1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 */ 26 27 /* 28 * Architecture-independent CPU control functions. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/var.h> 34 #include <sys/thread.h> 35 #include <sys/cpuvar.h> 36 #include <sys/cpu_event.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #include <sys/sdt.h> 62 #if defined(__x86) || defined(__amd64) 63 #include <sys/x86_archext.h> 64 #endif 65 #include <sys/callo.h> 66 67 extern int mp_cpu_start(cpu_t *); 68 extern int mp_cpu_stop(cpu_t *); 69 extern int mp_cpu_poweron(cpu_t *); 70 extern int mp_cpu_poweroff(cpu_t *); 71 extern int mp_cpu_configure(int); 72 extern int mp_cpu_unconfigure(int); 73 extern void mp_cpu_faulted_enter(cpu_t *); 74 extern void mp_cpu_faulted_exit(cpu_t *); 75 76 extern int cmp_cpu_to_chip(processorid_t cpuid); 77 #ifdef __sparcv9 78 extern char *cpu_fru_fmri(cpu_t *cp); 79 #endif 80 81 static void cpu_add_active_internal(cpu_t *cp); 82 static void cpu_remove_active(cpu_t *cp); 83 static void cpu_info_kstat_create(cpu_t *cp); 84 static void cpu_info_kstat_destroy(cpu_t *cp); 85 static void cpu_stats_kstat_create(cpu_t *cp); 86 static void cpu_stats_kstat_destroy(cpu_t *cp); 87 88 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 89 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 90 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 91 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 92 93 /* 94 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 95 * max_cpu_seqid_ever, and dispatch queue reallocations. The lock ordering with 96 * respect to related locks is: 97 * 98 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 99 * 100 * Warning: Certain sections of code do not use the cpu_lock when 101 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 102 * all cpus are paused during modifications to this list, a solution 103 * to protect the list is too either disable kernel preemption while 104 * walking the list, *or* recheck the cpu_next pointer at each 105 * iteration in the loop. Note that in no cases can any cached 106 * copies of the cpu pointers be kept as they may become invalid. 107 */ 108 kmutex_t cpu_lock; 109 cpu_t *cpu_list; /* list of all CPUs */ 110 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 111 cpu_t *cpu_active; /* list of active CPUs */ 112 cpuset_t cpu_active_set; /* cached set of active CPUs */ 113 static cpuset_t cpu_available; /* set of available CPUs */ 114 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 115 116 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */ 117 118 /* 119 * max_ncpus keeps the max cpus the system can have. Initially 120 * it's NCPU, but since most archs scan the devtree for cpus 121 * fairly early on during boot, the real max can be known before 122 * ncpus is set (useful for early NCPU based allocations). 123 */ 124 int max_ncpus = NCPU; 125 /* 126 * platforms that set max_ncpus to maxiumum number of cpus that can be 127 * dynamically added will set boot_max_ncpus to the number of cpus found 128 * at device tree scan time during boot. 129 */ 130 int boot_max_ncpus = -1; 131 int boot_ncpus = -1; 132 /* 133 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 134 * used to size arrays that are indexed by CPU id. 135 */ 136 processorid_t max_cpuid = NCPU - 1; 137 138 /* 139 * Maximum cpu_seqid was given. This number can only grow and never shrink. It 140 * can be used to optimize NCPU loops to avoid going through CPUs which were 141 * never on-line. 142 */ 143 processorid_t max_cpu_seqid_ever = 0; 144 145 int ncpus = 1; 146 int ncpus_online = 1; 147 148 /* 149 * CPU that we're trying to offline. Protected by cpu_lock. 150 */ 151 cpu_t *cpu_inmotion; 152 153 /* 154 * Can be raised to suppress further weakbinding, which are instead 155 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 156 * while individual thread weakbinding synchronization is done under thread 157 * lock. 158 */ 159 int weakbindingbarrier; 160 161 /* 162 * Variables used in pause_cpus(). 163 */ 164 static volatile char safe_list[NCPU]; 165 166 static struct _cpu_pause_info { 167 int cp_spl; /* spl saved in pause_cpus() */ 168 volatile int cp_go; /* Go signal sent after all ready */ 169 int cp_count; /* # of CPUs to pause */ 170 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 171 kthread_id_t cp_paused; 172 void *(*cp_func)(void *); 173 } cpu_pause_info; 174 175 static kmutex_t pause_free_mutex; 176 static kcondvar_t pause_free_cv; 177 178 179 static struct cpu_sys_stats_ks_data { 180 kstat_named_t cpu_ticks_idle; 181 kstat_named_t cpu_ticks_user; 182 kstat_named_t cpu_ticks_kernel; 183 kstat_named_t cpu_ticks_wait; 184 kstat_named_t cpu_nsec_idle; 185 kstat_named_t cpu_nsec_user; 186 kstat_named_t cpu_nsec_kernel; 187 kstat_named_t cpu_nsec_dtrace; 188 kstat_named_t cpu_nsec_intr; 189 kstat_named_t cpu_load_intr; 190 kstat_named_t wait_ticks_io; 191 kstat_named_t dtrace_probes; 192 kstat_named_t bread; 193 kstat_named_t bwrite; 194 kstat_named_t lread; 195 kstat_named_t lwrite; 196 kstat_named_t phread; 197 kstat_named_t phwrite; 198 kstat_named_t pswitch; 199 kstat_named_t trap; 200 kstat_named_t intr; 201 kstat_named_t syscall; 202 kstat_named_t sysread; 203 kstat_named_t syswrite; 204 kstat_named_t sysfork; 205 kstat_named_t sysvfork; 206 kstat_named_t sysexec; 207 kstat_named_t readch; 208 kstat_named_t writech; 209 kstat_named_t rcvint; 210 kstat_named_t xmtint; 211 kstat_named_t mdmint; 212 kstat_named_t rawch; 213 kstat_named_t canch; 214 kstat_named_t outch; 215 kstat_named_t msg; 216 kstat_named_t sema; 217 kstat_named_t namei; 218 kstat_named_t ufsiget; 219 kstat_named_t ufsdirblk; 220 kstat_named_t ufsipage; 221 kstat_named_t ufsinopage; 222 kstat_named_t procovf; 223 kstat_named_t intrthread; 224 kstat_named_t intrblk; 225 kstat_named_t intrunpin; 226 kstat_named_t idlethread; 227 kstat_named_t inv_swtch; 228 kstat_named_t nthreads; 229 kstat_named_t cpumigrate; 230 kstat_named_t xcalls; 231 kstat_named_t mutex_adenters; 232 kstat_named_t rw_rdfails; 233 kstat_named_t rw_wrfails; 234 kstat_named_t modload; 235 kstat_named_t modunload; 236 kstat_named_t bawrite; 237 kstat_named_t iowait; 238 } cpu_sys_stats_ks_data_template = { 239 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 240 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 241 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 242 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 243 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 244 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 245 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 246 { "cpu_nsec_dtrace", KSTAT_DATA_UINT64 }, 247 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 248 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 249 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 250 { "dtrace_probes", KSTAT_DATA_UINT64 }, 251 { "bread", KSTAT_DATA_UINT64 }, 252 { "bwrite", KSTAT_DATA_UINT64 }, 253 { "lread", KSTAT_DATA_UINT64 }, 254 { "lwrite", KSTAT_DATA_UINT64 }, 255 { "phread", KSTAT_DATA_UINT64 }, 256 { "phwrite", KSTAT_DATA_UINT64 }, 257 { "pswitch", KSTAT_DATA_UINT64 }, 258 { "trap", KSTAT_DATA_UINT64 }, 259 { "intr", KSTAT_DATA_UINT64 }, 260 { "syscall", KSTAT_DATA_UINT64 }, 261 { "sysread", KSTAT_DATA_UINT64 }, 262 { "syswrite", KSTAT_DATA_UINT64 }, 263 { "sysfork", KSTAT_DATA_UINT64 }, 264 { "sysvfork", KSTAT_DATA_UINT64 }, 265 { "sysexec", KSTAT_DATA_UINT64 }, 266 { "readch", KSTAT_DATA_UINT64 }, 267 { "writech", KSTAT_DATA_UINT64 }, 268 { "rcvint", KSTAT_DATA_UINT64 }, 269 { "xmtint", KSTAT_DATA_UINT64 }, 270 { "mdmint", KSTAT_DATA_UINT64 }, 271 { "rawch", KSTAT_DATA_UINT64 }, 272 { "canch", KSTAT_DATA_UINT64 }, 273 { "outch", KSTAT_DATA_UINT64 }, 274 { "msg", KSTAT_DATA_UINT64 }, 275 { "sema", KSTAT_DATA_UINT64 }, 276 { "namei", KSTAT_DATA_UINT64 }, 277 { "ufsiget", KSTAT_DATA_UINT64 }, 278 { "ufsdirblk", KSTAT_DATA_UINT64 }, 279 { "ufsipage", KSTAT_DATA_UINT64 }, 280 { "ufsinopage", KSTAT_DATA_UINT64 }, 281 { "procovf", KSTAT_DATA_UINT64 }, 282 { "intrthread", KSTAT_DATA_UINT64 }, 283 { "intrblk", KSTAT_DATA_UINT64 }, 284 { "intrunpin", KSTAT_DATA_UINT64 }, 285 { "idlethread", KSTAT_DATA_UINT64 }, 286 { "inv_swtch", KSTAT_DATA_UINT64 }, 287 { "nthreads", KSTAT_DATA_UINT64 }, 288 { "cpumigrate", KSTAT_DATA_UINT64 }, 289 { "xcalls", KSTAT_DATA_UINT64 }, 290 { "mutex_adenters", KSTAT_DATA_UINT64 }, 291 { "rw_rdfails", KSTAT_DATA_UINT64 }, 292 { "rw_wrfails", KSTAT_DATA_UINT64 }, 293 { "modload", KSTAT_DATA_UINT64 }, 294 { "modunload", KSTAT_DATA_UINT64 }, 295 { "bawrite", KSTAT_DATA_UINT64 }, 296 { "iowait", KSTAT_DATA_UINT64 }, 297 }; 298 299 static struct cpu_vm_stats_ks_data { 300 kstat_named_t pgrec; 301 kstat_named_t pgfrec; 302 kstat_named_t pgin; 303 kstat_named_t pgpgin; 304 kstat_named_t pgout; 305 kstat_named_t pgpgout; 306 kstat_named_t swapin; 307 kstat_named_t pgswapin; 308 kstat_named_t swapout; 309 kstat_named_t pgswapout; 310 kstat_named_t zfod; 311 kstat_named_t dfree; 312 kstat_named_t scan; 313 kstat_named_t rev; 314 kstat_named_t hat_fault; 315 kstat_named_t as_fault; 316 kstat_named_t maj_fault; 317 kstat_named_t cow_fault; 318 kstat_named_t prot_fault; 319 kstat_named_t softlock; 320 kstat_named_t kernel_asflt; 321 kstat_named_t pgrrun; 322 kstat_named_t execpgin; 323 kstat_named_t execpgout; 324 kstat_named_t execfree; 325 kstat_named_t anonpgin; 326 kstat_named_t anonpgout; 327 kstat_named_t anonfree; 328 kstat_named_t fspgin; 329 kstat_named_t fspgout; 330 kstat_named_t fsfree; 331 } cpu_vm_stats_ks_data_template = { 332 { "pgrec", KSTAT_DATA_UINT64 }, 333 { "pgfrec", KSTAT_DATA_UINT64 }, 334 { "pgin", KSTAT_DATA_UINT64 }, 335 { "pgpgin", KSTAT_DATA_UINT64 }, 336 { "pgout", KSTAT_DATA_UINT64 }, 337 { "pgpgout", KSTAT_DATA_UINT64 }, 338 { "swapin", KSTAT_DATA_UINT64 }, 339 { "pgswapin", KSTAT_DATA_UINT64 }, 340 { "swapout", KSTAT_DATA_UINT64 }, 341 { "pgswapout", KSTAT_DATA_UINT64 }, 342 { "zfod", KSTAT_DATA_UINT64 }, 343 { "dfree", KSTAT_DATA_UINT64 }, 344 { "scan", KSTAT_DATA_UINT64 }, 345 { "rev", KSTAT_DATA_UINT64 }, 346 { "hat_fault", KSTAT_DATA_UINT64 }, 347 { "as_fault", KSTAT_DATA_UINT64 }, 348 { "maj_fault", KSTAT_DATA_UINT64 }, 349 { "cow_fault", KSTAT_DATA_UINT64 }, 350 { "prot_fault", KSTAT_DATA_UINT64 }, 351 { "softlock", KSTAT_DATA_UINT64 }, 352 { "kernel_asflt", KSTAT_DATA_UINT64 }, 353 { "pgrrun", KSTAT_DATA_UINT64 }, 354 { "execpgin", KSTAT_DATA_UINT64 }, 355 { "execpgout", KSTAT_DATA_UINT64 }, 356 { "execfree", KSTAT_DATA_UINT64 }, 357 { "anonpgin", KSTAT_DATA_UINT64 }, 358 { "anonpgout", KSTAT_DATA_UINT64 }, 359 { "anonfree", KSTAT_DATA_UINT64 }, 360 { "fspgin", KSTAT_DATA_UINT64 }, 361 { "fspgout", KSTAT_DATA_UINT64 }, 362 { "fsfree", KSTAT_DATA_UINT64 }, 363 }; 364 365 /* 366 * Force the specified thread to migrate to the appropriate processor. 367 * Called with thread lock held, returns with it dropped. 368 */ 369 static void 370 force_thread_migrate(kthread_id_t tp) 371 { 372 ASSERT(THREAD_LOCK_HELD(tp)); 373 if (tp == curthread) { 374 THREAD_TRANSITION(tp); 375 CL_SETRUN(tp); 376 thread_unlock_nopreempt(tp); 377 swtch(); 378 } else { 379 if (tp->t_state == TS_ONPROC) { 380 cpu_surrender(tp); 381 } else if (tp->t_state == TS_RUN) { 382 (void) dispdeq(tp); 383 setbackdq(tp); 384 } 385 thread_unlock(tp); 386 } 387 } 388 389 /* 390 * Set affinity for a specified CPU. 391 * 392 * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for 393 * curthread, will set affinity to the CPU on which the thread is currently 394 * running. For other cpu_id values, the caller must ensure that the 395 * referenced CPU remains valid, which can be done by holding cpu_lock across 396 * this call. 397 * 398 * CPU affinity is guaranteed after return of thread_affinity_set(). If a 399 * caller setting affinity to CPU_CURRENT requires that its thread not migrate 400 * CPUs prior to a successful return, it should take extra precautions (such as 401 * their own call to kpreempt_disable) to ensure that safety. 402 * 403 * CPU_BEST can be used to pick a "best" CPU to migrate to, including 404 * potentially the current CPU. 405 * 406 * A CPU affinity reference count is maintained by thread_affinity_set and 407 * thread_affinity_clear (incrementing and decrementing it, respectively), 408 * maintaining CPU affinity while the count is non-zero, and allowing regions 409 * of code which require affinity to be nested. 410 */ 411 void 412 thread_affinity_set(kthread_id_t t, int cpu_id) 413 { 414 cpu_t *cp; 415 416 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 417 418 if (cpu_id == CPU_CURRENT) { 419 VERIFY3P(t, ==, curthread); 420 kpreempt_disable(); 421 cp = CPU; 422 } else if (cpu_id == CPU_BEST) { 423 VERIFY3P(t, ==, curthread); 424 kpreempt_disable(); 425 cp = disp_choose_best_cpu(); 426 } else { 427 /* 428 * We should be asserting that cpu_lock is held here, but 429 * the NCA code doesn't acquire it. The following assert 430 * should be uncommented when the NCA code is fixed. 431 * 432 * ASSERT(MUTEX_HELD(&cpu_lock)); 433 */ 434 VERIFY((cpu_id >= 0) && (cpu_id < NCPU)); 435 cp = cpu[cpu_id]; 436 437 /* user must provide a good cpu_id */ 438 VERIFY(cp != NULL); 439 } 440 441 /* 442 * If there is already a hard affinity requested, and this affinity 443 * conflicts with that, panic. 