
new/usr/src/pkg/manifests/system-header.mf 1

**
 96439 Wed May 15 07:34:02 2019
new/usr/src/pkg/manifests/system-header.mf
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 # Copyright 2013 Saso Kiselkov. All rights reserved.
26 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
27 # Copyright 2018 Nexenta Systems, Inc.
28 # Copyright 2016 Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
29 # Copyright 2019 Peter Tribble.
30 #

32 set name=pkg.fmri value=pkg:/system/header@$(PKGVERS)
33 set name=pkg.description \
34 value="SunOS C/C++ header files for general development of software"
35 set name=pkg.summary value="SunOS Header Files"
36 set name=info.classification value=org.opensolaris.category.2008:System/Core
37 set name=variant.arch value=$(ARCH)
38 dir path=usr group=sys
39 dir path=usr/include
40 $(i386_ONLY)dir path=usr/include/$(ARCH64)
41 $(i386_ONLY)dir path=usr/include/$(ARCH64)/sys
42 dir path=usr/include/ads
43 dir path=usr/include/arpa
44 dir path=usr/include/asm
45 dir path=usr/include/ast
46 dir path=usr/include/bsm
47 dir path=usr/include/dat
48 dir path=usr/include/des
49 dir path=usr/include/gssapi
50 dir path=usr/include/hal
51 $(i386_ONLY)dir path=usr/include/ia32
52 $(i386_ONLY)dir path=usr/include/ia32/sys
53 dir path=usr/include/inet
54 dir path=usr/include/inet/kssl
55 dir path=usr/include/ipp
56 dir path=usr/include/ipp/ipgpc
57 dir path=usr/include/iso
58 dir path=usr/include/kerberosv5

new/usr/src/pkg/manifests/system-header.mf 2

59 dir path=usr/include/libpolkit
60 dir path=usr/include/net
61 dir path=usr/include/netinet
62 dir path=usr/include/nfs
63 dir path=usr/include/protocols
64 dir path=usr/include/rpc
65 dir path=usr/include/rpcsvc
66 dir path=usr/include/sasl
67 dir path=usr/include/scsi
68 dir path=usr/include/scsi/plugins
69 dir path=usr/include/scsi/plugins/ses
70 dir path=usr/include/scsi/plugins/ses/framework
71 dir path=usr/include/scsi/plugins/ses/vendor
72 dir path=usr/include/scsi/plugins/smp
73 dir path=usr/include/scsi/plugins/smp/engine
74 dir path=usr/include/scsi/plugins/smp/framework
75 dir path=usr/include/security
76 dir path=usr/include/sharefs
77 dir path=usr/include/sys
78 dir path=usr/include/sys/av
79 dir path=usr/include/sys/contract
80 dir path=usr/include/sys/crypto
81 dir path=usr/include/sys/dktp
82 dir path=usr/include/sys/fc4
83 dir path=usr/include/sys/fm
84 dir path=usr/include/sys/fm/cpu
85 dir path=usr/include/sys/fm/fs
86 dir path=usr/include/sys/fm/io
87 $(sparc_ONLY)dir path=usr/include/sys/fpu
88 dir path=usr/include/sys/fs
89 dir path=usr/include/sys/hotplug
90 dir path=usr/include/sys/hotplug/pci
91 dir path=usr/include/sys/ib
92 dir path=usr/include/sys/ib/adapters
93 dir path=usr/include/sys/ib/adapters/hermon
94 dir path=usr/include/sys/ib/adapters/tavor
95 dir path=usr/include/sys/ib/clients
96 dir path=usr/include/sys/ib/clients/ibd
97 dir path=usr/include/sys/ib/clients/of
98 dir path=usr/include/sys/ib/clients/of/rdma
99 dir path=usr/include/sys/ib/clients/of/sol_ofs
100 dir path=usr/include/sys/ib/clients/of/sol_ucma
101 dir path=usr/include/sys/ib/clients/of/sol_umad
102 dir path=usr/include/sys/ib/clients/of/sol_uverbs
103 dir path=usr/include/sys/ib/ibnex
104 dir path=usr/include/sys/ib/ibtl
105 dir path=usr/include/sys/ib/ibtl/impl
106 dir path=usr/include/sys/ib/mgt
107 dir path=usr/include/sys/ib/mgt/ibmf
108 dir path=usr/include/sys/iso
109 dir path=usr/include/sys/proc
110 dir path=usr/include/sys/rsm
111 $(i386_ONLY)dir path=usr/include/sys/sata group=sys
112 dir path=usr/include/sys/scsi
113 dir path=usr/include/sys/scsi/adapters
114 dir path=usr/include/sys/scsi/conf
115 dir path=usr/include/sys/scsi/generic
116 dir path=usr/include/sys/scsi/impl
117 dir path=usr/include/sys/scsi/targets
118 dir path=usr/include/sys/sysevent
119 dir path=usr/include/sys/tsol
120 dir path=usr/include/tsol
121 dir path=usr/include/uuid
122 $(sparc_ONLY)dir path=usr/include/v7
123 $(sparc_ONLY)dir path=usr/include/v7/sys
124 $(sparc_ONLY)dir path=usr/include/v9

new/usr/src/pkg/manifests/system-header.mf 3

125 $(sparc_ONLY)dir path=usr/include/v9/sys
126 dir path=usr/include/vm
127 dir path=usr/platform group=sys
128 $(sparc_ONLY)dir path=usr/platform/SUNW,A70 group=sys
129 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-CP2300 group=sys
130 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-CP2300/include
131 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-CP3010 group=sys
132 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-CP3010/include
133 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-T12 group=sys
134 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-T4 group=sys
135 $(sparc_ONLY)dir path=usr/platform/SUNW,SPARC-Enterprise group=sys
136 $(sparc_ONLY)dir path=usr/platform/SUNW,Serverblade1 group=sys
137 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Blade-100 group=sys
138 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Blade-1000 group=sys
139 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Blade-1500 group=sys
140 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Blade-2500 group=sys
141 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire group=sys
142 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-15000 group=sys
143 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-280R group=sys
144 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-480R group=sys
145 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-880 group=sys
146 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V215 group=sys
147 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V240 group=sys
148 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V250 group=sys
149 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V440 group=sys
150 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V445 group=sys
151 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V490 group=sys
152 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V890 group=sys
153 $(sparc_ONLY)dir path=usr/platform/SUNW,Ultra-2 group=sys
154 $(sparc_ONLY)dir path=usr/platform/SUNW,Ultra-250 group=sys
155 $(sparc_ONLY)dir path=usr/platform/SUNW,Ultra-4 group=sys
156 $(sparc_ONLY)dir path=usr/platform/SUNW,Ultra-Enterprise group=sys
157 $(sparc_ONLY)dir path=usr/platform/SUNW,UltraSPARC-IIe-NetraCT-40 group=sys
158 $(sparc_ONLY)dir path=usr/platform/SUNW,UltraSPARC-IIe-NetraCT-60 group=sys
159 $(sparc_ONLY)dir path=usr/platform/SUNW,UltraSPARC-IIi-Netract group=sys
160 $(i386_ONLY)dir path=usr/platform/i86pc group=sys
161 $(i386_ONLY)dir path=usr/platform/i86pc/include
162 $(i386_ONLY)dir path=usr/platform/i86pc/include/sys
163 $(i386_ONLY)dir path=usr/platform/i86pc/include/vm
164 $(i386_ONLY)dir path=usr/platform/i86xpv group=sys
165 $(i386_ONLY)dir path=usr/platform/i86xpv/include
166 $(i386_ONLY)dir path=usr/platform/i86xpv/include/sys
167 $(i386_ONLY)dir path=usr/platform/i86xpv/include/vm
168 $(sparc_ONLY)dir path=usr/platform/sun4u group=sys
169 $(sparc_ONLY)dir path=usr/platform/sun4u/include
170 $(sparc_ONLY)dir path=usr/platform/sun4u/include/sys
171 $(sparc_ONLY)dir path=usr/platform/sun4u/include/sys/i2c
172 $(sparc_ONLY)dir path=usr/platform/sun4u/include/sys/i2c/clients
173 $(sparc_ONLY)dir path=usr/platform/sun4u/include/sys/i2c/misc
174 $(sparc_ONLY)dir path=usr/platform/sun4u/include/vm
175 $(sparc_ONLY)dir path=usr/platform/sun4v group=sys
176 $(sparc_ONLY)dir path=usr/platform/sun4v/include
177 $(sparc_ONLY)dir path=usr/platform/sun4v/include/sys
178 $(sparc_ONLY)dir path=usr/platform/sun4v/include/vm
179 dir path=usr/share
180 dir path=usr/share/man
181 dir path=usr/share/man/man3
182 dir path=usr/share/man/man3head
183 dir path=usr/share/man/man4
184 dir path=usr/share/man/man5
185 dir path=usr/share/man/man7i
186 dir path=usr/share/src group=sys
187 dir path=usr/share/src/uts
188 $(i386_ONLY)dir path=usr/share/src/uts/i86pc
189 $(i386_ONLY)dir path=usr/share/src/uts/i86xpv
190 $(sparc_ONLY)dir path=usr/share/src/uts/sun4u

new/usr/src/pkg/manifests/system-header.mf 4

191 $(sparc_ONLY)dir path=usr/share/src/uts/sun4v
192 dir path=usr/xpg4
193 dir path=usr/xpg4/include
194 $(i386_ONLY)file path=usr/include/$(ARCH64)/sys/kdi_regs.h
195 $(i386_ONLY)file path=usr/include/$(ARCH64)/sys/privmregs.h
196 $(i386_ONLY)file path=usr/include/$(ARCH64)/sys/privregs.h
197 file path=usr/include/ads/dsgetdc.h
198 file path=usr/include/aio.h
199 file path=usr/include/alloca.h
200 file path=usr/include/apptrace.h
201 file path=usr/include/apptrace_impl.h
202 file path=usr/include/ar.h
203 file path=usr/include/archives.h
204 file path=usr/include/arpa/ftp.h
205 file path=usr/include/arpa/inet.h
206 file path=usr/include/arpa/nameser.h
207 file path=usr/include/arpa/nameser_compat.h
208 file path=usr/include/arpa/telnet.h
209 file path=usr/include/arpa/tftp.h
210 $(i386_ONLY)file path=usr/include/asm/atomic.h
211 $(i386_ONLY)file path=usr/include/asm/bitmap.h
212 $(i386_ONLY)file path=usr/include/asm/byteorder.h
213 $(i386_ONLY)file path=usr/include/asm/clock.h
214 $(i386_ONLY)file path=usr/include/asm/cpu.h
215 $(i386_ONLY)file path=usr/include/asm/cpuvar.h
216 $(sparc_ONLY)file path=usr/include/asm/flush.h
217 $(i386_ONLY)file path=usr/include/asm/htable.h
218 $(i386_ONLY)file path=usr/include/asm/mmu.h
219 file path=usr/include/asm/sunddi.h
220 file path=usr/include/asm/thread.h
221 file path=usr/include/assert.h
222 file path=usr/include/ast/align.h
223 file path=usr/include/ast/ast.h
224 file path=usr/include/ast/ast_botch.h
225 file path=usr/include/ast/ast_ccode.h
226 file path=usr/include/ast/ast_common.h
227 file path=usr/include/ast/ast_dir.h
228 file path=usr/include/ast/ast_dirent.h
229 file path=usr/include/ast/ast_fcntl.h
230 file path=usr/include/ast/ast_float.h
231 file path=usr/include/ast/ast_fs.h
232 file path=usr/include/ast/ast_getopt.h
233 file path=usr/include/ast/ast_iconv.h
234 file path=usr/include/ast/ast_lib.h
235 file path=usr/include/ast/ast_limits.h
236 file path=usr/include/ast/ast_map.h
237 file path=usr/include/ast/ast_mmap.h
238 file path=usr/include/ast/ast_mode.h
239 file path=usr/include/ast/ast_namval.h
240 file path=usr/include/ast/ast_ndbm.h
241 file path=usr/include/ast/ast_nl_types.h
242 file path=usr/include/ast/ast_param.h
243 file path=usr/include/ast/ast_standards.h
244 file path=usr/include/ast/ast_std.h
245 file path=usr/include/ast/ast_stdio.h
246 file path=usr/include/ast/ast_sys.h
247 file path=usr/include/ast/ast_time.h
248 file path=usr/include/ast/ast_tty.h
249 file path=usr/include/ast/ast_version.h
250 file path=usr/include/ast/ast_vfork.h
251 file path=usr/include/ast/ast_wait.h
252 file path=usr/include/ast/ast_wchar.h
253 file path=usr/include/ast/ast_windows.h
254 file path=usr/include/ast/bytesex.h
255 file path=usr/include/ast/ccode.h
256 file path=usr/include/ast/cdt.h

new/usr/src/pkg/manifests/system-header.mf 5

257 file path=usr/include/ast/cmd.h
258 file path=usr/include/ast/cmdext.h
259 file path=usr/include/ast/debug.h
260 file path=usr/include/ast/dirent.h
261 file path=usr/include/ast/dlldefs.h
262 file path=usr/include/ast/dt.h
263 file path=usr/include/ast/endian.h
264 file path=usr/include/ast/error.h
265 file path=usr/include/ast/find.h
266 file path=usr/include/ast/fnmatch.h
267 file path=usr/include/ast/fnv.h
268 file path=usr/include/ast/fs3d.h
269 file path=usr/include/ast/fts.h
270 file path=usr/include/ast/ftw.h
271 file path=usr/include/ast/ftwalk.h
272 file path=usr/include/ast/getopt.h
273 file path=usr/include/ast/glob.h
274 file path=usr/include/ast/hash.h
275 file path=usr/include/ast/hashkey.h
276 file path=usr/include/ast/hashpart.h
277 file path=usr/include/ast/history.h
278 file path=usr/include/ast/iconv.h
279 file path=usr/include/ast/ip6.h
280 file path=usr/include/ast/lc.h
281 file path=usr/include/ast/ls.h
282 file path=usr/include/ast/magic.h
283 file path=usr/include/ast/magicid.h
284 file path=usr/include/ast/mc.h
285 file path=usr/include/ast/mime.h
286 file path=usr/include/ast/mnt.h
287 file path=usr/include/ast/modecanon.h
288 file path=usr/include/ast/modex.h
289 file path=usr/include/ast/namval.h
290 file path=usr/include/ast/nl_types.h
291 file path=usr/include/ast/nval.h
292 file path=usr/include/ast/option.h
293 file path=usr/include/ast/preroot.h
294 file path=usr/include/ast/proc.h
295 file path=usr/include/ast/prototyped.h
296 file path=usr/include/ast/re_comp.h
297 file path=usr/include/ast/recfmt.h
298 file path=usr/include/ast/regex.h
299 file path=usr/include/ast/regexp.h
300 file path=usr/include/ast/sfdisc.h
301 file path=usr/include/ast/sfio.h
302 file path=usr/include/ast/sfio_s.h
303 file path=usr/include/ast/sfio_t.h
304 file path=usr/include/ast/shcmd.h
305 file path=usr/include/ast/shell.h
306 file path=usr/include/ast/sig.h
307 file path=usr/include/ast/stack.h
308 file path=usr/include/ast/stak.h
309 file path=usr/include/ast/stdio.h
310 file path=usr/include/ast/stk.h
311 file path=usr/include/ast/sum.h
312 file path=usr/include/ast/swap.h
313 file path=usr/include/ast/tar.h
314 file path=usr/include/ast/times.h
315 file path=usr/include/ast/tm.h
316 file path=usr/include/ast/tmx.h
317 file path=usr/include/ast/tok.h
318 file path=usr/include/ast/tv.h
319 file path=usr/include/ast/usage.h
320 file path=usr/include/ast/vdb.h
321 file path=usr/include/ast/vecargs.h
322 file path=usr/include/ast/vmalloc.h

new/usr/src/pkg/manifests/system-header.mf 6

323 file path=usr/include/ast/wait.h
324 file path=usr/include/ast/wchar.h
325 file path=usr/include/ast/wordexp.h
326 file path=usr/include/atomic.h
327 file path=usr/include/attr.h
328 file path=usr/include/auth_attr.h
329 file path=usr/include/bsm/adt.h
330 file path=usr/include/bsm/adt_event.h
331 file path=usr/include/bsm/audit.h
332 file path=usr/include/bsm/audit_kernel.h
333 file path=usr/include/bsm/audit_kevents.h
334 file path=usr/include/bsm/audit_record.h
335 file path=usr/include/bsm/audit_uevents.h
336 file path=usr/include/bsm/devices.h
337 file path=usr/include/bsm/libbsm.h
338 file path=usr/include/config_admin.h
339 file path=usr/include/cpio.h
340 file path=usr/include/crypt.h
341 file path=usr/include/cryptoutil.h
342 file path=usr/include/ctype.h
343 file path=usr/include/curses.h
344 file path=usr/include/dat/dat.h
345 file path=usr/include/dat/dat_error.h
346 file path=usr/include/dat/dat_platform_specific.h
347 file path=usr/include/dat/dat_redirection.h
348 file path=usr/include/dat/dat_registry.h
349 file path=usr/include/dat/dat_vendor_specific.h
350 file path=usr/include/dat/udat.h
351 file path=usr/include/dat/udat_config.h
352 file path=usr/include/dat/udat_redirection.h
353 file path=usr/include/dat/udat_vendor_specific.h
354 file path=usr/include/deflt.h
355 file path=usr/include/des/des.h
356 file path=usr/include/des/desdata.h
357 file path=usr/include/des/softdes.h
358 file path=usr/include/devfsadm.h
359 file path=usr/include/device_info.h
360 file path=usr/include/devid.h
361 file path=usr/include/devmgmt.h
362 file path=usr/include/devpoll.h
363 file path=usr/include/dial.h
364 file path=usr/include/dirent.h
365 file path=usr/include/dlfcn.h
366 file path=usr/include/door.h
367 file path=usr/include/elf.h
368 file path=usr/include/endian.h
369 file path=usr/include/err.h
370 file path=usr/include/errno.h
371 file path=usr/include/eti.h
372 file path=usr/include/euc.h
373 file path=usr/include/exacct.h
374 file path=usr/include/exacct_impl.h
375 file path=usr/include/exec_attr.h
376 file path=usr/include/execinfo.h
377 file path=usr/include/fatal.h
378 file path=usr/include/fcntl.h
379 file path=usr/include/float.h
380 file path=usr/include/fmtmsg.h
381 file path=usr/include/fnmatch.h
382 file path=usr/include/form.h
383 file path=usr/include/fts.h
384 file path=usr/include/ftw.h
385 file path=usr/include/gelf.h
386 file path=usr/include/getopt.h
387 file path=usr/include/getwidth.h
388 file path=usr/include/glob.h

new/usr/src/pkg/manifests/system-header.mf 7

389 file path=usr/include/grp.h
390 file path=usr/include/gssapi/gssapi.h
391 file path=usr/include/gssapi/gssapi_ext.h
392 file path=usr/include/hal/libhal-storage.h
393 file path=usr/include/hal/libhal.h
394 $(i386_ONLY)file path=usr/include/ia32/sys/asm_linkage.h
395 $(i386_ONLY)file path=usr/include/ia32/sys/kdi_regs.h
396 $(i386_ONLY)file path=usr/include/ia32/sys/machtypes.h
397 $(i386_ONLY)file path=usr/include/ia32/sys/privmregs.h
398 $(i386_ONLY)file path=usr/include/ia32/sys/privregs.h
399 $(i386_ONLY)file path=usr/include/ia32/sys/psw.h
400 $(i386_ONLY)file path=usr/include/ia32/sys/pte.h
401 $(i386_ONLY)file path=usr/include/ia32/sys/reg.h
402 $(i386_ONLY)file path=usr/include/ia32/sys/stack.h
403 $(i386_ONLY)file path=usr/include/ia32/sys/trap.h
404 $(i386_ONLY)file path=usr/include/ia32/sys/traptrace.h
405 file path=usr/include/iconv.h
406 file path=usr/include/idmap.h
407 file path=usr/include/ieeefp.h
408 file path=usr/include/ifaddrs.h
409 file path=usr/include/inet/arp.h
410 file path=usr/include/inet/common.h
411 file path=usr/include/inet/ip.h
412 file path=usr/include/inet/ip6.h
413 file path=usr/include/inet/ip6_asp.h
414 file path=usr/include/inet/ip_arp.h
415 file path=usr/include/inet/ip_ftable.h
416 file path=usr/include/inet/ip_if.h
417 file path=usr/include/inet/ip_ire.h
418 file path=usr/include/inet/ip_multi.h
419 file path=usr/include/inet/ip_netinfo.h
420 file path=usr/include/inet/ip_rts.h
421 file path=usr/include/inet/ip_stack.h
422 file path=usr/include/inet/ipclassifier.h
423 file path=usr/include/inet/ipdrop.h
424 file path=usr/include/inet/ipnet.h
425 file path=usr/include/inet/ipp_common.h
426 file path=usr/include/inet/kssl/ksslapi.h
427 file path=usr/include/inet/led.h
428 file path=usr/include/inet/mi.h
429 file path=usr/include/inet/mib2.h
430 file path=usr/include/inet/nd.h
431 file path=usr/include/inet/optcom.h
432 file path=usr/include/inet/sctp_itf.h
433 file path=usr/include/inet/snmpcom.h
434 file path=usr/include/inet/tcp.h
435 file path=usr/include/inet/tcp_sack.h
436 file path=usr/include/inet/tcp_stack.h
437 file path=usr/include/inet/tcp_stats.h
438 file path=usr/include/inet/tunables.h
439 file path=usr/include/inet/wifi_ioctl.h
440 file path=usr/include/inttypes.h
441 file path=usr/include/ipmp.h
442 file path=usr/include/ipmp_admin.h
443 file path=usr/include/ipmp_mpathd.h
444 file path=usr/include/ipmp_query.h
445 file path=usr/include/ipp/ipgpc/ipgpc.h
446 file path=usr/include/ipp/ipp.h
447 file path=usr/include/ipp/ipp_config.h
448 file path=usr/include/ipp/ipp_impl.h
449 file path=usr/include/ipp/ippctl.h
450 file path=usr/include/iso/ctype_iso.h
451 file path=usr/include/iso/limits_iso.h
452 file path=usr/include/iso/locale_iso.h
453 file path=usr/include/iso/setjmp_iso.h
454 file path=usr/include/iso/signal_iso.h

new/usr/src/pkg/manifests/system-header.mf 8

455 file path=usr/include/iso/stdarg_c99.h
456 file path=usr/include/iso/stdarg_iso.h
457 file path=usr/include/iso/stddef_iso.h
458 file path=usr/include/iso/stdio_c99.h
459 file path=usr/include/iso/stdio_iso.h
460 file path=usr/include/iso/stdlib_c11.h
461 file path=usr/include/iso/stdlib_c99.h
462 file path=usr/include/iso/stdlib_iso.h
463 file path=usr/include/iso/string_iso.h
464 file path=usr/include/iso/time_iso.h
465 file path=usr/include/iso/wchar_c99.h
466 file path=usr/include/iso/wchar_iso.h
467 file path=usr/include/iso/wctype_iso.h
468 file path=usr/include/iso646.h
469 file path=usr/include/kerberosv5/com_err.h
470 file path=usr/include/kerberosv5/krb5.h
471 file path=usr/include/kerberosv5/locate_plugin.h
472 file path=usr/include/kerberosv5/mit-sipb-copyright.h
473 file path=usr/include/kerberosv5/mit_copyright.h
474 file path=usr/include/klpd.h
475 file path=usr/include/kmfapi.h
476 file path=usr/include/kmftypes.h
477 file path=usr/include/kstat.h
478 file path=usr/include/kvm.h
479 file path=usr/include/langinfo.h
480 file path=usr/include/lastlog.h
481 file path=usr/include/lber.h
482 file path=usr/include/ldap.h
483 file path=usr/include/libcontract.h
484 file path=usr/include/libctf.h
485 file path=usr/include/libdevice.h
486 file path=usr/include/libdevinfo.h
487 file path=usr/include/libdladm.h
488 file path=usr/include/libdlbridge.h
489 file path=usr/include/libdlib.h
490 file path=usr/include/libdllink.h
491 file path=usr/include/libdlpi.h
492 file path=usr/include/libdlvlan.h
493 file path=usr/include/libelf.h
494 $(i386_ONLY)file path=usr/include/libfdisk.h
495 file path=usr/include/libfstyp.h
496 file path=usr/include/libfstyp_module.h
497 file path=usr/include/libgen.h
498 file path=usr/include/libgrubmgmt.h
499 file path=usr/include/libintl.h
500 file path=usr/include/libipmi.h
501 file path=usr/include/libipp.h
502 file path=usr/include/libnvpair.h
503 file path=usr/include/libnwam.h
504 file path=usr/include/libpolkit/libpolkit.h
505 file path=usr/include/libproc.h
506 file path=usr/include/librcm.h
507 file path=usr/include/libscf.h
508 file path=usr/include/libscf_priv.h
509 file path=usr/include/libshare.h
510 file path=usr/include/libsysevent.h
511 file path=usr/include/libsysevent_impl.h
512 file path=usr/include/libtsnet.h
513 $(sparc_ONLY)file path=usr/include/libv12n.h
514 file path=usr/include/libw.h
515 file path=usr/include/libzfs.h
516 file path=usr/include/libzfs_core.h
517 file path=usr/include/libzoneinfo.h
518 file path=usr/include/limits.h
519 file path=usr/include/linenum.h
520 file path=usr/include/link.h

new/usr/src/pkg/manifests/system-header.mf 9

521 file path=usr/include/listen.h
522 file path=usr/include/locale.h
523 file path=usr/include/macros.h
524 file path=usr/include/maillock.h
525 file path=usr/include/malloc.h
526 file path=usr/include/md4.h
527 file path=usr/include/md5.h
528 file path=usr/include/memory.h
529 file path=usr/include/menu.h
530 file path=usr/include/mon.h
531 file path=usr/include/monetary.h
532 file path=usr/include/mp.h
533 file path=usr/include/mqueue.h
534 file path=usr/include/mtmalloc.h
535 file path=usr/include/nan.h
536 file path=usr/include/ndbm.h
537 file path=usr/include/ndpd.h
538 file path=usr/include/net/af.h
539 file path=usr/include/net/bridge.h
540 file path=usr/include/net/if.h
541 file path=usr/include/net/if_arp.h
542 file path=usr/include/net/if_dl.h
543 file path=usr/include/net/if_types.h
544 file path=usr/include/net/pfkeyv2.h
545 file path=usr/include/net/pfpolicy.h
546 file path=usr/include/net/ppp-comp.h
547 file path=usr/include/net/ppp_defs.h
548 file path=usr/include/net/pppio.h
549 file path=usr/include/net/radix.h
550 file path=usr/include/net/route.h
551 file path=usr/include/net/trill.h
552 file path=usr/include/net/vjcompress.h
553 file path=usr/include/netconfig.h
554 file path=usr/include/netdb.h
555 file path=usr/include/netdir.h
556 file path=usr/include/netinet/arp.h
557 file path=usr/include/netinet/dhcp.h
558 file path=usr/include/netinet/dhcp6.h
559 file path=usr/include/netinet/icmp6.h
560 file path=usr/include/netinet/icmp_var.h
561 file path=usr/include/netinet/if_ether.h
562 file path=usr/include/netinet/igmp.h
563 file path=usr/include/netinet/igmp_var.h
564 file path=usr/include/netinet/in.h
565 file path=usr/include/netinet/in_pcb.h
566 file path=usr/include/netinet/in_systm.h
567 file path=usr/include/netinet/in_var.h
568 file path=usr/include/netinet/ip.h
569 file path=usr/include/netinet/ip6.h
570 file path=usr/include/netinet/ip_icmp.h
571 file path=usr/include/netinet/ip_mroute.h
572 file path=usr/include/netinet/ip_var.h
573 file path=usr/include/netinet/pim.h
574 file path=usr/include/netinet/sctp.h
575 file path=usr/include/netinet/tcp.h
576 file path=usr/include/netinet/tcp_debug.h
577 file path=usr/include/netinet/tcp_fsm.h
578 file path=usr/include/netinet/tcp_seq.h
579 file path=usr/include/netinet/tcp_timer.h
580 file path=usr/include/netinet/tcp_var.h
581 file path=usr/include/netinet/tcpip.h
582 file path=usr/include/netinet/udp.h
583 file path=usr/include/netinet/udp_var.h
584 file path=usr/include/netinet/vrrp.h
585 file path=usr/include/nfs/auth.h
586 file path=usr/include/nfs/export.h

new/usr/src/pkg/manifests/system-header.mf 10

587 file path=usr/include/nfs/lm.h
588 file path=usr/include/nfs/mapid.h
589 file path=usr/include/nfs/mount.h
590 file path=usr/include/nfs/nfs.h
591 file path=usr/include/nfs/nfs4.h
592 file path=usr/include/nfs/nfs4_attr.h
593 file path=usr/include/nfs/nfs4_clnt.h
594 file path=usr/include/nfs/nfs4_db_impl.h
595 file path=usr/include/nfs/nfs4_idmap_impl.h
596 file path=usr/include/nfs/nfs4_kprot.h
597 file path=usr/include/nfs/nfs_acl.h
598 file path=usr/include/nfs/nfs_clnt.h
599 file path=usr/include/nfs/nfs_cmd.h
600 file path=usr/include/nfs/nfs_log.h
601 file path=usr/include/nfs/nfs_sec.h
602 file path=usr/include/nfs/nfsid_map.h
603 file path=usr/include/nfs/nfssys.h
604 file path=usr/include/nfs/rnode.h
605 file path=usr/include/nfs/rnode4.h
606 file path=usr/include/nl_types.h
607 file path=usr/include/nlist.h
608 file path=usr/include/note.h
609 file path=usr/include/nss_common.h
610 file path=usr/include/nss_dbdefs.h
611 file path=usr/include/nss_netdir.h
612 file path=usr/include/nsswitch.h
613 file path=usr/include/panel.h
614 file path=usr/include/paths.h
615 file path=usr/include/pcsample.h
616 file path=usr/include/pfmt.h
617 file path=usr/include/pkgdev.h
618 file path=usr/include/pkginfo.h
619 file path=usr/include/pkglocs.h
620 file path=usr/include/pkgstrct.h
621 file path=usr/include/pkgtrans.h
622 file path=usr/include/poll.h
623 file path=usr/include/port.h
624 file path=usr/include/priv.h
625 file path=usr/include/proc_service.h
626 file path=usr/include/procfs.h
627 file path=usr/include/prof.h
628 file path=usr/include/prof_attr.h
629 file path=usr/include/project.h
630 file path=usr/include/protocols/dumprestore.h
631 file path=usr/include/protocols/routed.h
632 file path=usr/include/protocols/rwhod.h
633 file path=usr/include/protocols/timed.h
634 file path=usr/include/pthread.h
635 file path=usr/include/pw.h
636 file path=usr/include/pwd.h
637 file path=usr/include/rcm_module.h
638 file path=usr/include/rctl.h
639 file path=usr/include/re_comp.h
640 file path=usr/include/regex.h
641 file path=usr/include/regexp.h
642 file path=usr/include/regexpr.h
643 file path=usr/include/resolv.h
644 file path=usr/include/rje.h
645 file path=usr/include/rp_plugin.h
646 file path=usr/include/rpc/auth.h
647 file path=usr/include/rpc/auth_des.h
648 file path=usr/include/rpc/auth_sys.h
649 file path=usr/include/rpc/auth_unix.h
650 file path=usr/include/rpc/bootparam.h
651 file path=usr/include/rpc/clnt.h
652 file path=usr/include/rpc/clnt_soc.h

new/usr/src/pkg/manifests/system-header.mf 11

653 file path=usr/include/rpc/clnt_stat.h
654 file path=usr/include/rpc/des_crypt.h
655 $(sparc_ONLY)file path=usr/include/rpc/ib.h
656 file path=usr/include/rpc/key_prot.h
657 file path=usr/include/rpc/nettype.h
658 file path=usr/include/rpc/pmap_clnt.h
659 file path=usr/include/rpc/pmap_prot.h
660 file path=usr/include/rpc/pmap_prot.x
661 file path=usr/include/rpc/pmap_rmt.h
662 file path=usr/include/rpc/rpc.h
663 file path=usr/include/rpc/rpc_com.h
664 file path=usr/include/rpc/rpc_msg.h
665 file path=usr/include/rpc/rpc_rdma.h
666 file path=usr/include/rpc/rpc_sztypes.h
667 file path=usr/include/rpc/rpcb_clnt.h
668 file path=usr/include/rpc/rpcb_prot.h
669 file path=usr/include/rpc/rpcb_prot.x
670 file path=usr/include/rpc/rpcent.h
671 file path=usr/include/rpc/rpcsec_gss.h
672 file path=usr/include/rpc/rpcsys.h
673 file path=usr/include/rpc/svc.h
674 file path=usr/include/rpc/svc_auth.h
675 file path=usr/include/rpc/svc_mt.h
676 file path=usr/include/rpc/svc_soc.h
677 file path=usr/include/rpc/types.h
678 file path=usr/include/rpc/xdr.h
679 file path=usr/include/rpcsvc/autofs_prot.h
680 file path=usr/include/rpcsvc/autofs_prot.x
681 file path=usr/include/rpcsvc/bootparam.h
682 file path=usr/include/rpcsvc/bootparam_prot.h
683 file path=usr/include/rpcsvc/bootparam_prot.x
684 file path=usr/include/rpcsvc/dbm.h
685 file path=usr/include/rpcsvc/key_prot.x
686 file path=usr/include/rpcsvc/mount.h
687 file path=usr/include/rpcsvc/mount.x
688 file path=usr/include/rpcsvc/nfs4_prot.h
689 file path=usr/include/rpcsvc/nfs4_prot.x
690 file path=usr/include/rpcsvc/nfs_acl.h
691 file path=usr/include/rpcsvc/nfs_acl.x
692 file path=usr/include/rpcsvc/nfs_prot.h
693 file path=usr/include/rpcsvc/nfs_prot.x
694 file path=usr/include/rpcsvc/nis.h
695 file path=usr/include/rpcsvc/nis.x
696 file path=usr/include/rpcsvc/nis_db.h
697 file path=usr/include/rpcsvc/nis_object.x
698 file path=usr/include/rpcsvc/nislib.h
699 file path=usr/include/rpcsvc/nlm_prot.h
700 file path=usr/include/rpcsvc/nlm_prot.x
701 file path=usr/include/rpcsvc/nsm_addr.h
702 file path=usr/include/rpcsvc/nsm_addr.x
703 file path=usr/include/rpcsvc/rpc_sztypes.h
704 file path=usr/include/rpcsvc/rpc_sztypes.x
705 file path=usr/include/rpcsvc/rquota.h
706 file path=usr/include/rpcsvc/rquota.x
707 file path=usr/include/rpcsvc/rstat.h
708 file path=usr/include/rpcsvc/rstat.x
709 file path=usr/include/rpcsvc/rusers.h
710 file path=usr/include/rpcsvc/rusers.x
711 file path=usr/include/rpcsvc/rwall.h
712 file path=usr/include/rpcsvc/rwall.x
713 file path=usr/include/rpcsvc/sm_inter.h
714 file path=usr/include/rpcsvc/sm_inter.x
715 file path=usr/include/rpcsvc/spray.h
716 file path=usr/include/rpcsvc/spray.x
717 file path=usr/include/rpcsvc/ufs_prot.h
718 file path=usr/include/rpcsvc/ufs_prot.x

new/usr/src/pkg/manifests/system-header.mf 12

719 file path=usr/include/rpcsvc/yp.x
720 file path=usr/include/rpcsvc/yp_prot.h
721 file path=usr/include/rpcsvc/ypclnt.h
722 file path=usr/include/rpcsvc/yppasswd.h
723 file path=usr/include/rpcsvc/ypupd.h
724 file path=usr/include/rsmapi.h
725 file path=usr/include/rtld_db.h
726 file path=usr/include/sac.h
727 file path=usr/include/sasl/prop.h
728 file path=usr/include/sasl/sasl.h
729 file path=usr/include/sasl/saslplug.h
730 file path=usr/include/sasl/saslutil.h
731 file path=usr/include/sched.h
732 file path=usr/include/schedctl.h
733 file path=usr/include/scsi/libscsi.h
734 file path=usr/include/scsi/libses.h
735 file path=usr/include/scsi/libses_plugin.h
736 file path=usr/include/scsi/libsmp.h
737 file path=usr/include/scsi/libsmp_plugin.h
738 file path=usr/include/scsi/plugins/ses/framework/libses.h
739 file path=usr/include/scsi/plugins/ses/framework/ses2.h
740 file path=usr/include/scsi/plugins/ses/framework/ses2_impl.h
741 file path=usr/include/scsi/plugins/ses/vendor/sun.h
742 file path=usr/include/sdp.h
743 file path=usr/include/search.h
744 file path=usr/include/secdb.h
745 file path=usr/include/security/auditd.h
746 file path=usr/include/security/cryptoki.h
747 file path=usr/include/security/pam_appl.h
748 file path=usr/include/security/pam_modules.h
749 file path=usr/include/security/pkcs11.h
750 file path=usr/include/security/pkcs11f.h
751 file path=usr/include/security/pkcs11t.h
752 file path=usr/include/semaphore.h
753 file path=usr/include/setjmp.h
754 file path=usr/include/sgtty.h
755 file path=usr/include/sha1.h
756 file path=usr/include/sha2.h
757 file path=usr/include/shadow.h
758 file path=usr/include/sharefs/share.h
759 file path=usr/include/sharefs/sharefs.h
760 file path=usr/include/sharefs/sharetab.h
761 file path=usr/include/siginfo.h
762 file path=usr/include/signal.h
763 file path=usr/include/sip.h
764 file path=usr/include/skein.h
765 file path=usr/include/smbios.h
766 file path=usr/include/spawn.h
767 $(i386_ONLY)file path=usr/include/stack_unwind.h
768 file path=usr/include/stdalign.h
769 file path=usr/include/stdarg.h
770 file path=usr/include/stdbool.h
771 file path=usr/include/stddef.h
772 file path=usr/include/stdint.h
773 file path=usr/include/stdio.h
774 file path=usr/include/stdio_ext.h
775 file path=usr/include/stdio_impl.h
776 file path=usr/include/stdio_tag.h
777 file path=usr/include/stdlib.h
778 file path=usr/include/stdnoreturn.h
779 file path=usr/include/storclass.h
780 file path=usr/include/string.h
781 file path=usr/include/strings.h
782 file path=usr/include/stropts.h
783 file path=usr/include/syms.h
784 file path=usr/include/synch.h

new/usr/src/pkg/manifests/system-header.mf 13

785 file path=usr/include/sys/acct.h
786 file path=usr/include/sys/acctctl.h
787 file path=usr/include/sys/acl.h
788 file path=usr/include/sys/acl_impl.h
789 file path=usr/include/sys/acpi_drv.h
790 file path=usr/include/sys/aio.h
791 file path=usr/include/sys/aio_impl.h
792 file path=usr/include/sys/aio_req.h
793 file path=usr/include/sys/aiocb.h
794 file path=usr/include/sys/archsystm.h
795 file path=usr/include/sys/ascii.h
796 file path=usr/include/sys/asm_linkage.h
797 file path=usr/include/sys/asynch.h
798 file path=usr/include/sys/atomic.h
799 file path=usr/include/sys/attr.h
800 file path=usr/include/sys/autoconf.h
801 file path=usr/include/sys/auxv.h
802 file path=usr/include/sys/auxv_386.h
803 file path=usr/include/sys/auxv_SPARC.h
804 file path=usr/include/sys/av/iec61883.h
805 file path=usr/include/sys/avintr.h
806 file path=usr/include/sys/avl.h
807 file path=usr/include/sys/avl_impl.h
808 file path=usr/include/sys/bitmap.h
809 file path=usr/include/sys/bitset.h
810 file path=usr/include/sys/bl.h
811 file path=usr/include/sys/blkdev.h
812 file path=usr/include/sys/bofi.h
813 file path=usr/include/sys/bofi_impl.h
814 file path=usr/include/sys/bootconf.h
815 $(i386_ONLY)file path=usr/include/sys/bootregs.h
816 file path=usr/include/sys/bootstat.h
817 $(i386_ONLY)file path=usr/include/sys/bootsvcs.h
818 file path=usr/include/sys/bpp_io.h
819 file path=usr/include/sys/brand.h
820 file path=usr/include/sys/buf.h
821 file path=usr/include/sys/bufmod.h
822 file path=usr/include/sys/bustypes.h
823 file path=usr/include/sys/byteorder.h
824 file path=usr/include/sys/callb.h
825 file path=usr/include/sys/callo.h
826 file path=usr/include/sys/cap_util.h
827 file path=usr/include/sys/ccompile.h
828 file path=usr/include/sys/cdio.h
829 file path=usr/include/sys/cis.h
830 file path=usr/include/sys/cis_handlers.h
831 file path=usr/include/sys/cis_protos.h
832 file path=usr/include/sys/cladm.h
833 file path=usr/include/sys/class.h
834 file path=usr/include/sys/clconf.h
835 file path=usr/include/sys/cmlb.h
836 file path=usr/include/sys/cmn_err.h
837 $(sparc_ONLY)file path=usr/include/sys/cmpregs.h
838 file path=usr/include/sys/compress.h
839 file path=usr/include/sys/condvar.h
840 file path=usr/include/sys/condvar_impl.h
841 file path=usr/include/sys/conf.h
842 file path=usr/include/sys/consdev.h
843 file path=usr/include/sys/console.h
844 file path=usr/include/sys/consplat.h
845 file path=usr/include/sys/containerof.h
846 file path=usr/include/sys/contract.h
847 file path=usr/include/sys/contract/device.h
848 file path=usr/include/sys/contract/device_impl.h
849 file path=usr/include/sys/contract/process.h
850 file path=usr/include/sys/contract/process_impl.h

