1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012 by Delphix. All rights reserved.
  24  * Copyright 2019 Joyent, Inc.
  25  */
  26 
  27 /*
  28  * Architecture-independent CPU control functions.
  29  */
  30 
  31 #include <sys/types.h>
  32 #include <sys/param.h>
  33 #include <sys/var.h>
  34 #include <sys/thread.h>
  35 #include <sys/cpuvar.h>
  36 #include <sys/cpu_event.h>
  37 #include <sys/kstat.h>
  38 #include <sys/uadmin.h>
  39 #include <sys/systm.h>
  40 #include <sys/errno.h>
  41 #include <sys/cmn_err.h>
  42 #include <sys/procset.h>
  43 #include <sys/processor.h>
  44 #include <sys/debug.h>
  45 #include <sys/cpupart.h>
  46 #include <sys/lgrp.h>
  47 #include <sys/pset.h>
  48 #include <sys/pghw.h>
  49 #include <sys/kmem.h>
  50 #include <sys/kmem_impl.h>        /* to set per-cpu kmem_cache offset */
  51 #include <sys/atomic.h>
  52 #include <sys/callb.h>
  53 #include <sys/vtrace.h>
  54 #include <sys/cyclic.h>
  55 #include <sys/bitmap.h>
  56 #include <sys/nvpair.h>
  57 #include <sys/pool_pset.h>
  58 #include <sys/msacct.h>
  59 #include <sys/time.h>
  60 #include <sys/archsystm.h>
  61 #include <sys/sdt.h>
  62 #if defined(__x86) || defined(__amd64)
  63 #include <sys/x86_archext.h>
  64 #endif
  65 #include <sys/callo.h>
  66 
  67 extern int      mp_cpu_start(cpu_t *);
  68 extern int      mp_cpu_stop(cpu_t *);
  69 extern int      mp_cpu_poweron(cpu_t *);
  70 extern int      mp_cpu_poweroff(cpu_t *);
  71 extern int      mp_cpu_configure(int);
  72 extern int      mp_cpu_unconfigure(int);
  73 extern void     mp_cpu_faulted_enter(cpu_t *);
  74 extern void     mp_cpu_faulted_exit(cpu_t *);
  75 
  76 extern int cmp_cpu_to_chip(processorid_t cpuid);
  77 #ifdef __sparcv9
  78 extern char *cpu_fru_fmri(cpu_t *cp);
  79 #endif
  80 
  81 static void cpu_add_active_internal(cpu_t *cp);
  82 static void cpu_remove_active(cpu_t *cp);
  83 static void cpu_info_kstat_create(cpu_t *cp);
  84 static void cpu_info_kstat_destroy(cpu_t *cp);
  85 static void cpu_stats_kstat_create(cpu_t *cp);
  86 static void cpu_stats_kstat_destroy(cpu_t *cp);
  87 
  88 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
  89 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
  90 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
  91 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
  92 
  93 /*
  94  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
  95  * max_cpu_seqid_ever, and dispatch queue reallocations.  The lock ordering with
  96  * respect to related locks is:
  97  *
  98  *      cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
  99  *
 100  * Warning:  Certain sections of code do not use the cpu_lock when
 101  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
 102  * all cpus are paused during modifications to this list, a solution
 103  * to protect the list is too either disable kernel preemption while
 104  * walking the list, *or* recheck the cpu_next pointer at each
 105  * iteration in the loop.  Note that in no cases can any cached
 106  * copies of the cpu pointers be kept as they may become invalid.
 107  */
 108 kmutex_t        cpu_lock;
 109 cpu_t           *cpu_list;              /* list of all CPUs */
 110 cpu_t           *clock_cpu_list;        /* used by clock to walk CPUs */
 111 cpu_t           *cpu_active;            /* list of active CPUs */
 112 cpuset_t        cpu_active_set;         /* cached set of active CPUs */
 113 static cpuset_t cpu_available;          /* set of available CPUs */
 114 cpuset_t        cpu_seqid_inuse;        /* which cpu_seqids are in use */
 115 
 116 cpu_t           **cpu_seq;              /* ptrs to CPUs, indexed by seq_id */
 117 
 118 /*
 119  * max_ncpus keeps the max cpus the system can have. Initially
 120  * it's NCPU, but since most archs scan the devtree for cpus
 121  * fairly early on during boot, the real max can be known before
 122  * ncpus is set (useful for early NCPU based allocations).
 123  */
 124 int max_ncpus = NCPU;
 125 /*
 126  * platforms that set max_ncpus to maxiumum number of cpus that can be
 127  * dynamically added will set boot_max_ncpus to the number of cpus found
 128  * at device tree scan time during boot.
 129  */
 130 int boot_max_ncpus = -1;
 131 int boot_ncpus = -1;
 132 /*
 133  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
 134  * used to size arrays that are indexed by CPU id.
 135  */
 136 processorid_t max_cpuid = NCPU - 1;
 137 
 138 /*
 139  * Maximum cpu_seqid was given. This number can only grow and never shrink. It
 140  * can be used to optimize NCPU loops to avoid going through CPUs which were
 141  * never on-line.
 142  */
 143 processorid_t max_cpu_seqid_ever = 0;
 144 
 145 int ncpus = 1;
 146 int ncpus_online = 1;
 147 
 148 /*
 149  * CPU that we're trying to offline.  Protected by cpu_lock.
 150  */
 151 cpu_t *cpu_inmotion;
 152 
 153 /*
 154  * Can be raised to suppress further weakbinding, which are instead
 155  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
 156  * while individual thread weakbinding synchronization is done under thread
 157  * lock.
 158  */
 159 int weakbindingbarrier;
 160 
 161 /*
 162  * Variables used in pause_cpus().
 163  */
 164 static volatile char safe_list[NCPU];
 165 
 166 static struct _cpu_pause_info {
 167         int             cp_spl;         /* spl saved in pause_cpus() */
 168         volatile int    cp_go;          /* Go signal sent after all ready */
 169         int             cp_count;       /* # of CPUs to pause */
 170         ksema_t         cp_sem;         /* synch pause_cpus & cpu_pause */
 171         kthread_id_t    cp_paused;
 172         void            *(*cp_func)(void *);
 173 } cpu_pause_info;
 174 
 175 static kmutex_t pause_free_mutex;
 176 static kcondvar_t pause_free_cv;
 177 
 178 
 179 static struct cpu_sys_stats_ks_data {
 180         kstat_named_t cpu_ticks_idle;
 181         kstat_named_t cpu_ticks_user;
 182         kstat_named_t cpu_ticks_kernel;
 183         kstat_named_t cpu_ticks_wait;
 184         kstat_named_t cpu_nsec_idle;
 185         kstat_named_t cpu_nsec_user;
 186         kstat_named_t cpu_nsec_kernel;
 187         kstat_named_t cpu_nsec_dtrace;
 188         kstat_named_t cpu_nsec_intr;
 189         kstat_named_t cpu_load_intr;
 190         kstat_named_t wait_ticks_io;
 191         kstat_named_t dtrace_probes;
 192         kstat_named_t bread;
 193         kstat_named_t bwrite;
 194         kstat_named_t lread;
 195         kstat_named_t lwrite;
 196         kstat_named_t phread;
 197         kstat_named_t phwrite;
 198         kstat_named_t pswitch;
 199         kstat_named_t trap;
 200         kstat_named_t intr;
 201         kstat_named_t syscall;
 202         kstat_named_t sysread;
 203         kstat_named_t syswrite;
 204         kstat_named_t sysfork;
 205         kstat_named_t sysvfork;
 206         kstat_named_t sysexec;
 207         kstat_named_t readch;
 208         kstat_named_t writech;
 209         kstat_named_t rcvint;
 210         kstat_named_t xmtint;
 211         kstat_named_t mdmint;
 212         kstat_named_t rawch;
 213         kstat_named_t canch;
 214         kstat_named_t outch;
 215         kstat_named_t msg;
 216         kstat_named_t sema;
 217         kstat_named_t namei;
 218         kstat_named_t ufsiget;
 219         kstat_named_t ufsdirblk;
 220         kstat_named_t ufsipage;
 221         kstat_named_t ufsinopage;
 222         kstat_named_t procovf;
 223         kstat_named_t intrthread;
 224         kstat_named_t intrblk;
 225         kstat_named_t intrunpin;
 226         kstat_named_t idlethread;
 227         kstat_named_t inv_swtch;
 228         kstat_named_t nthreads;
 229         kstat_named_t cpumigrate;
 230         kstat_named_t xcalls;
 231         kstat_named_t mutex_adenters;
 232         kstat_named_t rw_rdfails;
 233         kstat_named_t rw_wrfails;
 234         kstat_named_t modload;
 235         kstat_named_t modunload;
 236         kstat_named_t bawrite;
 237         kstat_named_t iowait;
 238 } cpu_sys_stats_ks_data_template = {
 239         { "cpu_ticks_idle",     KSTAT_DATA_UINT64 },
 240         { "cpu_ticks_user",     KSTAT_DATA_UINT64 },
 241         { "cpu_ticks_kernel",   KSTAT_DATA_UINT64 },
 242         { "cpu_ticks_wait",     KSTAT_DATA_UINT64 },
 243         { "cpu_nsec_idle",      KSTAT_DATA_UINT64 },
 244         { "cpu_nsec_user",      KSTAT_DATA_UINT64 },
 245         { "cpu_nsec_kernel",    KSTAT_DATA_UINT64 },
 246         { "cpu_nsec_dtrace",    KSTAT_DATA_UINT64 },
 247         { "cpu_nsec_intr",      KSTAT_DATA_UINT64 },
 248         { "cpu_load_intr",      KSTAT_DATA_UINT64 },
 249         { "wait_ticks_io",      KSTAT_DATA_UINT64 },
 250         { "dtrace_probes",      KSTAT_DATA_UINT64 },
 251         { "bread",              KSTAT_DATA_UINT64 },
 252         { "bwrite",             KSTAT_DATA_UINT64 },
 253         { "lread",              KSTAT_DATA_UINT64 },
 254         { "lwrite",             KSTAT_DATA_UINT64 },
 255         { "phread",             KSTAT_DATA_UINT64 },
 256         { "phwrite",            KSTAT_DATA_UINT64 },
 257         { "pswitch",            KSTAT_DATA_UINT64 },
 258         { "trap",               KSTAT_DATA_UINT64 },
 259         { "intr",               KSTAT_DATA_UINT64 },
 260         { "syscall",            KSTAT_DATA_UINT64 },
 261         { "sysread",            KSTAT_DATA_UINT64 },
 262         { "syswrite",           KSTAT_DATA_UINT64 },
 263         { "sysfork",            KSTAT_DATA_UINT64 },
 264         { "sysvfork",           KSTAT_DATA_UINT64 },
 265         { "sysexec",            KSTAT_DATA_UINT64 },
 266         { "readch",             KSTAT_DATA_UINT64 },
 267         { "writech",            KSTAT_DATA_UINT64 },
 268         { "rcvint",             KSTAT_DATA_UINT64 },
 269         { "xmtint",             KSTAT_DATA_UINT64 },
 270         { "mdmint",             KSTAT_DATA_UINT64 },
 271         { "rawch",              KSTAT_DATA_UINT64 },
 272         { "canch",              KSTAT_DATA_UINT64 },
 273         { "outch",              KSTAT_DATA_UINT64 },
 274         { "msg",                KSTAT_DATA_UINT64 },
 275         { "sema",               KSTAT_DATA_UINT64 },
 276         { "namei",              KSTAT_DATA_UINT64 },
 277         { "ufsiget",            KSTAT_DATA_UINT64 },
 278         { "ufsdirblk",          KSTAT_DATA_UINT64 },
 279         { "ufsipage",           KSTAT_DATA_UINT64 },
 280         { "ufsinopage",         KSTAT_DATA_UINT64 },
 281         { "procovf",            KSTAT_DATA_UINT64 },
 282         { "intrthread",         KSTAT_DATA_UINT64 },
 283         { "intrblk",            KSTAT_DATA_UINT64 },
 284         { "intrunpin",          KSTAT_DATA_UINT64 },
 285         { "idlethread",         KSTAT_DATA_UINT64 },
 286         { "inv_swtch",          KSTAT_DATA_UINT64 },
 287         { "nthreads",           KSTAT_DATA_UINT64 },
 288         { "cpumigrate",         KSTAT_DATA_UINT64 },
 289         { "xcalls",             KSTAT_DATA_UINT64 },
 290         { "mutex_adenters",     KSTAT_DATA_UINT64 },
 291         { "rw_rdfails",         KSTAT_DATA_UINT64 },
 292         { "rw_wrfails",         KSTAT_DATA_UINT64 },
 293         { "modload",            KSTAT_DATA_UINT64 },
 294         { "modunload",          KSTAT_DATA_UINT64 },
 295         { "bawrite",            KSTAT_DATA_UINT64 },
 296         { "iowait",             KSTAT_DATA_UINT64 },
 297 };
 298 
 299 static struct cpu_vm_stats_ks_data {
 300         kstat_named_t pgrec;
 301         kstat_named_t pgfrec;
 302         kstat_named_t pgin;
 303         kstat_named_t pgpgin;
 304         kstat_named_t pgout;
 305         kstat_named_t pgpgout;
 306         kstat_named_t swapin;
 307         kstat_named_t pgswapin;
 308         kstat_named_t swapout;
 309         kstat_named_t pgswapout;
 310         kstat_named_t zfod;
 311         kstat_named_t dfree;
 312         kstat_named_t scan;
 313         kstat_named_t rev;
 314         kstat_named_t hat_fault;
 315         kstat_named_t as_fault;
 316         kstat_named_t maj_fault;
 317         kstat_named_t cow_fault;
 318         kstat_named_t prot_fault;
 319         kstat_named_t softlock;
 320         kstat_named_t kernel_asflt;
 321         kstat_named_t pgrrun;
 322         kstat_named_t execpgin;
 323         kstat_named_t execpgout;
 324         kstat_named_t execfree;
 325         kstat_named_t anonpgin;
 326         kstat_named_t anonpgout;
 327         kstat_named_t anonfree;
 328         kstat_named_t fspgin;
 329         kstat_named_t fspgout;
 330         kstat_named_t fsfree;
 331 } cpu_vm_stats_ks_data_template = {
 332         { "pgrec",              KSTAT_DATA_UINT64 },
 333         { "pgfrec",             KSTAT_DATA_UINT64 },
 334         { "pgin",               KSTAT_DATA_UINT64 },
 335         { "pgpgin",             KSTAT_DATA_UINT64 },
 336         { "pgout",              KSTAT_DATA_UINT64 },
 337         { "pgpgout",            KSTAT_DATA_UINT64 },
 338         { "swapin",             KSTAT_DATA_UINT64 },
 339         { "pgswapin",           KSTAT_DATA_UINT64 },
 340         { "swapout",            KSTAT_DATA_UINT64 },
 341         { "pgswapout",          KSTAT_DATA_UINT64 },
 342         { "zfod",               KSTAT_DATA_UINT64 },
 343         { "dfree",              KSTAT_DATA_UINT64 },
 344         { "scan",               KSTAT_DATA_UINT64 },
 345         { "rev",                KSTAT_DATA_UINT64 },
 346         { "hat_fault",          KSTAT_DATA_UINT64 },
 347         { "as_fault",           KSTAT_DATA_UINT64 },
 348         { "maj_fault",          KSTAT_DATA_UINT64 },
 349         { "cow_fault",          KSTAT_DATA_UINT64 },
 350         { "prot_fault",         KSTAT_DATA_UINT64 },
 351         { "softlock",           KSTAT_DATA_UINT64 },
 352         { "kernel_asflt",       KSTAT_DATA_UINT64 },
 353         { "pgrrun",             KSTAT_DATA_UINT64 },
 354         { "execpgin",           KSTAT_DATA_UINT64 },
 355         { "execpgout",          KSTAT_DATA_UINT64 },
 356         { "execfree",           KSTAT_DATA_UINT64 },
 357         { "anonpgin",           KSTAT_DATA_UINT64 },
 358         { "anonpgout",          KSTAT_DATA_UINT64 },
 359         { "anonfree",           KSTAT_DATA_UINT64 },
 360         { "fspgin",             KSTAT_DATA_UINT64 },
 361         { "fspgout",            KSTAT_DATA_UINT64 },
 362         { "fsfree",             KSTAT_DATA_UINT64 },
 363 };
 364 
 365 /*
 366  * Force the specified thread to migrate to the appropriate processor.
