1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012 by Delphix. All rights reserved.
  24  * Copyright 2019 Joyent, Inc.
  25  */
  26 
  27 /*
  28  * Architecture-independent CPU control functions.
  29  */
  30 
  31 #include <sys/types.h>
  32 #include <sys/param.h>
  33 #include <sys/var.h>
  34 #include <sys/thread.h>
  35 #include <sys/cpuvar.h>
  36 #include <sys/cpu_event.h>
  37 #include <sys/kstat.h>
  38 #include <sys/uadmin.h>
  39 #include <sys/systm.h>
  40 #include <sys/errno.h>
  41 #include <sys/cmn_err.h>
  42 #include <sys/procset.h>
  43 #include <sys/processor.h>
  44 #include <sys/debug.h>
  45 #include <sys/cpupart.h>
  46 #include <sys/lgrp.h>
  47 #include <sys/pset.h>
  48 #include <sys/pghw.h>
  49 #include <sys/kmem.h>
  50 #include <sys/kmem_impl.h>        /* to set per-cpu kmem_cache offset */
  51 #include <sys/atomic.h>
  52 #include <sys/callb.h>
  53 #include <sys/vtrace.h>
  54 #include <sys/cyclic.h>
  55 #include <sys/bitmap.h>
  56 #include <sys/nvpair.h>
  57 #include <sys/pool_pset.h>
  58 #include <sys/msacct.h>
  59 #include <sys/time.h>
  60 #include <sys/archsystm.h>
  61 #include <sys/sdt.h>
  62 #if defined(__x86) || defined(__amd64)
  63 #include <sys/x86_archext.h>
  64 #endif
  65 #include <sys/callo.h>
  66 
  67 extern int      mp_cpu_start(cpu_t *);
  68 extern int      mp_cpu_stop(cpu_t *);
  69 extern int      mp_cpu_poweron(cpu_t *);
  70 extern int      mp_cpu_poweroff(cpu_t *);
  71 extern int      mp_cpu_configure(int);
  72 extern int      mp_cpu_unconfigure(int);
  73 extern void     mp_cpu_faulted_enter(cpu_t *);
  74 extern void     mp_cpu_faulted_exit(cpu_t *);
  75 
  76 extern int cmp_cpu_to_chip(processorid_t cpuid);
  77 #ifdef __sparcv9
  78 extern char *cpu_fru_fmri(cpu_t *cp);
  79 #endif
  80 
  81 static void cpu_add_active_internal(cpu_t *cp);
  82 static void cpu_remove_active(cpu_t *cp);
  83 static void cpu_info_kstat_create(cpu_t *cp);
  84 static void cpu_info_kstat_destroy(cpu_t *cp);
  85 static void cpu_stats_kstat_create(cpu_t *cp);
  86 static void cpu_stats_kstat_destroy(cpu_t *cp);
  87 
  88 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
  89 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
  90 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
  91 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
  92 
  93 /*
  94  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
  95  * max_cpu_seqid_ever, and dispatch queue reallocations.  The lock ordering with
  96  * respect to related locks is:
  97  *
  98  *      cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
  99  *
 100  * Warning:  Certain sections of code do not use the cpu_lock when
 101  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
 102  * all cpus are paused during modifications to this list, a solution
 103  * to protect the list is too either disable kernel preemption while
 104  * walking the list, *or* recheck the cpu_next pointer at each
 105  * iteration in the loop.  Note that in no cases can any cached
 106  * copies of the cpu pointers be kept as they may become invalid.
 107  */
 108 kmutex_t        cpu_lock;
 109 cpu_t           *cpu_list;              /* list of all CPUs */
 110 cpu_t           *clock_cpu_list;        /* used by clock to walk CPUs */
 111 cpu_t           *cpu_active;            /* list of active CPUs */
 112 cpuset_t        cpu_active_set;         /* cached set of active CPUs */
 113 static cpuset_t cpu_available;          /* set of available CPUs */
 114 cpuset_t        cpu_seqid_inuse;        /* which cpu_seqids are in use */
 115 
 116 cpu_t           **cpu_seq;              /* ptrs to CPUs, indexed by seq_id */
 117 
 118 /*
 119  * max_ncpus keeps the max cpus the system can have. Initially
 120  * it's NCPU, but since most archs scan the devtree for cpus
 121  * fairly early on during boot, the real max can be known before
 122  * ncpus is set (useful for early NCPU based allocations).
 123  */
 124 int max_ncpus = NCPU;
 125 /*
 126  * platforms that set max_ncpus to maxiumum number of cpus that can be
 127  * dynamically added will set boot_max_ncpus to the number of cpus found
 128  * at device tree scan time during boot.
 129  */
 130 int boot_max_ncpus = -1;
 131 int boot_ncpus = -1;
 132 /*
 133  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
 134  * used to size arrays that are indexed by CPU id.
 135  */
 136 processorid_t max_cpuid = NCPU - 1;
 137 
 138 /*
 139  * Maximum cpu_seqid was given. This number can only grow and never shrink. It
 140  * can be used to optimize NCPU loops to avoid going through CPUs which were
 141  * never on-line.
 142  */
 143 processorid_t max_cpu_seqid_ever = 0;
 144 
 145 int ncpus = 1;
 146 int ncpus_online = 1;
 147 
 148 /*
 149  * CPU that we're trying to offline.  Protected by cpu_lock.
 150  */
 151 cpu_t *cpu_inmotion;
 152 
 153 /*
 154  * Can be raised to suppress further weakbinding, which are instead
 155  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
 156  * while individual thread weakbinding synchronization is done under thread
 157  * lock.
 158  */
 159 int weakbindingbarrier;
 160 
 161 /*
 162  * Variables used in pause_cpus().
 163  */
 164 static volatile char safe_list[NCPU];
 165 
 166 static struct _cpu_pause_info {
 167         int             cp_spl;         /* spl saved in pause_cpus() */
 168         volatile int    cp_go;          /* Go signal sent after all ready */
 169         int             cp_count;       /* # of CPUs to pause */
 170         ksema_t         cp_sem;         /* synch pause_cpus & cpu_pause */
 171         kthread_id_t    cp_paused;
 172         void            *(*cp_func)(void *);
 173 } cpu_pause_info;
 174 
 175 static kmutex_t pause_free_mutex;
 176 static kcondvar_t pause_free_cv;
 177 
 178 
 179 static struct cpu_sys_stats_ks_data {
 180         kstat_named_t cpu_ticks_idle;
 181         kstat_named_t cpu_ticks_user;
 182         kstat_named_t cpu_ticks_kernel;
 183         kstat_named_t cpu_ticks_wait;
 184         kstat_named_t cpu_nsec_idle;
 185         kstat_named_t cpu_nsec_user;
 186         kstat_named_t cpu_nsec_kernel;
 187         kstat_named_t cpu_nsec_dtrace;
 188         kstat_named_t cpu_nsec_intr;
 189         kstat_named_t cpu_load_intr;
 190         kstat_named_t wait_ticks_io;
 191         kstat_named_t dtrace_probes;
 192         kstat_named_t bread;
 193         kstat_named_t bwrite;
 194         kstat_named_t lread;
 195         kstat_named_t lwrite;
 196         kstat_named_t phread;
 197         kstat_named_t phwrite;
 198         kstat_named_t pswitch;
 199         kstat_named_t trap;
 200         kstat_named_t intr;
 201         kstat_named_t syscall;
 202         kstat_named_t sysread;
 203         kstat_named_t syswrite;
 204         kstat_named_t sysfork;
 205         kstat_named_t sysvfork;
 206         kstat_named_t sysexec;
 207         kstat_named_t readch;
 208         kstat_named_t writech;
 209         kstat_named_t rcvint;
 210         kstat_named_t xmtint;
 211         kstat_named_t mdmint;
 212         kstat_named_t rawch;
 213         kstat_named_t canch;
 214         kstat_named_t outch;
 215         kstat_named_t msg;
 216         kstat_named_t sema;
 217         kstat_named_t namei;
 218         kstat_named_t ufsiget;
 219         kstat_named_t ufsdirblk;
 220         kstat_named_t ufsipage;
 221         kstat_named_t ufsinopage;
 222         kstat_named_t procovf;
 223         kstat_named_t intrthread;
 224         kstat_named_t intrblk;
 225         kstat_named_t intrunpin;
 226         kstat_named_t idlethread;
 227         kstat_named_t inv_swtch;
 228         kstat_named_t nthreads;
 229         kstat_named_t cpumigrate;
 230         kstat_named_t xcalls;
 231         kstat_named_t mutex_adenters;
 232         kstat_named_t rw_rdfails;
 233         kstat_named_t rw_wrfails;
 234         kstat_named_t modload;
 235         kstat_named_t modunload;
 236         kstat_named_t bawrite;
 237         kstat_named_t iowait;
 238 } cpu_sys_stats_ks_data_template = {
 239         { "cpu_ticks_idle",     KSTAT_DATA_UINT64 },
 240         { "cpu_ticks_user",     KSTAT_DATA_UINT64 },
 241         { "cpu_ticks_kernel",   KSTAT_DATA_UINT64 },
 242         { "cpu_ticks_wait",     KSTAT_DATA_UINT64 },
 243         { "cpu_nsec_idle",      KSTAT_DATA_UINT64 },
 244         { "cpu_nsec_user",      KSTAT_DATA_UINT64 },
 245         { "cpu_nsec_kernel",    KSTAT_DATA_UINT64 },
 246         { "cpu_nsec_dtrace",    KSTAT_DATA_UINT64 },
 247         { "cpu_nsec_intr",      KSTAT_DATA_UINT64 },
 248         { "cpu_load_intr",      KSTAT_DATA_UINT64 },
 249         { "wait_ticks_io",      KSTAT_DATA_UINT64 },
 250         { "dtrace_probes",      KSTAT_DATA_UINT64 },
 251         { "bread",              KSTAT_DATA_UINT64 },
 252         { "bwrite",             KSTAT_DATA_UINT64 },
 253         { "lread",              KSTAT_DATA_UINT64 },
 254         { "lwrite",             KSTAT_DATA_UINT64 },
 255         { "phread",             KSTAT_DATA_UINT64 },
 256         { "phwrite",            KSTAT_DATA_UINT64 },
 257         { "pswitch",            KSTAT_DATA_UINT64 },
 258         { "trap",               KSTAT_DATA_UINT64 },
 259         { "intr",               KSTAT_DATA_UINT64 },
 260         { "syscall",            KSTAT_DATA_UINT64 },
 261         { "sysread",            KSTAT_DATA_UINT64 },
 262         { "syswrite",           KSTAT_DATA_UINT64 },
 263         { "sysfork",            KSTAT_DATA_UINT64 },
 264         { "sysvfork",           KSTAT_DATA_UINT64 },
 265         { "sysexec",            KSTAT_DATA_UINT64 },
 266         { "readch",             KSTAT_DATA_UINT64 },
 267         { "writech",            KSTAT_DATA_UINT64 },
 268         { "rcvint",             KSTAT_DATA_UINT64 },
 269         { "xmtint",             KSTAT_DATA_UINT64 },
 270         { "mdmint",             KSTAT_DATA_UINT64 },
 271         { "rawch",              KSTAT_DATA_UINT64 },
 272         { "canch",              KSTAT_DATA_UINT64 },
 273         { "outch",              KSTAT_DATA_UINT64 },
 274         { "msg",                KSTAT_DATA_UINT64 },
 275         { "sema",               KSTAT_DATA_UINT64 },
 276         { "namei",              KSTAT_DATA_UINT64 },
 277         { "ufsiget",            KSTAT_DATA_UINT64 },
 278         { "ufsdirblk",          KSTAT_DATA_UINT64 },
 279         { "ufsipage",           KSTAT_DATA_UINT64 },
 280         { "ufsinopage",         KSTAT_DATA_UINT64 },
 281         { "procovf",            KSTAT_DATA_UINT64 },
 282         { "intrthread",         KSTAT_DATA_UINT64 },
 283         { "intrblk",            KSTAT_DATA_UINT64 },
 284         { "intrunpin",          KSTAT_DATA_UINT64 },
 285         { "idlethread",         KSTAT_DATA_UINT64 },
 286         { "inv_swtch",          KSTAT_DATA_UINT64 },
 287         { "nthreads",           KSTAT_DATA_UINT64 },
 288         { "cpumigrate",         KSTAT_DATA_UINT64 },
 289         { "xcalls",             KSTAT_DATA_UINT64 },
 290         { "mutex_adenters",     KSTAT_DATA_UINT64 },
 291         { "rw_rdfails",         KSTAT_DATA_UINT64 },
 292         { "rw_wrfails",         KSTAT_DATA_UINT64 },
 293         { "modload",            KSTAT_DATA_UINT64 },
 294         { "modunload",          KSTAT_DATA_UINT64 },
 295         { "bawrite",            KSTAT_DATA_UINT64 },
 296         { "iowait",             KSTAT_DATA_UINT64 },
 297 };
 298 
 299 static struct cpu_vm_stats_ks_data {
 300         kstat_named_t pgrec;
 301         kstat_named_t pgfrec;
 302         kstat_named_t pgin;
 303         kstat_named_t pgpgin;
 304         kstat_named_t pgout;
 305         kstat_named_t pgpgout;
 306         kstat_named_t swapin;
 307         kstat_named_t pgswapin;
 308         kstat_named_t swapout;
 309         kstat_named_t pgswapout;
 310         kstat_named_t zfod;
 311         kstat_named_t dfree;
 312         kstat_named_t scan;
 313         kstat_named_t rev;
 314         kstat_named_t hat_fault;
 315         kstat_named_t as_fault;
 316         kstat_named_t maj_fault;
 317         kstat_named_t cow_fault;
 318         kstat_named_t prot_fault;
 319         kstat_named_t softlock;
 320         kstat_named_t kernel_asflt;
 321         kstat_named_t pgrrun;
 322         kstat_named_t execpgin;
 323         kstat_named_t execpgout;
 324         kstat_named_t execfree;
 325         kstat_named_t anonpgin;
 326         kstat_named_t anonpgout;
 327         kstat_named_t anonfree;
 328         kstat_named_t fspgin;
 329         kstat_named_t fspgout;
 330         kstat_named_t fsfree;
 331 } cpu_vm_stats_ks_data_template = {
 332         { "pgrec",              KSTAT_DATA_UINT64 },
 333         { "pgfrec",             KSTAT_DATA_UINT64 },
 334         { "pgin",               KSTAT_DATA_UINT64 },
 335         { "pgpgin",             KSTAT_DATA_UINT64 },
 336         { "pgout",              KSTAT_DATA_UINT64 },
 337         { "pgpgout",            KSTAT_DATA_UINT64 },
 338         { "swapin",             KSTAT_DATA_UINT64 },
 339         { "pgswapin",           KSTAT_DATA_UINT64 },
 340         { "swapout",            KSTAT_DATA_UINT64 },
 341         { "pgswapout",          KSTAT_DATA_UINT64 },
 342         { "zfod",               KSTAT_DATA_UINT64 },
 343         { "dfree",              KSTAT_DATA_UINT64 },
 344         { "scan",               KSTAT_DATA_UINT64 },
 345         { "rev",                KSTAT_DATA_UINT64 },
 346         { "hat_fault",          KSTAT_DATA_UINT64 },
 347         { "as_fault",           KSTAT_DATA_UINT64 },
 348         { "maj_fault",          KSTAT_DATA_UINT64 },
 349         { "cow_fault",          KSTAT_DATA_UINT64 },
 350         { "prot_fault",         KSTAT_DATA_UINT64 },
 351         { "softlock",           KSTAT_DATA_UINT64 },
 352         { "kernel_asflt",       KSTAT_DATA_UINT64 },
 353         { "pgrrun",             KSTAT_DATA_UINT64 },
 354         { "execpgin",           KSTAT_DATA_UINT64 },
 355         { "execpgout",          KSTAT_DATA_UINT64 },
 356         { "execfree",           KSTAT_DATA_UINT64 },
 357         { "anonpgin",           KSTAT_DATA_UINT64 },
 358         { "anonpgout",          KSTAT_DATA_UINT64 },
 359         { "anonfree",           KSTAT_DATA_UINT64 },
 360         { "fspgin",             KSTAT_DATA_UINT64 },
 361         { "fspgout",            KSTAT_DATA_UINT64 },
 362         { "fsfree",             KSTAT_DATA_UINT64 },
 363 };
 364 
 365 /*
 366  * Force the specified thread to migrate to the appropriate processor.