new/usr/src/pkg/manifests/system-header.mf 14

851 file path=usr/include/sys/contract_impl.h
852 $(i386_ONLY)file path=usr/include/sys/controlregs.h
853 file path=usr/include/sys/copyops.h
854 file path=usr/include/sys/core.h
855 file path=usr/include/sys/corectl.h
856 file path=usr/include/sys/cpc_impl.h
857 file path=usr/include/sys/cpc_pcbe.h
858 file path=usr/include/sys/cpr.h
859 file path=usr/include/sys/cpu.h
860 file path=usr/include/sys/cpu_uarray.h
861 file path=usr/include/sys/cpucaps.h
862 file path=usr/include/sys/cpucaps_impl.h
863 file path=usr/include/sys/cpupart.h
864 file path=usr/include/sys/cpuvar.h
865 file path=usr/include/sys/crc32.h
866 file path=usr/include/sys/cred.h
867 file path=usr/include/sys/cred_impl.h
868 file path=usr/include/sys/crtctl.h
869 file path=usr/include/sys/crypto/api.h
870 file path=usr/include/sys/crypto/common.h
871 file path=usr/include/sys/crypto/ioctl.h
872 file path=usr/include/sys/crypto/ioctladmin.h
873 file path=usr/include/sys/crypto/spi.h
874 file path=usr/include/sys/cs.h
875 file path=usr/include/sys/cs_priv.h
876 file path=usr/include/sys/cs_strings.h
877 file path=usr/include/sys/cs_stubs.h
878 file path=usr/include/sys/cs_types.h
879 file path=usr/include/sys/csiioctl.h
880 file path=usr/include/sys/ctf.h
881 file path=usr/include/sys/ctf_api.h
882 file path=usr/include/sys/ctfs.h
883 file path=usr/include/sys/ctfs_impl.h
884 file path=usr/include/sys/ctype.h
885 file path=usr/include/sys/cyclic.h
886 file path=usr/include/sys/cyclic_impl.h
887 file path=usr/include/sys/dacf.h
888 file path=usr/include/sys/dacf_impl.h
889 file path=usr/include/sys/damap.h
890 file path=usr/include/sys/damap_impl.h
891 file path=usr/include/sys/dc_ki.h
892 file path=usr/include/sys/ddi.h
893 file path=usr/include/sys/ddi_hp.h
894 file path=usr/include/sys/ddi_hp_impl.h
895 file path=usr/include/sys/ddi_impldefs.h
896 file path=usr/include/sys/ddi_implfuncs.h
897 file path=usr/include/sys/ddi_intr.h
898 file path=usr/include/sys/ddi_intr_impl.h
899 file path=usr/include/sys/ddi_isa.h
900 file path=usr/include/sys/ddi_obsolete.h
901 file path=usr/include/sys/ddi_periodic.h
902 file path=usr/include/sys/ddidevmap.h
903 file path=usr/include/sys/ddidmareq.h
904 file path=usr/include/sys/ddifm.h
905 file path=usr/include/sys/ddifm_impl.h
906 file path=usr/include/sys/ddimapreq.h
907 file path=usr/include/sys/ddipropdefs.h
908 file path=usr/include/sys/dditypes.h
909 file path=usr/include/sys/debug.h
910 $(i386_ONLY)file path=usr/include/sys/debugreg.h
911 file path=usr/include/sys/des.h
912 file path=usr/include/sys/devcache.h
913 file path=usr/include/sys/devcache_impl.h
914 file path=usr/include/sys/devctl.h
915 file path=usr/include/sys/devfm.h
916 file path=usr/include/sys/devid_cache.h

new/usr/src/pkg/manifests/system-header.mf 15

917 file path=usr/include/sys/devinfo_impl.h
918 file path=usr/include/sys/devops.h
919 file path=usr/include/sys/devpolicy.h
920 file path=usr/include/sys/devpoll.h
921 file path=usr/include/sys/dirent.h
922 file path=usr/include/sys/disp.h
923 file path=usr/include/sys/dkbad.h
924 file path=usr/include/sys/dkio.h
925 file path=usr/include/sys/dkioc_free_util.h
926 file path=usr/include/sys/dklabel.h
927 $(sparc_ONLY)file path=usr/include/sys/dkmpio.h
928 $(i386_ONLY)file path=usr/include/sys/dktp/altsctr.h
929 $(i386_ONLY)file path=usr/include/sys/dktp/cmpkt.h
930 file path=usr/include/sys/dktp/dadkio.h
931 file path=usr/include/sys/dktp/fdisk.h
932 file path=usr/include/sys/dl.h
933 file path=usr/include/sys/dld.h
934 file path=usr/include/sys/dlpi.h
935 file path=usr/include/sys/dls_mgmt.h
936 $(i386_ONLY)file path=usr/include/sys/dma_engine.h
937 file path=usr/include/sys/dma_i8237A.h
938 file path=usr/include/sys/dnlc.h
939 file path=usr/include/sys/door.h
940 file path=usr/include/sys/door_data.h
941 file path=usr/include/sys/door_impl.h
942 file path=usr/include/sys/dumphdr.h
943 file path=usr/include/sys/ecppio.h
944 file path=usr/include/sys/ecppreg.h
945 file path=usr/include/sys/ecppsys.h
946 file path=usr/include/sys/ecppvar.h
947 file path=usr/include/sys/edonr.h
948 file path=usr/include/sys/efi_partition.h
949 file path=usr/include/sys/elf.h
950 file path=usr/include/sys/elf_386.h
951 file path=usr/include/sys/elf_SPARC.h
952 file path=usr/include/sys/elf_amd64.h
953 file path=usr/include/sys/elf_notes.h
954 file path=usr/include/sys/elftypes.h
955 file path=usr/include/sys/epm.h
956 file path=usr/include/sys/epoll.h
957 file path=usr/include/sys/errno.h
958 file path=usr/include/sys/errorq.h
959 file path=usr/include/sys/errorq_impl.h
960 file path=usr/include/sys/esunddi.h
961 file path=usr/include/sys/ethernet.h
962 file path=usr/include/sys/euc.h
963 file path=usr/include/sys/eucioctl.h
964 file path=usr/include/sys/eventfd.h
965 file path=usr/include/sys/exacct.h
966 file path=usr/include/sys/exacct_catalog.h
967 file path=usr/include/sys/exacct_impl.h
968 file path=usr/include/sys/exec.h
969 file path=usr/include/sys/exechdr.h
970 file path=usr/include/sys/fault.h
971 file path=usr/include/sys/fbio.h
972 file path=usr/include/sys/fbuf.h
973 file path=usr/include/sys/fc4/fc.h
974 file path=usr/include/sys/fc4/fc_transport.h
975 file path=usr/include/sys/fc4/fcal.h
976 file path=usr/include/sys/fc4/fcal_linkapp.h
977 file path=usr/include/sys/fc4/fcal_transport.h
978 file path=usr/include/sys/fc4/fcio.h
979 file path=usr/include/sys/fc4/fcp.h
980 file path=usr/include/sys/fc4/linkapp.h
981 file path=usr/include/sys/fcntl.h
982 file path=usr/include/sys/fdbuffer.h

new/usr/src/pkg/manifests/system-header.mf 16

983 file path=usr/include/sys/fdio.h
984 $(sparc_ONLY)file path=usr/include/sys/fdreg.h
985 $(sparc_ONLY)file path=usr/include/sys/fdvar.h
986 file path=usr/include/sys/feature_tests.h
987 file path=usr/include/sys/fem.h
988 file path=usr/include/sys/file.h
989 file path=usr/include/sys/filio.h
990 $(i386_ONLY)file path=usr/include/sys/firmload.h
991 file path=usr/include/sys/flock.h
992 file path=usr/include/sys/flock_impl.h
993 $(sparc_ONLY)file path=usr/include/sys/fm/cpu/SPARC64-VI.h
994 $(sparc_ONLY)file path=usr/include/sys/fm/cpu/UltraSPARC-II.h
995 $(sparc_ONLY)file path=usr/include/sys/fm/cpu/UltraSPARC-III.h
996 $(sparc_ONLY)file path=usr/include/sys/fm/cpu/UltraSPARC-T1.h
997 file path=usr/include/sys/fm/fs/zfs.h
998 file path=usr/include/sys/fm/io/ddi.h
999 file path=usr/include/sys/fm/io/disk.h

1000 file path=usr/include/sys/fm/io/opl_mc_fm.h
1001 file path=usr/include/sys/fm/io/pci.h
1002 file path=usr/include/sys/fm/io/scsi.h
1003 file path=usr/include/sys/fm/io/sun4upci.h
1004 file path=usr/include/sys/fm/protocol.h
1005 file path=usr/include/sys/fm/util.h
1006 file path=usr/include/sys/fork.h
1007 $(i386_ONLY)file path=usr/include/sys/fp.h
1008 $(sparc_ONLY)file path=usr/include/sys/fpu/fpu_simulator.h
1009 $(sparc_ONLY)file path=usr/include/sys/fpu/fpusystm.h
1010 $(sparc_ONLY)file path=usr/include/sys/fpu/globals.h
1011 $(sparc_ONLY)file path=usr/include/sys/fpu/ieee.h
1012 file path=usr/include/sys/frame.h
1013 file path=usr/include/sys/fs/autofs.h
1014 file path=usr/include/sys/fs/decomp.h
1015 file path=usr/include/sys/fs/dv_node.h
1016 file path=usr/include/sys/fs/fifonode.h
1017 file path=usr/include/sys/fs/hsfs_isospec.h
1018 file path=usr/include/sys/fs/hsfs_node.h
1019 file path=usr/include/sys/fs/hsfs_rrip.h
1020 file path=usr/include/sys/fs/hsfs_spec.h
1021 file path=usr/include/sys/fs/hsfs_susp.h
1022 file path=usr/include/sys/fs/lofs_info.h
1023 file path=usr/include/sys/fs/lofs_node.h
1024 file path=usr/include/sys/fs/mntdata.h
1025 file path=usr/include/sys/fs/namenode.h
1026 file path=usr/include/sys/fs/pc_dir.h
1027 file path=usr/include/sys/fs/pc_fs.h
1028 file path=usr/include/sys/fs/pc_label.h
1029 file path=usr/include/sys/fs/pc_node.h
1030 file path=usr/include/sys/fs/pxfs_ki.h
1031 file path=usr/include/sys/fs/sdev_impl.h
1032 file path=usr/include/sys/fs/snode.h
1033 file path=usr/include/sys/fs/swapnode.h
1034 file path=usr/include/sys/fs/tmp.h
1035 file path=usr/include/sys/fs/tmpnode.h
1036 file path=usr/include/sys/fs/udf_inode.h
1037 file path=usr/include/sys/fs/udf_volume.h
1038 file path=usr/include/sys/fs/ufs_acl.h
1039 file path=usr/include/sys/fs/ufs_bio.h
1040 file path=usr/include/sys/fs/ufs_filio.h
1041 file path=usr/include/sys/fs/ufs_fs.h
1042 file path=usr/include/sys/fs/ufs_fsdir.h
1043 file path=usr/include/sys/fs/ufs_inode.h
1044 file path=usr/include/sys/fs/ufs_lockfs.h
1045 file path=usr/include/sys/fs/ufs_log.h
1046 file path=usr/include/sys/fs/ufs_mount.h
1047 file path=usr/include/sys/fs/ufs_panic.h
1048 file path=usr/include/sys/fs/ufs_prot.h

new/usr/src/pkg/manifests/system-header.mf 17

1049 file path=usr/include/sys/fs/ufs_quota.h
1050 file path=usr/include/sys/fs/ufs_snap.h
1051 file path=usr/include/sys/fs/ufs_trans.h
1052 file path=usr/include/sys/fs/zfs.h
1053 file path=usr/include/sys/fs_reparse.h
1054 file path=usr/include/sys/fs_subr.h
1055 file path=usr/include/sys/fsid.h
1056 $(sparc_ONLY)file path=usr/include/sys/fsr.h
1057 file path=usr/include/sys/fss.h
1058 file path=usr/include/sys/fssnap.h
1059 file path=usr/include/sys/fssnap_if.h
1060 file path=usr/include/sys/fsspriocntl.h
1061 file path=usr/include/sys/fstyp.h
1062 file path=usr/include/sys/ftrace.h
1063 file path=usr/include/sys/fx.h
1064 file path=usr/include/sys/fxpriocntl.h
1065 file path=usr/include/sys/gfs.h
1066 $(i386_ONLY)file path=usr/include/sys/gfx_private.h
1067 file path=usr/include/sys/gld.h
1068 file path=usr/include/sys/gldpriv.h
1069 file path=usr/include/sys/group.h
1070 file path=usr/include/sys/hdio.h
1071 file path=usr/include/sys/hook.h
1072 file path=usr/include/sys/hook_event.h
1073 file path=usr/include/sys/hook_impl.h
1074 file path=usr/include/sys/hotplug/hpcsvc.h
1075 file path=usr/include/sys/hotplug/hpctrl.h
1076 file path=usr/include/sys/hotplug/pci/pcicfg.h
1077 file path=usr/include/sys/hotplug/pci/pcihp.h
1078 file path=usr/include/sys/hwconf.h
1079 $(i386_ONLY)file path=usr/include/sys/hypervisor.h
1080 $(i386_ONLY)file path=usr/include/sys/i8272A.h
1081 file path=usr/include/sys/ia.h
1082 file path=usr/include/sys/iapriocntl.h
1083 file path=usr/include/sys/ib/adapters/hermon/hermon_ioctl.h
1084 file path=usr/include/sys/ib/adapters/mlnx_umap.h
1085 file path=usr/include/sys/ib/adapters/tavor/tavor_ioctl.h
1086 file path=usr/include/sys/ib/clients/ibd/ibd.h
1087 file path=usr/include/sys/ib/clients/of/ofa_solaris.h
1088 file path=usr/include/sys/ib/clients/of/ofed_kernel.h
1089 file path=usr/include/sys/ib/clients/of/rdma/ib_addr.h
1090 file path=usr/include/sys/ib/clients/of/rdma/ib_user_mad.h
1091 file path=usr/include/sys/ib/clients/of/rdma/ib_user_sa.h
1092 file path=usr/include/sys/ib/clients/of/rdma/ib_user_verbs.h
1093 file path=usr/include/sys/ib/clients/of/rdma/ib_verbs.h
1094 file path=usr/include/sys/ib/clients/of/rdma/rdma_cm.h
1095 file path=usr/include/sys/ib/clients/of/rdma/rdma_user_cm.h
1096 file path=usr/include/sys/ib/clients/of/sol_ofs/sol_cma.h
1097 file path=usr/include/sys/ib/clients/of/sol_ofs/sol_ib_cma.h
1098 file path=usr/include/sys/ib/clients/of/sol_ofs/sol_kverb_impl.h
1099 file path=usr/include/sys/ib/clients/of/sol_ofs/sol_ofs_common.h
1100 file path=usr/include/sys/ib/clients/of/sol_ucma/sol_rdma_user_cm.h
1101 file path=usr/include/sys/ib/clients/of/sol_ucma/sol_ucma.h
1102 file path=usr/include/sys/ib/clients/of/sol_umad/sol_umad.h
1103 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs.h
1104 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs2ucma.h
1105 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs_comp.h
1106 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs_event.h
1107 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs_hca.h
1108 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs_qp.h
1109 file path=usr/include/sys/ib/ib_pkt_hdrs.h
1110 file path=usr/include/sys/ib/ib_types.h
1111 file path=usr/include/sys/ib/ibnex/ibnex_devctl.h
1112 file path=usr/include/sys/ib/ibtl/ibci.h
1113 file path=usr/include/sys/ib/ibtl/ibti.h
1114 file path=usr/include/sys/ib/ibtl/ibti_cm.h

new/usr/src/pkg/manifests/system-header.mf 18

1115 file path=usr/include/sys/ib/ibtl/ibti_common.h
1116 file path=usr/include/sys/ib/ibtl/ibtl_ci_types.h
1117 file path=usr/include/sys/ib/ibtl/ibtl_status.h
1118 file path=usr/include/sys/ib/ibtl/ibtl_types.h
1119 file path=usr/include/sys/ib/ibtl/ibvti.h
1120 file path=usr/include/sys/ib/ibtl/impl/ibtl_util.h
1121 file path=usr/include/sys/ib/mgt/ib_dm_attr.h
1122 file path=usr/include/sys/ib/mgt/ib_mad.h
1123 file path=usr/include/sys/ib/mgt/ibmf/ibmf.h
1124 file path=usr/include/sys/ib/mgt/ibmf/ibmf_msg.h
1125 file path=usr/include/sys/ib/mgt/ibmf/ibmf_saa.h
1126 file path=usr/include/sys/ib/mgt/ibmf/ibmf_utils.h
1127 file path=usr/include/sys/ib/mgt/sa_recs.h
1128 file path=usr/include/sys/ib/mgt/sm_attr.h
1129 file path=usr/include/sys/ibpart.h
1130 file path=usr/include/sys/id32.h
1131 file path=usr/include/sys/id_space.h
1132 file path=usr/include/sys/idmap.h
1133 file path=usr/include/sys/inline.h
1134 file path=usr/include/sys/instance.h
1135 file path=usr/include/sys/int_const.h
1136 file path=usr/include/sys/int_fmtio.h
1137 file path=usr/include/sys/int_limits.h
1138 file path=usr/include/sys/int_types.h
1139 file path=usr/include/sys/inttypes.h
1140 file path=usr/include/sys/ioccom.h
1141 file path=usr/include/sys/ioctl.h
1142 $(i386_ONLY)file path=usr/include/sys/iommulib.h
1143 file path=usr/include/sys/ipc.h
1144 file path=usr/include/sys/ipc_impl.h
1145 file path=usr/include/sys/ipc_rctl.h
1146 file path=usr/include/sys/isa_defs.h
1147 file path=usr/include/sys/iso/signal_iso.h
1148 file path=usr/include/sys/jioctl.h
1149 file path=usr/include/sys/kbd.h
1150 file path=usr/include/sys/kbdreg.h
1151 file path=usr/include/sys/kbio.h
1152 file path=usr/include/sys/kcpc.h
1153 file path=usr/include/sys/kd.h
1154 file path=usr/include/sys/kdi.h
1155 file path=usr/include/sys/kdi_impl.h
1156 file path=usr/include/sys/kdi_machimpl.h
1157 $(i386_ONLY)file path=usr/include/sys/kdi_regs.h
1158 file path=usr/include/sys/kiconv.h
1159 file path=usr/include/sys/kidmap.h
1160 file path=usr/include/sys/klpd.h
1161 file path=usr/include/sys/klwp.h
1162 file path=usr/include/sys/kmem.h
1163 file path=usr/include/sys/kmem_impl.h
1164 file path=usr/include/sys/kobj.h
1165 file path=usr/include/sys/kobj_impl.h
1166 file path=usr/include/sys/ksocket.h
1167 file path=usr/include/sys/kstat.h
1168 file path=usr/include/sys/kstr.h
1169 file path=usr/include/sys/ksyms.h
1170 file path=usr/include/sys/ksynch.h
1171 file path=usr/include/sys/lc_core.h
1172 file path=usr/include/sys/ldterm.h
1173 file path=usr/include/sys/lgrp.h
1174 file path=usr/include/sys/lgrp_user.h
1175 file path=usr/include/sys/link.h
1176 file path=usr/include/sys/list.h
1177 file path=usr/include/sys/list_impl.h
1178 file path=usr/include/sys/llc1.h
1179 file path=usr/include/sys/loadavg.h
1180 file path=usr/include/sys/localedef.h

new/usr/src/pkg/manifests/system-header.mf 19

1181 file path=usr/include/sys/lock.h
1182 file path=usr/include/sys/lockfs.h
1183 file path=usr/include/sys/lofi.h
1184 file path=usr/include/sys/log.h
1185 file path=usr/include/sys/logindmux.h
1186 file path=usr/include/sys/lwp.h
1187 file path=usr/include/sys/lwp_timer_impl.h
1188 file path=usr/include/sys/lwp_upimutex_impl.h
1189 file path=usr/include/sys/mac.h
1190 file path=usr/include/sys/mac_ether.h
1191 file path=usr/include/sys/mac_flow.h
1192 file path=usr/include/sys/mac_provider.h
1193 file path=usr/include/sys/machelf.h
1194 file path=usr/include/sys/machlock.h
1195 file path=usr/include/sys/machsig.h
1196 file path=usr/include/sys/machtypes.h
1197 file path=usr/include/sys/map.h
1198 $(i386_ONLY)file path=usr/include/sys/mc.h
1199 $(i386_ONLY)file path=usr/include/sys/mc_amd.h
1200 $(i386_ONLY)file path=usr/include/sys/mc_intel.h
1201 $(i386_ONLY)file path=usr/include/sys/mca_amd.h
1202 $(i386_ONLY)file path=usr/include/sys/mca_x86.h
1203 file path=usr/include/sys/mcontext.h
1204 file path=usr/include/sys/md4.h
1205 file path=usr/include/sys/md5.h
1206 file path=usr/include/sys/md5_consts.h
1207 file path=usr/include/sys/mdi_impldefs.h
1208 file path=usr/include/sys/mem.h
1209 file path=usr/include/sys/mem_config.h
1210 file path=usr/include/sys/memlist.h
1211 file path=usr/include/sys/mhd.h
1212 file path=usr/include/sys/mii.h
1213 file path=usr/include/sys/miiregs.h
1214 file path=usr/include/sys/mkdev.h
1215 file path=usr/include/sys/mman.h
1216 file path=usr/include/sys/mmapobj.h
1217 file path=usr/include/sys/mntent.h
1218 file path=usr/include/sys/mntio.h
1219 file path=usr/include/sys/mnttab.h
1220 file path=usr/include/sys/modctl.h
1221 file path=usr/include/sys/mode.h
1222 file path=usr/include/sys/model.h
1223 file path=usr/include/sys/modhash.h
1224 file path=usr/include/sys/modhash_impl.h
1225 file path=usr/include/sys/mount.h
1226 file path=usr/include/sys/mouse.h
1227 file path=usr/include/sys/msacct.h
1228 file path=usr/include/sys/msg.h
1229 file path=usr/include/sys/msg_impl.h
1230 file path=usr/include/sys/msio.h
1231 file path=usr/include/sys/msreg.h
1232 file path=usr/include/sys/mtio.h
1233 file path=usr/include/sys/multidata.h
1234 file path=usr/include/sys/mutex.h
1235 $(i386_ONLY)file path=usr/include/sys/mutex_impl.h
1236 file path=usr/include/sys/nbmlock.h
1237 file path=usr/include/sys/ndi_impldefs.h
1238 file path=usr/include/sys/ndifm.h
1239 file path=usr/include/sys/netconfig.h
1240 file path=usr/include/sys/neti.h
1241 file path=usr/include/sys/netstack.h
1242 file path=usr/include/sys/nexusdefs.h
1243 file path=usr/include/sys/note.h
1244 file path=usr/include/sys/null.h
1245 file path=usr/include/sys/nvpair.h
1246 file path=usr/include/sys/nvpair_impl.h

new/usr/src/pkg/manifests/system-header.mf 20

1247 file path=usr/include/sys/objfs.h
1248 file path=usr/include/sys/objfs_impl.h
1249 file path=usr/include/sys/obpdefs.h
1250 file path=usr/include/sys/old_procfs.h
1251 file path=usr/include/sys/open.h
1252 file path=usr/include/sys/openpromio.h
1253 file path=usr/include/sys/panic.h
1254 file path=usr/include/sys/param.h
1255 file path=usr/include/sys/pathconf.h
1256 file path=usr/include/sys/pathname.h
1257 file path=usr/include/sys/pattr.h
1258 file path=usr/include/sys/pbio.h
1259 file path=usr/include/sys/pcb.h
1260 file path=usr/include/sys/pccard.h
1261 file path=usr/include/sys/pci.h
1262 $(i386_ONLY)file path=usr/include/sys/pcic_reg.h
1263 $(i386_ONLY)file path=usr/include/sys/pcic_var.h
1264 file path=usr/include/sys/pcie.h
1265 file path=usr/include/sys/pcmcia.h
1266 file path=usr/include/sys/pctypes.h
1267 file path=usr/include/sys/pfmod.h
1268 file path=usr/include/sys/pg.h
1269 file path=usr/include/sys/pghw.h
1270 file path=usr/include/sys/physmem.h
1271 $(i386_ONLY)file path=usr/include/sys/pic.h
1272 $(i386_ONLY)file path=usr/include/sys/pit.h
1273 file path=usr/include/sys/pkp_hash.h
1274 file path=usr/include/sys/pm.h
1275 $(i386_ONLY)file path=usr/include/sys/pmem.h
1276 file path=usr/include/sys/policy.h
1277 file path=usr/include/sys/poll.h
1278 file path=usr/include/sys/poll_impl.h
1279 file path=usr/include/sys/pool.h
1280 file path=usr/include/sys/pool_impl.h
1281 file path=usr/include/sys/pool_pset.h
1282 file path=usr/include/sys/port.h
1283 file path=usr/include/sys/port_impl.h
1284 file path=usr/include/sys/port_kernel.h
1285 file path=usr/include/sys/ppmio.h
1286 file path=usr/include/sys/priocntl.h
1287 file path=usr/include/sys/priv.h
1288 file path=usr/include/sys/priv_const.h
1289 file path=usr/include/sys/priv_impl.h
1290 file path=usr/include/sys/priv_names.h
1291 $(i386_ONLY)file path=usr/include/sys/privmregs.h
1292 $(i386_ONLY)file path=usr/include/sys/privregs.h
1293 file path=usr/include/sys/prnio.h
1294 file path=usr/include/sys/proc.h
1295 file path=usr/include/sys/proc/prdata.h
1296 file path=usr/include/sys/processor.h
1297 file path=usr/include/sys/procfs.h
1298 file path=usr/include/sys/procfs_isa.h
1299 file path=usr/include/sys/procset.h
1300 file path=usr/include/sys/project.h
1301 $(i386_ONLY)file path=usr/include/sys/prom_emul.h
1302 $(i386_ONLY)file path=usr/include/sys/prom_isa.h
1303 $(i386_ONLY)file path=usr/include/sys/prom_plat.h
1304 file path=usr/include/sys/promif.h
1305 file path=usr/include/sys/promimpl.h
1306 file path=usr/include/sys/protosw.h
1307 file path=usr/include/sys/prsystm.h
1308 file path=usr/include/sys/pset.h
1309 file path=usr/include/sys/psw.h
1310 $(i386_ONLY)file path=usr/include/sys/pte.h
1311 file path=usr/include/sys/ptem.h
1312 file path=usr/include/sys/ptms.h

new/usr/src/pkg/manifests/system-header.mf 21

1313 file path=usr/include/sys/ptyvar.h
1314 file path=usr/include/sys/queue.h
1315 file path=usr/include/sys/raidioctl.h
1316 file path=usr/include/sys/ramdisk.h
1317 file path=usr/include/sys/random.h
1318 file path=usr/include/sys/rctl.h
1319 file path=usr/include/sys/rctl_impl.h
1320 file path=usr/include/sys/rds.h
1321 file path=usr/include/sys/reboot.h
1322 file path=usr/include/sys/refstr.h
1323 file path=usr/include/sys/refstr_impl.h
1324 file path=usr/include/sys/reg.h
1325 file path=usr/include/sys/regset.h
1326 file path=usr/include/sys/resource.h
1327 file path=usr/include/sys/rlioctl.h
1328 file path=usr/include/sys/rsm/rsm.h
1329 file path=usr/include/sys/rsm/rsm_common.h
1330 file path=usr/include/sys/rsm/rsmapi_common.h
1331 file path=usr/include/sys/rsm/rsmka_path_int.h
1332 file path=usr/include/sys/rsm/rsmndi.h
1333 file path=usr/include/sys/rsm/rsmpi.h
1334 file path=usr/include/sys/rsm/rsmpi_driver.h
1335 file path=usr/include/sys/rt.h
1336 $(i386_ONLY)file path=usr/include/sys/rtc.h
1337 file path=usr/include/sys/rtpriocntl.h
1338 file path=usr/include/sys/rwlock.h
1339 file path=usr/include/sys/rwlock_impl.h
1340 file path=usr/include/sys/rwstlock.h
1341 file path=usr/include/sys/sad.h
1342 $(i386_ONLY)file path=usr/include/sys/sata/sata_defs.h
1343 $(i386_ONLY)file path=usr/include/sys/sata/sata_hba.h
1344 file path=usr/include/sys/schedctl.h
1345 $(sparc_ONLY)file path=usr/include/sys/scsi/adapters/ifpio.h
1346 file path=usr/include/sys/scsi/adapters/scsi_vhci.h
1347 $(sparc_ONLY)file path=usr/include/sys/scsi/adapters/sfvar.h
1348 file path=usr/include/sys/scsi/conf/autoconf.h
1349 file path=usr/include/sys/scsi/conf/device.h
1350 file path=usr/include/sys/scsi/generic/commands.h
1351 file path=usr/include/sys/scsi/generic/dad_mode.h
1352 file path=usr/include/sys/scsi/generic/inquiry.h
1353 file path=usr/include/sys/scsi/generic/message.h
1354 file path=usr/include/sys/scsi/generic/mode.h
1355 file path=usr/include/sys/scsi/generic/persist.h
1356 file path=usr/include/sys/scsi/generic/sense.h
1357 file path=usr/include/sys/scsi/generic/sff_frames.h
1358 file path=usr/include/sys/scsi/generic/smp_frames.h
1359 file path=usr/include/sys/scsi/generic/status.h
1360 file path=usr/include/sys/scsi/impl/commands.h
1361 file path=usr/include/sys/scsi/impl/inquiry.h
1362 file path=usr/include/sys/scsi/impl/mode.h
1363 file path=usr/include/sys/scsi/impl/scsi_reset_notify.h
1364 file path=usr/include/sys/scsi/impl/scsi_sas.h
1365 file path=usr/include/sys/scsi/impl/sense.h
1366 file path=usr/include/sys/scsi/impl/services.h
1367 file path=usr/include/sys/scsi/impl/smp_transport.h
1368 file path=usr/include/sys/scsi/impl/spc3_types.h
1369 file path=usr/include/sys/scsi/impl/status.h
1370 file path=usr/include/sys/scsi/impl/transport.h
1371 file path=usr/include/sys/scsi/impl/types.h
1372 file path=usr/include/sys/scsi/impl/uscsi.h
1373 file path=usr/include/sys/scsi/impl/usmp.h
1374 file path=usr/include/sys/scsi/scsi.h
1375 file path=usr/include/sys/scsi/scsi_address.h
1376 file path=usr/include/sys/scsi/scsi_ctl.h
1377 file path=usr/include/sys/scsi/scsi_fm.h
1378 file path=usr/include/sys/scsi/scsi_names.h

new/usr/src/pkg/manifests/system-header.mf 22

1379 file path=usr/include/sys/scsi/scsi_params.h
1380 file path=usr/include/sys/scsi/scsi_pkt.h
1381 file path=usr/include/sys/scsi/scsi_resource.h
1382 file path=usr/include/sys/scsi/scsi_types.h
1383 file path=usr/include/sys/scsi/scsi_watch.h
1384 file path=usr/include/sys/scsi/targets/sddef.h
1385 file path=usr/include/sys/scsi/targets/ses.h
1386 file path=usr/include/sys/scsi/targets/sesio.h
1387 file path=usr/include/sys/scsi/targets/sgendef.h
1388 file path=usr/include/sys/scsi/targets/smp.h
1389 $(sparc_ONLY)file path=usr/include/sys/scsi/targets/ssddef.h
1390 file path=usr/include/sys/scsi/targets/stdef.h
1391 file path=usr/include/sys/secflags.h
1392 $(i386_ONLY)file path=usr/include/sys/segment.h
1393 $(i386_ONLY)file path=usr/include/sys/segments.h
1394 file path=usr/include/sys/select.h
1395 file path=usr/include/sys/sem.h
1396 file path=usr/include/sys/sem_impl.h
1397 file path=usr/include/sys/sema_impl.h
1398 file path=usr/include/sys/semaphore.h
1399 file path=usr/include/sys/sendfile.h
1400 $(sparc_ONLY)file path=usr/include/sys/ser_async.h
1401 file path=usr/include/sys/ser_sync.h
1402 $(sparc_ONLY)file path=usr/include/sys/ser_zscc.h
1403 file path=usr/include/sys/serializer.h
1404 file path=usr/include/sys/session.h
1405 file path=usr/include/sys/sha1.h
1406 file path=usr/include/sys/sha2.h
1407 file path=usr/include/sys/share.h
1408 file path=usr/include/sys/shm.h
1409 file path=usr/include/sys/shm_impl.h
1410 file path=usr/include/sys/sid.h
1411 file path=usr/include/sys/siginfo.h
1412 file path=usr/include/sys/signal.h
1413 file path=usr/include/sys/signalfd.h
1414 file path=usr/include/sys/skein.h
1415 file path=usr/include/sys/sleepq.h
1416 file path=usr/include/sys/smbios.h
1417 file path=usr/include/sys/smbios_impl.h
1418 file path=usr/include/sys/smedia.h
1419 file path=usr/include/sys/sobject.h
1420 $(sparc_ONLY)file path=usr/include/sys/socal_cq_defs.h
1421 $(sparc_ONLY)file path=usr/include/sys/socalio.h
1422 $(sparc_ONLY)file path=usr/include/sys/socalmap.h
1423 $(sparc_ONLY)file path=usr/include/sys/socalreg.h
1424 $(sparc_ONLY)file path=usr/include/sys/socalvar.h
1425 file path=usr/include/sys/socket.h
1426 file path=usr/include/sys/socket_impl.h
1427 file path=usr/include/sys/socket_proto.h
1428 file path=usr/include/sys/socketvar.h
1429 file path=usr/include/sys/sockio.h
1430 file path=usr/include/sys/spl.h
1431 file path=usr/include/sys/squeue.h
1432 file path=usr/include/sys/squeue_impl.h
1433 file path=usr/include/sys/sservice.h
1434 file path=usr/include/sys/stack.h
1435 file path=usr/include/sys/stat.h
1436 file path=usr/include/sys/stat_impl.h
1437 file path=usr/include/sys/statfs.h
1438 file path=usr/include/sys/statvfs.h
1439 file path=usr/include/sys/stdbool.h
1440 file path=usr/include/sys/stddef.h
1441 file path=usr/include/sys/stdint.h
1442 file path=usr/include/sys/stermio.h
1443 file path=usr/include/sys/stream.h
1444 file path=usr/include/sys/strft.h

new/usr/src/pkg/manifests/system-header.mf 23

1445 file path=usr/include/sys/strlog.h
1446 file path=usr/include/sys/strmdep.h
1447 file path=usr/include/sys/stropts.h
1448 file path=usr/include/sys/strredir.h
1449 file path=usr/include/sys/strstat.h
1450 file path=usr/include/sys/strsubr.h
1451 file path=usr/include/sys/strsun.h
1452 file path=usr/include/sys/strtty.h
1453 file path=usr/include/sys/sunddi.h
1454 file path=usr/include/sys/sunldi.h
1455 file path=usr/include/sys/sunldi_impl.h
1456 file path=usr/include/sys/sunmdi.h
1457 file path=usr/include/sys/sunndi.h
1458 file path=usr/include/sys/sunpm.h
1459 file path=usr/include/sys/suntpi.h
1460 file path=usr/include/sys/suntty.h
1461 file path=usr/include/sys/swap.h
1462 file path=usr/include/sys/synch.h
1463 file path=usr/include/sys/syscall.h
1464 file path=usr/include/sys/sysconf.h
1465 file path=usr/include/sys/sysconfig.h
1466 file path=usr/include/sys/sysconfig_impl.h
1467 file path=usr/include/sys/sysdc.h
1468 file path=usr/include/sys/sysdc_impl.h
1469 file path=usr/include/sys/sysevent.h
1470 file path=usr/include/sys/sysevent/ap_driver.h
1471 file path=usr/include/sys/sysevent/dev.h
1472 file path=usr/include/sys/sysevent/domain.h
1473 file path=usr/include/sys/sysevent/dr.h
1474 file path=usr/include/sys/sysevent/env.h
1475 file path=usr/include/sys/sysevent/eventdefs.h
1476 file path=usr/include/sys/sysevent/ipmp.h
1477 file path=usr/include/sys/sysevent/pwrctl.h
1478 file path=usr/include/sys/sysevent/vrrp.h
1479 file path=usr/include/sys/sysevent_impl.h
1480 $(i386_ONLY)file path=usr/include/sys/sysi86.h
1481 file path=usr/include/sys/sysinfo.h
1482 file path=usr/include/sys/syslog.h
1483 file path=usr/include/sys/sysmacros.h
1484 file path=usr/include/sys/systeminfo.h
1485 file path=usr/include/sys/systm.h
1486 file path=usr/include/sys/t_kuser.h
1487 file path=usr/include/sys/t_lock.h
1488 file path=usr/include/sys/task.h
1489 file path=usr/include/sys/taskq.h
1490 file path=usr/include/sys/taskq_impl.h
1491 file path=usr/include/sys/telioctl.h
1492 file path=usr/include/sys/termio.h
1493 file path=usr/include/sys/termios.h
1494 file path=usr/include/sys/termiox.h
1495 file path=usr/include/sys/thread.h
1496 file path=usr/include/sys/ticlts.h
1497 file path=usr/include/sys/ticots.h
1498 file path=usr/include/sys/ticotsord.h
1499 file path=usr/include/sys/tihdr.h
1500 file path=usr/include/sys/time.h
1501 file path=usr/include/sys/time_impl.h
1502 file path=usr/include/sys/time_std_impl.h
1503 file path=usr/include/sys/timeb.h
1504 file path=usr/include/sys/timer.h
1505 file path=usr/include/sys/timerfd.h
1506 file path=usr/include/sys/times.h
1507 file path=usr/include/sys/timex.h
1508 file path=usr/include/sys/timod.h
1509 file path=usr/include/sys/tirdwr.h
1510 file path=usr/include/sys/tiuser.h

new/usr/src/pkg/manifests/system-header.mf 24

1511 file path=usr/include/sys/tl.h
1512 file path=usr/include/sys/tnf.h
1513 file path=usr/include/sys/tnf_com.h
1514 file path=usr/include/sys/tnf_probe.h
1515 file path=usr/include/sys/tnf_writer.h
1516 file path=usr/include/sys/todio.h
1517 file path=usr/include/sys/tpicommon.h
1518 file path=usr/include/sys/trap.h
1519 $(i386_ONLY)file path=usr/include/sys/traptrace.h
1520 file path=usr/include/sys/ts.h
1521 file path=usr/include/sys/tsol/label.h
1522 file path=usr/include/sys/tsol/label_macro.h
1523 file path=usr/include/sys/tsol/priv.h
1524 file path=usr/include/sys/tsol/tndb.h
1525 file path=usr/include/sys/tsol/tsyscall.h
1526 file path=usr/include/sys/tspriocntl.h
1527 $(i386_ONLY)file path=usr/include/sys/tss.h
1528 file path=usr/include/sys/ttcompat.h
1529 file path=usr/include/sys/ttold.h
1530 file path=usr/include/sys/tty.h
1531 file path=usr/include/sys/ttychars.h
1532 file path=usr/include/sys/ttydev.h
1533 $(sparc_ONLY)file path=usr/include/sys/ttymux.h
1534 $(sparc_ONLY)file path=usr/include/sys/ttymuxuser.h
1535 file path=usr/include/sys/tuneable.h
1536 file path=usr/include/sys/turnstile.h
1537 file path=usr/include/sys/types.h
1538 file path=usr/include/sys/types32.h
1539 file path=usr/include/sys/tzfile.h
1540 file path=usr/include/sys/u8_textprep.h
1541 file path=usr/include/sys/uadmin.h
1542 $(i386_ONLY)file path=usr/include/sys/ucode.h
1543 file path=usr/include/sys/ucontext.h
1544 file path=usr/include/sys/uio.h
1545 file path=usr/include/sys/ulimit.h
1546 file path=usr/include/sys/un.h
1547 file path=usr/include/sys/unistd.h
1548 file path=usr/include/sys/user.h
1549 file path=usr/include/sys/ustat.h
1550 file path=usr/include/sys/utime.h
1551 file path=usr/include/sys/utrap.h
1552 file path=usr/include/sys/utsname.h
1553 file path=usr/include/sys/utssys.h
1554 file path=usr/include/sys/uuid.h
1555 file path=usr/include/sys/va_impl.h
1556 file path=usr/include/sys/va_list.h
1557 file path=usr/include/sys/var.h
1558 file path=usr/include/sys/varargs.h
1559 file path=usr/include/sys/vfs.h
1560 file path=usr/include/sys/vfs_opreg.h
1561 file path=usr/include/sys/vfstab.h
1562 file path=usr/include/sys/videodev2.h
1563 file path=usr/include/sys/visual_io.h
1564 file path=usr/include/sys/vm.h
1565 file path=usr/include/sys/vm_usage.h
1566 file path=usr/include/sys/vmem.h
1567 file path=usr/include/sys/vmem_impl.h
1568 file path=usr/include/sys/vmem_impl_user.h
1569 file path=usr/include/sys/vmparam.h
1570 file path=usr/include/sys/vmsystm.h
1571 file path=usr/include/sys/vnode.h
1572 file path=usr/include/sys/vt.h
1573 file path=usr/include/sys/vtdaemon.h
1574 file path=usr/include/sys/vtoc.h
1575 file path=usr/include/sys/vtrace.h
1576 file path=usr/include/sys/vuid_event.h

new/usr/src/pkg/manifests/system-header.mf 25

1577 file path=usr/include/sys/vuid_queue.h
1578 file path=usr/include/sys/vuid_state.h
1579 file path=usr/include/sys/vuid_store.h
1580 file path=usr/include/sys/vuid_wheel.h
1581 file path=usr/include/sys/wait.h
1582 file path=usr/include/sys/waitq.h
1583 file path=usr/include/sys/watchpoint.h
1584 $(i386_ONLY)file path=usr/include/sys/x86_archext.h
1585 $(i386_ONLY)file path=usr/include/sys/xen_errno.h
1586 file path=usr/include/sys/xti_inet.h
1587 file path=usr/include/sys/xti_osi.h
1588 file path=usr/include/sys/xti_xtiopt.h
1589 file path=usr/include/sys/zcons.h
1590 file path=usr/include/sys/zmod.h
1591 file path=usr/include/sys/zone.h
1592 $(sparc_ONLY)file path=usr/include/sys/zsdev.h
1593 file path=usr/include/sysexits.h
1594 file path=usr/include/syslog.h
1595 file path=usr/include/tar.h
1596 file path=usr/include/tcpd.h
1597 file path=usr/include/term.h
1598 file path=usr/include/termcap.h
1599 file path=usr/include/termio.h
1600 file path=usr/include/termios.h
1601 file path=usr/include/thread.h
1602 file path=usr/include/thread_db.h
1603 file path=usr/include/threads.h
1604 file path=usr/include/time.h
1605 file path=usr/include/tiuser.h
1606 file path=usr/include/tsol/label.h
1607 file path=usr/include/tzfile.h
1608 file path=usr/include/ucontext.h
1609 file path=usr/include/ucred.h
1610 file path=usr/include/uid_stp.h
1611 file path=usr/include/ulimit.h
1612 file path=usr/include/umem.h
1613 file path=usr/include/umem_impl.h
1614 file path=usr/include/unctrl.h
1615 file path=usr/include/unistd.h
1616 file path=usr/include/user_attr.h
1617 file path=usr/include/userdefs.h
1618 file path=usr/include/ustat.h
1619 file path=usr/include/utility.h
1620 file path=usr/include/utime.h
1621 file path=usr/include/utmp.h
1622 file path=usr/include/utmpx.h
1623 file path=usr/include/uuid/uuid.h
1624 $(sparc_ONLY)file path=usr/include/v7/sys/machpcb.h
1625 $(sparc_ONLY)file path=usr/include/v7/sys/machtrap.h
1626 $(sparc_ONLY)file path=usr/include/v7/sys/mutex_impl.h
1627 $(sparc_ONLY)file path=usr/include/v7/sys/privregs.h
1628 $(sparc_ONLY)file path=usr/include/v7/sys/prom_isa.h
1629 $(sparc_ONLY)file path=usr/include/v7/sys/psr.h
1630 $(sparc_ONLY)file path=usr/include/v7/sys/traptrace.h
1631 $(sparc_ONLY)file path=usr/include/v9/sys/asi.h
1632 $(sparc_ONLY)file path=usr/include/v9/sys/machpcb.h
1633 $(sparc_ONLY)file path=usr/include/v9/sys/machtrap.h
1634 $(sparc_ONLY)file path=usr/include/v9/sys/membar.h
1635 $(sparc_ONLY)file path=usr/include/v9/sys/mutex_impl.h
1636 $(sparc_ONLY)file path=usr/include/v9/sys/privregs.h
1637 $(sparc_ONLY)file path=usr/include/v9/sys/prom_isa.h
1638 $(sparc_ONLY)file path=usr/include/v9/sys/psr_compat.h
1639 $(sparc_ONLY)file path=usr/include/v9/sys/vis_simulator.h
1640 file path=usr/include/valtools.h
1641 file path=usr/include/values.h
1642 file path=usr/include/varargs.h

