t page_ctrs_alloc(caddr_t); 550 extern void page_ctr_sub(int, int, page_t *, int); 551 extern page_t *page_freelist_split(uchar_t, 552 uint_t, int, int, pfn_t, pfn_t, page_list_walker_t *); 553 extern page_t *page_freelist_coalesce(int, uchar_t, uint_t, uint_t, int, 554 pfn_t); 555 extern void page_freelist_coalesce_all(int); 556 extern uint_t page_get_pagecolors(uint_t); 557 extern void pfnzero(pfn_t, uint_t, uint_t); 558 559 #ifdef __cplusplus 560 } 561 #endif 562 563 #endif /* _VM_DEP_H */