 367  * Called with thread lock held, returns with it dropped.
 368  */
 369 static void
 370 force_thread_migrate(kthread_id_t tp)
 371 {
 372         ASSERT(THREAD_LOCK_HELD(tp));
 373         if (tp == curthread) {
 374                 THREAD_TRANSITION(tp);
 375                 CL_SETRUN(tp);
 376                 thread_unlock_nopreempt(tp);
 377                 swtch();
 378         } else {
 379                 if (tp->t_state == TS_ONPROC) {
 380                         cpu_surrender(tp);
 381                 } else if (tp->t_state == TS_RUN) {
 382                         (void) dispdeq(tp);
 383                         setbackdq(tp);
 384                 }
 385                 thread_unlock(tp);
 386         }
 387 }
 388 
 389 /*
 390  * Set affinity for a specified CPU.
 391  *
 392  * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for
 393  * curthread, will set affinity to the CPU on which the thread is currently
 394  * running.  For other cpu_id values, the caller must ensure that the
 395  * referenced CPU remains valid, which can be done by holding cpu_lock across
 396  * this call.
 397  *
 398  * CPU affinity is guaranteed after return of thread_affinity_set().  If a
 399  * caller setting affinity to CPU_CURRENT requires that its thread not migrate
 400  * CPUs prior to a successful return, it should take extra precautions (such as
 401  * their own call to kpreempt_disable) to ensure that safety.
 402  *
 403  * A CPU affinity reference count is maintained by thread_affinity_set and
 404  * thread_affinity_clear (incrementing and decrementing it, respectively),
 405  * maintaining CPU affinity while the count is non-zero, and allowing regions
 406  * of code which require affinity to be nested.
 407  */
 408 void
 409 thread_affinity_set(kthread_id_t t, int cpu_id)
 410 {
 411         cpu_t *cp;
 412 
 413         ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
 414 
 415         if (cpu_id == CPU_CURRENT) {
 416                 VERIFY3P(t, ==, curthread);
 417                 kpreempt_disable();
 418                 cp = CPU;
 419         } else {
 420                 /*
 421                  * We should be asserting that cpu_lock is held here, but
 422                  * the NCA code doesn't acquire it.  The following assert
 423                  * should be uncommented when the NCA code is fixed.
 424                  *
 425                  * ASSERT(MUTEX_HELD(&cpu_lock));
 426                  */
 427                 VERIFY((cpu_id >= 0) && (cpu_id < NCPU));
 428                 cp = cpu[cpu_id];
 429 
 430                 /* user must provide a good cpu_id */
 431                 VERIFY(cp != NULL);
 432         }
 433 
 434         /*
 435          * If there is already a hard affinity requested, and this affinity
 436          * conflicts with that, panic.
 437          */
 438         thread_lock(t);
 439         if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
 440                 panic("affinity_set: setting %p but already bound to %p",
 441                     (void *)cp, (void *)t->t_bound_cpu);
 442         }
 443         t->t_affinitycnt++;
 444         t->t_bound_cpu = cp;
 445 
 446         /*
 447          * Make sure we're running on the right CPU.
 448          */
 449         if (cp != t->t_cpu || t != curthread) {
 450                 ASSERT(cpu_id != CPU_CURRENT);
 451                 force_thread_migrate(t);        /* drops thread lock */
 452         } else {
 453                 thread_unlock(t);
 454         }
 455 
 456         if (cpu_id == CPU_CURRENT) {
 457                 kpreempt_enable();
 458         }
 459 }
 460 
 461 /*
 462  *      Wrapper for backward compatibility.
 463  */
 464 void
 465 affinity_set(int cpu_id)
 466 {
 467         thread_affinity_set(curthread, cpu_id);
 468 }
 469 
 470 /*
 471  * Decrement the affinity reservation count and if it becomes zero,
 472  * clear the CPU affinity for the current thread, or set it to the user's
 473  * software binding request.
 474  */
 475 void
 476 thread_affinity_clear(kthread_id_t t)
 477 {
 478         register processorid_t binding;
 479 
 480         thread_lock(t);
 481         if (--t->t_affinitycnt == 0) {
 482                 if ((binding = t->t_bind_cpu) == PBIND_NONE) {
 483                         /*
 484                          * Adjust disp_max_unbound_pri if necessary.
 485                          */
 486                         disp_adjust_unbound_pri(t);
 487                         t->t_bound_cpu = NULL;
 488                         if (t->t_cpu->cpu_part != t->t_cpupart) {
 489                                 force_thread_migrate(t);
 490                                 return;
 491                         }
 492                 } else {
 493                         t->t_bound_cpu = cpu[binding];
 494                         /*
 495                          * Make sure the thread is running on the bound CPU.
 496                          */
 497                         if (t->t_cpu != t->t_bound_cpu) {
 498                                 force_thread_migrate(t);
 499                                 return;         /* already dropped lock */
 500                         }
 501                 }
 502         }
 503         thread_unlock(t);
 504 }
 505 
 506 /*
 507  * Wrapper for backward compatibility.
 508  */
 509 void
 510 affinity_clear(void)
 511 {
 512         thread_affinity_clear(curthread);
 513 }
 514 
 515 /*
 516  * Weak cpu affinity.  Bind to the "current" cpu for short periods
 517  * of time during which the thread must not block (but may be preempted).
 518  * Use this instead of kpreempt_disable() when it is only "no migration"
 519  * rather than "no preemption" semantics that are required - disabling
 520  * preemption holds higher priority threads off of cpu and if the
 521  * operation that is protected is more than momentary this is not good
 522  * for realtime etc.
 523  *
 524  * Weakly bound threads will not prevent a cpu from being offlined -
 525  * we'll only run them on the cpu to which they are weakly bound but
 526  * (because they do not block) we'll always be able to move them on to
 527  * another cpu at offline time if we give them just a short moment to
 528  * run during which they will unbind.  To give a cpu a chance of offlining,
 529  * however, we require a barrier to weak bindings that may be raised for a
 530  * given cpu (offline/move code may set this and then wait a short time for
 531  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
 532  *
 533  * There are few restrictions on the calling context of thread_nomigrate.
 534  * The caller must not hold the thread lock.  Calls may be nested.
 535  *
 536  * After weakbinding a thread must not perform actions that may block.
 537  * In particular it must not call thread_affinity_set; calling that when
 538  * already weakbound is nonsensical anyway.
 539  *
 540  * If curthread is prevented from migrating for other reasons
 541  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
 542  * then the weak binding will succeed even if this cpu is the target of an
 543  * offline/move request.
 544  */
 545 void
 546 thread_nomigrate(void)
 547 {
 548         cpu_t *cp;
 549         kthread_id_t t = curthread;
 550 
 551 again:
 552         kpreempt_disable();
 553         cp = CPU;
 554 
 555         /*
 556          * A highlevel interrupt must not modify t_nomigrate or
 557          * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
 558          * interrupt thread cannot migrate and we can avoid the
 559          * thread_lock call below by short-circuiting here.  In either
 560          * case we can just return since no migration is possible and
 561          * the condition will persist (ie, when we test for these again
 562          * in thread_allowmigrate they can't have changed).   Migration
 563          * is also impossible if we're at or above DISP_LEVEL pil.
 564          */
 565         if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
 566             getpil() >= DISP_LEVEL) {
 567                 kpreempt_enable();
 568                 return;
 569         }
 570 
 571         /*
 572          * We must be consistent with existing weak bindings.  Since we
 573          * may be interrupted between the increment of t_nomigrate and
 574          * the store to t_weakbound_cpu below we cannot assume that
 575          * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
 576          * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
 577          * always the case.
 578          */
 579         if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
 580                 if (!panicstr)
 581                         panic("thread_nomigrate: binding to %p but already "
 582                             "bound to %p", (void *)cp,
 583                             (void *)t->t_weakbound_cpu);
 584         }
 585 
 586         /*
 587          * At this point we have preemption disabled and we don't yet hold
 588          * the thread lock.  So it's possible that somebody else could
 589          * set t_bind_cpu here and not be able to force us across to the
 590          * new cpu (since we have preemption disabled).
 591          */
 592         thread_lock(curthread);
 593 
 594         /*
 595          * If further weak bindings are being (temporarily) suppressed then
 596          * we'll settle for disabling kernel preemption (which assures
 597          * no migration provided the thread does not block which it is
 598          * not allowed to if using thread_nomigrate).  We must remember
 599          * this disposition so we can take appropriate action in
 600          * thread_allowmigrate.  If this is a nested call and the
 601          * thread is already weakbound then fall through as normal.
 602          * We remember the decision to settle for kpreempt_disable through
 603          * negative nesting counting in t_nomigrate.  Once a thread has had one
 604          * weakbinding request satisfied in this way any further (nested)
 605          * requests will continue to be satisfied in the same way,
 606          * even if weak bindings have recommenced.
 607          */
 608         if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
 609                 --t->t_nomigrate;
 610                 thread_unlock(curthread);
 611                 return;         /* with kpreempt_disable still active */
 612         }
 613 
 614         /*
 615          * We hold thread_lock so t_bind_cpu cannot change.  We could,
 616          * however, be running on a different cpu to which we are t_bound_cpu
 617          * to (as explained above).  If we grant the weak binding request
 618          * in that case then the dispatcher must favour our weak binding
 619          * over our strong (in which case, just as when preemption is
 620          * disabled, we can continue to run on a cpu other than the one to
 621          * which we are strongbound; the difference in this case is that
 622          * this thread can be preempted and so can appear on the dispatch
 623          * queues of a cpu other than the one it is strongbound to).
 624          *
 625          * If the cpu we are running on does not appear to be a current
 626          * offline target (we check cpu_inmotion to determine this - since
 627          * we don't hold cpu_lock we may not see a recent store to that,
 628          * so it's possible that we at times can grant a weak binding to a
 629          * cpu that is an offline target, but that one request will not
 630          * prevent the offline from succeeding) then we will always grant
 631          * the weak binding request.  This includes the case above where
 632          * we grant a weakbinding not commensurate with our strong binding.
 633          *
 634          * If our cpu does appear to be an offline target then we're inclined
 635          * not to grant the weakbinding request just yet - we'd prefer to
 636          * migrate to another cpu and grant the request there.  The
 637          * exceptions are those cases where going through preemption code
 638          * will not result in us changing cpu:
 639          *
 640          *      . interrupts have already bypassed this case (see above)
 641          *      . we are already weakbound to this cpu (dispatcher code will
 642          *        always return us to the weakbound cpu)
 643          *      . preemption was disabled even before we disabled it above
 644          *      . we are strongbound to this cpu (if we're strongbound to
 645          *      another and not yet running there the trip through the
 646          *      dispatcher will move us to the strongbound cpu and we
 647          *      will grant the weak binding there)
 648          */
 649         if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
 650             t->t_bound_cpu == cp) {
 651                 /*
 652                  * Don't be tempted to store to t_weakbound_cpu only on
 653                  * the first nested bind request - if we're interrupted
 654                  * after the increment of t_nomigrate and before the
 655                  * store to t_weakbound_cpu and the interrupt calls
 656                  * thread_nomigrate then the assertion in thread_allowmigrate
 657                  * would fail.
 658                  */
 659                 t->t_nomigrate++;
 660                 t->t_weakbound_cpu = cp;
 661                 membar_producer();
 662                 thread_unlock(curthread);
 663                 /*
 664                  * Now that we have dropped the thread_lock another thread
 665                  * can set our t_weakbound_cpu, and will try to migrate us
 666                  * to the strongbound cpu (which will not be prevented by
 667                  * preemption being disabled since we're about to enable
 668                  * preemption).  We have granted the weakbinding to the current
 669                  * cpu, so again we are in the position that is is is possible
 670                  * that our weak and strong bindings differ.  Again this
 671                  * is catered for by dispatcher code which will favour our
 672                  * weak binding.
 673                  */
 674                 kpreempt_enable();
 675         } else {
 676                 /*
 677                  * Move to another cpu before granting the request by
 678                  * forcing this thread through preemption code.  When we
 679                  * get to set{front,back}dq called from CL_PREEMPT()
 680                  * cpu_choose() will be used to select a cpu to queue
 681                  * us on - that will see cpu_inmotion and take
 682                  * steps to avoid returning us to this cpu.
 683                  */
 684                 cp->cpu_kprunrun = 1;
 685                 thread_unlock(curthread);
 686                 kpreempt_enable();      /* will call preempt() */
 687                 goto again;
 688         }
 689 }
 690 
 691 void
 692 thread_allowmigrate(void)
 693 {
 694         kthread_id_t t = curthread;
 695 
 696         ASSERT(t->t_weakbound_cpu == CPU ||
 697             (t->t_nomigrate < 0 && t->t_preempt > 0) ||
 698             CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
 699             getpil() >= DISP_LEVEL);
 700 
 701         if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
 702             getpil() >= DISP_LEVEL)
 703                 return;
 704 
 705         if (t->t_nomigrate < 0) {
 706                 /*
 707                  * This thread was granted "weak binding" in the
 708                  * stronger form of kernel preemption disabling.
 709                  * Undo a level of nesting for both t_nomigrate
 710                  * and t_preempt.
 711                  */
 712                 ++t->t_nomigrate;
 713                 kpreempt_enable();
 714         } else if (--t->t_nomigrate == 0) {
 715                 /*
 716                  * Time to drop the weak binding.  We need to cater
 717                  * for the case where we're weakbound to a different
 718                  * cpu than that to which we're strongbound (a very
 719                  * temporary arrangement that must only persist until
 720                  * weak binding drops).  We don't acquire thread_lock
 721                  * here so even as this code executes t_bound_cpu
 722                  * may be changing.  So we disable preemption and
 723                  * a) in the case that t_bound_cpu changes while we
 724                  * have preemption disabled kprunrun will be set
 725                  * asynchronously, and b) if before disabling
 726                  * preemption we were already on a different cpu to
 727                  * our t_bound_cpu then we set kprunrun ourselves
 728                  * to force a trip through the dispatcher when
 729                  * preemption is enabled.
 730                  */
 731                 kpreempt_disable();
 732                 if (t->t_bound_cpu &&
 733                     t->t_weakbound_cpu != t->t_bound_cpu)
 734                         CPU->cpu_kprunrun = 1;
 735                 t->t_weakbound_cpu = NULL;
 736                 membar_producer();
 737                 kpreempt_enable();
 738         }
 739 }
 740 
 741 /*
 742  * weakbinding_stop can be used to temporarily cause weakbindings made
 743  * with thread_nomigrate to be satisfied through the stronger action of
 744  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
 745  */
 746 
 747 void
 748 weakbinding_stop(void)
 749 {
 750         ASSERT(MUTEX_HELD(&cpu_lock));
 751         weakbindingbarrier = 1;
 752         membar_producer();      /* make visible before subsequent thread_lock */
 753 }
 754 
 755 void
 756 weakbinding_start(void)
 757 {
 758         ASSERT(MUTEX_HELD(&cpu_lock));
 759         weakbindingbarrier = 0;
 760 }
 761 
 762 void
 763 null_xcall(void)
 764 {
 765 }
 766 
 767 /*
 768  * This routine is called to place the CPUs in a safe place so that
 769  * one of them can be taken off line or placed on line.  What we are
 770  * trying to do here is prevent a thread from traversing the list
 771  * of active CPUs while we are changing it or from getting placed on
 772  * the run queue of a CPU that has just gone off line.  We do this by
 773  * creating a thread with the highest possible prio for each CPU and
 774  * having it call this routine.  The advantage of this method is that
 775  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
 776  * This makes disp faster at the expense of making p_online() slower
 777  * which is a good trade off.
 778  */
 779 static void
 780 cpu_pause(int index)
 781 {
 782         int s;
 783         struct _cpu_pause_info *cpi = &cpu_pause_info;
 784         volatile char *safe = &safe_list[index];
 785         long    lindex = index;
 786 
 787         ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
 788 
 789         while (*safe != PAUSE_DIE) {
 790                 *safe = PAUSE_READY;
 791                 membar_enter();         /* make sure stores are flushed */
 792                 sema_v(&cpi->cp_sem);    /* signal requesting thread */
 793 
 794                 /*
 795                  * Wait here until all pause threads are running.  That
 796                  * indicates that it's safe to do the spl.  Until
 797                  * cpu_pause_info.cp_go is set, we don't want to spl
 798                  * because that might block clock interrupts needed
 799                  * to preempt threads on other CPUs.