 367  * Called with thread lock held, returns with it dropped.
 368  */
 369 static void
 370 force_thread_migrate(kthread_id_t tp)
 371 {
 372         ASSERT(THREAD_LOCK_HELD(tp));
 373         if (tp == curthread) {
 374                 THREAD_TRANSITION(tp);
 375                 CL_SETRUN(tp);
 376                 thread_unlock_nopreempt(tp);
 377                 swtch();
 378         } else {
 379                 if (tp->t_state == TS_ONPROC) {
 380                         cpu_surrender(tp);
 381                 } else if (tp->t_state == TS_RUN) {
 382                         (void) dispdeq(tp);
 383                         setbackdq(tp);
 384                 }
 385                 thread_unlock(tp);
 386         }
 387 }
 388 
 389 /*
 390  * Set affinity for a specified CPU.
 391  *
 392  * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for
 393  * curthread, will set affinity to the CPU on which the thread is currently
 394  * running.  For other cpu_id values, the caller must ensure that the
 395  * referenced CPU remains valid, which can be done by holding cpu_lock across
 396  * this call.
 397  *
 398  * CPU affinity is guaranteed after return of thread_affinity_set().  If a
 399  * caller setting affinity to CPU_CURRENT requires that its thread not migrate
 400  * CPUs prior to a successful return, it should take extra precautions (such as
 401  * their own call to kpreempt_disable) to ensure that safety.
 402  *
 403  * CPU_BEST can be used to pick a "best" CPU to migrate to, including
 404  * potentially the current CPU.
 405  *
 406  * A CPU affinity reference count is maintained by thread_affinity_set and
 407  * thread_affinity_clear (incrementing and decrementing it, respectively),
 408  * maintaining CPU affinity while the count is non-zero, and allowing regions
 409  * of code which require affinity to be nested.
 410  */
 411 void
 412 thread_affinity_set(kthread_id_t t, int cpu_id)
 413 {
 414         cpu_t *cp;
 415 
 416         ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
 417 
 418         if (cpu_id == CPU_CURRENT) {
 419                 VERIFY3P(t, ==, curthread);
 420                 kpreempt_disable();
 421                 cp = CPU;
 422         } else if (cpu_id == CPU_BEST) {
 423                 VERIFY3P(t, ==, curthread);
 424                 kpreempt_disable();
 425                 cp = disp_choose_best_cpu();
 426         } else {
 427                 /*
 428                  * We should be asserting that cpu_lock is held here, but
 429                  * the NCA code doesn't acquire it.  The following assert
 430                  * should be uncommented when the NCA code is fixed.
 431                  *
 432                  * ASSERT(MUTEX_HELD(&cpu_lock));
 433                  */
 434                 VERIFY((cpu_id >= 0) && (cpu_id < NCPU));
 435                 cp = cpu[cpu_id];
 436 
 437                 /* user must provide a good cpu_id */
 438                 VERIFY(cp != NULL);
 439         }
 440 
 441         /*
 442          * If there is already a hard affinity requested, and this affinity
 443          * conflicts with that, panic.
 444          */
 445         thread_lock(t);
 446         if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
 447                 panic("affinity_set: setting %p but already bound to %p",
 448                     (void *)cp, (void *)t->t_bound_cpu);
 449         }
 450         t->t_affinitycnt++;
 451         t->t_bound_cpu = cp;
 452 
 453         /*
 454          * Make sure we're running on the right CPU.
 455          */
 456         if (cp != t->t_cpu || t != curthread) {
 457                 ASSERT(cpu_id != CPU_CURRENT);
 458                 force_thread_migrate(t);        /* drops thread lock */
 459         } else {
 460                 thread_unlock(t);
 461         }
 462 
 463         if (cpu_id == CPU_CURRENT || cpu_id == CPU_BEST)
 464                 kpreempt_enable();
 465 }
 466 
 467 /*
 468  *      Wrapper for backward compatibility.
 469  */
 470 void
 471 affinity_set(int cpu_id)
 472 {
 473         thread_affinity_set(curthread, cpu_id);
 474 }
 475 
 476 /*
 477  * Decrement the affinity reservation count and if it becomes zero,
 478  * clear the CPU affinity for the current thread, or set it to the user's
 479  * software binding request.
 480  */
 481 void
 482 thread_affinity_clear(kthread_id_t t)
 483 {
 484         register processorid_t binding;
 485 
 486         thread_lock(t);
 487         if (--t->t_affinitycnt == 0) {
 488                 if ((binding = t->t_bind_cpu) == PBIND_NONE) {
 489                         /*
 490                          * Adjust disp_max_unbound_pri if necessary.
 491                          */
 492                         disp_adjust_unbound_pri(t);
 493                         t->t_bound_cpu = NULL;
 494                         if (t->t_cpu->cpu_part != t->t_cpupart) {
 495                                 force_thread_migrate(t);
 496                                 return;
 497                         }
 498                 } else {
 499                         t->t_bound_cpu = cpu[binding];
 500                         /*
 501                          * Make sure the thread is running on the bound CPU.
 502                          */
 503                         if (t->t_cpu != t->t_bound_cpu) {
 504                                 force_thread_migrate(t);
 505                                 return;         /* already dropped lock */
 506                         }
 507                 }
 508         }
 509         thread_unlock(t);
 510 }
 511 
 512 /*
 513  * Wrapper for backward compatibility.
 514  */
 515 void
 516 affinity_clear(void)
 517 {
 518         thread_affinity_clear(curthread);
 519 }
 520 
 521 /*
 522  * Weak cpu affinity.  Bind to the "current" cpu for short periods
 523  * of time during which the thread must not block (but may be preempted).
 524  * Use this instead of kpreempt_disable() when it is only "no migration"
 525  * rather than "no preemption" semantics that are required - disabling
 526  * preemption holds higher priority threads off of cpu and if the
 527  * operation that is protected is more than momentary this is not good
 528  * for realtime etc.
 529  *
 530  * Weakly bound threads will not prevent a cpu from being offlined -
 531  * we'll only run them on the cpu to which they are weakly bound but
 532  * (because they do not block) we'll always be able to move them on to
 533  * another cpu at offline time if we give them just a short moment to
 534  * run during which they will unbind.  To give a cpu a chance of offlining,
 535  * however, we require a barrier to weak bindings that may be raised for a
 536  * given cpu (offline/move code may set this and then wait a short time for
 537  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
 538  *
 539  * There are few restrictions on the calling context of thread_nomigrate.
 540  * The caller must not hold the thread lock.  Calls may be nested.
 541  *
 542  * After weakbinding a thread must not perform actions that may block.
 543  * In particular it must not call thread_affinity_set; calling that when
 544  * already weakbound is nonsensical anyway.
 545  *
 546  * If curthread is prevented from migrating for other reasons
 547  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
 548  * then the weak binding will succeed even if this cpu is the target of an
 549  * offline/move request.
 550  */
 551 void
 552 thread_nomigrate(void)
 553 {
 554         cpu_t *cp;
 555         kthread_id_t t = curthread;
 556 
 557 again:
 558         kpreempt_disable();
 559         cp = CPU;
 560 
 561         /*
 562          * A highlevel interrupt must not modify t_nomigrate or
 563          * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
 564          * interrupt thread cannot migrate and we can avoid the
 565          * thread_lock call below by short-circuiting here.  In either
 566          * case we can just return since no migration is possible and
 567          * the condition will persist (ie, when we test for these again
 568          * in thread_allowmigrate they can't have changed).   Migration
 569          * is also impossible if we're at or above DISP_LEVEL pil.
 570          */
 571         if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
 572             getpil() >= DISP_LEVEL) {
 573                 kpreempt_enable();
 574                 return;
 575         }
 576 
 577         /*
 578          * We must be consistent with existing weak bindings.  Since we
 579          * may be interrupted between the increment of t_nomigrate and
 580          * the store to t_weakbound_cpu below we cannot assume that
 581          * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
 582          * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
 583          * always the case.
 584          */
 585         if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
 586                 if (!panicstr)
 587                         panic("thread_nomigrate: binding to %p but already "
 588                             "bound to %p", (void *)cp,
 589                             (void *)t->t_weakbound_cpu);
 590         }
 591 
 592         /*
 593          * At this point we have preemption disabled and we don't yet hold
 594          * the thread lock.  So it's possible that somebody else could
 595          * set t_bind_cpu here and not be able to force us across to the
 596          * new cpu (since we have preemption disabled).
 597          */
 598         thread_lock(curthread);
 599 
 600         /*
 601          * If further weak bindings are being (temporarily) suppressed then
 602          * we'll settle for disabling kernel preemption (which assures
 603          * no migration provided the thread does not block which it is
 604          * not allowed to if using thread_nomigrate).  We must remember
 605          * this disposition so we can take appropriate action in
 606          * thread_allowmigrate.  If this is a nested call and the
 607          * thread is already weakbound then fall through as normal.
 608          * We remember the decision to settle for kpreempt_disable through
 609          * negative nesting counting in t_nomigrate.  Once a thread has had one
 610          * weakbinding request satisfied in this way any further (nested)
 611          * requests will continue to be satisfied in the same way,
 612          * even if weak bindings have recommenced.
 613          */
 614         if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
 615                 --t->t_nomigrate;
 616                 thread_unlock(curthread);
 617                 return;         /* with kpreempt_disable still active */
 618         }
 619 
 620         /*
 621          * We hold thread_lock so t_bind_cpu cannot change.  We could,
 622          * however, be running on a different cpu to which we are t_bound_cpu
 623          * to (as explained above).  If we grant the weak binding request
 624          * in that case then the dispatcher must favour our weak binding
 625          * over our strong (in which case, just as when preemption is
 626          * disabled, we can continue to run on a cpu other than the one to
 627          * which we are strongbound; the difference in this case is that
 628          * this thread can be preempted and so can appear on the dispatch
 629          * queues of a cpu other than the one it is strongbound to).
 630          *
 631          * If the cpu we are running on does not appear to be a current
 632          * offline target (we check cpu_inmotion to determine this - since
 633          * we don't hold cpu_lock we may not see a recent store to that,
 634          * so it's possible that we at times can grant a weak binding to a
 635          * cpu that is an offline target, but that one request will not
 636          * prevent the offline from succeeding) then we will always grant
 637          * the weak binding request.  This includes the case above where
 638          * we grant a weakbinding not commensurate with our strong binding.
 639          *
 640          * If our cpu does appear to be an offline target then we're inclined
 641          * not to grant the weakbinding request just yet - we'd prefer to
 642          * migrate to another cpu and grant the request there.  The
 643          * exceptions are those cases where going through preemption code
 644          * will not result in us changing cpu:
 645          *
 646          *      . interrupts have already bypassed this case (see above)
 647          *      . we are already weakbound to this cpu (dispatcher code will
 648          *        always return us to the weakbound cpu)
 649          *      . preemption was disabled even before we disabled it above
 650          *      . we are strongbound to this cpu (if we're strongbound to
 651          *      another and not yet running there the trip through the
 652          *      dispatcher will move us to the strongbound cpu and we
 653          *      will grant the weak binding there)
 654          */
 655         if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
 656             t->t_bound_cpu == cp) {
 657                 /*
 658                  * Don't be tempted to store to t_weakbound_cpu only on
 659                  * the first nested bind request - if we're interrupted
 660                  * after the increment of t_nomigrate and before the
 661                  * store to t_weakbound_cpu and the interrupt calls
 662                  * thread_nomigrate then the assertion in thread_allowmigrate
 663                  * would fail.
 664                  */
 665                 t->t_nomigrate++;
 666                 t->t_weakbound_cpu = cp;
 667                 membar_producer();
 668                 thread_unlock(curthread);
 669                 /*
 670                  * Now that we have dropped the thread_lock another thread
 671                  * can set our t_weakbound_cpu, and will try to migrate us
 672                  * to the strongbound cpu (which will not be prevented by
 673                  * preemption being disabled since we're about to enable
 674                  * preemption).  We have granted the weakbinding to the current
 675                  * cpu, so again we are in the position that is is is possible
 676                  * that our weak and strong bindings differ.  Again this
 677                  * is catered for by dispatcher code which will favour our
 678                  * weak binding.
 679                  */
 680                 kpreempt_enable();
 681         } else {
 682                 /*
 683                  * Move to another cpu before granting the request by
 684                  * forcing this thread through preemption code.  When we
 685                  * get to set{front,back}dq called from CL_PREEMPT()
 686                  * cpu_choose() will be used to select a cpu to queue
 687                  * us on - that will see cpu_inmotion and take
 688                  * steps to avoid returning us to this cpu.
 689                  */
 690                 cp->cpu_kprunrun = 1;
 691                 thread_unlock(curthread);
 692                 kpreempt_enable();      /* will call preempt() */
 693                 goto again;
 694         }
 695 }
 696 
 697 void
 698 thread_allowmigrate(void)
 699 {
 700         kthread_id_t t = curthread;
 701 
 702         ASSERT(t->t_weakbound_cpu == CPU ||
 703             (t->t_nomigrate < 0 && t->t_preempt > 0) ||
 704             CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
 705             getpil() >= DISP_LEVEL);
 706 
 707         if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
 708             getpil() >= DISP_LEVEL)
 709                 return;
 710 
 711         if (t->t_nomigrate < 0) {
 712                 /*
 713                  * This thread was granted "weak binding" in the
 714                  * stronger form of kernel preemption disabling.
 715                  * Undo a level of nesting for both t_nomigrate
 716                  * and t_preempt.
 717                  */
 718                 ++t->t_nomigrate;
 719                 kpreempt_enable();
 720         } else if (--t->t_nomigrate == 0) {
 721                 /*
 722                  * Time to drop the weak binding.  We need to cater
 723                  * for the case where we're weakbound to a different
 724                  * cpu than that to which we're strongbound (a very
 725                  * temporary arrangement that must only persist until
 726                  * weak binding drops).  We don't acquire thread_lock
 727                  * here so even as this code executes t_bound_cpu
 728                  * may be changing.  So we disable preemption and
 729                  * a) in the case that t_bound_cpu changes while we
 730                  * have preemption disabled kprunrun will be set
 731                  * asynchronously, and b) if before disabling
 732                  * preemption we were already on a different cpu to
 733                  * our t_bound_cpu then we set kprunrun ourselves
 734                  * to force a trip through the dispatcher when
 735                  * preemption is enabled.
 736                  */
 737                 kpreempt_disable();
 738                 if (t->t_bound_cpu &&
 739                     t->t_weakbound_cpu != t->t_bound_cpu)
 740                         CPU->cpu_kprunrun = 1;
 741                 t->t_weakbound_cpu = NULL;
 742                 membar_producer();
 743                 kpreempt_enable();
 744         }
 745 }
 746 
 747 /*
 748  * weakbinding_stop can be used to temporarily cause weakbindings made
 749  * with thread_nomigrate to be satisfied through the stronger action of
 750  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
 751  */
 752 
 753 void
 754 weakbinding_stop(void)
 755 {
 756         ASSERT(MUTEX_HELD(&cpu_lock));
 757         weakbindingbarrier = 1;
 758         membar_producer();      /* make visible before subsequent thread_lock */
 759 }
 760 
 761 void
 762 weakbinding_start(void)
 763 {
 764         ASSERT(MUTEX_HELD(&cpu_lock));
 765         weakbindingbarrier = 0;
 766 }
 767 
 768 void
 769 null_xcall(void)
 770 {
 771 }
 772 
 773 /*
 774  * This routine is called to place the CPUs in a safe place so that
 775  * one of them can be taken off line or placed on line.  What we are
 776  * trying to do here is prevent a thread from traversing the list
 777  * of active CPUs while we are changing it or from getting placed on
 778  * the run queue of a CPU that has just gone off line.  We do this by
 779  * creating a thread with the highest possible prio for each CPU and
 780  * having it call this routine.  The advantage of this method is that
 781  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
 782  * This makes disp faster at the expense of making p_online() slower
 783  * which is a good trade off.