444 */ 445 thread_lock(t); 446 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 447 panic("affinity_set: setting %p but already bound to %p", 448 (void *)cp, (void *)t->t_bound_cpu); 449 } 450 t->t_affinitycnt++; 451 t->t_bound_cpu = cp; 452 453 /* 454 * Make sure we're running on the right CPU. 455 */ 456 if (cp != t->t_cpu || t != curthread) { 457 ASSERT(cpu_id != CPU_CURRENT); 458 force_thread_migrate(t); /* drops thread lock */ 459 } else { 460 thread_unlock(t); 461 } 462 463 if (cpu_id == CPU_CURRENT || cpu_id == CPU_BEST) 464 kpreempt_enable(); 465 } 466 467 /* 468 * Wrapper for backward compatibility. 469 */ 470 void 471 affinity_set(int cpu_id) 472 { 473 thread_affinity_set(curthread, cpu_id); 474 } 475 476 /* 477 * Decrement the affinity reservation count and if it becomes zero, 478 * clear the CPU affinity for the current thread, or set it to the user's 479 * software binding request. 480 */ 481 void 482 thread_affinity_clear(kthread_id_t t) 483 { 484 register processorid_t binding; 485 486 thread_lock(t); 487 if (--t->t_affinitycnt == 0) { 488 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 489 /* 490 * Adjust disp_max_unbound_pri if necessary. 491 */ 492 disp_adjust_unbound_pri(t); 493 t->t_bound_cpu = NULL; 494 if (t->t_cpu->cpu_part != t->t_cpupart) { 495 force_thread_migrate(t); 496 return; 497 } 498 } else { 499 t->t_bound_cpu = cpu[binding]; 500 /* 501 * Make sure the thread is running on the bound CPU. 502 */ 503 if (t->t_cpu != t->t_bound_cpu) { 504 force_thread_migrate(t); 505 return; /* already dropped lock */ 506 } 507 } 508 } 509 thread_unlock(t); 510 } 511 512 /* 513 * Wrapper for backward compatibility. 514 */ 515 void 516 affinity_clear(void) 517 { 518 thread_affinity_clear(curthread); 519 } 520 521 /* 522 * Weak cpu affinity. Bind to the "current" cpu for short periods 523 * of time during which the thread must not block (but may be preempted). 524 * Use this instead of kpreempt_disable() when it is only "no migration" 525 * rather than "no preemption" semantics that are required - disabling 526 * preemption holds higher priority threads off of cpu and if the 527 * operation that is protected is more than momentary this is not good 528 * for realtime etc. 529 * 530 * Weakly bound threads will not prevent a cpu from being offlined - 531 * we'll only run them on the cpu to which they are weakly bound but 532 * (because they do not block) we'll always be able to move them on to 533 * another cpu at offline time if we give them just a short moment to 534 * run during which they will unbind. To give a cpu a chance of offlining, 535 * however, we require a barrier to weak bindings that may be raised for a 536 * given cpu (offline/move code may set this and then wait a short time for 537 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 538 * 539 * There are few restrictions on the calling context of thread_nomigrate. 540 * The caller must not hold the thread lock. Calls may be nested. 541 * 542 * After weakbinding a thread must not perform actions that may block. 543 * In particular it must not call thread_affinity_set; calling that when 544 * already weakbound is nonsensical anyway. 545 * 546 * If curthread is prevented from migrating for other reasons 547 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 548 * then the weak binding will succeed even if this cpu is the target of an 549 * offline/move request. 550 */ 551 void 552 thread_nomigrate(void) 553 { 554 cpu_t *cp; 555 kthread_id_t t = curthread; 556 557 again: 558 kpreempt_disable(); 559 cp = CPU; 560 561 /* 562 * A highlevel interrupt must not modify t_nomigrate or 563 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 564 * interrupt thread cannot migrate and we can avoid the 565 * thread_lock call below by short-circuiting here. In either 566 * case we can just return since no migration is possible and 567 * the condition will persist (ie, when we test for these again 568 * in thread_allowmigrate they can't have changed). Migration 569 * is also impossible if we're at or above DISP_LEVEL pil. 570 */ 571 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 572 getpil() >= DISP_LEVEL) { 573 kpreempt_enable(); 574 return; 575 } 576 577 /* 578 * We must be consistent with existing weak bindings. Since we 579 * may be interrupted between the increment of t_nomigrate and 580 * the store to t_weakbound_cpu below we cannot assume that 581 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 582 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 583 * always the case. 584 */ 585 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 586 if (!panicstr) 587 panic("thread_nomigrate: binding to %p but already " 588 "bound to %p", (void *)cp, 589 (void *)t->t_weakbound_cpu); 590 } 591 592 /* 593 * At this point we have preemption disabled and we don't yet hold 594 * the thread lock. So it's possible that somebody else could 595 * set t_bind_cpu here and not be able to force us across to the 596 * new cpu (since we have preemption disabled). 597 */ 598 thread_lock(curthread); 599 600 /* 601 * If further weak bindings are being (temporarily) suppressed then 602 * we'll settle for disabling kernel preemption (which assures 603 * no migration provided the thread does not block which it is 604 * not allowed to if using thread_nomigrate). We must remember 605 * this disposition so we can take appropriate action in 606 * thread_allowmigrate. If this is a nested call and the 607 * thread is already weakbound then fall through as normal. 608 * We remember the decision to settle for kpreempt_disable through 609 * negative nesting counting in t_nomigrate. Once a thread has had one 610 * weakbinding request satisfied in this way any further (nested) 611 * requests will continue to be satisfied in the same way, 612 * even if weak bindings have recommenced. 613 */ 614 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 615 --t->t_nomigrate; 616 thread_unlock(curthread); 617 return; /* with kpreempt_disable still active */ 618 } 619 620 /* 621 * We hold thread_lock so t_bind_cpu cannot change. We could, 622 * however, be running on a different cpu to which we are t_bound_cpu 623 * to (as explained above). If we grant the weak binding request 624 * in that case then the dispatcher must favour our weak binding 625 * over our strong (in which case, just as when preemption is 626 * disabled, we can continue to run on a cpu other than the one to 627 * which we are strongbound; the difference in this case is that 628 * this thread can be preempted and so can appear on the dispatch 629 * queues of a cpu other than the one it is strongbound to). 630 * 631 * If the cpu we are running on does not appear to be a current 632 * offline target (we check cpu_inmotion to determine this - since 633 * we don't hold cpu_lock we may not see a recent store to that, 634 * so it's possible that we at times can grant a weak binding to a 635 * cpu that is an offline target, but that one request will not 636 * prevent the offline from succeeding) then we will always grant 637 * the weak binding request. This includes the case above where 638 * we grant a weakbinding not commensurate with our strong binding. 639 * 640 * If our cpu does appear to be an offline target then we're inclined 641 * not to grant the weakbinding request just yet - we'd prefer to 642 * migrate to another cpu and grant the request there. The 643 * exceptions are those cases where going through preemption code 644 * will not result in us changing cpu: 645 * 646 * . interrupts have already bypassed this case (see above) 647 * . we are already weakbound to this cpu (dispatcher code will 648 * always return us to the weakbound cpu) 649 * . preemption was disabled even before we disabled it above 650 * . we are strongbound to this cpu (if we're strongbound to 651 * another and not yet running there the trip through the 652 * dispatcher will move us to the strongbound cpu and we 653 * will grant the weak binding there) 654 */ 655 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 656 t->t_bound_cpu == cp) { 657 /* 658 * Don't be tempted to store to t_weakbound_cpu only on 659 * the first nested bind request - if we're interrupted 660 * after the increment of t_nomigrate and before the 661 * store to t_weakbound_cpu and the interrupt calls 662 * thread_nomigrate then the assertion in thread_allowmigrate 663 * would fail. 664 */ 665 t->t_nomigrate++; 666 t->t_weakbound_cpu = cp; 667 membar_producer(); 668 thread_unlock(curthread); 669 /* 670 * Now that we have dropped the thread_lock another thread 671 * can set our t_weakbound_cpu, and will try to migrate us 672 * to the strongbound cpu (which will not be prevented by 673 * preemption being disabled since we're about to enable 674 * preemption). We have granted the weakbinding to the current 675 * cpu, so again we are in the position that is is is possible 676 * that our weak and strong bindings differ. Again this 677 * is catered for by dispatcher code which will favour our 678 * weak binding. 679 */ 680 kpreempt_enable(); 681 } else { 682 /* 683 * Move to another cpu before granting the request by 684 * forcing this thread through preemption code. When we 685 * get to set{front,back}dq called from CL_PREEMPT() 686 * cpu_choose() will be used to select a cpu to queue 687 * us on - that will see cpu_inmotion and take 688 * steps to avoid returning us to this cpu. 689 */ 690 cp->cpu_kprunrun = 1; 691 thread_unlock(curthread); 692 kpreempt_enable(); /* will call preempt() */ 693 goto again; 694 } 695 } 696 697 void 698 thread_allowmigrate(void) 699 { 700 kthread_id_t t = curthread; 701 702 ASSERT(t->t_weakbound_cpu == CPU || 703 (t->t_nomigrate < 0 && t->t_preempt > 0) || 704 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 705 getpil() >= DISP_LEVEL); 706 707 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 708 getpil() >= DISP_LEVEL) 709 return; 710 711 if (t->t_nomigrate < 0) { 712 /* 713 * This thread was granted "weak binding" in the 714 * stronger form of kernel preemption disabling. 715 * Undo a level of nesting for both t_nomigrate 716 * and t_preempt. 717 */ 718 ++t->t_nomigrate; 719 kpreempt_enable(); 720 } else if (--t->t_nomigrate == 0) { 721 /* 722 * Time to drop the weak binding. We need to cater 723 * for the case where we're weakbound to a different 724 * cpu than that to which we're strongbound (a very 725 * temporary arrangement that must only persist until 726 * weak binding drops). We don't acquire thread_lock 727 * here so even as this code executes t_bound_cpu 728 * may be changing. So we disable preemption and 729 * a) in the case that t_bound_cpu changes while we 730 * have preemption disabled kprunrun will be set 731 * asynchronously, and b) if before disabling 732 * preemption we were already on a different cpu to 733 * our t_bound_cpu then we set kprunrun ourselves 734 * to force a trip through the dispatcher when 735 * preemption is enabled. 736 */ 737 kpreempt_disable(); 738 if (t->t_bound_cpu && 739 t->t_weakbound_cpu != t->t_bound_cpu) 740 CPU->cpu_kprunrun = 1; 741 t->t_weakbound_cpu = NULL; 742 membar_producer(); 743 kpreempt_enable(); 744 } 745 } 746 747 /* 748 * weakbinding_stop can be used to temporarily cause weakbindings made 749 * with thread_nomigrate to be satisfied through the stronger action of 750 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 751 */ 752 753 void 754 weakbinding_stop(void) 755 { 756 ASSERT(MUTEX_HELD(&cpu_lock)); 757 weakbindingbarrier = 1; 758 membar_producer(); /* make visible before subsequent thread_lock */ 759 } 760 761 void 762 weakbinding_start(void) 763 { 764 ASSERT(MUTEX_HELD(&cpu_lock)); 765 weakbindingbarrier = 0; 766 } 767 768 void 769 null_xcall(void) 770 { 771 } 772 773 /* 774 * This routine is called to place the CPUs in a safe place so that 775 * one of them can be taken off line or placed on line. What we are 776 * trying to do here is prevent a thread from traversing the list 777 * of active CPUs while we are changing it or from getting placed on 778 * the run queue of a CPU that has just gone off line. We do this by 779 * creating a thread with the highest possible prio for each CPU and 780 * having it call this routine. The advantage of this method is that 781 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 782 * This makes disp faster at the expense of making p_online() slower 783 * which is a good trade off. 784 */ 785 static void 786 cpu_pause(int index) 787 { 788 int s; 789 struct _cpu_pause_info *cpi = &cpu_pause_info; 790 volatile char *safe = &safe_list[index]; 791 long lindex = index; 792 793 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 794 795 while (*safe != PAUSE_DIE) { 796 *safe = PAUSE_READY; 797 membar_enter(); /* make sure stores are flushed */ 798 sema_v(&cpi->cp_sem); /* signal requesting thread */ 799 800 /* 801 * Wait here until all pause threads are running. That 802 * indicates that it's safe to do the spl. Until 803 * cpu_pause_info.cp_go is set, we don't want to spl 804 * because that might block clock interrupts needed 805 * to preempt threads on other CPUs. 806 */ 807 while (cpi->cp_go == 0) 808 ; 809 /* 810 * Even though we are at the highest disp prio, we need 811 * to block out all interrupts below LOCK_LEVEL so that 812 * an intr doesn't come in, wake up a thread, and call 813 * setbackdq/setfrontdq. 