 800                  */
 801                 while (cpi->cp_go == 0)
 802                         ;
 803                 /*
 804                  * Even though we are at the highest disp prio, we need
 805                  * to block out all interrupts below LOCK_LEVEL so that
 806                  * an intr doesn't come in, wake up a thread, and call
 807                  * setbackdq/setfrontdq.
 808                  */
 809                 s = splhigh();
 810                 /*
 811                  * if cp_func has been set then call it using index as the
 812                  * argument, currently only used by cpr_suspend_cpus().
 813                  * This function is used as the code to execute on the
 814                  * "paused" cpu's when a machine comes out of a sleep state
 815                  * and CPU's were powered off.  (could also be used for
 816                  * hotplugging CPU's).
 817                  */
 818                 if (cpi->cp_func != NULL)
 819                         (*cpi->cp_func)((void *)lindex);
 820 
 821                 mach_cpu_pause(safe);
 822 
 823                 splx(s);
 824                 /*
 825                  * Waiting is at an end. Switch out of cpu_pause
 826                  * loop and resume useful work.
 827                  */
 828                 swtch();
 829         }
 830 
 831         mutex_enter(&pause_free_mutex);
 832         *safe = PAUSE_DEAD;
 833         cv_broadcast(&pause_free_cv);
 834         mutex_exit(&pause_free_mutex);
 835 }
 836 
 837 /*
 838  * Allow the cpus to start running again.
 839  */
 840 void
 841 start_cpus()
 842 {
 843         int i;
 844 
 845         ASSERT(MUTEX_HELD(&cpu_lock));
 846         ASSERT(cpu_pause_info.cp_paused);
 847         cpu_pause_info.cp_paused = NULL;
 848         for (i = 0; i < NCPU; i++)
 849                 safe_list[i] = PAUSE_IDLE;
 850         membar_enter();                 /* make sure stores are flushed */
 851         affinity_clear();
 852         splx(cpu_pause_info.cp_spl);
 853         kpreempt_enable();
 854 }
 855 
 856 /*
 857  * Allocate a pause thread for a CPU.
 858  */
 859 static void
 860 cpu_pause_alloc(cpu_t *cp)
 861 {
 862         kthread_id_t    t;
 863         long            cpun = cp->cpu_id;
 864 
 865         /*
 866          * Note, v.v_nglobpris will not change value as long as I hold
 867          * cpu_lock.
 868          */
 869         t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
 870             0, &p0, TS_STOPPED, v.v_nglobpris - 1);
 871         thread_lock(t);
 872         t->t_bound_cpu = cp;
 873         t->t_disp_queue = cp->cpu_disp;
 874         t->t_affinitycnt = 1;
 875         t->t_preempt = 1;
 876         thread_unlock(t);
 877         cp->cpu_pause_thread = t;
 878         /*
 879          * Registering a thread in the callback table is usually done
 880          * in the initialization code of the thread.  In this
 881          * case, we do it right after thread creation because the
 882          * thread itself may never run, and we need to register the
 883          * fact that it is safe for cpr suspend.
 884          */
 885         CALLB_CPR_INIT_SAFE(t, "cpu_pause");
 886 }
 887 
 888 /*
 889  * Free a pause thread for a CPU.
 890  */
 891 static void
 892 cpu_pause_free(cpu_t *cp)
 893 {
 894         kthread_id_t    t;
 895         int             cpun = cp->cpu_id;
 896 
 897         ASSERT(MUTEX_HELD(&cpu_lock));
 898         /*
 899          * We have to get the thread and tell it to die.
 900          */
 901         if ((t = cp->cpu_pause_thread) == NULL) {
 902                 ASSERT(safe_list[cpun] == PAUSE_IDLE);
 903                 return;
 904         }
 905         thread_lock(t);
 906         t->t_cpu = CPU;              /* disp gets upset if last cpu is quiesced. */
 907         t->t_bound_cpu = NULL;       /* Must un-bind; cpu may not be running. */
 908         t->t_pri = v.v_nglobpris - 1;
 909         ASSERT(safe_list[cpun] == PAUSE_IDLE);
 910         safe_list[cpun] = PAUSE_DIE;
 911         THREAD_TRANSITION(t);
 912         setbackdq(t);
 913         thread_unlock_nopreempt(t);
 914 
 915         /*
 916          * If we don't wait for the thread to actually die, it may try to
 917          * run on the wrong cpu as part of an actual call to pause_cpus().
 918          */
 919         mutex_enter(&pause_free_mutex);
 920         while (safe_list[cpun] != PAUSE_DEAD) {
 921                 cv_wait(&pause_free_cv, &pause_free_mutex);
 922         }
 923         mutex_exit(&pause_free_mutex);
 924         safe_list[cpun] = PAUSE_IDLE;
 925 
 926         cp->cpu_pause_thread = NULL;
 927 }
 928 
 929 /*
 930  * Initialize basic structures for pausing CPUs.
 931  */
 932 void
 933 cpu_pause_init()
 934 {
 935         sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
 936         /*
 937          * Create initial CPU pause thread.
 938          */
 939         cpu_pause_alloc(CPU);
 940 }
 941 
 942 /*
 943  * Start the threads used to pause another CPU.
 944  */
 945 static int
 946 cpu_pause_start(processorid_t cpu_id)
 947 {
 948         int     i;
 949         int     cpu_count = 0;
 950 
 951         for (i = 0; i < NCPU; i++) {
 952                 cpu_t           *cp;
 953                 kthread_id_t    t;
 954 
 955                 cp = cpu[i];
 956                 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
 957                         safe_list[i] = PAUSE_WAIT;
 958                         continue;
 959                 }
 960 
 961                 /*
 962                  * Skip CPU if it is quiesced or not yet started.
 963                  */
 964                 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
 965                         safe_list[i] = PAUSE_WAIT;
 966                         continue;
 967                 }
 968 
 969                 /*
 970                  * Start this CPU's pause thread.
 971                  */
 972                 t = cp->cpu_pause_thread;
 973                 thread_lock(t);
 974                 /*
 975                  * Reset the priority, since nglobpris may have
 976                  * changed since the thread was created, if someone
 977                  * has loaded the RT (or some other) scheduling
 978                  * class.
 979                  */
 980                 t->t_pri = v.v_nglobpris - 1;
 981                 THREAD_TRANSITION(t);
 982                 setbackdq(t);
 983                 thread_unlock_nopreempt(t);
 984                 ++cpu_count;
 985         }
 986         return (cpu_count);
 987 }
 988 
 989 
 990 /*
 991  * Pause all of the CPUs except the one we are on by creating a high
 992  * priority thread bound to those CPUs.
 993  *
 994  * Note that one must be extremely careful regarding code
 995  * executed while CPUs are paused.  Since a CPU may be paused
 996  * while a thread scheduling on that CPU is holding an adaptive
 997  * lock, code executed with CPUs paused must not acquire adaptive
 998  * (or low-level spin) locks.  Also, such code must not block,
 999  * since the thread that is supposed to initiate the wakeup may
1000  * never run.
1001  *
1002  * With a few exceptions, the restrictions on code executed with CPUs
1003  * paused match those for code executed at high-level interrupt
1004  * context.
1005  */
1006 void
1007 pause_cpus(cpu_t *off_cp, void *(*func)(void *))
1008 {
1009         processorid_t   cpu_id;
1010         int             i;
1011         struct _cpu_pause_info  *cpi = &cpu_pause_info;
1012 
1013         ASSERT(MUTEX_HELD(&cpu_lock));
1014         ASSERT(cpi->cp_paused == NULL);
1015         cpi->cp_count = 0;
1016         cpi->cp_go = 0;
1017         for (i = 0; i < NCPU; i++)
1018                 safe_list[i] = PAUSE_IDLE;
1019         kpreempt_disable();
1020 
1021         cpi->cp_func = func;
1022 
1023         /*
1024          * If running on the cpu that is going offline, get off it.
1025          * This is so that it won't be necessary to rechoose a CPU
1026          * when done.
1027          */
1028         if (CPU == off_cp)
1029                 cpu_id = off_cp->cpu_next_part->cpu_id;
1030         else
1031                 cpu_id = CPU->cpu_id;
1032         affinity_set(cpu_id);
1033 
1034         /*
1035          * Start the pause threads and record how many were started
1036          */
1037         cpi->cp_count = cpu_pause_start(cpu_id);
1038 
1039         /*
1040          * Now wait for all CPUs to be running the pause thread.
1041          */
1042         while (cpi->cp_count > 0) {
1043                 /*
1044                  * Spin reading the count without grabbing the disp
1045                  * lock to make sure we don't prevent the pause
1046                  * threads from getting the lock.
1047                  */
1048                 while (sema_held(&cpi->cp_sem))
1049                         ;
1050                 if (sema_tryp(&cpi->cp_sem))
1051                         --cpi->cp_count;
1052         }
1053         cpi->cp_go = 1;                      /* all have reached cpu_pause */
1054 
1055         /*
1056          * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1057          * to PAUSE_WAIT.)
1058          */
1059         for (i = 0; i < NCPU; i++) {
1060                 while (safe_list[i] != PAUSE_WAIT)
1061                         ;
1062         }
1063         cpi->cp_spl = splhigh();     /* block dispatcher on this CPU */
1064         cpi->cp_paused = curthread;
1065 }
1066 
1067 /*
1068  * Check whether the current thread has CPUs paused
1069  */
1070 int
1071 cpus_paused(void)
1072 {
1073         if (cpu_pause_info.cp_paused != NULL) {
1074                 ASSERT(cpu_pause_info.cp_paused == curthread);
1075                 return (1);
1076         }
1077         return (0);
1078 }
1079 
1080 static cpu_t *
1081 cpu_get_all(processorid_t cpun)
1082 {
1083         ASSERT(MUTEX_HELD(&cpu_lock));
1084 
1085         if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1086                 return (NULL);
1087         return (cpu[cpun]);
1088 }
1089 
1090 /*
1091  * Check whether cpun is a valid processor id and whether it should be
1092  * visible from the current zone. If it is, return a pointer to the
1093  * associated CPU structure.
1094  */
1095 cpu_t *
1096 cpu_get(processorid_t cpun)
1097 {
1098         cpu_t *c;
1099 
1100         ASSERT(MUTEX_HELD(&cpu_lock));
1101         c = cpu_get_all(cpun);
1102         if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1103             zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1104                 return (NULL);
1105         return (c);
1106 }
1107 
1108 /*
1109  * The following functions should be used to check CPU states in the kernel.
1110  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1111  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1112  * states.  Those are for user-land (and system call) use only.
1113  */
1114 
1115 /*
1116  * Determine whether the CPU is online and handling interrupts.
1117  */
1118 int
1119 cpu_is_online(cpu_t *cpu)
1120 {
1121         ASSERT(MUTEX_HELD(&cpu_lock));
1122         return (cpu_flagged_online(cpu->cpu_flags));
1123 }
1124 
1125 /*
1126  * Determine whether the CPU is offline (this includes spare and faulted).
1127  */
1128 int
1129 cpu_is_offline(cpu_t *cpu)
1130 {
1131         ASSERT(MUTEX_HELD(&cpu_lock));
1132         return (cpu_flagged_offline(cpu->cpu_flags));
1133 }
1134 
1135 /*
1136  * Determine whether the CPU is powered off.
1137  */
1138 int
1139 cpu_is_poweredoff(cpu_t *cpu)
1140 {
1141         ASSERT(MUTEX_HELD(&cpu_lock));
1142         return (cpu_flagged_poweredoff(cpu->cpu_flags));
1143 }
1144 
1145 /*
1146  * Determine whether the CPU is handling interrupts.
1147  */
1148 int
1149 cpu_is_nointr(cpu_t *cpu)
1150 {
1151         ASSERT(MUTEX_HELD(&cpu_lock));
1152         return (cpu_flagged_nointr(cpu->cpu_flags));
1153 }
1154 
1155 /*
1156  * Determine whether the CPU is active (scheduling threads).
1157  */
1158 int
1159 cpu_is_active(cpu_t *cpu)
1160 {
1161         ASSERT(MUTEX_HELD(&cpu_lock));
1162         return (cpu_flagged_active(cpu->cpu_flags));
1163 }
1164 
1165 /*
1166  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1167  */
1168 int
1169 cpu_flagged_online(cpu_flag_t cpu_flags)
1170 {
1171         return (cpu_flagged_active(cpu_flags) &&
1172             (cpu_flags & CPU_ENABLE));
1173 }
1174 
1175 int
1176 cpu_flagged_offline(cpu_flag_t cpu_flags)
1177 {
1178         return (((cpu_flags & CPU_POWEROFF) == 0) &&
1179             ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1180 }
1181 
1182 int
1183 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1184 {
1185         return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1186 }
1187 
1188 int
1189 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1190 {
1191         return (cpu_flagged_active(cpu_flags) &&
1192             (cpu_flags & CPU_ENABLE) == 0);
1193 }
1194 
1195 int
1196 cpu_flagged_active(cpu_flag_t cpu_flags)
1197 {
1198         return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1199             ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1200 }
1201 
1202 /*
1203  * Bring the indicated CPU online.
1204  */
1205 int
1206 cpu_online(cpu_t *cp)
1207 {
1208         int     error = 0;
1209 
1210         /*
1211          * Handle on-line request.
1212          *      This code must put the new CPU on the active list before
1213          *      starting it because it will not be paused, and will start
1214          *      using the active list immediately.  The real start occurs
1215          *      when the CPU_QUIESCED flag is turned off.
1216          */
1217 
1218         ASSERT(MUTEX_HELD(&cpu_lock));
1219 
1220         /*
1221          * Put all the cpus into a known safe place.
1222          * No mutexes can be entered while CPUs are paused.
1223          */
1224         error = mp_cpu_start(cp);       /* arch-dep hook */
1225         if (error == 0) {
1226                 pg_cpupart_in(cp, cp->cpu_part);
1227                 pause_cpus(NULL, NULL);
1228                 cpu_add_active_internal(cp);
1229                 if (cp->cpu_flags & CPU_FAULTED) {
1230                         cp->cpu_flags &= ~CPU_FAULTED;
1231                         mp_cpu_faulted_exit(cp);
1232                 }
1233                 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1234                     CPU_SPARE);
1235                 CPU_NEW_GENERATION(cp);
1236                 start_cpus();
1237                 cpu_stats_kstat_create(cp);
1238                 cpu_create_intrstat(cp);
1239                 lgrp_kstat_create(cp);
1240                 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1241                 cpu_intr_enable(cp);    /* arch-dep hook */
1242                 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1243                 cpu_set_state(cp);
1244                 cyclic_online(cp);
1245                 /*
1246                  * This has to be called only after cyclic_online(). This
1247                  * function uses cyclics.
1248                  */
1249                 callout_cpu_online(cp);
1250                 poke_cpu(cp->cpu_id);
1251         }
1252 
1253         return (error);
1254 }
1255 
1256 /*
1257  * Take the indicated CPU offline.
1258  */
1259 int
1260 cpu_offline(cpu_t *cp, int flags)
1261 {
1262         cpupart_t *pp;
1263         int     error = 0;
1264         cpu_t   *ncp;
1265         int     intr_enable;
1266         int     cyclic_off = 0;
1267         int     callout_off = 0;
1268         int     loop_count;
1269         int     no_quiesce = 0;
1270         int     (*bound_func)(struct cpu *, int);
1271         kthread_t *t;
1272         lpl_t   *cpu_lpl;
1273         proc_t  *p;
1274         int     lgrp_diff_lpl;
1275         boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1276 
1277         ASSERT(MUTEX_HELD(&cpu_lock));
1278 
1279         /*
1280          * If we're going from faulted or spare to offline, just
1281          * clear these flags and update CPU state.
1282          */
1283         if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1284                 if (cp->cpu_flags & CPU_FAULTED) {
1285                         cp->cpu_flags &= ~CPU_FAULTED;
1286                         mp_cpu_faulted_exit(cp);
1287                 }
1288                 cp->cpu_flags &= ~CPU_SPARE;
1289                 cpu_set_state(cp);
1290                 return (0);
1291         }
1292 
1293         /*
1294          * Handle off-line request.