 784  */
 785 static void
 786 cpu_pause(int index)
 787 {
 788         int s;
 789         struct _cpu_pause_info *cpi = &cpu_pause_info;
 790         volatile char *safe = &safe_list[index];
 791         long    lindex = index;
 792 
 793         ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
 794 
 795         while (*safe != PAUSE_DIE) {
 796                 *safe = PAUSE_READY;
 797                 membar_enter();         /* make sure stores are flushed */
 798                 sema_v(&cpi->cp_sem);    /* signal requesting thread */
 799 
 800                 /*
 801                  * Wait here until all pause threads are running.  That
 802                  * indicates that it's safe to do the spl.  Until
 803                  * cpu_pause_info.cp_go is set, we don't want to spl
 804                  * because that might block clock interrupts needed
 805                  * to preempt threads on other CPUs.
 806                  */
 807                 while (cpi->cp_go == 0)
 808                         ;
 809                 /*
 810                  * Even though we are at the highest disp prio, we need
 811                  * to block out all interrupts below LOCK_LEVEL so that
 812                  * an intr doesn't come in, wake up a thread, and call
 813                  * setbackdq/setfrontdq.
 814                  */
 815                 s = splhigh();
 816                 /*
 817                  * if cp_func has been set then call it using index as the
 818                  * argument, currently only used by cpr_suspend_cpus().
 819                  * This function is used as the code to execute on the
 820                  * "paused" cpu's when a machine comes out of a sleep state
 821                  * and CPU's were powered off.  (could also be used for
 822                  * hotplugging CPU's).
 823                  */
 824                 if (cpi->cp_func != NULL)
 825                         (*cpi->cp_func)((void *)lindex);
 826 
 827                 mach_cpu_pause(safe);
 828 
 829                 splx(s);
 830                 /*
 831                  * Waiting is at an end. Switch out of cpu_pause
 832                  * loop and resume useful work.
 833                  */
 834                 swtch();
 835         }
 836 
 837         mutex_enter(&pause_free_mutex);
 838         *safe = PAUSE_DEAD;
 839         cv_broadcast(&pause_free_cv);
 840         mutex_exit(&pause_free_mutex);
 841 }
 842 
 843 /*
 844  * Allow the cpus to start running again.
 845  */
 846 void
 847 start_cpus()
 848 {
 849         int i;
 850 
 851         ASSERT(MUTEX_HELD(&cpu_lock));
 852         ASSERT(cpu_pause_info.cp_paused);
 853         cpu_pause_info.cp_paused = NULL;
 854         for (i = 0; i < NCPU; i++)
 855                 safe_list[i] = PAUSE_IDLE;
 856         membar_enter();                 /* make sure stores are flushed */
 857         affinity_clear();
 858         splx(cpu_pause_info.cp_spl);
 859         kpreempt_enable();
 860 }
 861 
 862 /*
 863  * Allocate a pause thread for a CPU.
 864  */
 865 static void
 866 cpu_pause_alloc(cpu_t *cp)
 867 {
 868         kthread_id_t    t;
 869         long            cpun = cp->cpu_id;
 870 
 871         /*
 872          * Note, v.v_nglobpris will not change value as long as I hold
 873          * cpu_lock.
 874          */
 875         t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
 876             0, &p0, TS_STOPPED, v.v_nglobpris - 1);
 877         thread_lock(t);
 878         t->t_bound_cpu = cp;
 879         t->t_disp_queue = cp->cpu_disp;
 880         t->t_affinitycnt = 1;
 881         t->t_preempt = 1;
 882         thread_unlock(t);
 883         cp->cpu_pause_thread = t;
 884         /*
 885          * Registering a thread in the callback table is usually done
 886          * in the initialization code of the thread.  In this
 887          * case, we do it right after thread creation because the
 888          * thread itself may never run, and we need to register the
 889          * fact that it is safe for cpr suspend.
 890          */
 891         CALLB_CPR_INIT_SAFE(t, "cpu_pause");
 892 }
 893 
 894 /*
 895  * Free a pause thread for a CPU.
 896  */
 897 static void
 898 cpu_pause_free(cpu_t *cp)
 899 {
 900         kthread_id_t    t;
 901         int             cpun = cp->cpu_id;
 902 
 903         ASSERT(MUTEX_HELD(&cpu_lock));
 904         /*
 905          * We have to get the thread and tell it to die.
 906          */
 907         if ((t = cp->cpu_pause_thread) == NULL) {
 908                 ASSERT(safe_list[cpun] == PAUSE_IDLE);
 909                 return;
 910         }
 911         thread_lock(t);
 912         t->t_cpu = CPU;              /* disp gets upset if last cpu is quiesced. */
 913         t->t_bound_cpu = NULL;       /* Must un-bind; cpu may not be running. */
 914         t->t_pri = v.v_nglobpris - 1;
 915         ASSERT(safe_list[cpun] == PAUSE_IDLE);
 916         safe_list[cpun] = PAUSE_DIE;
 917         THREAD_TRANSITION(t);
 918         setbackdq(t);
 919         thread_unlock_nopreempt(t);
 920 
 921         /*
 922          * If we don't wait for the thread to actually die, it may try to
 923          * run on the wrong cpu as part of an actual call to pause_cpus().
 924          */
 925         mutex_enter(&pause_free_mutex);
 926         while (safe_list[cpun] != PAUSE_DEAD) {
 927                 cv_wait(&pause_free_cv, &pause_free_mutex);
 928         }
 929         mutex_exit(&pause_free_mutex);
 930         safe_list[cpun] = PAUSE_IDLE;
 931 
 932         cp->cpu_pause_thread = NULL;
 933 }
 934 
 935 /*
 936  * Initialize basic structures for pausing CPUs.
 937  */
 938 void
 939 cpu_pause_init()
 940 {
 941         sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
 942         /*
 943          * Create initial CPU pause thread.
 944          */
 945         cpu_pause_alloc(CPU);
 946 }
 947 
 948 /*
 949  * Start the threads used to pause another CPU.
 950  */
 951 static int
 952 cpu_pause_start(processorid_t cpu_id)
 953 {
 954         int     i;
 955         int     cpu_count = 0;
 956 
 957         for (i = 0; i < NCPU; i++) {
 958                 cpu_t           *cp;
 959                 kthread_id_t    t;
 960 
 961                 cp = cpu[i];
 962                 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
 963                         safe_list[i] = PAUSE_WAIT;
 964                         continue;
 965                 }
 966 
 967                 /*
 968                  * Skip CPU if it is quiesced or not yet started.
 969                  */
 970                 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
 971                         safe_list[i] = PAUSE_WAIT;
 972                         continue;
 973                 }
 974 
 975                 /*
 976                  * Start this CPU's pause thread.
 977                  */
 978                 t = cp->cpu_pause_thread;
 979                 thread_lock(t);
 980                 /*
 981                  * Reset the priority, since nglobpris may have
 982                  * changed since the thread was created, if someone
 983                  * has loaded the RT (or some other) scheduling
 984                  * class.
 985                  */
 986                 t->t_pri = v.v_nglobpris - 1;
 987                 THREAD_TRANSITION(t);
 988                 setbackdq(t);
 989                 thread_unlock_nopreempt(t);
 990                 ++cpu_count;
 991         }
 992         return (cpu_count);
 993 }
 994 
 995 
 996 /*
 997  * Pause all of the CPUs except the one we are on by creating a high
 998  * priority thread bound to those CPUs.
 999  *
1000  * Note that one must be extremely careful regarding code
1001  * executed while CPUs are paused.  Since a CPU may be paused
1002  * while a thread scheduling on that CPU is holding an adaptive
1003  * lock, code executed with CPUs paused must not acquire adaptive
1004  * (or low-level spin) locks.  Also, such code must not block,
1005  * since the thread that is supposed to initiate the wakeup may
1006  * never run.
1007  *
1008  * With a few exceptions, the restrictions on code executed with CPUs
1009  * paused match those for code executed at high-level interrupt
1010  * context.
1011  */
1012 void
1013 pause_cpus(cpu_t *off_cp, void *(*func)(void *))
1014 {
1015         processorid_t   cpu_id;
1016         int             i;
1017         struct _cpu_pause_info  *cpi = &cpu_pause_info;
1018 
1019         ASSERT(MUTEX_HELD(&cpu_lock));
1020         ASSERT(cpi->cp_paused == NULL);
1021         cpi->cp_count = 0;
1022         cpi->cp_go = 0;
1023         for (i = 0; i < NCPU; i++)
1024                 safe_list[i] = PAUSE_IDLE;
1025         kpreempt_disable();
1026 
1027         cpi->cp_func = func;
1028 
1029         /*
1030          * If running on the cpu that is going offline, get off it.
1031          * This is so that it won't be necessary to rechoose a CPU
1032          * when done.
1033          */
1034         if (CPU == off_cp)
1035                 cpu_id = off_cp->cpu_next_part->cpu_id;
1036         else
1037                 cpu_id = CPU->cpu_id;
1038         affinity_set(cpu_id);
1039 
1040         /*
1041          * Start the pause threads and record how many were started
1042          */
1043         cpi->cp_count = cpu_pause_start(cpu_id);
1044 
1045         /*
1046          * Now wait for all CPUs to be running the pause thread.
1047          */
1048         while (cpi->cp_count > 0) {
1049                 /*
1050                  * Spin reading the count without grabbing the disp
1051                  * lock to make sure we don't prevent the pause
1052                  * threads from getting the lock.
1053                  */
1054                 while (sema_held(&cpi->cp_sem))
1055                         ;
1056                 if (sema_tryp(&cpi->cp_sem))
1057                         --cpi->cp_count;
1058         }
1059         cpi->cp_go = 1;                      /* all have reached cpu_pause */
1060 
1061         /*
1062          * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1063          * to PAUSE_WAIT.)
1064          */
1065         for (i = 0; i < NCPU; i++) {
1066                 while (safe_list[i] != PAUSE_WAIT)
1067                         ;
1068         }
1069         cpi->cp_spl = splhigh();     /* block dispatcher on this CPU */
1070         cpi->cp_paused = curthread;
1071 }
1072 
1073 /*
1074  * Check whether the current thread has CPUs paused
1075  */
1076 int
1077 cpus_paused(void)
1078 {
1079         if (cpu_pause_info.cp_paused != NULL) {
1080                 ASSERT(cpu_pause_info.cp_paused == curthread);
1081                 return (1);
1082         }
1083         return (0);
1084 }
1085 
1086 static cpu_t *
1087 cpu_get_all(processorid_t cpun)
1088 {
1089         ASSERT(MUTEX_HELD(&cpu_lock));
1090 
1091         if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1092                 return (NULL);
1093         return (cpu[cpun]);
1094 }
1095 
1096 /*
1097  * Check whether cpun is a valid processor id and whether it should be
1098  * visible from the current zone. If it is, return a pointer to the
1099  * associated CPU structure.
1100  */
1101 cpu_t *
1102 cpu_get(processorid_t cpun)
1103 {
1104         cpu_t *c;
1105 
1106         ASSERT(MUTEX_HELD(&cpu_lock));
1107         c = cpu_get_all(cpun);
1108         if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1109             zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1110                 return (NULL);
1111         return (c);
1112 }
1113 
1114 /*
1115  * The following functions should be used to check CPU states in the kernel.
1116  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1117  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1118  * states.  Those are for user-land (and system call) use only.
1119  */
1120 
1121 /*
1122  * Determine whether the CPU is online and handling interrupts.
1123  */
1124 int
1125 cpu_is_online(cpu_t *cpu)
1126 {
1127         ASSERT(MUTEX_HELD(&cpu_lock));
1128         return (cpu_flagged_online(cpu->cpu_flags));
1129 }
1130 
1131 /*
1132  * Determine whether the CPU is offline (this includes spare and faulted).
1133  */
1134 int
1135 cpu_is_offline(cpu_t *cpu)
1136 {
1137         ASSERT(MUTEX_HELD(&cpu_lock));
1138         return (cpu_flagged_offline(cpu->cpu_flags));
1139 }
1140 
1141 /*
1142  * Determine whether the CPU is powered off.
1143  */
1144 int
1145 cpu_is_poweredoff(cpu_t *cpu)
1146 {
1147         ASSERT(MUTEX_HELD(&cpu_lock));
1148         return (cpu_flagged_poweredoff(cpu->cpu_flags));
1149 }
1150 
1151 /*
1152  * Determine whether the CPU is handling interrupts.
1153  */
1154 int
1155 cpu_is_nointr(cpu_t *cpu)
1156 {
1157         ASSERT(MUTEX_HELD(&cpu_lock));
1158         return (cpu_flagged_nointr(cpu->cpu_flags));
1159 }
1160 
1161 /*
1162  * Determine whether the CPU is active (scheduling threads).
1163  */
1164 int
1165 cpu_is_active(cpu_t *cpu)
1166 {
1167         ASSERT(MUTEX_HELD(&cpu_lock));
1168         return (cpu_flagged_active(cpu->cpu_flags));
1169 }
1170 
1171 /*
1172  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1173  */
1174 int
1175 cpu_flagged_online(cpu_flag_t cpu_flags)
1176 {
1177         return (cpu_flagged_active(cpu_flags) &&
1178             (cpu_flags & CPU_ENABLE));
1179 }
1180 
1181 int
1182 cpu_flagged_offline(cpu_flag_t cpu_flags)
1183 {
1184         return (((cpu_flags & CPU_POWEROFF) == 0) &&
1185             ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1186 }
1187 
1188 int
1189 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1190 {
1191         return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1192 }
1193 
1194 int
1195 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1196 {
1197         return (cpu_flagged_active(cpu_flags) &&
1198             (cpu_flags & CPU_ENABLE) == 0);
1199 }
1200 
1201 int
1202 cpu_flagged_active(cpu_flag_t cpu_flags)
1203 {
1204         return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1205             ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1206 }
1207 
1208 /*
1209  * Bring the indicated CPU online.
1210  */
1211 int
1212 cpu_online(cpu_t *cp)
1213 {
1214         int     error = 0;
1215 
1216         /*
1217          * Handle on-line request.
1218          *      This code must put the new CPU on the active list before
1219          *      starting it because it will not be paused, and will start
1220          *      using the active list immediately.  The real start occurs
1221          *      when the CPU_QUIESCED flag is turned off.
1222          */
1223 
1224         ASSERT(MUTEX_HELD(&cpu_lock));
1225 
1226         /*
1227          * Put all the cpus into a known safe place.
1228          * No mutexes can be entered while CPUs are paused.
1229          */
1230         error = mp_cpu_start(cp);       /* arch-dep hook */
1231         if (error == 0) {
1232                 pg_cpupart_in(cp, cp->cpu_part);
1233                 pause_cpus(NULL, NULL);
1234                 cpu_add_active_internal(cp);
1235                 if (cp->cpu_flags & CPU_FAULTED) {
1236                         cp->cpu_flags &= ~CPU_FAULTED;
1237                         mp_cpu_faulted_exit(cp);
1238                 }
1239                 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1240                     CPU_SPARE);
1241                 CPU_NEW_GENERATION(cp);
1242                 start_cpus();
1243                 cpu_stats_kstat_create(cp);
1244                 cpu_create_intrstat(cp);
1245                 lgrp_kstat_create(cp);
1246                 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1247                 cpu_intr_enable(cp);    /* arch-dep hook */
1248                 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1249                 cpu_set_state(cp);
1250                 cyclic_online(cp);
1251                 /*
1252                  * This has to be called only after cyclic_online(). This
1253                  * function uses cyclics.
1254                  */
1255                 callout_cpu_online(cp);
1256                 poke_cpu(cp->cpu_id);
1257         }
1258 
1259         return (error);
1260 }
1261 
1262 /*
1263  * Take the indicated CPU offline.
1264  */
1265 int
1266 cpu_offline(cpu_t *cp, int flags)
1267 {
1268         cpupart_t *pp;
1269         int     error = 0;
1270         cpu_t   *ncp;
1271         int     intr_enable;
1272         int     cyclic_off = 0;
1273         int     callout_off = 0;
1274         int     loop_count;
1275         int     no_quiesce = 0;
1276         int     (*bound_func)(struct cpu *, int);
1277         kthread_t *t;
1278         lpl_t   *cpu_lpl;
1279         proc_t  *p;
1280         int     lgrp_diff_lpl;
1281         boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1282 
1283         ASSERT(MUTEX_HELD(&cpu_lock));
1284 
1285         /*
1286          * If we're going from faulted or spare to offline, just
1287          * clear these flags and update CPU state.
1288          */
1289         if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1290                 if (cp->cpu_flags & CPU_FAULTED) {
1291                         cp->cpu_flags &= ~CPU_FAULTED;
1292                         mp_cpu_faulted_exit(cp);
1293                 }
1294                 cp->cpu_flags &= ~CPU_SPARE;
1295                 cpu_set_state(cp);
1296                 return (0);
1297         }
1298 
1299         /*
1300          * Handle off-line request.