new/usr/src/pkg/manifests/system-header.mf 26

1643 file path=usr/include/vm/anon.h
1644 file path=usr/include/vm/as.h
1645 file path=usr/include/vm/faultcode.h
1646 file path=usr/include/vm/hat.h
1647 file path=usr/include/vm/kpm.h
1648 file path=usr/include/vm/page.h
1649 file path=usr/include/vm/pvn.h
1650 file path=usr/include/vm/rm.h
1651 file path=usr/include/vm/seg.h
1652 file path=usr/include/vm/seg_dev.h
1653 file path=usr/include/vm/seg_enum.h
1654 file path=usr/include/vm/seg_kmem.h
1655 file path=usr/include/vm/seg_kp.h
1656 file path=usr/include/vm/seg_kpm.h
1657 file path=usr/include/vm/seg_map.h
1658 file path=usr/include/vm/seg_spt.h
1659 file path=usr/include/vm/seg_vn.h
1660 file path=usr/include/vm/vpage.h
1661 file path=usr/include/vm/vpm.h
1662 file path=usr/include/volmgt.h
1663 file path=usr/include/wait.h
1664 file path=usr/include/wchar.h
1665 file path=usr/include/wchar_impl.h
1666 file path=usr/include/wctype.h
1667 file path=usr/include/widec.h
1668 file path=usr/include/wordexp.h
1669 file path=usr/include/xlocale.h
1670 file path=usr/include/xti.h
1671 file path=usr/include/xti_inet.h
1672 file path=usr/include/zone.h
1673 file path=usr/include/zonestat.h
1674 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/acpidev.h
1675 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/amd_iommu.h
1676 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/asm_misc.h
1677 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/clock.h
1678 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/cram.h
1679 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/ddi_subrdefs.h
1680 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/debug_info.h
1681 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/fastboot.h
1682 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/ht.h
1683 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/mach_mmu.h
1684 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machclock.h
1685 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machcpuvar.h
1686 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machparam.h
1687 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machprivregs.h
1688 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machsystm.h
1689 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machthread.h
1690 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/memnode.h
1691 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/pc_mmu.h
1692 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/psm.h
1693 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/psm_defs.h
1694 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/psm_modctl.h
1695 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/psm_types.h
1696 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/rm_platter.h
1697 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/sbd_ioctl.h
1698 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/smp_impldefs.h
1699 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/vm_machparam.h
1700 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/x_call.h
1701 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/xc_levels.h
1702 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/xsvc.h
1703 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/hat_i86.h
1704 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/hat_pte.h
1705 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/hment.h
1706 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/htable.h
1707 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/kboot_mmu.h
1708 $(i386_ONLY)file path=usr/platform/i86xpv/include/sys/balloon.h

new/usr/src/pkg/manifests/system-header.mf 27

1709 $(i386_ONLY)file path=usr/platform/i86xpv/include/sys/machprivregs.h
1710 $(i386_ONLY)file path=usr/platform/i86xpv/include/sys/xen_mmu.h
1711 $(i386_ONLY)file path=usr/platform/i86xpv/include/sys/xpv_impl.h
1712 $(i386_ONLY)file path=usr/platform/i86xpv/include/vm/seg_mf.h
1713 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/ac.h
1714 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/async.h
1715 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cheetahregs.h
1716 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cherrystone.h
1717 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/clock.h
1718 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cmp.h
1719 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cpc_ultra.h
1720 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cpr_impl.h
1721 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cpu_impl.h
1722 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cpu_sgnblk_defs.h
1723 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/daktari.h
1724 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/ddi_subrdefs.h
1725 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/dvma.h
1726 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/ecc_kstat.h
1727 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/eeprom.h
1728 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/envctrl.h
1729 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/envctrl_gen.h
1730 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/envctrl_ue250.h
1731 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/envctrl_ue450.h
1732 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/environ.h
1733 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/errclassify.h
1734 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/fhc.h
1735 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/gpio_87317.h
1736 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/hpc3130_events.h
1737 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/ht.h
1738 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/hpc3130.h
1739 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/i2c_client.h
1740 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/lm75.h
1741 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/max1617.h
1742 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/pcf8591.h
1743 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/ssc050.h
1744 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/misc/i2c_svc.h
1745 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/idprom.h
1746 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/intr.h
1747 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/intreg.h
1748 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/iocache.h
1749 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/iommu.h
1750 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/ivintr.h
1751 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/lom_io.h
1752 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machasi.h
1753 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machclock.h
1754 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machcpuvar.h
1755 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machparam.h
1756 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machsystm.h
1757 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machthread.h
1758 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/mem_cache.h
1759 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/memlist_plat.h
1760 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/memnode.h
1761 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/mmu.h
1762 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/nexusdebug.h
1763 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/opl_hwdesc.h
1764 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/opl_module.h
1765 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/prom_debug.h
1766 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/prom_plat.h
1767 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/pte.h
1768 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sbd_ioctl.h
1769 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/scb.h
1770 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/scsb_led.h
1771 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/simmstat.h
1772 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/spitregs.h
1773 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sram.h
1774 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sun4asi.h

new/usr/src/pkg/manifests/system-header.mf 28

1775 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sysctrl.h
1776 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sysioerr.h
1777 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sysiosbus.h
1778 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/tod.h
1779 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/todmostek.h
1780 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/trapstat.h
1781 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/traptrace.h
1782 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/vis.h
1783 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/vm_machparam.h
1784 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/x_call.h
1785 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/xc_impl.h
1786 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/zsmach.h
1787 $(sparc_ONLY)file path=usr/platform/sun4u/include/vm/hat_sfmmu.h
1788 $(sparc_ONLY)file path=usr/platform/sun4u/include/vm/mach_sfmmu.h
1789 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/clock.h
1790 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/cmp.h
1791 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/cpc_ultra.h
1792 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/cpu_sgnblk_defs.h
1793 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ddi_subrdefs.h
1794 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ds_pri.h
1795 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ds_snmp.h
1796 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/dvma.h
1797 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/eeprom.h
1798 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/fcode.h
1799 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/hsvc.h
1800 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ht.h
1801 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/hypervisor_api.h
1802 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/idprom.h
1803 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/intr.h
1804 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/intreg.h
1805 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ivintr.h
1806 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machasi.h
1807 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machclock.h
1808 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machcpuvar.h
1809 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machintreg.h
1810 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machparam.h
1811 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machsystm.h
1812 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machthread.h
1813 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/memlist_plat.h
1814 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/memnode.h
1815 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/mmu.h
1816 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/nexusdebug.h
1817 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/niagaraasi.h
1818 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/niagararegs.h
1819 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ntwdt.h
1820 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/pri.h
1821 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/prom_debug.h
1822 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/prom_plat.h
1823 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/pte.h
1824 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/qcn.h
1825 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/scb.h
1826 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/soft_state.h
1827 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/sun4asi.h
1828 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/tod.h
1829 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/trapstat.h
1830 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/traptrace.h
1831 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/vis.h
1832 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/vm_machparam.h
1833 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/x_call.h
1834 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/xc_impl.h
1835 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/zsmach.h
1836 $(sparc_ONLY)file path=usr/platform/sun4v/include/vm/hat_sfmmu.h
1837 $(sparc_ONLY)file path=usr/platform/sun4v/include/vm/mach_sfmmu.h
1838 file path=usr/share/man/man3head/acct.h.3head
1839 file path=usr/share/man/man3head/aio.h.3head
1840 file path=usr/share/man/man3head/ar.h.3head

new/usr/src/pkg/manifests/system-header.mf 29

1841 file path=usr/share/man/man3head/archives.h.3head
1842 file path=usr/share/man/man3head/assert.h.3head
1843 file path=usr/share/man/man3head/complex.h.3head
1844 file path=usr/share/man/man3head/cpio.h.3head
1845 file path=usr/share/man/man3head/dirent.h.3head
1846 file path=usr/share/man/man3head/endian.h.3head
1847 file path=usr/share/man/man3head/errno.h.3head
1848 file path=usr/share/man/man3head/fcntl.h.3head
1849 file path=usr/share/man/man3head/fenv.h.3head
1850 file path=usr/share/man/man3head/float.h.3head
1851 file path=usr/share/man/man3head/floatingpoint.h.3head
1852 file path=usr/share/man/man3head/fmtmsg.h.3head
1853 file path=usr/share/man/man3head/fnmatch.h.3head
1854 file path=usr/share/man/man3head/ftw.h.3head
1855 file path=usr/share/man/man3head/glob.h.3head
1856 file path=usr/share/man/man3head/grp.h.3head
1857 file path=usr/share/man/man3head/iconv.h.3head
1858 file path=usr/share/man/man3head/if.h.3head
1859 file path=usr/share/man/man3head/in.h.3head
1860 file path=usr/share/man/man3head/inet.h.3head
1861 file path=usr/share/man/man3head/inttypes.h.3head
1862 file path=usr/share/man/man3head/ipc.h.3head
1863 file path=usr/share/man/man3head/iso646.h.3head
1864 file path=usr/share/man/man3head/langinfo.h.3head
1865 file path=usr/share/man/man3head/libgen.h.3head
1866 file path=usr/share/man/man3head/libintl.h.3head
1867 file path=usr/share/man/man3head/limits.h.3head
1868 file path=usr/share/man/man3head/locale.h.3head
1869 file path=usr/share/man/man3head/math.h.3head
1870 file path=usr/share/man/man3head/mman.h.3head
1871 file path=usr/share/man/man3head/monetary.h.3head
1872 file path=usr/share/man/man3head/mqueue.h.3head
1873 file path=usr/share/man/man3head/msg.h.3head
1874 file path=usr/share/man/man3head/ndbm.h.3head
1875 file path=usr/share/man/man3head/netdb.h.3head
1876 file path=usr/share/man/man3head/nl_types.h.3head
1877 file path=usr/share/man/man3head/poll.h.3head
1878 file path=usr/share/man/man3head/pthread.h.3head
1879 file path=usr/share/man/man3head/pwd.h.3head
1880 file path=usr/share/man/man3head/queue.h.3head
1881 file path=usr/share/man/man3head/regex.h.3head
1882 file path=usr/share/man/man3head/resource.h.3head
1883 file path=usr/share/man/man3head/sched.h.3head
1884 file path=usr/share/man/man3head/search.h.3head
1885 file path=usr/share/man/man3head/select.h.3head
1886 file path=usr/share/man/man3head/sem.h.3head
1887 file path=usr/share/man/man3head/semaphore.h.3head
1888 file path=usr/share/man/man3head/setjmp.h.3head
1889 file path=usr/share/man/man3head/shm.h.3head
1890 file path=usr/share/man/man3head/siginfo.h.3head
1891 file path=usr/share/man/man3head/signal.h.3head
1892 file path=usr/share/man/man3head/socket.h.3head
1893 file path=usr/share/man/man3head/spawn.h.3head
1894 file path=usr/share/man/man3head/stat.h.3head
1895 file path=usr/share/man/man3head/statvfs.h.3head
1896 file path=usr/share/man/man3head/stdbool.h.3head
1897 file path=usr/share/man/man3head/stddef.h.3head
1898 file path=usr/share/man/man3head/stdint.h.3head
1899 file path=usr/share/man/man3head/stdio.h.3head
1900 file path=usr/share/man/man3head/stdlib.h.3head
1901 file path=usr/share/man/man3head/string.h.3head
1902 file path=usr/share/man/man3head/strings.h.3head
1903 file path=usr/share/man/man3head/stropts.h.3head
1904 file path=usr/share/man/man3head/syslog.h.3head
1905 file path=usr/share/man/man3head/tar.h.3head
1906 file path=usr/share/man/man3head/tcp.h.3head

new/usr/src/pkg/manifests/system-header.mf 30

1907 file path=usr/share/man/man3head/termios.h.3head
1908 file path=usr/share/man/man3head/tgmath.h.3head
1909 file path=usr/share/man/man3head/time.h.3head
1910 file path=usr/share/man/man3head/timeb.h.3head
1911 file path=usr/share/man/man3head/times.h.3head
1912 file path=usr/share/man/man3head/types.h.3head
1913 file path=usr/share/man/man3head/types32.h.3head
1914 file path=usr/share/man/man3head/ucontext.h.3head
1915 file path=usr/share/man/man3head/uio.h.3head
1916 file path=usr/share/man/man3head/ulimit.h.3head
1917 file path=usr/share/man/man3head/un.h.3head
1918 file path=usr/share/man/man3head/unistd.h.3head
1919 file path=usr/share/man/man3head/utime.h.3head
1920 file path=usr/share/man/man3head/utmpx.h.3head
1921 file path=usr/share/man/man3head/utsname.h.3head
1922 file path=usr/share/man/man3head/values.h.3head
1923 file path=usr/share/man/man3head/wait.h.3head
1924 file path=usr/share/man/man3head/wchar.h.3head
1925 file path=usr/share/man/man3head/wctype.h.3head
1926 file path=usr/share/man/man3head/wordexp.h.3head
1927 file path=usr/share/man/man3head/xlocale.h.3head
1928 file path=usr/share/man/man4/note.4
1929 file path=usr/share/man/man5/prof.5
1930 file path=usr/share/man/man7i/cdio.7i
1931 file path=usr/share/man/man7i/dkio.7i
1932 file path=usr/share/man/man7i/fbio.7i
1933 file path=usr/share/man/man7i/fdio.7i
1934 file path=usr/share/man/man7i/hdio.7i
1935 file path=usr/share/man/man7i/iec61883.7i
1936 file path=usr/share/man/man7i/mhd.7i
1937 file path=usr/share/man/man7i/mtio.7i
1938 file path=usr/share/man/man7i/prnio.7i
1939 file path=usr/share/man/man7i/quotactl.7i
1940 file path=usr/share/man/man7i/sesio.7i
1941 file path=usr/share/man/man7i/sockio.7i
1942 file path=usr/share/man/man7i/streamio.7i
1943 file path=usr/share/man/man7i/termio.7i
1944 file path=usr/share/man/man7i/termiox.7i
1945 file path=usr/share/man/man7i/uscsi.7i
1946 file path=usr/share/man/man7i/visual_io.7i
1947 file path=usr/share/man/man7i/vt.7i
1948 file path=usr/xpg4/include/curses.h
1949 file path=usr/xpg4/include/term.h
1950 file path=usr/xpg4/include/unctrl.h
1951 legacy pkg=SUNWhea \
1952 desc="SunOS C/C++ header files for general development of software" \
1953 name="SunOS Header Files"
1954 license cr_Sun license=cr_Sun
1955 license lic_CDDL license=lic_CDDL
1956 license license_in_headers license=license_in_headers
1957 license usr/src/lib/pkcs11/include/THIRDPARTYLICENSE \
1958 license=usr/src/lib/pkcs11/include/THIRDPARTYLICENSE
1959 license usr/src/uts/common/sys/THIRDPARTYLICENSE.firmload \
1960 license=usr/src/uts/common/sys/THIRDPARTYLICENSE.firmload
1961 link path=usr/include/iso/assert_iso.h target=../assert.h
1962 link path=usr/include/iso/errno_iso.h target=../errno.h
1963 link path=usr/include/iso/float_iso.h target=../float.h
1964 link path=usr/include/iso/iso646_iso.h target=../iso646.h
1965 $(sparc_ONLY)link path=usr/platform/SUNW,A70/include target=../sun4u/include
1966 $(sparc_ONLY)link path=usr/platform/SUNW,Netra-T12/include \
1967 target=../sun4u/include
1968 $(sparc_ONLY)link path=usr/platform/SUNW,Netra-T4/include \
1969 target=../sun4u/include
1970 $(sparc_ONLY)link path=usr/platform/SUNW,SPARC-Enterprise/include \
1971 target=../sun4u/include
1972 $(sparc_ONLY)link path=usr/platform/SUNW,Serverblade1/include \

new/usr/src/pkg/manifests/system-header.mf 31

1973 target=../sun4u/include
1974 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Blade-100/include \
1975 target=../sun4u/include
1976 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Blade-1000/include \
1977 target=../sun4u/include
1978 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Blade-1500/include \
1979 target=../sun4u/include
1980 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Blade-2500/include \
1981 target=../sun4u/include
1982 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-15000/include \
1983 target=../sun4u/include
1984 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-280R/include \
1985 target=../sun4u/include
1986 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-480R/include \
1987 target=../sun4u/include
1988 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-880/include \
1989 target=../sun4u/include
1990 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V215/include \
1991 target=../sun4u/include
1992 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V240/include \
1993 target=../sun4u/include
1994 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V250/include \
1995 target=../sun4u/include
1996 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V440/include \
1997 target=../sun4u/include
1998 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V445/include \
1999 target=../sun4u/include
2000 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V490/include \
2001 target=../sun4u/include
2002 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V890/include \
2003 target=../sun4u/include
2004 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire/include \
2005 target=../sun4u/include
2006 $(sparc_ONLY)link path=usr/platform/SUNW,Ultra-2/include \
2007 target=../sun4u/include
2008 $(sparc_ONLY)link path=usr/platform/SUNW,Ultra-250/include \
2009 target=../sun4u/include
2010 $(sparc_ONLY)link path=usr/platform/SUNW,Ultra-4/include \
2011 target=../sun4u/include
2012 $(sparc_ONLY)link path=usr/platform/SUNW,Ultra-Enterprise/include \
2013 target=../sun4u/include
2014 $(sparc_ONLY)link path=usr/platform/SUNW,UltraSPARC-IIe-NetraCT-40/include \
2015 target=../sun4u/include
2016 $(sparc_ONLY)link path=usr/platform/SUNW,UltraSPARC-IIe-NetraCT-60/include \
2017 target=../sun4u/include
2018 $(sparc_ONLY)link path=usr/platform/SUNW,UltraSPARC-IIi-Netract/include \
2019 target=../sun4u/include
2020 link path=usr/share/man/man3head/LIST_CLASS_ENTRY.3head target=queue.h.3head
2021 link path=usr/share/man/man3head/LIST_CLASS_HEAD.3head target=queue.h.3head
2022 link path=usr/share/man/man3head/LIST_CONCAT.3head target=queue.h.3head
2023 link path=usr/share/man/man3head/LIST_EMPTY.3head target=queue.h.3head
2024 link path=usr/share/man/man3head/LIST_ENTRY.3head target=queue.h.3head
2025 link path=usr/share/man/man3head/LIST_FIRST.3head target=queue.h.3head
2026 link path=usr/share/man/man3head/LIST_FOREACH.3head target=queue.h.3head
2027 link path=usr/share/man/man3head/LIST_FOREACH_FROM.3head target=queue.h.3head
2028 link path=usr/share/man/man3head/LIST_FOREACH_FROM_SAFE.3head \
2029 target=queue.h.3head
2030 link path=usr/share/man/man3head/LIST_FOREACH_SAFE.3head target=queue.h.3head
2031 link path=usr/share/man/man3head/LIST_HEAD.3head target=queue.h.3head
2032 link path=usr/share/man/man3head/LIST_HEAD_INITIALIZER.3head \
2033 target=queue.h.3head
2034 link path=usr/share/man/man3head/LIST_INIT.3head target=queue.h.3head
2035 link path=usr/share/man/man3head/LIST_INSERT_AFTER.3head target=queue.h.3head
2036 link path=usr/share/man/man3head/LIST_INSERT_BEFORE.3head target=queue.h.3head
2037 link path=usr/share/man/man3head/LIST_INSERT_HEAD.3head target=queue.h.3head
2038 link path=usr/share/man/man3head/LIST_NEXT.3head target=queue.h.3head

new/usr/src/pkg/manifests/system-header.mf 32

2039 link path=usr/share/man/man3head/LIST_PREV.3head target=queue.h.3head
2040 link path=usr/share/man/man3head/LIST_REMOVE.3head target=queue.h.3head
2041 link path=usr/share/man/man3head/LIST_SWAP.3head target=queue.h.3head
2042 link path=usr/share/man/man3head/SLIST_CLASS_ENTRY.3head target=queue.h.3head
2043 link path=usr/share/man/man3head/SLIST_CLASS_HEAD.3head target=queue.h.3head
2044 link path=usr/share/man/man3head/SLIST_CONCAT.3head target=queue.h.3head
2045 link path=usr/share/man/man3head/SLIST_EMPTY.3head target=queue.h.3head
2046 link path=usr/share/man/man3head/SLIST_ENTRY.3head target=queue.h.3head
2047 link path=usr/share/man/man3head/SLIST_FIRST.3head target=queue.h.3head
2048 link path=usr/share/man/man3head/SLIST_FOREACH.3head target=queue.h.3head
2049 link path=usr/share/man/man3head/SLIST_FOREACH_FROM.3head target=queue.h.3head
2050 link path=usr/share/man/man3head/SLIST_FOREACH_FROM_SAFE.3head \
2051 target=queue.h.3head
2052 link path=usr/share/man/man3head/SLIST_FOREACH_SAFE.3head target=queue.h.3head
2053 link path=usr/share/man/man3head/SLIST_HEAD.3head target=queue.h.3head
2054 link path=usr/share/man/man3head/SLIST_HEAD_INITIALIZER.3head \
2055 target=queue.h.3head
2056 link path=usr/share/man/man3head/SLIST_INIT.3head target=queue.h.3head
2057 link path=usr/share/man/man3head/SLIST_INSERT_AFTER.3head target=queue.h.3head
2058 link path=usr/share/man/man3head/SLIST_INSERT_HEAD.3head target=queue.h.3head
2059 link path=usr/share/man/man3head/SLIST_NEXT.3head target=queue.h.3head
2060 link path=usr/share/man/man3head/SLIST_REMOVE.3head target=queue.h.3head
2061 link path=usr/share/man/man3head/SLIST_REMOVE_AFTER.3head target=queue.h.3head
2062 link path=usr/share/man/man3head/SLIST_REMOVE_HEAD.3head target=queue.h.3head
2063 link path=usr/share/man/man3head/SLIST_SWAP.3head target=queue.h.3head
2064 link path=usr/share/man/man3head/STAILQ_CLASS_ENTRY.3head target=queue.h.3head
2065 link path=usr/share/man/man3head/STAILQ_CLASS_HEAD.3head target=queue.h.3head
2066 link path=usr/share/man/man3head/STAILQ_CONCAT.3head target=queue.h.3head
2067 link path=usr/share/man/man3head/STAILQ_EMPTY.3head target=queue.h.3head
2068 link path=usr/share/man/man3head/STAILQ_ENTRY.3head target=queue.h.3head
2069 link path=usr/share/man/man3head/STAILQ_FIRST.3head target=queue.h.3head
2070 link path=usr/share/man/man3head/STAILQ_FOREACH.3head target=queue.h.3head
2071 link path=usr/share/man/man3head/STAILQ_FOREACH_FROM.3head \
2072 target=queue.h.3head
2073 link path=usr/share/man/man3head/STAILQ_FOREACH_FROM_SAFE.3head \
2074 target=queue.h.3head
2075 link path=usr/share/man/man3head/STAILQ_FOREACH_SAFE.3head \
2076 target=queue.h.3head
2077 link path=usr/share/man/man3head/STAILQ_HEAD.3head target=queue.h.3head
2078 link path=usr/share/man/man3head/STAILQ_HEAD_INITIALIZER.3head \
2079 target=queue.h.3head
2080 link path=usr/share/man/man3head/STAILQ_INIT.3head target=queue.h.3head
2081 link path=usr/share/man/man3head/STAILQ_INSERT_AFTER.3head \
2082 target=queue.h.3head
2083 link path=usr/share/man/man3head/STAILQ_INSERT_HEAD.3head target=queue.h.3head
2084 link path=usr/share/man/man3head/STAILQ_INSERT_TAIL.3head target=queue.h.3head
2085 link path=usr/share/man/man3head/STAILQ_LAST.3head target=queue.h.3head
2086 link path=usr/share/man/man3head/STAILQ_NEXT.3head target=queue.h.3head
2087 link path=usr/share/man/man3head/STAILQ_REMOVE.3head target=queue.h.3head
2088 link path=usr/share/man/man3head/STAILQ_REMOVE_AFTER.3head \
2089 target=queue.h.3head
2090 link path=usr/share/man/man3head/STAILQ_REMOVE_HEAD.3head target=queue.h.3head
2091 link path=usr/share/man/man3head/STAILQ_SWAP.3head target=queue.h.3head
2092 link path=usr/share/man/man3head/TAILQ_CLASS_ENTRY.3head target=queue.h.3head
2093 link path=usr/share/man/man3head/TAILQ_CLASS_HEAD.3head target=queue.h.3head
2094 link path=usr/share/man/man3head/TAILQ_CONCAT.3head target=queue.h.3head
2095 link path=usr/share/man/man3head/TAILQ_EMPTY.3head target=queue.h.3head
2096 link path=usr/share/man/man3head/TAILQ_ENTRY.3head target=queue.h.3head
2097 link path=usr/share/man/man3head/TAILQ_FIRST.3head target=queue.h.3head
2098 link path=usr/share/man/man3head/TAILQ_FOREACH.3head target=queue.h.3head
2099 link path=usr/share/man/man3head/TAILQ_FOREACH_FROM.3head target=queue.h.3head
2100 link path=usr/share/man/man3head/TAILQ_FOREACH_FROM_SAFE.3head \
2101 target=queue.h.3head
2102 link path=usr/share/man/man3head/TAILQ_FOREACH_REVERSE.3head \
2103 target=queue.h.3head
2104 link path=usr/share/man/man3head/TAILQ_FOREACH_REVERSE_FROM.3head \

new/usr/src/pkg/manifests/system-header.mf 33

2105 target=queue.h.3head
2106 link path=usr/share/man/man3head/TAILQ_FOREACH_REVERSE_FROM_SAFE.3head \
2107 target=queue.h.3head
2108 link path=usr/share/man/man3head/TAILQ_FOREACH_REVERSE_SAFE.3head \
2109 target=queue.h.3head
2110 link path=usr/share/man/man3head/TAILQ_FOREACH_SAFE.3head target=queue.h.3head
2111 link path=usr/share/man/man3head/TAILQ_HEAD.3head target=queue.h.3head
2112 link path=usr/share/man/man3head/TAILQ_HEAD_INITIALIZER.3head \
2113 target=queue.h.3head
2114 link path=usr/share/man/man3head/TAILQ_INIT.3head target=queue.h.3head
2115 link path=usr/share/man/man3head/TAILQ_INSERT_AFTER.3head target=queue.h.3head
2116 link path=usr/share/man/man3head/TAILQ_INSERT_BEFORE.3head \
2117 target=queue.h.3head
2118 link path=usr/share/man/man3head/TAILQ_INSERT_HEAD.3head target=queue.h.3head
2119 link path=usr/share/man/man3head/TAILQ_INSERT_TAIL.3head target=queue.h.3head
2120 link path=usr/share/man/man3head/TAILQ_LAST.3head target=queue.h.3head
2121 link path=usr/share/man/man3head/TAILQ_NEXT.3head target=queue.h.3head
2122 link path=usr/share/man/man3head/TAILQ_PREV.3head target=queue.h.3head
2123 link path=usr/share/man/man3head/TAILQ_REMOVE.3head target=queue.h.3head
2124 link path=usr/share/man/man3head/TAILQ_SWAP.3head target=queue.h.3head
2125 link path=usr/share/man/man3head/acct.3head target=acct.h.3head
2126 link path=usr/share/man/man3head/aio.3head target=aio.h.3head
2127 link path=usr/share/man/man3head/ar.3head target=ar.h.3head
2128 link path=usr/share/man/man3head/archives.3head target=archives.h.3head
2129 link path=usr/share/man/man3head/assert.3head target=assert.h.3head
2130 link path=usr/share/man/man3head/complex.3head target=complex.h.3head
2131 link path=usr/share/man/man3head/cpio.3head target=cpio.h.3head
2132 link path=usr/share/man/man3head/dirent.3head target=dirent.h.3head
2133 link path=usr/share/man/man3head/errno.3head target=errno.h.3head
2134 link path=usr/share/man/man3head/fcntl.3head target=fcntl.h.3head
2135 link path=usr/share/man/man3head/fenv.3head target=fenv.h.3head
2136 link path=usr/share/man/man3head/float.3head target=float.h.3head
2137 link path=usr/share/man/man3head/floatingpoint.3head \
2138 target=floatingpoint.h.3head
2139 link path=usr/share/man/man3head/fmtmsg.3head target=fmtmsg.h.3head
2140 link path=usr/share/man/man3head/fnmatch.3head target=fnmatch.h.3head
2141 link path=usr/share/man/man3head/ftw.3head target=ftw.h.3head
2142 link path=usr/share/man/man3head/glob.3head target=glob.h.3head
2143 link path=usr/share/man/man3head/grp.3head target=grp.h.3head
2144 link path=usr/share/man/man3head/iconv.3head target=iconv.h.3head
2145 link path=usr/share/man/man3head/if.3head target=if.h.3head
2146 link path=usr/share/man/man3head/in.3head target=in.h.3head
2147 link path=usr/share/man/man3head/inet.3head target=inet.h.3head
2148 link path=usr/share/man/man3head/inttypes.3head target=inttypes.h.3head
2149 link path=usr/share/man/man3head/ipc.3head target=ipc.h.3head
2150 link path=usr/share/man/man3head/iso646.3head target=iso646.h.3head
2151 link path=usr/share/man/man3head/langinfo.3head target=langinfo.h.3head
2152 link path=usr/share/man/man3head/libgen.3head target=libgen.h.3head
2153 link path=usr/share/man/man3head/libintl.3head target=libintl.h.3head
2154 link path=usr/share/man/man3head/limits.3head target=limits.h.3head
2155 link path=usr/share/man/man3head/locale.3head target=locale.h.3head
2156 link path=usr/share/man/man3head/math.3head target=math.h.3head
2157 link path=usr/share/man/man3head/mman.3head target=mman.h.3head
2158 link path=usr/share/man/man3head/monetary.3head target=monetary.h.3head
2159 link path=usr/share/man/man3head/mqueue.3head target=mqueue.h.3head
2160 link path=usr/share/man/man3head/msg.3head target=msg.h.3head
2161 link path=usr/share/man/man3head/ndbm.3head target=ndbm.h.3head
2162 link path=usr/share/man/man3head/netdb.3head target=netdb.h.3head
2163 link path=usr/share/man/man3head/nl_types.3head target=nl_types.h.3head
2164 link path=usr/share/man/man3head/poll.3head target=poll.h.3head
2165 link path=usr/share/man/man3head/pthread.3head target=pthread.h.3head
2166 link path=usr/share/man/man3head/pwd.3head target=pwd.h.3head
2167 link path=usr/share/man/man3head/regex.3head target=regex.h.3head
2168 link path=usr/share/man/man3head/resource.3head target=resource.h.3head
2169 link path=usr/share/man/man3head/sched.3head target=sched.h.3head
2170 link path=usr/share/man/man3head/search.3head target=search.h.3head

new/usr/src/pkg/manifests/system-header.mf 34

2171 link path=usr/share/man/man3head/select.3head target=select.h.3head
2172 link path=usr/share/man/man3head/sem.3head target=sem.h.3head
2173 link path=usr/share/man/man3head/semaphore.3head target=semaphore.h.3head
2174 link path=usr/share/man/man3head/setjmp.3head target=setjmp.h.3head
2175 link path=usr/share/man/man3head/shm.3head target=shm.h.3head
2176 link path=usr/share/man/man3head/siginfo.3head target=siginfo.h.3head
2177 link path=usr/share/man/man3head/signal.3head target=signal.h.3head
2178 link path=usr/share/man/man3head/socket.3head target=socket.h.3head
2179 link path=usr/share/man/man3head/spawn.3head target=spawn.h.3head
2180 link path=usr/share/man/man3head/stat.3head target=stat.h.3head
2181 link path=usr/share/man/man3head/statvfs.3head target=statvfs.h.3head
2182 link path=usr/share/man/man3head/stdbool.3head target=stdbool.h.3head
2183 link path=usr/share/man/man3head/stddef.3head target=stddef.h.3head
2184 link path=usr/share/man/man3head/stdint.3head target=stdint.h.3head
2185 link path=usr/share/man/man3head/stdio.3head target=stdio.h.3head
2186 link path=usr/share/man/man3head/stdlib.3head target=stdlib.h.3head
2187 link path=usr/share/man/man3head/string.3head target=string.h.3head
2188 link path=usr/share/man/man3head/strings.3head target=strings.h.3head
2189 link path=usr/share/man/man3head/stropts.3head target=stropts.h.3head
2190 link path=usr/share/man/man3head/syslog.3head target=syslog.h.3head
2191 link path=usr/share/man/man3head/tar.3head target=tar.h.3head
2192 link path=usr/share/man/man3head/tcp.3head target=tcp.h.3head
2193 link path=usr/share/man/man3head/termios.3head target=termios.h.3head
2194 link path=usr/share/man/man3head/tgmath.3head target=tgmath.h.3head
2195 link path=usr/share/man/man3head/time.3head target=time.h.3head
2196 link path=usr/share/man/man3head/timeb.3head target=timeb.h.3head
2197 link path=usr/share/man/man3head/times.3head target=times.h.3head
2198 link path=usr/share/man/man3head/types.3head target=types.h.3head
2199 link path=usr/share/man/man3head/types32.3head target=types32.h.3head
2200 link path=usr/share/man/man3head/ucontext.3head target=ucontext.h.3head
2201 link path=usr/share/man/man3head/uio.3head target=uio.h.3head
2202 link path=usr/share/man/man3head/ulimit.3head target=ulimit.h.3head
2203 link path=usr/share/man/man3head/un.3head target=un.h.3head
2204 link path=usr/share/man/man3head/unistd.3head target=unistd.h.3head
2205 link path=usr/share/man/man3head/utime.3head target=utime.h.3head
2206 link path=usr/share/man/man3head/utmpx.3head target=utmpx.h.3head
2207 link path=usr/share/man/man3head/utsname.3head target=utsname.h.3head
2208 link path=usr/share/man/man3head/values.3head target=values.h.3head
2209 link path=usr/share/man/man3head/wait.3head target=wait.h.3head
2210 link path=usr/share/man/man3head/wchar.3head target=wchar.h.3head
2211 link path=usr/share/man/man3head/wctype.3head target=wctype.h.3head
2212 link path=usr/share/man/man3head/wordexp.3head target=wordexp.h.3head
2213 link path=usr/share/man/man3head/xlocale.3head target=xlocale.h.3head
2214 $(i386_ONLY)link path=usr/share/src/uts/i86pc/sys \
2215 target=../../../../platform/i86pc/include/sys
2216 $(i386_ONLY)link path=usr/share/src/uts/i86pc/vm \
2217 target=../../../../platform/i86pc/include/vm
2218 $(i386_ONLY)link path=usr/share/src/uts/i86xpv/sys \
2219 target=../../../../platform/i86xpv/include/sys
2220 $(i386_ONLY)link path=usr/share/src/uts/i86xpv/vm \
2221 target=../../../../platform/i86xpv/include/vm
2222 $(sparc_ONLY)link path=usr/share/src/uts/sun4u/sys \
2223 target=../../../../platform/sun4u/include/sys
2224 $(sparc_ONLY)link path=usr/share/src/uts/sun4u/vm \
2225 target=../../../../platform/sun4u/include/vm
2226 $(sparc_ONLY)link path=usr/share/src/uts/sun4v/sys \
2227 target=../../../../platform/sun4v/include/sys
2228 $(sparc_ONLY)link path=usr/share/src/uts/sun4v/vm \
2229 target=../../../../platform/sun4v/include/vm

new/usr/src/uts/common/disp/cpupart.c 1

**
 30390 Wed May 15 07:34:02 2019
new/usr/src/uts/common/disp/cpupart.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1996, 2010, Oracle and/or its affiliates. All rights reserved.
23 *
24 * Copyright 2018 Joyent, Inc.
25 * Copyright (c) 2017 by Delphix. All rights reserved.
26 */

28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/cmn_err.h>
31 #include <sys/cpuvar.h>
32 #include <sys/thread.h>
33 #include <sys/disp.h>
34 #include <sys/kmem.h>
35 #include <sys/debug.h>
36 #include <sys/cpupart.h>
37 #include <sys/pset.h>
38 #include <sys/var.h>
39 #include <sys/cyclic.h>
40 #include <sys/lgrp.h>
41 #include <sys/pghw.h>
42 #include <sys/loadavg.h>
43 #include <sys/class.h>
44 #include <sys/fss.h>
45 #include <sys/pool.h>
46 #include <sys/pool_pset.h>
47 #include <sys/policy.h>

49 /*
50 * Calling pool_lock() protects the pools configuration, which includes
51 * CPU partitions. cpu_lock protects the CPU partition list, and prevents
52 * partitions from being created or destroyed while the lock is held.
53 * The lock ordering with respect to related locks is:
54 *
55 * pool_lock() ---> cpu_lock ---> pidlock --> p_lock
56 *
57 * Blocking memory allocations may be made while holding "pool_lock"
58 * or cpu_lock.

new/usr/src/uts/common/disp/cpupart.c 2

59 */

61 /*
62 * The cp_default partition is allocated statically, but its lgroup load average
63 * (lpl) list is allocated dynamically after kmem subsystem is initialized. This
64 * saves some memory since the space allocated reflects the actual number of
65 * lgroups supported by the platform. The lgrp facility provides a temporary
66 * space to hold lpl information during system bootstrap.
67 */

69 cpupart_t *cp_list_head;
70 cpupart_t cp_default;
71 static cpupartid_t cp_id_next;
72 uint_t cp_numparts;
73 uint_t cp_numparts_nonempty;

75 /*
76 * Need to limit total number of partitions to avoid slowing down the
77 * clock code too much. The clock code traverses the list of
78 * partitions and needs to be able to execute in a reasonable amount
79 * of time (less than 1/hz seconds). The maximum is sized based on
80 * max_ncpus so it shouldn’t be a problem unless there are large
81 * numbers of empty partitions.
82 */
83 static uint_t cp_max_numparts;

85 /*
86 * Processor sets and CPU partitions are different but related concepts.
87 * A processor set is a user-level abstraction allowing users to create
88 * sets of CPUs and bind threads exclusively to those sets. A CPU
89 * partition is a kernel dispatcher object consisting of a set of CPUs
90 * and a global dispatch queue. The processor set abstraction is
91 * implemented via a CPU partition, and currently there is a 1-1
92 * mapping between processor sets and partitions (excluding the default
93 * partition, which is not visible as a processor set). Hence, the
94 * numbering for processor sets and CPU partitions is identical. This
95 * may not always be true in the future, and these macros could become
96 * less trivial if we support e.g. a processor set containing multiple
97 * CPU partitions.
98 */
99 #define PSTOCP(psid) ((cpupartid_t)((psid) == PS_NONE ? CP_DEFAULT : (psid)))
100 #define CPTOPS(cpid) ((psetid_t)((cpid) == CP_DEFAULT ? PS_NONE : (cpid)))

102 static int cpupart_unbind_threads(cpupart_t *, boolean_t);

104 /*
105 * Find a CPU partition given a processor set ID.
106 */
107 static cpupart_t *
108 cpupart_find_all(psetid_t psid)
109 {
110 cpupart_t *cp;
111 cpupartid_t cpid = PSTOCP(psid);

113 ASSERT(MUTEX_HELD(&cpu_lock));

115 /* default partition not visible as a processor set */
116 if (psid == CP_DEFAULT)
117 return (NULL);

119 if (psid == PS_MYID)
120 return (curthread->t_cpupart);

122 cp = cp_list_head;
123 do {
124 if (cp->cp_id == cpid)

new/usr/src/uts/common/disp/cpupart.c 3

125 return (cp);
126 cp = cp->cp_next;
127 } while (cp != cp_list_head);
128 return (NULL);
129 }

______unchanged_portion_omitted_

322 static int
323 cpupart_move_cpu(cpu_t *cp, cpupart_t *newpp, int forced)
324 {
325 cpupart_t *oldpp;
326 cpu_t *ncp, *newlist;
327 kthread_t *t;
328 int move_threads = 1;
329 lgrp_id_t lgrpid;
330 proc_t *p;
331 int lgrp_diff_lpl;
332 lpl_t *cpu_lpl;
333 int ret;
334 boolean_t unbind_all_threads = (forced != 0);

336 ASSERT(MUTEX_HELD(&cpu_lock));
337 ASSERT(newpp != NULL);

339 oldpp = cp->cpu_part;
340 ASSERT(oldpp != NULL);
341 ASSERT(oldpp->cp_ncpus > 0);

343 if (newpp == oldpp) {
344 /*
345 * Don’t need to do anything.
346 */
347 return (0);
348 }

350 cpu_state_change_notify(cp->cpu_id, CPU_CPUPART_OUT);

352 if (!disp_bound_partition(cp, 0)) {
353 /*
354 * Don’t need to move threads if there are no threads in
355 * the partition. Note that threads can’t enter the
356 * partition while we’re holding cpu_lock.
357 */
358 move_threads = 0;
359 } else if (oldpp->cp_ncpus == 1) {
360 /*
361 * The last CPU is removed from a partition which has threads
362 * running in it. Some of these threads may be bound to this
363 * CPU.
364 *
365 * Attempt to unbind threads from the CPU and from the processor
366 * set. Note that no threads should be bound to this CPU since
367 * cpupart_move_threads will refuse to move bound threads to
368 * other CPUs.
369 */
370 (void) cpu_unbind(oldpp->cp_cpulist->cpu_id, B_FALSE);
371 (void) cpupart_unbind_threads(oldpp, B_FALSE);

373 if (!disp_bound_partition(cp, 0)) {
374 /*
375 * No bound threads in this partition any more
376 */
377 move_threads = 0;
378 } else {
379 /*

new/usr/src/uts/common/disp/cpupart.c 4

380 * There are still threads bound to the partition
381 */
382 cpu_state_change_notify(cp->cpu_id, CPU_CPUPART_IN);
383 return (EBUSY);
384 }
385 }