1295          */
1296         pp = cp->cpu_part;
1297         /*
1298          * Don't offline last online CPU in partition
1299          */
1300         if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1301                 return (EBUSY);
1302         /*
1303          * Unbind all soft-bound threads bound to our CPU and hard bound threads
1304          * if we were asked to.
1305          */
1306         error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1307         if (error != 0)
1308                 return (error);
1309         /*
1310          * We shouldn't be bound to this CPU ourselves.
1311          */
1312         if (curthread->t_bound_cpu == cp)
1313                 return (EBUSY);
1314 
1315         /*
1316          * Tell interested parties that this CPU is going offline.
1317          */
1318         CPU_NEW_GENERATION(cp);
1319         cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1320 
1321         /*
1322          * Tell the PG subsystem that the CPU is leaving the partition
1323          */
1324         pg_cpupart_out(cp, pp);
1325 
1326         /*
1327          * Take the CPU out of interrupt participation so we won't find
1328          * bound kernel threads.  If the architecture cannot completely
1329          * shut off interrupts on the CPU, don't quiesce it, but don't
1330          * run anything but interrupt thread... this is indicated by
1331          * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1332          * off.
1333          */
1334         intr_enable = cp->cpu_flags & CPU_ENABLE;
1335         if (intr_enable)
1336                 no_quiesce = cpu_intr_disable(cp);
1337 
1338         /*
1339          * Record that we are aiming to offline this cpu.  This acts as
1340          * a barrier to further weak binding requests in thread_nomigrate
1341          * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1342          * lean away from this cpu.  Further strong bindings are already
1343          * avoided since we hold cpu_lock.  Since threads that are set
1344          * runnable around now and others coming off the target cpu are
1345          * directed away from the target, existing strong and weak bindings
1346          * (especially the latter) to the target cpu stand maximum chance of
1347          * being able to unbind during the short delay loop below (if other
1348          * unbound threads compete they may not see cpu in time to unbind
1349          * even if they would do so immediately.
1350          */
1351         cpu_inmotion = cp;
1352         membar_enter();
1353 
1354         /*
1355          * Check for kernel threads (strong or weak) bound to that CPU.
1356          * Strongly bound threads may not unbind, and we'll have to return
1357          * EBUSY.  Weakly bound threads should always disappear - we've
1358          * stopped more weak binding with cpu_inmotion and existing
1359          * bindings will drain imminently (they may not block).  Nonetheless
1360          * we will wait for a fixed period for all bound threads to disappear.
1361          * Inactive interrupt threads are OK (they'll be in TS_FREE
1362          * state).  If test finds some bound threads, wait a few ticks
1363          * to give short-lived threads (such as interrupts) chance to
1364          * complete.  Note that if no_quiesce is set, i.e. this cpu
1365          * is required to service interrupts, then we take the route
1366          * that permits interrupt threads to be active (or bypassed).
1367          */
1368         bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1369 
1370 again:  for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1371                 if (loop_count >= 5) {
1372                         error = EBUSY;  /* some threads still bound */
1373                         break;
1374                 }
1375 
1376                 /*
1377                  * If some threads were assigned, give them
1378                  * a chance to complete or move.
1379                  *
1380                  * This assumes that the clock_thread is not bound
1381                  * to any CPU, because the clock_thread is needed to
1382                  * do the delay(hz/100).
1383                  *
1384                  * Note: we still hold the cpu_lock while waiting for
1385                  * the next clock tick.  This is OK since it isn't
1386                  * needed for anything else except processor_bind(2),
1387                  * and system initialization.  If we drop the lock,
1388                  * we would risk another p_online disabling the last
1389                  * processor.
1390                  */
1391                 delay(hz/100);
1392         }
1393 
1394         if (error == 0 && callout_off == 0) {
1395                 callout_cpu_offline(cp);
1396                 callout_off = 1;
1397         }
1398 
1399         if (error == 0 && cyclic_off == 0) {
1400                 if (!cyclic_offline(cp)) {
1401                         /*
1402                          * We must have bound cyclics...
1403                          */
1404                         error = EBUSY;
1405                         goto out;
1406                 }
1407                 cyclic_off = 1;
1408         }
1409 
1410         /*
1411          * Call mp_cpu_stop() to perform any special operations
1412          * needed for this machine architecture to offline a CPU.
1413          */
1414         if (error == 0)
1415                 error = mp_cpu_stop(cp);        /* arch-dep hook */
1416 
1417         /*
1418          * If that all worked, take the CPU offline and decrement
1419          * ncpus_online.
1420          */
1421         if (error == 0) {
1422                 /*
1423                  * Put all the cpus into a known safe place.
1424                  * No mutexes can be entered while CPUs are paused.
1425                  */
1426                 pause_cpus(cp, NULL);
1427                 /*
1428                  * Repeat the operation, if necessary, to make sure that
1429                  * all outstanding low-level interrupts run to completion
1430                  * before we set the CPU_QUIESCED flag.  It's also possible
1431                  * that a thread has weak bound to the cpu despite our raising
1432                  * cpu_inmotion above since it may have loaded that
1433                  * value before the barrier became visible (this would have
1434                  * to be the thread that was on the target cpu at the time
1435                  * we raised the barrier).
1436                  */
1437                 if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1438                     (*bound_func)(cp, 1)) {
1439                         start_cpus();
1440                         (void) mp_cpu_start(cp);
1441                         goto again;
1442                 }
1443                 ncp = cp->cpu_next_part;
1444                 cpu_lpl = cp->cpu_lpl;
1445                 ASSERT(cpu_lpl != NULL);
1446 
1447                 /*
1448                  * Remove the CPU from the list of active CPUs.
1449                  */
1450                 cpu_remove_active(cp);
1451 
1452                 /*
1453                  * Walk the active process list and look for threads
1454                  * whose home lgroup needs to be updated, or
1455                  * the last CPU they run on is the one being offlined now.
1456                  */
1457 
1458                 ASSERT(curthread->t_cpu != cp);
1459                 for (p = practive; p != NULL; p = p->p_next) {
1460 
1461                         t = p->p_tlist;
1462 
1463                         if (t == NULL)
1464                                 continue;
1465 
1466                         lgrp_diff_lpl = 0;
1467 
1468                         do {
1469                                 ASSERT(t->t_lpl != NULL);
1470                                 /*
1471                                  * Taking last CPU in lpl offline
1472                                  * Rehome thread if it is in this lpl
1473                                  * Otherwise, update the count of how many
1474                                  * threads are in this CPU's lgroup but have
1475                                  * a different lpl.
1476                                  */
1477 
1478                                 if (cpu_lpl->lpl_ncpu == 0) {
1479                                         if (t->t_lpl == cpu_lpl)
1480                                                 lgrp_move_thread(t,
1481                                                     lgrp_choose(t,
1482                                                     t->t_cpupart), 0);
1483                                         else if (t->t_lpl->lpl_lgrpid ==
1484                                             cpu_lpl->lpl_lgrpid)
1485                                                 lgrp_diff_lpl++;
1486                                 }
1487                                 ASSERT(t->t_lpl->lpl_ncpu > 0);
1488 
1489                                 /*
1490                                  * Update CPU last ran on if it was this CPU
1491                                  */
1492                                 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1493                                         t->t_cpu = disp_lowpri_cpu(ncp,
1494                                             t->t_lpl, t->t_pri, NULL);
1495                                 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1496                                     t->t_weakbound_cpu == cp);
1497 
1498                                 t = t->t_forw;
1499                         } while (t != p->p_tlist);
1500 
1501                         /*
1502                          * Didn't find any threads in the same lgroup as this
1503                          * CPU with a different lpl, so remove the lgroup from
1504                          * the process lgroup bitmask.
1505                          */
1506 
1507                         if (lgrp_diff_lpl == 0)
1508                                 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1509                 }
1510 
1511                 /*
1512                  * Walk thread list looking for threads that need to be
1513                  * rehomed, since there are some threads that are not in
1514                  * their process's p_tlist.
1515                  */
1516 
1517                 t = curthread;
1518                 do {
1519                         ASSERT(t != NULL && t->t_lpl != NULL);
1520 
1521                         /*
1522                          * Rehome threads with same lpl as this CPU when this
1523                          * is the last CPU in the lpl.
1524                          */
1525 
1526                         if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1527                                 lgrp_move_thread(t,
1528                                     lgrp_choose(t, t->t_cpupart), 1);
1529 
1530                         ASSERT(t->t_lpl->lpl_ncpu > 0);
1531 
1532                         /*
1533                          * Update CPU last ran on if it was this CPU
1534                          */
1535 
1536                         if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1537                                 t->t_cpu = disp_lowpri_cpu(ncp,
1538                                     t->t_lpl, t->t_pri, NULL);
1539                         }
1540                         ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1541                             t->t_weakbound_cpu == cp);
1542                         t = t->t_next;
1543 
1544                 } while (t != curthread);
1545                 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1546                 cp->cpu_flags |= CPU_OFFLINE;
1547                 disp_cpu_inactive(cp);
1548                 if (!no_quiesce)
1549                         cp->cpu_flags |= CPU_QUIESCED;
1550                 ncpus_online--;
1551                 cpu_set_state(cp);
1552                 cpu_inmotion = NULL;
1553                 start_cpus();
1554                 cpu_stats_kstat_destroy(cp);
1555                 cpu_delete_intrstat(cp);
1556                 lgrp_kstat_destroy(cp);
1557         }
1558 
1559 out:
1560         cpu_inmotion = NULL;
1561 
1562         /*
1563          * If we failed, re-enable interrupts.
1564          * Do this even if cpu_intr_disable returned an error, because
1565          * it may have partially disabled interrupts.
1566          */
1567         if (error && intr_enable)
1568                 cpu_intr_enable(cp);
1569 
1570         /*
1571          * If we failed, but managed to offline the cyclic subsystem on this
1572          * CPU, bring it back online.
1573          */
1574         if (error && cyclic_off)
1575                 cyclic_online(cp);
1576 
1577         /*
1578          * If we failed, but managed to offline callouts on this CPU,
1579          * bring it back online.
1580          */
1581         if (error && callout_off)
1582                 callout_cpu_online(cp);
1583 
1584         /*
1585          * If we failed, tell the PG subsystem that the CPU is back
1586          */
1587         pg_cpupart_in(cp, pp);
1588 
1589         /*
1590          * If we failed, we need to notify everyone that this CPU is back on.
1591          */
1592         if (error != 0) {
1593                 CPU_NEW_GENERATION(cp);
1594                 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1595                 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1596         }
1597 
1598         return (error);
1599 }
1600 
1601 /*
1602  * Mark the indicated CPU as faulted, taking it offline.
1603  */
1604 int
1605 cpu_faulted(cpu_t *cp, int flags)
1606 {
1607         int     error = 0;
1608 
1609         ASSERT(MUTEX_HELD(&cpu_lock));
1610         ASSERT(!cpu_is_poweredoff(cp));
1611 
1612         if (cpu_is_offline(cp)) {
1613                 cp->cpu_flags &= ~CPU_SPARE;
1614                 cp->cpu_flags |= CPU_FAULTED;
1615                 mp_cpu_faulted_enter(cp);
1616                 cpu_set_state(cp);
1617                 return (0);
1618         }
1619 
1620         if ((error = cpu_offline(cp, flags)) == 0) {
1621                 cp->cpu_flags |= CPU_FAULTED;
1622                 mp_cpu_faulted_enter(cp);
1623                 cpu_set_state(cp);
1624         }
1625 
1626         return (error);
1627 }
1628 
1629 /*
1630  * Mark the indicated CPU as a spare, taking it offline.
1631  */
1632 int
1633 cpu_spare(cpu_t *cp, int flags)
1634 {
1635         int     error = 0;
1636 
1637         ASSERT(MUTEX_HELD(&cpu_lock));
1638         ASSERT(!cpu_is_poweredoff(cp));
1639 
1640         if (cpu_is_offline(cp)) {
1641                 if (cp->cpu_flags & CPU_FAULTED) {
1642                         cp->cpu_flags &= ~CPU_FAULTED;
1643                         mp_cpu_faulted_exit(cp);
1644                 }
1645                 cp->cpu_flags |= CPU_SPARE;
1646                 cpu_set_state(cp);
1647                 return (0);
1648         }
1649 
1650         if ((error = cpu_offline(cp, flags)) == 0) {
1651                 cp->cpu_flags |= CPU_SPARE;
1652                 cpu_set_state(cp);
1653         }
1654 
1655         return (error);
1656 }
1657 
1658 /*
1659  * Take the indicated CPU from poweroff to offline.
1660  */
1661 int
1662 cpu_poweron(cpu_t *cp)
1663 {
1664         int     error = ENOTSUP;
1665 
1666         ASSERT(MUTEX_HELD(&cpu_lock));
1667         ASSERT(cpu_is_poweredoff(cp));
1668 
1669         error = mp_cpu_poweron(cp);     /* arch-dep hook */
1670         if (error == 0)
1671                 cpu_set_state(cp);
1672 
1673         return (error);
1674 }
1675 
1676 /*
1677  * Take the indicated CPU from any inactive state to powered off.
1678  */
1679 int
1680 cpu_poweroff(cpu_t *cp)
1681 {
1682         int     error = ENOTSUP;
1683 
1684         ASSERT(MUTEX_HELD(&cpu_lock));
1685         ASSERT(cpu_is_offline(cp));
1686 
1687         if (!(cp->cpu_flags & CPU_QUIESCED))
1688                 return (EBUSY);         /* not completely idle */
1689 
1690         error = mp_cpu_poweroff(cp);    /* arch-dep hook */
1691         if (error == 0)
1692                 cpu_set_state(cp);
1693 
1694         return (error);
1695 }
1696 
1697 /*
1698  * Initialize the Sequential CPU id lookup table
1699  */
1700 void
1701 cpu_seq_tbl_init()
1702 {
1703         cpu_t   **tbl;
1704 
1705         tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1706         tbl[0] = CPU;
1707 
1708         cpu_seq = tbl;
1709 }
1710 
1711 /*
1712  * Initialize the CPU lists for the first CPU.
1713  */
1714 void
1715 cpu_list_init(cpu_t *cp)
1716 {
1717         cp->cpu_next = cp;
1718         cp->cpu_prev = cp;
1719         cpu_list = cp;
1720         clock_cpu_list = cp;
1721 
1722         cp->cpu_next_onln = cp;
1723         cp->cpu_prev_onln = cp;
1724         cpu_active = cp;
1725 
1726         cp->cpu_seqid = 0;
1727         CPUSET_ADD(cpu_seqid_inuse, 0);
1728 
1729         /*
1730          * Bootstrap cpu_seq using cpu_list
1731          * The cpu_seq[] table will be dynamically allocated
1732          * when kmem later becomes available (but before going MP)
1733          */
1734         cpu_seq = &cpu_list;
1735 
1736         cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1737         cp_default.cp_cpulist = cp;
1738         cp_default.cp_ncpus = 1;
1739         cp->cpu_next_part = cp;
1740         cp->cpu_prev_part = cp;
1741         cp->cpu_part = &cp_default;
1742 
1743         CPUSET_ADD(cpu_available, cp->cpu_id);
1744         CPUSET_ADD(cpu_active_set, cp->cpu_id);
1745 }
1746 
1747 /*
1748  * Insert a CPU into the list of available CPUs.
1749  */
1750 void
1751 cpu_add_unit(cpu_t *cp)
1752 {
1753         int seqid;
1754 
1755         ASSERT(MUTEX_HELD(&cpu_lock));
1756         ASSERT(cpu_list != NULL);       /* list started in cpu_list_init */
1757 
1758         lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1759 
1760         /*
1761          * Note: most users of the cpu_list will grab the
1762          * cpu_lock to insure that it isn't modified.  However,
1763          * certain users can't or won't do that.  To allow this
1764          * we pause the other cpus.  Users who walk the list
1765          * without cpu_lock, must disable kernel preemption
1766          * to insure that the list isn't modified underneath
1767          * them.  Also, any cached pointers to cpu structures
1768          * must be revalidated by checking to see if the
1769          * cpu_next pointer points to itself.  This check must
1770          * be done with the cpu_lock held or kernel preemption
1771          * disabled.  This check relies upon the fact that
1772          * old cpu structures are not free'ed or cleared after
1773          * then are removed from the cpu_list.
1774          *
1775          * Note that the clock code walks the cpu list dereferencing
1776          * the cpu_part pointer, so we need to initialize it before
1777          * adding the cpu to the list.
