new usr/src/lib/libdemangl e/ cormon/rust.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
12125 Mon Jul 15 08:41:48 2019

new usr/src/lib/libdemangl e/ cormon/rust.c

11472 fix |ibdenangl e rust changes

R R R R R R R R R

__unchanged_portion_onitted_

220 static bool ean_t

221 rustdem parse_nane_segment (rustdem state_t *st, strviewt *svp, boolean_t first)
2 {

223 strview_t sv;

224 strview_t nane;

225 uint64_t len;

226 size_t rem

227 bool ean_t |ast = B_FALSE;

229 if (st->rds_error !'= 0 || sv_remaining(svp) == 0)
230 return (B_FALSE);

232 sv_init_sv(&sv, svp);

234 if (!rustdem parse_nunm(st, &sv, & en)) {

235 DEMDEBUG("ERROR: no | eading |length");

236 st->rds_error = EI NVAL;

237 return (B_FALSE);

238 }

240 rem = sv_remaini ng(&sv);

242 if (rem< len) {

242 if (rem<len || len == SIZE_MAX) {

243 st->rds_error = ElI NVAL;

244 return (B_FALSE);

245 }

247 /* 1Is this the |ast segnent before the term nating E? */
248 if (rem==len + 1)

249 VERI FY3U(sv_peek(&sv, -1), ==, 'E);

250 last = B_TRUE;

251 1

253 if (!first & !'rustdem add_sep(st))

254 return (B_FALSE);

256 /* Reduce |l ength of seg to the length we parsed */
257 (void) sv_init_sv_range(&ane, &sv, |en);

259 DEMDEBUG(" %: segment="%*s’", _ func__, SV_PRI NT(&nane));
261 /*

262 * A rust hash starts with 'h’, and is the |ast conponent
263 * pbefore the terminating 'E

264 */

265 if (sv_peek(&ane, 0) == 'h && last) {

266 if (!rustdem parse_hash(st, &nane))

267 return (B_FALSE);

268 got o done;

269 }

271 whil e (sv_remaini ng(&anme) > 0) {

272 switch (sv_peek(&nane, 0)) {

273 case '$:

274 if (rustdem parse_special (st, &nane))
275 cont i nue;

276 break;

277 case ' _:

of a name

new usr/src/lib/libdemangl e/ cormon/rust.c

278 if (sv_peek(&nane, 1) =="'8$") {
279 I*
280 * Only consune/ignore ' _'. Leave
281 * $ for next round.
282 */
283 sv_consunme_n(&ane, 1);
284 conti nue;
285 }
286 br eak;
287 case '.':
288 /* Convert '..’ to '::' */
289 if (sv_peek(&nane, 1) !=".")
290 br eak;
292 if (!rustdem add_sep(st))
293 return (B_FALSE);
295 sv_consume_n(&ane, 2);
296 cont i nue;
297 defaul t:
298 br eak;
299 }
301 if (custr_appendc(st->rds_denangl ed,
302 sv_consune_c(&nane)) != 0)
303 st->rds_error = ENOVE
304 return (B_FALSE);
305 }
306 }
308 done:
309 DEMDEBUG(" %: consumed "% *s'", _ func__, (int)len, svp->sv_first);
310 sv_consune_n(&sv, len);
311 sv_init_sv(svp, &sv);
312 return (B_TRUE);
313 }
__unchanged_portion_onitted_
386 /*

387 * W have to pick an arbitrary limt here; 999,999,999 fits confortably
388 within an int32_t, so let’s go with that, as it seens unlikely we'd
389 ever see a |larger value in context.

*

*
387 * A 10 digit value would inply a nane 1Gb or larger in size. |t seens
388 * unlikely to the point of absurdity any such value could every possibly
389 * be valid (or even have conpiled properly). This also prevents the
390 * uint64_t conversion from possibly overflow ng since the value nust always
391 * be below 10 * U NT32_MAX.

390 */
391 #define MAX DIG TS 9
393 #define MAX_DIG TS 10

393 static bool ean_t
394 rustdem parse_nun(rustdem state_t *restrict st, strviewt *restrict svp,

395 uint64_t *restrict valp)

396 {

397 strview_t snum

398 uintéd_t v = 0;

399 size_t ndigits = 0O;

400 char c;

402 if (st->rds_error != 0)
403 return (B_FALSE);
405 sv_init_sv(&num svp);

407 DEMDEBUG(" %: str="%*s'", _ func__, SV_PRINT(&snun));

new

409 ¢ = sv_peek(&num 0);

410 if (11sbhdT(c))

411 DEMDEBUG " %: ERROR no digits in str\n", _ func__);

412 st->rds_error = ElINVAL;

413 return (B_FALSE);

414 1

416 /*

417 * Since there is currently no official specification on rust nane
418 * mangling, only that it has been stated that rust follows what
419 * C++ mangling does. In the Itanium C++ ABl (what practically
420 * every non-Wndows C++ inplenentation uses these days), it
421 * explicitly disallows |leading Os in nunmeric values (except for
422 * substition and tenpl ate i ndexes, which aren’t relevant here).
423 * W enforce the sane restriction -- if a rust inplenmentation allowed
424 * | eading zeros in nunbers (basically segment lengths) it’'d
425 * cause all sorts of anmbiguity problenms with names that |ikely |ead
426 * to nuch bigger problens with Iinking and such, so this seens
427 * reasonabl e.

428 *

429 if (c =="0") {

430 DEMDEBUG(" %: ERROR nunber starts with leading O\n", _ func_);
431 st->rds_error = EI NVAL;

432 return (B_FALSE);

433 }

435 while (sv_renmining(&nun) > 0 & ndigits <= MAX_DIATS) {

436 ¢ = sv_consume_c(&snun);

438 if (11SDAT(c))

439 break;

441 v *= 10;

442 v +=c¢c - '0;

443 ndi gi t s++;

444 }

446 if (ndigits > MAX_DI A TS)

447 DEMDEBUG(" %s: value %lu is too large\n", _ func__, v);
448 st->rds_error = ERANGE;

449 return (B_FALSE);

450 }

452 DEMDEBUG(" %s: nunmv% I u", _ func__, v);

454 *valp = v;

455 sv_consunme_n(svp, ndigits);

456 return (B_TRUE);

457 }

usr/src/lib/libdemangl e/ cormon/rust.c

__unchanged_portion_omtted_