1301          */
1302         pp = cp->cpu_part;
1303         /*
1304          * Don't offline last online CPU in partition
1305          */
1306         if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1307                 return (EBUSY);
1308         /*
1309          * Unbind all soft-bound threads bound to our CPU and hard bound threads
1310          * if we were asked to.
1311          */
1312         error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1313         if (error != 0)
1314                 return (error);
1315         /*
1316          * We shouldn't be bound to this CPU ourselves.
1317          */
1318         if (curthread->t_bound_cpu == cp)
1319                 return (EBUSY);
1320 
1321         /*
1322          * Tell interested parties that this CPU is going offline.
1323          */
1324         CPU_NEW_GENERATION(cp);
1325         cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1326 
1327         /*
1328          * Tell the PG subsystem that the CPU is leaving the partition
1329          */
1330         pg_cpupart_out(cp, pp);
1331 
1332         /*
1333          * Take the CPU out of interrupt participation so we won't find
1334          * bound kernel threads.  If the architecture cannot completely
1335          * shut off interrupts on the CPU, don't quiesce it, but don't
1336          * run anything but interrupt thread... this is indicated by
1337          * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1338          * off.
1339          */
1340         intr_enable = cp->cpu_flags & CPU_ENABLE;
1341         if (intr_enable)
1342                 no_quiesce = cpu_intr_disable(cp);
1343 
1344         /*
1345          * Record that we are aiming to offline this cpu.  This acts as
1346          * a barrier to further weak binding requests in thread_nomigrate
1347          * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1348          * lean away from this cpu.  Further strong bindings are already
1349          * avoided since we hold cpu_lock.  Since threads that are set
1350          * runnable around now and others coming off the target cpu are
1351          * directed away from the target, existing strong and weak bindings
1352          * (especially the latter) to the target cpu stand maximum chance of
1353          * being able to unbind during the short delay loop below (if other
1354          * unbound threads compete they may not see cpu in time to unbind
1355          * even if they would do so immediately.
1356          */
1357         cpu_inmotion = cp;
1358         membar_enter();
1359 
1360         /*
1361          * Check for kernel threads (strong or weak) bound to that CPU.
1362          * Strongly bound threads may not unbind, and we'll have to return
1363          * EBUSY.  Weakly bound threads should always disappear - we've
1364          * stopped more weak binding with cpu_inmotion and existing
1365          * bindings will drain imminently (they may not block).  Nonetheless
1366          * we will wait for a fixed period for all bound threads to disappear.
1367          * Inactive interrupt threads are OK (they'll be in TS_FREE
1368          * state).  If test finds some bound threads, wait a few ticks
1369          * to give short-lived threads (such as interrupts) chance to
1370          * complete.  Note that if no_quiesce is set, i.e. this cpu
1371          * is required to service interrupts, then we take the route
1372          * that permits interrupt threads to be active (or bypassed).
1373          */
1374         bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1375 
1376 again:  for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1377                 if (loop_count >= 5) {
1378                         error = EBUSY;  /* some threads still bound */
1379                         break;
1380                 }
1381 
1382                 /*
1383                  * If some threads were assigned, give them
1384                  * a chance to complete or move.
1385                  *
1386                  * This assumes that the clock_thread is not bound
1387                  * to any CPU, because the clock_thread is needed to
1388                  * do the delay(hz/100).
1389                  *
1390                  * Note: we still hold the cpu_lock while waiting for
1391                  * the next clock tick.  This is OK since it isn't
1392                  * needed for anything else except processor_bind(2),
1393                  * and system initialization.  If we drop the lock,
1394                  * we would risk another p_online disabling the last
1395                  * processor.
1396                  */
1397                 delay(hz/100);
1398         }
1399 
1400         if (error == 0 && callout_off == 0) {
1401                 callout_cpu_offline(cp);
1402                 callout_off = 1;
1403         }
1404 
1405         if (error == 0 && cyclic_off == 0) {
1406                 if (!cyclic_offline(cp)) {
1407                         /*
1408                          * We must have bound cyclics...
1409                          */
1410                         error = EBUSY;
1411                         goto out;
1412                 }
1413                 cyclic_off = 1;
1414         }
1415 
1416         /*
1417          * Call mp_cpu_stop() to perform any special operations
1418          * needed for this machine architecture to offline a CPU.
1419          */
1420         if (error == 0)
1421                 error = mp_cpu_stop(cp);        /* arch-dep hook */
1422 
1423         /*
1424          * If that all worked, take the CPU offline and decrement
1425          * ncpus_online.
1426          */
1427         if (error == 0) {
1428                 /*
1429                  * Put all the cpus into a known safe place.
1430                  * No mutexes can be entered while CPUs are paused.
1431                  */
1432                 pause_cpus(cp, NULL);
1433                 /*
1434                  * Repeat the operation, if necessary, to make sure that
1435                  * all outstanding low-level interrupts run to completion
1436                  * before we set the CPU_QUIESCED flag.  It's also possible
1437                  * that a thread has weak bound to the cpu despite our raising
1438                  * cpu_inmotion above since it may have loaded that
1439                  * value before the barrier became visible (this would have
1440                  * to be the thread that was on the target cpu at the time
1441                  * we raised the barrier).
1442                  */
1443                 if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1444                     (*bound_func)(cp, 1)) {
1445                         start_cpus();
1446                         (void) mp_cpu_start(cp);
1447                         goto again;
1448                 }
1449                 ncp = cp->cpu_next_part;
1450                 cpu_lpl = cp->cpu_lpl;
1451                 ASSERT(cpu_lpl != NULL);
1452 
1453                 /*
1454                  * Remove the CPU from the list of active CPUs.
1455                  */
1456                 cpu_remove_active(cp);
1457 
1458                 /*
1459                  * Walk the active process list and look for threads
1460                  * whose home lgroup needs to be updated, or
1461                  * the last CPU they run on is the one being offlined now.
1462                  */
1463 
1464                 ASSERT(curthread->t_cpu != cp);
1465                 for (p = practive; p != NULL; p = p->p_next) {
1466 
1467                         t = p->p_tlist;
1468 
1469                         if (t == NULL)
1470                                 continue;
1471 
1472                         lgrp_diff_lpl = 0;
1473 
1474                         do {
1475                                 ASSERT(t->t_lpl != NULL);
1476                                 /*
1477                                  * Taking last CPU in lpl offline
1478                                  * Rehome thread if it is in this lpl
1479                                  * Otherwise, update the count of how many
1480                                  * threads are in this CPU's lgroup but have
1481                                  * a different lpl.
1482                                  */
1483 
1484                                 if (cpu_lpl->lpl_ncpu == 0) {
1485                                         if (t->t_lpl == cpu_lpl)
1486                                                 lgrp_move_thread(t,
1487                                                     lgrp_choose(t,
1488                                                     t->t_cpupart), 0);
1489                                         else if (t->t_lpl->lpl_lgrpid ==
1490                                             cpu_lpl->lpl_lgrpid)
1491                                                 lgrp_diff_lpl++;
1492                                 }
1493                                 ASSERT(t->t_lpl->lpl_ncpu > 0);
1494 
1495                                 /*
1496                                  * Update CPU last ran on if it was this CPU
1497                                  */
1498                                 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1499                                         t->t_cpu = disp_lowpri_cpu(ncp, t,
1500                                             t->t_pri);
1501                                 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1502                                     t->t_weakbound_cpu == cp);
1503 
1504                                 t = t->t_forw;
1505                         } while (t != p->p_tlist);
1506 
1507                         /*
1508                          * Didn't find any threads in the same lgroup as this
1509                          * CPU with a different lpl, so remove the lgroup from
1510                          * the process lgroup bitmask.
1511                          */
1512 
1513                         if (lgrp_diff_lpl == 0)
1514                                 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1515                 }
1516 
1517                 /*
1518                  * Walk thread list looking for threads that need to be
1519                  * rehomed, since there are some threads that are not in
1520                  * their process's p_tlist.
1521                  */
1522 
1523                 t = curthread;
1524                 do {
1525                         ASSERT(t != NULL && t->t_lpl != NULL);
1526 
1527                         /*
1528                          * Rehome threads with same lpl as this CPU when this
1529                          * is the last CPU in the lpl.
1530                          */
1531 
1532                         if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1533                                 lgrp_move_thread(t,
1534                                     lgrp_choose(t, t->t_cpupart), 1);
1535 
1536                         ASSERT(t->t_lpl->lpl_ncpu > 0);
1537 
1538                         /*
1539                          * Update CPU last ran on if it was this CPU
1540                          */
1541 
1542                         if (t->t_cpu == cp && t->t_bound_cpu != cp)
1543                                 t->t_cpu = disp_lowpri_cpu(ncp, t, t->t_pri);
1544 
1545                         ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1546                             t->t_weakbound_cpu == cp);
1547                         t = t->t_next;
1548 
1549                 } while (t != curthread);
1550                 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1551                 cp->cpu_flags |= CPU_OFFLINE;
1552                 disp_cpu_inactive(cp);
1553                 if (!no_quiesce)
1554                         cp->cpu_flags |= CPU_QUIESCED;
1555                 ncpus_online--;
1556                 cpu_set_state(cp);
1557                 cpu_inmotion = NULL;
1558                 start_cpus();
1559                 cpu_stats_kstat_destroy(cp);
1560                 cpu_delete_intrstat(cp);
1561                 lgrp_kstat_destroy(cp);
1562         }
1563 
1564 out:
1565         cpu_inmotion = NULL;
1566 
1567         /*
1568          * If we failed, re-enable interrupts.
1569          * Do this even if cpu_intr_disable returned an error, because
1570          * it may have partially disabled interrupts.
1571          */
1572         if (error && intr_enable)
1573                 cpu_intr_enable(cp);
1574 
1575         /*
1576          * If we failed, but managed to offline the cyclic subsystem on this
1577          * CPU, bring it back online.
1578          */
1579         if (error && cyclic_off)
1580                 cyclic_online(cp);
1581 
1582         /*
1583          * If we failed, but managed to offline callouts on this CPU,
1584          * bring it back online.
1585          */
1586         if (error && callout_off)
1587                 callout_cpu_online(cp);
1588 
1589         /*
1590          * If we failed, tell the PG subsystem that the CPU is back
1591          */
1592         pg_cpupart_in(cp, pp);
1593 
1594         /*
1595          * If we failed, we need to notify everyone that this CPU is back on.
1596          */
1597         if (error != 0) {
1598                 CPU_NEW_GENERATION(cp);
1599                 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1600                 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1601         }
1602 
1603         return (error);
1604 }
1605 
1606 /*
1607  * Mark the indicated CPU as faulted, taking it offline.
1608  */
1609 int
1610 cpu_faulted(cpu_t *cp, int flags)
1611 {
1612         int     error = 0;
1613 
1614         ASSERT(MUTEX_HELD(&cpu_lock));
1615         ASSERT(!cpu_is_poweredoff(cp));
1616 
1617         if (cpu_is_offline(cp)) {
1618                 cp->cpu_flags &= ~CPU_SPARE;
1619                 cp->cpu_flags |= CPU_FAULTED;
1620                 mp_cpu_faulted_enter(cp);
1621                 cpu_set_state(cp);
1622                 return (0);
1623         }
1624 
1625         if ((error = cpu_offline(cp, flags)) == 0) {
1626                 cp->cpu_flags |= CPU_FAULTED;
1627                 mp_cpu_faulted_enter(cp);
1628                 cpu_set_state(cp);
1629         }
1630 
1631         return (error);
1632 }
1633 
1634 /*
1635  * Mark the indicated CPU as a spare, taking it offline.
1636  */
1637 int
1638 cpu_spare(cpu_t *cp, int flags)
1639 {
1640         int     error = 0;
1641 
1642         ASSERT(MUTEX_HELD(&cpu_lock));
1643         ASSERT(!cpu_is_poweredoff(cp));
1644 
1645         if (cpu_is_offline(cp)) {
1646                 if (cp->cpu_flags & CPU_FAULTED) {
1647                         cp->cpu_flags &= ~CPU_FAULTED;
1648                         mp_cpu_faulted_exit(cp);
1649                 }
1650                 cp->cpu_flags |= CPU_SPARE;
1651                 cpu_set_state(cp);
1652                 return (0);
1653         }
1654 
1655         if ((error = cpu_offline(cp, flags)) == 0) {
1656                 cp->cpu_flags |= CPU_SPARE;
1657                 cpu_set_state(cp);
1658         }
1659 
1660         return (error);
1661 }
1662 
1663 /*
1664  * Take the indicated CPU from poweroff to offline.
1665  */
1666 int
1667 cpu_poweron(cpu_t *cp)
1668 {
1669         int     error = ENOTSUP;
1670 
1671         ASSERT(MUTEX_HELD(&cpu_lock));
1672         ASSERT(cpu_is_poweredoff(cp));
1673 
1674         error = mp_cpu_poweron(cp);     /* arch-dep hook */
1675         if (error == 0)
1676                 cpu_set_state(cp);
1677 
1678         return (error);
1679 }
1680 
1681 /*
1682  * Take the indicated CPU from any inactive state to powered off.
1683  */
1684 int
1685 cpu_poweroff(cpu_t *cp)
1686 {
1687         int     error = ENOTSUP;
1688 
1689         ASSERT(MUTEX_HELD(&cpu_lock));
1690         ASSERT(cpu_is_offline(cp));
1691 
1692         if (!(cp->cpu_flags & CPU_QUIESCED))
1693                 return (EBUSY);         /* not completely idle */
1694 
1695         error = mp_cpu_poweroff(cp);    /* arch-dep hook */
1696         if (error == 0)
1697                 cpu_set_state(cp);
1698 
1699         return (error);
1700 }
1701 
1702 /*
1703  * Initialize the Sequential CPU id lookup table
1704  */
1705 void
1706 cpu_seq_tbl_init()
1707 {
1708         cpu_t   **tbl;
1709 
1710         tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1711         tbl[0] = CPU;
1712 
1713         cpu_seq = tbl;
1714 }
1715 
1716 /*
1717  * Initialize the CPU lists for the first CPU.
1718  */
1719 void
1720 cpu_list_init(cpu_t *cp)
1721 {
1722         cp->cpu_next = cp;
1723         cp->cpu_prev = cp;
1724         cpu_list = cp;
1725         clock_cpu_list = cp;
1726 
1727         cp->cpu_next_onln = cp;
1728         cp->cpu_prev_onln = cp;
1729         cpu_active = cp;
1730 
1731         cp->cpu_seqid = 0;
1732         CPUSET_ADD(cpu_seqid_inuse, 0);
1733 
1734         /*
1735          * Bootstrap cpu_seq using cpu_list
1736          * The cpu_seq[] table will be dynamically allocated
1737          * when kmem later becomes available (but before going MP)
1738          */
1739         cpu_seq = &cpu_list;
1740 
1741         cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1742         cp_default.cp_cpulist = cp;
1743         cp_default.cp_ncpus = 1;
1744         cp->cpu_next_part = cp;
1745         cp->cpu_prev_part = cp;
1746         cp->cpu_part = &cp_default;
1747 
1748         CPUSET_ADD(cpu_available, cp->cpu_id);
1749         CPUSET_ADD(cpu_active_set, cp->cpu_id);
1750 }
1751 
1752 /*
1753  * Insert a CPU into the list of available CPUs.
1754  */
1755 void
1756 cpu_add_unit(cpu_t *cp)
1757 {
1758         int seqid;
1759 
1760         ASSERT(MUTEX_HELD(&cpu_lock));
1761         ASSERT(cpu_list != NULL);       /* list started in cpu_list_init */
1762 
1763         lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1764 
1765         /*
1766          * Note: most users of the cpu_list will grab the
1767          * cpu_lock to insure that it isn't modified.  However,
1768          * certain users can't or won't do that.  To allow this
1769          * we pause the other cpus.  Users who walk the list
1770          * without cpu_lock, must disable kernel preemption
1771          * to insure that the list isn't modified underneath
1772          * them.  Also, any cached pointers to cpu structures
1773          * must be revalidated by checking to see if the
1774          * cpu_next pointer points to itself.  This check must
1775          * be done with the cpu_lock held or kernel preemption
1776          * disabled.  This check relies upon the fact that
1777          * old cpu structures are not free'ed or cleared after
1778          * then are removed from the cpu_list.