1778          */
1779         cp->cpu_part = &cp_default;
1780         pause_cpus(NULL, NULL);
1781         cp->cpu_next = cpu_list;
1782         cp->cpu_prev = cpu_list->cpu_prev;
1783         cpu_list->cpu_prev->cpu_next = cp;
1784         cpu_list->cpu_prev = cp;
1785         start_cpus();
1786 
1787         for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1788                 continue;
1789         CPUSET_ADD(cpu_seqid_inuse, seqid);
1790         cp->cpu_seqid = seqid;
1791 
1792         if (seqid > max_cpu_seqid_ever)
1793                 max_cpu_seqid_ever = seqid;
1794 
1795         ASSERT(ncpus < max_ncpus);
1796         ncpus++;
1797         cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1798         cpu[cp->cpu_id] = cp;
1799         CPUSET_ADD(cpu_available, cp->cpu_id);
1800         cpu_seq[cp->cpu_seqid] = cp;
1801 
1802         /*
1803          * allocate a pause thread for this CPU.
1804          */
1805         cpu_pause_alloc(cp);
1806 
1807         /*
1808          * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1809          * link them into a list of just that CPU.
1810          * This is so that disp_lowpri_cpu will work for thread_create in
1811          * pause_cpus() when called from the startup thread in a new CPU.
1812          */
1813         cp->cpu_next_onln = cp;
1814         cp->cpu_prev_onln = cp;
1815         cpu_info_kstat_create(cp);
1816         cp->cpu_next_part = cp;
1817         cp->cpu_prev_part = cp;
1818 
1819         init_cpu_mstate(cp, CMS_SYSTEM);
1820 
1821         pool_pset_mod = gethrtime();
1822 }
1823 
1824 /*
1825  * Do the opposite of cpu_add_unit().
1826  */
1827 void
1828 cpu_del_unit(int cpuid)
1829 {
1830         struct cpu      *cp, *cpnext;
1831 
1832         ASSERT(MUTEX_HELD(&cpu_lock));
1833         cp = cpu[cpuid];
1834         ASSERT(cp != NULL);
1835 
1836         ASSERT(cp->cpu_next_onln == cp);
1837         ASSERT(cp->cpu_prev_onln == cp);
1838         ASSERT(cp->cpu_next_part == cp);
1839         ASSERT(cp->cpu_prev_part == cp);
1840 
1841         /*
1842          * Tear down the CPU's physical ID cache, and update any
1843          * processor groups
1844          */
1845         pg_cpu_fini(cp, NULL);
1846         pghw_physid_destroy(cp);
1847 
1848         /*
1849          * Destroy kstat stuff.
1850          */
1851         cpu_info_kstat_destroy(cp);
1852         term_cpu_mstate(cp);
1853         /*
1854          * Free up pause thread.
1855          */
1856         cpu_pause_free(cp);
1857         CPUSET_DEL(cpu_available, cp->cpu_id);
1858         cpu[cp->cpu_id] = NULL;
1859         cpu_seq[cp->cpu_seqid] = NULL;
1860 
1861         /*
1862          * The clock thread and mutex_vector_enter cannot hold the
1863          * cpu_lock while traversing the cpu list, therefore we pause
1864          * all other threads by pausing the other cpus. These, and any
1865          * other routines holding cpu pointers while possibly sleeping
1866          * must be sure to call kpreempt_disable before processing the
1867          * list and be sure to check that the cpu has not been deleted
1868          * after any sleeps (check cp->cpu_next != NULL). We guarantee
1869          * to keep the deleted cpu structure around.
1870          *
1871          * Note that this MUST be done AFTER cpu_available
1872          * has been updated so that we don't waste time
1873          * trying to pause the cpu we're trying to delete.
1874          */
1875         pause_cpus(NULL, NULL);
1876 
1877         cpnext = cp->cpu_next;
1878         cp->cpu_prev->cpu_next = cp->cpu_next;
1879         cp->cpu_next->cpu_prev = cp->cpu_prev;
1880         if (cp == cpu_list)
1881                 cpu_list = cpnext;
1882 
1883         /*
1884          * Signals that the cpu has been deleted (see above).
1885          */
1886         cp->cpu_next = NULL;
1887         cp->cpu_prev = NULL;
1888 
1889         start_cpus();
1890 
1891         CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1892         ncpus--;
1893         lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1894 
1895         pool_pset_mod = gethrtime();
1896 }
1897 
1898 /*
1899  * Add a CPU to the list of active CPUs.
1900  *      This routine must not get any locks, because other CPUs are paused.
1901  */
1902 static void
1903 cpu_add_active_internal(cpu_t *cp)
1904 {
1905         cpupart_t       *pp = cp->cpu_part;
1906 
1907         ASSERT(MUTEX_HELD(&cpu_lock));
1908         ASSERT(cpu_list != NULL);       /* list started in cpu_list_init */
1909 
1910         ncpus_online++;
1911         cpu_set_state(cp);
1912         cp->cpu_next_onln = cpu_active;
1913         cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1914         cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1915         cpu_active->cpu_prev_onln = cp;
1916         CPUSET_ADD(cpu_active_set, cp->cpu_id);
1917 
1918         if (pp->cp_cpulist) {
1919                 cp->cpu_next_part = pp->cp_cpulist;
1920                 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1921                 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1922                 pp->cp_cpulist->cpu_prev_part = cp;
1923         } else {
1924                 ASSERT(pp->cp_ncpus == 0);
1925                 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1926         }
1927         pp->cp_ncpus++;
1928         if (pp->cp_ncpus == 1) {
1929                 cp_numparts_nonempty++;
1930                 ASSERT(cp_numparts_nonempty != 0);
1931         }
1932 
1933         pg_cpu_active(cp);
1934         lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1935 
1936         bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1937 }
1938 
1939 /*
1940  * Add a CPU to the list of active CPUs.
1941  *      This is called from machine-dependent layers when a new CPU is started.
1942  */
1943 void
1944 cpu_add_active(cpu_t *cp)
1945 {
1946         pg_cpupart_in(cp, cp->cpu_part);
1947 
1948         pause_cpus(NULL, NULL);
1949         cpu_add_active_internal(cp);
1950         start_cpus();
1951 
1952         cpu_stats_kstat_create(cp);
1953         cpu_create_intrstat(cp);
1954         lgrp_kstat_create(cp);
1955         cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1956 }
1957 
1958 
1959 /*
1960  * Remove a CPU from the list of active CPUs.
1961  *      This routine must not get any locks, because other CPUs are paused.
1962  */
1963 /* ARGSUSED */
1964 static void
1965 cpu_remove_active(cpu_t *cp)
1966 {
1967         cpupart_t       *pp = cp->cpu_part;
1968 
1969         ASSERT(MUTEX_HELD(&cpu_lock));
1970         ASSERT(cp->cpu_next_onln != cp);     /* not the last one */
1971         ASSERT(cp->cpu_prev_onln != cp);     /* not the last one */
1972 
1973         pg_cpu_inactive(cp);
1974 
1975         lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1976 
1977         if (cp == clock_cpu_list)
1978                 clock_cpu_list = cp->cpu_next_onln;
1979 
1980         cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1981         cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1982         if (cpu_active == cp) {
1983                 cpu_active = cp->cpu_next_onln;
1984         }
1985         cp->cpu_next_onln = cp;
1986         cp->cpu_prev_onln = cp;
1987         CPUSET_DEL(cpu_active_set, cp->cpu_id);
1988 
1989         cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1990         cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1991         if (pp->cp_cpulist == cp) {
1992                 pp->cp_cpulist = cp->cpu_next_part;
1993                 ASSERT(pp->cp_cpulist != cp);
1994         }
1995         cp->cpu_next_part = cp;
1996         cp->cpu_prev_part = cp;
1997         pp->cp_ncpus--;
1998         if (pp->cp_ncpus == 0) {
1999                 cp_numparts_nonempty--;
2000                 ASSERT(cp_numparts_nonempty != 0);
2001         }
2002 }
2003 
2004 /*
2005  * Routine used to setup a newly inserted CPU in preparation for starting
2006  * it running code.
2007  */
2008 int
2009 cpu_configure(int cpuid)
2010 {
2011         int retval = 0;
2012 
2013         ASSERT(MUTEX_HELD(&cpu_lock));
2014 
2015         /*
2016          * Some structures are statically allocated based upon
2017          * the maximum number of cpus the system supports.  Do not
2018          * try to add anything beyond this limit.
2019          */
2020         if (cpuid < 0 || cpuid >= NCPU) {
2021                 return (EINVAL);
2022         }
2023 
2024         if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
2025                 return (EALREADY);
2026         }
2027 
2028         if ((retval = mp_cpu_configure(cpuid)) != 0) {
2029                 return (retval);
2030         }
2031 
2032         cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2033         cpu_set_state(cpu[cpuid]);
2034         retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2035         if (retval != 0)
2036                 (void) mp_cpu_unconfigure(cpuid);
2037 
2038         return (retval);
2039 }
2040 
2041 /*
2042  * Routine used to cleanup a CPU that has been powered off.  This will
2043  * destroy all per-cpu information related to this cpu.
2044  */
2045 int
2046 cpu_unconfigure(int cpuid)
2047 {
2048         int error;
2049 
2050         ASSERT(MUTEX_HELD(&cpu_lock));
2051 
2052         if (cpu[cpuid] == NULL) {
2053                 return (ENODEV);
2054         }
2055 
2056         if (cpu[cpuid]->cpu_flags == 0) {
2057                 return (EALREADY);
2058         }
2059 
2060         if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2061                 return (EBUSY);
2062         }
2063 
2064         if (cpu[cpuid]->cpu_props != NULL) {
2065                 (void) nvlist_free(cpu[cpuid]->cpu_props);
2066                 cpu[cpuid]->cpu_props = NULL;
2067         }
2068 
2069         error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2070 
2071         if (error != 0)
2072                 return (error);
2073 
2074         return (mp_cpu_unconfigure(cpuid));
2075 }
2076 
2077 /*
2078  * Routines for registering and de-registering cpu_setup callback functions.
2079  *
2080  * Caller's context
2081  *      These routines must not be called from a driver's attach(9E) or
2082  *      detach(9E) entry point.
2083  *
2084  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2085  */
2086 
2087 /*
2088  * Ideally, these would be dynamically allocated and put into a linked
2089  * list; however that is not feasible because the registration routine
2090  * has to be available before the kmem allocator is working (in fact,
2091  * it is called by the kmem allocator init code).  In any case, there
2092  * are quite a few extra entries for future users.
2093  */
2094 #define NCPU_SETUPS     20
2095 
2096 struct cpu_setup {
2097         cpu_setup_func_t *func;
2098         void *arg;
2099 } cpu_setups[NCPU_SETUPS];
2100 
2101 void
2102 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2103 {
2104         int i;
2105 
2106         ASSERT(MUTEX_HELD(&cpu_lock));
2107 
2108         for (i = 0; i < NCPU_SETUPS; i++)
2109                 if (cpu_setups[i].func == NULL)
2110                         break;
2111         if (i >= NCPU_SETUPS)
2112                 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2113 
2114         cpu_setups[i].func = func;
2115         cpu_setups[i].arg = arg;
2116 }
2117 
2118 void
2119 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2120 {
2121         int i;
2122 
2123         ASSERT(MUTEX_HELD(&cpu_lock));
2124 
2125         for (i = 0; i < NCPU_SETUPS; i++)
2126                 if ((cpu_setups[i].func == func) &&
2127                     (cpu_setups[i].arg == arg))
2128                         break;
2129         if (i >= NCPU_SETUPS)
2130                 cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2131                     "deregister");
2132 
2133         cpu_setups[i].func = NULL;
2134         cpu_setups[i].arg = 0;
2135 }
2136 
2137 /*
2138  * Call any state change hooks for this CPU, ignore any errors.
2139  */
2140 void
2141 cpu_state_change_notify(int id, cpu_setup_t what)
2142 {
2143         int i;
2144 
2145         ASSERT(MUTEX_HELD(&cpu_lock));
2146 
2147         for (i = 0; i < NCPU_SETUPS; i++) {
2148                 if (cpu_setups[i].func != NULL) {
2149                         cpu_setups[i].func(what, id, cpu_setups[i].arg);
2150                 }
2151         }
2152 }
2153 
2154 /*
2155  * Call any state change hooks for this CPU, undo it if error found.
2156  */
2157 static int
2158 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2159 {
2160         int i;
2161         int retval = 0;
2162 
2163         ASSERT(MUTEX_HELD(&cpu_lock));
2164 
2165         for (i = 0; i < NCPU_SETUPS; i++) {
2166                 if (cpu_setups[i].func != NULL) {
2167                         retval = cpu_setups[i].func(what, id,
2168                             cpu_setups[i].arg);
2169                         if (retval) {
2170                                 for (i--; i >= 0; i--) {
2171                                         if (cpu_setups[i].func != NULL)
2172                                                 cpu_setups[i].func(undo,
2173                                                     id, cpu_setups[i].arg);
2174                                 }
2175                                 break;
2176                         }
2177                 }
2178         }
2179         return (retval);
2180 }
2181 
2182 /*
2183  * Export information about this CPU via the kstat mechanism.