814 */ 815 s = splhigh(); 816 /* 817 * if cp_func has been set then call it using index as the 818 * argument, currently only used by cpr_suspend_cpus(). 819 * This function is used as the code to execute on the 820 * "paused" cpu's when a machine comes out of a sleep state 821 * and CPU's were powered off. (could also be used for 822 * hotplugging CPU's). 823 */ 824 if (cpi->cp_func != NULL) 825 (*cpi->cp_func)((void *)lindex); 826 827 mach_cpu_pause(safe); 828 829 splx(s); 830 /* 831 * Waiting is at an end. Switch out of cpu_pause 832 * loop and resume useful work. 833 */ 834 swtch(); 835 } 836 837 mutex_enter(&pause_free_mutex); 838 *safe = PAUSE_DEAD; 839 cv_broadcast(&pause_free_cv); 840 mutex_exit(&pause_free_mutex); 841 } 842 843 /* 844 * Allow the cpus to start running again. 845 */ 846 void 847 start_cpus() 848 { 849 int i; 850 851 ASSERT(MUTEX_HELD(&cpu_lock)); 852 ASSERT(cpu_pause_info.cp_paused); 853 cpu_pause_info.cp_paused = NULL; 854 for (i = 0; i < NCPU; i++) 855 safe_list[i] = PAUSE_IDLE; 856 membar_enter(); /* make sure stores are flushed */ 857 affinity_clear(); 858 splx(cpu_pause_info.cp_spl); 859 kpreempt_enable(); 860 } 861 862 /* 863 * Allocate a pause thread for a CPU. 864 */ 865 static void 866 cpu_pause_alloc(cpu_t *cp) 867 { 868 kthread_id_t t; 869 long cpun = cp->cpu_id; 870 871 /* 872 * Note, v.v_nglobpris will not change value as long as I hold 873 * cpu_lock. 874 */ 875 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 876 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 877 thread_lock(t); 878 t->t_bound_cpu = cp; 879 t->t_disp_queue = cp->cpu_disp; 880 t->t_affinitycnt = 1; 881 t->t_preempt = 1; 882 thread_unlock(t); 883 cp->cpu_pause_thread = t; 884 /* 885 * Registering a thread in the callback table is usually done 886 * in the initialization code of the thread. In this 887 * case, we do it right after thread creation because the 888 * thread itself may never run, and we need to register the 889 * fact that it is safe for cpr suspend. 890 */ 891 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 892 } 893 894 /* 895 * Free a pause thread for a CPU. 896 */ 897 static void 898 cpu_pause_free(cpu_t *cp) 899 { 900 kthread_id_t t; 901 int cpun = cp->cpu_id; 902 903 ASSERT(MUTEX_HELD(&cpu_lock)); 904 /* 905 * We have to get the thread and tell it to die. 906 */ 907 if ((t = cp->cpu_pause_thread) == NULL) { 908 ASSERT(safe_list[cpun] == PAUSE_IDLE); 909 return; 910 } 911 thread_lock(t); 912 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 913 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 914 t->t_pri = v.v_nglobpris - 1; 915 ASSERT(safe_list[cpun] == PAUSE_IDLE); 916 safe_list[cpun] = PAUSE_DIE; 917 THREAD_TRANSITION(t); 918 setbackdq(t); 919 thread_unlock_nopreempt(t); 920 921 /* 922 * If we don't wait for the thread to actually die, it may try to 923 * run on the wrong cpu as part of an actual call to pause_cpus(). 924 */ 925 mutex_enter(&pause_free_mutex); 926 while (safe_list[cpun] != PAUSE_DEAD) { 927 cv_wait(&pause_free_cv, &pause_free_mutex); 928 } 929 mutex_exit(&pause_free_mutex); 930 safe_list[cpun] = PAUSE_IDLE; 931 932 cp->cpu_pause_thread = NULL; 933 } 934 935 /* 936 * Initialize basic structures for pausing CPUs. 937 */ 938 void 939 cpu_pause_init() 940 { 941 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 942 /* 943 * Create initial CPU pause thread. 944 */ 945 cpu_pause_alloc(CPU); 946 } 947 948 /* 949 * Start the threads used to pause another CPU. 950 */ 951 static int 952 cpu_pause_start(processorid_t cpu_id) 953 { 954 int i; 955 int cpu_count = 0; 956 957 for (i = 0; i < NCPU; i++) { 958 cpu_t *cp; 959 kthread_id_t t; 960 961 cp = cpu[i]; 962 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 963 safe_list[i] = PAUSE_WAIT; 964 continue; 965 } 966 967 /* 968 * Skip CPU if it is quiesced or not yet started. 969 */ 970 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 971 safe_list[i] = PAUSE_WAIT; 972 continue; 973 } 974 975 /* 976 * Start this CPU's pause thread. 977 */ 978 t = cp->cpu_pause_thread; 979 thread_lock(t); 980 /* 981 * Reset the priority, since nglobpris may have 982 * changed since the thread was created, if someone 983 * has loaded the RT (or some other) scheduling 984 * class. 985 */ 986 t->t_pri = v.v_nglobpris - 1; 987 THREAD_TRANSITION(t); 988 setbackdq(t); 989 thread_unlock_nopreempt(t); 990 ++cpu_count; 991 } 992 return (cpu_count); 993 } 994 995 996 /* 997 * Pause all of the CPUs except the one we are on by creating a high 998 * priority thread bound to those CPUs. 999 * 1000 * Note that one must be extremely careful regarding code 1001 * executed while CPUs are paused. Since a CPU may be paused 1002 * while a thread scheduling on that CPU is holding an adaptive 1003 * lock, code executed with CPUs paused must not acquire adaptive 1004 * (or low-level spin) locks. Also, such code must not block, 1005 * since the thread that is supposed to initiate the wakeup may 1006 * never run. 1007 * 1008 * With a few exceptions, the restrictions on code executed with CPUs 1009 * paused match those for code executed at high-level interrupt 1010 * context. 1011 */ 1012 void 1013 pause_cpus(cpu_t *off_cp, void *(*func)(void *)) 1014 { 1015 processorid_t cpu_id; 1016 int i; 1017 struct _cpu_pause_info *cpi = &cpu_pause_info; 1018 1019 ASSERT(MUTEX_HELD(&cpu_lock)); 1020 ASSERT(cpi->cp_paused == NULL); 1021 cpi->cp_count = 0; 1022 cpi->cp_go = 0; 1023 for (i = 0; i < NCPU; i++) 1024 safe_list[i] = PAUSE_IDLE; 1025 kpreempt_disable(); 1026 1027 cpi->cp_func = func; 1028 1029 /* 1030 * If running on the cpu that is going offline, get off it. 1031 * This is so that it won't be necessary to rechoose a CPU 1032 * when done. 1033 */ 1034 if (CPU == off_cp) 1035 cpu_id = off_cp->cpu_next_part->cpu_id; 1036 else 1037 cpu_id = CPU->cpu_id; 1038 affinity_set(cpu_id); 1039 1040 /* 1041 * Start the pause threads and record how many were started 1042 */ 1043 cpi->cp_count = cpu_pause_start(cpu_id); 1044 1045 /* 1046 * Now wait for all CPUs to be running the pause thread. 1047 */ 1048 while (cpi->cp_count > 0) { 1049 /* 1050 * Spin reading the count without grabbing the disp 1051 * lock to make sure we don't prevent the pause 1052 * threads from getting the lock. 1053 */ 1054 while (sema_held(&cpi->cp_sem)) 1055 ; 1056 if (sema_tryp(&cpi->cp_sem)) 1057 --cpi->cp_count; 1058 } 1059 cpi->cp_go = 1; /* all have reached cpu_pause */ 1060 1061 /* 1062 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1063 * to PAUSE_WAIT.) 1064 */ 1065 for (i = 0; i < NCPU; i++) { 1066 while (safe_list[i] != PAUSE_WAIT) 1067 ; 1068 } 1069 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1070 cpi->cp_paused = curthread; 1071 } 1072 1073 /* 1074 * Check whether the current thread has CPUs paused 1075 */ 1076 int 1077 cpus_paused(void) 1078 { 1079 if (cpu_pause_info.cp_paused != NULL) { 1080 ASSERT(cpu_pause_info.cp_paused == curthread); 1081 return (1); 1082 } 1083 return (0); 1084 } 1085 1086 static cpu_t * 1087 cpu_get_all(processorid_t cpun) 1088 { 1089 ASSERT(MUTEX_HELD(&cpu_lock)); 1090 1091 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1092 return (NULL); 1093 return (cpu[cpun]); 1094 } 1095 1096 /* 1097 * Check whether cpun is a valid processor id and whether it should be 1098 * visible from the current zone. If it is, return a pointer to the 1099 * associated CPU structure. 1100 */ 1101 cpu_t * 1102 cpu_get(processorid_t cpun) 1103 { 1104 cpu_t *c; 1105 1106 ASSERT(MUTEX_HELD(&cpu_lock)); 1107 c = cpu_get_all(cpun); 1108 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1109 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1110 return (NULL); 1111 return (c); 1112 } 1113 1114 /* 1115 * The following functions should be used to check CPU states in the kernel. 1116 * They should be invoked with cpu_lock held. Kernel subsystems interested 1117 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1118 * states. Those are for user-land (and system call) use only. 1119 */ 1120 1121 /* 1122 * Determine whether the CPU is online and handling interrupts. 1123 */ 1124 int 1125 cpu_is_online(cpu_t *cpu) 1126 { 1127 ASSERT(MUTEX_HELD(&cpu_lock)); 1128 return (cpu_flagged_online(cpu->cpu_flags)); 1129 } 1130 1131 /* 1132 * Determine whether the CPU is offline (this includes spare and faulted). 1133 */ 1134 int 1135 cpu_is_offline(cpu_t *cpu) 1136 { 1137 ASSERT(MUTEX_HELD(&cpu_lock)); 1138 return (cpu_flagged_offline(cpu->cpu_flags)); 1139 } 1140 1141 /* 1142 * Determine whether the CPU is powered off. 1143 */ 1144 int 1145 cpu_is_poweredoff(cpu_t *cpu) 1146 { 1147 ASSERT(MUTEX_HELD(&cpu_lock)); 1148 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1149 } 1150 1151 /* 1152 * Determine whether the CPU is handling interrupts. 1153 */ 1154 int 1155 cpu_is_nointr(cpu_t *cpu) 1156 { 1157 ASSERT(MUTEX_HELD(&cpu_lock)); 1158 return (cpu_flagged_nointr(cpu->cpu_flags)); 1159 } 1160 1161 /* 1162 * Determine whether the CPU is active (scheduling threads). 1163 */ 1164 int 1165 cpu_is_active(cpu_t *cpu) 1166 { 1167 ASSERT(MUTEX_HELD(&cpu_lock)); 1168 return (cpu_flagged_active(cpu->cpu_flags)); 1169 } 1170 1171 /* 1172 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1173 */ 1174 int 1175 cpu_flagged_online(cpu_flag_t cpu_flags) 1176 { 1177 return (cpu_flagged_active(cpu_flags) && 1178 (cpu_flags & CPU_ENABLE)); 1179 } 1180 1181 int 1182 cpu_flagged_offline(cpu_flag_t cpu_flags) 1183 { 1184 return (((cpu_flags & CPU_POWEROFF) == 0) && 1185 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1186 } 1187 1188 int 1189 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1190 { 1191 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1192 } 1193 1194 int 1195 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1196 { 1197 return (cpu_flagged_active(cpu_flags) && 1198 (cpu_flags & CPU_ENABLE) == 0); 1199 } 1200 1201 int 1202 cpu_flagged_active(cpu_flag_t cpu_flags) 1203 { 1204 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1205 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1206 } 1207 1208 /* 1209 * Bring the indicated CPU online. 1210 */ 1211 int 1212 cpu_online(cpu_t *cp) 1213 { 1214 int error = 0; 1215 1216 /* 1217 * Handle on-line request. 1218 * This code must put the new CPU on the active list before 1219 * starting it because it will not be paused, and will start 1220 * using the active list immediately. The real start occurs 1221 * when the CPU_QUIESCED flag is turned off. 1222 */ 1223 1224 ASSERT(MUTEX_HELD(&cpu_lock)); 1225 1226 /* 1227 * Put all the cpus into a known safe place. 1228 * No mutexes can be entered while CPUs are paused. 1229 */ 1230 error = mp_cpu_start(cp); /* arch-dep hook */ 1231 if (error == 0) { 1232 pg_cpupart_in(cp, cp->cpu_part); 1233 pause_cpus(NULL, NULL); 1234 cpu_add_active_internal(cp); 1235 if (cp->cpu_flags & CPU_FAULTED) { 1236 cp->cpu_flags &= ~CPU_FAULTED; 1237 mp_cpu_faulted_exit(cp); 1238 } 1239 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1240 CPU_SPARE); 1241 CPU_NEW_GENERATION(cp); 1242 start_cpus(); 1243 cpu_stats_kstat_create(cp); 1244 cpu_create_intrstat(cp); 1245 lgrp_kstat_create(cp); 1246 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1247 cpu_intr_enable(cp); /* arch-dep hook */ 1248 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1249 cpu_set_state(cp); 1250 cyclic_online(cp); 1251 /* 1252 * This has to be called only after cyclic_online(). This 1253 * function uses cyclics. 1254 */ 1255 callout_cpu_online(cp); 1256 poke_cpu(cp->cpu_id); 1257 } 1258 1259 return (error); 1260 } 1261 1262 /* 1263 * Take the indicated CPU offline. 1264 */ 1265 int 1266 cpu_offline(cpu_t *cp, int flags) 1267 { 1268 cpupart_t *pp; 1269 int error = 0; 1270 cpu_t *ncp; 1271 int intr_enable; 1272 int cyclic_off = 0; 1273 int callout_off = 0; 1274 int loop_count; 1275 int no_quiesce = 0; 1276 int (*bound_func)(struct cpu *, int); 1277 kthread_t *t; 1278 lpl_t *cpu_lpl; 1279 proc_t *p; 1280 int lgrp_diff_lpl; 1281 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0; 1282 1283 ASSERT(MUTEX_HELD(&cpu_lock)); 1284 1285 /* 1286 * If we're going from faulted or spare to offline, just 1287 * clear these flags and update CPU state. 1288 */ 1289 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1290 if (cp->cpu_flags & CPU_FAULTED) { 1291 cp->cpu_flags &= ~CPU_FAULTED; 1292 mp_cpu_faulted_exit(cp); 1293 } 1294 cp->cpu_flags &= ~CPU_SPARE; 1295 cpu_set_state(cp); 1296 return (0); 1297 } 1298 1299 /* 1300 * Handle off-line request. 1301 */ 1302 pp = cp->cpu_part; 1303 /* 1304 * Don't offline last online CPU in partition 1305 */ 1306 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1307 return (EBUSY); 1308 /* 1309 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1310 * if we were asked to. 1311 */ 1312 error = cpu_unbind(cp->cpu_id, unbind_all_threads); 1313 if (error != 0) 1314 return (error); 1315 /* 1316 * We shouldn't be bound to this CPU ourselves. 