1779          *
1780          * Note that the clock code walks the cpu list dereferencing
1781          * the cpu_part pointer, so we need to initialize it before
1782          * adding the cpu to the list.
1783          */
1784         cp->cpu_part = &cp_default;
1785         pause_cpus(NULL, NULL);
1786         cp->cpu_next = cpu_list;
1787         cp->cpu_prev = cpu_list->cpu_prev;
1788         cpu_list->cpu_prev->cpu_next = cp;
1789         cpu_list->cpu_prev = cp;
1790         start_cpus();
1791 
1792         for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1793                 continue;
1794         CPUSET_ADD(cpu_seqid_inuse, seqid);
1795         cp->cpu_seqid = seqid;
1796 
1797         if (seqid > max_cpu_seqid_ever)
1798                 max_cpu_seqid_ever = seqid;
1799 
1800         ASSERT(ncpus < max_ncpus);
1801         ncpus++;
1802         cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1803         cpu[cp->cpu_id] = cp;
1804         CPUSET_ADD(cpu_available, cp->cpu_id);
1805         cpu_seq[cp->cpu_seqid] = cp;
1806 
1807         /*
1808          * allocate a pause thread for this CPU.
1809          */
1810         cpu_pause_alloc(cp);
1811 
1812         /*
1813          * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1814          * link them into a list of just that CPU.
1815          * This is so that disp_lowpri_cpu will work for thread_create in
1816          * pause_cpus() when called from the startup thread in a new CPU.
1817          */
1818         cp->cpu_next_onln = cp;
1819         cp->cpu_prev_onln = cp;
1820         cpu_info_kstat_create(cp);
1821         cp->cpu_next_part = cp;
1822         cp->cpu_prev_part = cp;
1823 
1824         init_cpu_mstate(cp, CMS_SYSTEM);
1825 
1826         pool_pset_mod = gethrtime();
1827 }
1828 
1829 /*
1830  * Do the opposite of cpu_add_unit().
1831  */
1832 void
1833 cpu_del_unit(int cpuid)
1834 {
1835         struct cpu      *cp, *cpnext;
1836 
1837         ASSERT(MUTEX_HELD(&cpu_lock));
1838         cp = cpu[cpuid];
1839         ASSERT(cp != NULL);
1840 
1841         ASSERT(cp->cpu_next_onln == cp);
1842         ASSERT(cp->cpu_prev_onln == cp);
1843         ASSERT(cp->cpu_next_part == cp);
1844         ASSERT(cp->cpu_prev_part == cp);
1845 
1846         /*
1847          * Tear down the CPU's physical ID cache, and update any
1848          * processor groups
1849          */
1850         pg_cpu_fini(cp, NULL);
1851         pghw_physid_destroy(cp);
1852 
1853         /*
1854          * Destroy kstat stuff.
1855          */
1856         cpu_info_kstat_destroy(cp);
1857         term_cpu_mstate(cp);
1858         /*
1859          * Free up pause thread.
1860          */
1861         cpu_pause_free(cp);
1862         CPUSET_DEL(cpu_available, cp->cpu_id);
1863         cpu[cp->cpu_id] = NULL;
1864         cpu_seq[cp->cpu_seqid] = NULL;
1865 
1866         /*
1867          * The clock thread and mutex_vector_enter cannot hold the
1868          * cpu_lock while traversing the cpu list, therefore we pause
1869          * all other threads by pausing the other cpus. These, and any
1870          * other routines holding cpu pointers while possibly sleeping
1871          * must be sure to call kpreempt_disable before processing the
1872          * list and be sure to check that the cpu has not been deleted
1873          * after any sleeps (check cp->cpu_next != NULL). We guarantee
1874          * to keep the deleted cpu structure around.
1875          *
1876          * Note that this MUST be done AFTER cpu_available
1877          * has been updated so that we don't waste time
1878          * trying to pause the cpu we're trying to delete.
1879          */
1880         pause_cpus(NULL, NULL);
1881 
1882         cpnext = cp->cpu_next;
1883         cp->cpu_prev->cpu_next = cp->cpu_next;
1884         cp->cpu_next->cpu_prev = cp->cpu_prev;
1885         if (cp == cpu_list)
1886                 cpu_list = cpnext;
1887 
1888         /*
1889          * Signals that the cpu has been deleted (see above).
1890          */
1891         cp->cpu_next = NULL;
1892         cp->cpu_prev = NULL;
1893 
1894         start_cpus();
1895 
1896         CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1897         ncpus--;
1898         lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1899 
1900         pool_pset_mod = gethrtime();
1901 }
1902 
1903 /*
1904  * Add a CPU to the list of active CPUs.
1905  *      This routine must not get any locks, because other CPUs are paused.
1906  */
1907 static void
1908 cpu_add_active_internal(cpu_t *cp)
1909 {
1910         cpupart_t       *pp = cp->cpu_part;
1911 
1912         ASSERT(MUTEX_HELD(&cpu_lock));
1913         ASSERT(cpu_list != NULL);       /* list started in cpu_list_init */
1914 
1915         ncpus_online++;
1916         cpu_set_state(cp);
1917         cp->cpu_next_onln = cpu_active;
1918         cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1919         cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1920         cpu_active->cpu_prev_onln = cp;
1921         CPUSET_ADD(cpu_active_set, cp->cpu_id);
1922 
1923         if (pp->cp_cpulist) {
1924                 cp->cpu_next_part = pp->cp_cpulist;
1925                 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1926                 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1927                 pp->cp_cpulist->cpu_prev_part = cp;
1928         } else {
1929                 ASSERT(pp->cp_ncpus == 0);
1930                 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1931         }
1932         pp->cp_ncpus++;
1933         if (pp->cp_ncpus == 1) {
1934                 cp_numparts_nonempty++;
1935                 ASSERT(cp_numparts_nonempty != 0);
1936         }
1937 
1938         pg_cpu_active(cp);
1939         lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1940 
1941         bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1942 }
1943 
1944 /*
1945  * Add a CPU to the list of active CPUs.
1946  *      This is called from machine-dependent layers when a new CPU is started.
1947  */
1948 void
1949 cpu_add_active(cpu_t *cp)
1950 {
1951         pg_cpupart_in(cp, cp->cpu_part);
1952 
1953         pause_cpus(NULL, NULL);
1954         cpu_add_active_internal(cp);
1955         start_cpus();
1956 
1957         cpu_stats_kstat_create(cp);
1958         cpu_create_intrstat(cp);
1959         lgrp_kstat_create(cp);
1960         cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1961 }
1962 
1963 
1964 /*
1965  * Remove a CPU from the list of active CPUs.
1966  *      This routine must not get any locks, because other CPUs are paused.
1967  */
1968 /* ARGSUSED */
1969 static void
1970 cpu_remove_active(cpu_t *cp)
1971 {
1972         cpupart_t       *pp = cp->cpu_part;
1973 
1974         ASSERT(MUTEX_HELD(&cpu_lock));
1975         ASSERT(cp->cpu_next_onln != cp);     /* not the last one */
1976         ASSERT(cp->cpu_prev_onln != cp);     /* not the last one */
1977 
1978         pg_cpu_inactive(cp);
1979 
1980         lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1981 
1982         if (cp == clock_cpu_list)
1983                 clock_cpu_list = cp->cpu_next_onln;
1984 
1985         cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1986         cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1987         if (cpu_active == cp) {
1988                 cpu_active = cp->cpu_next_onln;
1989         }
1990         cp->cpu_next_onln = cp;
1991         cp->cpu_prev_onln = cp;
1992         CPUSET_DEL(cpu_active_set, cp->cpu_id);
1993 
1994         cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1995         cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1996         if (pp->cp_cpulist == cp) {
1997                 pp->cp_cpulist = cp->cpu_next_part;
1998                 ASSERT(pp->cp_cpulist != cp);
1999         }
2000         cp->cpu_next_part = cp;
2001         cp->cpu_prev_part = cp;
2002         pp->cp_ncpus--;
2003         if (pp->cp_ncpus == 0) {
2004                 cp_numparts_nonempty--;
2005                 ASSERT(cp_numparts_nonempty != 0);
2006         }
2007 }
2008 
2009 /*
2010  * Routine used to setup a newly inserted CPU in preparation for starting
2011  * it running code.
2012  */
2013 int
2014 cpu_configure(int cpuid)
2015 {
2016         int retval = 0;
2017 
2018         ASSERT(MUTEX_HELD(&cpu_lock));
2019 
2020         /*
2021          * Some structures are statically allocated based upon
2022          * the maximum number of cpus the system supports.  Do not
2023          * try to add anything beyond this limit.
2024          */
2025         if (cpuid < 0 || cpuid >= NCPU) {
2026                 return (EINVAL);
2027         }
2028 
2029         if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
2030                 return (EALREADY);
2031         }
2032 
2033         if ((retval = mp_cpu_configure(cpuid)) != 0) {
2034                 return (retval);
2035         }
2036 
2037         cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2038         cpu_set_state(cpu[cpuid]);
2039         retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2040         if (retval != 0)
2041                 (void) mp_cpu_unconfigure(cpuid);
2042 
2043         return (retval);
2044 }
2045 
2046 /*
2047  * Routine used to cleanup a CPU that has been powered off.  This will
2048  * destroy all per-cpu information related to this cpu.
2049  */
2050 int
2051 cpu_unconfigure(int cpuid)
2052 {
2053         int error;
2054 
2055         ASSERT(MUTEX_HELD(&cpu_lock));
2056 
2057         if (cpu[cpuid] == NULL) {
2058                 return (ENODEV);
2059         }
2060 
2061         if (cpu[cpuid]->cpu_flags == 0) {
2062                 return (EALREADY);
2063         }
2064 
2065         if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2066                 return (EBUSY);
2067         }
2068 
2069         if (cpu[cpuid]->cpu_props != NULL) {
2070                 (void) nvlist_free(cpu[cpuid]->cpu_props);
2071                 cpu[cpuid]->cpu_props = NULL;
2072         }
2073 
2074         error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2075 
2076         if (error != 0)
2077                 return (error);
2078 
2079         return (mp_cpu_unconfigure(cpuid));
2080 }
2081 
2082 /*
2083  * Routines for registering and de-registering cpu_setup callback functions.
2084  *
2085  * Caller's context
2086  *      These routines must not be called from a driver's attach(9E) or
2087  *      detach(9E) entry point.
2088  *
2089  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2090  */
2091 
2092 /*
2093  * Ideally, these would be dynamically allocated and put into a linked
2094  * list; however that is not feasible because the registration routine
2095  * has to be available before the kmem allocator is working (in fact,
2096  * it is called by the kmem allocator init code).  In any case, there
2097  * are quite a few extra entries for future users.
2098  */
2099 #define NCPU_SETUPS     20
2100 
2101 struct cpu_setup {
2102         cpu_setup_func_t *func;
2103         void *arg;
2104 } cpu_setups[NCPU_SETUPS];
2105 
2106 void
2107 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2108 {
2109         int i;
2110 
2111         ASSERT(MUTEX_HELD(&cpu_lock));
2112 
2113         for (i = 0; i < NCPU_SETUPS; i++)
2114                 if (cpu_setups[i].func == NULL)
2115                         break;
2116         if (i >= NCPU_SETUPS)
2117                 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2118 
2119         cpu_setups[i].func = func;
2120         cpu_setups[i].arg = arg;
2121 }
2122 
2123 void
2124 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2125 {
2126         int i;
2127 
2128         ASSERT(MUTEX_HELD(&cpu_lock));
2129 
2130         for (i = 0; i < NCPU_SETUPS; i++)
2131                 if ((cpu_setups[i].func == func) &&
2132                     (cpu_setups[i].arg == arg))
2133                         break;
2134         if (i >= NCPU_SETUPS)
2135                 cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2136                     "deregister");
2137 
2138         cpu_setups[i].func = NULL;
2139         cpu_setups[i].arg = 0;
2140 }
2141 
2142 /*
2143  * Call any state change hooks for this CPU, ignore any errors.
2144  */
2145 void
2146 cpu_state_change_notify(int id, cpu_setup_t what)
2147 {
2148         int i;
2149 
2150         ASSERT(MUTEX_HELD(&cpu_lock));
2151 
2152         for (i = 0; i < NCPU_SETUPS; i++) {
2153                 if (cpu_setups[i].func != NULL) {
2154                         cpu_setups[i].func(what, id, cpu_setups[i].arg);
2155                 }
2156         }
2157 }
2158 
2159 /*
2160  * Call any state change hooks for this CPU, undo it if error found.
2161  */
2162 static int
2163 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2164 {
2165         int i;
2166         int retval = 0;
2167 
2168         ASSERT(MUTEX_HELD(&cpu_lock));
2169 
2170         for (i = 0; i < NCPU_SETUPS; i++) {
2171                 if (cpu_setups[i].func != NULL) {
2172                         retval = cpu_setups[i].func(what, id,
2173                             cpu_setups[i].arg);
2174                         if (retval) {
2175                                 for (i--; i >= 0; i--) {
2176                                         if (cpu_setups[i].func != NULL)
2177                                                 cpu_setups[i].func(undo,
2178                                                     id, cpu_setups[i].arg);
2179                                 }
2180                                 break;
2181                         }
2182                 }
2183         }
2184         return (retval);
2185 }
2186 
2187 /*
2188  * Export information about this CPU via the kstat mechanism.