387 /*
388 * If forced flag is set unbind any threads from this CPU.
389 * Otherwise unbind soft-bound threads only.
390 */
391 if ((ret = cpu_unbind(cp->cpu_id, unbind_all_threads)) != 0) {
392 cpu_state_change_notify(cp->cpu_id, CPU_CPUPART_IN);
393 return (ret);
394 }

396 /*
397 * Stop further threads weak binding to this cpu.
398 */
399 cpu_inmotion = cp;
400 membar_enter();

402 /*
403 * Notify the Processor Groups subsystem that the CPU
404 * will be moving cpu partitions. This is done before
405 * CPUs are paused to provide an opportunity for any
406 * needed memory allocations.
407 */
408 pg_cpupart_out(cp, oldpp);
409 pg_cpupart_in(cp, newpp);

411 again:
412 if (move_threads) {
413 int loop_count;
414 /*
415 * Check for threads strong or weak bound to this CPU.
416 */
417 for (loop_count = 0; disp_bound_threads(cp, 0); loop_count++) {
418 if (loop_count >= 5) {
419 cpu_state_change_notify(cp->cpu_id,
420 CPU_CPUPART_IN);
421 pg_cpupart_out(cp, newpp);
422 pg_cpupart_in(cp, oldpp);
423 cpu_inmotion = NULL;
424 return (EBUSY); /* some threads still bound */
425 }
426 delay(1);
427 }
428 }

430 /*
431 * Before we actually start changing data structures, notify
432 * the cyclic subsystem that we want to move this CPU out of its
433 * partition.
434 */
435 if (!cyclic_move_out(cp)) {
436 /*
437 * This CPU must be the last CPU in a processor set with
438 * a bound cyclic.
439 */
440 cpu_state_change_notify(cp->cpu_id, CPU_CPUPART_IN);
441 pg_cpupart_out(cp, newpp);
442 pg_cpupart_in(cp, oldpp);
443 cpu_inmotion = NULL;
444 return (EBUSY);
445 }

new/usr/src/uts/common/disp/cpupart.c 5

447 pause_cpus(cp, NULL);

449 if (move_threads) {
450 /*
451 * The thread on cpu before the pause thread may have read
452 * cpu_inmotion before we raised the barrier above. Check
453 * again.
454 */
455 if (disp_bound_threads(cp, 1)) {
456 start_cpus();
457 goto again;
458 }

460 }

462 /*
463 * Now that CPUs are paused, let the PG subsystem perform
464 * any necessary data structure updates.
465 */
466 pg_cpupart_move(cp, oldpp, newpp);

468 /* save this cpu’s lgroup -- it’ll be the same in the new partition */
469 lgrpid = cp->cpu_lpl->lpl_lgrpid;

471 cpu_lpl = cp->cpu_lpl;
472 /*
473 * let the lgroup framework know cp has left the partition
474 */
475 lgrp_config(LGRP_CONFIG_CPUPART_DEL, (uintptr_t)cp, lgrpid);

477 /* move out of old partition */
478 oldpp->cp_ncpus--;
479 if (oldpp->cp_ncpus > 0) {

481 ncp = cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
482 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
483 if (oldpp->cp_cpulist == cp) {
484 oldpp->cp_cpulist = ncp;
485 }
486 } else {
487 ncp = oldpp->cp_cpulist = NULL;
488 cp_numparts_nonempty--;
489 ASSERT(cp_numparts_nonempty != 0);
490 }
491 oldpp->cp_gen++;

493 /* move into new partition */
494 newlist = newpp->cp_cpulist;
495 if (newlist == NULL) {
496 newpp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
497 cp_numparts_nonempty++;
498 ASSERT(cp_numparts_nonempty != 0);
499 } else {
500 cp->cpu_next_part = newlist;
501 cp->cpu_prev_part = newlist->cpu_prev_part;
502 newlist->cpu_prev_part->cpu_next_part = cp;
503 newlist->cpu_prev_part = cp;
504 }
505 cp->cpu_part = newpp;
506 newpp->cp_ncpus++;
507 newpp->cp_gen++;

509 ASSERT(bitset_is_null(&newpp->cp_haltset));
510 ASSERT(bitset_is_null(&oldpp->cp_haltset));

new/usr/src/uts/common/disp/cpupart.c 6

512 /*
513 * let the lgroup framework know cp has entered the partition
514 */
515 lgrp_config(LGRP_CONFIG_CPUPART_ADD, (uintptr_t)cp, lgrpid);

517 /*
518 * If necessary, move threads off processor.
519 */
520 if (move_threads) {
521 ASSERT(ncp != NULL);

523 /*
524 * Walk thru the active process list to look for
525 * threads that need to have a new home lgroup,
526 * or the last CPU they run on is the same CPU
527 * being moved out of the partition.
528 */

530 for (p = practive; p != NULL; p = p->p_next) {

532 t = p->p_tlist;

534 if (t == NULL)
535 continue;

537 lgrp_diff_lpl = 0;

539 do {

541 ASSERT(t->t_lpl != NULL);

543 /*
544 * Update the count of how many threads are
545 * in this CPU’s lgroup but have a different lpl
546 */

548 if (t->t_lpl != cpu_lpl &&
549 t->t_lpl->lpl_lgrpid == lgrpid)
550 lgrp_diff_lpl++;
551 /*
552 * If the lgroup that t is assigned to no
553 * longer has any CPUs in t’s partition,
554 * we’ll have to choose a new lgroup for t.
555 */

557 if (!LGRP_CPUS_IN_PART(t->t_lpl->lpl_lgrpid,
558 t->t_cpupart)) {
559 lgrp_move_thread(t,
560 lgrp_choose(t, t->t_cpupart), 0);
561 }

563 /*
564 * make sure lpl points to our own partition
565 */
566 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads &&
567 (t->t_lpl < t->t_cpupart->cp_lgrploads +
568 t->t_cpupart->cp_nlgrploads));

570 ASSERT(t->t_lpl->lpl_ncpu > 0);

572 /* Update CPU last ran on if it was this CPU */
573 if (t->t_cpu == cp && t->t_cpupart == oldpp &&
574 t->t_bound_cpu != cp) {
575 t->t_cpu = disp_lowpri_cpu(ncp, t,
576 t->t_pri);
573 t->t_cpu = disp_lowpri_cpu(ncp,

new/usr/src/uts/common/disp/cpupart.c 7

574 t->t_lpl, t->t_pri, NULL);
577 }
578 t = t->t_forw;
579 } while (t != p->p_tlist);

581 /*
582 * Didn’t find any threads in the same lgroup as this
583 * CPU with a different lpl, so remove the lgroup from
584 * the process lgroup bitmask.
585 */

587 if (lgrp_diff_lpl)
588 klgrpset_del(p->p_lgrpset, lgrpid);
589 }

591 /*
592 * Walk thread list looking for threads that need to be
593 * rehomed, since there are some threads that are not in
594 * their process’s p_tlist.
595 */

597 t = curthread;

599 do {
600 ASSERT(t != NULL && t->t_lpl != NULL);

602 /*
603 * If the lgroup that t is assigned to no
604 * longer has any CPUs in t’s partition,
605 * we’ll have to choose a new lgroup for t.
606 * Also, choose best lgroup for home when
607 * thread has specified lgroup affinities,
608 * since there may be an lgroup with more
609 * affinity available after moving CPUs
610 * around.
611 */
612 if (!LGRP_CPUS_IN_PART(t->t_lpl->lpl_lgrpid,
613 t->t_cpupart) || t->t_lgrp_affinity) {
614 lgrp_move_thread(t,
615 lgrp_choose(t, t->t_cpupart), 1);
616 }

618 /* make sure lpl points to our own partition */
619 ASSERT((t->t_lpl >= t->t_cpupart->cp_lgrploads) &&
620 (t->t_lpl < t->t_cpupart->cp_lgrploads +
621 t->t_cpupart->cp_nlgrploads));

623 ASSERT(t->t_lpl->lpl_ncpu > 0);

625 /* Update CPU last ran on if it was this CPU */
626 if (t->t_cpu == cp && t->t_cpupart == oldpp &&
627 t->t_bound_cpu != cp) {
628 t->t_cpu = disp_lowpri_cpu(ncp, t,
629 t->t_pri);
626 t->t_cpu = disp_lowpri_cpu(ncp, t->t_lpl,
627 t->t_pri, NULL);
630 }

632 t = t->t_next;
633 } while (t != curthread);

635 /*
636 * Clear off the CPU’s run queue, and the kp queue if the
637 * partition is now empty.
638 */
639 disp_cpu_inactive(cp);

new/usr/src/uts/common/disp/cpupart.c 8

641 /*
642 * Make cp switch to a thread from the new partition.
643 */
644 cp->cpu_runrun = 1;
645 cp->cpu_kprunrun = 1;
646 }

648 cpu_inmotion = NULL;
649 start_cpus();

651 /*
652 * Let anyone interested know that cpu has been added to the set.
653 */
654 cpu_state_change_notify(cp->cpu_id, CPU_CPUPART_IN);

656 /*
657 * Now let the cyclic subsystem know that it can reshuffle cyclics
658 * bound to the new processor set.
659 */
660 cyclic_move_in(cp);

662 return (0);
663 }

______unchanged_portion_omitted_

new/usr/src/uts/common/disp/disp.c 1

**
 70269 Wed May 15 07:34:02 2019
new/usr/src/uts/common/disp/disp.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2018, Joyent, Inc. All rights reserved.
28 */

30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */

34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <sys/sysmacros.h>
37 #include <sys/signal.h>
38 #include <sys/user.h>
39 #include <sys/systm.h>
40 #include <sys/sysinfo.h>
41 #include <sys/var.h>
42 #include <sys/errno.h>
43 #include <sys/cmn_err.h>
44 #include <sys/debug.h>
45 #include <sys/inline.h>
46 #include <sys/disp.h>
47 #include <sys/class.h>
48 #include <sys/bitmap.h>
49 #include <sys/kmem.h>
50 #include <sys/cpuvar.h>
51 #include <sys/vtrace.h>
52 #include <sys/tnf.h>
53 #include <sys/cpupart.h>
54 #include <sys/lgrp.h>
55 #include <sys/pg.h>
56 #include <sys/cmt.h>
57 #include <sys/bitset.h>
58 #include <sys/schedctl.h>

new/usr/src/uts/common/disp/disp.c 2

59 #include <sys/atomic.h>
60 #include <sys/dtrace.h>
61 #include <sys/sdt.h>
62 #include <sys/archsystm.h>
63 #include <sys/ht.h>

65 #include <vm/as.h>

67 #define BOUND_CPU 0x1
68 #define BOUND_PARTITION 0x2
69 #define BOUND_INTR 0x4

71 /* Dispatch queue allocation structure and functions */
72 struct disp_queue_info {
73 disp_t *dp;
74 dispq_t *olddispq;
75 dispq_t *newdispq;
76 ulong_t *olddqactmap;
77 ulong_t *newdqactmap;
78 int oldnglobpris;
79 };

______unchanged_portion_omitted_

1118 #define CPU_IDLING(pri) ((pri) == -1)

1123 static void
1124 cpu_resched(cpu_t *cp, pri_t tpri)
1125 {
1126 int call_poke_cpu = 0;
1127 pri_t cpupri = cp->cpu_dispatch_pri;

1129 if (cpupri != CPU_IDLE_PRI && cpupri < tpri) {
1126 if (!CPU_IDLING(cpupri) && (cpupri < tpri)) {
1130 TRACE_2(TR_FAC_DISP, TR_CPU_RESCHED,
1131 "CPU_RESCHED:Tpri %d Cpupri %d", tpri, cpupri);
1132 if (tpri >= upreemptpri && cp->cpu_runrun == 0) {
1133 cp->cpu_runrun = 1;
1134 aston(cp->cpu_dispthread);
1135 if (tpri < kpreemptpri && cp != CPU)
1136 call_poke_cpu = 1;
1137 }
1138 if (tpri >= kpreemptpri && cp->cpu_kprunrun == 0) {
1139 cp->cpu_kprunrun = 1;
1140 if (cp != CPU)
1141 call_poke_cpu = 1;
1142 }
1143 }

1145 /*
1146 * Propagate cpu_runrun, and cpu_kprunrun to global visibility.
1147 */
1148 membar_enter();

1150 if (call_poke_cpu)
1151 poke_cpu(cp->cpu_id);
1152 }

1154 /*
1155 * setbackdq() keeps runqs balanced such that the difference in length
1156 * between the chosen runq and the next one is no more than RUNQ_MAX_DIFF.
1157 * For threads with priorities below RUNQ_MATCH_PRI levels, the runq’s lengths
1158 * must match. When per-thread TS_RUNQMATCH flag is set, setbackdq() will
1159 * try to keep runqs perfectly balanced regardless of the thread priority.
1160 */
1161 #define RUNQ_MATCH_PRI 16 /* pri below which queue lengths must match */
1162 #define RUNQ_MAX_DIFF 2 /* maximum runq length difference */

new/usr/src/uts/common/disp/disp.c 3

1163 #define RUNQ_LEN(cp, pri) ((cp)->cpu_disp->disp_q[pri].dq_sruncnt)

1165 /*
1166 * Macro that evaluates to true if it is likely that the thread has cache
1167 * warmth. This is based on the amount of time that has elapsed since the
1168 * thread last ran. If that amount of time is less than "rechoose_interval"
1169 * ticks, then we decide that the thread has enough cache warmth to warrant
1170 * some affinity for t->t_cpu.
1171 */
1172 #define THREAD_HAS_CACHE_WARMTH(thread) \
1173 ((thread == curthread) || \
1174 ((ddi_get_lbolt() - thread->t_disp_time) <= rechoose_interval))
1175 /*
1176 * Put the specified thread on the back of the dispatcher
1177 * queue corresponding to its current priority.
1178 *
1179 * Called with the thread in transition, onproc or stopped state
1180 * and locked (transition implies locked) and at high spl.
1181 * Returns with the thread in TS_RUN state and still locked.
1182 */
1183 void
1184 setbackdq(kthread_t *tp)
1185 {
1186 dispq_t *dq;
1187 disp_t *dp;
1188 cpu_t *cp;
1189 pri_t tpri;
1190 int bound;
1191 boolean_t self;

1193 ASSERT(THREAD_LOCK_HELD(tp));
1194 ASSERT((tp->t_schedflag & TS_ALLSTART) == 0);
1195 ASSERT(!thread_on_queue(tp)); /* make sure tp isn’t on a runq */

1197 /*
1198 * If thread is "swapped" or on the swap queue don’t
1199 * queue it, but wake sched.
1200 */
1201 if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) {
1202 disp_swapped_setrun(tp);
1203 return;
1204 }

1206 self = (tp == curthread);

1208 if (tp->t_bound_cpu || tp->t_weakbound_cpu)
1209 bound = 1;
1210 else
1211 bound = 0;

1213 tpri = DISP_PRIO(tp);
1214 if (ncpus == 1)
1215 cp = tp->t_cpu;
1216 else if (!bound) {
1217 if (tpri >= kpqpri) {
1218 setkpdq(tp, SETKP_BACK);
1219 return;
1220 }

1222 /*
1223 * We’ll generally let this thread continue to run where
1224 * it last ran...but will consider migration if:
1225 * - The thread probably doesn’t have much cache warmth.
1226 * - HT exclusion would prefer us to run elsewhere
1222 * - We thread probably doesn’t have much cache warmth.
1227 * - The CPU where it last ran is the target of an offline

new/usr/src/uts/common/disp/disp.c 4

1228 * request.
1229 * - The thread last ran outside its home lgroup.
1225 * - The thread last ran outside it’s home lgroup.
1230 */
1231 if ((!THREAD_HAS_CACHE_WARMTH(tp)) ||
1232 !ht_should_run(tp, tp->t_cpu) ||
1233 (tp->t_cpu == cpu_inmotion) ||
1234 !LGRP_CONTAINS_CPU(tp->t_lpl->lpl_lgrp, tp->t_cpu)) {
1235 cp = disp_lowpri_cpu(tp->t_cpu, tp, tpri);
1228 (tp->t_cpu == cpu_inmotion)) {
1229 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri, NULL);
1230 } else if (!LGRP_CONTAINS_CPU(tp->t_lpl->lpl_lgrp, tp->t_cpu)) {
1231 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri,
1232 self ? tp->t_cpu : NULL);
1236 } else {
1237 cp = tp->t_cpu;
1238 }

1240 if (tp->t_cpupart == cp->cpu_part) {
1241 int qlen;

1243 /*
1244 * Perform any CMT load balancing
1245 */
1246 cp = cmt_balance(tp, cp);

1248 /*
1249 * Balance across the run queues
1250 */
1251 qlen = RUNQ_LEN(cp, tpri);
1252 if (tpri >= RUNQ_MATCH_PRI &&
1253 !(tp->t_schedflag & TS_RUNQMATCH))
1254 qlen -= RUNQ_MAX_DIFF;
1255 if (qlen > 0) {
1256 cpu_t *newcp;

1258 if (tp->t_lpl->lpl_lgrpid == LGRP_ROOTID) {
1259 newcp = cp->cpu_next_part;
1260 } else if ((newcp = cp->cpu_next_lpl) == cp) {
1261 newcp = cp->cpu_next_part;
1262 }

1264 if (ht_should_run(tp, newcp) &&
1265 RUNQ_LEN(newcp, tpri) < qlen) {
1261 if (RUNQ_LEN(newcp, tpri) < qlen) {
1266 DTRACE_PROBE3(runq__balance,
1267 kthread_t *, tp,
1268 cpu_t *, cp, cpu_t *, newcp);
1269 cp = newcp;
1270 }
1271 }
1272 } else {
1273 /*
1274 * Migrate to a cpu in the new partition.
1275 */
1276 cp = disp_lowpri_cpu(tp->t_cpupart->cp_cpulist, tp,
1277 tp->t_pri);
1272 cp = disp_lowpri_cpu(tp->t_cpupart->cp_cpulist,
1273 tp->t_lpl, tp->t_pri, NULL);
1278 }
1279 ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0);
1280 } else {
1281 /*
1282 * It is possible that t_weakbound_cpu != t_bound_cpu (for
1283 * a short time until weak binding that existed when the
1284 * strong binding was established has dropped) so we must

new/usr/src/uts/common/disp/disp.c 5

1285 * favour weak binding over strong.
1286 */
1287 cp = tp->t_weakbound_cpu ?
1288 tp->t_weakbound_cpu : tp->t_bound_cpu;
1289 }
1290 /*
1291 * A thread that is ONPROC may be temporarily placed on the run queue
1292 * but then chosen to run again by disp. If the thread we’re placing on
1293 * the queue is in TS_ONPROC state, don’t set its t_waitrq until a
1294 * replacement process is actually scheduled in swtch(). In this
1295 * situation, curthread is the only thread that could be in the ONPROC
1296 * state.
1297 */
1298 if ((!self) && (tp->t_waitrq == 0)) {
1299 hrtime_t curtime;

1301 curtime = gethrtime_unscaled();
1302 (void) cpu_update_pct(tp, curtime);
1303 tp->t_waitrq = curtime;
1304 } else {
1305 (void) cpu_update_pct(tp, gethrtime_unscaled());
1306 }

1308 dp = cp->cpu_disp;
1309 disp_lock_enter_high(&dp->disp_lock);

1311 DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, 0);
1312 TRACE_3(TR_FAC_DISP, TR_BACKQ, "setbackdq:pri %d cpu %p tid %p",
1313 tpri, cp, tp);

1315 #ifndef NPROBE
1316 /* Kernel probe */
1317 if (tnf_tracing_active)
1318 tnf_thread_queue(tp, cp, tpri);
1319 #endif /* NPROBE */

1321 ASSERT(tpri >= 0 && tpri < dp->disp_npri);

1323 THREAD_RUN(tp, &dp->disp_lock); /* set t_state to TS_RUN */
1324 tp->t_disp_queue = dp;
1325 tp->t_link = NULL;

1327 dq = &dp->disp_q[tpri];
1328 dp->disp_nrunnable++;
1329 if (!bound)
1330 dp->disp_steal = 0;
1331 membar_enter();

1333 if (dq->dq_sruncnt++ != 0) {
1334 ASSERT(dq->dq_first != NULL);
1335 dq->dq_last->t_link = tp;
1336 dq->dq_last = tp;
1337 } else {
1338 ASSERT(dq->dq_first == NULL);
1339 ASSERT(dq->dq_last == NULL);
1340 dq->dq_first = dq->dq_last = tp;
1341 BT_SET(dp->disp_qactmap, tpri);
1342 if (tpri > dp->disp_maxrunpri) {
1343 dp->disp_maxrunpri = tpri;
1344 membar_enter();
1345 cpu_resched(cp, tpri);
1346 }
1347 }

1349 if (!bound && tpri > dp->disp_max_unbound_pri) {
1350 if (self && dp->disp_max_unbound_pri == -1 && cp == CPU) {

new/usr/src/uts/common/disp/disp.c 6

1351 /*
1352 * If there are no other unbound threads on the
1353 * run queue, don’t allow other CPUs to steal
1354 * this thread while we are in the middle of a
1355 * context switch. We may just switch to it
1356 * again right away. CPU_DISP_DONTSTEAL is cleared
1357 * in swtch and swtch_to.
1358 */
1359 cp->cpu_disp_flags |= CPU_DISP_DONTSTEAL;
1360 }
1361 dp->disp_max_unbound_pri = tpri;
1362 }
1363 (*disp_enq_thread)(cp, bound);
1364 }

1366 /*
1367 * Put the specified thread on the front of the dispatcher
1368 * queue corresponding to its current priority.
1369 *
1370 * Called with the thread in transition, onproc or stopped state
1371 * and locked (transition implies locked) and at high spl.
1372 * Returns with the thread in TS_RUN state and still locked.
1373 */
1374 void
1375 setfrontdq(kthread_t *tp)
1376 {
1377 disp_t *dp;
1378 dispq_t *dq;
1379 cpu_t *cp;
1380 pri_t tpri;
1381 int bound;

1383 ASSERT(THREAD_LOCK_HELD(tp));
1384 ASSERT((tp->t_schedflag & TS_ALLSTART) == 0);
1385 ASSERT(!thread_on_queue(tp)); /* make sure tp isn’t on a runq */

1387 /*
1388 * If thread is "swapped" or on the swap queue don’t
1389 * queue it, but wake sched.
1390 */
1391 if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) {
1392 disp_swapped_setrun(tp);
1393 return;
1394 }

1396 if (tp->t_bound_cpu || tp->t_weakbound_cpu)
1397 bound = 1;
1398 else
1399 bound = 0;

1401 tpri = DISP_PRIO(tp);
1402 if (ncpus == 1)
1403 cp = tp->t_cpu;
1404 else if (!bound) {
1405 if (tpri >= kpqpri) {
1406 setkpdq(tp, SETKP_FRONT);
1407 return;
1408 }
1409 cp = tp->t_cpu;
1410 if (tp->t_cpupart == cp->cpu_part) {
1411 /*
1412 * We’ll generally let this thread continue to run
1413 * where it last ran, but will consider migration if:
1414 * - The thread last ran outside its home lgroup.
1410 * - The thread last ran outside it’s home lgroup.
1415 * - The CPU where it last ran is the target of an

new/usr/src/uts/common/disp/disp.c 7

1416 * offline request (a thread_nomigrate() on the in
1417 * motion CPU relies on this when forcing a preempt).
1418 * - The thread isn’t the highest priority thread where
1419 * it last ran, and it is considered not likely to
1420 * have significant cache warmth.
1421 */
1422 if (!LGRP_CONTAINS_CPU(tp->t_lpl->lpl_lgrp, cp) ||
1423 cp == cpu_inmotion ||
1424 (tpri < cp->cpu_disp->disp_maxrunpri &&
1425 !THREAD_HAS_CACHE_WARMTH(tp))) {
1426 cp = disp_lowpri_cpu(tp->t_cpu, tp, tpri);
1418 if ((!LGRP_CONTAINS_CPU(tp->t_lpl->lpl_lgrp, cp)) ||
1419 (cp == cpu_inmotion)) {
1420 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri,
1421 (tp == curthread) ? cp : NULL);
1422 } else if ((tpri < cp->cpu_disp->disp_maxrunpri) &&
1423 (!THREAD_HAS_CACHE_WARMTH(tp))) {
1424 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri,
1425 NULL);
1427 }
1428 } else {
1429 /*
1430 * Migrate to a cpu in the new partition.
1431 */
1432 cp = disp_lowpri_cpu(tp->t_cpupart->cp_cpulist,
1433 tp, tp->t_pri);
1432 tp->t_lpl, tp->t_pri, NULL);
1434 }
1435 ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0);
1436 } else {
1437 /*
1438 * It is possible that t_weakbound_cpu != t_bound_cpu (for
1439 * a short time until weak binding that existed when the
1440 * strong binding was established has dropped) so we must
1441 * favour weak binding over strong.
1442 */
1443 cp = tp->t_weakbound_cpu ?
1444 tp->t_weakbound_cpu : tp->t_bound_cpu;
1445 }

1447 /*
1448 * A thread that is ONPROC may be temporarily placed on the run queue
1449 * but then chosen to run again by disp. If the thread we’re placing on
1450 * the queue is in TS_ONPROC state, don’t set its t_waitrq until a
1451 * replacement process is actually scheduled in swtch(). In this
1452 * situation, curthread is the only thread that could be in the ONPROC
1453 * state.
1454 */
1455 if ((tp != curthread) && (tp->t_waitrq == 0)) {
1456 hrtime_t curtime;

1458 curtime = gethrtime_unscaled();
1459 (void) cpu_update_pct(tp, curtime);
1460 tp->t_waitrq = curtime;
1461 } else {
1462 (void) cpu_update_pct(tp, gethrtime_unscaled());
1463 }

1465 dp = cp->cpu_disp;
1466 disp_lock_enter_high(&dp->disp_lock);

1468 TRACE_2(TR_FAC_DISP, TR_FRONTQ, "frontq:pri %d tid %p", tpri, tp);
1469 DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, 1);

1471 #ifndef NPROBE
1472 /* Kernel probe */

new/usr/src/uts/common/disp/disp.c 8

1473 if (tnf_tracing_active)
1474 tnf_thread_queue(tp, cp, tpri);
1475 #endif /* NPROBE */

1477 ASSERT(tpri >= 0 && tpri < dp->disp_npri);

1479 THREAD_RUN(tp, &dp->disp_lock); /* set TS_RUN state and lock */
1480 tp->t_disp_queue = dp;

1482 dq = &dp->disp_q[tpri];
1483 dp->disp_nrunnable++;
1484 if (!bound)
1485 dp->disp_steal = 0;
1486 membar_enter();

1488 if (dq->dq_sruncnt++ != 0) {
1489 ASSERT(dq->dq_last != NULL);
1490 tp->t_link = dq->dq_first;
1491 dq->dq_first = tp;
1492 } else {
1493 ASSERT(dq->dq_last == NULL);
1494 ASSERT(dq->dq_first == NULL);
1495 tp->t_link = NULL;
1496 dq->dq_first = dq->dq_last = tp;
1497 BT_SET(dp->disp_qactmap, tpri);
1498 if (tpri > dp->disp_maxrunpri) {
1499 dp->disp_maxrunpri = tpri;
1500 membar_enter();
1501 cpu_resched(cp, tpri);
1502 }
1503 }

1505 if (!bound && tpri > dp->disp_max_unbound_pri) {
1506 if (tp == curthread && dp->disp_max_unbound_pri == -1 &&
1507 cp == CPU) {
1508 /*
1509 * If there are no other unbound threads on the
1510 * run queue, don’t allow other CPUs to steal
1511 * this thread while we are in the middle of a
1512 * context switch. We may just switch to it
1513 * again right away. CPU_DISP_DONTSTEAL is cleared
1514 * in swtch and swtch_to.
1515 */
1516 cp->cpu_disp_flags |= CPU_DISP_DONTSTEAL;
1517 }
1518 dp->disp_max_unbound_pri = tpri;
1519 }
1520 (*disp_enq_thread)(cp, bound);
1521 }

1523 /*
1524 * Put a high-priority unbound thread on the kp queue
1525 */
1526 static void
1527 setkpdq(kthread_t *tp, int borf)
1528 {
1529 dispq_t *dq;
1530 disp_t *dp;
1531 cpu_t *cp;
1532 pri_t tpri;

1534 tpri = DISP_PRIO(tp);

1536 dp = &tp->t_cpupart->cp_kp_queue;
1537 disp_lock_enter_high(&dp->disp_lock);

new/usr/src/uts/common/disp/disp.c 9

1539 TRACE_2(TR_FAC_DISP, TR_FRONTQ, "frontq:pri %d tid %p", tpri, tp);

1541 ASSERT(tpri >= 0 && tpri < dp->disp_npri);
1542 DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, borf);
1543 THREAD_RUN(tp, &dp->disp_lock); /* set t_state to TS_RUN */
1544 tp->t_disp_queue = dp;
1545 dp->disp_nrunnable++;
1546 dq = &dp->disp_q[tpri];

1548 if (dq->dq_sruncnt++ != 0) {
1549 if (borf == SETKP_BACK) {
1550 ASSERT(dq->dq_first != NULL);
1551 tp->t_link = NULL;
1552 dq->dq_last->t_link = tp;
1553 dq->dq_last = tp;
1554 } else {
1555 ASSERT(dq->dq_last != NULL);
1556 tp->t_link = dq->dq_first;
1557 dq->dq_first = tp;
1558 }
1559 } else {
1560 if (borf == SETKP_BACK) {
1561 ASSERT(dq->dq_first == NULL);
1562 ASSERT(dq->dq_last == NULL);
1563 dq->dq_first = dq->dq_last = tp;
1564 } else {
1565 ASSERT(dq->dq_last == NULL);
1566 ASSERT(dq->dq_first == NULL);
1567 tp->t_link = NULL;
1568 dq->dq_first = dq->dq_last = tp;
1569 }
1570 BT_SET(dp->disp_qactmap, tpri);
1571 if (tpri > dp->disp_max_unbound_pri)
1572 dp->disp_max_unbound_pri = tpri;
1573 if (tpri > dp->disp_maxrunpri) {
1574 dp->disp_maxrunpri = tpri;
1575 membar_enter();
1576 }
1577 }

1579 cp = tp->t_cpu;
1580 if (tp->t_cpupart != cp->cpu_part) {
1581 /* migrate to a cpu in the new partition */
1582 cp = tp->t_cpupart->cp_cpulist;
1583 }
1584 cp = disp_lowpri_cpu(cp, tp, tp->t_pri);
1583 cp = disp_lowpri_cpu(cp, tp->t_lpl, tp->t_pri, NULL);
1585 disp_lock_enter_high(&cp->cpu_disp->disp_lock);
1586 ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0);

1588 #ifndef NPROBE
1589 /* Kernel probe */
1590 if (tnf_tracing_active)
1591 tnf_thread_queue(tp, cp, tpri);
1592 #endif /* NPROBE */

1594 if (cp->cpu_chosen_level < tpri)
1595 cp->cpu_chosen_level = tpri;
1596 cpu_resched(cp, tpri);
1597 disp_lock_exit_high(&cp->cpu_disp->disp_lock);
1598 (*disp_enq_thread)(cp, 0);
1599 }
______unchanged_portion_omitted_

2556 /*
2557 * Return a score rating this CPU for running this thread: lower is better.

new/usr/src/uts/common/disp/disp.c 10

2556 * disp_lowpri_cpu - find CPU running the lowest priority thread.
2557 * The hint passed in is used as a starting point so we don’t favor
2558 * CPU 0 or any other CPU. The caller should pass in the most recently
2559 * used CPU for the thread.
2558 *
2559 * If curthread is looking for a new CPU, then we ignore cpu_dispatch_pri for
2560 * curcpu (as that’s our own priority).
2561 * The lgroup and priority are used to determine the best CPU to run on
2562 * in a NUMA machine. The lgroup specifies which CPUs are closest while
2563 * the thread priority will indicate whether the thread will actually run
2564 * there. To pick the best CPU, the CPUs inside and outside of the given
2565 * lgroup which are running the lowest priority threads are found. The
2566 * remote CPU is chosen only if the thread will not run locally on a CPU
2567 * within the lgroup, but will run on the remote CPU. If the thread
2568 * cannot immediately run on any CPU, the best local CPU will be chosen.
2561 *
2562 * If a cpu is the target of an offline request, then try to avoid it.
2570 * The lpl specified also identifies the cpu partition from which
2571 * disp_lowpri_cpu should select a CPU.
2563 *
2564 * Otherwise we’ll use double the effective dispatcher priority for the CPU.
2573 * curcpu is used to indicate that disp_lowpri_cpu is being called on
2574 * behalf of the current thread. (curthread is looking for a new cpu)
2575 * In this case, cpu_dispatch_pri for this thread’s cpu should be
2576 * ignored.
2565 *
2566 * We do this so ht_adjust_cpu_score() can increment the score if needed,
2567 * without ending up over-riding a dispatcher priority.
2568 */
2569 static pri_t
2570 cpu_score(cpu_t *cp, kthread_t *tp)
2571 {
2572 pri_t score;

2574 if (tp == curthread && cp == curthread->t_cpu)
2575 score = 2 * CPU_IDLE_PRI;
2576 else if (cp == cpu_inmotion)
2577 score = SHRT_MAX;
2578 else
2579 score = 2 * cp->cpu_dispatch_pri;

2581 if (2 * cp->cpu_disp->disp_maxrunpri > score)
2582 score = 2 * cp->cpu_disp->disp_maxrunpri;
2583 if (2 * cp->cpu_chosen_level > score)
2584 score = 2 * cp->cpu_chosen_level;

2586 return (ht_adjust_cpu_score(tp, cp, score));
2587 }

2589 /*
2590 * disp_lowpri_cpu - find a suitable CPU to run the given thread.
2578 * If a cpu is the target of an offline request then try to avoid it.
2591 *
2592 * We are looking for a CPU with an effective dispatch priority lower than the
2593 * thread’s, so that the thread will run immediately rather than be enqueued.
2594 * For NUMA locality, we prefer "home" CPUs within the thread’s ->t_lpl group.
2595 * If we don’t find an available CPU there, we will expand our search to include
2596 * wider locality levels. (Note these groups are already divided by CPU
2597 * partition.)
2598 *
2599 * If the thread cannot immediately run on *any* CPU, we’ll enqueue ourselves on
2600 * the best home CPU we found.
2601 *
2602 * The hint passed in is used as a starting point so we don’t favor CPU 0 or any
2603 * other CPU. The caller should pass in the most recently used CPU for the
2604 * thread; it’s of course possible that this CPU isn’t in the home lgroup.

new/usr/src/uts/common/disp/disp.c 11

2605 *
2606 * This function must be called at either high SPL, or with preemption disabled,
2607 * so that the "hint" CPU cannot be removed from the online CPU list while we
2608 * are traversing it.
2580 * This function must be called at either high SPL, or with preemption
2581 * disabled, so that the "hint" CPU cannot be removed from the online
2582 * CPU list while we are traversing it.
2609 */
2610 cpu_t *
2611 disp_lowpri_cpu(cpu_t *hint, kthread_t *tp, pri_t tpri)
2585 disp_lowpri_cpu(cpu_t *hint, lpl_t *lpl, pri_t tpri, cpu_t *curcpu)
2612 {
2613 cpu_t *bestcpu;
2614 cpu_t *besthomecpu;
2615 cpu_t *cp, *cpstart;

2591 pri_t bestpri;
2592 pri_t cpupri;

2617 klgrpset_t done;
2595 klgrpset_t cur_set;

2619 lpl_t *lpl_iter, *lpl_leaf;
2598 int i;

2600 /*
2601 * Scan for a CPU currently running the lowest priority thread.
2602 * Cannot get cpu_lock here because it is adaptive.
2603 * We do not require lock on CPU list.
2604 */
2621 ASSERT(hint != NULL);
2622 ASSERT(tp->t_lpl->lpl_ncpu > 0);
2606 ASSERT(lpl != NULL);
2607 ASSERT(lpl->lpl_ncpu > 0);

2609 /*
2610 * First examine local CPUs. Note that it’s possible the hint CPU
2611 * passed in in remote to the specified home lgroup. If our priority
2612 * isn’t sufficient enough such that we can run immediately at home,
2613 * then examine CPUs remote to our home lgroup.
2614 * We would like to give preference to CPUs closest to "home".
2615 * If we can’t find a CPU where we’ll run at a given level
2616 * of locality, we expand our search to include the next level.
2617 */
2624 bestcpu = besthomecpu = NULL;
2625 klgrpset_clear(done);
2620 /* start with lpl we were passed */

2627 lpl_iter = tp->t_lpl;
2622 lpl_iter = lpl;

2629 do {
2630 pri_t best = SHRT_MAX;
2631 klgrpset_t cur_set;

2626 bestpri = SHRT_MAX;
2633 klgrpset_clear(cur_set);

2635 for (int i = 0; i < lpl_iter->lpl_nrset; i++) {
2629 for (i = 0; i < lpl_iter->lpl_nrset; i++) {
2636 lpl_leaf = lpl_iter->lpl_rset[i];
2637 if (klgrpset_ismember(done, lpl_leaf->lpl_lgrpid))
2638 continue;

2640 klgrpset_add(cur_set, lpl_leaf->lpl_lgrpid);

new/usr/src/uts/common/disp/disp.c 12

2642 if (hint->cpu_lpl == lpl_leaf)
2643 cp = cpstart = hint;
2644 else
2645 cp = cpstart = lpl_leaf->lpl_cpus;

2647 do {
2648 pri_t score = cpu_score(cp, tp);

2650 if (score < best) {
2651 best = score;
2642 if (cp == curcpu)
2643 cpupri = -1;
2644 else if (cp == cpu_inmotion)
2645 cpupri = SHRT_MAX;
2646 else
2647 cpupri = cp->cpu_dispatch_pri;
2648 if (cp->cpu_disp->disp_maxrunpri > cpupri)
2649 cpupri = cp->cpu_disp->disp_maxrunpri;
2650 if (cp->cpu_chosen_level > cpupri)
2651 cpupri = cp->cpu_chosen_level;
2652 if (cpupri < bestpri) {
2653 if (CPU_IDLING(cpupri)) {
2654 ASSERT((cp->cpu_flags &
2655 CPU_QUIESCED) == 0);
2656 return (cp);
2657 }
2652 bestcpu = cp;

2654 /* An idle CPU: we’re done. */
2655 if (score / 2 == CPU_IDLE_PRI)
2656 goto out;
2659 bestpri = cpupri;
2657 }
2658 } while ((cp = cp->cpu_next_lpl) != cpstart);
2659 }

2661 if (bestcpu != NULL && tpri > (best / 2))
2662 goto out;

2664 if (bestcpu && (tpri > bestpri)) {
2665 ASSERT((bestcpu->cpu_flags & CPU_QUIESCED) == 0);
2666 return (bestcpu);
2667 }
2664 if (besthomecpu == NULL)
2665 besthomecpu = bestcpu;

2667 /*
2668 * Add the lgrps we just considered to the "done" set
2669 */
2670 klgrpset_or(done, cur_set);

2672 } while ((lpl_iter = lpl_iter->lpl_parent) != NULL);

2674 /*
2675 * The specified priority isn’t high enough to run immediately
2676 * anywhere, so just return the best CPU from the home lgroup.
2677 */
2678 bestcpu = besthomecpu;

2680 out:
2681 ASSERT((bestcpu->cpu_flags & CPU_QUIESCED) == 0);
2682 return (bestcpu);
2681 ASSERT((besthomecpu->cpu_flags & CPU_QUIESCED) == 0);
2682 return (besthomecpu);
2683 }
______unchanged_portion_omitted_

new/usr/src/uts/common/disp/disp.c 13

2697 /*ARGSUSED*/
2698 static void
2699 generic_enq_thread(cpu_t *cpu, int bound)
2700 {
2701 }

2703 cpu_t *
2704 disp_choose_best_cpu(void)
2705 {
2706 kthread_t *t = curthread;
2707 cpu_t *curcpu = CPU;

2709 ASSERT(t->t_preempt > 0);
2710 ASSERT(t->t_state == TS_ONPROC);
2711 ASSERT(t->t_schedflag & TS_VCPU);

2713 if (ht_should_run(t, curcpu))
2714 return (curcpu);

2716 return (disp_lowpri_cpu(curcpu, t, t->t_pri));
2717 }
______unchanged_portion_omitted_

new/usr/src/uts/common/disp/thread.c 1

**
 55398 Wed May 15 07:34:03 2019
new/usr/src/uts/common/disp/thread.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2018 Joyent, Inc.
25 */

27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/stack.h>
32 #include <sys/pcb.h>
33 #include <sys/user.h>
34 #include <sys/systm.h>
35 #include <sys/sysinfo.h>
36 #include <sys/errno.h>
37 #include <sys/cmn_err.h>
38 #include <sys/cred.h>
39 #include <sys/resource.h>
40 #include <sys/task.h>
41 #include <sys/project.h>
42 #include <sys/proc.h>
43 #include <sys/debug.h>
44 #include <sys/disp.h>
45 #include <sys/class.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kp.h>
48 #include <sys/machlock.h>
49 #include <sys/kmem.h>
50 #include <sys/varargs.h>
51 #include <sys/turnstile.h>
52 #include <sys/poll.h>
53 #include <sys/vtrace.h>
54 #include <sys/callb.h>
55 #include <c2/audit.h>
56 #include <sys/tnf.h>
57 #include <sys/sobject.h>
58 #include <sys/cpupart.h>

new/usr/src/uts/common/disp/thread.c 2

59 #include <sys/pset.h>
60 #include <sys/door.h>
61 #include <sys/spl.h>
62 #include <sys/copyops.h>
63 #include <sys/rctl.h>
64 #include <sys/brand.h>
65 #include <sys/pool.h>
66 #include <sys/zone.h>
67 #include <sys/tsol/label.h>
68 #include <sys/tsol/tndb.h>
69 #include <sys/cpc_impl.h>
70 #include <sys/sdt.h>
71 #include <sys/reboot.h>
72 #include <sys/kdi.h>
73 #include <sys/schedctl.h>
74 #include <sys/waitq.h>
75 #include <sys/cpucaps.h>
76 #include <sys/kiconv.h>
77 #include <sys/ctype.h>
78 #include <sys/ht.h>

80 struct kmem_cache *thread_cache; /* cache of free threads */
81 struct kmem_cache *lwp_cache; /* cache of free lwps */
82 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */

84 /*
85 * allthreads is only for use by kmem_readers. All kernel loops can use
86 * the current thread as a start/end point.
87 */
88 kthread_t *allthreads = &t0; /* circular list of all threads */

90 static kcondvar_t reaper_cv; /* synchronization var */
91 kthread_t *thread_deathrow; /* circular list of reapable threads */
92 kthread_t *lwp_deathrow; /* circular list of reapable threads */
93 kmutex_t reaplock; /* protects lwp and thread deathrows */
94 int thread_reapcnt = 0; /* number of threads on deathrow */
95 int lwp_reapcnt = 0; /* number of lwps on deathrow */
96 int reaplimit = 16; /* delay reaping until reaplimit */