1317 */ 1318 if (curthread->t_bound_cpu == cp) 1319 return (EBUSY); 1320 1321 /* 1322 * Tell interested parties that this CPU is going offline. 1323 */ 1324 CPU_NEW_GENERATION(cp); 1325 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1326 1327 /* 1328 * Tell the PG subsystem that the CPU is leaving the partition 1329 */ 1330 pg_cpupart_out(cp, pp); 1331 1332 /* 1333 * Take the CPU out of interrupt participation so we won't find 1334 * bound kernel threads. If the architecture cannot completely 1335 * shut off interrupts on the CPU, don't quiesce it, but don't 1336 * run anything but interrupt thread... this is indicated by 1337 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1338 * off. 1339 */ 1340 intr_enable = cp->cpu_flags & CPU_ENABLE; 1341 if (intr_enable) 1342 no_quiesce = cpu_intr_disable(cp); 1343 1344 /* 1345 * Record that we are aiming to offline this cpu. This acts as 1346 * a barrier to further weak binding requests in thread_nomigrate 1347 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1348 * lean away from this cpu. Further strong bindings are already 1349 * avoided since we hold cpu_lock. Since threads that are set 1350 * runnable around now and others coming off the target cpu are 1351 * directed away from the target, existing strong and weak bindings 1352 * (especially the latter) to the target cpu stand maximum chance of 1353 * being able to unbind during the short delay loop below (if other 1354 * unbound threads compete they may not see cpu in time to unbind 1355 * even if they would do so immediately. 1356 */ 1357 cpu_inmotion = cp; 1358 membar_enter(); 1359 1360 /* 1361 * Check for kernel threads (strong or weak) bound to that CPU. 1362 * Strongly bound threads may not unbind, and we'll have to return 1363 * EBUSY. Weakly bound threads should always disappear - we've 1364 * stopped more weak binding with cpu_inmotion and existing 1365 * bindings will drain imminently (they may not block). Nonetheless 1366 * we will wait for a fixed period for all bound threads to disappear. 1367 * Inactive interrupt threads are OK (they'll be in TS_FREE 1368 * state). If test finds some bound threads, wait a few ticks 1369 * to give short-lived threads (such as interrupts) chance to 1370 * complete. Note that if no_quiesce is set, i.e. this cpu 1371 * is required to service interrupts, then we take the route 1372 * that permits interrupt threads to be active (or bypassed). 1373 */ 1374 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1375 1376 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1377 if (loop_count >= 5) { 1378 error = EBUSY; /* some threads still bound */ 1379 break; 1380 } 1381 1382 /* 1383 * If some threads were assigned, give them 1384 * a chance to complete or move. 1385 * 1386 * This assumes that the clock_thread is not bound 1387 * to any CPU, because the clock_thread is needed to 1388 * do the delay(hz/100). 1389 * 1390 * Note: we still hold the cpu_lock while waiting for 1391 * the next clock tick. This is OK since it isn't 1392 * needed for anything else except processor_bind(2), 1393 * and system initialization. If we drop the lock, 1394 * we would risk another p_online disabling the last 1395 * processor. 1396 */ 1397 delay(hz/100); 1398 } 1399 1400 if (error == 0 && callout_off == 0) { 1401 callout_cpu_offline(cp); 1402 callout_off = 1; 1403 } 1404 1405 if (error == 0 && cyclic_off == 0) { 1406 if (!cyclic_offline(cp)) { 1407 /* 1408 * We must have bound cyclics... 1409 */ 1410 error = EBUSY; 1411 goto out; 1412 } 1413 cyclic_off = 1; 1414 } 1415 1416 /* 1417 * Call mp_cpu_stop() to perform any special operations 1418 * needed for this machine architecture to offline a CPU. 1419 */ 1420 if (error == 0) 1421 error = mp_cpu_stop(cp); /* arch-dep hook */ 1422 1423 /* 1424 * If that all worked, take the CPU offline and decrement 1425 * ncpus_online. 1426 */ 1427 if (error == 0) { 1428 /* 1429 * Put all the cpus into a known safe place. 1430 * No mutexes can be entered while CPUs are paused. 1431 */ 1432 pause_cpus(cp, NULL); 1433 /* 1434 * Repeat the operation, if necessary, to make sure that 1435 * all outstanding low-level interrupts run to completion 1436 * before we set the CPU_QUIESCED flag. It's also possible 1437 * that a thread has weak bound to the cpu despite our raising 1438 * cpu_inmotion above since it may have loaded that 1439 * value before the barrier became visible (this would have 1440 * to be the thread that was on the target cpu at the time 1441 * we raised the barrier). 1442 */ 1443 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1444 (*bound_func)(cp, 1)) { 1445 start_cpus(); 1446 (void) mp_cpu_start(cp); 1447 goto again; 1448 } 1449 ncp = cp->cpu_next_part; 1450 cpu_lpl = cp->cpu_lpl; 1451 ASSERT(cpu_lpl != NULL); 1452 1453 /* 1454 * Remove the CPU from the list of active CPUs. 1455 */ 1456 cpu_remove_active(cp); 1457 1458 /* 1459 * Walk the active process list and look for threads 1460 * whose home lgroup needs to be updated, or 1461 * the last CPU they run on is the one being offlined now. 1462 */ 1463 1464 ASSERT(curthread->t_cpu != cp); 1465 for (p = practive; p != NULL; p = p->p_next) { 1466 1467 t = p->p_tlist; 1468 1469 if (t == NULL) 1470 continue; 1471 1472 lgrp_diff_lpl = 0; 1473 1474 do { 1475 ASSERT(t->t_lpl != NULL); 1476 /* 1477 * Taking last CPU in lpl offline 1478 * Rehome thread if it is in this lpl 1479 * Otherwise, update the count of how many 1480 * threads are in this CPU's lgroup but have 1481 * a different lpl. 1482 */ 1483 1484 if (cpu_lpl->lpl_ncpu == 0) { 1485 if (t->t_lpl == cpu_lpl) 1486 lgrp_move_thread(t, 1487 lgrp_choose(t, 1488 t->t_cpupart), 0); 1489 else if (t->t_lpl->lpl_lgrpid == 1490 cpu_lpl->lpl_lgrpid) 1491 lgrp_diff_lpl++; 1492 } 1493 ASSERT(t->t_lpl->lpl_ncpu > 0); 1494 1495 /* 1496 * Update CPU last ran on if it was this CPU 1497 */ 1498 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1499 t->t_cpu = disp_lowpri_cpu(ncp, t, 1500 t->t_pri); 1501 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1502 t->t_weakbound_cpu == cp); 1503 1504 t = t->t_forw; 1505 } while (t != p->p_tlist); 1506 1507 /* 1508 * Didn't find any threads in the same lgroup as this 1509 * CPU with a different lpl, so remove the lgroup from 1510 * the process lgroup bitmask. 1511 */ 1512 1513 if (lgrp_diff_lpl == 0) 1514 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1515 } 1516 1517 /* 1518 * Walk thread list looking for threads that need to be 1519 * rehomed, since there are some threads that are not in 1520 * their process's p_tlist. 1521 */ 1522 1523 t = curthread; 1524 do { 1525 ASSERT(t != NULL && t->t_lpl != NULL); 1526 1527 /* 1528 * Rehome threads with same lpl as this CPU when this 1529 * is the last CPU in the lpl. 1530 */ 1531 1532 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1533 lgrp_move_thread(t, 1534 lgrp_choose(t, t->t_cpupart), 1); 1535 1536 ASSERT(t->t_lpl->lpl_ncpu > 0); 1537 1538 /* 1539 * Update CPU last ran on if it was this CPU 1540 */ 1541 1542 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1543 t->t_cpu = disp_lowpri_cpu(ncp, t, t->t_pri); 1544 1545 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1546 t->t_weakbound_cpu == cp); 1547 t = t->t_next; 1548 1549 } while (t != curthread); 1550 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1551 cp->cpu_flags |= CPU_OFFLINE; 1552 disp_cpu_inactive(cp); 1553 if (!no_quiesce) 1554 cp->cpu_flags |= CPU_QUIESCED; 1555 ncpus_online--; 1556 cpu_set_state(cp); 1557 cpu_inmotion = NULL; 1558 start_cpus(); 1559 cpu_stats_kstat_destroy(cp); 1560 cpu_delete_intrstat(cp); 1561 lgrp_kstat_destroy(cp); 1562 } 1563 1564 out: 1565 cpu_inmotion = NULL; 1566 1567 /* 1568 * If we failed, re-enable interrupts. 1569 * Do this even if cpu_intr_disable returned an error, because 1570 * it may have partially disabled interrupts. 1571 */ 1572 if (error && intr_enable) 1573 cpu_intr_enable(cp); 1574 1575 /* 1576 * If we failed, but managed to offline the cyclic subsystem on this 1577 * CPU, bring it back online. 1578 */ 1579 if (error && cyclic_off) 1580 cyclic_online(cp); 1581 1582 /* 1583 * If we failed, but managed to offline callouts on this CPU, 1584 * bring it back online. 1585 */ 1586 if (error && callout_off) 1587 callout_cpu_online(cp); 1588 1589 /* 1590 * If we failed, tell the PG subsystem that the CPU is back 1591 */ 1592 pg_cpupart_in(cp, pp); 1593 1594 /* 1595 * If we failed, we need to notify everyone that this CPU is back on. 1596 */ 1597 if (error != 0) { 1598 CPU_NEW_GENERATION(cp); 1599 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1600 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1601 } 1602 1603 return (error); 1604 } 1605 1606 /* 1607 * Mark the indicated CPU as faulted, taking it offline. 1608 */ 1609 int 1610 cpu_faulted(cpu_t *cp, int flags) 1611 { 1612 int error = 0; 1613 1614 ASSERT(MUTEX_HELD(&cpu_lock)); 1615 ASSERT(!cpu_is_poweredoff(cp)); 1616 1617 if (cpu_is_offline(cp)) { 1618 cp->cpu_flags &= ~CPU_SPARE; 1619 cp->cpu_flags |= CPU_FAULTED; 1620 mp_cpu_faulted_enter(cp); 1621 cpu_set_state(cp); 1622 return (0); 1623 } 1624 1625 if ((error = cpu_offline(cp, flags)) == 0) { 1626 cp->cpu_flags |= CPU_FAULTED; 1627 mp_cpu_faulted_enter(cp); 1628 cpu_set_state(cp); 1629 } 1630 1631 return (error); 1632 } 1633 1634 /* 1635 * Mark the indicated CPU as a spare, taking it offline. 1636 */ 1637 int 1638 cpu_spare(cpu_t *cp, int flags) 1639 { 1640 int error = 0; 1641 1642 ASSERT(MUTEX_HELD(&cpu_lock)); 1643 ASSERT(!cpu_is_poweredoff(cp)); 1644 1645 if (cpu_is_offline(cp)) { 1646 if (cp->cpu_flags & CPU_FAULTED) { 1647 cp->cpu_flags &= ~CPU_FAULTED; 1648 mp_cpu_faulted_exit(cp); 1649 } 1650 cp->cpu_flags |= CPU_SPARE; 1651 cpu_set_state(cp); 1652 return (0); 1653 } 1654 1655 if ((error = cpu_offline(cp, flags)) == 0) { 1656 cp->cpu_flags |= CPU_SPARE; 1657 cpu_set_state(cp); 1658 } 1659 1660 return (error); 1661 } 1662 1663 /* 1664 * Take the indicated CPU from poweroff to offline. 1665 */ 1666 int 1667 cpu_poweron(cpu_t *cp) 1668 { 1669 int error = ENOTSUP; 1670 1671 ASSERT(MUTEX_HELD(&cpu_lock)); 1672 ASSERT(cpu_is_poweredoff(cp)); 1673 1674 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1675 if (error == 0) 1676 cpu_set_state(cp); 1677 1678 return (error); 1679 } 1680 1681 /* 1682 * Take the indicated CPU from any inactive state to powered off. 1683 */ 1684 int 1685 cpu_poweroff(cpu_t *cp) 1686 { 1687 int error = ENOTSUP; 1688 1689 ASSERT(MUTEX_HELD(&cpu_lock)); 1690 ASSERT(cpu_is_offline(cp)); 1691 1692 if (!(cp->cpu_flags & CPU_QUIESCED)) 1693 return (EBUSY); /* not completely idle */ 1694 1695 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1696 if (error == 0) 1697 cpu_set_state(cp); 1698 1699 return (error); 1700 } 1701 1702 /* 1703 * Initialize the Sequential CPU id lookup table 1704 */ 1705 void 1706 cpu_seq_tbl_init() 1707 { 1708 cpu_t **tbl; 1709 1710 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP); 1711 tbl[0] = CPU; 1712 1713 cpu_seq = tbl; 1714 } 1715 1716 /* 1717 * Initialize the CPU lists for the first CPU. 1718 */ 1719 void 1720 cpu_list_init(cpu_t *cp) 1721 { 1722 cp->cpu_next = cp; 1723 cp->cpu_prev = cp; 1724 cpu_list = cp; 1725 clock_cpu_list = cp; 1726 1727 cp->cpu_next_onln = cp; 1728 cp->cpu_prev_onln = cp; 1729 cpu_active = cp; 1730 1731 cp->cpu_seqid = 0; 1732 CPUSET_ADD(cpu_seqid_inuse, 0); 1733 1734 /* 1735 * Bootstrap cpu_seq using cpu_list 1736 * The cpu_seq[] table will be dynamically allocated 1737 * when kmem later becomes available (but before going MP) 1738 */ 1739 cpu_seq = &cpu_list; 1740 1741 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1742 cp_default.cp_cpulist = cp; 1743 cp_default.cp_ncpus = 1; 1744 cp->cpu_next_part = cp; 1745 cp->cpu_prev_part = cp; 1746 cp->cpu_part = &cp_default; 1747 1748 CPUSET_ADD(cpu_available, cp->cpu_id); 1749 CPUSET_ADD(cpu_active_set, cp->cpu_id); 1750 } 1751 1752 /* 1753 * Insert a CPU into the list of available CPUs. 1754 */ 1755 void 1756 cpu_add_unit(cpu_t *cp) 1757 { 1758 int seqid; 1759 1760 ASSERT(MUTEX_HELD(&cpu_lock)); 1761 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1762 1763 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1764 1765 /* 1766 * Note: most users of the cpu_list will grab the 1767 * cpu_lock to insure that it isn't modified. However, 1768 * certain users can't or won't do that. To allow this 1769 * we pause the other cpus. Users who walk the list 1770 * without cpu_lock, must disable kernel preemption 1771 * to insure that the list isn't modified underneath 1772 * them. Also, any cached pointers to cpu structures 1773 * must be revalidated by checking to see if the 1774 * cpu_next pointer points to itself. This check must 1775 * be done with the cpu_lock held or kernel preemption 1776 * disabled. This check relies upon the fact that 1777 * old cpu structures are not free'ed or cleared after 1778 * then are removed from the cpu_list. 1779 * 1780 * Note that the clock code walks the cpu list dereferencing 1781 * the cpu_part pointer, so we need to initialize it before 1782 * adding the cpu to the list. 1783 */ 1784 cp->cpu_part = &cp_default; 1785 pause_cpus(NULL, NULL); 1786 cp->cpu_next = cpu_list; 1787 cp->cpu_prev = cpu_list->cpu_prev; 1788 cpu_list->cpu_prev->cpu_next = cp; 1789 cpu_list->cpu_prev = cp; 1790 start_cpus(); 1791 1792 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1793 continue; 1794 CPUSET_ADD(cpu_seqid_inuse, seqid); 1795 cp->cpu_seqid = seqid; 1796 1797 if (seqid > max_cpu_seqid_ever) 1798 max_cpu_seqid_ever = seqid; 1799 1800 ASSERT(ncpus < max_ncpus); 1801 ncpus++; 1802 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1803 cpu[cp->cpu_id] = cp; 1804 CPUSET_ADD(cpu_available, cp->cpu_id); 1805 cpu_seq[cp->cpu_seqid] = cp; 1806 1807 /* 1808 * allocate a pause thread for this CPU. 1809 */ 1810 cpu_pause_alloc(cp); 1811 1812 /* 1813 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1814 * link them into a list of just that CPU. 1815 * This is so that disp_lowpri_cpu will work for thread_create in 1816 * pause_cpus() when called from the startup thread in a new CPU. 1817 */ 1818 cp->cpu_next_onln = cp; 1819 cp->cpu_prev_onln = cp; 1820 cpu_info_kstat_create(cp); 1821 cp->cpu_next_part = cp; 1822 cp->cpu_prev_part = cp; 1823 1824 init_cpu_mstate(cp, CMS_SYSTEM); 1825 1826 pool_pset_mod = gethrtime(); 1827 } 1828 1829 /* 1830 * Do the opposite of cpu_add_unit(). 