2189  */
2190 static struct {
2191         kstat_named_t ci_state;
2192         kstat_named_t ci_state_begin;
2193         kstat_named_t ci_cpu_type;
2194         kstat_named_t ci_fpu_type;
2195         kstat_named_t ci_clock_MHz;
2196         kstat_named_t ci_chip_id;
2197         kstat_named_t ci_implementation;
2198         kstat_named_t ci_brandstr;
2199         kstat_named_t ci_core_id;
2200         kstat_named_t ci_curr_clock_Hz;
2201         kstat_named_t ci_supp_freq_Hz;
2202         kstat_named_t ci_pg_id;
2203 #if defined(__sparcv9)
2204         kstat_named_t ci_device_ID;
2205         kstat_named_t ci_cpu_fru;
2206 #endif
2207 #if defined(__x86)
2208         kstat_named_t ci_vendorstr;
2209         kstat_named_t ci_family;
2210         kstat_named_t ci_model;
2211         kstat_named_t ci_step;
2212         kstat_named_t ci_clogid;
2213         kstat_named_t ci_pkg_core_id;
2214         kstat_named_t ci_ncpuperchip;
2215         kstat_named_t ci_ncoreperchip;
2216         kstat_named_t ci_max_cstates;
2217         kstat_named_t ci_curr_cstate;
2218         kstat_named_t ci_cacheid;
2219         kstat_named_t ci_sktstr;
2220 #endif
2221 } cpu_info_template = {
2222         { "state",                      KSTAT_DATA_CHAR },
2223         { "state_begin",                KSTAT_DATA_LONG },
2224         { "cpu_type",                   KSTAT_DATA_CHAR },
2225         { "fpu_type",                   KSTAT_DATA_CHAR },
2226         { "clock_MHz",                  KSTAT_DATA_LONG },
2227         { "chip_id",                    KSTAT_DATA_LONG },
2228         { "implementation",             KSTAT_DATA_STRING },
2229         { "brand",                      KSTAT_DATA_STRING },
2230         { "core_id",                    KSTAT_DATA_LONG },
2231         { "current_clock_Hz",           KSTAT_DATA_UINT64 },
2232         { "supported_frequencies_Hz",   KSTAT_DATA_STRING },
2233         { "pg_id",                      KSTAT_DATA_LONG },
2234 #if defined(__sparcv9)
2235         { "device_ID",                  KSTAT_DATA_UINT64 },
2236         { "cpu_fru",                    KSTAT_DATA_STRING },
2237 #endif
2238 #if defined(__x86)
2239         { "vendor_id",                  KSTAT_DATA_STRING },
2240         { "family",                     KSTAT_DATA_INT32 },
2241         { "model",                      KSTAT_DATA_INT32 },
2242         { "stepping",                   KSTAT_DATA_INT32 },
2243         { "clog_id",                    KSTAT_DATA_INT32 },
2244         { "pkg_core_id",                KSTAT_DATA_LONG },
2245         { "ncpu_per_chip",              KSTAT_DATA_INT32 },
2246         { "ncore_per_chip",             KSTAT_DATA_INT32 },
2247         { "supported_max_cstates",      KSTAT_DATA_INT32 },
2248         { "current_cstate",             KSTAT_DATA_INT32 },
2249         { "cache_id",                   KSTAT_DATA_INT32 },
2250         { "socket_type",                KSTAT_DATA_STRING },
2251 #endif
2252 };
2253 
2254 static kmutex_t cpu_info_template_lock;
2255 
2256 static int
2257 cpu_info_kstat_update(kstat_t *ksp, int rw)
2258 {
2259         cpu_t   *cp = ksp->ks_private;
2260         const char *pi_state;
2261 
2262         if (rw == KSTAT_WRITE)
2263                 return (EACCES);
2264 
2265 #if defined(__x86)
2266         /* Is the cpu still initialising itself? */
2267         if (cpuid_checkpass(cp, 1) == 0)
2268                 return (ENXIO);
2269 #endif
2270         switch (cp->cpu_type_info.pi_state) {
2271         case P_ONLINE:
2272                 pi_state = PS_ONLINE;
2273                 break;
2274         case P_POWEROFF:
2275                 pi_state = PS_POWEROFF;
2276                 break;
2277         case P_NOINTR:
2278                 pi_state = PS_NOINTR;
2279                 break;
2280         case P_FAULTED:
2281                 pi_state = PS_FAULTED;
2282                 break;
2283         case P_SPARE:
2284                 pi_state = PS_SPARE;
2285                 break;
2286         case P_OFFLINE:
2287                 pi_state = PS_OFFLINE;
2288                 break;
2289         default:
2290                 pi_state = "unknown";
2291         }
2292         (void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2293         cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2294         (void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2295             cp->cpu_type_info.pi_processor_type, 15);
2296         (void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2297             cp->cpu_type_info.pi_fputypes, 15);
2298         cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2299         cpu_info_template.ci_chip_id.value.l =
2300             pg_plat_hw_instance_id(cp, PGHW_CHIP);
2301         kstat_named_setstr(&cpu_info_template.ci_implementation,
2302             cp->cpu_idstr);
2303         kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2304         cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2305         cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2306             cp->cpu_curr_clock;
2307         cpu_info_template.ci_pg_id.value.l =
2308             cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2309             cp->cpu_pg->cmt_lineage->pg_id : -1;
2310         kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2311             cp->cpu_supp_freqs);
2312 #if defined(__sparcv9)
2313         cpu_info_template.ci_device_ID.value.ui64 =
2314             cpunodes[cp->cpu_id].device_id;
2315         kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2316 #endif
2317 #if defined(__x86)
2318         kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2319             cpuid_getvendorstr(cp));
2320         cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2321         cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2322         cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2323         cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2324         cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2325         cpu_info_template.ci_ncoreperchip.value.l =
2326             cpuid_get_ncore_per_chip(cp);
2327         cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2328         cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2329         cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2330         cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2331         kstat_named_setstr(&cpu_info_template.ci_sktstr,
2332             cpuid_getsocketstr(cp));
2333 #endif
2334 
2335         return (0);
2336 }
2337 
2338 static void
2339 cpu_info_kstat_create(cpu_t *cp)
2340 {
2341         zoneid_t zoneid;
2342 
2343         ASSERT(MUTEX_HELD(&cpu_lock));
2344 
2345         if (pool_pset_enabled())
2346                 zoneid = GLOBAL_ZONEID;
2347         else
2348                 zoneid = ALL_ZONES;
2349         if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2350             NULL, "misc", KSTAT_TYPE_NAMED,
2351             sizeof (cpu_info_template) / sizeof (kstat_named_t),
2352             KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2353                 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2354 #if defined(__sparcv9)
2355                 cp->cpu_info_kstat->ks_data_size +=
2356                     strlen(cpu_fru_fmri(cp)) + 1;
2357 #endif
2358 #if defined(__x86)
2359                 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2360 #endif
2361                 if (cp->cpu_supp_freqs != NULL)
2362                         cp->cpu_info_kstat->ks_data_size +=
2363                             strlen(cp->cpu_supp_freqs) + 1;
2364                 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2365                 cp->cpu_info_kstat->ks_data = &cpu_info_template;
2366                 cp->cpu_info_kstat->ks_private = cp;
2367                 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2368                 kstat_install(cp->cpu_info_kstat);
2369         }
2370 }
2371 
2372 static void
2373 cpu_info_kstat_destroy(cpu_t *cp)
2374 {
2375         ASSERT(MUTEX_HELD(&cpu_lock));
2376 
2377         kstat_delete(cp->cpu_info_kstat);
2378         cp->cpu_info_kstat = NULL;
2379 }
2380 
2381 /*
2382  * Create and install kstats for the boot CPU.
2383  */
2384 void
2385 cpu_kstat_init(cpu_t *cp)
2386 {
2387         mutex_enter(&cpu_lock);
2388         cpu_info_kstat_create(cp);
2389         cpu_stats_kstat_create(cp);
2390         cpu_create_intrstat(cp);
2391         cpu_set_state(cp);
2392         mutex_exit(&cpu_lock);
2393 }
2394 
2395 /*
2396  * Make visible to the zone that subset of the cpu information that would be
2397  * initialized when a cpu is configured (but still offline).
2398  */
2399 void
2400 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2401 {
2402         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2403 
2404         ASSERT(MUTEX_HELD(&cpu_lock));
2405         ASSERT(pool_pset_enabled());
2406         ASSERT(cp != NULL);
2407 
2408         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2409                 zone->zone_ncpus++;
2410                 ASSERT(zone->zone_ncpus <= ncpus);
2411         }
2412         if (cp->cpu_info_kstat != NULL)
2413                 kstat_zone_add(cp->cpu_info_kstat, zoneid);
2414 }
2415 
2416 /*
2417  * Make visible to the zone that subset of the cpu information that would be
2418  * initialized when a previously configured cpu is onlined.
2419  */
2420 void
2421 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2422 {
2423         kstat_t *ksp;
2424         char name[sizeof ("cpu_stat") + 10];    /* enough for 32-bit cpuids */
2425         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2426         processorid_t cpun;
2427 
2428         ASSERT(MUTEX_HELD(&cpu_lock));
2429         ASSERT(pool_pset_enabled());
2430         ASSERT(cp != NULL);
2431         ASSERT(cpu_is_active(cp));
2432 
2433         cpun = cp->cpu_id;
2434         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2435                 zone->zone_ncpus_online++;
2436                 ASSERT(zone->zone_ncpus_online <= ncpus_online);
2437         }
2438         (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2439         if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2440             != NULL) {
2441                 kstat_zone_add(ksp, zoneid);
2442                 kstat_rele(ksp);
2443         }
2444         if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2445                 kstat_zone_add(ksp, zoneid);
2446                 kstat_rele(ksp);
2447         }
2448         if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2449                 kstat_zone_add(ksp, zoneid);
2450                 kstat_rele(ksp);
2451         }
2452         if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2453             NULL) {
2454                 kstat_zone_add(ksp, zoneid);
2455                 kstat_rele(ksp);
2456         }
2457 }
2458 
2459 /*
2460  * Update relevant kstats such that cpu is now visible to processes
2461  * executing in specified zone.
2462  */
2463 void
2464 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2465 {
2466         cpu_visibility_configure(cp, zone);
2467         if (cpu_is_active(cp))
2468                 cpu_visibility_online(cp, zone);
2469 }
2470 
2471 /*
2472  * Make invisible to the zone that subset of the cpu information that would be
2473  * torn down when a previously offlined cpu is unconfigured.
2474  */
2475 void
2476 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2477 {
2478         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2479 
2480         ASSERT(MUTEX_HELD(&cpu_lock));
2481         ASSERT(pool_pset_enabled());
2482         ASSERT(cp != NULL);
2483 
2484         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2485                 ASSERT(zone->zone_ncpus != 0);
2486                 zone->zone_ncpus--;
2487         }
2488         if (cp->cpu_info_kstat)
2489                 kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2490 }
2491 
2492 /*
2493  * Make invisible to the zone that subset of the cpu information that would be
2494  * torn down when a cpu is offlined (but still configured).
2495  */
2496 void
2497 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2498 {
2499         kstat_t *ksp;
2500         char name[sizeof ("cpu_stat") + 10];    /* enough for 32-bit cpuids */
2501         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2502         processorid_t cpun;
2503 
2504         ASSERT(MUTEX_HELD(&cpu_lock));
2505         ASSERT(pool_pset_enabled());
2506         ASSERT(cp != NULL);
2507         ASSERT(cpu_is_active(cp));
2508 
2509         cpun = cp->cpu_id;
2510         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2511                 ASSERT(zone->zone_ncpus_online != 0);
2512                 zone->zone_ncpus_online--;
2513         }
2514 
2515         if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2516             NULL) {
2517                 kstat_zone_remove(ksp, zoneid);
2518                 kstat_rele(ksp);
2519         }
2520         if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2521                 kstat_zone_remove(ksp, zoneid);
2522                 kstat_rele(ksp);
2523         }
2524         if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2525                 kstat_zone_remove(ksp, zoneid);
2526                 kstat_rele(ksp);
2527         }
2528         (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2529         if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2530             != NULL) {
2531                 kstat_zone_remove(ksp, zoneid);
2532                 kstat_rele(ksp);
2533         }
2534 }
2535 
2536 /*
2537  * Update relevant kstats such that cpu is no longer visible to processes
2538  * executing in specified zone.
2539  */
2540 void
2541 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2542 {
2543         if (cpu_is_active(cp))
2544                 cpu_visibility_offline(cp, zone);
2545         cpu_visibility_unconfigure(cp, zone);
2546 }
2547 
2548 /*
2549  * Bind a thread to a CPU as requested.
2550  */
2551 int
2552 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2553     int *error)
2554 {
2555         processorid_t   binding;
2556         cpu_t           *cp = NULL;
2557 
2558         ASSERT(MUTEX_HELD(&cpu_lock));
2559         ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2560 
2561         thread_lock(tp);
2562 
2563         /*
2564          * Record old binding, but change the obind, which was initialized
2565          * to PBIND_NONE, only if this thread has a binding.  This avoids
2566          * reporting PBIND_NONE for a process when some LWPs are bound.
2567          */
2568         binding = tp->t_bind_cpu;
2569         if (binding != PBIND_NONE)
2570                 *obind = binding;       /* record old binding */
2571 
2572         switch (bind) {
2573         case PBIND_QUERY:
2574                 /* Just return the old binding */
2575                 thread_unlock(tp);
2576                 return (0);
2577 
2578         case PBIND_QUERY_TYPE:
2579                 /* Return the binding type */
2580                 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2581                 thread_unlock(tp);
2582                 return (0);
2583 
2584         case PBIND_SOFT:
2585                 /*
2586                  *  Set soft binding for this thread and return the actual
2587                  *  binding
2588                  */
2589                 TB_CPU_SOFT_SET(tp);
2590                 thread_unlock(tp);
2591                 return (0);
2592 
2593         case PBIND_HARD:
2594                 /*
2595                  *  Set hard binding for this thread and return the actual
2596                  *  binding
2597                  */
2598                 TB_CPU_HARD_SET(tp);
2599                 thread_unlock(tp);
2600                 return (0);
2601 
2602         default:
2603                 break;
2604         }
2605 
2606         /*
2607          * If this thread/LWP cannot be bound because of permission
2608          * problems, just note that and return success so that the
2609          * other threads/LWPs will be bound.  This is the way
2610          * processor_bind() is defined to work.
2611          *
2612          * Binding will get EPERM if the thread is of system class
2613          * or hasprocperm() fails.
2614          */
2615         if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2616                 *error = EPERM;
2617                 thread_unlock(tp);
2618                 return (0);
2619         }
2620 
2621         binding = bind;
2622         if (binding != PBIND_NONE) {
2623                 cp = cpu_get((processorid_t)binding);
2624                 /*
2625                  * Make sure binding is valid and is in right partition.
2626                  */
2627                 if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2628                         *error = EINVAL;
2629                         thread_unlock(tp);
2630                         return (0);
2631                 }
2632         }
2633         tp->t_bind_cpu = binding;    /* set new binding */
2634 
2635         /*
2636          * If there is no system-set reason for affinity, set
2637          * the t_bound_cpu field to reflect the binding.
2638          */
2639         if (tp->t_affinitycnt == 0) {
2640                 if (binding == PBIND_NONE) {
2641                         /*
2642                          * We may need to adjust disp_max_unbound_pri
2643                          * since we're becoming unbound.
2644                          */
2645                         disp_adjust_unbound_pri(tp);
2646 
2647                         tp->t_bound_cpu = NULL;      /* set new binding */
2648 
2649                         /*
2650                          * Move thread to lgroup with strongest affinity
2651                          * after unbinding
2652                          */
2653                         if (tp->t_lgrp_affinity)
2654                                 lgrp_move_thread(tp,
2655                                     lgrp_choose(tp, tp->t_cpupart), 1);
2656 
2657                         if (tp->t_state == TS_ONPROC &&
2658                             tp->t_cpu->cpu_part != tp->t_cpupart)
2659                                 cpu_surrender(tp);
2660                 } else {
2661                         lpl_t   *lpl;
2662 
2663                         tp->t_bound_cpu = cp;
2664                         ASSERT(cp->cpu_lpl != NULL);
2665 
2666                         /*
2667                          * Set home to lgroup with most affinity containing CPU
2668                          * that thread is being bound or minimum bounding
2669                          * lgroup if no affinities set
2670                          */
2671                         if (tp->t_lgrp_affinity)
2672                                 lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2673                                     LGRP_NONE, B_FALSE);
2674                         else
2675                                 lpl = cp->cpu_lpl;
2676 
2677                         if (tp->t_lpl != lpl) {
2678                                 /* can't grab cpu_lock */
2679                                 lgrp_move_thread(tp, lpl, 1);
2680                         }
2681 
2682                         /*
2683                          * Make the thread switch to the bound CPU.
2684                          * If the thread is runnable, we need to
2685                          * requeue it even if t_cpu is already set
2686                          * to the right CPU, since it may be on a
2687                          * kpreempt queue and need to move to a local
2688                          * queue.  We could check t_disp_queue to
2689                          * avoid unnecessary overhead if it's already
2690                          * on the right queue, but since this isn't
2691                          * a performance-critical operation it doesn't
2692                          * seem worth the extra code and complexity.
2693                          *
2694                          * If the thread is weakbound to the cpu then it will
2695                          * resist the new binding request until the weak
2696                          * binding drops.  The cpu_surrender or requeueing
2697                          * below could be skipped in such cases (since it
2698                          * will have no effect), but that would require
2699                          * thread_allowmigrate to acquire thread_lock so
2700                          * we'll take the very occasional hit here instead.
2701                          */
2702                         if (tp->t_state == TS_ONPROC) {
2703                                 cpu_surrender(tp);
2704                         } else if (tp->t_state == TS_RUN) {
2705                                 cpu_t *ocp = tp->t_cpu;
2706 
2707                                 (void) dispdeq(tp);
2708                                 setbackdq(tp);
2709                                 /*
2710                                  * Either on the bound CPU's disp queue now,
2711                                  * or swapped out or on the swap queue.
2712                                  */
2713                                 ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2714                                     tp->t_weakbound_cpu == ocp ||
2715                                     (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2716                                     != TS_LOAD);
2717                         }
2718                 }
2719         }
2720 
2721         /*
2722          * Our binding has changed; set TP_CHANGEBIND.