98 thread_free_lock_t *thread_free_lock;
99 /* protects tick thread from reaper */

101 extern int nthread;

103 /* System Scheduling classes. */
104 id_t syscid; /* system scheduling class ID */
105 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */

107 void *segkp_thread; /* cookie for segkp pool */

109 int lwp_cache_sz = 32;
110 int t_cache_sz = 8;
111 static kt_did_t next_t_id = 1;

113 /* Default mode for thread binding to CPUs and processor sets */
114 int default_binding_mode = TB_ALLHARD;

116 /*
117 * Min/Max stack sizes for stack size parameters
118 */
119 #define MAX_STKSIZE (32 * DEFAULTSTKSZ)
120 #define MIN_STKSIZE DEFAULTSTKSZ

122 /*
123 * default_stksize overrides lwp_default_stksize if it is set.
124 */

new/usr/src/uts/common/disp/thread.c 3

125 int default_stksize;
126 int lwp_default_stksize;

128 static zone_key_t zone_thread_key;

130 unsigned int kmem_stackinfo; /* stackinfo feature on-off */
131 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */
132 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */

134 /*
135 * forward declarations for internal thread specific data (tsd)
136 */
137 static void *tsd_realloc(void *, size_t, size_t);

139 void thread_reaper(void);

141 /* forward declarations for stackinfo feature */
142 static void stkinfo_begin(kthread_t *);
143 static void stkinfo_end(kthread_t *);
144 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);

146 /*ARGSUSED*/
147 static int
148 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
149 {
150 bzero(buf, sizeof (turnstile_t));
151 return (0);
152 }

______unchanged_portion_omitted_

316 /*
317 * Create a thread.
318 *
319 * thread_create() blocks for memory if necessary. It never fails.
320 *
321 * If stk is NULL, the thread is created at the base of the stack
322 * and cannot be swapped.
323 */
324 kthread_t *
325 thread_create(
326 caddr_t stk,
327 size_t stksize,
328 void (*proc)(),
329 void *arg,
330 size_t len,
331 proc_t *pp,
332 int state,
333 pri_t pri)
334 {
335 kthread_t *t;
336 extern struct classfuncs sys_classfuncs;
337 turnstile_t *ts;

339 /*
340 * Every thread keeps a turnstile around in case it needs to block.
341 * The only reason the turnstile is not simply part of the thread
342 * structure is that we may have to break the association whenever
343 * more than one thread blocks on a given synchronization object.
344 * From a memory-management standpoint, turnstiles are like the
345 * "attached mblks" that hang off dblks in the streams allocator.
346 */
347 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);

349 if (stk == NULL) {
350 /*
351 * alloc both thread and stack in segkp chunk

new/usr/src/uts/common/disp/thread.c 4

352 */

354 if (stksize < default_stksize)
355 stksize = default_stksize;

357 if (stksize == default_stksize) {
358 stk = (caddr_t)segkp_cache_get(segkp_thread);
359 } else {
360 stksize = roundup(stksize, PAGESIZE);
361 stk = (caddr_t)segkp_get(segkp, stksize,
362 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
363 }

365 ASSERT(stk != NULL);

367 /*
368 * The machine-dependent mutex code may require that
369 * thread pointers (since they may be used for mutex owner
370 * fields) have certain alignment requirements.
371 * PTR24_ALIGN is the size of the alignment quanta.
372 * XXX - assumes stack grows toward low addresses.
373 */
374 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
375 cmn_err(CE_PANIC, "thread_create: proposed stack size"
376 " too small to hold thread.");
377 #ifdef STACK_GROWTH_DOWN
378 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
379 stksize &= -PTR24_ALIGN; /* make thread aligned */
380 t = (kthread_t *)(stk + stksize);
381 bzero(t, sizeof (kthread_t));
382 if (audit_active)
383 audit_thread_create(t);
384 t->t_stk = stk + stksize;
385 t->t_stkbase = stk;
386 #else /* stack grows to larger addresses */
387 stksize -= SA(sizeof (kthread_t));
388 t = (kthread_t *)(stk);
389 bzero(t, sizeof (kthread_t));
390 t->t_stk = stk + sizeof (kthread_t);
391 t->t_stkbase = stk + stksize + sizeof (kthread_t);
392 #endif /* STACK_GROWTH_DOWN */
393 t->t_flag |= T_TALLOCSTK;
394 t->t_swap = stk;
395 } else {
396 t = kmem_cache_alloc(thread_cache, KM_SLEEP);
397 bzero(t, sizeof (kthread_t));
398 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
399 if (audit_active)
400 audit_thread_create(t);
401 /*
402 * Initialize t_stk to the kernel stack pointer to use
403 * upon entry to the kernel
404 */
405 #ifdef STACK_GROWTH_DOWN
406 t->t_stk = stk + stksize;
407 t->t_stkbase = stk;
408 #else
409 t->t_stk = stk; /* 3b2-like */
410 t->t_stkbase = stk + stksize;
411 #endif /* STACK_GROWTH_DOWN */
412 }

414 if (kmem_stackinfo != 0) {
415 stkinfo_begin(t);
416 }

new/usr/src/uts/common/disp/thread.c 5

418 t->t_ts = ts;

420 /*
421 * p_cred could be NULL if it thread_create is called before cred_init
422 * is called in main.
423 */
424 mutex_enter(&pp->p_crlock);
425 if (pp->p_cred)
426 crhold(t->t_cred = pp->p_cred);
427 mutex_exit(&pp->p_crlock);
428 t->t_start = gethrestime_sec();
429 t->t_startpc = proc;
430 t->t_procp = pp;
431 t->t_clfuncs = &sys_classfuncs.thread;
432 t->t_cid = syscid;
433 t->t_pri = pri;
434 t->t_stime = ddi_get_lbolt();
435 t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
436 t->t_bind_cpu = PBIND_NONE;
437 t->t_bindflag = (uchar_t)default_binding_mode;
438 t->t_bind_pset = PS_NONE;
439 t->t_plockp = &pp->p_lock;
440 t->t_copyops = NULL;
441 t->t_taskq = NULL;
442 t->t_anttime = 0;
443 t->t_hatdepth = 0;

445 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */

447 CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
448 #ifndef NPROBE
449 /* Kernel probe */
450 tnf_thread_create(t);
451 #endif /* NPROBE */
452 LOCK_INIT_CLEAR(&t->t_lock);

454 /*
455 * Callers who give us a NULL proc must do their own
456 * stack initialization. e.g. lwp_create()
457 */
458 if (proc != NULL) {
459 t->t_stk = thread_stk_init(t->t_stk);
460 thread_load(t, proc, arg, len);
461 }

463 /*
464 * Put a hold on project0. If this thread is actually in a
465 * different project, then t_proj will be changed later in
466 * lwp_create(). All kernel-only threads must be in project 0.
467 */
468 t->t_proj = project_hold(proj0p);

470 lgrp_affinity_init(&t->t_lgrp_affinity);

472 mutex_enter(&pidlock);
473 nthread++;
474 t->t_did = next_t_id++;
475 t->t_prev = curthread->t_prev;
476 t->t_next = curthread;

478 /*
479 * Add the thread to the list of all threads, and initialize
480 * its t_cpu pointer. We need to block preemption since
481 * cpu_offline walks the thread list looking for threads
482 * with t_cpu pointing to the CPU being offlined. We want
483 * to make sure that the list is consistent and that if t_cpu

new/usr/src/uts/common/disp/thread.c 6

484 * is set, the thread is on the list.
485 */
486 kpreempt_disable();
487 curthread->t_prev->t_next = t;
488 curthread->t_prev = t;

490 /*
491 * We’ll always create in the default partition since that’s where
492 * kernel threads go (we’ll change this later if needed, in
493 * lwp_create()).
490 * Threads should never have a NULL t_cpu pointer so assign it
491 * here. If the thread is being created with state TS_RUN a
492 * better CPU may be chosen when it is placed on the run queue.
493 *
494 * We need to keep kernel preemption disabled when setting all
495 * three fields to keep them in sync. Also, always create in
496 * the default partition since that’s where kernel threads go
497 * (if this isn’t a kernel thread, t_cpupart will be changed
498 * in lwp_create before setting the thread runnable).
494 */
495 t->t_cpupart = &cp_default;

497 /*
498 * For now, affiliate this thread with the root lgroup.
499 * Since the kernel does not (presently) allocate its memory
500 * in a locality aware fashion, the root is an appropriate home.
501 * If this thread is later associated with an lwp, it will have
502 * its lgroup re-assigned at that time.
507 * it’s lgroup re-assigned at that time.
503 */
504 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);

506 /*
507 * If the current CPU is in the default cpupart, use it. Otherwise,
508 * pick one that is; before entering the dispatcher code, we’ll
509 * make sure to keep the invariant that ->t_cpu is set. (In fact, we
510 * rely on this, in ht_should_run(), in the call tree of
511 * disp_lowpri_cpu().)
512 * Inherit the current cpu. If this cpu isn’t part of the chosen
513 * lgroup, a new cpu will be chosen by cpu_choose when the thread
514 * is ready to run.
512 */
513 if (CPU->cpu_part == &cp_default) {
516 if (CPU->cpu_part == &cp_default)
514 t->t_cpu = CPU;
515 } else {
516 t->t_cpu = cp_default.cp_cpulist;
517 t->t_cpu = disp_lowpri_cpu(t->t_cpu, t, t->t_pri);
518 }
518 else
519 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
520 t->t_pri, NULL);

520 t->t_disp_queue = t->t_cpu->cpu_disp;
521 kpreempt_enable();

523 /*
524 * Initialize thread state and the dispatcher lock pointer.
525 * Need to hold onto pidlock to block allthreads walkers until
526 * the state is set.
527 */
528 switch (state) {
529 case TS_RUN:
530 curthread->t_oldspl = splhigh(); /* get dispatcher spl */
531 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
532 CL_SETRUN(t);

new/usr/src/uts/common/disp/thread.c 7

533 thread_unlock(t);
534 break;

536 case TS_ONPROC:
537 THREAD_ONPROC(t, t->t_cpu);
538 break;

540 case TS_FREE:
541 /*
542 * Free state will be used for intr threads.
543 * The interrupt routine must set the thread dispatcher
544 * lock pointer (t_lockp) if starting on a CPU
545 * other than the current one.
546 */
547 THREAD_FREEINTR(t, CPU);
548 break;

550 case TS_STOPPED:
551 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
552 break;

554 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */
555 cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
556 }
557 mutex_exit(&pidlock);
558 return (t);
559 }

______unchanged_portion_omitted_

1302 /*
1303 * Unpin an interrupted thread.
1304 * When an interrupt occurs, the interrupt is handled on the stack
1305 * of an interrupt thread, taken from a pool linked to the CPU structure.
1306 *
1307 * When swtch() is switching away from an interrupt thread because it
1308 * blocked or was preempted, this routine is called to complete the
1309 * saving of the interrupted thread state, and returns the interrupted
1310 * thread pointer so it may be resumed.
1311 *
1312 * Called by swtch() only at high spl.
1313 */
1314 kthread_t *
1315 thread_unpin()
1316 {
1317 kthread_t *t = curthread; /* current thread */
1318 kthread_t *itp; /* interrupted thread */
1319 int i; /* interrupt level */
1320 extern int intr_passivate();

1322 ASSERT(t->t_intr != NULL);

1324 itp = t->t_intr; /* interrupted thread */
1325 t->t_intr = NULL; /* clear interrupt ptr */

1327 ht_end_intr();

1329 /*
1330 * Get state from interrupt thread for the one
1331 * it interrupted.
1332 */

1334 i = intr_passivate(t, itp);

1336 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1337 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1338 i, t, t, itp, itp);

new/usr/src/uts/common/disp/thread.c 8

1340 /*
1341 * Dissociate the current thread from the interrupted thread’s LWP.
1342 */
1343 t->t_lwp = NULL;

1345 /*
1346 * Interrupt handlers above the level that spinlocks block must
1347 * not block.
1348 */
1349 #if DEBUG
1350 if (i < 0 || i > LOCK_LEVEL)
1351 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1352 #endif

1354 /*
1355 * Compute the CPU’s base interrupt level based on the active
1356 * interrupts.
1357 */
1358 ASSERT(CPU->cpu_intr_actv & (1 << i));
1359 set_base_spl();

1361 return (itp);
1362 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zvol.c 1

**
 54499 Wed May 15 07:34:03 2019
new/usr/src/uts/common/fs/zfs/zvol.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 *
24 * Portions Copyright 2010 Robert Milkowski
25 *
26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2019 Joyent, Inc.
30 * Copyright (c) 2019, Joyent, Inc.
30 */

32 /*
33 * ZFS volume emulation driver.
34 *
35 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
36 * Volumes are accessed through the symbolic links named:
37 *
38 * /dev/zvol/dsk/<pool_name>/<dataset_name>
39 * /dev/zvol/rdsk/<pool_name>/<dataset_name>
40 *
41 * These links are created by the /dev filesystem (sdev_zvolops.c).
42 * Volumes are persistent through reboot. No user command needs to be
43 * run before opening and using a device.
44 */

46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/errno.h>
49 #include <sys/uio.h>
50 #include <sys/buf.h>
51 #include <sys/modctl.h>
52 #include <sys/open.h>
53 #include <sys/kmem.h>
54 #include <sys/conf.h>
55 #include <sys/cmn_err.h>
56 #include <sys/stat.h>

new/usr/src/uts/common/fs/zfs/zvol.c 2

57 #include <sys/zap.h>
58 #include <sys/spa.h>
59 #include <sys/spa_impl.h>
60 #include <sys/zio.h>
61 #include <sys/dmu_traverse.h>
62 #include <sys/dnode.h>
63 #include <sys/dsl_dataset.h>
64 #include <sys/dsl_prop.h>
65 #include <sys/dkio.h>
66 #include <sys/efi_partition.h>
67 #include <sys/byteorder.h>
68 #include <sys/pathname.h>
69 #include <sys/ddi.h>
70 #include <sys/sunddi.h>
71 #include <sys/crc32.h>
72 #include <sys/dirent.h>
73 #include <sys/policy.h>
74 #include <sys/fs/zfs.h>
75 #include <sys/zfs_ioctl.h>
76 #include <sys/mkdev.h>
77 #include <sys/zil.h>
78 #include <sys/refcount.h>
79 #include <sys/zfs_znode.h>
80 #include <sys/zfs_rlock.h>
81 #include <sys/vdev_disk.h>
82 #include <sys/vdev_impl.h>
83 #include <sys/vdev_raidz.h>
84 #include <sys/zvol.h>
85 #include <sys/dumphdr.h>
86 #include <sys/zil_impl.h>
87 #include <sys/dbuf.h>
88 #include <sys/dmu_tx.h>
89 #include <sys/zfeature.h>
90 #include <sys/zio_checksum.h>
91 #include <sys/zil_impl.h>
92 #include <sys/ht.h>
93 #include <sys/dkioc_free_util.h>
94 #include <sys/zfs_rlock.h>

96 #include "zfs_namecheck.h"

98 void *zfsdev_state;
99 static char *zvol_tag = "zvol_tag";

101 #define ZVOL_DUMPSIZE "dumpsize"

103 /*
104 * This lock protects the zfsdev_state structure from being modified
105 * while it’s being used, e.g. an open that comes in before a create
106 * finishes. It also protects temporary opens of the dataset so that,
107 * e.g., an open doesn’t get a spurious EBUSY.
108 */
109 kmutex_t zfsdev_state_lock;
110 static uint32_t zvol_minors;

112 typedef struct zvol_extent {
113 list_node_t ze_node;
114 dva_t ze_dva; /* dva associated with this extent */
115 uint64_t ze_nblks; /* number of blocks in extent */
116 } zvol_extent_t;

______unchanged_portion_omitted_

1215 int
1216 zvol_strategy(buf_t *bp)
1217 {
1218 zfs_soft_state_t *zs = NULL;

new/usr/src/uts/common/fs/zfs/zvol.c 3

1219 zvol_state_t *zv;
1220 uint64_t off, volsize;
1221 size_t resid;
1222 char *addr;
1223 objset_t *os;
1224 int error = 0;
1225 boolean_t doread = bp->b_flags & B_READ;
1226 boolean_t is_dumpified;
1227 boolean_t sync;

1229 if (getminor(bp->b_edev) == 0) {
1230 error = SET_ERROR(EINVAL);
1231 } else {
1232 zs = ddi_get_soft_state(zfsdev_state, getminor(bp->b_edev));
1233 if (zs == NULL)
1234 error = SET_ERROR(ENXIO);
1235 else if (zs->zss_type != ZSST_ZVOL)
1236 error = SET_ERROR(EINVAL);
1237 }

1239 if (error) {
1240 bioerror(bp, error);
1241 biodone(bp);
1242 return (0);
1243 }

1245 zv = zs->zss_data;

1247 if (!(bp->b_flags & B_READ) && (zv->zv_flags & ZVOL_RDONLY)) {
1248 bioerror(bp, EROFS);
1249 biodone(bp);
1250 return (0);
1251 }

1253 off = ldbtob(bp->b_blkno);
1254 volsize = zv->zv_volsize;

1256 os = zv->zv_objset;
1257 ASSERT(os != NULL);

1259 bp_mapin(bp);
1260 addr = bp->b_un.b_addr;
1261 resid = bp->b_bcount;

1263 if (resid > 0 && (off < 0 || off >= volsize)) {
1264 bioerror(bp, EIO);
1265 biodone(bp);
1266 return (0);
1267 }

1269 is_dumpified = zv->zv_flags & ZVOL_DUMPIFIED;
1270 sync = ((!(bp->b_flags & B_ASYNC) &&
1271 !(zv->zv_flags & ZVOL_WCE)) ||
1272 (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)) &&
1273 !doread && !is_dumpified;

1275 ht_begin_unsafe();

1277 /*
1278 * There must be no buffer changes when doing a dmu_sync() because
1279 * we can’t change the data whilst calculating the checksum.
1280 */
1281 locked_range_t *lr = rangelock_enter(&zv->zv_rangelock, off, resid,
1282 doread ? RL_READER : RL_WRITER);

1284 while (resid != 0 && off < volsize) {

new/usr/src/uts/common/fs/zfs/zvol.c 4

1285 size_t size = MIN(resid, zvol_maxphys);
1286 if (is_dumpified) {
1287 size = MIN(size, P2END(off, zv->zv_volblocksize) - off);
1288 error = zvol_dumpio(zv, addr, off, size,
1289 doread, B_FALSE);
1290 } else if (doread) {
1291 error = dmu_read(os, ZVOL_OBJ, off, size, addr,
1292 DMU_READ_PREFETCH);
1293 } else {
1294 dmu_tx_t *tx = dmu_tx_create(os);
1295 dmu_tx_hold_write(tx, ZVOL_OBJ, off, size);
1296 error = dmu_tx_assign(tx, TXG_WAIT);
1297 if (error) {
1298 dmu_tx_abort(tx);
1299 } else {
1300 dmu_write(os, ZVOL_OBJ, off, size, addr, tx);
1301 zvol_log_write(zv, tx, off, size, sync);
1302 dmu_tx_commit(tx);
1303 }
1304 }
1305 if (error) {
1306 /* convert checksum errors into IO errors */
1307 if (error == ECKSUM)
1308 error = SET_ERROR(EIO);
1309 break;
1310 }
1311 off += size;
1312 addr += size;
1313 resid -= size;
1314 }
1315 rangelock_exit(lr);

1317 if ((bp->b_resid = resid) == bp->b_bcount)
1318 bioerror(bp, off > volsize ? EINVAL : error);

1320 if (sync)
1321 zil_commit(zv->zv_zilog, ZVOL_OBJ);
1322 biodone(bp);

1324 ht_end_unsafe();

1326 return (0);
1327 }
______unchanged_portion_omitted_

1379 /*ARGSUSED*/
1380 int
1381 zvol_read(dev_t dev, uio_t *uio, cred_t *cr)
1382 {
1383 minor_t minor = getminor(dev);
1384 zvol_state_t *zv;
1385 uint64_t volsize;
1386 int error = 0;

1388 zv = zfsdev_get_soft_state(minor, ZSST_ZVOL);
1389 if (zv == NULL)
1390 return (SET_ERROR(ENXIO));

1392 volsize = zv->zv_volsize;
1393 if (uio->uio_resid > 0 &&
1394 (uio->uio_loffset < 0 || uio->uio_loffset >= volsize))
1395 return (SET_ERROR(EIO));

1397 if (zv->zv_flags & ZVOL_DUMPIFIED) {
1398 error = physio(zvol_strategy, NULL, dev, B_READ,
1399 zvol_minphys, uio);

new/usr/src/uts/common/fs/zfs/zvol.c 5

1400 return (error);
1401 }

1403 ht_begin_unsafe();

1405 locked_range_t *lr = rangelock_enter(&zv->zv_rangelock,
1406 uio->uio_loffset, uio->uio_resid, RL_READER);
1407 while (uio->uio_resid > 0 && uio->uio_loffset < volsize) {
1408 uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1);

1410 /* don’t read past the end */
1411 if (bytes > volsize - uio->uio_loffset)
1412 bytes = volsize - uio->uio_loffset;

1414 error = dmu_read_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes);
1415 if (error) {
1416 /* convert checksum errors into IO errors */
1417 if (error == ECKSUM)
1418 error = SET_ERROR(EIO);
1419 break;
1420 }
1421 }
1422 rangelock_exit(lr);

1424 ht_end_unsafe();

1426 return (error);
1427 }

1429 /*ARGSUSED*/
1430 int
1431 zvol_write(dev_t dev, uio_t *uio, cred_t *cr)
1432 {
1433 minor_t minor = getminor(dev);
1434 zvol_state_t *zv;
1435 uint64_t volsize;
1436 int error = 0;
1437 boolean_t sync;

1439 zv = zfsdev_get_soft_state(minor, ZSST_ZVOL);
1440 if (zv == NULL)
1441 return (SET_ERROR(ENXIO));

1443 volsize = zv->zv_volsize;
1444 if (uio->uio_resid > 0 &&
1445 (uio->uio_loffset < 0 || uio->uio_loffset >= volsize))
1446 return (SET_ERROR(EIO));

1448 if (zv->zv_flags & ZVOL_DUMPIFIED) {
1449 error = physio(zvol_strategy, NULL, dev, B_WRITE,
1450 zvol_minphys, uio);
1451 return (error);
1452 }

1454 ht_begin_unsafe();

1456 sync = !(zv->zv_flags & ZVOL_WCE) ||
1457 (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS);

1459 locked_range_t *lr = rangelock_enter(&zv->zv_rangelock,
1460 uio->uio_loffset, uio->uio_resid, RL_WRITER);
1461 while (uio->uio_resid > 0 && uio->uio_loffset < volsize) {
1462 uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1);
1463 uint64_t off = uio->uio_loffset;
1464 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);

new/usr/src/uts/common/fs/zfs/zvol.c 6

1466 if (bytes > volsize - off) /* don’t write past the end */
1467 bytes = volsize - off;

1469 dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
1470 error = dmu_tx_assign(tx, TXG_WAIT);
1471 if (error) {
1472 dmu_tx_abort(tx);
1473 break;
1474 }
1475 error = dmu_write_uio_dnode(zv->zv_dn, uio, bytes, tx);
1476 if (error == 0)
1477 zvol_log_write(zv, tx, off, bytes, sync);
1478 dmu_tx_commit(tx);

1480 if (error)
1481 break;
1482 }
1483 rangelock_exit(lr);

1485 if (sync)
1486 zil_commit(zv->zv_zilog, ZVOL_OBJ);

1488 ht_end_unsafe();

1490 return (error);
1491 }
______unchanged_portion_omitted_

1646 /*
1647 * Dirtbag ioctls to support mkfs(1M) for UFS filesystems. See dkio(7I).
1648 * Also a dirtbag dkio ioctl for unmap/free-block functionality.
1649 */
1650 /*ARGSUSED*/
1651 int
1652 zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp)
1653 {
1654 zvol_state_t *zv;
1655 struct dk_callback *dkc;
1656 int error = 0;
1657 locked_range_t *lr;

1659 mutex_enter(&zfsdev_state_lock);

1661 zv = zfsdev_get_soft_state(getminor(dev), ZSST_ZVOL);

1663 if (zv == NULL) {
1664 mutex_exit(&zfsdev_state_lock);
1665 return (SET_ERROR(ENXIO));
1666 }
1667 ASSERT(zv->zv_total_opens > 0);

1669 switch (cmd) {

1671 case DKIOCINFO:
1672 {
1673 struct dk_cinfo dki;

1675 bzero(&dki, sizeof (dki));
1676 (void) strcpy(dki.dki_cname, "zvol");
1677 (void) strcpy(dki.dki_dname, "zvol");
1678 dki.dki_ctype = DKC_UNKNOWN;
1679 dki.dki_unit = getminor(dev);
1680 dki.dki_maxtransfer =
1681 1 << (SPA_OLD_MAXBLOCKSHIFT - zv->zv_min_bs);
1682 mutex_exit(&zfsdev_state_lock);
1683 if (ddi_copyout(&dki, (void *)arg, sizeof (dki), flag))

new/usr/src/uts/common/fs/zfs/zvol.c 7

1684 error = SET_ERROR(EFAULT);
1685 return (error);
1686 }

1688 case DKIOCGMEDIAINFO:
1689 {
1690 struct dk_minfo dkm;

1692 bzero(&dkm, sizeof (dkm));
1693 dkm.dki_lbsize = 1U << zv->zv_min_bs;
1694 dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs;
1695 dkm.dki_media_type = DK_UNKNOWN;
1696 mutex_exit(&zfsdev_state_lock);
1697 if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag))
1698 error = SET_ERROR(EFAULT);
1699 return (error);
1700 }

1702 case DKIOCGMEDIAINFOEXT:
1703 {
1704 struct dk_minfo_ext dkmext;

1706 bzero(&dkmext, sizeof (dkmext));
1707 dkmext.dki_lbsize = 1U << zv->zv_min_bs;
1708 dkmext.dki_pbsize = zv->zv_volblocksize;
1709 dkmext.dki_capacity = zv->zv_volsize >> zv->zv_min_bs;
1710 dkmext.dki_media_type = DK_UNKNOWN;
1711 mutex_exit(&zfsdev_state_lock);
1712 if (ddi_copyout(&dkmext, (void *)arg, sizeof (dkmext), flag))
1713 error = SET_ERROR(EFAULT);
1714 return (error);
1715 }

1717 case DKIOCGETEFI:
1718 {
1719 uint64_t vs = zv->zv_volsize;
1720 uint8_t bs = zv->zv_min_bs;

1722 mutex_exit(&zfsdev_state_lock);
1723 error = zvol_getefi((void *)arg, flag, vs, bs);
1724 return (error);
1725 }

1727 case DKIOCFLUSHWRITECACHE:
1728 dkc = (struct dk_callback *)arg;
1729 mutex_exit(&zfsdev_state_lock);

1731 ht_begin_unsafe();

1733 zil_commit(zv->zv_zilog, ZVOL_OBJ);
1734 if ((flag & FKIOCTL) && dkc != NULL && dkc->dkc_callback) {
1735 (*dkc->dkc_callback)(dkc->dkc_cookie, error);
1736 error = 0;
1737 }

1739 ht_end_unsafe();

1741 return (error);

1743 case DKIOCGETWCE:
1744 {
1745 int wce = (zv->zv_flags & ZVOL_WCE) ? 1 : 0;
1746 if (ddi_copyout(&wce, (void *)arg, sizeof (int),
1747 flag))
1748 error = SET_ERROR(EFAULT);
1749 break;

new/usr/src/uts/common/fs/zfs/zvol.c 8

1750 }
1751 case DKIOCSETWCE:
1752 {
1753 int wce;
1754 if (ddi_copyin((void *)arg, &wce, sizeof (int),
1755 flag)) {
1756 error = SET_ERROR(EFAULT);
1757 break;
1758 }
1759 if (wce) {
1760 zv->zv_flags |= ZVOL_WCE;
1761 mutex_exit(&zfsdev_state_lock);
1762 } else {
1763 zv->zv_flags &= ~ZVOL_WCE;
1764 mutex_exit(&zfsdev_state_lock);
1765 ht_begin_unsafe();
1766 zil_commit(zv->zv_zilog, ZVOL_OBJ);
1767 ht_end_unsafe();
1768 }
1769 return (0);
1770 }

1772 case DKIOCGGEOM:
1773 case DKIOCGVTOC:
1774 /*
1775 * commands using these (like prtvtoc) expect ENOTSUP
1776 * since we’re emulating an EFI label
1777 */
1778 error = SET_ERROR(ENOTSUP);
1779 break;

1781 case DKIOCDUMPINIT:
1782 lr = rangelock_enter(&zv->zv_rangelock, 0, zv->zv_volsize,
1783 RL_WRITER);
1784 error = zvol_dumpify(zv);
1785 rangelock_exit(lr);
1786 break;

1788 case DKIOCDUMPFINI:
1789 if (!(zv->zv_flags & ZVOL_DUMPIFIED))
1790 break;
1791 lr = rangelock_enter(&zv->zv_rangelock, 0, zv->zv_volsize,
1792 RL_WRITER);
1793 error = zvol_dump_fini(zv);
1794 rangelock_exit(lr);
1795 break;

1797 case DKIOCFREE:
1798 {
1799 dkioc_free_list_t *dfl;
1800 dmu_tx_t *tx;

1802 if (!zvol_unmap_enabled)
1803 break;

1805 if (!(flag & FKIOCTL)) {
1806 error = dfl_copyin((void *)arg, &dfl, flag, KM_SLEEP);
1807 if (error != 0)
1808 break;
1809 } else {
1810 dfl = (dkioc_free_list_t *)arg;
1811 ASSERT3U(dfl->dfl_num_exts, <=, DFL_COPYIN_MAX_EXTS);
1812 if (dfl->dfl_num_exts > DFL_COPYIN_MAX_EXTS) {
1813 error = SET_ERROR(EINVAL);
1814 break;
1815 }

new/usr/src/uts/common/fs/zfs/zvol.c 9

1816 }

1818 mutex_exit(&zfsdev_state_lock);

1820 ht_begin_unsafe();

1822 for (int i = 0; i < dfl->dfl_num_exts; i++) {
1823 uint64_t start = dfl->dfl_exts[i].dfle_start,
1824 length = dfl->dfl_exts[i].dfle_length,
1825 end = start + length;

1827 /*
1828 * Apply Postel’s Law to length-checking. If they
1829 * overshoot, just blank out until the end, if there’s
1830 * a need to blank out anything.
1831 */
1832 if (start >= zv->zv_volsize)
1833 continue; /* No need to do anything... */
1834 if (end > zv->zv_volsize) {
1835 end = DMU_OBJECT_END;
1836 length = end - start;
1837 }

1839 lr = rangelock_enter(&zv->zv_rangelock, start, length,
1840 RL_WRITER);
1841 tx = dmu_tx_create(zv->zv_objset);
1842 error = dmu_tx_assign(tx, TXG_WAIT);
1843 if (error != 0) {
1844 dmu_tx_abort(tx);
1845 } else {
1846 zvol_log_truncate(zv, tx, start, length,
1847 B_TRUE);
1848 dmu_tx_commit(tx);
1849 error = dmu_free_long_range(zv->zv_objset,
1850 ZVOL_OBJ, start, length);
1851 }

1853 rangelock_exit(lr);

1855 if (error != 0)
1856 break;
1857 }

1859 /*
1860 * If the write-cache is disabled, ’sync’ property
1861 * is set to ’always’, or if the caller is asking for
1862 * a synchronous free, commit this operation to the zil.
1863 * This will sync any previous uncommitted writes to the
1864 * zvol object.
1865 * Can be overridden by the zvol_unmap_sync_enabled tunable.
1866 */
1867 if ((error == 0) && zvol_unmap_sync_enabled &&
1868 (!(zv->zv_flags & ZVOL_WCE) ||
1869 (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS) ||
1870 (dfl->dfl_flags & DF_WAIT_SYNC))) {
1871 zil_commit(zv->zv_zilog, ZVOL_OBJ);
1872 }

1874 if (!(flag & FKIOCTL))
1875 dfl_free(dfl);

1877 ht_end_unsafe();

1879 return (error);
1880 }

new/usr/src/uts/common/fs/zfs/zvol.c 10

1882 default:
1883 error = SET_ERROR(ENOTTY);
1884 break;

1886 }
1887 mutex_exit(&zfsdev_state_lock);
1888 return (error);
1889 }
______unchanged_portion_omitted_

new/usr/src/uts/common/os/cpu.c 1

**
 96822 Wed May 15 07:34:04 2019
new/usr/src/uts/common/os/cpu.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**
______unchanged_portion_omitted_

389 /*
390 * Set affinity for a specified CPU.
391 *
392 * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for
393 * curthread, will set affinity to the CPU on which the thread is currently
394 * running. For other cpu_id values, the caller must ensure that the
395 * referenced CPU remains valid, which can be done by holding cpu_lock across
396 * this call.
397 *
398 * CPU affinity is guaranteed after return of thread_affinity_set(). If a
399 * caller setting affinity to CPU_CURRENT requires that its thread not migrate
400 * CPUs prior to a successful return, it should take extra precautions (such as
401 * their own call to kpreempt_disable) to ensure that safety.
402 *
403 * CPU_BEST can be used to pick a "best" CPU to migrate to, including
404 * potentially the current CPU.
405 *
406 * A CPU affinity reference count is maintained by thread_affinity_set and
407 * thread_affinity_clear (incrementing and decrementing it, respectively),
408 * maintaining CPU affinity while the count is non-zero, and allowing regions
409 * of code which require affinity to be nested.
410 */
411 void
412 thread_affinity_set(kthread_id_t t, int cpu_id)
413 {
414 cpu_t *cp;

416 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));

418 if (cpu_id == CPU_CURRENT) {
419 VERIFY3P(t, ==, curthread);
420 kpreempt_disable();
421 cp = CPU;
422 } else if (cpu_id == CPU_BEST) {
423 VERIFY3P(t, ==, curthread);
424 kpreempt_disable();
425 cp = disp_choose_best_cpu();
426 } else {
427 /*
428 * We should be asserting that cpu_lock is held here, but
429 * the NCA code doesn’t acquire it. The following assert
430 * should be uncommented when the NCA code is fixed.
431 *
432 * ASSERT(MUTEX_HELD(&cpu_lock));
433 */
434 VERIFY((cpu_id >= 0) && (cpu_id < NCPU));
435 cp = cpu[cpu_id];

437 /* user must provide a good cpu_id */
438 VERIFY(cp != NULL);
439 }

441 /*
442 * If there is already a hard affinity requested, and this affinity
443 * conflicts with that, panic.
444 */

new/usr/src/uts/common/os/cpu.c 2

445 thread_lock(t);
446 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
447 panic("affinity_set: setting %p but already bound to %p",
448 (void *)cp, (void *)t->t_bound_cpu);
449 }
450 t->t_affinitycnt++;
451 t->t_bound_cpu = cp;

453 /*
454 * Make sure we’re running on the right CPU.
455 */
456 if (cp != t->t_cpu || t != curthread) {
457 ASSERT(cpu_id != CPU_CURRENT);
458 force_thread_migrate(t); /* drops thread lock */
459 } else {
460 thread_unlock(t);
461 }

463 if (cpu_id == CPU_CURRENT || cpu_id == CPU_BEST)
456 if (cpu_id == CPU_CURRENT) {
464 kpreempt_enable();
458 }
465 }

______unchanged_portion_omitted_

1262 /*
1263 * Take the indicated CPU offline.
1264 */
1265 int
1266 cpu_offline(cpu_t *cp, int flags)
1267 {
1268 cpupart_t *pp;
1269 int error = 0;
1270 cpu_t *ncp;
1271 int intr_enable;
1272 int cyclic_off = 0;
1273 int callout_off = 0;
1274 int loop_count;
1275 int no_quiesce = 0;
1276 int (*bound_func)(struct cpu *, int);
1277 kthread_t *t;
1278 lpl_t *cpu_lpl;
1279 proc_t *p;
1280 int lgrp_diff_lpl;
1281 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;

1283 ASSERT(MUTEX_HELD(&cpu_lock));

1285 /*
1286 * If we’re going from faulted or spare to offline, just
1287 * clear these flags and update CPU state.
1288 */
1289 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1290 if (cp->cpu_flags & CPU_FAULTED) {
1291 cp->cpu_flags &= ~CPU_FAULTED;
1292 mp_cpu_faulted_exit(cp);
1293 }
1294 cp->cpu_flags &= ~CPU_SPARE;
1295 cpu_set_state(cp);
1296 return (0);
1297 }

1299 /*
1300 * Handle off-line request.
1301 */
1302 pp = cp->cpu_part;

new/usr/src/uts/common/os/cpu.c 3

1303 /*
1304 * Don’t offline last online CPU in partition
1305 */
1306 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1307 return (EBUSY);
1308 /*
1309 * Unbind all soft-bound threads bound to our CPU and hard bound threads
1310 * if we were asked to.
1311 */
1312 error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1313 if (error != 0)
1314 return (error);
1315 /*
1316 * We shouldn’t be bound to this CPU ourselves.
1317 */
1318 if (curthread->t_bound_cpu == cp)
1319 return (EBUSY);

1321 /*
1322 * Tell interested parties that this CPU is going offline.
1323 */
1324 CPU_NEW_GENERATION(cp);
1325 cpu_state_change_notify(cp->cpu_id, CPU_OFF);

1327 /*
1328 * Tell the PG subsystem that the CPU is leaving the partition
1329 */
1330 pg_cpupart_out(cp, pp);

1332 /*
1333 * Take the CPU out of interrupt participation so we won’t find
1334 * bound kernel threads. If the architecture cannot completely
1335 * shut off interrupts on the CPU, don’t quiesce it, but don’t
1336 * run anything but interrupt thread... this is indicated by
1337 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1338 * off.
1339 */
1340 intr_enable = cp->cpu_flags & CPU_ENABLE;
1341 if (intr_enable)
1342 no_quiesce = cpu_intr_disable(cp);

1344 /*
1345 * Record that we are aiming to offline this cpu. This acts as
1346 * a barrier to further weak binding requests in thread_nomigrate
1347 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1348 * lean away from this cpu. Further strong bindings are already
1349 * avoided since we hold cpu_lock. Since threads that are set
1350 * runnable around now and others coming off the target cpu are
1351 * directed away from the target, existing strong and weak bindings
1352 * (especially the latter) to the target cpu stand maximum chance of
1353 * being able to unbind during the short delay loop below (if other
1354 * unbound threads compete they may not see cpu in time to unbind
1355 * even if they would do so immediately.
1356 */
1357 cpu_inmotion = cp;
1358 membar_enter();

1360 /*
1361 * Check for kernel threads (strong or weak) bound to that CPU.
1362 * Strongly bound threads may not unbind, and we’ll have to return
1363 * EBUSY. Weakly bound threads should always disappear - we’ve
1364 * stopped more weak binding with cpu_inmotion and existing
1365 * bindings will drain imminently (they may not block). Nonetheless
1366 * we will wait for a fixed period for all bound threads to disappear.
1367 * Inactive interrupt threads are OK (they’ll be in TS_FREE
1368 * state). If test finds some bound threads, wait a few ticks

new/usr/src/uts/common/os/cpu.c 4

1369 * to give short-lived threads (such as interrupts) chance to
1370 * complete. Note that if no_quiesce is set, i.e. this cpu
1371 * is required to service interrupts, then we take the route
1372 * that permits interrupt threads to be active (or bypassed).
1373 */
1374 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;

1376 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1377 if (loop_count >= 5) {
1378 error = EBUSY; /* some threads still bound */
1379 break;
1380 }

1382 /*
1383 * If some threads were assigned, give them
1384 * a chance to complete or move.
1385 *
1386 * This assumes that the clock_thread is not bound
1387 * to any CPU, because the clock_thread is needed to
1388 * do the delay(hz/100).
1389 *
1390 * Note: we still hold the cpu_lock while waiting for
1391 * the next clock tick. This is OK since it isn’t
1392 * needed for anything else except processor_bind(2),
1393 * and system initialization. If we drop the lock,
1394 * we would risk another p_online disabling the last
1395 * processor.
1396 */
1397 delay(hz/100);
1398 }

1400 if (error == 0 && callout_off == 0) {
1401 callout_cpu_offline(cp);
1402 callout_off = 1;
1403 }

1405 if (error == 0 && cyclic_off == 0) {
1406 if (!cyclic_offline(cp)) {
1407 /*
1408 * We must have bound cyclics...
1409 */
1410 error = EBUSY;
1411 goto out;
1412 }
1413 cyclic_off = 1;
1414 }

1416 /*
1417 * Call mp_cpu_stop() to perform any special operations
1418 * needed for this machine architecture to offline a CPU.
1419 */
1420 if (error == 0)
1421 error = mp_cpu_stop(cp); /* arch-dep hook */

1423 /*
1424 * If that all worked, take the CPU offline and decrement
1425 * ncpus_online.
1426 */
1427 if (error == 0) {
1428 /*
1429 * Put all the cpus into a known safe place.
1430 * No mutexes can be entered while CPUs are paused.
1431 */
1432 pause_cpus(cp, NULL);
1433 /*
1434 * Repeat the operation, if necessary, to make sure that

new/usr/src/uts/common/os/cpu.c 5

1435 * all outstanding low-level interrupts run to completion
1436 * before we set the CPU_QUIESCED flag. It’s also possible
1437 * that a thread has weak bound to the cpu despite our raising
1438 * cpu_inmotion above since it may have loaded that
1439 * value before the barrier became visible (this would have
1440 * to be the thread that was on the target cpu at the time
1441 * we raised the barrier).
1442 */
1443 if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1444 (*bound_func)(cp, 1)) {
1445 start_cpus();
1446 (void) mp_cpu_start(cp);
1447 goto again;
1448 }
1449 ncp = cp->cpu_next_part;
1450 cpu_lpl = cp->cpu_lpl;
1451 ASSERT(cpu_lpl != NULL);

1453 /*
1454 * Remove the CPU from the list of active CPUs.
1455 */
1456 cpu_remove_active(cp);

1458 /*
1459 * Walk the active process list and look for threads
1460 * whose home lgroup needs to be updated, or
1461 * the last CPU they run on is the one being offlined now.
1462 */

1464 ASSERT(curthread->t_cpu != cp);
1465 for (p = practive; p != NULL; p = p->p_next) {

1467 t = p->p_tlist;

1469 if (t == NULL)
1470 continue;

1472 lgrp_diff_lpl = 0;

1474 do {
1475 ASSERT(t->t_lpl != NULL);
1476 /*
1477 * Taking last CPU in lpl offline
1478 * Rehome thread if it is in this lpl
1479 * Otherwise, update the count of how many
1480 * threads are in this CPU’s lgroup but have
1481 * a different lpl.
1482 */

1484 if (cpu_lpl->lpl_ncpu == 0) {
1485 if (t->t_lpl == cpu_lpl)
1486 lgrp_move_thread(t,
1487 lgrp_choose(t,
1488 t->t_cpupart), 0);
1489 else if (t->t_lpl->lpl_lgrpid ==
1490 cpu_lpl->lpl_lgrpid)
1491 lgrp_diff_lpl++;
1492 }
1493 ASSERT(t->t_lpl->lpl_ncpu > 0);