1831 */ 1832 void 1833 cpu_del_unit(int cpuid) 1834 { 1835 struct cpu *cp, *cpnext; 1836 1837 ASSERT(MUTEX_HELD(&cpu_lock)); 1838 cp = cpu[cpuid]; 1839 ASSERT(cp != NULL); 1840 1841 ASSERT(cp->cpu_next_onln == cp); 1842 ASSERT(cp->cpu_prev_onln == cp); 1843 ASSERT(cp->cpu_next_part == cp); 1844 ASSERT(cp->cpu_prev_part == cp); 1845 1846 /* 1847 * Tear down the CPU's physical ID cache, and update any 1848 * processor groups 1849 */ 1850 pg_cpu_fini(cp, NULL); 1851 pghw_physid_destroy(cp); 1852 1853 /* 1854 * Destroy kstat stuff. 1855 */ 1856 cpu_info_kstat_destroy(cp); 1857 term_cpu_mstate(cp); 1858 /* 1859 * Free up pause thread. 1860 */ 1861 cpu_pause_free(cp); 1862 CPUSET_DEL(cpu_available, cp->cpu_id); 1863 cpu[cp->cpu_id] = NULL; 1864 cpu_seq[cp->cpu_seqid] = NULL; 1865 1866 /* 1867 * The clock thread and mutex_vector_enter cannot hold the 1868 * cpu_lock while traversing the cpu list, therefore we pause 1869 * all other threads by pausing the other cpus. These, and any 1870 * other routines holding cpu pointers while possibly sleeping 1871 * must be sure to call kpreempt_disable before processing the 1872 * list and be sure to check that the cpu has not been deleted 1873 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1874 * to keep the deleted cpu structure around. 1875 * 1876 * Note that this MUST be done AFTER cpu_available 1877 * has been updated so that we don't waste time 1878 * trying to pause the cpu we're trying to delete. 1879 */ 1880 pause_cpus(NULL, NULL); 1881 1882 cpnext = cp->cpu_next; 1883 cp->cpu_prev->cpu_next = cp->cpu_next; 1884 cp->cpu_next->cpu_prev = cp->cpu_prev; 1885 if (cp == cpu_list) 1886 cpu_list = cpnext; 1887 1888 /* 1889 * Signals that the cpu has been deleted (see above). 1890 */ 1891 cp->cpu_next = NULL; 1892 cp->cpu_prev = NULL; 1893 1894 start_cpus(); 1895 1896 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1897 ncpus--; 1898 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1899 1900 pool_pset_mod = gethrtime(); 1901 } 1902 1903 /* 1904 * Add a CPU to the list of active CPUs. 1905 * This routine must not get any locks, because other CPUs are paused. 1906 */ 1907 static void 1908 cpu_add_active_internal(cpu_t *cp) 1909 { 1910 cpupart_t *pp = cp->cpu_part; 1911 1912 ASSERT(MUTEX_HELD(&cpu_lock)); 1913 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1914 1915 ncpus_online++; 1916 cpu_set_state(cp); 1917 cp->cpu_next_onln = cpu_active; 1918 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1919 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1920 cpu_active->cpu_prev_onln = cp; 1921 CPUSET_ADD(cpu_active_set, cp->cpu_id); 1922 1923 if (pp->cp_cpulist) { 1924 cp->cpu_next_part = pp->cp_cpulist; 1925 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1926 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1927 pp->cp_cpulist->cpu_prev_part = cp; 1928 } else { 1929 ASSERT(pp->cp_ncpus == 0); 1930 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1931 } 1932 pp->cp_ncpus++; 1933 if (pp->cp_ncpus == 1) { 1934 cp_numparts_nonempty++; 1935 ASSERT(cp_numparts_nonempty != 0); 1936 } 1937 1938 pg_cpu_active(cp); 1939 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1940 1941 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1942 } 1943 1944 /* 1945 * Add a CPU to the list of active CPUs. 1946 * This is called from machine-dependent layers when a new CPU is started. 1947 */ 1948 void 1949 cpu_add_active(cpu_t *cp) 1950 { 1951 pg_cpupart_in(cp, cp->cpu_part); 1952 1953 pause_cpus(NULL, NULL); 1954 cpu_add_active_internal(cp); 1955 start_cpus(); 1956 1957 cpu_stats_kstat_create(cp); 1958 cpu_create_intrstat(cp); 1959 lgrp_kstat_create(cp); 1960 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1961 } 1962 1963 1964 /* 1965 * Remove a CPU from the list of active CPUs. 1966 * This routine must not get any locks, because other CPUs are paused. 1967 */ 1968 /* ARGSUSED */ 1969 static void 1970 cpu_remove_active(cpu_t *cp) 1971 { 1972 cpupart_t *pp = cp->cpu_part; 1973 1974 ASSERT(MUTEX_HELD(&cpu_lock)); 1975 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1976 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1977 1978 pg_cpu_inactive(cp); 1979 1980 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1981 1982 if (cp == clock_cpu_list) 1983 clock_cpu_list = cp->cpu_next_onln; 1984 1985 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1986 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1987 if (cpu_active == cp) { 1988 cpu_active = cp->cpu_next_onln; 1989 } 1990 cp->cpu_next_onln = cp; 1991 cp->cpu_prev_onln = cp; 1992 CPUSET_DEL(cpu_active_set, cp->cpu_id); 1993 1994 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1995 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1996 if (pp->cp_cpulist == cp) { 1997 pp->cp_cpulist = cp->cpu_next_part; 1998 ASSERT(pp->cp_cpulist != cp); 1999 } 2000 cp->cpu_next_part = cp; 2001 cp->cpu_prev_part = cp; 2002 pp->cp_ncpus--; 2003 if (pp->cp_ncpus == 0) { 2004 cp_numparts_nonempty--; 2005 ASSERT(cp_numparts_nonempty != 0); 2006 } 2007 } 2008 2009 /* 2010 * Routine used to setup a newly inserted CPU in preparation for starting 2011 * it running code. 2012 */ 2013 int 2014 cpu_configure(int cpuid) 2015 { 2016 int retval = 0; 2017 2018 ASSERT(MUTEX_HELD(&cpu_lock)); 2019 2020 /* 2021 * Some structures are statically allocated based upon 2022 * the maximum number of cpus the system supports. Do not 2023 * try to add anything beyond this limit. 2024 */ 2025 if (cpuid < 0 || cpuid >= NCPU) { 2026 return (EINVAL); 2027 } 2028 2029 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 2030 return (EALREADY); 2031 } 2032 2033 if ((retval = mp_cpu_configure(cpuid)) != 0) { 2034 return (retval); 2035 } 2036 2037 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 2038 cpu_set_state(cpu[cpuid]); 2039 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 2040 if (retval != 0) 2041 (void) mp_cpu_unconfigure(cpuid); 2042 2043 return (retval); 2044 } 2045 2046 /* 2047 * Routine used to cleanup a CPU that has been powered off. This will 2048 * destroy all per-cpu information related to this cpu. 2049 */ 2050 int 2051 cpu_unconfigure(int cpuid) 2052 { 2053 int error; 2054 2055 ASSERT(MUTEX_HELD(&cpu_lock)); 2056 2057 if (cpu[cpuid] == NULL) { 2058 return (ENODEV); 2059 } 2060 2061 if (cpu[cpuid]->cpu_flags == 0) { 2062 return (EALREADY); 2063 } 2064 2065 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 2066 return (EBUSY); 2067 } 2068 2069 if (cpu[cpuid]->cpu_props != NULL) { 2070 (void) nvlist_free(cpu[cpuid]->cpu_props); 2071 cpu[cpuid]->cpu_props = NULL; 2072 } 2073 2074 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 2075 2076 if (error != 0) 2077 return (error); 2078 2079 return (mp_cpu_unconfigure(cpuid)); 2080 } 2081 2082 /* 2083 * Routines for registering and de-registering cpu_setup callback functions. 2084 * 2085 * Caller's context 2086 * These routines must not be called from a driver's attach(9E) or 2087 * detach(9E) entry point. 2088 * 2089 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 2090 */ 2091 2092 /* 2093 * Ideally, these would be dynamically allocated and put into a linked 2094 * list; however that is not feasible because the registration routine 2095 * has to be available before the kmem allocator is working (in fact, 2096 * it is called by the kmem allocator init code). In any case, there 2097 * are quite a few extra entries for future users. 2098 */ 2099 #define NCPU_SETUPS 20 2100 2101 struct cpu_setup { 2102 cpu_setup_func_t *func; 2103 void *arg; 2104 } cpu_setups[NCPU_SETUPS]; 2105 2106 void 2107 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2108 { 2109 int i; 2110 2111 ASSERT(MUTEX_HELD(&cpu_lock)); 2112 2113 for (i = 0; i < NCPU_SETUPS; i++) 2114 if (cpu_setups[i].func == NULL) 2115 break; 2116 if (i >= NCPU_SETUPS) 2117 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2118 2119 cpu_setups[i].func = func; 2120 cpu_setups[i].arg = arg; 2121 } 2122 2123 void 2124 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2125 { 2126 int i; 2127 2128 ASSERT(MUTEX_HELD(&cpu_lock)); 2129 2130 for (i = 0; i < NCPU_SETUPS; i++) 2131 if ((cpu_setups[i].func == func) && 2132 (cpu_setups[i].arg == arg)) 2133 break; 2134 if (i >= NCPU_SETUPS) 2135 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2136 "deregister"); 2137 2138 cpu_setups[i].func = NULL; 2139 cpu_setups[i].arg = 0; 2140 } 2141 2142 /* 2143 * Call any state change hooks for this CPU, ignore any errors. 2144 */ 2145 void 2146 cpu_state_change_notify(int id, cpu_setup_t what) 2147 { 2148 int i; 2149 2150 ASSERT(MUTEX_HELD(&cpu_lock)); 2151 2152 for (i = 0; i < NCPU_SETUPS; i++) { 2153 if (cpu_setups[i].func != NULL) { 2154 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2155 } 2156 } 2157 } 2158 2159 /* 2160 * Call any state change hooks for this CPU, undo it if error found. 2161 */ 2162 static int 2163 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2164 { 2165 int i; 2166 int retval = 0; 2167 2168 ASSERT(MUTEX_HELD(&cpu_lock)); 2169 2170 for (i = 0; i < NCPU_SETUPS; i++) { 2171 if (cpu_setups[i].func != NULL) { 2172 retval = cpu_setups[i].func(what, id, 2173 cpu_setups[i].arg); 2174 if (retval) { 2175 for (i--; i >= 0; i--) { 2176 if (cpu_setups[i].func != NULL) 2177 cpu_setups[i].func(undo, 2178 id, cpu_setups[i].arg); 2179 } 2180 break; 2181 } 2182 } 2183 } 2184 return (retval); 2185 } 2186 2187 /* 2188 * Export information about this CPU via the kstat mechanism. 2189 */ 2190 static struct { 2191 kstat_named_t ci_state; 2192 kstat_named_t ci_state_begin; 2193 kstat_named_t ci_cpu_type; 2194 kstat_named_t ci_fpu_type; 2195 kstat_named_t ci_clock_MHz; 2196 kstat_named_t ci_chip_id; 2197 kstat_named_t ci_implementation; 2198 kstat_named_t ci_brandstr; 2199 kstat_named_t ci_core_id; 2200 kstat_named_t ci_curr_clock_Hz; 2201 kstat_named_t ci_supp_freq_Hz; 2202 kstat_named_t ci_pg_id; 2203 #if defined(__sparcv9) 2204 kstat_named_t ci_device_ID; 2205 kstat_named_t ci_cpu_fru; 2206 #endif 2207 #if defined(__x86) 2208 kstat_named_t ci_vendorstr; 2209 kstat_named_t ci_family; 2210 kstat_named_t ci_model; 2211 kstat_named_t ci_step; 2212 kstat_named_t ci_clogid; 2213 kstat_named_t ci_pkg_core_id; 2214 kstat_named_t ci_ncpuperchip; 2215 kstat_named_t ci_ncoreperchip; 2216 kstat_named_t ci_max_cstates; 2217 kstat_named_t ci_curr_cstate; 2218 kstat_named_t ci_cacheid; 2219 kstat_named_t ci_sktstr; 2220 #endif 2221 } cpu_info_template = { 2222 { "state", KSTAT_DATA_CHAR }, 2223 { "state_begin", KSTAT_DATA_LONG }, 2224 { "cpu_type", KSTAT_DATA_CHAR }, 2225 { "fpu_type", KSTAT_DATA_CHAR }, 2226 { "clock_MHz", KSTAT_DATA_LONG }, 2227 { "chip_id", KSTAT_DATA_LONG }, 2228 { "implementation", KSTAT_DATA_STRING }, 2229 { "brand", KSTAT_DATA_STRING }, 2230 { "core_id", KSTAT_DATA_LONG }, 2231 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2232 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2233 { "pg_id", KSTAT_DATA_LONG }, 2234 #if defined(__sparcv9) 2235 { "device_ID", KSTAT_DATA_UINT64 }, 2236 { "cpu_fru", KSTAT_DATA_STRING }, 2237 #endif 2238 #if defined(__x86) 2239 { "vendor_id", KSTAT_DATA_STRING }, 2240 { "family", KSTAT_DATA_INT32 }, 2241 { "model", KSTAT_DATA_INT32 }, 2242 { "stepping", KSTAT_DATA_INT32 }, 2243 { "clog_id", KSTAT_DATA_INT32 }, 2244 { "pkg_core_id", KSTAT_DATA_LONG }, 2245 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2246 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2247 { "supported_max_cstates", KSTAT_DATA_INT32 }, 2248 { "current_cstate", KSTAT_DATA_INT32 }, 2249 { "cache_id", KSTAT_DATA_INT32 }, 2250 { "socket_type", KSTAT_DATA_STRING }, 2251 #endif 2252 }; 2253 2254 static kmutex_t cpu_info_template_lock; 2255 2256 static int 2257 cpu_info_kstat_update(kstat_t *ksp, int rw) 2258 { 2259 cpu_t *cp = ksp->ks_private; 2260 const char *pi_state; 2261 2262 if (rw == KSTAT_WRITE) 2263 return (EACCES); 2264 2265 #if defined(__x86) 2266 /* Is the cpu still initialising itself? */ 2267 if (cpuid_checkpass(cp, 1) == 0) 2268 return (ENXIO); 2269 #endif 2270 switch (cp->cpu_type_info.pi_state) { 2271 case P_ONLINE: 2272 pi_state = PS_ONLINE; 2273 break; 2274 case P_POWEROFF: 2275 pi_state = PS_POWEROFF; 2276 break; 2277 case P_NOINTR: 2278 pi_state = PS_NOINTR; 2279 break; 2280 case P_FAULTED: 2281 pi_state = PS_FAULTED; 2282 break; 2283 case P_SPARE: 2284 pi_state = PS_SPARE; 2285 break; 2286 case P_OFFLINE: 2287 pi_state = PS_OFFLINE; 2288 break; 2289 default: 2290 pi_state = "unknown"; 2291 } 2292 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2293 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2294 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2295 cp->cpu_type_info.pi_processor_type, 15); 2296 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2297 cp->cpu_type_info.pi_fputypes, 15); 2298 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2299 cpu_info_template.ci_chip_id.value.l = 2300 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2301 kstat_named_setstr(&cpu_info_template.ci_implementation, 2302 cp->cpu_idstr); 2303 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2304 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2305 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2306 cp->cpu_curr_clock; 2307 cpu_info_template.ci_pg_id.value.l = 2308 cp->cpu_pg && cp->cpu_pg->cmt_lineage ? 