2723          */
2724         tp->t_proc_flag |= TP_CHANGEBIND;
2725         aston(tp);
2726 
2727         thread_unlock(tp);
2728 
2729         return (0);
2730 }
2731 
2732 
2733 cpuset_t *
2734 cpuset_alloc(int kmflags)
2735 {
2736         return (kmem_alloc(sizeof (cpuset_t), kmflags));
2737 }
2738 
2739 void
2740 cpuset_free(cpuset_t *s)
2741 {
2742         kmem_free(s, sizeof (cpuset_t));
2743 }
2744 
2745 void
2746 cpuset_all(cpuset_t *s)
2747 {
2748         int i;
2749 
2750         for (i = 0; i < CPUSET_WORDS; i++)
2751                 s->cpub[i] = ~0UL;
2752 }
2753 
2754 void
2755 cpuset_all_but(cpuset_t *s, const uint_t cpu)
2756 {
2757         cpuset_all(s);
2758         CPUSET_DEL(*s, cpu);
2759 }
2760 
2761 void
2762 cpuset_only(cpuset_t *s, const uint_t cpu)
2763 {
2764         CPUSET_ZERO(*s);
2765         CPUSET_ADD(*s, cpu);
2766 }
2767 
2768 long
2769 cpu_in_set(const cpuset_t *s, const uint_t cpu)
2770 {
2771         VERIFY(cpu < NCPU);
2772         return (BT_TEST(s->cpub, cpu));
2773 }
2774 
2775 void
2776 cpuset_add(cpuset_t *s, const uint_t cpu)
2777 {
2778         VERIFY(cpu < NCPU);
2779         BT_SET(s->cpub, cpu);
2780 }
2781 
2782 void
2783 cpuset_del(cpuset_t *s, const uint_t cpu)
2784 {
2785         VERIFY(cpu < NCPU);
2786         BT_CLEAR(s->cpub, cpu);
2787 }
2788 
2789 int
2790 cpuset_isnull(const cpuset_t *s)
2791 {
2792         int i;
2793 
2794         for (i = 0; i < CPUSET_WORDS; i++) {
2795                 if (s->cpub[i] != 0)
2796                         return (0);
2797         }
2798         return (1);
2799 }
2800 
2801 int
2802 cpuset_isequal(const cpuset_t *s1, const cpuset_t *s2)
2803 {
2804         int i;
2805 
2806         for (i = 0; i < CPUSET_WORDS; i++) {
2807                 if (s1->cpub[i] != s2->cpub[i])
2808                         return (0);
2809         }
2810         return (1);
2811 }
2812 
2813 uint_t
2814 cpuset_find(const cpuset_t *s)
2815 {
2816 
2817         uint_t  i;
2818         uint_t  cpu = (uint_t)-1;
2819 
2820         /*
2821          * Find a cpu in the cpuset
2822          */
2823         for (i = 0; i < CPUSET_WORDS; i++) {
2824                 cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2825                 if (cpu != (uint_t)-1) {
2826                         cpu += i * BT_NBIPUL;
2827                         break;
2828                 }
2829         }
2830         return (cpu);
2831 }
2832 
2833 void
2834 cpuset_bounds(const cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2835 {
2836         int     i, j;
2837         uint_t  bit;
2838 
2839         /*
2840          * First, find the smallest cpu id in the set.
2841          */
2842         for (i = 0; i < CPUSET_WORDS; i++) {
2843                 if (s->cpub[i] != 0) {
2844                         bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2845                         ASSERT(bit != (uint_t)-1);
2846                         *smallestid = bit + (i * BT_NBIPUL);
2847 
2848                         /*
2849                          * Now find the largest cpu id in
2850                          * the set and return immediately.
2851                          * Done in an inner loop to avoid
2852                          * having to break out of the first
2853                          * loop.
2854                          */
2855                         for (j = CPUSET_WORDS - 1; j >= i; j--) {
2856                                 if (s->cpub[j] != 0) {
2857                                         bit = (uint_t)(highbit(s->cpub[j]) - 1);
2858                                         ASSERT(bit != (uint_t)-1);
2859                                         *largestid = bit + (j * BT_NBIPUL);
2860                                         ASSERT(*largestid >= *smallestid);
2861                                         return;
2862                                 }
2863                         }
2864 
2865                         /*
2866                          * If this code is reached, a
2867                          * smallestid was found, but not a
2868                          * largestid. The cpuset must have
2869                          * been changed during the course
2870                          * of this function call.
2871                          */
2872                         ASSERT(0);
2873                 }
2874         }
2875         *smallestid = *largestid = CPUSET_NOTINSET;
2876 }
2877 
2878 void
2879 cpuset_atomic_del(cpuset_t *s, const uint_t cpu)
2880 {
2881         VERIFY(cpu < NCPU);
2882         BT_ATOMIC_CLEAR(s->cpub, (cpu))
2883 }
2884 
2885 void
2886 cpuset_atomic_add(cpuset_t *s, const uint_t cpu)
2887 {
2888         VERIFY(cpu < NCPU);
2889         BT_ATOMIC_SET(s->cpub, (cpu))
2890 }
2891 
2892 long
2893 cpuset_atomic_xadd(cpuset_t *s, const uint_t cpu)
2894 {
2895         long res;
2896 
2897         VERIFY(cpu < NCPU);
2898         BT_ATOMIC_SET_EXCL(s->cpub, cpu, res);
2899         return (res);
2900 }
2901 
2902 long
2903 cpuset_atomic_xdel(cpuset_t *s, const uint_t cpu)
2904 {
2905         long res;
2906 
2907         VERIFY(cpu < NCPU);
2908         BT_ATOMIC_CLEAR_EXCL(s->cpub, cpu, res);
2909         return (res);
2910 }
2911 
2912 void
2913 cpuset_or(cpuset_t *dst, cpuset_t *src)
2914 {
2915         for (int i = 0; i < CPUSET_WORDS; i++) {
2916                 dst->cpub[i] |= src->cpub[i];
2917         }
2918 }
2919 
2920 void
2921 cpuset_xor(cpuset_t *dst, cpuset_t *src)
2922 {
2923         for (int i = 0; i < CPUSET_WORDS; i++) {
2924                 dst->cpub[i] ^= src->cpub[i];
2925         }
2926 }
2927 
2928 void
2929 cpuset_and(cpuset_t *dst, cpuset_t *src)
2930 {
2931         for (int i = 0; i < CPUSET_WORDS; i++) {
2932                 dst->cpub[i] &= src->cpub[i];
2933         }
2934 }
2935 
2936 void
2937 cpuset_zero(cpuset_t *dst)
2938 {
2939         for (int i = 0; i < CPUSET_WORDS; i++) {
2940                 dst->cpub[i] = 0;
2941         }
2942 }
2943 
2944 
2945 /*
2946  * Unbind threads bound to specified CPU.
2947  *
2948  * If `unbind_all_threads' is true, unbind all user threads bound to a given
2949  * CPU. Otherwise unbind all soft-bound user threads.
2950  */
2951 int
2952 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2953 {
2954         processorid_t obind;
2955         kthread_t *tp;
2956         int ret = 0;
2957         proc_t *pp;
2958         int err, berr = 0;
2959 
2960         ASSERT(MUTEX_HELD(&cpu_lock));
2961 
2962         mutex_enter(&pidlock);
2963         for (pp = practive; pp != NULL; pp = pp->p_next) {
2964                 mutex_enter(&pp->p_lock);
2965                 tp = pp->p_tlist;
2966                 /*
2967                  * Skip zombies, kernel processes, and processes in
2968                  * other zones, if called from a non-global zone.
2969                  */
2970                 if (tp == NULL || (pp->p_flag & SSYS) ||
2971                     !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2972                         mutex_exit(&pp->p_lock);
2973                         continue;
2974                 }
2975                 do {
2976                         if (tp->t_bind_cpu != cpu)
2977                                 continue;
2978                         /*
2979                          * Skip threads with hard binding when
2980                          * `unbind_all_threads' is not specified.
2981                          */
2982                         if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2983                                 continue;
2984                         err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2985                         if (ret == 0)
2986                                 ret = err;
2987                 } while ((tp = tp->t_forw) != pp->p_tlist);
2988                 mutex_exit(&pp->p_lock);
2989         }
2990         mutex_exit(&pidlock);
2991         if (ret == 0)
2992                 ret = berr;
2993         return (ret);
2994 }
2995 
2996 
2997 /*
2998  * Destroy all remaining bound threads on a cpu.
2999  */
3000 void
3001 cpu_destroy_bound_threads(cpu_t *cp)
3002 {
3003         extern id_t syscid;
3004         register kthread_id_t   t, tlist, tnext;
3005 
3006         /*
3007          * Destroy all remaining bound threads on the cpu.  This
3008          * should include both the interrupt threads and the idle thread.
3009          * This requires some care, since we need to traverse the
3010          * thread list with the pidlock mutex locked, but thread_free
3011          * also locks the pidlock mutex.  So, we collect the threads
3012          * we're going to reap in a list headed by "tlist", then we
3013          * unlock the pidlock mutex and traverse the tlist list,
3014          * doing thread_free's on the thread's.  Simple, n'est pas?
3015          * Also, this depends on thread_free not mucking with the
3016          * t_next and t_prev links of the thread.
3017          */
3018 
3019         if ((t = curthread) != NULL) {
3020 
3021                 tlist = NULL;
3022                 mutex_enter(&pidlock);
3023                 do {
3024                         tnext = t->t_next;
3025                         if (t->t_bound_cpu == cp) {
3026 
3027                                 /*
3028                                  * We've found a bound thread, carefully unlink
3029                                  * it out of the thread list, and add it to
3030                                  * our "tlist".  We "know" we don't have to
3031                                  * worry about unlinking curthread (the thread
3032                                  * that is executing this code).
3033                                  */
3034                                 t->t_next->t_prev = t->t_prev;
3035                                 t->t_prev->t_next = t->t_next;
3036                                 t->t_next = tlist;
3037                                 tlist = t;
3038                                 ASSERT(t->t_cid == syscid);
3039                                 /* wake up anyone blocked in thread_join */
3040                                 cv_broadcast(&t->t_joincv);
3041                                 /*
3042                                  * t_lwp set by interrupt threads and not
3043                                  * cleared.
3044                                  */
3045                                 t->t_lwp = NULL;
3046                                 /*
3047                                  * Pause and idle threads always have
3048                                  * t_state set to TS_ONPROC.
3049                                  */
3050                                 t->t_state = TS_FREE;
3051                                 t->t_prev = NULL;    /* Just in case */
3052                         }
3053 
3054                 } while ((t = tnext) != curthread);
3055 
3056                 mutex_exit(&pidlock);
3057 
3058                 mutex_sync();
3059                 for (t = tlist; t != NULL; t = tnext) {
3060                         tnext = t->t_next;
3061                         thread_free(t);
3062                 }
3063         }
3064 }
3065 
3066 /*
3067  * Update the cpu_supp_freqs of this cpu. This information is returned
3068  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
3069  * maintain the kstat data size.
3070  */
3071 void
3072 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
3073 {
3074         char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
3075         const char *lfreqs = clkstr;
3076         boolean_t kstat_exists = B_FALSE;
3077         kstat_t *ksp;
3078         size_t len;
3079 
3080         /*
3081          * A NULL pointer means we only support one speed.
3082          */
3083         if (freqs == NULL)
3084                 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
3085                     cp->cpu_curr_clock);
3086         else
3087                 lfreqs = freqs;
3088 
3089         /*
3090          * Make sure the frequency doesn't change while a snapshot is
3091          * going on. Of course, we only need to worry about this if
3092          * the kstat exists.
3093          */
3094         if ((ksp = cp->cpu_info_kstat) != NULL) {
3095                 mutex_enter(ksp->ks_lock);
3096                 kstat_exists = B_TRUE;
3097         }
3098 
3099         /*
3100          * Free any previously allocated string and if the kstat
3101          * already exists, then update its data size.
3102          */
3103         if (cp->cpu_supp_freqs != NULL) {
3104                 len = strlen(cp->cpu_supp_freqs) + 1;
3105                 kmem_free(cp->cpu_supp_freqs, len);
3106                 if (kstat_exists)
3107                         ksp->ks_data_size -= len;
3108         }
3109 
3110         /*
3111          * Allocate the new string and set the pointer.
3112          */
3113         len = strlen(lfreqs) + 1;
3114         cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
3115         (void) strcpy(cp->cpu_supp_freqs, lfreqs);
3116 
3117         /*
3118          * If the kstat already exists then update the data size and
3119          * free the lock.
3120          */
3121         if (kstat_exists) {
3122                 ksp->ks_data_size += len;
3123                 mutex_exit(ksp->ks_lock);
3124         }
3125 }
3126 
3127 /*
3128  * Indicate the current CPU's clock freqency (in Hz).
3129  * The calling context must be such that CPU references are safe.
3130  */
3131 void
3132 cpu_set_curr_clock(uint64_t new_clk)
3133 {
3134         uint64_t old_clk;
3135 
3136         old_clk = CPU->cpu_curr_clock;
3137         CPU->cpu_curr_clock = new_clk;
3138 
3139         /*
3140          * The cpu-change-speed DTrace probe exports the frequency in Hz
3141          */
3142         DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3143             uint64_t, old_clk, uint64_t, new_clk);
3144 }
3145 
3146 /*
3147  * processor_info(2) and p_online(2) status support functions
3148  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
3149  *   for use in communicating processor state information to userland.  Kernel
3150  *   subsystems should only be using the cpu_flags value directly.  Subsystems
3151  *   modifying cpu_flags should record the state change via a call to the
3152  *   cpu_set_state().
3153  */
3154 
3155 /*
3156  * Update the pi_state of this CPU.  This function provides the CPU status for
3157  * the information returned by processor_info(2).
3158  */
3159 void
3160 cpu_set_state(cpu_t *cpu)
3161 {
3162         ASSERT(MUTEX_HELD(&cpu_lock));
3163         cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3164         cpu->cpu_state_begin = gethrestime_sec();
3165         pool_cpu_mod = gethrtime();
3166 }
3167 
3168 /*
3169  * Return offline/online/other status for the indicated CPU.  Use only for
3170  * communication with user applications; cpu_flags provides the in-kernel
3171  * interface.
3172  */
3173 int
3174 cpu_get_state(cpu_t *cpu)
3175 {
3176         ASSERT(MUTEX_HELD(&cpu_lock));
3177         if (cpu->cpu_flags & CPU_POWEROFF)
3178                 return (P_POWEROFF);
3179         else if (cpu->cpu_flags & CPU_FAULTED)
3180                 return (P_FAULTED);
3181         else if (cpu->cpu_flags & CPU_SPARE)
3182                 return (P_SPARE);
3183         else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3184                 return (P_OFFLINE);
3185         else if (cpu->cpu_flags & CPU_ENABLE)
3186                 return (P_ONLINE);
3187         else
3188                 return (P_NOINTR);
3189 }
3190 
3191 /*
3192  * Return processor_info(2) state as a string.
3193  */
3194 const char *
3195 cpu_get_state_str(cpu_t *cpu)
3196 {
3197         const char *string;
3198 
3199         switch (cpu_get_state(cpu)) {
3200         case P_ONLINE:
3201                 string = PS_ONLINE;
3202                 break;
3203         case P_POWEROFF:
3204                 string = PS_POWEROFF;
3205                 break;
3206         case P_NOINTR:
3207                 string = PS_NOINTR;
3208                 break;
3209         case P_SPARE:
3210                 string = PS_SPARE;
3211                 break;
3212         case P_FAULTED:
3213                 string = PS_FAULTED;
3214                 break;
3215         case P_OFFLINE:
3216                 string = PS_OFFLINE;
3217                 break;
3218         default:
3219                 string = "unknown";
3220                 break;
3221         }
3222         return (string);
3223 }
3224 
3225 /*
3226  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3227  * kstats, respectively.  This is done when a CPU is initialized or placed
3228  * online via p_online(2).
3229  */
3230 static void
3231 cpu_stats_kstat_create(cpu_t *cp)
3232 {
3233         int     instance = cp->cpu_id;
3234         char    *module = "cpu";
3235         char    *class = "misc";
3236         kstat_t *ksp;
3237         zoneid_t zoneid;
3238 
3239         ASSERT(MUTEX_HELD(&cpu_lock));
3240 
3241         if (pool_pset_enabled())
3242                 zoneid = GLOBAL_ZONEID;
3243         else
3244                 zoneid = ALL_ZONES;
3245         /*
3246          * Create named kstats
3247          */
3248 #define CPU_STATS_KS_CREATE(name, tsize, update_func)                    \
3249         ksp = kstat_create_zone(module, instance, (name), class,         \
3250             KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0,       \
3251             zoneid);                                                     \
3252         if (ksp != NULL) {                                               \
3253                 ksp->ks_private = cp;                                    \
3254                 ksp->ks_update = (update_func);                          \
3255                 kstat_install(ksp);                                      \
3256         } else                                                           \
3257                 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3258                     module, instance, (name));
3259 
3260         CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3261             cpu_sys_stats_ks_update);
3262         CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3263             cpu_vm_stats_ks_update);
3264 
3265         /*
3266          * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3267          */
3268         ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3269             "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3270         if (ksp != NULL) {
3271                 ksp->ks_update = cpu_stat_ks_update;
3272                 ksp->ks_private = cp;
3273                 kstat_install(ksp);
3274         }
3275 }
3276 
3277 static void
3278 cpu_stats_kstat_destroy(cpu_t *cp)
3279 {
3280         char ks_name[KSTAT_STRLEN];
3281 
3282         (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3283         kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3284 
3285         kstat_delete_byname("cpu", cp->cpu_id, "sys");
3286         kstat_delete_byname("cpu", cp->cpu_id, "vm");
3287 }
3288 
3289 static int
3290 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3291 {
3292         cpu_t *cp = (cpu_t *)ksp->ks_private;
3293         struct cpu_sys_stats_ks_data *csskd;
3294         cpu_sys_stats_t *css;
3295         hrtime_t msnsecs[NCMSTATES];
3296         int     i;
3297 
3298         if (rw == KSTAT_WRITE)
3299                 return (EACCES);
3300 
3301         csskd = ksp->ks_data;
3302         css = &cp->cpu_stats.sys;
3303 
3304         /*
3305          * Read CPU mstate, but compare with the last values we
3306          * received to make sure that the returned kstats never
3307          * decrease.
