
new/usr/src/lib/libdemangle/common/rust.c 1

**
 12125 Mon Jul 15 08:41:48 2019
new/usr/src/lib/libdemangle/common/rust.c
11472 fix libdemangle rust changes
**
______unchanged_portion_omitted_

220 static boolean_t
221 rustdem_parse_name_segment(rustdem_state_t *st, strview_t *svp, boolean_t first)
222 {
223 strview_t sv;
224 strview_t name;
225 uint64_t len;
226 size_t rem;
227 boolean_t last = B_FALSE;

229 if (st->rds_error != 0 || sv_remaining(svp) == 0)
230 return (B_FALSE);

232 sv_init_sv(&sv, svp);

234 if (!rustdem_parse_num(st, &sv, &len)) {
235 DEMDEBUG("ERROR: no leading length");
236 st->rds_error = EINVAL;
237 return (B_FALSE);
238 }

240 rem = sv_remaining(&sv);

242 if (rem < len) {
242 if (rem < len || len == SIZE_MAX) {
243 st->rds_error = EINVAL;
244 return (B_FALSE);
245 }

247 /* Is this the last segment before the terminating E? */
248 if (rem == len + 1) {
249 VERIFY3U(sv_peek(&sv, -1), ==, ’E’);
250 last = B_TRUE;
251 }

253 if (!first && !rustdem_add_sep(st))
254 return (B_FALSE);

256 /* Reduce length of seg to the length we parsed */
257 (void) sv_init_sv_range(&name, &sv, len);

259 DEMDEBUG("%s: segment=’%.*s’", __func__, SV_PRINT(&name));

261 /*
262 * A rust hash starts with ’h’, and is the last component of a name
263 * before the terminating ’E’
264 */
265 if (sv_peek(&name, 0) == ’h’ && last) {
266 if (!rustdem_parse_hash(st, &name))
267 return (B_FALSE);
268 goto done;
269 }

271 while (sv_remaining(&name) > 0) {
272 switch (sv_peek(&name, 0)) {
273 case ’$’:
274 if (rustdem_parse_special(st, &name))
275 continue;
276 break;
277 case ’_’:

new/usr/src/lib/libdemangle/common/rust.c 2

278 if (sv_peek(&name, 1) == ’$’) {
279 /*
280 * Only consume/ignore ’_’. Leave
281 * $ for next round.
282 */
283 sv_consume_n(&name, 1);
284 continue;
285 }
286 break;
287 case ’.’:
288 /* Convert ’..’ to ’::’ */
289 if (sv_peek(&name, 1) != ’.’)
290 break;

292 if (!rustdem_add_sep(st))
293 return (B_FALSE);

295 sv_consume_n(&name, 2);
296 continue;
297 default:
298 break;
299 }

301 if (custr_appendc(st->rds_demangled,
302 sv_consume_c(&name)) != 0) {
303 st->rds_error = ENOMEM;
304 return (B_FALSE);
305 }
306 }

308 done:
309 DEMDEBUG("%s: consumed ’%.*s’", __func__, (int)len, svp->sv_first);
310 sv_consume_n(&sv, len);
311 sv_init_sv(svp, &sv);
312 return (B_TRUE);
313 }

______unchanged_portion_omitted_

386 /*
387 * We have to pick an arbitrary limit here; 999,999,999 fits comfortably
388 * within an int32_t, so let’s go with that, as it seems unlikely we’d
389 * ever see a larger value in context.
387 * A 10 digit value would imply a name 1Gb or larger in size. It seems
388 * unlikely to the point of absurdity any such value could every possibly
389 * be valid (or even have compiled properly). This also prevents the
390 * uint64_t conversion from possibly overflowing since the value must always
391 * be below 10 * UINT32_MAX.
390 */
391 #define MAX_DIGITS 9
393 #define MAX_DIGITS 10

393 static boolean_t
394 rustdem_parse_num(rustdem_state_t *restrict st, strview_t *restrict svp,
395 uint64_t *restrict valp)
396 {
397 strview_t snum;
398 uint64_t v = 0;
399 size_t ndigits = 0;
400 char c;

402 if (st->rds_error != 0)
403 return (B_FALSE);

405 sv_init_sv(&snum, svp);

407 DEMDEBUG("%s: str=’%.*s’", __func__, SV_PRINT(&snum));

new/usr/src/lib/libdemangle/common/rust.c 3

409 c = sv_peek(&snum, 0);
410 if (!ISDIGIT(c)) {
411 DEMDEBUG("%s: ERROR no digits in str\n", __func__);
412 st->rds_error = EINVAL;
413 return (B_FALSE);
414 }

416 /*
417 * Since there is currently no official specification on rust name
418 * mangling, only that it has been stated that rust follows what
419 * C++ mangling does. In the Itanium C++ ABI (what practically
420 * every non-Windows C++ implementation uses these days), it
421 * explicitly disallows leading 0s in numeric values (except for
422 * substition and template indexes, which aren’t relevant here).
423 * We enforce the same restriction -- if a rust implementation allowed
424 * leading zeros in numbers (basically segment lengths) it’d
425 * cause all sorts of ambiguity problems with names that likely lead
426 * to much bigger problems with linking and such, so this seems
427 * reasonable.
428 */
429 if (c == ’0’) {
430 DEMDEBUG("%s: ERROR number starts with leading 0\n", __func__);
431 st->rds_error = EINVAL;
432 return (B_FALSE);
433 }

435 while (sv_remaining(&snum) > 0 && ndigits <= MAX_DIGITS) {
436 c = sv_consume_c(&snum);

438 if (!ISDIGIT(c))
439 break;

441 v *= 10;
442 v += c - ’0’;
443 ndigits++;
444 }

446 if (ndigits > MAX_DIGITS) {
447 DEMDEBUG("%s: value %llu is too large\n", __func__, v);
448 st->rds_error = ERANGE;
449 return (B_FALSE);
450 }

452 DEMDEBUG("%s: num=%llu", __func__, v);

454 *valp = v;
455 sv_consume_n(svp, ndigits);
456 return (B_TRUE);
457 }

______unchanged_portion_omitted_