2309 cp->cpu_pg->cmt_lineage->pg_id : -1; 2310 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2311 cp->cpu_supp_freqs); 2312 #if defined(__sparcv9) 2313 cpu_info_template.ci_device_ID.value.ui64 = 2314 cpunodes[cp->cpu_id].device_id; 2315 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2316 #endif 2317 #if defined(__x86) 2318 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2319 cpuid_getvendorstr(cp)); 2320 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2321 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2322 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2323 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2324 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2325 cpu_info_template.ci_ncoreperchip.value.l = 2326 cpuid_get_ncore_per_chip(cp); 2327 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2328 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates; 2329 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp); 2330 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp); 2331 kstat_named_setstr(&cpu_info_template.ci_sktstr, 2332 cpuid_getsocketstr(cp)); 2333 #endif 2334 2335 return (0); 2336 } 2337 2338 static void 2339 cpu_info_kstat_create(cpu_t *cp) 2340 { 2341 zoneid_t zoneid; 2342 2343 ASSERT(MUTEX_HELD(&cpu_lock)); 2344 2345 if (pool_pset_enabled()) 2346 zoneid = GLOBAL_ZONEID; 2347 else 2348 zoneid = ALL_ZONES; 2349 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2350 NULL, "misc", KSTAT_TYPE_NAMED, 2351 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2352 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) { 2353 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2354 #if defined(__sparcv9) 2355 cp->cpu_info_kstat->ks_data_size += 2356 strlen(cpu_fru_fmri(cp)) + 1; 2357 #endif 2358 #if defined(__x86) 2359 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2360 #endif 2361 if (cp->cpu_supp_freqs != NULL) 2362 cp->cpu_info_kstat->ks_data_size += 2363 strlen(cp->cpu_supp_freqs) + 1; 2364 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2365 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2366 cp->cpu_info_kstat->ks_private = cp; 2367 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2368 kstat_install(cp->cpu_info_kstat); 2369 } 2370 } 2371 2372 static void 2373 cpu_info_kstat_destroy(cpu_t *cp) 2374 { 2375 ASSERT(MUTEX_HELD(&cpu_lock)); 2376 2377 kstat_delete(cp->cpu_info_kstat); 2378 cp->cpu_info_kstat = NULL; 2379 } 2380 2381 /* 2382 * Create and install kstats for the boot CPU. 2383 */ 2384 void 2385 cpu_kstat_init(cpu_t *cp) 2386 { 2387 mutex_enter(&cpu_lock); 2388 cpu_info_kstat_create(cp); 2389 cpu_stats_kstat_create(cp); 2390 cpu_create_intrstat(cp); 2391 cpu_set_state(cp); 2392 mutex_exit(&cpu_lock); 2393 } 2394 2395 /* 2396 * Make visible to the zone that subset of the cpu information that would be 2397 * initialized when a cpu is configured (but still offline). 2398 */ 2399 void 2400 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2401 { 2402 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2403 2404 ASSERT(MUTEX_HELD(&cpu_lock)); 2405 ASSERT(pool_pset_enabled()); 2406 ASSERT(cp != NULL); 2407 2408 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2409 zone->zone_ncpus++; 2410 ASSERT(zone->zone_ncpus <= ncpus); 2411 } 2412 if (cp->cpu_info_kstat != NULL) 2413 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2414 } 2415 2416 /* 2417 * Make visible to the zone that subset of the cpu information that would be 2418 * initialized when a previously configured cpu is onlined. 2419 */ 2420 void 2421 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2422 { 2423 kstat_t *ksp; 2424 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2425 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2426 processorid_t cpun; 2427 2428 ASSERT(MUTEX_HELD(&cpu_lock)); 2429 ASSERT(pool_pset_enabled()); 2430 ASSERT(cp != NULL); 2431 ASSERT(cpu_is_active(cp)); 2432 2433 cpun = cp->cpu_id; 2434 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2435 zone->zone_ncpus_online++; 2436 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2437 } 2438 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2439 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2440 != NULL) { 2441 kstat_zone_add(ksp, zoneid); 2442 kstat_rele(ksp); 2443 } 2444 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2445 kstat_zone_add(ksp, zoneid); 2446 kstat_rele(ksp); 2447 } 2448 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2449 kstat_zone_add(ksp, zoneid); 2450 kstat_rele(ksp); 2451 } 2452 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2453 NULL) { 2454 kstat_zone_add(ksp, zoneid); 2455 kstat_rele(ksp); 2456 } 2457 } 2458 2459 /* 2460 * Update relevant kstats such that cpu is now visible to processes 2461 * executing in specified zone. 2462 */ 2463 void 2464 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2465 { 2466 cpu_visibility_configure(cp, zone); 2467 if (cpu_is_active(cp)) 2468 cpu_visibility_online(cp, zone); 2469 } 2470 2471 /* 2472 * Make invisible to the zone that subset of the cpu information that would be 2473 * torn down when a previously offlined cpu is unconfigured. 2474 */ 2475 void 2476 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2477 { 2478 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2479 2480 ASSERT(MUTEX_HELD(&cpu_lock)); 2481 ASSERT(pool_pset_enabled()); 2482 ASSERT(cp != NULL); 2483 2484 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2485 ASSERT(zone->zone_ncpus != 0); 2486 zone->zone_ncpus--; 2487 } 2488 if (cp->cpu_info_kstat) 2489 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2490 } 2491 2492 /* 2493 * Make invisible to the zone that subset of the cpu information that would be 2494 * torn down when a cpu is offlined (but still configured). 2495 */ 2496 void 2497 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2498 { 2499 kstat_t *ksp; 2500 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2501 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2502 processorid_t cpun; 2503 2504 ASSERT(MUTEX_HELD(&cpu_lock)); 2505 ASSERT(pool_pset_enabled()); 2506 ASSERT(cp != NULL); 2507 ASSERT(cpu_is_active(cp)); 2508 2509 cpun = cp->cpu_id; 2510 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2511 ASSERT(zone->zone_ncpus_online != 0); 2512 zone->zone_ncpus_online--; 2513 } 2514 2515 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2516 NULL) { 2517 kstat_zone_remove(ksp, zoneid); 2518 kstat_rele(ksp); 2519 } 2520 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2521 kstat_zone_remove(ksp, zoneid); 2522 kstat_rele(ksp); 2523 } 2524 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2525 kstat_zone_remove(ksp, zoneid); 2526 kstat_rele(ksp); 2527 } 2528 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2529 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2530 != NULL) { 2531 kstat_zone_remove(ksp, zoneid); 2532 kstat_rele(ksp); 2533 } 2534 } 2535 2536 /* 2537 * Update relevant kstats such that cpu is no longer visible to processes 2538 * executing in specified zone. 2539 */ 2540 void 2541 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2542 { 2543 if (cpu_is_active(cp)) 2544 cpu_visibility_offline(cp, zone); 2545 cpu_visibility_unconfigure(cp, zone); 2546 } 2547 2548 /* 2549 * Bind a thread to a CPU as requested. 2550 */ 2551 int 2552 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2553 int *error) 2554 { 2555 processorid_t binding; 2556 cpu_t *cp = NULL; 2557 2558 ASSERT(MUTEX_HELD(&cpu_lock)); 2559 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2560 2561 thread_lock(tp); 2562 2563 /* 2564 * Record old binding, but change the obind, which was initialized 2565 * to PBIND_NONE, only if this thread has a binding. This avoids 2566 * reporting PBIND_NONE for a process when some LWPs are bound. 2567 */ 2568 binding = tp->t_bind_cpu; 2569 if (binding != PBIND_NONE) 2570 *obind = binding; /* record old binding */ 2571 2572 switch (bind) { 2573 case PBIND_QUERY: 2574 /* Just return the old binding */ 2575 thread_unlock(tp); 2576 return (0); 2577 2578 case PBIND_QUERY_TYPE: 2579 /* Return the binding type */ 2580 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2581 thread_unlock(tp); 2582 return (0); 2583 2584 case PBIND_SOFT: 2585 /* 2586 * Set soft binding for this thread and return the actual 2587 * binding 2588 */ 2589 TB_CPU_SOFT_SET(tp); 2590 thread_unlock(tp); 2591 return (0); 2592 2593 case PBIND_HARD: 2594 /* 2595 * Set hard binding for this thread and return the actual 2596 * binding 2597 */ 2598 TB_CPU_HARD_SET(tp); 2599 thread_unlock(tp); 2600 return (0); 2601 2602 default: 2603 break; 2604 } 2605 2606 /* 2607 * If this thread/LWP cannot be bound because of permission 2608 * problems, just note that and return success so that the 2609 * other threads/LWPs will be bound. This is the way 2610 * processor_bind() is defined to work. 2611 * 2612 * Binding will get EPERM if the thread is of system class 2613 * or hasprocperm() fails. 2614 */ 2615 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2616 *error = EPERM; 2617 thread_unlock(tp); 2618 return (0); 2619 } 2620 2621 binding = bind; 2622 if (binding != PBIND_NONE) { 2623 cp = cpu_get((processorid_t)binding); 2624 /* 2625 * Make sure binding is valid and is in right partition. 2626 */ 2627 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2628 *error = EINVAL; 2629 thread_unlock(tp); 2630 return (0); 2631 } 2632 } 2633 tp->t_bind_cpu = binding; /* set new binding */ 2634 2635 /* 2636 * If there is no system-set reason for affinity, set 2637 * the t_bound_cpu field to reflect the binding. 2638 */ 2639 if (tp->t_affinitycnt == 0) { 2640 if (binding == PBIND_NONE) { 2641 /* 2642 * We may need to adjust disp_max_unbound_pri 2643 * since we're becoming unbound. 2644 */ 2645 disp_adjust_unbound_pri(tp); 2646 2647 tp->t_bound_cpu = NULL; /* set new binding */ 2648 2649 /* 2650 * Move thread to lgroup with strongest affinity 2651 * after unbinding 2652 */ 2653 if (tp->t_lgrp_affinity) 2654 lgrp_move_thread(tp, 2655 lgrp_choose(tp, tp->t_cpupart), 1); 2656 2657 if (tp->t_state == TS_ONPROC && 2658 tp->t_cpu->cpu_part != tp->t_cpupart) 2659 cpu_surrender(tp); 2660 } else { 2661 lpl_t *lpl; 2662 2663 tp->t_bound_cpu = cp; 2664 ASSERT(cp->cpu_lpl != NULL); 2665 2666 /* 2667 * Set home to lgroup with most affinity containing CPU 2668 * that thread is being bound or minimum bounding 2669 * lgroup if no affinities set 2670 */ 2671 if (tp->t_lgrp_affinity) 2672 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2673 LGRP_NONE, B_FALSE); 2674 else 2675 lpl = cp->cpu_lpl; 2676 2677 if (tp->t_lpl != lpl) { 2678 /* can't grab cpu_lock */ 2679 lgrp_move_thread(tp, lpl, 1); 2680 } 2681 2682 /* 2683 * Make the thread switch to the bound CPU. 2684 * If the thread is runnable, we need to 2685 * requeue it even if t_cpu is already set 2686 * to the right CPU, since it may be on a 2687 * kpreempt queue and need to move to a local 2688 * queue. We could check t_disp_queue to 2689 * avoid unnecessary overhead if it's already 2690 * on the right queue, but since this isn't 2691 * a performance-critical operation it doesn't 2692 * seem worth the extra code and complexity. 2693 * 2694 * If the thread is weakbound to the cpu then it will 2695 * resist the new binding request until the weak 2696 * binding drops. The cpu_surrender or requeueing 2697 * below could be skipped in such cases (since it 2698 * will have no effect), but that would require 2699 * thread_allowmigrate to acquire thread_lock so 2700 * we'll take the very occasional hit here instead. 2701 */ 2702 if (tp->t_state == TS_ONPROC) { 2703 cpu_surrender(tp); 2704 } else if (tp->t_state == TS_RUN) { 2705 cpu_t *ocp = tp->t_cpu; 2706 2707 (void) dispdeq(tp); 2708 setbackdq(tp); 2709 /* 2710 * Either on the bound CPU's disp queue now, 2711 * or swapped out or on the swap queue. 