1495 /*
1496 * Update CPU last ran on if it was this CPU
1497 */
1498 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1499 t->t_cpu = disp_lowpri_cpu(ncp, t,
1500 t->t_pri);

new/usr/src/uts/common/os/cpu.c 6

1493 t->t_cpu = disp_lowpri_cpu(ncp,
1494 t->t_lpl, t->t_pri, NULL);
1501 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1502 t->t_weakbound_cpu == cp);

1504 t = t->t_forw;
1505 } while (t != p->p_tlist);

1507 /*
1508 * Didn’t find any threads in the same lgroup as this
1509 * CPU with a different lpl, so remove the lgroup from
1510 * the process lgroup bitmask.
1511 */

1513 if (lgrp_diff_lpl == 0)
1514 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1515 }

1517 /*
1518 * Walk thread list looking for threads that need to be
1519 * rehomed, since there are some threads that are not in
1520 * their process’s p_tlist.
1521 */

1523 t = curthread;
1524 do {
1525 ASSERT(t != NULL && t->t_lpl != NULL);

1527 /*
1528 * Rehome threads with same lpl as this CPU when this
1529 * is the last CPU in the lpl.
1530 */

1532 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1533 lgrp_move_thread(t,
1534 lgrp_choose(t, t->t_cpupart), 1);

1536 ASSERT(t->t_lpl->lpl_ncpu > 0);

1538 /*
1539 * Update CPU last ran on if it was this CPU
1540 */

1542 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1543 t->t_cpu = disp_lowpri_cpu(ncp, t, t->t_pri);

1536 if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1537 t->t_cpu = disp_lowpri_cpu(ncp,
1538 t->t_lpl, t->t_pri, NULL);
1539 }
1545 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1546 t->t_weakbound_cpu == cp);
1547 t = t->t_next;

1549 } while (t != curthread);
1550 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1551 cp->cpu_flags |= CPU_OFFLINE;
1552 disp_cpu_inactive(cp);
1553 if (!no_quiesce)
1554 cp->cpu_flags |= CPU_QUIESCED;
1555 ncpus_online--;
1556 cpu_set_state(cp);
1557 cpu_inmotion = NULL;
1558 start_cpus();
1559 cpu_stats_kstat_destroy(cp);
1560 cpu_delete_intrstat(cp);

new/usr/src/uts/common/os/cpu.c 7

1561 lgrp_kstat_destroy(cp);
1562 }

1564 out:
1565 cpu_inmotion = NULL;

1567 /*
1568 * If we failed, re-enable interrupts.
1569 * Do this even if cpu_intr_disable returned an error, because
1570 * it may have partially disabled interrupts.
1571 */
1572 if (error && intr_enable)
1573 cpu_intr_enable(cp);

1575 /*
1576 * If we failed, but managed to offline the cyclic subsystem on this
1577 * CPU, bring it back online.
1578 */
1579 if (error && cyclic_off)
1580 cyclic_online(cp);

1582 /*
1583 * If we failed, but managed to offline callouts on this CPU,
1584 * bring it back online.
1585 */
1586 if (error && callout_off)
1587 callout_cpu_online(cp);

1589 /*
1590 * If we failed, tell the PG subsystem that the CPU is back
1591 */
1592 pg_cpupart_in(cp, pp);

1594 /*
1595 * If we failed, we need to notify everyone that this CPU is back on.
1596 */
1597 if (error != 0) {
1598 CPU_NEW_GENERATION(cp);
1599 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1600 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1601 }

1603 return (error);
1604 }
______unchanged_portion_omitted_

new/usr/src/uts/common/os/lgrp.c 1

**
 119462 Wed May 15 07:34:04 2019
new/usr/src/uts/common/os/lgrp.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2018 Joyent, Inc.
25 */

27 /*
28 * Basic NUMA support in terms of locality groups
29 *
30 * Solaris needs to know which CPUs, memory, etc. are near each other to
31 * provide good performance on NUMA machines by optimizing for locality.
32 * In order to do this, a new abstraction called a "locality group (lgroup)"
33 * has been introduced to keep track of which CPU-like and memory-like hardware
34 * resources are close to each other. Currently, latency is the only measure
35 * used to determine how to group hardware resources into lgroups, but this
36 * does not limit the groupings to be based solely on latency. Other factors
37 * may be used to determine the groupings in the future.
38 *
39 * Lgroups are organized into a hieararchy or topology that represents the
40 * latency topology of the machine. There is always at least a root lgroup in
41 * the system. It represents all the hardware resources in the machine at a
42 * latency big enough that any hardware resource can at least access any other
43 * hardware resource within that latency. A Uniform Memory Access (UMA)
44 * machine is represented with one lgroup (the root). In contrast, a NUMA
45 * machine is represented at least by the root lgroup and some number of leaf
46 * lgroups where the leaf lgroups contain the hardware resources within the
47 * least latency of each other and the root lgroup still contains all the
48 * resources in the machine. Some number of intermediate lgroups may exist
49 * which represent more levels of locality than just the local latency of the
50 * leaf lgroups and the system latency of the root lgroup. Non-leaf lgroups
51 * (eg. root and intermediate lgroups) contain the next nearest resources to
52 * its children lgroups. Thus, the lgroup hierarchy from a given leaf lgroup
53 * to the root lgroup shows the hardware resources from closest to farthest
54 * from the leaf lgroup such that each successive ancestor lgroup contains
55 * the next nearest resources at the next level of locality from the previous.
56 *
57 * The kernel uses the lgroup abstraction to know how to allocate resources
58 * near a given process/thread. At fork() and lwp/thread_create() time, a

new/usr/src/uts/common/os/lgrp.c 2

59 * "home" lgroup is chosen for a thread. This is done by picking the lgroup
60 * with the lowest load average. Binding to a processor or processor set will
61 * change the home lgroup for a thread. The scheduler has been modified to try
62 * to dispatch a thread on a CPU in its home lgroup. Physical memory
63 * allocation is lgroup aware too, so memory will be allocated from the current
64 * thread’s home lgroup if possible. If the desired resources are not
65 * available, the kernel traverses the lgroup hierarchy going to the parent
66 * lgroup to find resources at the next level of locality until it reaches the
67 * root lgroup.
68 */

70 #include <sys/lgrp.h>
71 #include <sys/lgrp_user.h>
72 #include <sys/types.h>
73 #include <sys/mman.h>
74 #include <sys/param.h>
75 #include <sys/var.h>
76 #include <sys/thread.h>
77 #include <sys/cpuvar.h>
78 #include <sys/cpupart.h>
79 #include <sys/kmem.h>
80 #include <vm/seg.h>
81 #include <vm/seg_kmem.h>
82 #include <vm/seg_spt.h>
83 #include <vm/seg_vn.h>
84 #include <vm/as.h>
85 #include <sys/atomic.h>
86 #include <sys/systm.h>
87 #include <sys/errno.h>
88 #include <sys/cmn_err.h>
89 #include <sys/kstat.h>
90 #include <sys/sysmacros.h>
91 #include <sys/pg.h>
92 #include <sys/promif.h>
93 #include <sys/sdt.h>
94 #include <sys/ht.h>

96 lgrp_gen_t lgrp_gen = 0; /* generation of lgroup hierarchy */
97 lgrp_t *lgrp_table[NLGRPS_MAX]; /* table of all initialized lgrp_t structs */
98 /* indexed by lgrp_id */
99 int nlgrps; /* number of lgroups in machine */
100 int lgrp_alloc_hint = -1; /* hint for where to try to allocate next */
101 int lgrp_alloc_max = 0; /* max lgroup ID allocated so far */

103 /*
104 * Kstat data for lgroups.
105 *
106 * Actual kstat data is collected in lgrp_stats array.
107 * The lgrp_kstat_data array of named kstats is used to extract data from
108 * lgrp_stats and present it to kstat framework. It is protected from partallel
109 * modifications by lgrp_kstat_mutex. This may cause some contention when
110 * several kstat commands run in parallel but this is not the
111 * performance-critical path.
112 */
113 extern struct lgrp_stats lgrp_stats[]; /* table of per-lgrp stats */

115 /*
116 * Declare kstat names statically for enums as defined in the header file.
117 */
118 LGRP_KSTAT_NAMES;

120 static void lgrp_kstat_init(void);
121 static int lgrp_kstat_extract(kstat_t *, int);
122 static void lgrp_kstat_reset(lgrp_id_t);

124 static struct kstat_named lgrp_kstat_data[LGRP_NUM_STATS];

new/usr/src/uts/common/os/lgrp.c 3

125 static kmutex_t lgrp_kstat_mutex;

128 /*
129 * max number of lgroups supported by the platform
130 */
131 int nlgrpsmax = 0;

133 /*
134 * The root lgroup. Represents the set of resources at the system wide
135 * level of locality.
136 */
137 lgrp_t *lgrp_root = NULL;

139 /*
140 * During system bootstrap cp_default does not contain the list of lgrp load
141 * averages (cp_lgrploads). The list is allocated after the first CPU is brought
142 * on-line when cp_default is initialized by cpupart_initialize_default().
143 * Configuring CPU0 may create a two-level topology with root and one leaf node
144 * containing CPU0. This topology is initially constructed in a special
145 * statically allocated 2-element lpl list lpl_bootstrap_list and later cloned
146 * to cp_default when cp_default is initialized. The lpl_bootstrap_list is used
147 * for all lpl operations until cp_default is fully constructed.
148 *
149 * The lpl_bootstrap_list is maintained by the code in lgrp.c. Every other
150 * consumer who needs default lpl should use lpl_bootstrap which is a pointer to
151 * the first element of lpl_bootstrap_list.
152 *
153 * CPUs that are added to the system, but have not yet been assigned to an
154 * lgrp will use lpl_bootstrap as a default lpl. This is necessary because
155 * on some architectures (x86) it’s possible for the slave CPU startup thread
156 * to enter the dispatcher or allocate memory before calling lgrp_cpu_init().
157 */
158 #define LPL_BOOTSTRAP_SIZE 2
159 static lpl_t lpl_bootstrap_list[LPL_BOOTSTRAP_SIZE];
160 lpl_t *lpl_bootstrap;
161 static lpl_t *lpl_bootstrap_rset[LPL_BOOTSTRAP_SIZE];
162 static int lpl_bootstrap_id2rset[LPL_BOOTSTRAP_SIZE];

164 /*
165 * If cp still references the bootstrap lpl, it has not yet been added to
166 * an lgrp. lgrp_mem_choose() uses this macro to detect the case where
167 * a thread is trying to allocate memory close to a CPU that has no lgrp.
168 */
169 #define LGRP_CPU_HAS_NO_LGRP(cp) ((cp)->cpu_lpl == lpl_bootstrap)

171 static lgrp_t lroot;

173 /*
174 * Size, in bytes, beyond which random memory allocation policy is applied
175 * to non-shared memory. Default is the maximum size, so random memory
176 * allocation won’t be used for non-shared memory by default.
177 */
178 size_t lgrp_privm_random_thresh = (size_t)(-1);

180 /* the maximum effect that a single thread can have on it’s lgroup’s load */
181 #define LGRP_LOADAVG_MAX_EFFECT(ncpu) \
182 ((lgrp_loadavg_max_effect) / (ncpu))
183 uint32_t lgrp_loadavg_max_effect = LGRP_LOADAVG_THREAD_MAX;

186 /*
187 * Size, in bytes, beyond which random memory allocation policy is applied to
188 * shared memory. Default is 8MB (2 ISM pages).
189 */
190 size_t lgrp_shm_random_thresh = 8*1024*1024;

new/usr/src/uts/common/os/lgrp.c 4

192 /*
193 * Whether to do processor set aware memory allocation by default
194 */
195 int lgrp_mem_pset_aware = 0;

197 /*
198 * Set the default memory allocation policy for root lgroup
199 */
200 lgrp_mem_policy_t lgrp_mem_policy_root = LGRP_MEM_POLICY_RANDOM;

202 /*
203 * Set the default memory allocation policy. For most platforms,
204 * next touch is sufficient, but some platforms may wish to override
205 * this.
206 */
207 lgrp_mem_policy_t lgrp_mem_default_policy = LGRP_MEM_POLICY_NEXT;

210 /*
211 * lgroup CPU event handlers
212 */
213 static void lgrp_cpu_init(struct cpu *);
214 static void lgrp_cpu_fini(struct cpu *, lgrp_id_t);
215 static lgrp_t *lgrp_cpu_to_lgrp(struct cpu *);

217 /*
218 * lgroup memory event handlers
219 */
220 static void lgrp_mem_init(int, lgrp_handle_t, boolean_t);
221 static void lgrp_mem_fini(int, lgrp_handle_t, boolean_t);
222 static void lgrp_mem_rename(int, lgrp_handle_t, lgrp_handle_t);

224 /*
225 * lgroup CPU partition event handlers
226 */
227 static void lgrp_part_add_cpu(struct cpu *, lgrp_id_t);
228 static void lgrp_part_del_cpu(struct cpu *);

230 /*
231 * lgroup framework initialization
232 */
233 static void lgrp_main_init(void);
234 static void lgrp_main_mp_init(void);
235 static void lgrp_root_init(void);
236 static void lgrp_setup(void);

238 /*
239 * lpl topology
240 */
241 static void lpl_init(lpl_t *, lpl_t *, lgrp_t *);
242 static void lpl_clear(lpl_t *);
243 static void lpl_leaf_insert(lpl_t *, struct cpupart *);
244 static void lpl_leaf_remove(lpl_t *, struct cpupart *);
245 static void lpl_rset_add(lpl_t *, lpl_t *);
246 static void lpl_rset_del(lpl_t *, lpl_t *);
247 static int lpl_rset_contains(lpl_t *, lpl_t *);
248 static void lpl_cpu_adjcnt(lpl_act_t, struct cpu *);
249 static void lpl_child_update(lpl_t *, struct cpupart *);
250 static int lpl_pick(lpl_t *, lpl_t *);
251 static void lpl_verify_wrapper(struct cpupart *);

253 /*
254 * defines for lpl topology verifier return codes
255 */

new/usr/src/uts/common/os/lgrp.c 5

257 #define LPL_TOPO_CORRECT 0
258 #define LPL_TOPO_PART_HAS_NO_LPL -1
259 #define LPL_TOPO_CPUS_NOT_EMPTY -2
260 #define LPL_TOPO_LGRP_MISMATCH -3
261 #define LPL_TOPO_MISSING_PARENT -4
262 #define LPL_TOPO_PARENT_MISMATCH -5
263 #define LPL_TOPO_BAD_CPUCNT -6
264 #define LPL_TOPO_RSET_MISMATCH -7
265 #define LPL_TOPO_LPL_ORPHANED -8
266 #define LPL_TOPO_LPL_BAD_NCPU -9
267 #define LPL_TOPO_RSET_MSSNG_LF -10
268 #define LPL_TOPO_CPU_HAS_BAD_LPL -11
269 #define LPL_TOPO_NONLEAF_HAS_CPUS -12
270 #define LPL_TOPO_LGRP_NOT_LEAF -13
271 #define LPL_TOPO_BAD_RSETCNT -14

273 /*
274 * Return whether lgroup optimizations should be enabled on this system
275 */
276 int
277 lgrp_optimizations(void)
278 {
279 /*
280 * System must have more than 2 lgroups to enable lgroup optimizations
281 *
282 * XXX This assumes that a 2 lgroup system has an empty root lgroup
283 * with one child lgroup containing all the resources. A 2 lgroup
284 * system with a root lgroup directly containing CPUs or memory might
285 * need lgroup optimizations with its child lgroup, but there
286 * isn’t such a machine for now....
287 */
288 if (nlgrps > 2)
289 return (1);

291 return (0);
292 }

______unchanged_portion_omitted_

516 /*
517 * Finish lgrp initialization after all CPUS are brought on-line.
518 * This routine is called after start_other_cpus().
519 */
520 static void
521 lgrp_main_mp_init(void)
522 {
523 klgrpset_t changed;

525 ht_init();

527 /*
528 * Update lgroup topology (if necessary)
529 */
530 klgrpset_clear(changed);
531 (void) lgrp_topo_update(lgrp_table, lgrp_alloc_max + 1, &changed);
532 lgrp_topo_initialized = 1;
533 }

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/cpuvar.h 1

**
 29542 Wed May 15 07:34:05 2019
new/usr/src/uts/common/sys/cpuvar.h
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 * Copyright 2014 Igor Kozhukhov <ikozhukhov@gmail.com>.
26 * Copyright 2018 Joyent, Inc.
27 * Copyright 2017 RackTop Systems.
28 * Copyright 2019 Joyent, Inc.
29 */

31 #ifndef _SYS_CPUVAR_H
32 #define _SYS_CPUVAR_H

34 #include <sys/thread.h>
35 #include <sys/sysinfo.h> /* has cpu_stat_t definition */
36 #include <sys/disp.h>
37 #include <sys/processor.h>
38 #include <sys/kcpc.h> /* has kcpc_ctx_t definition */

40 #include <sys/loadavg.h>
41 #if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP)
42 #include <sys/machcpuvar.h>
43 #endif

45 #include <sys/types.h>
46 #include <sys/file.h>
47 #include <sys/bitmap.h>
48 #include <sys/rwlock.h>
49 #include <sys/msacct.h>
50 #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) && \
51 (defined(__i386) || defined(__amd64))
52 #include <asm/cpuvar.h>
53 #endif

55 #ifdef __cplusplus
56 extern "C" {
57 #endif

new/usr/src/uts/common/sys/cpuvar.h 2

59 struct squeue_set_s;

61 #define CPU_CACHE_COHERENCE_SIZE 64

63 /*
64 * For fast event tracing.
65 */
66 struct ftrace_record;
67 typedef struct ftrace_data {
68 int ftd_state; /* ftrace flags */
69 kmutex_t ftd_unused; /* ftrace buffer lock, unused */
70 struct ftrace_record *ftd_cur; /* current record */
71 struct ftrace_record *ftd_first; /* first record */
72 struct ftrace_record *ftd_last; /* last record */
73 } ftrace_data_t;

______unchanged_portion_omitted_

479 /*
480 * Atomic cpuset operations
481 * These are safe to use for concurrent cpuset manipulations.
482 * "xdel" and "xadd" are exclusive operations, that set "result" to "0"
483 * if the add or del was successful, or "-1" if not successful.
484 * (e.g. attempting to add a cpu to a cpuset that’s already there, or
485 * deleting a cpu that’s not in the cpuset)
486 */

488 #define CPUSET_ATOMIC_DEL(set, cpu) cpuset_atomic_del(&(set), cpu)
489 #define CPUSET_ATOMIC_ADD(set, cpu) cpuset_atomic_add(&(set), cpu)

491 #define CPUSET_ATOMIC_XADD(set, cpu, result) \
492 (result) = cpuset_atomic_xadd(&(set), cpu)

494 #define CPUSET_ATOMIC_XDEL(set, cpu, result) \
495 (result) = cpuset_atomic_xdel(&(set), cpu)

497 #define CPUSET_OR(set1, set2) cpuset_or(&(set1), &(set2))

499 #define CPUSET_XOR(set1, set2) cpuset_xor(&(set1), &(set2))

501 #define CPUSET_AND(set1, set2) cpuset_and(&(set1), &(set2))

503 #define CPUSET_ZERO(set) cpuset_zero(&(set))

505 #endif /* defined(_MACHDEP) */

508 extern cpuset_t cpu_seqid_inuse;

510 extern struct cpu *cpu[]; /* indexed by CPU number */
511 extern struct cpu **cpu_seq; /* indexed by sequential CPU id */
512 extern cpu_t *cpu_list; /* list of CPUs */
513 extern cpu_t *cpu_active; /* list of active CPUs */
514 extern cpuset_t cpu_active_set; /* cached set of active CPUs */
515 extern int ncpus; /* number of CPUs present */
516 extern int ncpus_online; /* number of CPUs not quiesced */
517 extern int max_ncpus; /* max present before ncpus is known */
518 extern int boot_max_ncpus; /* like max_ncpus but for real */
519 extern int boot_ncpus; /* # cpus present @ boot */
520 extern processorid_t max_cpuid; /* maximum CPU number */
521 extern struct cpu *cpu_inmotion; /* offline or partition move target */
522 extern cpu_t *clock_cpu_list;
523 extern processorid_t max_cpu_seqid_ever; /* maximum seqid ever given */

525 #if defined(__i386) || defined(__amd64)
526 extern struct cpu *curcpup(void);
527 #define CPU (curcpup()) /* Pointer to current CPU */

new/usr/src/uts/common/sys/cpuvar.h 3

528 #else
529 #define CPU (curthread->t_cpu) /* Pointer to current CPU */
530 #endif

532 /*
533 * CPU_CURRENT indicates to thread_affinity_set() to use whatever curthread’s
534 * current CPU is; holding cpu_lock is not required.
532 * CPU_CURRENT indicates to thread_affinity_set to use CPU->cpu_id
533 * as the target and to grab cpu_lock instead of requiring the caller
534 * to grab it.
535 */
536 #define CPU_CURRENT -3

538 /*
539 * CPU_BEST can be used by thread_affinity_set() callers to set affinity to a
540 * good CPU (in particular, an ht_acquire()-friendly choice); holding cpu_lock
541 * is not required.
542 */
543 #define CPU_BEST -4

545 /*
546 * Per-CPU statistics
547 *
548 * cpu_stats_t contains numerous system and VM-related statistics, in the form
549 * of gauges or monotonically-increasing event occurrence counts.
550 */

552 #define CPU_STATS_ENTER_K() kpreempt_disable()
553 #define CPU_STATS_EXIT_K() kpreempt_enable()

555 #define CPU_STATS_ADD_K(class, stat, amount) \
556 { kpreempt_disable(); /* keep from switching CPUs */\
557 CPU_STATS_ADDQ(CPU, class, stat, amount); \
558 kpreempt_enable(); \
559 }

561 #define CPU_STATS_ADDQ(cp, class, stat, amount) { \
562 extern void __dtrace_probe___cpu_##class##info_##stat(uint_t, \
563 uint64_t *, cpu_t *); \
564 uint64_t *stataddr = &((cp)->cpu_stats.class.stat); \
565 __dtrace_probe___cpu_##class##info_##stat((amount), \
566 stataddr, cp); \
567 *(stataddr) += (amount); \
568 }

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/disp.h 1

**
 6027 Wed May 15 07:34:05 2019
new/usr/src/uts/common/sys/disp.h
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 *
27 * Copyright 2018 Joyent, Inc.
28 */

30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */

34 #ifndef _SYS_DISP_H
35 #define _SYS_DISP_H

37 #include <sys/priocntl.h>
38 #include <sys/thread.h>
39 #include <sys/class.h>

41 #ifdef __cplusplus
42 extern "C" {
43 #endif

45 /*
46 * The following is the format of a dispatcher queue entry.
47 */
48 typedef struct dispq {
49 kthread_t *dq_first; /* first thread on queue or NULL */
50 kthread_t *dq_last; /* last thread on queue or NULL */
51 int dq_sruncnt; /* number of loaded, runnable */
52 /* threads on queue */
53 } dispq_t;

______unchanged_portion_omitted_

84 #if defined(_KERNEL) || defined(_FAKE_KERNEL)

86 #define MAXCLSYSPRI 99

new/usr/src/uts/common/sys/disp.h 2

87 #define MINCLSYSPRI 60

90 /*
91 * Global scheduling variables.
92 * - See sys/cpuvar.h for CPU-local variables.
93 */
94 extern int nswapped; /* number of swapped threads */
95 /* nswapped protected by swap_lock */

97 extern pri_t minclsyspri; /* minimum level of any system class */
98 extern pri_t maxclsyspri; /* maximum level of any system class */
99 extern pri_t intr_pri; /* interrupt thread priority base level */

101 #endif /* _KERNEL || _FAKE_KERNEL */
102 #if defined(_KERNEL)

104 /*
105 * Minimum amount of time that a thread can remain runnable before it can
106 * be stolen by another CPU (in nanoseconds).
107 */
108 extern hrtime_t nosteal_nsec;

110 /*
111 * Kernel preemption occurs if a higher-priority thread is runnable with
112 * a priority at or above kpreemptpri.
113 *
114 * So that other processors can watch for such threads, a separate
115 * dispatch queue with unbound work above kpreemptpri is maintained.
116 * This is part of the CPU partition structure (cpupart_t).
117 */
118 extern pri_t kpreemptpri; /* level above which preemption takes place */

120 extern void disp_kp_alloc(disp_t *, pri_t); /* allocate kp queue */
121 extern void disp_kp_free(disp_t *); /* free kp queue */

123 /*
124 * Macro for use by scheduling classes to decide whether the thread is about
125 * to be scheduled or not. This returns the maximum run priority.
126 */
127 #define DISP_MAXRUNPRI(t) ((t)->t_disp_queue->disp_maxrunpri)

129 /*
130 * Platform callbacks for various dispatcher operations
131 *
132 * idle_cpu() is invoked when a cpu goes idle, and has nothing to do.
133 * disp_enq_thread() is invoked when a thread is placed on a run queue.
134 */
135 extern void (*idle_cpu)();
136 extern void (*disp_enq_thread)(struct cpu *, int);

139 extern int dispdeq(kthread_t *);
140 extern void dispinit(void);
141 extern void disp_add(sclass_t *);
142 extern int intr_active(struct cpu *, int);
143 extern int servicing_interrupt(void);
144 extern void preempt(void);
145 extern void setbackdq(kthread_t *);
146 extern void setfrontdq(kthread_t *);
147 extern void swtch(void);
148 extern void swtch_to(kthread_t *);
149 extern void swtch_from_zombie(void)
150 __NORETURN;
151 extern void dq_sruninc(kthread_t *);
152 extern void dq_srundec(kthread_t *);

new/usr/src/uts/common/sys/disp.h 3

153 extern void cpu_rechoose(kthread_t *);
154 extern void cpu_surrender(kthread_t *);
155 extern void kpreempt(int);
156 extern struct cpu *disp_lowpri_cpu(struct cpu *, kthread_t *, pri_t);
154 extern struct cpu *disp_lowpri_cpu(struct cpu *, struct lgrp_ld *, pri_t,
155 struct cpu *);
157 extern int disp_bound_threads(struct cpu *, int);
158 extern int disp_bound_anythreads(struct cpu *, int);
159 extern int disp_bound_partition(struct cpu *, int);
160 extern void disp_cpu_init(struct cpu *);
161 extern void disp_cpu_fini(struct cpu *);
162 extern void disp_cpu_inactive(struct cpu *);
163 extern void disp_adjust_unbound_pri(kthread_t *);
164 extern void resume(kthread_t *);
165 extern void resume_from_intr(kthread_t *);
166 extern void resume_from_zombie(kthread_t *)
167 __NORETURN;
168 extern void disp_swapped_enq(kthread_t *);
169 extern int disp_anywork(void);

171 extern struct cpu *disp_choose_best_cpu(void);

173 #define KPREEMPT_SYNC (-1)
174 #define kpreempt_disable() \
175 { \
176 curthread->t_preempt++; \
177 ASSERT(curthread->t_preempt >= 1); \
178 }
179 #define kpreempt_enable() \
180 { \
181 ASSERT(curthread->t_preempt >= 1); \
182 if (--curthread->t_preempt == 0 && \
183 CPU->cpu_kprunrun) \
184 kpreempt(KPREEMPT_SYNC); \
185 }

187 #endif /* _KERNEL */

189 #define CPU_IDLE_PRI (-1)

191 #ifdef __cplusplus
192 }

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/thread.h 1

**
 27314 Wed May 15 07:34:06 2019
new/usr/src/uts/common/sys/thread.h
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**
______unchanged_portion_omitted_

100 typedef struct _kthread *kthread_id_t;

102 struct turnstile;
103 struct panic_trap_info;
104 struct upimutex;
105 struct kproject;
106 struct on_trap_data;
107 struct waitq;
108 struct _kcpc_ctx;
109 struct _kcpc_set;

111 /* Definition for kernel thread identifier type */
112 typedef uint64_t kt_did_t;

114 typedef struct _kthread {
115 struct _kthread *t_link; /* dispq, sleepq, and free queue link */

117 caddr_t t_stk; /* base of stack (kernel sp value to use) */
118 void (*t_startpc)(void); /* PC where thread started */
119 struct cpu *t_bound_cpu; /* cpu bound to, or NULL if not bound */
120 short t_affinitycnt; /* nesting level of kernel affinity-setting */
121 short t_bind_cpu; /* user-specified CPU binding (-1 if none) */
122 ushort_t t_flag; /* modified only by current thread */
123 ushort_t t_proc_flag; /* modified holding ttproc(t)->p_lock */
124 ushort_t t_schedflag; /* modified holding thread_lock(t) */
125 volatile char t_preempt; /* don’t preempt thread if set */
126 volatile char t_preempt_lk;
127 uint_t t_state; /* thread state (protected by thread_lock) */
128 pri_t t_pri; /* assigned thread priority */
129 pri_t t_epri; /* inherited thread priority */
130 pri_t t_cpri; /* thread scheduling class priority */
131 char t_writer; /* sleeping in lwp_rwlock_lock(RW_WRITE_LOCK) */
132 uchar_t t_bindflag; /* CPU and pset binding type */
133 label_t t_pcb; /* pcb, save area when switching */
134 lwpchan_t t_lwpchan; /* reason for blocking */
135 #define t_wchan0 t_lwpchan.lc_wchan0
136 #define t_wchan t_lwpchan.lc_wchan
137 struct _sobj_ops *t_sobj_ops;
138 id_t t_cid; /* scheduling class id */
139 struct thread_ops *t_clfuncs; /* scheduling class ops vector */
140 void *t_cldata; /* per scheduling class specific data */
141 ctxop_t *t_ctx; /* thread context */
142 uintptr_t t_lofault; /* ret pc for failed page faults */
143 label_t *t_onfault; /* on_fault() setjmp buf */
144 struct on_trap_data *t_ontrap; /* on_trap() protection data */
145 caddr_t t_swap; /* the bottom of the stack, if from segkp */
146 lock_t t_lock; /* used to resume() a thread */
147 uint8_t t_lockstat; /* set while thread is in lockstat code */
148 uint8_t t_pil; /* interrupt thread PIL */
149 disp_lock_t t_pi_lock; /* lock protecting t_prioinv list */
150 char t_nomigrate; /* do not migrate if set */
151 struct cpu *t_cpu; /* CPU that thread last ran on */
152 struct cpu *t_weakbound_cpu; /* cpu weakly bound to */
153 struct lgrp_ld *t_lpl; /* load average for home lgroup */
154 void *t_lgrp_reserv[2]; /* reserved for future */
155 struct _kthread *t_intr; /* interrupted (pinned) thread */

new/usr/src/uts/common/sys/thread.h 2

156 uint64_t t_intr_start; /* timestamp when time slice began */
157 kt_did_t t_did; /* thread id for kernel debuggers */
158 caddr_t t_tnf_tpdp; /* Trace facility data pointer */
159 struct _kcpc_ctx *t_cpc_ctx; /* performance counter context */
160 struct _kcpc_set *t_cpc_set; /* set this thread has bound */

162 /*
163 * non swappable part of the lwp state.
164 */
165 id_t t_tid; /* lwp’s id */
166 id_t t_waitfor; /* target lwp id in lwp_wait() */
167 struct sigqueue *t_sigqueue; /* queue of siginfo structs */
168 k_sigset_t t_sig; /* signals pending to this process */
169 k_sigset_t t_extsig; /* signals sent from another contract */
170 k_sigset_t t_hold; /* hold signal bit mask */
171 k_sigset_t t_sigwait; /* sigtimedwait/sigfd accepting these */
172 struct _kthread *t_forw; /* process’s forward thread link */
173 struct _kthread *t_back; /* process’s backward thread link */
174 struct _kthread *t_thlink; /* tid (lwpid) lookup hash link */
175 klwp_t *t_lwp; /* thread’s lwp pointer */
176 struct proc *t_procp; /* proc pointer */
177 struct t_audit_data *t_audit_data; /* per thread audit data */
178 struct _kthread *t_next; /* doubly linked list of all threads */
179 struct _kthread *t_prev;
180 ushort_t t_whystop; /* reason for stopping */
181 ushort_t t_whatstop; /* more detailed reason */
182 int t_dslot; /* index in proc’s thread directory */
183 struct pollstate *t_pollstate; /* state used during poll(2) */
184 struct pollcache *t_pollcache; /* to pass a pcache ptr by /dev/poll */
185 struct cred *t_cred; /* pointer to current cred */
186 time_t t_start; /* start time, seconds since epoch */
187 clock_t t_lbolt; /* lbolt at last clock_tick() */
188 hrtime_t t_stoptime; /* timestamp at stop() */
189 uint_t t_pctcpu; /* %cpu at last clock_tick(), binary */
190 /* point at right of high-order bit */
191 short t_sysnum; /* system call number */
192 kcondvar_t t_delay_cv;
193 kmutex_t t_delay_lock;

195 /*
196 * Pointer to the dispatcher lock protecting t_state and state-related
197 * flags. This pointer can change during waits on the lock, so
198 * it should be grabbed only by thread_lock().
199 */
200 disp_lock_t *t_lockp; /* pointer to the dispatcher lock */
201 ushort_t t_oldspl; /* spl level before dispatcher locked */
202 volatile char t_pre_sys; /* pre-syscall work needed */
203 lock_t t_lock_flush; /* for lock_mutex_flush() impl */
204 struct _disp *t_disp_queue; /* run queue for chosen CPU */
205 clock_t t_disp_time; /* last time this thread was running */
206 uint_t t_kpri_req; /* kernel priority required */

208 /*
209 * Post-syscall / post-trap flags.
210 * No lock is required to set these.
211 * These must be cleared only by the thread itself.
212 *
213 * t_astflag indicates that some post-trap processing is required,
214 * possibly a signal or a preemption. The thread will not
215 * return to user with this set.
216 * t_post_sys indicates that some unusualy post-system call
217 * handling is required, such as an error or tracing.
218 * t_sig_check indicates that some condition in ISSIG() must be
219 * checked, but doesn’t prevent returning to user.
220 * t_post_sys_ast is a way of checking whether any of these three
221 * flags are set.

new/usr/src/uts/common/sys/thread.h 3

222 */
223 union __tu {
224 struct __ts {
225 volatile char _t_astflag; /* AST requested */
226 volatile char _t_sig_check; /* ISSIG required */
227 volatile char _t_post_sys; /* post_syscall req */
228 volatile char _t_trapret; /* call CL_TRAPRET */
229 } _ts;
230 volatile int _t_post_sys_ast; /* OR of these flags */
231 } _tu;
232 #define t_astflag _tu._ts._t_astflag
233 #define t_sig_check _tu._ts._t_sig_check
234 #define t_post_sys _tu._ts._t_post_sys
235 #define t_trapret _tu._ts._t_trapret
236 #define t_post_sys_ast _tu._t_post_sys_ast

238 /*
239 * Real time microstate profiling.
240 */
241 /* possible 4-byte filler */
242 hrtime_t t_waitrq; /* timestamp for run queue wait time */
243 int t_mstate; /* current microstate */
244 struct rprof {
245 int rp_anystate; /* set if any state non-zero */
246 uint_t rp_state[NMSTATES]; /* mstate profiling counts */
247 } *t_rprof;

249 /*
250 * There is a turnstile inserted into the list below for
251 * every priority inverted synchronization object that
252 * this thread holds.
253 */

255 struct turnstile *t_prioinv;

257 /*
258 * Pointer to the turnstile attached to the synchronization
259 * object where this thread is blocked.
260 */

262 struct turnstile *t_ts;

264 /*
265 * kernel thread specific data
266 * Borrowed from userland implementation of POSIX tsd
267 */
268 struct tsd_thread {
269 struct tsd_thread *ts_next; /* threads with TSD */
270 struct tsd_thread *ts_prev; /* threads with TSD */
271 uint_t ts_nkeys; /* entries in value array */
272 void **ts_value; /* array of value/key */
273 } *t_tsd;

275 clock_t t_stime; /* time stamp used by the swapper */
276 struct door_data *t_door; /* door invocation data */
277 kmutex_t *t_plockp; /* pointer to process’s p_lock */

279 struct sc_shared *t_schedctl; /* scheduler activations shared data */
280 uintptr_t t_sc_uaddr; /* user-level address of shared data */

282 struct cpupart *t_cpupart; /* partition containing thread */
283 int t_bind_pset; /* processor set binding */

285 struct copyops *t_copyops; /* copy in/out ops vector */

287 caddr_t t_stkbase; /* base of the the stack */

new/usr/src/uts/common/sys/thread.h 4

288 struct page *t_red_pp; /* if non-NULL, redzone is mapped */

290 afd_t t_activefd; /* active file descriptor table */

292 struct _kthread *t_priforw; /* sleepq per-priority sublist */
293 struct _kthread *t_priback;

295 struct sleepq *t_sleepq; /* sleep queue thread is waiting on */
296 struct panic_trap_info *t_panic_trap; /* saved data from fatal trap */
297 int *t_lgrp_affinity; /* lgroup affinity */
298 struct upimutex *t_upimutex; /* list of upimutexes owned by thread */
299 uint32_t t_nupinest; /* number of nested held upi mutexes */
300 struct kproject *t_proj; /* project containing this thread */
301 uint8_t t_unpark; /* modified holding t_delay_lock */
302 uint8_t t_release; /* lwp_release() waked up the thread */
303 uint8_t t_hatdepth; /* depth of recursive hat_memloads */
304 uint8_t t_xpvcntr; /* see xen_block_migrate() */
305 kcondvar_t t_joincv; /* cv used to wait for thread exit */
306 void *t_taskq; /* for threads belonging to taskq */
307 hrtime_t t_anttime; /* most recent time anticipatory load */
308 /* was added to an lgroup’s load */
309 /* on this thread’s behalf */
310 char *t_pdmsg; /* privilege debugging message */

312 uint_t t_predcache; /* DTrace predicate cache */
313 hrtime_t t_dtrace_vtime; /* DTrace virtual time */
314 hrtime_t t_dtrace_start; /* DTrace slice start time */

316 uint8_t t_dtrace_stop; /* indicates a DTrace-desired stop */
317 uint8_t t_dtrace_sig; /* signal sent via DTrace’s raise() */

319 union __tdu {
320 struct __tds {
321 uint8_t _t_dtrace_on; /* hit a fasttrap tracepoint */
322 uint8_t _t_dtrace_step; /* about to return to kernel */
323 uint8_t _t_dtrace_ret; /* handling a return probe */
324 uint8_t _t_dtrace_ast; /* saved ast flag */
325 #ifdef __amd64
326 uint8_t _t_dtrace_reg; /* modified register */
327 #endif
328 } _tds;
329 ulong_t _t_dtrace_ft; /* bitwise or of these flags */
330 } _tdu;
331 #define t_dtrace_ft _tdu._t_dtrace_ft
332 #define t_dtrace_on _tdu._tds._t_dtrace_on
333 #define t_dtrace_step _tdu._tds._t_dtrace_step
334 #define t_dtrace_ret _tdu._tds._t_dtrace_ret
335 #define t_dtrace_ast _tdu._tds._t_dtrace_ast
336 #ifdef __amd64
337 #define t_dtrace_reg _tdu._tds._t_dtrace_reg
338 #endif

340 uintptr_t t_dtrace_pc; /* DTrace saved pc from fasttrap */
341 uintptr_t t_dtrace_npc; /* DTrace next pc from fasttrap */
342 uintptr_t t_dtrace_scrpc; /* DTrace per-thread scratch location */
343 uintptr_t t_dtrace_astpc; /* DTrace return sequence location */
344 #ifdef __amd64
345 uint64_t t_dtrace_regv; /* DTrace saved reg from fasttrap */
346 uint64_t t_useracc; /* SMAP state saved across swtch() */
347 #endif
348 hrtime_t t_hrtime; /* high-res last time on cpu */
349 kmutex_t t_ctx_lock; /* protects t_ctx in removectx() */
350 struct waitq *t_waitq; /* wait queue */
351 kmutex_t t_wait_mutex; /* used in CV wait functions */

353 char *t_name; /* thread name */

new/usr/src/uts/common/sys/thread.h 5

355 uint64_t t_unsafe; /* unsafe to run with HT VCPU thread */
356 } kthread_t;

358 /*
359 * Thread flag (t_flag) definitions.
360 * These flags must be changed only for the current thread,
361 * and not during preemption code, since the code being
362 * preempted could be modifying the flags.
363 *
364 * For the most part these flags do not need locking.
365 * The following flags will only be changed while the thread_lock is held,
366 * to give assurrance that they are consistent with t_state:
367 * T_WAKEABLE
368 */
369 #define T_INTR_THREAD 0x0001 /* thread is an interrupt thread */
370 #define T_WAKEABLE 0x0002 /* thread is blocked, signals enabled */
371 #define T_TOMASK 0x0004 /* use lwp_sigoldmask on return from signal */
372 #define T_TALLOCSTK 0x0008 /* thread structure allocated from stk */
373 #define T_FORKALL 0x0010 /* thread was cloned by forkall() */
374 #define T_WOULDBLOCK 0x0020 /* for lockfs */
375 #define T_DONTBLOCK 0x0040 /* for lockfs */
376 #define T_DONTPEND 0x0080 /* for lockfs */
377 #define T_SYS_PROF 0x0100 /* profiling on for duration of system call */
378 #define T_WAITCVSEM 0x0200 /* waiting for a lwp_cv or lwp_sema on sleepq */
379 #define T_WATCHPT 0x0400 /* thread undergoing a watchpoint emulation */
380 #define T_PANIC 0x0800 /* thread initiated a system panic */
381 #define T_LWPREUSE 0x1000 /* stack and LWP can be reused */
382 #define T_CAPTURING 0x2000 /* thread is in page capture logic */
383 #define T_VFPARENT 0x4000 /* thread is vfork parent, must call vfwait */
384 #define T_DONTDTRACE 0x8000 /* disable DTrace probes */

386 /*
387 * Flags in t_proc_flag.
388 * These flags must be modified only when holding the p_lock
389 * for the associated process.
390 */
391 #define TP_DAEMON 0x0001 /* this is an LWP_DAEMON lwp */
392 #define TP_HOLDLWP 0x0002 /* hold thread’s lwp */
393 #define TP_TWAIT 0x0004 /* wait to be freed by lwp_wait() */
394 #define TP_LWPEXIT 0x0008 /* lwp has exited */
395 #define TP_PRSTOP 0x0010 /* thread is being stopped via /proc */
396 #define TP_CHKPT 0x0020 /* thread is being stopped via CPR checkpoint */
397 #define TP_EXITLWP 0x0040 /* terminate this lwp */
398 #define TP_PRVSTOP 0x0080 /* thread is virtually stopped via /proc */
399 #define TP_MSACCT 0x0100 /* collect micro-state accounting information */
400 #define TP_STOPPING 0x0200 /* thread is executing stop() */
401 #define TP_WATCHPT 0x0400 /* process has watchpoints in effect */
402 #define TP_PAUSE 0x0800 /* process is being stopped via pauselwps() */
403 #define TP_CHANGEBIND 0x1000 /* thread has a new cpu/cpupart binding */
404 #define TP_ZTHREAD 0x2000 /* this is a kernel thread for a zone */
405 #define TP_WATCHSTOP 0x4000 /* thread is stopping via holdwatch() */