2184  */
2185 static struct {
2186         kstat_named_t ci_state;
2187         kstat_named_t ci_state_begin;
2188         kstat_named_t ci_cpu_type;
2189         kstat_named_t ci_fpu_type;
2190         kstat_named_t ci_clock_MHz;
2191         kstat_named_t ci_chip_id;
2192         kstat_named_t ci_implementation;
2193         kstat_named_t ci_brandstr;
2194         kstat_named_t ci_core_id;
2195         kstat_named_t ci_curr_clock_Hz;
2196         kstat_named_t ci_supp_freq_Hz;
2197         kstat_named_t ci_pg_id;
2198 #if defined(__sparcv9)
2199         kstat_named_t ci_device_ID;
2200         kstat_named_t ci_cpu_fru;
2201 #endif
2202 #if defined(__x86)
2203         kstat_named_t ci_vendorstr;
2204         kstat_named_t ci_family;
2205         kstat_named_t ci_model;
2206         kstat_named_t ci_step;
2207         kstat_named_t ci_clogid;
2208         kstat_named_t ci_pkg_core_id;
2209         kstat_named_t ci_ncpuperchip;
2210         kstat_named_t ci_ncoreperchip;
2211         kstat_named_t ci_max_cstates;
2212         kstat_named_t ci_curr_cstate;
2213         kstat_named_t ci_cacheid;
2214         kstat_named_t ci_sktstr;
2215 #endif
2216 } cpu_info_template = {
2217         { "state",                      KSTAT_DATA_CHAR },
2218         { "state_begin",                KSTAT_DATA_LONG },
2219         { "cpu_type",                   KSTAT_DATA_CHAR },
2220         { "fpu_type",                   KSTAT_DATA_CHAR },
2221         { "clock_MHz",                  KSTAT_DATA_LONG },
2222         { "chip_id",                    KSTAT_DATA_LONG },
2223         { "implementation",             KSTAT_DATA_STRING },
2224         { "brand",                      KSTAT_DATA_STRING },
2225         { "core_id",                    KSTAT_DATA_LONG },
2226         { "current_clock_Hz",           KSTAT_DATA_UINT64 },
2227         { "supported_frequencies_Hz",   KSTAT_DATA_STRING },
2228         { "pg_id",                      KSTAT_DATA_LONG },
2229 #if defined(__sparcv9)
2230         { "device_ID",                  KSTAT_DATA_UINT64 },
2231         { "cpu_fru",                    KSTAT_DATA_STRING },
2232 #endif
2233 #if defined(__x86)
2234         { "vendor_id",                  KSTAT_DATA_STRING },
2235         { "family",                     KSTAT_DATA_INT32 },
2236         { "model",                      KSTAT_DATA_INT32 },
2237         { "stepping",                   KSTAT_DATA_INT32 },
2238         { "clog_id",                    KSTAT_DATA_INT32 },
2239         { "pkg_core_id",                KSTAT_DATA_LONG },
2240         { "ncpu_per_chip",              KSTAT_DATA_INT32 },
2241         { "ncore_per_chip",             KSTAT_DATA_INT32 },
2242         { "supported_max_cstates",      KSTAT_DATA_INT32 },
2243         { "current_cstate",             KSTAT_DATA_INT32 },
2244         { "cache_id",                   KSTAT_DATA_INT32 },
2245         { "socket_type",                KSTAT_DATA_STRING },
2246 #endif
2247 };
2248 
2249 static kmutex_t cpu_info_template_lock;
2250 
2251 static int
2252 cpu_info_kstat_update(kstat_t *ksp, int rw)
2253 {
2254         cpu_t   *cp = ksp->ks_private;
2255         const char *pi_state;
2256 
2257         if (rw == KSTAT_WRITE)
2258                 return (EACCES);
2259 
2260 #if defined(__x86)
2261         /* Is the cpu still initialising itself? */
2262         if (cpuid_checkpass(cp, 1) == 0)
2263                 return (ENXIO);
2264 #endif
2265         switch (cp->cpu_type_info.pi_state) {
2266         case P_ONLINE:
2267                 pi_state = PS_ONLINE;
2268                 break;
2269         case P_POWEROFF:
2270                 pi_state = PS_POWEROFF;
2271                 break;
2272         case P_NOINTR:
2273                 pi_state = PS_NOINTR;
2274                 break;
2275         case P_FAULTED:
2276                 pi_state = PS_FAULTED;
2277                 break;
2278         case P_SPARE:
2279                 pi_state = PS_SPARE;
2280                 break;
2281         case P_OFFLINE:
2282                 pi_state = PS_OFFLINE;
2283                 break;
2284         default:
2285                 pi_state = "unknown";
2286         }
2287         (void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2288         cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2289         (void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2290             cp->cpu_type_info.pi_processor_type, 15);
2291         (void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2292             cp->cpu_type_info.pi_fputypes, 15);
2293         cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2294         cpu_info_template.ci_chip_id.value.l =
2295             pg_plat_hw_instance_id(cp, PGHW_CHIP);
2296         kstat_named_setstr(&cpu_info_template.ci_implementation,
2297             cp->cpu_idstr);
2298         kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2299         cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2300         cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2301             cp->cpu_curr_clock;
2302         cpu_info_template.ci_pg_id.value.l =
2303             cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2304             cp->cpu_pg->cmt_lineage->pg_id : -1;
2305         kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2306             cp->cpu_supp_freqs);
2307 #if defined(__sparcv9)
2308         cpu_info_template.ci_device_ID.value.ui64 =
2309             cpunodes[cp->cpu_id].device_id;
2310         kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2311 #endif
2312 #if defined(__x86)
2313         kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2314             cpuid_getvendorstr(cp));
2315         cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2316         cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2317         cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2318         cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2319         cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2320         cpu_info_template.ci_ncoreperchip.value.l =
2321             cpuid_get_ncore_per_chip(cp);
2322         cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2323         cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2324         cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2325         cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2326         kstat_named_setstr(&cpu_info_template.ci_sktstr,
2327             cpuid_getsocketstr(cp));
2328 #endif
2329 
2330         return (0);
2331 }
2332 
2333 static void
2334 cpu_info_kstat_create(cpu_t *cp)
2335 {
2336         zoneid_t zoneid;
2337 
2338         ASSERT(MUTEX_HELD(&cpu_lock));
2339 
2340         if (pool_pset_enabled())
2341                 zoneid = GLOBAL_ZONEID;
2342         else
2343                 zoneid = ALL_ZONES;
2344         if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2345             NULL, "misc", KSTAT_TYPE_NAMED,
2346             sizeof (cpu_info_template) / sizeof (kstat_named_t),
2347             KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2348                 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2349 #if defined(__sparcv9)
2350                 cp->cpu_info_kstat->ks_data_size +=
2351                     strlen(cpu_fru_fmri(cp)) + 1;
2352 #endif
2353 #if defined(__x86)
2354                 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2355 #endif
2356                 if (cp->cpu_supp_freqs != NULL)
2357                         cp->cpu_info_kstat->ks_data_size +=
2358                             strlen(cp->cpu_supp_freqs) + 1;
2359                 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2360                 cp->cpu_info_kstat->ks_data = &cpu_info_template;
2361                 cp->cpu_info_kstat->ks_private = cp;
2362                 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2363                 kstat_install(cp->cpu_info_kstat);
2364         }
2365 }
2366 
2367 static void
2368 cpu_info_kstat_destroy(cpu_t *cp)
2369 {
2370         ASSERT(MUTEX_HELD(&cpu_lock));
2371 
2372         kstat_delete(cp->cpu_info_kstat);
2373         cp->cpu_info_kstat = NULL;
2374 }
2375 
2376 /*
2377  * Create and install kstats for the boot CPU.
2378  */
2379 void
2380 cpu_kstat_init(cpu_t *cp)
2381 {
2382         mutex_enter(&cpu_lock);
2383         cpu_info_kstat_create(cp);
2384         cpu_stats_kstat_create(cp);
2385         cpu_create_intrstat(cp);
2386         cpu_set_state(cp);
2387         mutex_exit(&cpu_lock);
2388 }
2389 
2390 /*
2391  * Make visible to the zone that subset of the cpu information that would be
2392  * initialized when a cpu is configured (but still offline).
2393  */
2394 void
2395 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2396 {
2397         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2398 
2399         ASSERT(MUTEX_HELD(&cpu_lock));
2400         ASSERT(pool_pset_enabled());
2401         ASSERT(cp != NULL);
2402 
2403         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2404                 zone->zone_ncpus++;
2405                 ASSERT(zone->zone_ncpus <= ncpus);
2406         }
2407         if (cp->cpu_info_kstat != NULL)
2408                 kstat_zone_add(cp->cpu_info_kstat, zoneid);
2409 }
2410 
2411 /*
2412  * Make visible to the zone that subset of the cpu information that would be
2413  * initialized when a previously configured cpu is onlined.
2414  */
2415 void
2416 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2417 {
2418         kstat_t *ksp;
2419         char name[sizeof ("cpu_stat") + 10];    /* enough for 32-bit cpuids */
2420         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2421         processorid_t cpun;
2422 
2423         ASSERT(MUTEX_HELD(&cpu_lock));
2424         ASSERT(pool_pset_enabled());
2425         ASSERT(cp != NULL);
2426         ASSERT(cpu_is_active(cp));
2427 
2428         cpun = cp->cpu_id;
2429         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2430                 zone->zone_ncpus_online++;
2431                 ASSERT(zone->zone_ncpus_online <= ncpus_online);
2432         }
2433         (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2434         if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2435             != NULL) {
2436                 kstat_zone_add(ksp, zoneid);
2437                 kstat_rele(ksp);
2438         }
2439         if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2440                 kstat_zone_add(ksp, zoneid);
2441                 kstat_rele(ksp);
2442         }
2443         if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2444                 kstat_zone_add(ksp, zoneid);
2445                 kstat_rele(ksp);
2446         }
2447         if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2448             NULL) {
2449                 kstat_zone_add(ksp, zoneid);
2450                 kstat_rele(ksp);
2451         }
2452 }
2453 
2454 /*
2455  * Update relevant kstats such that cpu is now visible to processes
2456  * executing in specified zone.
2457  */
2458 void
2459 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2460 {
2461         cpu_visibility_configure(cp, zone);
2462         if (cpu_is_active(cp))
2463                 cpu_visibility_online(cp, zone);
2464 }
2465 
2466 /*
2467  * Make invisible to the zone that subset of the cpu information that would be
2468  * torn down when a previously offlined cpu is unconfigured.
2469  */
2470 void
2471 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2472 {
2473         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2474 
2475         ASSERT(MUTEX_HELD(&cpu_lock));
2476         ASSERT(pool_pset_enabled());
2477         ASSERT(cp != NULL);
2478 
2479         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2480                 ASSERT(zone->zone_ncpus != 0);
2481                 zone->zone_ncpus--;
2482         }
2483         if (cp->cpu_info_kstat)
2484                 kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2485 }
2486 
2487 /*
2488  * Make invisible to the zone that subset of the cpu information that would be
2489  * torn down when a cpu is offlined (but still configured).
2490  */
2491 void
2492 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2493 {
2494         kstat_t *ksp;
2495         char name[sizeof ("cpu_stat") + 10];    /* enough for 32-bit cpuids */
2496         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2497         processorid_t cpun;
2498 
2499         ASSERT(MUTEX_HELD(&cpu_lock));
2500         ASSERT(pool_pset_enabled());
2501         ASSERT(cp != NULL);
2502         ASSERT(cpu_is_active(cp));
2503 
2504         cpun = cp->cpu_id;
2505         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2506                 ASSERT(zone->zone_ncpus_online != 0);
2507                 zone->zone_ncpus_online--;
2508         }
2509 
2510         if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2511             NULL) {
2512                 kstat_zone_remove(ksp, zoneid);
2513                 kstat_rele(ksp);
2514         }
2515         if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2516                 kstat_zone_remove(ksp, zoneid);
2517                 kstat_rele(ksp);
2518         }
2519         if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2520                 kstat_zone_remove(ksp, zoneid);
2521                 kstat_rele(ksp);
2522         }
2523         (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2524         if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2525             != NULL) {
2526                 kstat_zone_remove(ksp, zoneid);
2527                 kstat_rele(ksp);
2528         }
2529 }
2530 
2531 /*
2532  * Update relevant kstats such that cpu is no longer visible to processes
2533  * executing in specified zone.
2534  */
2535 void
2536 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2537 {
2538         if (cpu_is_active(cp))
2539                 cpu_visibility_offline(cp, zone);
2540         cpu_visibility_unconfigure(cp, zone);
2541 }
2542 
2543 /*
2544  * Bind a thread to a CPU as requested.
2545  */
2546 int
2547 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2548     int *error)
2549 {
2550         processorid_t   binding;
2551         cpu_t           *cp = NULL;
2552 
2553         ASSERT(MUTEX_HELD(&cpu_lock));
2554         ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2555 
2556         thread_lock(tp);
2557 
2558         /*
2559          * Record old binding, but change the obind, which was initialized
2560          * to PBIND_NONE, only if this thread has a binding.  This avoids
2561          * reporting PBIND_NONE for a process when some LWPs are bound.
2562          */
2563         binding = tp->t_bind_cpu;
2564         if (binding != PBIND_NONE)
2565                 *obind = binding;       /* record old binding */
2566 
2567         switch (bind) {
2568         case PBIND_QUERY:
2569                 /* Just return the old binding */
2570                 thread_unlock(tp);
2571                 return (0);
2572 
2573         case PBIND_QUERY_TYPE:
2574                 /* Return the binding type */
2575                 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2576                 thread_unlock(tp);
2577                 return (0);
2578 
2579         case PBIND_SOFT:
2580                 /*
2581                  *  Set soft binding for this thread and return the actual
2582                  *  binding
2583                  */
2584                 TB_CPU_SOFT_SET(tp);
2585                 thread_unlock(tp);
2586                 return (0);
2587 
2588         case PBIND_HARD:
2589                 /*
2590                  *  Set hard binding for this thread and return the actual
2591                  *  binding
2592                  */
2593                 TB_CPU_HARD_SET(tp);
2594                 thread_unlock(tp);
2595                 return (0);
2596 
2597         default:
2598                 break;
2599         }
2600 
2601         /*
2602          * If this thread/LWP cannot be bound because of permission
2603          * problems, just note that and return success so that the
2604          * other threads/LWPs will be bound.  This is the way
2605          * processor_bind() is defined to work.
2606          *
2607          * Binding will get EPERM if the thread is of system class
2608          * or hasprocperm() fails.
2609          */
2610         if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2611                 *error = EPERM;
2612                 thread_unlock(tp);
2613                 return (0);
2614         }
2615 
2616         binding = bind;
2617         if (binding != PBIND_NONE) {
2618                 cp = cpu_get((processorid_t)binding);
2619                 /*
2620                  * Make sure binding is valid and is in right partition.
2621                  */
2622                 if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2623                         *error = EINVAL;
2624                         thread_unlock(tp);
2625                         return (0);
2626                 }
2627         }
2628         tp->t_bind_cpu = binding;    /* set new binding */
2629 
2630         /*
2631          * If there is no system-set reason for affinity, set
2632          * the t_bound_cpu field to reflect the binding.
2633          */
2634         if (tp->t_affinitycnt == 0) {
2635                 if (binding == PBIND_NONE) {
2636                         /*
2637                          * We may need to adjust disp_max_unbound_pri
2638                          * since we're becoming unbound.
2639                          */
2640                         disp_adjust_unbound_pri(tp);
2641 
2642                         tp->t_bound_cpu = NULL;      /* set new binding */
2643 
2644                         /*
2645                          * Move thread to lgroup with strongest affinity
2646                          * after unbinding
2647                          */
2648                         if (tp->t_lgrp_affinity)
2649                                 lgrp_move_thread(tp,
2650                                     lgrp_choose(tp, tp->t_cpupart), 1);
2651 
2652                         if (tp->t_state == TS_ONPROC &&
2653                             tp->t_cpu->cpu_part != tp->t_cpupart)
2654                                 cpu_surrender(tp);
2655                 } else {
2656                         lpl_t   *lpl;
2657 
2658                         tp->t_bound_cpu = cp;
2659                         ASSERT(cp->cpu_lpl != NULL);
2660 
2661                         /*
2662                          * Set home to lgroup with most affinity containing CPU
2663                          * that thread is being bound or minimum bounding
2664                          * lgroup if no affinities set
2665                          */
2666                         if (tp->t_lgrp_affinity)
2667                                 lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2668                                     LGRP_NONE, B_FALSE);
2669                         else
2670                                 lpl = cp->cpu_lpl;
2671 
2672                         if (tp->t_lpl != lpl) {
2673                                 /* can't grab cpu_lock */
2674                                 lgrp_move_thread(tp, lpl, 1);
2675                         }
2676 
2677                         /*
2678                          * Make the thread switch to the bound CPU.
2679                          * If the thread is runnable, we need to
2680                          * requeue it even if t_cpu is already set
2681                          * to the right CPU, since it may be on a
2682                          * kpreempt queue and need to move to a local
2683                          * queue.  We could check t_disp_queue to
2684                          * avoid unnecessary overhead if it's already
2685                          * on the right queue, but since this isn't
2686                          * a performance-critical operation it doesn't
2687                          * seem worth the extra code and complexity.
2688                          *
2689                          * If the thread is weakbound to the cpu then it will
2690                          * resist the new binding request until the weak
2691                          * binding drops.  The cpu_surrender or requeueing
2692                          * below could be skipped in such cases (since it
2693                          * will have no effect), but that would require
2694                          * thread_allowmigrate to acquire thread_lock so
2695                          * we'll take the very occasional hit here instead.
2696                          */
2697                         if (tp->t_state == TS_ONPROC) {
2698                                 cpu_surrender(tp);
2699                         } else if (tp->t_state == TS_RUN) {
2700                                 cpu_t *ocp = tp->t_cpu;
2701 
2702                                 (void) dispdeq(tp);
2703                                 setbackdq(tp);
2704                                 /*
2705                                  * Either on the bound CPU's disp queue now,
2706                                  * or swapped out or on the swap queue.
2707                                  */
2708                                 ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2709                                     tp->t_weakbound_cpu == ocp ||
2710                                     (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2711                                     != TS_LOAD);
2712                         }
2713                 }
2714         }
2715 
2716         /*
2717          * Our binding has changed; set TP_CHANGEBIND.