2712 */ 2713 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2714 tp->t_weakbound_cpu == ocp || 2715 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2716 != TS_LOAD); 2717 } 2718 } 2719 } 2720 2721 /* 2722 * Our binding has changed; set TP_CHANGEBIND. 2723 */ 2724 tp->t_proc_flag |= TP_CHANGEBIND; 2725 aston(tp); 2726 2727 thread_unlock(tp); 2728 2729 return (0); 2730 } 2731 2732 2733 cpuset_t * 2734 cpuset_alloc(int kmflags) 2735 { 2736 return (kmem_alloc(sizeof (cpuset_t), kmflags)); 2737 } 2738 2739 void 2740 cpuset_free(cpuset_t *s) 2741 { 2742 kmem_free(s, sizeof (cpuset_t)); 2743 } 2744 2745 void 2746 cpuset_all(cpuset_t *s) 2747 { 2748 int i; 2749 2750 for (i = 0; i < CPUSET_WORDS; i++) 2751 s->cpub[i] = ~0UL; 2752 } 2753 2754 void 2755 cpuset_all_but(cpuset_t *s, const uint_t cpu) 2756 { 2757 cpuset_all(s); 2758 CPUSET_DEL(*s, cpu); 2759 } 2760 2761 void 2762 cpuset_only(cpuset_t *s, const uint_t cpu) 2763 { 2764 CPUSET_ZERO(*s); 2765 CPUSET_ADD(*s, cpu); 2766 } 2767 2768 long 2769 cpu_in_set(const cpuset_t *s, const uint_t cpu) 2770 { 2771 VERIFY(cpu < NCPU); 2772 return (BT_TEST(s->cpub, cpu)); 2773 } 2774 2775 void 2776 cpuset_add(cpuset_t *s, const uint_t cpu) 2777 { 2778 VERIFY(cpu < NCPU); 2779 BT_SET(s->cpub, cpu); 2780 } 2781 2782 void 2783 cpuset_del(cpuset_t *s, const uint_t cpu) 2784 { 2785 VERIFY(cpu < NCPU); 2786 BT_CLEAR(s->cpub, cpu); 2787 } 2788 2789 int 2790 cpuset_isnull(const cpuset_t *s) 2791 { 2792 int i; 2793 2794 for (i = 0; i < CPUSET_WORDS; i++) { 2795 if (s->cpub[i] != 0) 2796 return (0); 2797 } 2798 return (1); 2799 } 2800 2801 int 2802 cpuset_isequal(const cpuset_t *s1, const cpuset_t *s2) 2803 { 2804 int i; 2805 2806 for (i = 0; i < CPUSET_WORDS; i++) { 2807 if (s1->cpub[i] != s2->cpub[i]) 2808 return (0); 2809 } 2810 return (1); 2811 } 2812 2813 uint_t 2814 cpuset_find(const cpuset_t *s) 2815 { 2816 2817 uint_t i; 2818 uint_t cpu = (uint_t)-1; 2819 2820 /* 2821 * Find a cpu in the cpuset 2822 */ 2823 for (i = 0; i < CPUSET_WORDS; i++) { 2824 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2825 if (cpu != (uint_t)-1) { 2826 cpu += i * BT_NBIPUL; 2827 break; 2828 } 2829 } 2830 return (cpu); 2831 } 2832 2833 void 2834 cpuset_bounds(const cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2835 { 2836 int i, j; 2837 uint_t bit; 2838 2839 /* 2840 * First, find the smallest cpu id in the set. 2841 */ 2842 for (i = 0; i < CPUSET_WORDS; i++) { 2843 if (s->cpub[i] != 0) { 2844 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2845 ASSERT(bit != (uint_t)-1); 2846 *smallestid = bit + (i * BT_NBIPUL); 2847 2848 /* 2849 * Now find the largest cpu id in 2850 * the set and return immediately. 2851 * Done in an inner loop to avoid 2852 * having to break out of the first 2853 * loop. 2854 */ 2855 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2856 if (s->cpub[j] != 0) { 2857 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2858 ASSERT(bit != (uint_t)-1); 2859 *largestid = bit + (j * BT_NBIPUL); 2860 ASSERT(*largestid >= *smallestid); 2861 return; 2862 } 2863 } 2864 2865 /* 2866 * If this code is reached, a 2867 * smallestid was found, but not a 2868 * largestid. The cpuset must have 2869 * been changed during the course 2870 * of this function call. 2871 */ 2872 ASSERT(0); 2873 } 2874 } 2875 *smallestid = *largestid = CPUSET_NOTINSET; 2876 } 2877 2878 void 2879 cpuset_atomic_del(cpuset_t *s, const uint_t cpu) 2880 { 2881 VERIFY(cpu < NCPU); 2882 BT_ATOMIC_CLEAR(s->cpub, (cpu)) 2883 } 2884 2885 void 2886 cpuset_atomic_add(cpuset_t *s, const uint_t cpu) 2887 { 2888 VERIFY(cpu < NCPU); 2889 BT_ATOMIC_SET(s->cpub, (cpu)) 2890 } 2891 2892 long 2893 cpuset_atomic_xadd(cpuset_t *s, const uint_t cpu) 2894 { 2895 long res; 2896 2897 VERIFY(cpu < NCPU); 2898 BT_ATOMIC_SET_EXCL(s->cpub, cpu, res); 2899 return (res); 2900 } 2901 2902 long 2903 cpuset_atomic_xdel(cpuset_t *s, const uint_t cpu) 2904 { 2905 long res; 2906 2907 VERIFY(cpu < NCPU); 2908 BT_ATOMIC_CLEAR_EXCL(s->cpub, cpu, res); 2909 return (res); 2910 } 2911 2912 void 2913 cpuset_or(cpuset_t *dst, cpuset_t *src) 2914 { 2915 for (int i = 0; i < CPUSET_WORDS; i++) { 2916 dst->cpub[i] |= src->cpub[i]; 2917 } 2918 } 2919 2920 void 2921 cpuset_xor(cpuset_t *dst, cpuset_t *src) 2922 { 2923 for (int i = 0; i < CPUSET_WORDS; i++) { 2924 dst->cpub[i] ^= src->cpub[i]; 2925 } 2926 } 2927 2928 void 2929 cpuset_and(cpuset_t *dst, cpuset_t *src) 2930 { 2931 for (int i = 0; i < CPUSET_WORDS; i++) { 2932 dst->cpub[i] &= src->cpub[i]; 2933 } 2934 } 2935 2936 void 2937 cpuset_zero(cpuset_t *dst) 2938 { 2939 for (int i = 0; i < CPUSET_WORDS; i++) { 2940 dst->cpub[i] = 0; 2941 } 2942 } 2943 2944 2945 /* 2946 * Unbind threads bound to specified CPU. 2947 * 2948 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2949 * CPU. Otherwise unbind all soft-bound user threads. 2950 */ 2951 int 2952 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2953 { 2954 processorid_t obind; 2955 kthread_t *tp; 2956 int ret = 0; 2957 proc_t *pp; 2958 int err, berr = 0; 2959 2960 ASSERT(MUTEX_HELD(&cpu_lock)); 2961 2962 mutex_enter(&pidlock); 2963 for (pp = practive; pp != NULL; pp = pp->p_next) { 2964 mutex_enter(&pp->p_lock); 2965 tp = pp->p_tlist; 2966 /* 2967 * Skip zombies, kernel processes, and processes in 2968 * other zones, if called from a non-global zone. 2969 */ 2970 if (tp == NULL || (pp->p_flag & SSYS) || 2971 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2972 mutex_exit(&pp->p_lock); 2973 continue; 2974 } 2975 do { 2976 if (tp->t_bind_cpu != cpu) 2977 continue; 2978 /* 2979 * Skip threads with hard binding when 2980 * `unbind_all_threads' is not specified. 2981 */ 2982 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2983 continue; 2984 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2985 if (ret == 0) 2986 ret = err; 2987 } while ((tp = tp->t_forw) != pp->p_tlist); 2988 mutex_exit(&pp->p_lock); 2989 } 2990 mutex_exit(&pidlock); 2991 if (ret == 0) 2992 ret = berr; 2993 return (ret); 2994 } 2995 2996 2997 /* 2998 * Destroy all remaining bound threads on a cpu. 2999 */ 3000 void 3001 cpu_destroy_bound_threads(cpu_t *cp) 3002 { 3003 extern id_t syscid; 3004 register kthread_id_t t, tlist, tnext; 3005 3006 /* 3007 * Destroy all remaining bound threads on the cpu. This 3008 * should include both the interrupt threads and the idle thread. 3009 * This requires some care, since we need to traverse the 3010 * thread list with the pidlock mutex locked, but thread_free 3011 * also locks the pidlock mutex. So, we collect the threads 3012 * we're going to reap in a list headed by "tlist", then we 3013 * unlock the pidlock mutex and traverse the tlist list, 3014 * doing thread_free's on the thread's. Simple, n'est pas? 3015 * Also, this depends on thread_free not mucking with the 3016 * t_next and t_prev links of the thread. 3017 */ 3018 3019 if ((t = curthread) != NULL) { 3020 3021 tlist = NULL; 3022 mutex_enter(&pidlock); 3023 do { 3024 tnext = t->t_next; 3025 if (t->t_bound_cpu == cp) { 3026 3027 /* 3028 * We've found a bound thread, carefully unlink 3029 * it out of the thread list, and add it to 3030 * our "tlist". We "know" we don't have to 3031 * worry about unlinking curthread (the thread 3032 * that is executing this code). 3033 */ 3034 t->t_next->t_prev = t->t_prev; 3035 t->t_prev->t_next = t->t_next; 3036 t->t_next = tlist; 3037 tlist = t; 3038 ASSERT(t->t_cid == syscid); 3039 /* wake up anyone blocked in thread_join */ 3040 cv_broadcast(&t->t_joincv); 3041 /* 3042 * t_lwp set by interrupt threads and not 3043 * cleared. 3044 */ 3045 t->t_lwp = NULL; 3046 /* 3047 * Pause and idle threads always have 3048 * t_state set to TS_ONPROC. 3049 */ 3050 t->t_state = TS_FREE; 3051 t->t_prev = NULL; /* Just in case */ 3052 } 3053 3054 } while ((t = tnext) != curthread); 3055 3056 mutex_exit(&pidlock); 3057 3058 mutex_sync(); 3059 for (t = tlist; t != NULL; t = tnext) { 3060 tnext = t->t_next; 3061 thread_free(t); 3062 } 3063 } 3064 } 3065 3066 /* 3067 * Update the cpu_supp_freqs of this cpu. This information is returned 3068 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 3069 * maintain the kstat data size. 3070 */ 3071 void 3072 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 3073 { 3074 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 3075 const char *lfreqs = clkstr; 3076 boolean_t kstat_exists = B_FALSE; 3077 kstat_t *ksp; 3078 size_t len; 3079 3080 /* 3081 * A NULL pointer means we only support one speed. 3082 */ 3083 if (freqs == NULL) 3084 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 3085 cp->cpu_curr_clock); 3086 else 3087 lfreqs = freqs; 3088 3089 /* 3090 * Make sure the frequency doesn't change while a snapshot is 3091 * going on. Of course, we only need to worry about this if 3092 * the kstat exists. 3093 */ 3094 if ((ksp = cp->cpu_info_kstat) != NULL) { 3095 mutex_enter(ksp->ks_lock); 3096 kstat_exists = B_TRUE; 3097 } 3098 3099 /* 3100 * Free any previously allocated string and if the kstat 3101 * already exists, then update its data size. 3102 */ 3103 if (cp->cpu_supp_freqs != NULL) { 3104 len = strlen(cp->cpu_supp_freqs) + 1; 3105 kmem_free(cp->cpu_supp_freqs, len); 3106 if (kstat_exists) 3107 ksp->ks_data_size -= len; 3108 } 3109 3110 /* 3111 * Allocate the new string and set the pointer. 3112 */ 3113 len = strlen(lfreqs) + 1; 3114 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 3115 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 3116 3117 /* 3118 * If the kstat already exists then update the data size and 3119 * free the lock. 3120 */ 3121 if (kstat_exists) { 3122 ksp->ks_data_size += len; 3123 mutex_exit(ksp->ks_lock); 3124 } 3125 } 3126 3127 /* 3128 * Indicate the current CPU's clock freqency (in Hz). 3129 * The calling context must be such that CPU references are safe. 3130 */ 3131 void 3132 cpu_set_curr_clock(uint64_t new_clk) 3133 { 3134 uint64_t old_clk; 3135 3136 old_clk = CPU->cpu_curr_clock; 3137 CPU->cpu_curr_clock = new_clk; 3138 3139 /* 3140 * The cpu-change-speed DTrace probe exports the frequency in Hz 3141 */ 3142 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id, 3143 uint64_t, old_clk, uint64_t, new_clk); 3144 } 3145 3146 /* 3147 * processor_info(2) and p_online(2) status support functions 3148 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 3149 * for use in communicating processor state information to userland. Kernel 3150 * subsystems should only be using the cpu_flags value directly. Subsystems 3151 * modifying cpu_flags should record the state change via a call to the 3152 * cpu_set_state(). 3153 */ 3154 3155 /* 3156 * Update the pi_state of this CPU. This function provides the CPU status for 3157 * the information returned by processor_info(2). 3158 */ 3159 void 3160 cpu_set_state(cpu_t *cpu) 3161 { 3162 ASSERT(MUTEX_HELD(&cpu_lock)); 3163 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 3164 cpu->cpu_state_begin = gethrestime_sec(); 3165 pool_cpu_mod = gethrtime(); 3166 } 3167 3168 /* 3169 * Return offline/online/other status for the indicated CPU. Use only for 3170 * communication with user applications; cpu_flags provides the in-kernel 3171 * interface. 3172 */ 3173 int 3174 cpu_get_state(cpu_t *cpu) 3175 { 3176 ASSERT(MUTEX_HELD(&cpu_lock)); 3177 if (cpu->cpu_flags & CPU_POWEROFF) 3178 return (P_POWEROFF); 3179 else if (cpu->cpu_flags & CPU_FAULTED) 3180 return (P_FAULTED); 3181 else if (cpu->cpu_flags & CPU_SPARE) 3182 return (P_SPARE); 3183 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 3184 return (P_OFFLINE); 3185 else if (cpu->cpu_flags & CPU_ENABLE) 3186 return (P_ONLINE); 3187 else 3188 return (P_NOINTR); 3189 } 3190 3191 /* 3192 * Return processor_info(2) state as a string. 3193 */ 3194 const char * 3195 cpu_get_state_str(cpu_t *cpu) 3196 { 3197 const char *string; 3198 3199 switch (cpu_get_state(cpu)) { 3200 case P_ONLINE: 3201 string = PS_ONLINE; 3202 break; 3203 case P_POWEROFF: 3204 string = PS_POWEROFF; 3205 break; 3206 case P_NOINTR: 3207 string = PS_NOINTR; 3208 break; 3209 case P_SPARE: 3210 string = PS_SPARE; 3211 break; 3212 case P_FAULTED: 3213 string = PS_FAULTED; 3214 break; 3215 case P_OFFLINE: 3216 string = PS_OFFLINE; 3217 break; 3218 default: 3219 string = "unknown"; 3220 break; 3221 } 3222 return (string); 3223 } 3224 3225 /* 3226 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3227 * kstats, respectively. This is done when a CPU is initialized or placed 3228 * online via p_online(2). 