407 /*
408 * Thread scheduler flag (t_schedflag) definitions.
409 * The thread must be locked via thread_lock() or equiv. to change these.
410 */
411 #define TS_LOAD 0x0001 /* thread is in memory */
412 #define TS_DONT_SWAP 0x0002 /* thread/lwp should not be swapped */
413 #define TS_SWAPENQ 0x0004 /* swap thread when it reaches a safe point */
414 #define TS_ON_SWAPQ 0x0008 /* thread is on the swap queue */
415 #define TS_SIGNALLED 0x0010 /* thread was awakened by cv_signal() */
416 #define TS_PROJWAITQ 0x0020 /* thread is on its project’s waitq */
417 #define TS_ZONEWAITQ 0x0040 /* thread is on its zone’s waitq */
418 #define TS_VCPU 0x0080 /* thread will enter guest context */
419 #define TS_CSTART 0x0100 /* setrun() by continuelwps() */

new/usr/src/uts/common/sys/thread.h 6

420 #define TS_UNPAUSE 0x0200 /* setrun() by unpauselwps() */
421 #define TS_XSTART 0x0400 /* setrun() by SIGCONT */
422 #define TS_PSTART 0x0800 /* setrun() by /proc */
423 #define TS_RESUME 0x1000 /* setrun() by CPR resume process */
424 #define TS_CREATE 0x2000 /* setrun() by syslwp_create() */
425 #define TS_RUNQMATCH 0x4000 /* exact run queue balancing by setbackdq() */
426 #define TS_ALLSTART \
427 (TS_CSTART|TS_UNPAUSE|TS_XSTART|TS_PSTART|TS_RESUME|TS_CREATE)
428 #define TS_ANYWAITQ (TS_PROJWAITQ|TS_ZONEWAITQ)

430 /*
431 * Thread binding types
432 */
433 #define TB_ALLHARD 0
434 #define TB_CPU_SOFT 0x01 /* soft binding to CPU */
435 #define TB_PSET_SOFT 0x02 /* soft binding to pset */

437 #define TB_CPU_SOFT_SET(t) ((t)->t_bindflag |= TB_CPU_SOFT)
438 #define TB_CPU_HARD_SET(t) ((t)->t_bindflag &= ~TB_CPU_SOFT)
439 #define TB_PSET_SOFT_SET(t) ((t)->t_bindflag |= TB_PSET_SOFT)
440 #define TB_PSET_HARD_SET(t) ((t)->t_bindflag &= ~TB_PSET_SOFT)
441 #define TB_CPU_IS_SOFT(t) ((t)->t_bindflag & TB_CPU_SOFT)
442 #define TB_CPU_IS_HARD(t) (!TB_CPU_IS_SOFT(t))
443 #define TB_PSET_IS_SOFT(t) ((t)->t_bindflag & TB_PSET_SOFT)

445 /*
446 * No locking needed for AST field.
447 */
448 #define aston(t) ((t)->t_astflag = 1)
449 #define astoff(t) ((t)->t_astflag = 0)

451 /* True if thread is stopped on an event of interest */
452 #define ISTOPPED(t) ((t)->t_state == TS_STOPPED && \
453 !((t)->t_schedflag & TS_PSTART))

455 /* True if thread is asleep and wakeable */
456 #define ISWAKEABLE(t) (((t)->t_state == TS_SLEEP && \
457 ((t)->t_flag & T_WAKEABLE)))

459 /* True if thread is on the wait queue */
460 #define ISWAITING(t) ((t)->t_state == TS_WAIT)

462 /* similar to ISTOPPED except the event of interest is CPR */
463 #define CPR_ISTOPPED(t) ((t)->t_state == TS_STOPPED && \
464 !((t)->t_schedflag & TS_RESUME))

466 /*
467 * True if thread is virtually stopped (is or was asleep in
468 * one of the lwp_*() system calls and marked to stop by /proc.)
469 */
470 #define VSTOPPED(t) ((t)->t_proc_flag & TP_PRVSTOP)

472 /* similar to VSTOPPED except the point of interest is CPR */
473 #define CPR_VSTOPPED(t) \
474 ((t)->t_state == TS_SLEEP && \
475 (t)->t_wchan0 != NULL && \
476 ((t)->t_flag & T_WAKEABLE) && \
477 ((t)->t_proc_flag & TP_CHKPT))

479 /* True if thread has been stopped by hold*() or was created stopped */
480 #define SUSPENDED(t) ((t)->t_state == TS_STOPPED && \
481 ((t)->t_schedflag & (TS_CSTART|TS_UNPAUSE)) != (TS_CSTART|TS_UNPAUSE))

483 /* True if thread possesses an inherited priority */
484 #define INHERITED(t) ((t)->t_epri != 0)

new/usr/src/uts/common/sys/thread.h 7

486 /* The dispatch priority of a thread */
487 #define DISP_PRIO(t) ((t)->t_epri > (t)->t_pri ? (t)->t_epri : (t)->t_pri)

489 /* The assigned priority of a thread */
490 #define ASSIGNED_PRIO(t) ((t)->t_pri)

492 /*
493 * Macros to determine whether a thread can be swapped.
494 * If t_lock is held, the thread is either on a processor or being swapped.
495 */
496 #define SWAP_OK(t) (!LOCK_HELD(&(t)->t_lock))

498 /*
499 * proctot(x)
500 * convert a proc pointer to a thread pointer. this only works with
501 * procs that have only one lwp.
502 *
503 * proctolwp(x)
504 * convert a proc pointer to a lwp pointer. this only works with
505 * procs that have only one lwp.
506 *
507 * ttolwp(x)
508 * convert a thread pointer to its lwp pointer.
509 *
510 * ttoproc(x)
511 * convert a thread pointer to its proc pointer.
512 *
513 * ttoproj(x)
514 * convert a thread pointer to its project pointer.
515 *
516 * ttozone(x)
517 * convert a thread pointer to its zone pointer.
518 *
519 * lwptot(x)
520 * convert a lwp pointer to its thread pointer.
521 *
522 * lwptoproc(x)
523 * convert a lwp to its proc pointer.
524 */
525 #define proctot(x) ((x)->p_tlist)
526 #define proctolwp(x) ((x)->p_tlist->t_lwp)
527 #define ttolwp(x) ((x)->t_lwp)
528 #define ttoproc(x) ((x)->t_procp)
529 #define ttoproj(x) ((x)->t_proj)
530 #define ttozone(x) ((x)->t_procp->p_zone)
531 #define lwptot(x) ((x)->lwp_thread)
532 #define lwptoproc(x) ((x)->lwp_procp)

534 #define t_pc t_pcb.val[0]
535 #define t_sp t_pcb.val[1]

537 #ifdef _KERNEL

539 extern kthread_t *threadp(void); /* inline, returns thread pointer */
540 #define curthread (threadp()) /* current thread pointer */
541 #define curproc (ttoproc(curthread)) /* current process pointer */
542 #define curproj (ttoproj(curthread)) /* current project pointer */
543 #define curzone (curproc->p_zone) /* current zone pointer */

545 extern struct _kthread t0; /* the scheduler thread */
546 extern kmutex_t pidlock; /* global process lock */

548 /*
549 * thread_free_lock is used by the tick accounting thread to keep a thread
550 * from being freed while it is being examined.
551 *

new/usr/src/uts/common/sys/thread.h 8

552 * Thread structures are 32-byte aligned structures. That is why we use the
553 * following formula.
554 */
555 #define THREAD_FREE_BITS 10
556 #define THREAD_FREE_NUM (1 << THREAD_FREE_BITS)
557 #define THREAD_FREE_MASK (THREAD_FREE_NUM - 1)
558 #define THREAD_FREE_1 PTR24_LSB
559 #define THREAD_FREE_2 (PTR24_LSB + THREAD_FREE_BITS)
560 #define THREAD_FREE_SHIFT(t) \
561 (((ulong_t)(t) >> THREAD_FREE_1) ^ ((ulong_t)(t) >> THREAD_FREE_2))
562 #define THREAD_FREE_HASH(t) (THREAD_FREE_SHIFT(t) & THREAD_FREE_MASK)

564 typedef struct thread_free_lock {
565 kmutex_t tf_lock;
566 uchar_t tf_pad[64 - sizeof (kmutex_t)];
567 } thread_free_lock_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/Makefile.files 1

**
 6324 Wed May 15 07:34:06 2019
new/usr/src/uts/i86pc/Makefile.files
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 #
25 # Copyright (c) 2010, Intel Corporation.
26 # Copyright 2018 Joyent, Inc.
27 # Copyright 2019 OmniOS Community Edition (OmniOSce) Association.
28 #
29 # This Makefile defines file modules in the directory uts/i86pc
30 # and its children. These are the source files which are i86pc
31 # "implementation architecture" dependent.
32 #

34 #
35 # object lists
36 #
37 CORE_OBJS += \
38 acpi_stubs.o \
39 biosdisk.o \
40 bios_call.o \
41 cbe.o \
42 cmi.o \
43 cmi_hw.o \
44 cms.o \
45 comm_page.o \
46 confunix.o \
47 cpu_idle.o \
48 cpuid.o \
49 cpuid_subr.o \
50 cpupm.o \
51 cpupm_mach.o \
52 cpupm_amd.o \
53 cpupm_intel.o \
54 cpupm_throttle.o \
55 cpu_acpi.o \
56 dis_tables.o \
57 ddi_impl.o \
58 dtrace_subr.o \

new/usr/src/uts/i86pc/Makefile.files 2

59 dvma.o \
60 fpu_subr.o \
61 fakebop.o \
62 fastboot.o \
63 fb_swtch.o \
64 graphics.o \
65 hardclk.o \
66 hat_i86.o \
67 hat_kdi.o \
68 hma_fpu.o \
69 hment.o \
70 hold_page.o \
71 hrtimers.o \
72 ht.o \
73 htable.o \
74 hypercall.o \
75 hypersubr.o \
76 i86_mmu.o \
77 ibft.o \
78 instr_size.o \
79 intr.o \
80 kboot_mmu.o \
81 kdi_idt.o \
82 kdi_idthdl.o \
83 kdi_asm.o \
84 lgrpplat.o \
85 mach_kdi.o \
86 mach_sysconfig.o \
87 machdep.o \
88 mem_config.o \
89 mem_config_stubs.o \
90 mem_config_arch.o \
91 memlist_new.o \
92 memnode.o \
93 microcode.o \
94 microfind.o \
95 mlsetup.o \
96 mp_call.o \
97 mp_implfuncs.o \
98 mp_machdep.o \
99 mp_pc.o \
100 mp_startup.o \
101 memscrub.o \
102 mpcore.o \
103 notes.o \
104 pci_bios.o \
105 pci_cfgacc.o \
106 pci_cfgacc_x86.o \
107 pci_cfgspace.o \
108 pci_mech1.o \
109 pci_mech1_amd.o \
110 pci_mech2.o \
111 pci_neptune.o \
112 pci_orion.o \
113 pmem.o \
114 ppage.o \
115 pwrnow.o \
116 speedstep.o \
117 ssp.o \
118 startup.o \
119 timestamp.o \
120 todpc_subr.o \
121 trap.o \
122 turbo.o \
123 vm_machdep.o \
124 xpv_platform.o \

new/usr/src/uts/i86pc/Makefile.files 3

125 x_call.o

127 #
128 # Add the SMBIOS subsystem object files directly to the list of objects
129 # built into unix itself; this is all common code except for smb_dev.c.
130 #
131 CORE_OBJS += $(SMBIOS_OBJS)

133 #
134 # These get compiled twice:
135 # - once in the dboot (direct boot) identity mapped code
136 # - once for use during early startup in unix
137 #
138 BOOT_DRIVER_OBJS = \
139 boot_console.o \
140 boot_keyboard.o \
141 boot_keyboard_table.o \
142 boot_vga.o \
143 boot_fb.o \
144 boot_mmu.o \
145 dboot_multiboot2.o \
146 $(FONT_OBJS)

148 CORE_OBJS += $(BOOT_DRIVER_OBJS)

150 #
151 # locore.o is special. It must be the first file relocated so that it
152 # it is relocated just where its name implies.
153 #
154 SPECIAL_OBJS_32 += \
155 locore.o \
156 fast_trap_asm.o \
157 interrupt.o \
158 syscall_asm.o

160 SPECIAL_OBJS_64 += \
161 locore.o \
162 fast_trap_asm.o \
163 interrupt.o \
164 syscall_asm_amd64.o \
165 kpti_trampolines.o

167 SPECIAL_OBJS += $(SPECIAL_OBJS_$(CLASS))

169 #
170 # Objects that get compiled into the identity mapped PT_LOAD section of unix
171 # to handle the earliest part of booting.
172 #
173 DBOOT_OBJS_32 =

175 DBOOT_OBJS_64 += dboot_elfload.o

177 DBOOT_OBJS += \
178 dboot_asm.o \
179 dboot_grub.o \
180 dboot_printf.o \
181 dboot_startkern.o \
182 memcpy.o \
183 memset.o \
184 muldiv.o \
185 sha1.o \
186 string.o \
187 $(BOOT_DRIVER_OBJS) \
188 $(DBOOT_OBJS_$(CLASS))

190 #

new/usr/src/uts/i86pc/Makefile.files 4

191 # driver and misc modules
192 #
193 GFX_PRIVATE_OBJS += gfx_private.o gfxp_pci.o gfxp_segmap.o \
194 gfxp_devmap.o gfxp_vgatext.o gfxp_vm.o vgasubr.o \
195 gfxp_fb.o gfxp_bitmap.o
196 FIPE_OBJS += fipe_drv.o fipe_pm.o
197 IOAT_OBJS += ioat.o ioat_rs.o ioat_ioctl.o ioat_chan.o
198 ISANEXUS_OBJS += isa.o dma_engine.o i8237A.o
199 PCIE_MISC_OBJS += pcie_acpi.o pciehpc_acpi.o pcie_x86.o
200 PCI_E_NEXUS_OBJS += npe.o npe_misc.o
201 PCI_E_NEXUS_OBJS += pci_common.o pci_kstats.o pci_tools.o
202 PCINEXUS_OBJS += pci.o pci_common.o pci_kstats.o pci_tools.o
203 PCPLUSMP_OBJS += apic.o apic_regops.o psm_common.o apic_introp.o \
204 mp_platform_common.o mp_platform_misc.o \
205 hpet_acpi.o apic_common.o apic_timer.o
206 APIX_OBJS += apix.o apic_regops.o psm_common.o apix_intr.o apix_utils.o \
207 apix_irm.o mp_platform_common.o hpet_acpi.o apic_common.o \
208 apic_timer.o apix_regops.o

211 ACPI_DRV_OBJS += acpi_drv.o acpi_video.o
212 ACPINEX_OBJS += acpinex_drv.o acpinex_event.o

214 CPUDRV_OBJS += \
215 cpudrv.o \
216 cpudrv_mach.o

218 PPM_OBJS += ppm_subr.o ppm.o ppm_plat.o

220 ACPIPPM_OBJS += acpippm.o acpisleep.o
221 ACPIDEV_OBJS += acpidev_drv.o \
222 acpidev_scope.o acpidev_device.o \
223 acpidev_container.o \
224 acpidev_cpu.o \
225 acpidev_dr.o \
226 acpidev_memory.o \
227 acpidev_pci.o \
228 acpidev_resource.o \
229 acpidev_usbport.o \
230 acpidev_util.o

232 DRMACH_ACPI_OBJS += drmach_acpi.o dr_util.o drmach_err.o

234 DR_OBJS += dr.o dr_cpu.o dr_err.o dr_io.o dr_mem_acpi.o dr_quiesce.o dr_util.o

236 ROOTNEX_OBJS += rootnex.o immu.o immu_dmar.o immu_dvma.o \
237 immu_intrmap.o immu_qinv.o immu_regs.o

239 TZMON_OBJS += tzmon.o
240 UPPC_OBJS += uppc.o psm_common.o
241 XSVC_OBJS += xsvc.o
242 AMD_IOMMU_OBJS += amd_iommu.o amd_iommu_impl.o amd_iommu_acpi.o \
243 amd_iommu_cmd.o amd_iommu_log.o amd_iommu_page_tables.o

245 #
246 # Build up defines and paths.
247 #
248 ALL_DEFS += -Di86pc
249 INC_PATH += -I$(UTSBASE)/i86pc -I$(SRC)/common
250 INC_PATH += -I$(UTSBASE)/i86xpv -I$(UTSBASE)/common/xen

252 #
253 # Since the assym files are derived, the dependencies must be explicit for
254 # all files including this file. (This is only actually required in the
255 # instance when the .nse_depinfo file does not exist.)
256 #

new/usr/src/uts/i86pc/Makefile.files 5

258 ASSYM_DEPS += \
259 copy.o \
260 desctbls_asm.o \
261 ddi_i86_asm.o \
262 exception.o \
263 fast_trap_asm.o \
264 float.o \
265 i86_subr.o \
266 interrupt.o \
267 lock_prim.o \
268 locore.o \
269 mpcore.o \
270 sseblk.o \
271 swtch.o \
272 syscall_asm.o \
273 syscall_asm_amd64.o \
274 kpti_trampolines.o \
275 cpr_wakecode.o

277 CPR_IMPL_OBJS = cpr_impl.o cpr_wakecode.o

279 $(KDI_ASSYM_DEPS:%=$(OBJS_DIR)/%): $(DSF_DIR)/$(OBJS_DIR)/kdi_assym.h

new/usr/src/uts/i86pc/io/apix/apix_intr.c 1

**
 25174 Wed May 15 07:34:06 2019
new/usr/src/uts/i86pc/io/apix/apix_intr.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2018 Western Digital Corporation. All rights reserved.
25 * Copyright 2018 Joyent, Inc.
26 */

28 #include <sys/cpuvar.h>
29 #include <sys/cpu_event.h>
30 #include <sys/param.h>
31 #include <sys/cmn_err.h>
32 #include <sys/t_lock.h>
33 #include <sys/kmem.h>
34 #include <sys/machlock.h>
35 #include <sys/systm.h>
36 #include <sys/archsystm.h>
37 #include <sys/atomic.h>
38 #include <sys/sdt.h>
39 #include <sys/processor.h>
40 #include <sys/time.h>
41 #include <sys/psm.h>
42 #include <sys/smp_impldefs.h>
43 #include <sys/cram.h>
44 #include <sys/apic.h>
45 #include <sys/pit.h>
46 #include <sys/ddi.h>
47 #include <sys/sunddi.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/pci.h>
50 #include <sys/promif.h>
51 #include <sys/x86_archext.h>
52 #include <sys/cpc_impl.h>
53 #include <sys/uadmin.h>
54 #include <sys/panic.h>
55 #include <sys/debug.h>
56 #include <sys/trap.h>
57 #include <sys/machsystm.h>
58 #include <sys/sysmacros.h>

new/usr/src/uts/i86pc/io/apix/apix_intr.c 2

59 #include <sys/rm_platter.h>
60 #include <sys/privregs.h>
61 #include <sys/note.h>
62 #include <sys/pci_intr_lib.h>
63 #include <sys/spl.h>
64 #include <sys/clock.h>
65 #include <sys/dditypes.h>
66 #include <sys/sunddi.h>
67 #include <sys/x_call.h>
68 #include <sys/reboot.h>
69 #include <vm/hat_i86.h>
70 #include <sys/stack.h>
71 #include <sys/apix.h>
72 #include <sys/ht.h>

74 static void apix_post_hardint(int);

76 /*
77 * Insert an vector into the tail of the interrupt pending list
78 */
79 static __inline__ void
80 apix_insert_pending_av(apix_impl_t *apixp, struct autovec *avp, int ipl)
81 {
82 struct autovec **head = apixp->x_intr_head;
83 struct autovec **tail = apixp->x_intr_tail;

85 avp->av_ipl_link = NULL;
86 if (tail[ipl] == NULL) {
87 head[ipl] = tail[ipl] = avp;
88 return;
89 }

91 tail[ipl]->av_ipl_link = avp;
92 tail[ipl] = avp;
93 }

______unchanged_portion_omitted_

229 static caddr_t
230 apix_do_softint_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil,
231 caddr_t stackptr)
232 {
233 kthread_t *t, *volatile it;
234 struct machcpu *mcpu = &cpu->cpu_m;
235 hrtime_t now;

237 UNREFERENCED_1PARAMETER(oldpil);
238 ASSERT(pil > mcpu->mcpu_pri && pil > cpu->cpu_base_spl);

240 atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, ~(1 << pil));

242 mcpu->mcpu_pri = pil;

244 now = tsc_read();

246 /*
247 * Get set to run interrupt thread.
248 * There should always be an interrupt thread since we
249 * allocate one for each level on the CPU.
250 */
251 it = cpu->cpu_intr_thread;
252 ASSERT(it != NULL);
253 cpu->cpu_intr_thread = it->t_link;

255 /* t_intr_start could be zero due to cpu_intr_swtch_enter. */
256 t = cpu->cpu_thread;
257 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) {

new/usr/src/uts/i86pc/io/apix/apix_intr.c 3

258 hrtime_t intrtime = now - t->t_intr_start;
259 mcpu->intrstat[pil][0] += intrtime;
260 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
261 t->t_intr_start = 0;
262 }

264 /*
265 * Note that the code in kcpc_overflow_intr -relies- on the
266 * ordering of events here - in particular that t->t_lwp of
267 * the interrupt thread is set to the pinned thread *before*
268 * curthread is changed.
269 */
270 it->t_lwp = t->t_lwp;
271 it->t_state = TS_ONPROC;

273 /*
274 * Push interrupted thread onto list from new thread.
275 * Set the new thread as the current one.
276 * Set interrupted thread’s T_SP because if it is the idle thread,
277 * resume() may use that stack between threads.
278 */

280 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);
281 t->t_sp = (uintptr_t)stackptr;

283 it->t_intr = t;
284 cpu->cpu_thread = it;
285 ht_begin_intr(pil);

287 /*
288 * Set bit for this pil in CPU’s interrupt active bitmask.
289 */
290 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
291 cpu->cpu_intr_actv |= (1 << pil);

293 /*
294 * Initialize thread priority level from intr_pri
295 */
296 it->t_pil = (uchar_t)pil;
297 it->t_pri = (pri_t)pil + intr_pri;
298 it->t_intr_start = now;

300 return (it->t_stk);
301 }

303 static void
304 apix_do_softint_epilog(struct cpu *cpu, uint_t oldpil)
305 {
306 struct machcpu *mcpu = &cpu->cpu_m;
307 kthread_t *t, *it;
308 uint_t pil, basespl;
309 hrtime_t intrtime;
310 hrtime_t now = tsc_read();

312 it = cpu->cpu_thread;
313 pil = it->t_pil;

315 cpu->cpu_stats.sys.intr[pil - 1]++;

317 ASSERT(cpu->cpu_intr_actv & (1 << pil));
318 cpu->cpu_intr_actv &= ~(1 << pil);

320 intrtime = now - it->t_intr_start;
321 mcpu->intrstat[pil][0] += intrtime;
322 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;

new/usr/src/uts/i86pc/io/apix/apix_intr.c 4

324 /*
325 * If there is still an interrupted thread underneath this one
326 * then the interrupt was never blocked and the return is
327 * fairly simple. Otherwise it isn’t.
328 */
329 if ((t = it->t_intr) == NULL) {
330 /*
331 * Put thread back on the interrupt thread list.
332 * This was an interrupt thread, so set CPU’s base SPL.
333 */
334 set_base_spl();
335 /* mcpu->mcpu_pri = cpu->cpu_base_spl; */

337 /*
338 * If there are pending interrupts, send a softint to
339 * re-enter apix_do_interrupt() and get them processed.
340 */
341 if (apixs[cpu->cpu_id]->x_intr_pending)
342 siron();

344 it->t_state = TS_FREE;
345 it->t_link = cpu->cpu_intr_thread;
346 cpu->cpu_intr_thread = it;
347 (void) splhigh();
348 sti();
349 swtch();
350 /*NOTREACHED*/
351 panic("dosoftint_epilog: swtch returned");
352 }
353 it->t_link = cpu->cpu_intr_thread;
354 cpu->cpu_intr_thread = it;
355 it->t_state = TS_FREE;
356 ht_end_intr();
357 cpu->cpu_thread = t;

359 if (t->t_flag & T_INTR_THREAD)
360 t->t_intr_start = now;
361 basespl = cpu->cpu_base_spl;
362 pil = MAX(oldpil, basespl);
363 mcpu->mcpu_pri = pil;
364 }

______unchanged_portion_omitted_

415 static int
416 apix_hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil,
417 struct regs *rp)
418 {
419 struct machcpu *mcpu = &cpu->cpu_m;
420 hrtime_t intrtime;
421 hrtime_t now = tsc_read();
422 apix_impl_t *apixp = apixs[cpu->cpu_id];
423 uint_t mask;

425 ASSERT(pil > mcpu->mcpu_pri && pil > cpu->cpu_base_spl);

427 if (pil == CBE_HIGH_PIL) { /* 14 */
428 cpu->cpu_profile_pil = oldpil;
429 if (USERMODE(rp->r_cs)) {
430 cpu->cpu_profile_pc = 0;
431 cpu->cpu_profile_upc = rp->r_pc;
432 cpu->cpu_cpcprofile_pc = 0;
433 cpu->cpu_cpcprofile_upc = rp->r_pc;
434 } else {
435 cpu->cpu_profile_pc = rp->r_pc;
436 cpu->cpu_profile_upc = 0;
437 cpu->cpu_cpcprofile_pc = rp->r_pc;

new/usr/src/uts/i86pc/io/apix/apix_intr.c 5

438 cpu->cpu_cpcprofile_upc = 0;
439 }
440 }

442 mcpu->mcpu_pri = pil;

444 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK;
445 if (mask != 0) {
446 int nestpil;

448 /*
449 * We have interrupted another high-level interrupt.
450 * Load starting timestamp, compute interval, update
451 * cumulative counter.
452 */
453 nestpil = bsrw_insn((uint16_t)mask);
454 intrtime = now -
455 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)];
456 mcpu->intrstat[nestpil][0] += intrtime;
457 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
458 } else {
459 kthread_t *t = cpu->cpu_thread;

461 /*
462 * See if we are interrupting a low-level interrupt thread.
463 * If so, account for its time slice only if its time stamp
464 * is non-zero.
465 */
466 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) {
467 intrtime = now - t->t_intr_start;
468 mcpu->intrstat[t->t_pil][0] += intrtime;
469 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
470 t->t_intr_start = 0;
471 }
472 }

474 ht_begin_intr(pil);

476 /* store starting timestamp in CPu structure for this IPL */
477 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now;

479 if (pil == 15) {
480 /*
481 * To support reentrant level 15 interrupts, we maintain a
482 * recursion count in the top half of cpu_intr_actv. Only
483 * when this count hits zero do we clear the PIL 15 bit from
484 * the lower half of cpu_intr_actv.
485 */
486 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;
487 (*refcntp)++;
488 }

490 cpu->cpu_intr_actv |= (1 << pil);
491 /* clear pending ipl level bit */
492 apixp->x_intr_pending &= ~(1 << pil);

494 return (mask);
495 }

497 static int
498 apix_hilevel_intr_epilog(struct cpu *cpu, uint_t oldpil)
499 {
500 struct machcpu *mcpu = &cpu->cpu_m;
501 uint_t mask, pil;
502 hrtime_t intrtime;
503 hrtime_t now = tsc_read();

new/usr/src/uts/i86pc/io/apix/apix_intr.c 6

505 pil = mcpu->mcpu_pri;
506 cpu->cpu_stats.sys.intr[pil - 1]++;

508 ASSERT(cpu->cpu_intr_actv & (1 << pil));

510 if (pil == 15) {
511 /*
512 * To support reentrant level 15 interrupts, we maintain a
513 * recursion count in the top half of cpu_intr_actv. Only
514 * when this count hits zero do we clear the PIL 15 bit from
515 * the lower half of cpu_intr_actv.
516 */
517 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;

519 ASSERT(*refcntp > 0);

521 if (--(*refcntp) == 0)
522 cpu->cpu_intr_actv &= ~(1 << pil);
523 } else {
524 cpu->cpu_intr_actv &= ~(1 << pil);
525 }

527 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0);

529 intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)];
530 mcpu->intrstat[pil][0] += intrtime;
531 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;

533 /*
534 * Check for lower-pil nested high-level interrupt beneath
535 * current one. If so, place a starting timestamp in its
536 * pil_high_start entry.
537 */
538 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK;
539 if (mask != 0) {
540 int nestpil;

542 /*
543 * find PIL of nested interrupt
544 */
545 nestpil = bsrw_insn((uint16_t)mask);
546 ASSERT(nestpil < pil);
547 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now;
548 /*
549 * (Another high-level interrupt is active below this one,
550 * so there is no need to check for an interrupt
551 * thread. That will be done by the lowest priority
552 * high-level interrupt active.)
553 */
554 } else {
555 /*
556 * Check to see if there is a low-level interrupt active.
557 * If so, place a starting timestamp in the thread
558 * structure.
559 */
560 kthread_t *t = cpu->cpu_thread;

562 if (t->t_flag & T_INTR_THREAD)
563 t->t_intr_start = now;
564 }

566 ht_end_intr();

568 mcpu->mcpu_pri = oldpil;
569 if (pil < CBE_HIGH_PIL)

new/usr/src/uts/i86pc/io/apix/apix_intr.c 7

570 (void) (*setlvlx)(oldpil, 0);

572 return (mask);
573 }

______unchanged_portion_omitted_

616 /*
617 * Get an interrupt thread and swith to it. It’s called from do_interrupt().
618 * The IF flag is cleared and thus all maskable interrupts are blocked at
619 * the time of calling.
620 */
621 static caddr_t
622 apix_intr_thread_prolog(struct cpu *cpu, uint_t pil, caddr_t stackptr)
623 {
624 apix_impl_t *apixp = apixs[cpu->cpu_id];
625 struct machcpu *mcpu = &cpu->cpu_m;
626 hrtime_t now = tsc_read();
627 kthread_t *t, *volatile it;

629 ASSERT(pil > mcpu->mcpu_pri && pil > cpu->cpu_base_spl);

631 apixp->x_intr_pending &= ~(1 << pil);
632 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
633 cpu->cpu_intr_actv |= (1 << pil);
634 mcpu->mcpu_pri = pil;

636 /*
637 * Get set to run interrupt thread.
638 * There should always be an interrupt thread since we
639 * allocate one for each level on the CPU.
640 */
641 /* t_intr_start could be zero due to cpu_intr_swtch_enter. */
642 t = cpu->cpu_thread;
643 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) {
644 hrtime_t intrtime = now - t->t_intr_start;
645 mcpu->intrstat[pil][0] += intrtime;
646 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
647 t->t_intr_start = 0;
648 }

650 /*
651 * Push interrupted thread onto list from new thread.
652 * Set the new thread as the current one.
653 * Set interrupted thread’s T_SP because if it is the idle thread,
654 * resume() may use that stack between threads.
655 */

657 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);

659 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */

661 /*
662 * Note that the code in kcpc_overflow_intr -relies- on the
663 * ordering of events here - in particular that t->t_lwp of
664 * the interrupt thread is set to the pinned thread *before*
665 * curthread is changed.
666 */
667 it = cpu->cpu_intr_thread;
668 cpu->cpu_intr_thread = it->t_link;
669 it->t_intr = t;
670 it->t_lwp = t->t_lwp;

672 /*
673 * (threads on the interrupt thread free list could have state
674 * preset to TS_ONPROC, but it helps in debugging if
675 * they’re TS_FREE.)

new/usr/src/uts/i86pc/io/apix/apix_intr.c 8

676 */
677 it->t_state = TS_ONPROC;

679 cpu->cpu_thread = it;
680 ht_begin_intr(pil);

682 /*
683 * Initialize thread priority level from intr_pri
684 */
685 it->t_pil = (uchar_t)pil;
686 it->t_pri = (pri_t)pil + intr_pri;
687 it->t_intr_start = now;

689 return (it->t_stk);
690 }

692 static void
693 apix_intr_thread_epilog(struct cpu *cpu, uint_t oldpil)
694 {
695 struct machcpu *mcpu = &cpu->cpu_m;
696 kthread_t *t, *it = cpu->cpu_thread;
697 uint_t pil, basespl;
698 hrtime_t intrtime;
699 hrtime_t now = tsc_read();

701 pil = it->t_pil;
702 cpu->cpu_stats.sys.intr[pil - 1]++;

704 ASSERT(cpu->cpu_intr_actv & (1 << pil));
705 cpu->cpu_intr_actv &= ~(1 << pil);

707 ASSERT(it->t_intr_start != 0);
708 intrtime = now - it->t_intr_start;
709 mcpu->intrstat[pil][0] += intrtime;
710 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;

712 /*
713 * If there is still an interrupted thread underneath this one
714 * then the interrupt was never blocked and the return is
715 * fairly simple. Otherwise it isn’t.
716 */
717 if ((t = it->t_intr) == NULL) {
718 /*
719 * The interrupted thread is no longer pinned underneath
720 * the interrupt thread. This means the interrupt must
721 * have blocked, and the interrupted thread has been
722 * unpinned, and has probably been running around the
723 * system for a while.
724 *
725 * Since there is no longer a thread under this one, put
726 * this interrupt thread back on the CPU’s free list and
727 * resume the idle thread which will dispatch the next
728 * thread to run.
729 */
730 cpu->cpu_stats.sys.intrblk++;

732 /*
733 * Put thread back on the interrupt thread list.
734 * This was an interrupt thread, so set CPU’s base SPL.
735 */
736 set_base_spl();
737 basespl = cpu->cpu_base_spl;
738 mcpu->mcpu_pri = basespl;
739 (*setlvlx)(basespl, 0);

741 /*

new/usr/src/uts/i86pc/io/apix/apix_intr.c 9

742 * If there are pending interrupts, send a softint to
743 * re-enter apix_do_interrupt() and get them processed.
744 */
745 if (apixs[cpu->cpu_id]->x_intr_pending)
746 siron();

748 it->t_state = TS_FREE;
749 /*
750 * Return interrupt thread to pool
751 */
752 it->t_link = cpu->cpu_intr_thread;
753 cpu->cpu_intr_thread = it;

755 (void) splhigh();
756 sti();
757 swtch();
758 /*NOTREACHED*/
759 panic("dosoftint_epilog: swtch returned");
760 }

762 /*
763 * Return interrupt thread to the pool
764 */
765 it->t_link = cpu->cpu_intr_thread;
766 cpu->cpu_intr_thread = it;
767 it->t_state = TS_FREE;

769 ht_end_intr();
770 cpu->cpu_thread = t;

772 if (t->t_flag & T_INTR_THREAD)
773 t->t_intr_start = now;
774 basespl = cpu->cpu_base_spl;
775 mcpu->mcpu_pri = MAX(oldpil, basespl);
776 (*setlvlx)(mcpu->mcpu_pri, 0);
777 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/apix/apix_utils.c 1

**
 48773 Wed May 15 07:34:06 2019
new/usr/src/uts/i86pc/io/apix/apix_utils.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
31 * Copyright 2013 Pluribus Networks, Inc.
32 * Copyright 2018 Joyent, Inc.
33 */

35 #include <sys/processor.h>
36 #include <sys/time.h>
37 #include <sys/psm.h>
38 #include <sys/smp_impldefs.h>
39 #include <sys/cram.h>
40 #include <sys/acpi/acpi.h>
41 #include <sys/acpica.h>
42 #include <sys/psm_common.h>
43 #include <sys/pit.h>
44 #include <sys/ddi.h>
45 #include <sys/sunddi.h>
46 #include <sys/ddi_impldefs.h>
47 #include <sys/pci.h>
48 #include <sys/promif.h>
49 #include <sys/x86_archext.h>
50 #include <sys/cpc_impl.h>
51 #include <sys/uadmin.h>
52 #include <sys/panic.h>
53 #include <sys/debug.h>
54 #include <sys/archsystm.h>
55 #include <sys/trap.h>
56 #include <sys/machsystm.h>
57 #include <sys/sysmacros.h>
58 #include <sys/cpuvar.h>

new/usr/src/uts/i86pc/io/apix/apix_utils.c 2

59 #include <sys/rm_platter.h>
60 #include <sys/privregs.h>
61 #include <sys/note.h>
62 #include <sys/pci_intr_lib.h>
63 #include <sys/spl.h>
64 #include <sys/clock.h>
65 #include <sys/dditypes.h>
66 #include <sys/sunddi.h>
67 #include <sys/x_call.h>
68 #include <sys/reboot.h>
69 #include <sys/apix.h>
70 #include <sys/ht.h>

72 static int apix_get_avail_vector_oncpu(uint32_t, int, int);
73 static apix_vector_t *apix_init_vector(processorid_t, uchar_t);
74 static void apix_cleanup_vector(apix_vector_t *);
75 static void apix_insert_av(apix_vector_t *, void *, avfunc, caddr_t, caddr_t,
76 uint64_t *, int, dev_info_t *);
77 static void apix_remove_av(apix_vector_t *, struct autovec *);
78 static void apix_clear_dev_map(dev_info_t *, int, int);
79 static boolean_t apix_is_cpu_enabled(processorid_t);
80 static void apix_wait_till_seen(processorid_t, int);

82 #define GET_INTR_INUM(ihdlp) \
83 (((ihdlp) != NULL) ? ((ddi_intr_handle_impl_t *)(ihdlp))->ih_inum : 0)

85 apix_rebind_info_t apix_rebindinfo = {0, 0, 0, NULL, 0, NULL};

87 /*
88 * Allocate IPI
89 *
90 * Return vector number or 0 on error
91 */
92 uchar_t
93 apix_alloc_ipi(int ipl)
94 {
95 apix_vector_t *vecp;
96 uchar_t vector;
97 int cpun;
98 int nproc;

100 APIX_ENTER_CPU_LOCK(0);

102 vector = apix_get_avail_vector_oncpu(0, APIX_IPI_MIN, APIX_IPI_MAX);
103 if (vector == 0) {
104 APIX_LEAVE_CPU_LOCK(0);
105 cmn_err(CE_WARN, "apix: no available IPI\n");
106 apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
107 return (0);
108 }

110 nproc = max(apic_nproc, apic_max_nproc);
111 for (cpun = 0; cpun < nproc; cpun++) {
112 vecp = xv_vector(cpun, vector);
113 if (vecp == NULL) {
114 vecp = kmem_zalloc(sizeof (apix_vector_t), KM_NOSLEEP);
115 if (vecp == NULL) {
116 cmn_err(CE_WARN, "apix: No memory for ipi");
117 goto fail;
118 }
119 xv_vector(cpun, vector) = vecp;
120 }
121 vecp->v_state = APIX_STATE_ALLOCED;
122 vecp->v_type = APIX_TYPE_IPI;
123 vecp->v_cpuid = vecp->v_bound_cpuid = cpun;
124 vecp->v_vector = vector;

new/usr/src/uts/i86pc/io/apix/apix_utils.c 3

125 vecp->v_pri = ipl;
126 }
127 APIX_LEAVE_CPU_LOCK(0);
128 return (vector);

130 fail:
131 while (--cpun >= 0)
132 apix_cleanup_vector(xv_vector(cpun, vector));
133 APIX_LEAVE_CPU_LOCK(0);
134 return (0);
135 }

______unchanged_portion_omitted_

772 /*
773 * Operations on avintr
774 */

776 #define INIT_AUTOVEC(p, intr_id, f, arg1, arg2, ticksp, ipl, dip) \
777 do { \
778 (p)->av_intr_id = intr_id; \
779 (p)->av_vector = f; \
780 (p)->av_intarg1 = arg1; \
781 (p)->av_intarg2 = arg2; \
782 (p)->av_ticksp = ticksp; \
783 (p)->av_prilevel = ipl; \
784 (p)->av_dip = dip; \
785 (p)->av_flags = 0; \
786 _NOTE(CONSTCOND)} while (0)

788 /*
789 * Insert an interrupt service routine into chain by its priority from
790 * high to low
791 */
792 static void
793 apix_insert_av(apix_vector_t *vecp, void *intr_id, avfunc f, caddr_t arg1,
794 caddr_t arg2, uint64_t *ticksp, int ipl, dev_info_t *dip)
795 {
796 struct autovec *p, *prep, *mem;

798 APIC_VERBOSE(INTR, (CE_CONT, "apix_insert_av: dip %p, vector 0x%x, "
799 "cpu %d\n", (void *)dip, vecp->v_vector, vecp->v_cpuid));

801 mem = kmem_zalloc(sizeof (struct autovec), KM_SLEEP);
802 INIT_AUTOVEC(mem, intr_id, f, arg1, arg2, ticksp, ipl, dip);
803 if (vecp->v_type == APIX_TYPE_FIXED && apic_level_intr[vecp->v_inum])
804 mem->av_flags |= AV_PENTRY_LEVEL;

806 vecp->v_share++;
807 vecp->v_pri = (ipl > vecp->v_pri) ? ipl : vecp->v_pri;

809 ht_intr_alloc_pil(vecp->v_pri);

811 if (vecp->v_autovect == NULL) { /* Nothing on list - put it at head */
812 vecp->v_autovect = mem;
813 return;
814 }

816 if (DDI_INTR_IS_MSI_OR_MSIX(vecp->v_type)) { /* MSI/X */
817 ASSERT(vecp->v_share == 1); /* No sharing for MSI/X */

819 INIT_AUTOVEC(vecp->v_autovect, intr_id, f, arg1, arg2, ticksp,
820 ipl, dip);
821 prep = vecp->v_autovect->av_link;
822 vecp->v_autovect->av_link = NULL;

824 /* Free the following autovect chain */

new/usr/src/uts/i86pc/io/apix/apix_utils.c 4

825 while (prep != NULL) {
826 ASSERT(prep->av_vector == NULL);

828 p = prep;
829 prep = prep->av_link;
830 kmem_free(p, sizeof (struct autovec));
831 }

833 kmem_free(mem, sizeof (struct autovec));
834 return;
835 }

837 /* find where it goes in list */
838 prep = NULL;
839 for (p = vecp->v_autovect; p != NULL; p = p->av_link) {
840 if (p->av_vector && p->av_prilevel <= ipl)
841 break;
842 prep = p;
843 }
844 if (prep != NULL) {
845 if (prep->av_vector == NULL) { /* freed struct available */
846 INIT_AUTOVEC(prep, intr_id, f, arg1, arg2,
847 ticksp, ipl, dip);
848 prep->av_flags = mem->av_flags;
849 kmem_free(mem, sizeof (struct autovec));
850 return;
851 }