2718          */
2719         tp->t_proc_flag |= TP_CHANGEBIND;
2720         aston(tp);
2721 
2722         thread_unlock(tp);
2723 
2724         return (0);
2725 }
2726 
2727 
2728 cpuset_t *
2729 cpuset_alloc(int kmflags)
2730 {
2731         return (kmem_alloc(sizeof (cpuset_t), kmflags));
2732 }
2733 
2734 void
2735 cpuset_free(cpuset_t *s)
2736 {
2737         kmem_free(s, sizeof (cpuset_t));
2738 }
2739 
2740 void
2741 cpuset_all(cpuset_t *s)
2742 {
2743         int i;
2744 
2745         for (i = 0; i < CPUSET_WORDS; i++)
2746                 s->cpub[i] = ~0UL;
2747 }
2748 
2749 void
2750 cpuset_all_but(cpuset_t *s, const uint_t cpu)
2751 {
2752         cpuset_all(s);
2753         CPUSET_DEL(*s, cpu);
2754 }
2755 
2756 void
2757 cpuset_only(cpuset_t *s, const uint_t cpu)
2758 {
2759         CPUSET_ZERO(*s);
2760         CPUSET_ADD(*s, cpu);
2761 }
2762 
2763 long
2764 cpu_in_set(const cpuset_t *s, const uint_t cpu)
2765 {
2766         VERIFY(cpu < NCPU);
2767         return (BT_TEST(s->cpub, cpu));
2768 }
2769 
2770 void
2771 cpuset_add(cpuset_t *s, const uint_t cpu)
2772 {
2773         VERIFY(cpu < NCPU);
2774         BT_SET(s->cpub, cpu);
2775 }
2776 
2777 void
2778 cpuset_del(cpuset_t *s, const uint_t cpu)
2779 {
2780         VERIFY(cpu < NCPU);
2781         BT_CLEAR(s->cpub, cpu);
2782 }
2783 
2784 int
2785 cpuset_isnull(const cpuset_t *s)
2786 {
2787         int i;
2788 
2789         for (i = 0; i < CPUSET_WORDS; i++) {
2790                 if (s->cpub[i] != 0)
2791                         return (0);
2792         }
2793         return (1);
2794 }
2795 
2796 int
2797 cpuset_isequal(const cpuset_t *s1, const cpuset_t *s2)
2798 {
2799         int i;
2800 
2801         for (i = 0; i < CPUSET_WORDS; i++) {
2802                 if (s1->cpub[i] != s2->cpub[i])
2803                         return (0);
2804         }
2805         return (1);
2806 }
2807 
2808 uint_t
2809 cpuset_find(const cpuset_t *s)
2810 {
2811 
2812         uint_t  i;
2813         uint_t  cpu = (uint_t)-1;
2814 
2815         /*
2816          * Find a cpu in the cpuset
2817          */
2818         for (i = 0; i < CPUSET_WORDS; i++) {
2819                 cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2820                 if (cpu != (uint_t)-1) {
2821                         cpu += i * BT_NBIPUL;
2822                         break;
2823                 }
2824         }
2825         return (cpu);
2826 }
2827 
2828 void
2829 cpuset_bounds(const cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2830 {
2831         int     i, j;
2832         uint_t  bit;
2833 
2834         /*
2835          * First, find the smallest cpu id in the set.
2836          */
2837         for (i = 0; i < CPUSET_WORDS; i++) {
2838                 if (s->cpub[i] != 0) {
2839                         bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2840                         ASSERT(bit != (uint_t)-1);
2841                         *smallestid = bit + (i * BT_NBIPUL);
2842 
2843                         /*
2844                          * Now find the largest cpu id in
2845                          * the set and return immediately.
2846                          * Done in an inner loop to avoid
2847                          * having to break out of the first
2848                          * loop.
2849                          */
2850                         for (j = CPUSET_WORDS - 1; j >= i; j--) {
2851                                 if (s->cpub[j] != 0) {
2852                                         bit = (uint_t)(highbit(s->cpub[j]) - 1);
2853                                         ASSERT(bit != (uint_t)-1);
2854                                         *largestid = bit + (j * BT_NBIPUL);
2855                                         ASSERT(*largestid >= *smallestid);
2856                                         return;
2857                                 }
2858                         }
2859 
2860                         /*
2861                          * If this code is reached, a
2862                          * smallestid was found, but not a
2863                          * largestid. The cpuset must have
2864                          * been changed during the course
2865                          * of this function call.
2866                          */
2867                         ASSERT(0);
2868                 }
2869         }
2870         *smallestid = *largestid = CPUSET_NOTINSET;
2871 }
2872 
2873 void
2874 cpuset_atomic_del(cpuset_t *s, const uint_t cpu)
2875 {
2876         VERIFY(cpu < NCPU);
2877         BT_ATOMIC_CLEAR(s->cpub, (cpu))
2878 }
2879 
2880 void
2881 cpuset_atomic_add(cpuset_t *s, const uint_t cpu)
2882 {
2883         VERIFY(cpu < NCPU);
2884         BT_ATOMIC_SET(s->cpub, (cpu))
2885 }
2886 
2887 long
2888 cpuset_atomic_xadd(cpuset_t *s, const uint_t cpu)
2889 {
2890         long res;
2891 
2892         VERIFY(cpu < NCPU);
2893         BT_ATOMIC_SET_EXCL(s->cpub, cpu, res);
2894         return (res);
2895 }
2896 
2897 long
2898 cpuset_atomic_xdel(cpuset_t *s, const uint_t cpu)
2899 {
2900         long res;
2901 
2902         VERIFY(cpu < NCPU);
2903         BT_ATOMIC_CLEAR_EXCL(s->cpub, cpu, res);
2904         return (res);
2905 }
2906 
2907 void
2908 cpuset_or(cpuset_t *dst, cpuset_t *src)
2909 {
2910         for (int i = 0; i < CPUSET_WORDS; i++) {
2911                 dst->cpub[i] |= src->cpub[i];
2912         }
2913 }
2914 
2915 void
2916 cpuset_xor(cpuset_t *dst, cpuset_t *src)
2917 {
2918         for (int i = 0; i < CPUSET_WORDS; i++) {
2919                 dst->cpub[i] ^= src->cpub[i];
2920         }
2921 }
2922 
2923 void
2924 cpuset_and(cpuset_t *dst, cpuset_t *src)
2925 {
2926         for (int i = 0; i < CPUSET_WORDS; i++) {
2927                 dst->cpub[i] &= src->cpub[i];
2928         }
2929 }
2930 
2931 void
2932 cpuset_zero(cpuset_t *dst)
2933 {
2934         for (int i = 0; i < CPUSET_WORDS; i++) {
2935                 dst->cpub[i] = 0;
2936         }
2937 }
2938 
2939 
2940 /*
2941  * Unbind threads bound to specified CPU.
2942  *
2943  * If `unbind_all_threads' is true, unbind all user threads bound to a given
2944  * CPU. Otherwise unbind all soft-bound user threads.
2945  */
2946 int
2947 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2948 {
2949         processorid_t obind;
2950         kthread_t *tp;
2951         int ret = 0;
2952         proc_t *pp;
2953         int err, berr = 0;
2954 
2955         ASSERT(MUTEX_HELD(&cpu_lock));
2956 
2957         mutex_enter(&pidlock);
2958         for (pp = practive; pp != NULL; pp = pp->p_next) {
2959                 mutex_enter(&pp->p_lock);
2960                 tp = pp->p_tlist;
2961                 /*
2962                  * Skip zombies, kernel processes, and processes in
2963                  * other zones, if called from a non-global zone.
2964                  */
2965                 if (tp == NULL || (pp->p_flag & SSYS) ||
2966                     !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2967                         mutex_exit(&pp->p_lock);
2968                         continue;
2969                 }
2970                 do {
2971                         if (tp->t_bind_cpu != cpu)
2972                                 continue;
2973                         /*
2974                          * Skip threads with hard binding when
2975                          * `unbind_all_threads' is not specified.
2976                          */
2977                         if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2978                                 continue;
2979                         err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2980                         if (ret == 0)
2981                                 ret = err;
2982                 } while ((tp = tp->t_forw) != pp->p_tlist);
2983                 mutex_exit(&pp->p_lock);
2984         }
2985         mutex_exit(&pidlock);
2986         if (ret == 0)
2987                 ret = berr;
2988         return (ret);
2989 }
2990 
2991 
2992 /*
2993  * Destroy all remaining bound threads on a cpu.
2994  */
2995 void
2996 cpu_destroy_bound_threads(cpu_t *cp)
2997 {
2998         extern id_t syscid;
2999         register kthread_id_t   t, tlist, tnext;
3000 
3001         /*
3002          * Destroy all remaining bound threads on the cpu.  This
3003          * should include both the interrupt threads and the idle thread.
3004          * This requires some care, since we need to traverse the
3005          * thread list with the pidlock mutex locked, but thread_free
3006          * also locks the pidlock mutex.  So, we collect the threads
3007          * we're going to reap in a list headed by "tlist", then we
3008          * unlock the pidlock mutex and traverse the tlist list,
3009          * doing thread_free's on the thread's.  Simple, n'est pas?
3010          * Also, this depends on thread_free not mucking with the
3011          * t_next and t_prev links of the thread.
3012          */
3013 
3014         if ((t = curthread) != NULL) {
3015 
3016                 tlist = NULL;
3017                 mutex_enter(&pidlock);
3018                 do {
3019                         tnext = t->t_next;
3020                         if (t->t_bound_cpu == cp) {
3021 
3022                                 /*
3023                                  * We've found a bound thread, carefully unlink
3024                                  * it out of the thread list, and add it to
3025                                  * our "tlist".  We "know" we don't have to
3026                                  * worry about unlinking curthread (the thread
3027                                  * that is executing this code).
3028                                  */
3029                                 t->t_next->t_prev = t->t_prev;
3030                                 t->t_prev->t_next = t->t_next;
3031                                 t->t_next = tlist;
3032                                 tlist = t;
3033                                 ASSERT(t->t_cid == syscid);
3034                                 /* wake up anyone blocked in thread_join */
3035                                 cv_broadcast(&t->t_joincv);
3036                                 /*
3037                                  * t_lwp set by interrupt threads and not
3038                                  * cleared.
3039                                  */
3040                                 t->t_lwp = NULL;
3041                                 /*
3042                                  * Pause and idle threads always have
3043                                  * t_state set to TS_ONPROC.
3044                                  */
3045                                 t->t_state = TS_FREE;
3046                                 t->t_prev = NULL;    /* Just in case */
3047                         }
3048 
3049                 } while ((t = tnext) != curthread);
3050 
3051                 mutex_exit(&pidlock);
3052 
3053                 mutex_sync();
3054                 for (t = tlist; t != NULL; t = tnext) {
3055                         tnext = t->t_next;
3056                         thread_free(t);
3057                 }
3058         }
3059 }
3060 
3061 /*
3062  * Update the cpu_supp_freqs of this cpu. This information is returned
3063  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
3064  * maintain the kstat data size.
3065  */
3066 void
3067 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
3068 {
3069         char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
3070         const char *lfreqs = clkstr;
3071         boolean_t kstat_exists = B_FALSE;
3072         kstat_t *ksp;
3073         size_t len;
3074 
3075         /*
3076          * A NULL pointer means we only support one speed.
3077          */
3078         if (freqs == NULL)
3079                 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
3080                     cp->cpu_curr_clock);
3081         else
3082                 lfreqs = freqs;
3083 
3084         /*
3085          * Make sure the frequency doesn't change while a snapshot is
3086          * going on. Of course, we only need to worry about this if
3087          * the kstat exists.
3088          */
3089         if ((ksp = cp->cpu_info_kstat) != NULL) {
3090                 mutex_enter(ksp->ks_lock);
3091                 kstat_exists = B_TRUE;
3092         }
3093 
3094         /*
3095          * Free any previously allocated string and if the kstat
3096          * already exists, then update its data size.
3097          */
3098         if (cp->cpu_supp_freqs != NULL) {
3099                 len = strlen(cp->cpu_supp_freqs) + 1;
3100                 kmem_free(cp->cpu_supp_freqs, len);
3101                 if (kstat_exists)
3102                         ksp->ks_data_size -= len;
3103         }
3104 
3105         /*
3106          * Allocate the new string and set the pointer.
3107          */
3108         len = strlen(lfreqs) + 1;
3109         cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
3110         (void) strcpy(cp->cpu_supp_freqs, lfreqs);
3111 
3112         /*
3113          * If the kstat already exists then update the data size and
3114          * free the lock.
3115          */
3116         if (kstat_exists) {
3117                 ksp->ks_data_size += len;
3118                 mutex_exit(ksp->ks_lock);
3119         }
3120 }
3121 
3122 /*
3123  * Indicate the current CPU's clock freqency (in Hz).
3124  * The calling context must be such that CPU references are safe.
3125  */
3126 void
3127 cpu_set_curr_clock(uint64_t new_clk)
3128 {
3129         uint64_t old_clk;
3130 
3131         old_clk = CPU->cpu_curr_clock;
3132         CPU->cpu_curr_clock = new_clk;
3133 
3134         /*
3135          * The cpu-change-speed DTrace probe exports the frequency in Hz
3136          */
3137         DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3138             uint64_t, old_clk, uint64_t, new_clk);
3139 }
3140 
3141 /*
3142  * processor_info(2) and p_online(2) status support functions
3143  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
3144  *   for use in communicating processor state information to userland.  Kernel
3145  *   subsystems should only be using the cpu_flags value directly.  Subsystems
3146  *   modifying cpu_flags should record the state change via a call to the
3147  *   cpu_set_state().
3148  */
3149 
3150 /*
3151  * Update the pi_state of this CPU.  This function provides the CPU status for
3152  * the information returned by processor_info(2).
3153  */
3154 void
3155 cpu_set_state(cpu_t *cpu)
3156 {
3157         ASSERT(MUTEX_HELD(&cpu_lock));
3158         cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3159         cpu->cpu_state_begin = gethrestime_sec();
3160         pool_cpu_mod = gethrtime();
3161 }
3162 
3163 /*
3164  * Return offline/online/other status for the indicated CPU.  Use only for
3165  * communication with user applications; cpu_flags provides the in-kernel
3166  * interface.
3167  */
3168 int
3169 cpu_get_state(cpu_t *cpu)
3170 {
3171         ASSERT(MUTEX_HELD(&cpu_lock));
3172         if (cpu->cpu_flags & CPU_POWEROFF)
3173                 return (P_POWEROFF);
3174         else if (cpu->cpu_flags & CPU_FAULTED)
3175                 return (P_FAULTED);
3176         else if (cpu->cpu_flags & CPU_SPARE)
3177                 return (P_SPARE);
3178         else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3179                 return (P_OFFLINE);
3180         else if (cpu->cpu_flags & CPU_ENABLE)
3181                 return (P_ONLINE);
3182         else
3183                 return (P_NOINTR);
3184 }
3185 
3186 /*
3187  * Return processor_info(2) state as a string.
3188  */
3189 const char *
3190 cpu_get_state_str(cpu_t *cpu)
3191 {
3192         const char *string;
3193 
3194         switch (cpu_get_state(cpu)) {
3195         case P_ONLINE:
3196                 string = PS_ONLINE;
3197                 break;
3198         case P_POWEROFF:
3199                 string = PS_POWEROFF;
3200                 break;
3201         case P_NOINTR:
3202                 string = PS_NOINTR;
3203                 break;
3204         case P_SPARE:
3205                 string = PS_SPARE;
3206                 break;
3207         case P_FAULTED:
3208                 string = PS_FAULTED;
3209                 break;
3210         case P_OFFLINE:
3211                 string = PS_OFFLINE;
3212                 break;
3213         default:
3214                 string = "unknown";
3215                 break;
3216         }
3217         return (string);
3218 }
3219 
3220 /*
3221  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3222  * kstats, respectively.  This is done when a CPU is initialized or placed
3223  * online via p_online(2).
3224  */
3225 static void
3226 cpu_stats_kstat_create(cpu_t *cp)
3227 {
3228         int     instance = cp->cpu_id;
3229         char    *module = "cpu";
3230         char    *class = "misc";
3231         kstat_t *ksp;
3232         zoneid_t zoneid;
3233 
3234         ASSERT(MUTEX_HELD(&cpu_lock));
3235 
3236         if (pool_pset_enabled())
3237                 zoneid = GLOBAL_ZONEID;
3238         else
3239                 zoneid = ALL_ZONES;
3240         /*
3241          * Create named kstats
3242          */
3243 #define CPU_STATS_KS_CREATE(name, tsize, update_func)                    \
3244         ksp = kstat_create_zone(module, instance, (name), class,         \
3245             KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0,       \
3246             zoneid);                                                     \
3247         if (ksp != NULL) {                                               \
3248                 ksp->ks_private = cp;                                    \
3249                 ksp->ks_update = (update_func);                          \
3250                 kstat_install(ksp);                                      \
3251         } else                                                           \
3252                 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3253                     module, instance, (name));
3254 
3255         CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3256             cpu_sys_stats_ks_update);
3257         CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3258             cpu_vm_stats_ks_update);
3259 
3260         /*
3261          * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3262          */
3263         ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3264             "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3265         if (ksp != NULL) {
3266                 ksp->ks_update = cpu_stat_ks_update;
3267                 ksp->ks_private = cp;
3268                 kstat_install(ksp);
3269         }
3270 }
3271 
3272 static void
3273 cpu_stats_kstat_destroy(cpu_t *cp)
3274 {
3275         char ks_name[KSTAT_STRLEN];
3276 
3277         (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3278         kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3279 
3280         kstat_delete_byname("cpu", cp->cpu_id, "sys");
3281         kstat_delete_byname("cpu", cp->cpu_id, "vm");
3282 }
3283 
3284 static int
3285 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3286 {
3287         cpu_t *cp = (cpu_t *)ksp->ks_private;
3288         struct cpu_sys_stats_ks_data *csskd;
3289         cpu_sys_stats_t *css;
3290         hrtime_t msnsecs[NCMSTATES];
3291         int     i;
3292 
3293         if (rw == KSTAT_WRITE)
3294                 return (EACCES);
3295 
3296         csskd = ksp->ks_data;
3297         css = &cp->cpu_stats.sys;
3298 
3299         /*
3300          * Read CPU mstate, but compare with the last values we
3301          * received to make sure that the returned kstats never
3302          * decrease.