3229 */ 3230 static void 3231 cpu_stats_kstat_create(cpu_t *cp) 3232 { 3233 int instance = cp->cpu_id; 3234 char *module = "cpu"; 3235 char *class = "misc"; 3236 kstat_t *ksp; 3237 zoneid_t zoneid; 3238 3239 ASSERT(MUTEX_HELD(&cpu_lock)); 3240 3241 if (pool_pset_enabled()) 3242 zoneid = GLOBAL_ZONEID; 3243 else 3244 zoneid = ALL_ZONES; 3245 /* 3246 * Create named kstats 3247 */ 3248 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3249 ksp = kstat_create_zone(module, instance, (name), class, \ 3250 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3251 zoneid); \ 3252 if (ksp != NULL) { \ 3253 ksp->ks_private = cp; \ 3254 ksp->ks_update = (update_func); \ 3255 kstat_install(ksp); \ 3256 } else \ 3257 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3258 module, instance, (name)); 3259 3260 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3261 cpu_sys_stats_ks_update); 3262 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3263 cpu_vm_stats_ks_update); 3264 3265 /* 3266 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3267 */ 3268 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3269 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3270 if (ksp != NULL) { 3271 ksp->ks_update = cpu_stat_ks_update; 3272 ksp->ks_private = cp; 3273 kstat_install(ksp); 3274 } 3275 } 3276 3277 static void 3278 cpu_stats_kstat_destroy(cpu_t *cp) 3279 { 3280 char ks_name[KSTAT_STRLEN]; 3281 3282 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3283 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3284 3285 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3286 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3287 } 3288 3289 static int 3290 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3291 { 3292 cpu_t *cp = (cpu_t *)ksp->ks_private; 3293 struct cpu_sys_stats_ks_data *csskd; 3294 cpu_sys_stats_t *css; 3295 hrtime_t msnsecs[NCMSTATES]; 3296 int i; 3297 3298 if (rw == KSTAT_WRITE) 3299 return (EACCES); 3300 3301 csskd = ksp->ks_data; 3302 css = &cp->cpu_stats.sys; 3303 3304 /* 3305 * Read CPU mstate, but compare with the last values we 3306 * received to make sure that the returned kstats never 3307 * decrease. 3308 */ 3309 3310 get_cpu_mstate(cp, msnsecs); 3311 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3312 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3313 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3314 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3315 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3316 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3317 3318 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3319 sizeof (cpu_sys_stats_ks_data_template)); 3320 3321 csskd->cpu_ticks_wait.value.ui64 = 0; 3322 csskd->wait_ticks_io.value.ui64 = 0; 3323 3324 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3325 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3326 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3327 csskd->cpu_ticks_idle.value.ui64 = 3328 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3329 csskd->cpu_ticks_user.value.ui64 = 3330 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3331 csskd->cpu_ticks_kernel.value.ui64 = 3332 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3333 csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec; 3334 csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes; 3335 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3336 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3337 csskd->bread.value.ui64 = css->bread; 3338 csskd->bwrite.value.ui64 = css->bwrite; 3339 csskd->lread.value.ui64 = css->lread; 3340 csskd->lwrite.value.ui64 = css->lwrite; 3341 csskd->phread.value.ui64 = css->phread; 3342 csskd->phwrite.value.ui64 = css->phwrite; 3343 csskd->pswitch.value.ui64 = css->pswitch; 3344 csskd->trap.value.ui64 = css->trap; 3345 csskd->intr.value.ui64 = 0; 3346 for (i = 0; i < PIL_MAX; i++) 3347 csskd->intr.value.ui64 += css->intr[i]; 3348 csskd->syscall.value.ui64 = css->syscall; 3349 csskd->sysread.value.ui64 = css->sysread; 3350 csskd->syswrite.value.ui64 = css->syswrite; 3351 csskd->sysfork.value.ui64 = css->sysfork; 3352 csskd->sysvfork.value.ui64 = css->sysvfork; 3353 csskd->sysexec.value.ui64 = css->sysexec; 3354 csskd->readch.value.ui64 = css->readch; 3355 csskd->writech.value.ui64 = css->writech; 3356 csskd->rcvint.value.ui64 = css->rcvint; 3357 csskd->xmtint.value.ui64 = css->xmtint; 3358 csskd->mdmint.value.ui64 = css->mdmint; 3359 csskd->rawch.value.ui64 = css->rawch; 3360 csskd->canch.value.ui64 = css->canch; 3361 csskd->outch.value.ui64 = css->outch; 3362 csskd->msg.value.ui64 = css->msg; 3363 csskd->sema.value.ui64 = css->sema; 3364 csskd->namei.value.ui64 = css->namei; 3365 csskd->ufsiget.value.ui64 = css->ufsiget; 3366 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3367 csskd->ufsipage.value.ui64 = css->ufsipage; 3368 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3369 csskd->procovf.value.ui64 = css->procovf; 3370 csskd->intrthread.value.ui64 = 0; 3371 for (i = 0; i < LOCK_LEVEL - 1; i++) 3372 csskd->intrthread.value.ui64 += css->intr[i]; 3373 csskd->intrblk.value.ui64 = css->intrblk; 3374 csskd->intrunpin.value.ui64 = css->intrunpin; 3375 csskd->idlethread.value.ui64 = css->idlethread; 3376 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3377 csskd->nthreads.value.ui64 = css->nthreads; 3378 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3379 csskd->xcalls.value.ui64 = css->xcalls; 3380 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3381 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3382 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3383 csskd->modload.value.ui64 = css->modload; 3384 csskd->modunload.value.ui64 = css->modunload; 3385 csskd->bawrite.value.ui64 = css->bawrite; 3386 csskd->iowait.value.ui64 = css->iowait; 3387 3388 return (0); 3389 } 3390 3391 static int 3392 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3393 { 3394 cpu_t *cp = (cpu_t *)ksp->ks_private; 3395 struct cpu_vm_stats_ks_data *cvskd; 3396 cpu_vm_stats_t *cvs; 3397 3398 if (rw == KSTAT_WRITE) 3399 return (EACCES); 3400 3401 cvs = &cp->cpu_stats.vm; 3402 cvskd = ksp->ks_data; 3403 3404 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3405 sizeof (cpu_vm_stats_ks_data_template)); 3406 cvskd->pgrec.value.ui64 = cvs->pgrec; 3407 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3408 cvskd->pgin.value.ui64 = cvs->pgin; 3409 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3410 cvskd->pgout.value.ui64 = cvs->pgout; 3411 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3412 cvskd->swapin.value.ui64 = cvs->swapin; 3413 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3414 cvskd->swapout.value.ui64 = cvs->swapout; 3415 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3416 cvskd->zfod.value.ui64 = cvs->zfod; 3417 cvskd->dfree.value.ui64 = cvs->dfree; 3418 cvskd->scan.value.ui64 = cvs->scan; 3419 cvskd->rev.value.ui64 = cvs->rev; 3420 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3421 cvskd->as_fault.value.ui64 = cvs->as_fault; 3422 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3423 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3424 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3425 cvskd->softlock.value.ui64 = cvs->softlock; 3426 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3427 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3428 cvskd->execpgin.value.ui64 = cvs->execpgin; 3429 cvskd->execpgout.value.ui64 = cvs->execpgout; 3430 cvskd->execfree.value.ui64 = cvs->execfree; 3431 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3432 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3433 cvskd->anonfree.value.ui64 = cvs->anonfree; 3434 cvskd->fspgin.value.ui64 = cvs->fspgin; 3435 cvskd->fspgout.value.ui64 = cvs->fspgout; 3436 cvskd->fsfree.value.ui64 = cvs->fsfree; 3437 3438 return (0); 3439 } 3440 3441 static int 3442 cpu_stat_ks_update(kstat_t *ksp, int rw) 3443 { 3444 cpu_stat_t *cso; 3445 cpu_t *cp; 3446 int i; 3447 hrtime_t msnsecs[NCMSTATES]; 3448 3449 cso = (cpu_stat_t *)ksp->ks_data; 3450 cp = (cpu_t *)ksp->ks_private; 3451 3452 if (rw == KSTAT_WRITE) 3453 return (EACCES); 3454 3455 /* 3456 * Read CPU mstate, but compare with the last values we 3457 * received to make sure that the returned kstats never 3458 * decrease. 3459 */ 3460 3461 get_cpu_mstate(cp, msnsecs); 3462 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3463 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3464 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3465 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3466 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3467 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3468 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3469 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3470 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3471 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3472 cso->cpu_sysinfo.wait[W_IO] = 0; 3473 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3474 cso->cpu_sysinfo.wait[W_PIO] = 0; 3475 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3476 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3477 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3478 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3479 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3480 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3481 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3482 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3483 cso->cpu_sysinfo.intr = 0; 3484 for (i = 0; i < PIL_MAX; i++) 3485 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3486 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3487 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3488 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3489 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3490 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3491 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3492 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3493 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3494 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3495 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3496 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3497 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3498 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3499 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3500 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3501 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3502 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3503 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3504 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3505 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3506 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3507 cso->cpu_sysinfo.inodeovf = 0; 3508 cso->cpu_sysinfo.fileovf = 0; 3509 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3510 cso->cpu_sysinfo.intrthread = 0; 3511 for (i = 0; i < LOCK_LEVEL - 1; i++) 3512 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3513 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3514 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3515 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3516 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3517 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3518 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3519 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3520 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3521 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3522 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3523 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3524 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3525 cso->cpu_sysinfo.rw_enters = 0; 3526 cso->cpu_sysinfo.win_uo_cnt = 0; 3527 cso->cpu_sysinfo.win_uu_cnt = 0; 3528 cso->cpu_sysinfo.win_so_cnt = 0; 3529 cso->cpu_sysinfo.win_su_cnt = 0; 3530 cso->cpu_sysinfo.win_suo_cnt = 0; 3531 3532 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3533 cso->cpu_syswait.swap = 0; 3534 cso->cpu_syswait.physio = 0; 3535 3536 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3537 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3538 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3539 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3540 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3541 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3542 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3543 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3544 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3545 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3546 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3547 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3548 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3549 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3550 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3551 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3552 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3553 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3554 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3555 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3556 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3557 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3558 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3559 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3560 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3561 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3562 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3563 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3564 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3565 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3566 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3567 3568 return (0); 3569 }