3308          */
3309 
3310         get_cpu_mstate(cp, msnsecs);
3311         if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3312                 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3313         if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3314                 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3315         if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3316                 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3317 
3318         bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3319             sizeof (cpu_sys_stats_ks_data_template));
3320 
3321         csskd->cpu_ticks_wait.value.ui64 = 0;
3322         csskd->wait_ticks_io.value.ui64 = 0;
3323 
3324         csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3325         csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3326         csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3327         csskd->cpu_ticks_idle.value.ui64 =
3328             NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3329         csskd->cpu_ticks_user.value.ui64 =
3330             NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3331         csskd->cpu_ticks_kernel.value.ui64 =
3332             NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3333         csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec;
3334         csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes;
3335         csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3336         csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3337         csskd->bread.value.ui64 = css->bread;
3338         csskd->bwrite.value.ui64 = css->bwrite;
3339         csskd->lread.value.ui64 = css->lread;
3340         csskd->lwrite.value.ui64 = css->lwrite;
3341         csskd->phread.value.ui64 = css->phread;
3342         csskd->phwrite.value.ui64 = css->phwrite;
3343         csskd->pswitch.value.ui64 = css->pswitch;
3344         csskd->trap.value.ui64 = css->trap;
3345         csskd->intr.value.ui64 = 0;
3346         for (i = 0; i < PIL_MAX; i++)
3347                 csskd->intr.value.ui64 += css->intr[i];
3348         csskd->syscall.value.ui64 = css->syscall;
3349         csskd->sysread.value.ui64 = css->sysread;
3350         csskd->syswrite.value.ui64 = css->syswrite;
3351         csskd->sysfork.value.ui64 = css->sysfork;
3352         csskd->sysvfork.value.ui64 = css->sysvfork;
3353         csskd->sysexec.value.ui64 = css->sysexec;
3354         csskd->readch.value.ui64 = css->readch;
3355         csskd->writech.value.ui64 = css->writech;
3356         csskd->rcvint.value.ui64 = css->rcvint;
3357         csskd->xmtint.value.ui64 = css->xmtint;
3358         csskd->mdmint.value.ui64 = css->mdmint;
3359         csskd->rawch.value.ui64 = css->rawch;
3360         csskd->canch.value.ui64 = css->canch;
3361         csskd->outch.value.ui64 = css->outch;
3362         csskd->msg.value.ui64 = css->msg;
3363         csskd->sema.value.ui64 = css->sema;
3364         csskd->namei.value.ui64 = css->namei;
3365         csskd->ufsiget.value.ui64 = css->ufsiget;
3366         csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3367         csskd->ufsipage.value.ui64 = css->ufsipage;
3368         csskd->ufsinopage.value.ui64 = css->ufsinopage;
3369         csskd->procovf.value.ui64 = css->procovf;
3370         csskd->intrthread.value.ui64 = 0;
3371         for (i = 0; i < LOCK_LEVEL - 1; i++)
3372                 csskd->intrthread.value.ui64 += css->intr[i];
3373         csskd->intrblk.value.ui64 = css->intrblk;
3374         csskd->intrunpin.value.ui64 = css->intrunpin;
3375         csskd->idlethread.value.ui64 = css->idlethread;
3376         csskd->inv_swtch.value.ui64 = css->inv_swtch;
3377         csskd->nthreads.value.ui64 = css->nthreads;
3378         csskd->cpumigrate.value.ui64 = css->cpumigrate;
3379         csskd->xcalls.value.ui64 = css->xcalls;
3380         csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3381         csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3382         csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3383         csskd->modload.value.ui64 = css->modload;
3384         csskd->modunload.value.ui64 = css->modunload;
3385         csskd->bawrite.value.ui64 = css->bawrite;
3386         csskd->iowait.value.ui64 = css->iowait;
3387 
3388         return (0);
3389 }
3390 
3391 static int
3392 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3393 {
3394         cpu_t *cp = (cpu_t *)ksp->ks_private;
3395         struct cpu_vm_stats_ks_data *cvskd;
3396         cpu_vm_stats_t *cvs;
3397 
3398         if (rw == KSTAT_WRITE)
3399                 return (EACCES);
3400 
3401         cvs = &cp->cpu_stats.vm;
3402         cvskd = ksp->ks_data;
3403 
3404         bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3405             sizeof (cpu_vm_stats_ks_data_template));
3406         cvskd->pgrec.value.ui64 = cvs->pgrec;
3407         cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3408         cvskd->pgin.value.ui64 = cvs->pgin;
3409         cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3410         cvskd->pgout.value.ui64 = cvs->pgout;
3411         cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3412         cvskd->swapin.value.ui64 = cvs->swapin;
3413         cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3414         cvskd->swapout.value.ui64 = cvs->swapout;
3415         cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3416         cvskd->zfod.value.ui64 = cvs->zfod;
3417         cvskd->dfree.value.ui64 = cvs->dfree;
3418         cvskd->scan.value.ui64 = cvs->scan;
3419         cvskd->rev.value.ui64 = cvs->rev;
3420         cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3421         cvskd->as_fault.value.ui64 = cvs->as_fault;
3422         cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3423         cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3424         cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3425         cvskd->softlock.value.ui64 = cvs->softlock;
3426         cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3427         cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3428         cvskd->execpgin.value.ui64 = cvs->execpgin;
3429         cvskd->execpgout.value.ui64 = cvs->execpgout;
3430         cvskd->execfree.value.ui64 = cvs->execfree;
3431         cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3432         cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3433         cvskd->anonfree.value.ui64 = cvs->anonfree;
3434         cvskd->fspgin.value.ui64 = cvs->fspgin;
3435         cvskd->fspgout.value.ui64 = cvs->fspgout;
3436         cvskd->fsfree.value.ui64 = cvs->fsfree;
3437 
3438         return (0);
3439 }
3440 
3441 static int
3442 cpu_stat_ks_update(kstat_t *ksp, int rw)
3443 {
3444         cpu_stat_t *cso;
3445         cpu_t *cp;
3446         int i;
3447         hrtime_t msnsecs[NCMSTATES];
3448 
3449         cso = (cpu_stat_t *)ksp->ks_data;
3450         cp = (cpu_t *)ksp->ks_private;
3451 
3452         if (rw == KSTAT_WRITE)
3453                 return (EACCES);
3454 
3455         /*
3456          * Read CPU mstate, but compare with the last values we
3457          * received to make sure that the returned kstats never
3458          * decrease.
3459          */
3460 
3461         get_cpu_mstate(cp, msnsecs);
3462         msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3463         msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3464         msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3465         if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3466                 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3467         if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3468                 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3469         if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3470                 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3471         cso->cpu_sysinfo.cpu[CPU_WAIT]       = 0;
3472         cso->cpu_sysinfo.wait[W_IO]  = 0;
3473         cso->cpu_sysinfo.wait[W_SWAP]        = 0;
3474         cso->cpu_sysinfo.wait[W_PIO] = 0;
3475         cso->cpu_sysinfo.bread               = CPU_STATS(cp, sys.bread);
3476         cso->cpu_sysinfo.bwrite              = CPU_STATS(cp, sys.bwrite);
3477         cso->cpu_sysinfo.lread               = CPU_STATS(cp, sys.lread);
3478         cso->cpu_sysinfo.lwrite              = CPU_STATS(cp, sys.lwrite);
3479         cso->cpu_sysinfo.phread              = CPU_STATS(cp, sys.phread);
3480         cso->cpu_sysinfo.phwrite     = CPU_STATS(cp, sys.phwrite);
3481         cso->cpu_sysinfo.pswitch     = CPU_STATS(cp, sys.pswitch);
3482         cso->cpu_sysinfo.trap                = CPU_STATS(cp, sys.trap);
3483         cso->cpu_sysinfo.intr                = 0;
3484         for (i = 0; i < PIL_MAX; i++)
3485                 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3486         cso->cpu_sysinfo.syscall     = CPU_STATS(cp, sys.syscall);
3487         cso->cpu_sysinfo.sysread     = CPU_STATS(cp, sys.sysread);
3488         cso->cpu_sysinfo.syswrite    = CPU_STATS(cp, sys.syswrite);
3489         cso->cpu_sysinfo.sysfork     = CPU_STATS(cp, sys.sysfork);
3490         cso->cpu_sysinfo.sysvfork    = CPU_STATS(cp, sys.sysvfork);
3491         cso->cpu_sysinfo.sysexec     = CPU_STATS(cp, sys.sysexec);
3492         cso->cpu_sysinfo.readch              = CPU_STATS(cp, sys.readch);
3493         cso->cpu_sysinfo.writech     = CPU_STATS(cp, sys.writech);
3494         cso->cpu_sysinfo.rcvint              = CPU_STATS(cp, sys.rcvint);
3495         cso->cpu_sysinfo.xmtint              = CPU_STATS(cp, sys.xmtint);
3496         cso->cpu_sysinfo.mdmint              = CPU_STATS(cp, sys.mdmint);
3497         cso->cpu_sysinfo.rawch               = CPU_STATS(cp, sys.rawch);
3498         cso->cpu_sysinfo.canch               = CPU_STATS(cp, sys.canch);
3499         cso->cpu_sysinfo.outch               = CPU_STATS(cp, sys.outch);
3500         cso->cpu_sysinfo.msg         = CPU_STATS(cp, sys.msg);
3501         cso->cpu_sysinfo.sema                = CPU_STATS(cp, sys.sema);
3502         cso->cpu_sysinfo.namei               = CPU_STATS(cp, sys.namei);
3503         cso->cpu_sysinfo.ufsiget     = CPU_STATS(cp, sys.ufsiget);
3504         cso->cpu_sysinfo.ufsdirblk   = CPU_STATS(cp, sys.ufsdirblk);
3505         cso->cpu_sysinfo.ufsipage    = CPU_STATS(cp, sys.ufsipage);
3506         cso->cpu_sysinfo.ufsinopage  = CPU_STATS(cp, sys.ufsinopage);
3507         cso->cpu_sysinfo.inodeovf    = 0;
3508         cso->cpu_sysinfo.fileovf     = 0;
3509         cso->cpu_sysinfo.procovf     = CPU_STATS(cp, sys.procovf);
3510         cso->cpu_sysinfo.intrthread  = 0;
3511         for (i = 0; i < LOCK_LEVEL - 1; i++)
3512                 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3513         cso->cpu_sysinfo.intrblk     = CPU_STATS(cp, sys.intrblk);
3514         cso->cpu_sysinfo.idlethread  = CPU_STATS(cp, sys.idlethread);
3515         cso->cpu_sysinfo.inv_swtch   = CPU_STATS(cp, sys.inv_swtch);
3516         cso->cpu_sysinfo.nthreads    = CPU_STATS(cp, sys.nthreads);
3517         cso->cpu_sysinfo.cpumigrate  = CPU_STATS(cp, sys.cpumigrate);
3518         cso->cpu_sysinfo.xcalls              = CPU_STATS(cp, sys.xcalls);
3519         cso->cpu_sysinfo.mutex_adenters      = CPU_STATS(cp, sys.mutex_adenters);
3520         cso->cpu_sysinfo.rw_rdfails  = CPU_STATS(cp, sys.rw_rdfails);
3521         cso->cpu_sysinfo.rw_wrfails  = CPU_STATS(cp, sys.rw_wrfails);
3522         cso->cpu_sysinfo.modload     = CPU_STATS(cp, sys.modload);
3523         cso->cpu_sysinfo.modunload   = CPU_STATS(cp, sys.modunload);
3524         cso->cpu_sysinfo.bawrite     = CPU_STATS(cp, sys.bawrite);
3525         cso->cpu_sysinfo.rw_enters   = 0;
3526         cso->cpu_sysinfo.win_uo_cnt  = 0;
3527         cso->cpu_sysinfo.win_uu_cnt  = 0;
3528         cso->cpu_sysinfo.win_so_cnt  = 0;
3529         cso->cpu_sysinfo.win_su_cnt  = 0;
3530         cso->cpu_sysinfo.win_suo_cnt = 0;
3531 
3532         cso->cpu_syswait.iowait              = CPU_STATS(cp, sys.iowait);
3533         cso->cpu_syswait.swap                = 0;
3534         cso->cpu_syswait.physio              = 0;
3535 
3536         cso->cpu_vminfo.pgrec                = CPU_STATS(cp, vm.pgrec);
3537         cso->cpu_vminfo.pgfrec               = CPU_STATS(cp, vm.pgfrec);
3538         cso->cpu_vminfo.pgin         = CPU_STATS(cp, vm.pgin);
3539         cso->cpu_vminfo.pgpgin               = CPU_STATS(cp, vm.pgpgin);
3540         cso->cpu_vminfo.pgout                = CPU_STATS(cp, vm.pgout);
3541         cso->cpu_vminfo.pgpgout              = CPU_STATS(cp, vm.pgpgout);
3542         cso->cpu_vminfo.swapin               = CPU_STATS(cp, vm.swapin);
3543         cso->cpu_vminfo.pgswapin     = CPU_STATS(cp, vm.pgswapin);
3544         cso->cpu_vminfo.swapout              = CPU_STATS(cp, vm.swapout);
3545         cso->cpu_vminfo.pgswapout    = CPU_STATS(cp, vm.pgswapout);
3546         cso->cpu_vminfo.zfod         = CPU_STATS(cp, vm.zfod);
3547         cso->cpu_vminfo.dfree                = CPU_STATS(cp, vm.dfree);
3548         cso->cpu_vminfo.scan         = CPU_STATS(cp, vm.scan);
3549         cso->cpu_vminfo.rev          = CPU_STATS(cp, vm.rev);
3550         cso->cpu_vminfo.hat_fault    = CPU_STATS(cp, vm.hat_fault);
3551         cso->cpu_vminfo.as_fault     = CPU_STATS(cp, vm.as_fault);
3552         cso->cpu_vminfo.maj_fault    = CPU_STATS(cp, vm.maj_fault);
3553         cso->cpu_vminfo.cow_fault    = CPU_STATS(cp, vm.cow_fault);
3554         cso->cpu_vminfo.prot_fault   = CPU_STATS(cp, vm.prot_fault);
3555         cso->cpu_vminfo.softlock     = CPU_STATS(cp, vm.softlock);
3556         cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt);
3557         cso->cpu_vminfo.pgrrun               = CPU_STATS(cp, vm.pgrrun);
3558         cso->cpu_vminfo.execpgin     = CPU_STATS(cp, vm.execpgin);
3559         cso->cpu_vminfo.execpgout    = CPU_STATS(cp, vm.execpgout);
3560         cso->cpu_vminfo.execfree     = CPU_STATS(cp, vm.execfree);
3561         cso->cpu_vminfo.anonpgin     = CPU_STATS(cp, vm.anonpgin);
3562         cso->cpu_vminfo.anonpgout    = CPU_STATS(cp, vm.anonpgout);
3563         cso->cpu_vminfo.anonfree     = CPU_STATS(cp, vm.anonfree);
3564         cso->cpu_vminfo.fspgin               = CPU_STATS(cp, vm.fspgin);
3565         cso->cpu_vminfo.fspgout              = CPU_STATS(cp, vm.fspgout);
3566         cso->cpu_vminfo.fsfree               = CPU_STATS(cp, vm.fsfree);
3567 
3568         return (0);
3569 }