3303          */
3304 
3305         get_cpu_mstate(cp, msnsecs);
3306         if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3307                 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3308         if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3309                 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3310         if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3311                 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3312 
3313         bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3314             sizeof (cpu_sys_stats_ks_data_template));
3315 
3316         csskd->cpu_ticks_wait.value.ui64 = 0;
3317         csskd->wait_ticks_io.value.ui64 = 0;
3318 
3319         csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3320         csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3321         csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3322         csskd->cpu_ticks_idle.value.ui64 =
3323             NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3324         csskd->cpu_ticks_user.value.ui64 =
3325             NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3326         csskd->cpu_ticks_kernel.value.ui64 =
3327             NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3328         csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec;
3329         csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes;
3330         csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3331         csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3332         csskd->bread.value.ui64 = css->bread;
3333         csskd->bwrite.value.ui64 = css->bwrite;
3334         csskd->lread.value.ui64 = css->lread;
3335         csskd->lwrite.value.ui64 = css->lwrite;
3336         csskd->phread.value.ui64 = css->phread;
3337         csskd->phwrite.value.ui64 = css->phwrite;
3338         csskd->pswitch.value.ui64 = css->pswitch;
3339         csskd->trap.value.ui64 = css->trap;
3340         csskd->intr.value.ui64 = 0;
3341         for (i = 0; i < PIL_MAX; i++)
3342                 csskd->intr.value.ui64 += css->intr[i];
3343         csskd->syscall.value.ui64 = css->syscall;
3344         csskd->sysread.value.ui64 = css->sysread;
3345         csskd->syswrite.value.ui64 = css->syswrite;
3346         csskd->sysfork.value.ui64 = css->sysfork;
3347         csskd->sysvfork.value.ui64 = css->sysvfork;
3348         csskd->sysexec.value.ui64 = css->sysexec;
3349         csskd->readch.value.ui64 = css->readch;
3350         csskd->writech.value.ui64 = css->writech;
3351         csskd->rcvint.value.ui64 = css->rcvint;
3352         csskd->xmtint.value.ui64 = css->xmtint;
3353         csskd->mdmint.value.ui64 = css->mdmint;
3354         csskd->rawch.value.ui64 = css->rawch;
3355         csskd->canch.value.ui64 = css->canch;
3356         csskd->outch.value.ui64 = css->outch;
3357         csskd->msg.value.ui64 = css->msg;
3358         csskd->sema.value.ui64 = css->sema;
3359         csskd->namei.value.ui64 = css->namei;
3360         csskd->ufsiget.value.ui64 = css->ufsiget;
3361         csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3362         csskd->ufsipage.value.ui64 = css->ufsipage;
3363         csskd->ufsinopage.value.ui64 = css->ufsinopage;
3364         csskd->procovf.value.ui64 = css->procovf;
3365         csskd->intrthread.value.ui64 = 0;
3366         for (i = 0; i < LOCK_LEVEL - 1; i++)
3367                 csskd->intrthread.value.ui64 += css->intr[i];
3368         csskd->intrblk.value.ui64 = css->intrblk;
3369         csskd->intrunpin.value.ui64 = css->intrunpin;
3370         csskd->idlethread.value.ui64 = css->idlethread;
3371         csskd->inv_swtch.value.ui64 = css->inv_swtch;
3372         csskd->nthreads.value.ui64 = css->nthreads;
3373         csskd->cpumigrate.value.ui64 = css->cpumigrate;
3374         csskd->xcalls.value.ui64 = css->xcalls;
3375         csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3376         csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3377         csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3378         csskd->modload.value.ui64 = css->modload;
3379         csskd->modunload.value.ui64 = css->modunload;
3380         csskd->bawrite.value.ui64 = css->bawrite;
3381         csskd->iowait.value.ui64 = css->iowait;
3382 
3383         return (0);
3384 }
3385 
3386 static int
3387 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3388 {
3389         cpu_t *cp = (cpu_t *)ksp->ks_private;
3390         struct cpu_vm_stats_ks_data *cvskd;
3391         cpu_vm_stats_t *cvs;
3392 
3393         if (rw == KSTAT_WRITE)
3394                 return (EACCES);
3395 
3396         cvs = &cp->cpu_stats.vm;
3397         cvskd = ksp->ks_data;
3398 
3399         bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3400             sizeof (cpu_vm_stats_ks_data_template));
3401         cvskd->pgrec.value.ui64 = cvs->pgrec;
3402         cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3403         cvskd->pgin.value.ui64 = cvs->pgin;
3404         cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3405         cvskd->pgout.value.ui64 = cvs->pgout;
3406         cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3407         cvskd->swapin.value.ui64 = cvs->swapin;
3408         cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3409         cvskd->swapout.value.ui64 = cvs->swapout;
3410         cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3411         cvskd->zfod.value.ui64 = cvs->zfod;
3412         cvskd->dfree.value.ui64 = cvs->dfree;
3413         cvskd->scan.value.ui64 = cvs->scan;
3414         cvskd->rev.value.ui64 = cvs->rev;
3415         cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3416         cvskd->as_fault.value.ui64 = cvs->as_fault;
3417         cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3418         cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3419         cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3420         cvskd->softlock.value.ui64 = cvs->softlock;
3421         cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3422         cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3423         cvskd->execpgin.value.ui64 = cvs->execpgin;
3424         cvskd->execpgout.value.ui64 = cvs->execpgout;
3425         cvskd->execfree.value.ui64 = cvs->execfree;
3426         cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3427         cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3428         cvskd->anonfree.value.ui64 = cvs->anonfree;
3429         cvskd->fspgin.value.ui64 = cvs->fspgin;
3430         cvskd->fspgout.value.ui64 = cvs->fspgout;
3431         cvskd->fsfree.value.ui64 = cvs->fsfree;
3432 
3433         return (0);
3434 }
3435 
3436 static int
3437 cpu_stat_ks_update(kstat_t *ksp, int rw)
3438 {
3439         cpu_stat_t *cso;
3440         cpu_t *cp;
3441         int i;
3442         hrtime_t msnsecs[NCMSTATES];
3443 
3444         cso = (cpu_stat_t *)ksp->ks_data;
3445         cp = (cpu_t *)ksp->ks_private;
3446 
3447         if (rw == KSTAT_WRITE)
3448                 return (EACCES);
3449 
3450         /*
3451          * Read CPU mstate, but compare with the last values we
3452          * received to make sure that the returned kstats never
3453          * decrease.
3454          */
3455 
3456         get_cpu_mstate(cp, msnsecs);
3457         msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3458         msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3459         msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3460         if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3461                 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3462         if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3463                 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3464         if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3465                 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3466         cso->cpu_sysinfo.cpu[CPU_WAIT]       = 0;
3467         cso->cpu_sysinfo.wait[W_IO]  = 0;
3468         cso->cpu_sysinfo.wait[W_SWAP]        = 0;
3469         cso->cpu_sysinfo.wait[W_PIO] = 0;
3470         cso->cpu_sysinfo.bread               = CPU_STATS(cp, sys.bread);
3471         cso->cpu_sysinfo.bwrite              = CPU_STATS(cp, sys.bwrite);
3472         cso->cpu_sysinfo.lread               = CPU_STATS(cp, sys.lread);
3473         cso->cpu_sysinfo.lwrite              = CPU_STATS(cp, sys.lwrite);
3474         cso->cpu_sysinfo.phread              = CPU_STATS(cp, sys.phread);
3475         cso->cpu_sysinfo.phwrite     = CPU_STATS(cp, sys.phwrite);
3476         cso->cpu_sysinfo.pswitch     = CPU_STATS(cp, sys.pswitch);
3477         cso->cpu_sysinfo.trap                = CPU_STATS(cp, sys.trap);
3478         cso->cpu_sysinfo.intr                = 0;
3479         for (i = 0; i < PIL_MAX; i++)
3480                 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3481         cso->cpu_sysinfo.syscall     = CPU_STATS(cp, sys.syscall);
3482         cso->cpu_sysinfo.sysread     = CPU_STATS(cp, sys.sysread);
3483         cso->cpu_sysinfo.syswrite    = CPU_STATS(cp, sys.syswrite);
3484         cso->cpu_sysinfo.sysfork     = CPU_STATS(cp, sys.sysfork);
3485         cso->cpu_sysinfo.sysvfork    = CPU_STATS(cp, sys.sysvfork);
3486         cso->cpu_sysinfo.sysexec     = CPU_STATS(cp, sys.sysexec);
3487         cso->cpu_sysinfo.readch              = CPU_STATS(cp, sys.readch);
3488         cso->cpu_sysinfo.writech     = CPU_STATS(cp, sys.writech);
3489         cso->cpu_sysinfo.rcvint              = CPU_STATS(cp, sys.rcvint);
3490         cso->cpu_sysinfo.xmtint              = CPU_STATS(cp, sys.xmtint);
3491         cso->cpu_sysinfo.mdmint              = CPU_STATS(cp, sys.mdmint);
3492         cso->cpu_sysinfo.rawch               = CPU_STATS(cp, sys.rawch);
3493         cso->cpu_sysinfo.canch               = CPU_STATS(cp, sys.canch);
3494         cso->cpu_sysinfo.outch               = CPU_STATS(cp, sys.outch);
3495         cso->cpu_sysinfo.msg         = CPU_STATS(cp, sys.msg);
3496         cso->cpu_sysinfo.sema                = CPU_STATS(cp, sys.sema);
3497         cso->cpu_sysinfo.namei               = CPU_STATS(cp, sys.namei);
3498         cso->cpu_sysinfo.ufsiget     = CPU_STATS(cp, sys.ufsiget);
3499         cso->cpu_sysinfo.ufsdirblk   = CPU_STATS(cp, sys.ufsdirblk);
3500         cso->cpu_sysinfo.ufsipage    = CPU_STATS(cp, sys.ufsipage);
3501         cso->cpu_sysinfo.ufsinopage  = CPU_STATS(cp, sys.ufsinopage);
3502         cso->cpu_sysinfo.inodeovf    = 0;
3503         cso->cpu_sysinfo.fileovf     = 0;
3504         cso->cpu_sysinfo.procovf     = CPU_STATS(cp, sys.procovf);
3505         cso->cpu_sysinfo.intrthread  = 0;
3506         for (i = 0; i < LOCK_LEVEL - 1; i++)
3507                 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3508         cso->cpu_sysinfo.intrblk     = CPU_STATS(cp, sys.intrblk);
3509         cso->cpu_sysinfo.idlethread  = CPU_STATS(cp, sys.idlethread);
3510         cso->cpu_sysinfo.inv_swtch   = CPU_STATS(cp, sys.inv_swtch);
3511         cso->cpu_sysinfo.nthreads    = CPU_STATS(cp, sys.nthreads);
3512         cso->cpu_sysinfo.cpumigrate  = CPU_STATS(cp, sys.cpumigrate);
3513         cso->cpu_sysinfo.xcalls              = CPU_STATS(cp, sys.xcalls);
3514         cso->cpu_sysinfo.mutex_adenters      = CPU_STATS(cp, sys.mutex_adenters);
3515         cso->cpu_sysinfo.rw_rdfails  = CPU_STATS(cp, sys.rw_rdfails);
3516         cso->cpu_sysinfo.rw_wrfails  = CPU_STATS(cp, sys.rw_wrfails);
3517         cso->cpu_sysinfo.modload     = CPU_STATS(cp, sys.modload);
3518         cso->cpu_sysinfo.modunload   = CPU_STATS(cp, sys.modunload);
3519         cso->cpu_sysinfo.bawrite     = CPU_STATS(cp, sys.bawrite);
3520         cso->cpu_sysinfo.rw_enters   = 0;
3521         cso->cpu_sysinfo.win_uo_cnt  = 0;
3522         cso->cpu_sysinfo.win_uu_cnt  = 0;
3523         cso->cpu_sysinfo.win_so_cnt  = 0;
3524         cso->cpu_sysinfo.win_su_cnt  = 0;
3525         cso->cpu_sysinfo.win_suo_cnt = 0;
3526 
3527         cso->cpu_syswait.iowait              = CPU_STATS(cp, sys.iowait);
3528         cso->cpu_syswait.swap                = 0;
3529         cso->cpu_syswait.physio              = 0;
3530 
3531         cso->cpu_vminfo.pgrec                = CPU_STATS(cp, vm.pgrec);
3532         cso->cpu_vminfo.pgfrec               = CPU_STATS(cp, vm.pgfrec);
3533         cso->cpu_vminfo.pgin         = CPU_STATS(cp, vm.pgin);
3534         cso->cpu_vminfo.pgpgin               = CPU_STATS(cp, vm.pgpgin);
3535         cso->cpu_vminfo.pgout                = CPU_STATS(cp, vm.pgout);
3536         cso->cpu_vminfo.pgpgout              = CPU_STATS(cp, vm.pgpgout);
3537         cso->cpu_vminfo.swapin               = CPU_STATS(cp, vm.swapin);
3538         cso->cpu_vminfo.pgswapin     = CPU_STATS(cp, vm.pgswapin);
3539         cso->cpu_vminfo.swapout              = CPU_STATS(cp, vm.swapout);
3540         cso->cpu_vminfo.pgswapout    = CPU_STATS(cp, vm.pgswapout);
3541         cso->cpu_vminfo.zfod         = CPU_STATS(cp, vm.zfod);
3542         cso->cpu_vminfo.dfree                = CPU_STATS(cp, vm.dfree);
3543         cso->cpu_vminfo.scan         = CPU_STATS(cp, vm.scan);
3544         cso->cpu_vminfo.rev          = CPU_STATS(cp, vm.rev);
3545         cso->cpu_vminfo.hat_fault    = CPU_STATS(cp, vm.hat_fault);
3546         cso->cpu_vminfo.as_fault     = CPU_STATS(cp, vm.as_fault);
3547         cso->cpu_vminfo.maj_fault    = CPU_STATS(cp, vm.maj_fault);
3548         cso->cpu_vminfo.cow_fault    = CPU_STATS(cp, vm.cow_fault);
3549         cso->cpu_vminfo.prot_fault   = CPU_STATS(cp, vm.prot_fault);
3550         cso->cpu_vminfo.softlock     = CPU_STATS(cp, vm.softlock);
3551         cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt);
3552         cso->cpu_vminfo.pgrrun               = CPU_STATS(cp, vm.pgrrun);
3553         cso->cpu_vminfo.execpgin     = CPU_STATS(cp, vm.execpgin);
3554         cso->cpu_vminfo.execpgout    = CPU_STATS(cp, vm.execpgout);
3555         cso->cpu_vminfo.execfree     = CPU_STATS(cp, vm.execfree);
3556         cso->cpu_vminfo.anonpgin     = CPU_STATS(cp, vm.anonpgin);
3557         cso->cpu_vminfo.anonpgout    = CPU_STATS(cp, vm.anonpgout);
3558         cso->cpu_vminfo.anonfree     = CPU_STATS(cp, vm.anonfree);
3559         cso->cpu_vminfo.fspgin               = CPU_STATS(cp, vm.fspgin);
3560         cso->cpu_vminfo.fspgout              = CPU_STATS(cp, vm.fspgout);
3561         cso->cpu_vminfo.fsfree               = CPU_STATS(cp, vm.fsfree);
3562 
3563         return (0);
3564 }