853 mem->av_link = prep->av_link;
854 prep->av_link = mem;
855 } else {
856 /* insert new intpt at beginning of chain */
857 mem->av_link = vecp->v_autovect;
858 vecp->v_autovect = mem;
859 }
860 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/pcplusmp/apic.c 1

**
 33081 Wed May 15 07:34:07 2019
new/usr/src/uts/i86pc/io/pcplusmp/apic.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 * Copyright 2018 Joyent, Inc.
29 */

31 /*
32 * To understand how the pcplusmp module interacts with the interrupt subsystem
33 * read the theory statement in uts/i86pc/os/intr.c.
34 */

36 /*
37 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
38 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
39 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
40 * PSMI 1.5 extensions are supported in Solaris Nevada.
41 * PSMI 1.6 extensions are supported in Solaris Nevada.
42 * PSMI 1.7 extensions are supported in Solaris Nevada.
43 */
44 #define PSMI_1_7

46 #include <sys/processor.h>
47 #include <sys/time.h>
48 #include <sys/psm.h>
49 #include <sys/smp_impldefs.h>
50 #include <sys/cram.h>
51 #include <sys/acpi/acpi.h>
52 #include <sys/acpica.h>
53 #include <sys/psm_common.h>
54 #include <sys/apic.h>
55 #include <sys/pit.h>
56 #include <sys/ddi.h>
57 #include <sys/sunddi.h>
58 #include <sys/ddi_impldefs.h>

new/usr/src/uts/i86pc/io/pcplusmp/apic.c 2

59 #include <sys/pci.h>
60 #include <sys/promif.h>
61 #include <sys/x86_archext.h>
62 #include <sys/cpc_impl.h>
63 #include <sys/uadmin.h>
64 #include <sys/panic.h>
65 #include <sys/debug.h>
66 #include <sys/archsystm.h>
67 #include <sys/trap.h>
68 #include <sys/machsystm.h>
69 #include <sys/sysmacros.h>
70 #include <sys/cpuvar.h>
71 #include <sys/rm_platter.h>
72 #include <sys/privregs.h>
73 #include <sys/note.h>
74 #include <sys/pci_intr_lib.h>
75 #include <sys/spl.h>
76 #include <sys/clock.h>
77 #include <sys/cyclic.h>
78 #include <sys/dditypes.h>
79 #include <sys/sunddi.h>
80 #include <sys/x_call.h>
81 #include <sys/reboot.h>
82 #include <sys/hpet.h>
83 #include <sys/apic_common.h>
84 #include <sys/apic_timer.h>
85 #include <sys/ht.h>

87 /*
88 * Local Function Prototypes
89 */
90 static void apic_init_intr(void);

92 /*
93 * standard MP entries
94 */
95 static int apic_probe(void);
96 static int apic_getclkirq(int ipl);
97 static void apic_init(void);
98 static void apic_picinit(void);
99 static int apic_post_cpu_start(void);
100 static int apic_intr_enter(int ipl, int *vect);
101 static void apic_setspl(int ipl);
102 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
103 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
104 static int apic_disable_intr(processorid_t cpun);
105 static void apic_enable_intr(processorid_t cpun);
106 static int apic_get_ipivect(int ipl, int type);
107 static void apic_post_cyclic_setup(void *arg);

109 #define UCHAR_MAX UINT8_MAX

111 /*
112 * The following vector assignments influence the value of ipltopri and
113 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
114 * idle to 0 and IPL 0 to 0xf to differentiate idle in case
115 * we care to do so in future. Note some IPLs which are rarely used
116 * will share the vector ranges and heavily used IPLs (5 and 6) have
117 * a wide range.
118 *
119 * This array is used to initialize apic_ipls[] (in apic_init()).
120 *
121 * IPL Vector range. as passed to intr_enter
122 * 0 none.
123 * 1,2,3 0x20-0x2f 0x0-0xf
124 * 4 0x30-0x3f 0x10-0x1f

new/usr/src/uts/i86pc/io/pcplusmp/apic.c 3

125 * 5 0x40-0x5f 0x20-0x3f
126 * 6 0x60-0x7f 0x40-0x5f
127 * 7,8,9 0x80-0x8f 0x60-0x6f
128 * 10 0x90-0x9f 0x70-0x7f
129 * 11 0xa0-0xaf 0x80-0x8f
130 *
131 * 15 0xe0-0xef 0xc0-0xcf
132 * 15 0xf0-0xff 0xd0-0xdf
133 */
134 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
135 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
136 };

______unchanged_portion_omitted_

278 void
279 apic_init(void)
280 {
281 int i;
282 int j = 1;

284 psm_get_ioapicid = apic_get_ioapicid;
285 psm_get_localapicid = apic_get_localapicid;
286 psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;

288 apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
289 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
290 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
291 (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
292 /* get to highest vector at the same ipl */
293 continue;
294 for (; j <= apic_vectortoipl[i]; j++) {
295 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
296 APIC_BASE_VECT;
297 }
298 }
299 for (; j < MAXIPL + 1; j++)
300 /* fill up any empty ipltopri slots */
301 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
302 apic_init_common();

304 /*
305 * For pcplusmp, we’ll keep things simple and always disable this.
306 */
307 ht_intr_alloc_pil(XC_CPUPOKE_PIL);

309 apic_pir_vect = apic_get_ipivect(XC_CPUPOKE_PIL, -1);

311 #if !defined(__amd64)
312 if (cpuid_have_cr8access(CPU))
313 apic_have_32bit_cr8 = 1;
314 #endif
315 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/cpuid.c 1

**
 197440 Wed May 15 07:34:07 2019
new/usr/src/uts/i86pc/os/cpuid.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**
______unchanged_portion_omitted_

2123 static void
2124 spec_l1d_flush_noop(void)
2125 {
2126 }

2128 static void
2129 spec_l1d_flush_msr(void)
2130 {
2131 wrmsr(MSR_IA32_FLUSH_CMD, IA32_FLUSH_CMD_L1D);
2132 }

2134 void (*spec_l1d_flush)(void) = spec_l1d_flush_noop;

2136 static void
2137 cpuid_scan_security(cpu_t *cpu, uchar_t *featureset)
2138 {
2139 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;

2141 if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2142 cpi->cpi_xmaxeax >= CPUID_LEAF_EXT_8) {
2143 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_IBPB)
2144 add_x86_feature(featureset, X86FSET_IBPB);
2145 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_IBRS)
2146 add_x86_feature(featureset, X86FSET_IBRS);
2147 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_STIBP)
2148 add_x86_feature(featureset, X86FSET_STIBP);
2149 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_IBRS_ALL)
2150 add_x86_feature(featureset, X86FSET_IBRS_ALL);
2151 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_STIBP_ALL)
2152 add_x86_feature(featureset, X86FSET_STIBP_ALL);
2153 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_PREFER_IBRS)
2154 add_x86_feature(featureset, X86FSET_RSBA);
2155 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_SSBD)
2156 add_x86_feature(featureset, X86FSET_SSBD);
2157 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_VIRT_SSBD)
2158 add_x86_feature(featureset, X86FSET_SSBD_VIRT);
2159 if (cpi->cpi_extd[8].cp_ebx & CPUID_AMD_EBX_SSB_NO)
2160 add_x86_feature(featureset, X86FSET_SSB_NO);
2161 } else if (cpi->cpi_vendor == X86_VENDOR_Intel &&
2162 cpi->cpi_maxeax >= 7) {
2163 struct cpuid_regs *ecp;
2164 ecp = &cpi->cpi_std[7];

2166 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_SPEC_CTRL) {
2167 add_x86_feature(featureset, X86FSET_IBRS);
2168 add_x86_feature(featureset, X86FSET_IBPB);
2169 }

2171 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_STIBP) {
2172 add_x86_feature(featureset, X86FSET_STIBP);
2173 }

2175 /*
2176 * Don’t read the arch caps MSR on xpv where we lack the
2177 * on_trap().
2178 */

new/usr/src/uts/i86pc/os/cpuid.c 2

2179 #ifndef __xpv
2180 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_ARCH_CAPS) {
2181 on_trap_data_t otd;

2183 /*
2184 * Be paranoid and assume we’ll get a #GP.
2185 */
2186 if (!on_trap(&otd, OT_DATA_ACCESS)) {
2187 uint64_t reg;

2189 reg = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2190 if (reg & IA32_ARCH_CAP_RDCL_NO) {
2191 add_x86_feature(featureset,
2192 X86FSET_RDCL_NO);
2193 }
2194 if (reg & IA32_ARCH_CAP_IBRS_ALL) {
2195 add_x86_feature(featureset,
2196 X86FSET_IBRS_ALL);
2197 }
2198 if (reg & IA32_ARCH_CAP_RSBA) {
2199 add_x86_feature(featureset,
2200 X86FSET_RSBA);
2201 }
2202 if (reg & IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) {
2203 add_x86_feature(featureset,
2204 X86FSET_L1D_VM_NO);
2205 }
2206 if (reg & IA32_ARCH_CAP_SSB_NO) {
2207 add_x86_feature(featureset,
2208 X86FSET_SSB_NO);
2209 }
2210 }
2211 no_trap();
2212 }
2213 #endif /* !__xpv */

2215 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_SSBD)
2216 add_x86_feature(featureset, X86FSET_SSBD);

2218 if (ecp->cp_edx & CPUID_INTC_EDX_7_0_FLUSH_CMD)
2219 add_x86_feature(featureset, X86FSET_FLUSH_CMD);
2220 }

2222 if (cpu->cpu_id != 0)
2223 return;

2225 /*
2226 * We’re the boot CPU, so let’s figure out our L1TF status.
2227 *
2228 * First, if this is a RDCL_NO CPU, then we are not vulnerable: we don’t
2229 * need to exclude with ht_acquire(), and we don’t need to flush.
2230 */
2231 if (is_x86_feature(featureset, X86FSET_RDCL_NO)) {
2232 extern int ht_exclusion;
2233 ht_exclusion = 0;
2234 spec_l1d_flush = spec_l1d_flush_noop;
2235 membar_producer();
2236 return;
2237 }

2239 /*
2240 * If HT is enabled, we will need HT exclusion, as well as the flush on
2241 * VM entry. If HT isn’t enabled, we still need at least the flush for
2242 * the L1TF sequential case.
2243 *
2244 * However, if X86FSET_L1D_VM_NO is set, we’re most likely running

new/usr/src/uts/i86pc/os/cpuid.c 3

2245 * inside a VM ourselves, and we don’t need the flush.
2246 *
2247 * If we don’t have the FLUSH_CMD available at all, we’d better just
2248 * hope HT is disabled.
2249 */
2250 if (is_x86_feature(featureset, X86FSET_FLUSH_CMD) &&
2251 !is_x86_feature(featureset, X86FSET_L1D_VM_NO)) {
2252 spec_l1d_flush = spec_l1d_flush_msr;
2253 } else {
2254 spec_l1d_flush = spec_l1d_flush_noop;
2255 }

2257 membar_producer();
2258 }
______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/ht.c 1

**
 15578 Wed May 15 07:34:08 2019
new/usr/src/uts/i86pc/os/ht.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2018 Joyent, Inc.
14 */

16 /*
17 * HT exclusion: prevent a sibling in a hyper-threaded core from running in VMX
18 * non-root guest mode, when certain threads are running on the other sibling.
19 * This avoids speculation-based information leaks such as L1TF being available
20 * to the untrusted guest. The stance we take is that threads from the same
21 * zone as the guest VPCU thread are considered safe to run alongside, but all
22 * other threads (except the idle thread), and all interrupts, are unsafe. Note
23 * that due to the implementation here, there are significant sections of e.g.
24 * the dispatcher code that can run concurrently with a guest, until the thread
25 * reaches ht_mark(). This code assumes there are only two HT threads per core.
26 *
27 * The entry points are as follows:
28 *
29 * ht_mark_as_vcpu()
30 *
31 * All threads that enter guest mode (i.e. VCPU threads) need to call this at
32 * least once, which sets TS_VCPU in ->t_schedflag.
33 *
34 * ht_mark()
35 *
36 * A new ->cpu_thread is now curthread (although interrupt threads have their
37 * own separate handling). After preventing any interrupts, we will take our
38 * own CPU’s spinlock and update our own state in mcpu_ht.
39 *
40 * If our sibling is poisoned (i.e. in guest mode or the little bit of code
41 * around it), and we’re not compatible (that is, same zone ID, or the idle
42 * thread), then we need to ht_kick() that sibling. ht_kick() itself waits for
43 * the sibling to call ht_release(), and it will not re-enter guest mode until
44 * allowed.
45 *
46 * Note that we ignore the fact a process can change its zone ID: poisoning
47 * threads never do so, and we can ignore the other cases.
48 *
49 * ht_acquire()
50 *
51 * We are a VCPU thread about to start guest execution. Interrupts are
52 * disabled. We must have already run ht_mark() to be in this code, so there’s
53 * no need to take our *own* spinlock in order to mark ourselves as CM_POISONED.
54 * Instead, we take our sibling’s lock to also mark ourselves as poisoned in the
55 * sibling cpu_ht_t. This is so ht_mark() will only ever need to look at its
56 * local mcpu_ht.
57 *
58 * We’ll loop here for up to ht_acquire_wait_time microseconds; this is mainly

new/usr/src/uts/i86pc/os/ht.c 2

59 * to wait out any sibling interrupt: many of them will complete quicker than
60 * this.
61 *
62 * Finally, if we succeeded in acquiring the core, we’ll flush the L1 cache as
63 * mitigation against L1TF: no incompatible thread will now be able to populate
64 * the L1 cache until *we* ht_release().
65 *
66 * ht_release()
67 *
68 * Simply unpoison ourselves similarly to ht_acquire(); ht_kick() will wait for
69 * this to happen if needed.
70 *
71 * ht_begin_intr()
72 *
73 * In an interrupt prolog. We’re either a hilevel interrupt, or a pinning
74 * interrupt. In both cases, we mark our interrupt depth, and potentially
75 * ht_kick(). This enforces exclusion, but doesn’t otherwise modify ->ch_state:
76 * we want the dispatcher code to essentially ignore interrupts.
77 *
78 * ht_end_intr()
79 *
80 * In an interrupt epilogue *or* thread_unpin(). In the first case, we never
81 * slept, and we can simply decrement our counter. In the second case, we’re an
82 * interrupt thread about to sleep: we’ll still just decrement our counter, and
83 * henceforth treat the thread as a normal thread when it next gets scheduled,
84 * until it finally gets to its epilogue.
85 *
86 * ht_mark_unsafe() / ht_mark_safe()
87 *
88 * Mark the current thread as temporarily unsafe (guests should not be executing
89 * while a sibling is marked unsafe). This can be used for a thread that’s
90 * otherwise considered safe, if it needs to handle potentially sensitive data.
91 * Right now, this means certain I/O handling operations that reach down into
92 * the networking and ZFS sub-systems.
93 *
94 * ht_should_run(thread, cpu)
95 *
96 * This is used by the dispatcher when making scheduling decisions: if the
97 * sibling is compatible with the given thread, we return B_TRUE. This is
98 * essentially trying to guess if any subsequent ht_acquire() will fail, by
99 * peeking at the sibling CPU’s state. The peek is racy, but if we get things
100 * wrong, the "only" consequence is that ht_acquire() may lose.
101 *
102 * ht_adjust_cpu_score()
103 *
104 * Used when scoring other CPUs in disp_lowpri_cpu(). If we shouldn’t run here,
105 * we’ll add a small penalty to the score. This also makes sure a VCPU thread
106 * migration behaves properly.
107 */

109 #include <sys/archsystm.h>
110 #include <sys/disp.h>
111 #include <sys/cmt.h>
112 #include <sys/systm.h>
113 #include <sys/cpu.h>
114 #include <sys/var.h>
115 #include <sys/xc_levels.h>
116 #include <sys/cmn_err.h>
117 #include <sys/sysmacros.h>
118 #include <sys/x86_archext.h>

120 #define CS_SHIFT (8)
121 #define CS_MASK ((1 << CS_SHIFT) - 1)
122 #define CS_MARK(s) ((s) & CS_MASK)
123 #define CS_ZONE(s) ((s) >> CS_SHIFT)
124 #define CS_MK(s, z) ((s) | (z << CS_SHIFT))

new/usr/src/uts/i86pc/os/ht.c 3

126 typedef enum ch_mark {
127 CM_IDLE = 0, /* running CPU idle thread */
128 CM_THREAD, /* running general non-VCPU thread */
129 CM_UNSAFE, /* running ->t_unsafe thread */
130 CM_VCPU, /* running VCPU thread */
131 CM_POISONED /* running in guest */
132 } ch_mark_t;

134 /* Double-check our false-sharing padding. */
135 CTASSERT(offsetof(cpu_ht_t, ch_sib) == 64);
136 CTASSERT(CM_IDLE == 0);
137 CTASSERT(CM_POISONED < (1 << CS_SHIFT));
138 CTASSERT(CM_POISONED > CM_VCPU);
139 CTASSERT(CM_VCPU > CM_UNSAFE);

141 static uint_t empty_pil = XC_CPUPOKE_PIL;

143 /*
144 * If disabled, no HT exclusion is performed, and system is potentially
145 * vulnerable to L1TF if hyper-threading is enabled, and we don’t have the "not
146 * vulnerable" CPUID bit.
147 */
148 int ht_exclusion = 1;

150 /*
151 * How long ht_acquire() will spin trying to acquire the core, in micro-seconds.
152 * This is enough time to wait out a significant proportion of interrupts.
153 */
154 clock_t ht_acquire_wait_time = 64;

156 static cpu_t *
157 ht_find_sibling(cpu_t *cp)
158 {
159 for (uint_t i = 0; i < GROUP_SIZE(&cp->cpu_pg->cmt_pgs); i++) {
160 pg_cmt_t *pg = GROUP_ACCESS(&cp->cpu_pg->cmt_pgs, i);
161 group_t *cg = &pg->cmt_pg.pghw_pg.pg_cpus;

163 if (pg->cmt_pg.pghw_hw != PGHW_IPIPE)
164 continue;

166 if (GROUP_SIZE(cg) == 1)
167 break;

169 VERIFY3U(GROUP_SIZE(cg), ==, 2);

171 if (GROUP_ACCESS(cg, 0) != cp)
172 return (GROUP_ACCESS(cg, 0));

174 VERIFY3P(GROUP_ACCESS(cg, 1), !=, cp);

176 return (GROUP_ACCESS(cg, 1));
177 }

179 return (NULL);
180 }

182 /*
183 * Initialize HT links. We have to be careful here not to race with
184 * ht_begin/end_intr(), which also complicates trying to do this initialization
185 * from a cross-call; hence the slightly odd approach below.
186 */
187 void
188 ht_init(void)
189 {
190 cpu_t *scp = CPU;

new/usr/src/uts/i86pc/os/ht.c 4

191 cpu_t *cp = scp;
192 ulong_t flags;

194 if (!ht_exclusion)
195 return;

197 mutex_enter(&cpu_lock);

199 do {
200 thread_affinity_set(curthread, cp->cpu_id);
201 flags = intr_clear();

203 cp->cpu_m.mcpu_ht.ch_intr_depth = 0;
204 cp->cpu_m.mcpu_ht.ch_state = CS_MK(CM_THREAD, GLOBAL_ZONEID);
205 cp->cpu_m.mcpu_ht.ch_sibstate = CS_MK(CM_THREAD, GLOBAL_ZONEID);
206 ASSERT3P(cp->cpu_m.mcpu_ht.ch_sib, ==, NULL);
207 cp->cpu_m.mcpu_ht.ch_sib = ht_find_sibling(cp);

209 intr_restore(flags);
210 thread_affinity_clear(curthread);
211 } while ((cp = cp->cpu_next_onln) != scp);

213 mutex_exit(&cpu_lock);
214 }

216 /*
217 * We’re adding an interrupt handler of some kind at the given PIL. If this
218 * happens to be the same PIL as XC_CPUPOKE_PIL, then we need to disable our
219 * pil_needs_kick() optimization, as there is now potentially an unsafe
220 * interrupt handler at that PIL. This typically won’t occur, so we’re not that
221 * careful about what’s actually getting added, which CPU it’s on, or if it gets
222 * removed. This also presumes that softints can’t cover our empty_pil.
223 */
224 void
225 ht_intr_alloc_pil(uint_t pil)
226 {
227 ASSERT(pil <= PIL_MAX);

229 if (empty_pil == pil)
230 empty_pil = PIL_MAX + 1;
231 }

233 /*
234 * If our sibling is also a VCPU thread from a different zone, we need one of
235 * them to give up, otherwise they will just battle each other for exclusion
236 * until they exhaust their quantum.
237 *
238 * We arbitrate between them by dispatch priority: clearly, a higher-priority
239 * thread deserves to win the acquisition. However, under CPU load, it’ll be
240 * very common to see both threads with ->t_pri == 1. If so, we’ll break the
241 * tie by cpu_id (which is hopefully arbitrary enough).
242 *
243 * If we lose, the VMM code will take this as a hint to call
244 * thread_affinity_set(CPU_BEST), which will likely migrate the VCPU thread
245 * somewhere else.
246 *
247 * Note that all of this state examination is racy, as we don’t own any locks
248 * here.
249 */
250 static boolean_t
251 yield_to_vcpu(cpu_t *sib, zoneid_t zoneid)
252 {
253 cpu_ht_t *sibht = &sib->cpu_m.mcpu_ht;
254 uint64_t sibstate = sibht->ch_state;

256 /*

new/usr/src/uts/i86pc/os/ht.c 5

257 * If we’re likely just waiting for an interrupt, don’t yield.
258 */
259 if (sibht->ch_intr_depth != 0)
260 return (B_FALSE);

262 /*
263 * We’re only interested in VCPUs from a different zone.
264 */
265 if (CS_MARK(sibstate) < CM_VCPU || CS_ZONE(sibstate) == zoneid)
266 return (B_FALSE);

268 if (curthread->t_pri < sib->cpu_dispatch_pri)
269 return (B_TRUE);

271 if (curthread->t_pri == sib->cpu_dispatch_pri &&
272 CPU->cpu_id < sib->cpu_id)
273 return (B_TRUE);

275 return (B_FALSE);
276 }

278 static inline boolean_t
279 sibling_compatible(cpu_ht_t *sibht, zoneid_t zoneid)
280 {
281 uint64_t sibstate = sibht->ch_state;

283 if (sibht->ch_intr_depth != 0)
284 return (B_FALSE);

286 if (CS_MARK(sibstate) == CM_UNSAFE)
287 return (B_FALSE);

289 if (CS_MARK(sibstate) == CM_IDLE)
290 return (B_TRUE);

292 return (CS_ZONE(sibstate) == zoneid);
293 }

295 int
296 ht_acquire(void)
297 {
298 clock_t wait = ht_acquire_wait_time;
299 cpu_ht_t *ht = &CPU->cpu_m.mcpu_ht;
300 zoneid_t zoneid = getzoneid();
301 cpu_ht_t *sibht;
302 int ret = 0;

304 ASSERT(!interrupts_enabled());

306 if (ht->ch_sib == NULL) {
307 /* For the "sequential" L1TF case. */
308 spec_l1d_flush();
309 return (1);
310 }

312 sibht = &ht->ch_sib->cpu_m.mcpu_ht;

314 /* A VCPU thread should never change zone. */
315 ASSERT3U(CS_ZONE(ht->ch_state), ==, zoneid);
316 ASSERT3U(CS_MARK(ht->ch_state), ==, CM_VCPU);
317 ASSERT3U(zoneid, !=, GLOBAL_ZONEID);
318 ASSERT3U(curthread->t_preempt, >=, 1);
319 ASSERT(curthread->t_schedflag & TS_VCPU);

321 while (ret == 0 && wait > 0) {

new/usr/src/uts/i86pc/os/ht.c 6

323 if (yield_to_vcpu(ht->ch_sib, zoneid)) {
324 ret = -1;
325 break;
326 }

328 if (sibling_compatible(sibht, zoneid)) {
329 lock_set(&sibht->ch_lock);

331 if (sibling_compatible(sibht, zoneid)) {
332 ht->ch_state = CS_MK(CM_POISONED, zoneid);
333 sibht->ch_sibstate = CS_MK(CM_POISONED, zoneid);
334 membar_enter();
335 ret = 1;
336 }

338 lock_clear(&sibht->ch_lock);
339 } else {
340 drv_usecwait(10);
341 wait -= 10;
342 }
343 }

345 DTRACE_PROBE4(ht__acquire, int, ret, uint64_t, sibht->ch_state,
346 uint64_t, sibht->ch_intr_depth, clock_t, wait);

348 if (ret == 1)
349 spec_l1d_flush();

351 return (ret);
352 }

354 void
355 ht_release(void)
356 {
357 cpu_ht_t *ht = &CPU->cpu_m.mcpu_ht;
358 zoneid_t zoneid = getzoneid();
359 cpu_ht_t *sibht;

361 ASSERT(!interrupts_enabled());

363 if (ht->ch_sib == NULL)
364 return;

366 ASSERT3U(zoneid, !=, GLOBAL_ZONEID);
367 ASSERT3U(CS_ZONE(ht->ch_state), ==, zoneid);
368 ASSERT3U(CS_MARK(ht->ch_state), ==, CM_POISONED);
369 ASSERT3U(curthread->t_preempt, >=, 1);

371 sibht = &ht->ch_sib->cpu_m.mcpu_ht;

373 lock_set(&sibht->ch_lock);

375 ht->ch_state = CS_MK(CM_VCPU, zoneid);
376 sibht->ch_sibstate = CS_MK(CM_VCPU, zoneid);
377 membar_producer();

379 lock_clear(&sibht->ch_lock);
380 }

382 static void
383 ht_kick(cpu_ht_t *ht, zoneid_t zoneid)
384 {
385 uint64_t sibstate;

387 ASSERT(LOCK_HELD(&ht->ch_lock));
388 ASSERT(!interrupts_enabled());

new/usr/src/uts/i86pc/os/ht.c 7

390 poke_cpu(ht->ch_sib->cpu_id);

392 membar_consumer();
393 sibstate = ht->ch_sibstate;

395 if (CS_MARK(sibstate) != CM_POISONED || CS_ZONE(sibstate) == zoneid)
396 return;

398 lock_clear(&ht->ch_lock);

400 /*
401 * Spin until we can see the sibling has been kicked out or is otherwise
402 * OK.
403 */
404 for (;;) {
405 membar_consumer();
406 sibstate = ht->ch_sibstate;

408 if (CS_MARK(sibstate) != CM_POISONED ||
409 CS_ZONE(sibstate) == zoneid)
410 break;

412 SMT_PAUSE();
413 }

415 lock_set(&ht->ch_lock);
416 }

418 static boolean_t
419 pil_needs_kick(uint_t pil)
420 {
421 return (pil != empty_pil);
422 }

424 void
425 ht_begin_intr(uint_t pil)
426 {
427 ulong_t flags;
428 cpu_ht_t *ht;

430 ASSERT(pil <= PIL_MAX);

432 flags = intr_clear();
433 ht = &CPU->cpu_m.mcpu_ht;

435 if (ht->ch_sib == NULL) {
436 intr_restore(flags);
437 return;
438 }

440 if (atomic_inc_64_nv(&ht->ch_intr_depth) == 1 && pil_needs_kick(pil)) {
441 lock_set(&ht->ch_lock);

443 membar_consumer();

445 if (CS_MARK(ht->ch_sibstate) == CM_POISONED)
446 ht_kick(ht, GLOBAL_ZONEID);

448 lock_clear(&ht->ch_lock);
449 }

451 intr_restore(flags);
452 }

454 void

new/usr/src/uts/i86pc/os/ht.c 8

455 ht_end_intr(void)
456 {
457 ulong_t flags;
458 cpu_ht_t *ht;

460 flags = intr_clear();
461 ht = &CPU->cpu_m.mcpu_ht;

463 if (ht->ch_sib == NULL) {
464 intr_restore(flags);
465 return;
466 }

468 ASSERT3U(ht->ch_intr_depth, >, 0);
469 atomic_dec_64(&ht->ch_intr_depth);

471 intr_restore(flags);
472 }

474 static inline boolean_t
475 ht_need_kick(cpu_ht_t *ht, zoneid_t zoneid)
476 {
477 membar_consumer();

479 if (CS_MARK(ht->ch_sibstate) != CM_POISONED)
480 return (B_FALSE);

482 if (CS_MARK(ht->ch_state) == CM_UNSAFE)
483 return (B_TRUE);

485 return (CS_ZONE(ht->ch_sibstate) != zoneid);
486 }

488 void
489 ht_mark(void)
490 {
491 zoneid_t zoneid = getzoneid();
492 kthread_t *t = curthread;
493 ulong_t flags;
494 cpu_ht_t *ht;
495 cpu_t *cp;

497 flags = intr_clear();

499 cp = CPU;
500 ht = &cp->cpu_m.mcpu_ht;

502 if (ht->ch_sib == NULL) {
503 intr_restore(flags);
504 return;
505 }

507 lock_set(&ht->ch_lock);

509 /*
510 * If we were a nested interrupt and went through the resume_from_intr()
511 * path, we can now be resuming to a pinning interrupt thread; in which
512 * case, skip marking, until we later resume to a "real" thread.
513 */
514 if (ht->ch_intr_depth > 0) {
515 ASSERT3P(t->t_intr, !=, NULL);

517 if (ht_need_kick(ht, zoneid))
518 ht_kick(ht, zoneid);
519 goto out;
520 }

new/usr/src/uts/i86pc/os/ht.c 9

522 if (t == t->t_cpu->cpu_idle_thread) {
523 ASSERT3U(zoneid, ==, GLOBAL_ZONEID);
524 ht->ch_state = CS_MK(CM_IDLE, zoneid);
525 } else {
526 uint64_t state = CM_THREAD;

528 if (t->t_unsafe)
529 state = CM_UNSAFE;
530 else if (t->t_schedflag & TS_VCPU)
531 state = CM_VCPU;

533 ht->ch_state = CS_MK(state, zoneid);

535 if (ht_need_kick(ht, zoneid))
536 ht_kick(ht, zoneid);
537 }

539 out:
540 membar_producer();
541 lock_clear(&ht->ch_lock);
542 intr_restore(flags);
543 }

545 void
546 ht_begin_unsafe(void)
547 {
548 curthread->t_unsafe++;
549 ht_mark();
550 }

552 void
553 ht_end_unsafe(void)
554 {
555 ASSERT3U(curthread->t_unsafe, >, 0);
556 curthread->t_unsafe--;
557 ht_mark();
558 }

560 void
561 ht_mark_as_vcpu(void)
562 {
563 thread_lock(curthread);
564 curthread->t_schedflag |= TS_VCPU;
565 ht_mark();
566 thread_unlock(curthread);
567 }

569 boolean_t
570 ht_should_run(kthread_t *t, cpu_t *cp)
571 {
572 uint64_t sibstate;
573 cpu_t *sib;

575 if (t == t->t_cpu->cpu_idle_thread)
576 return (B_TRUE);

578 if ((sib = cp->cpu_m.mcpu_ht.ch_sib) == NULL)
579 return (B_TRUE);

581 sibstate = sib->cpu_m.mcpu_ht.ch_state;

583 if ((t->t_schedflag & TS_VCPU)) {
584 if (CS_MARK(sibstate) == CM_IDLE)
585 return (B_TRUE);
586 if (CS_MARK(sibstate) == CM_UNSAFE)

new/usr/src/uts/i86pc/os/ht.c 10

587 return (B_FALSE);
588 return (CS_ZONE(sibstate) == ttozone(t)->zone_id);
589 }

591 if (CS_MARK(sibstate) < CM_VCPU)
592 return (B_TRUE);

594 return (CS_ZONE(sibstate) == ttozone(t)->zone_id);
595 }

597 pri_t
598 ht_adjust_cpu_score(kthread_t *t, struct cpu *cp, pri_t score)
599 {
600 if (ht_should_run(t, cp))
601 return (score);

603 /*
604 * If we’re a VCPU thread scoring our current CPU, we are most likely
605 * asking to be rescheduled elsewhere after losing ht_acquire(). In
606 * this case, the current CPU is not a good choice, most likely, and we
607 * should go elsewhere.
608 */
609 if ((t->t_schedflag & TS_VCPU) && cp == t->t_cpu && score < 0)
610 return ((v.v_maxsyspri + 1) * 2);

612 return (score + 1);
613 }

new/usr/src/uts/i86pc/os/intr.c 1

**
 57826 Wed May 15 07:34:08 2019
new/usr/src/uts/i86pc/os/intr.c
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2018 Joyent, Inc. All rights reserverd.
25 */

27 /*
28 * To understand the present state of interrupt handling on i86pc, we must
29 * first consider the history of interrupt controllers and our way of handling
30 * interrupts.
31 *
32 * History of Interrupt Controllers on i86pc
33 * ---
34 *
35 * Intel 8259 and 8259A
36 *
37 * The first interrupt controller that attained widespread use on i86pc was
38 * the Intel 8259(A) Programmable Interrupt Controller that first saw use with
39 * the 8086. It took up to 8 interrupt sources and combined them into one
40 * output wire. Up to 8 8259s could be slaved together providing up to 64 IRQs.
41 * With the switch to the 8259A, level mode interrupts became possible. For a
42 * long time on i86pc the 8259A was the only way to handle interrupts and it
43 * had its own set of quirks. The 8259A and its corresponding interval timer
44 * the 8254 are programmed using outb and inb instructions.
45 *
46 * Intel Advanced Programmable Interrupt Controller (APIC)
47 *
48 * Starting around the time of the introduction of the P6 family
49 * microarchitecture (i686) Intel introduced a new interrupt controller.
50 * Instead of having the series of slaved 8259A devices, Intel opted to outfit
51 * each processor with a Local APIC (lapic) and to outfit the system with at
52 * least one, but potentially more, I/O APICs (ioapic). The lapics and ioapics
53 * initially communicated over a dedicated bus, but this has since been
54 * replaced. Each physical core and even hyperthread currently contains its
55 * own local apic, which is not shared. There are a few exceptions for
56 * hyperthreads, but that does not usually concern us.
57 *
58 * Instead of talking directly to 8259 for status, sending End Of Interrupt

new/usr/src/uts/i86pc/os/intr.c 2

59 * (EOI), etc. a microprocessor now communicates directly to the lapic. This
60 * also allows for each microprocessor to be able to have independent controls.
61 * The programming method is different from the 8259. Consumers map the lapic
62 * registers into uncacheable memory to read and manipulate the state.
63 *
64 * The number of addressable interrupt vectors was increased to 256. However
65 * vectors 0-31 are reserved for the processor exception handling, leaving the
66 * remaining vectors for general use. In addition to hardware generated
67 * interrupts, the lapic provides a way for generating inter-processor
68 * interrupts (IPI) which are the basis for CPU cross calls and CPU pokes.
69 *
70 * AMD ended up implementing the Intel APIC architecture in lieu of their work
71 * with Cyrix.
72 *
73 * Intel x2apic
74 *
75 * The x2apic is an extension to the lapic which started showing up around the
76 * same time as the Sandy Bridge chipsets. It provides a new programming mode
77 * as well as new features. The goal of the x2apic is to solve a few problems
78 * with the previous generation of lapic and the x2apic is backwards compatible
79 * with the previous programming and model. The only downsides to using the
80 * backwards compatibility is that you are not able to take advantage of the new
81 * x2apic features.
82 *
83 * o The APIC ID is increased from an 8-bit value to a 32-bit value. This
84 * increases the maximum number of addressable physical processors beyond
85 * 256. This new ID is assembled in a similar manner as the information that
86 * is obtainable by the extended cpuid topology leaves.
87 *
88 * o A new means of generating IPIs was introduced.
89 *
90 * o Instead of memory mapping the registers, the x2apic only allows for
91 * programming it through a series of wrmsrs. This has important semantic
92 * side effects. Recall that the registers were previously all mapped to
93 * uncachable memory which meant that all operations to the local apic were
94 * serializing instructions. With the switch to using wrmsrs this has been
95 * relaxed and these operations can no longer be assumed to be serializing
96 * instructions.
97 *
98 * Note for the rest of this we are only going to concern ourselves with the
99 * apic and x2apic which practically all of i86pc has been using now for
100 * quite some time.
101 *
102 * Interrupt Priority Levels
103 * -------------------------
104 *
105 * On i86pc systems there are a total of fifteen interrupt priority levels
106 * (ipls) which range from 1-15. Level 0 is for normal processing and
107 * non-interrupt processing. To manipulate these values the family of spl
108 * functions (which date back to UNIX on the PDP-11) are used. Specifically,
109 * splr() to raise the priority level and splx() to lower it. One should not
110 * generally call setspl() directly.
111 *
112 * Both i86pc and the supported SPARC platforms honor the same conventions for
113 * the meaning behind these IPLs. The most important IPL is the platform’s
114 * LOCK_LEVEL (0xa on i86pc). If a thread is above LOCK_LEVEL it _must_ not
115 * sleep on any synchronization object. The only allowed synchronization
116 * primitive is a mutex that has been specifically initialized to be a spin
117 * lock (see mutex_init(9F)). Another important level is DISP_LEVEL (0xb on
118 * i86pc). You must be at DISP_LEVEL if you want to control the dispatcher.
119 * The XC_HI_PIL is the highest level (0xf) and is used during cross-calls.
120 *
121 * Each interrupt that is registered in the system fires at a specific IPL.
122 * Generally most interrupts fire below LOCK_LEVEL.
123 *
124 * PSM Drivers

new/usr/src/uts/i86pc/os/intr.c 3

125 * -----------
126 *
127 * We currently have three sets of PSM (platform specific module) drivers
128 * available. uppc, pcplusmp, and apix. uppc (uni-processor PC) is the original
129 * driver that interacts with the 8259A and 8254. In general, it is not used
130 * anymore given the prevalence of the apic.
131 *
132 * The system prefers to use the apix driver over the pcplusmp driver. The apix
133 * driver requires HW support for an x2apic. If there is no x2apic HW, apix
134 * will not be used. In general we prefer using the apix driver over the
135 * pcplusmp driver because it gives us much more flexibility with respect to
136 * interrupts. In the apix driver each local apic has its own independent set
137 * of interrupts, whereas the pcplusmp driver only has a single global set of
138 * interrupts. This is why pcplusmp only supports a finite number of interrupts
139 * per IPL -- generally 16, often less. The apix driver supports using either
140 * the x2apic or the local apic programing modes. The programming mode does not
141 * change the number of interrupts available, just the number of processors
142 * that we can address. For the apix driver, the x2apic mode is enabled if the
143 * system supports interrupt re-mapping, otherwise the module manages the
144 * x2apic in local mode.
145 *
146 * When there is no x2apic present, we default back to the pcplusmp PSM driver.
147 * In general, this is not problematic unless you have more than 256
148 * processors in the machine or you do not have enough interrupts available.
149 *
150 * Controlling Interrupt Generation on i86pc
151 * ---
152 *
153 * There are two different ways to manipulate which interrupts will be
154 * generated on i86pc. Each offers different degrees of control.
155 *
156 * The first is through the flags register (eflags and rflags on i386 and amd64
157 * respectively). The IF bit determines whether or not interrupts are enabled
158 * or disabled. This is manipulated in one of several ways. The most common way
159 * is through the cli and sti instructions. These clear the IF flag and set it,
160 * respectively, for the current processor. The other common way is through the
161 * use of the intr_clear and intr_restore functions.
162 *
163 * Assuming interrupts are not blocked by the IF flag, then the second form is
164 * through the Processor-Priority Register (PPR). The PPR is used to determine
165 * whether or not a pending interrupt should be delivered. If the ipl of the
166 * new interrupt is higher than the current value in the PPR, then the lapic
167 * will either deliver it immediately (if interrupts are not in progress) or it
168 * will deliver it once the current interrupt processing has issued an EOI. The
169 * highest unmasked interrupt will be the one delivered.
170 *
171 * The PPR register is based upon the max of the following two registers in the
172 * lapic, the TPR register (also known as CR8 on amd64) that can be used to
173 * mask interrupt levels, and the current vector. Because the pcplusmp module
174 * always sets TPR appropriately early in the do_interrupt path, we can usually
175 * just think that the PPR is the TPR. The pcplusmp module also issues an EOI
176 * once it has set the TPR, so higher priority interrupts can come in while
177 * we’re servicing a lower priority interrupt.
178 *
179 * Handling Interrupts
180 * -------------------
181 *
182 * Interrupts can be broken down into three categories based on priority and
183 * source:
184 *
185 * o High level interrupts
186 * o Low level hardware interrupts
187 * o Low level software interrupts
188 *
189 * High Level Interrupts
190 *

new/usr/src/uts/i86pc/os/intr.c 4

191 * High level interrupts encompasses both hardware-sourced and software-sourced
192 * interrupts. Examples of high level hardware interrupts include the serial
193 * console. High level software-sourced interrupts are still delivered through
194 * the local apic through IPIs. This is primarily cross calls.
195 *
196 * When a high level interrupt comes in, we will raise the SPL and then pin the
197 * current lwp to the processor. We will use its lwp, but our own interrupt
198 * stack and process the high level interrupt in-situ. These handlers are
199 * designed to be very short in nature and cannot go to sleep, only block on a
200 * spin lock. If the interrupt has a lot of work to do, it must generate a
201 * low-priority software interrupt that will be processed later.
202 *
203 * Low level hardware interrupts
204 *
205 * Low level hardware interrupts start off like their high-level cousins. The
206 * current CPU contains a number of kernel threads (kthread_t) that can be used
207 * to process low level interrupts. These are shared between both low level
208 * hardware and software interrupts. Note that while we run with our
209 * kthread_t, we borrow the pinned threads lwp_t until such a time as we hit a
210 * synchronization object. If we hit one and need to sleep, then the scheduler
211 * will instead create the rest of what we need.
212 *
213 * Low level software interrupts
214 *
215 * Low level software interrupts are handled in a similar way as hardware
216 * interrupts, but the notification vector is different. Each CPU has a bitmask
217 * of pending software interrupts. We can notify a CPU to process software
218 * interrupts through a specific trap vector as well as through several
219 * checks that are performed throughout the code. These checks will look at
220 * processing software interrupts as we lower our spl.
221 *
222 * We attempt to process the highest pending software interrupt that we can
223 * which is greater than our current IPL. If none currently exist, then we move
224 * on. We process a software interrupt in a similar fashion to a hardware
225 * interrupt.
226 *
227 * Traditional Interrupt Flow
228 * --------------------------
229 *
230 * The following diagram tracks the flow of the traditional uppc and pcplusmp
231 * interrupt handlers. The apix driver has its own version of do_interrupt().
232 * We come into the interrupt handler with all interrupts masked by the IF
233 * flag. This is because we set up the handler using an interrupt-gate, which
234 * is defined architecturally to have cleared the IF flag for us.
235 *
236 * +--------------+ +----------------+ +-----------+
237 * | _interrupt() |--->| do_interrupt() |--->| *setlvl() |
238 * +--------------+ +----------------+ +-----------+
239 * | | |
240 * | | |
241 * low-level| | | softint
242 * HW int | | +---------------------------------------+
243 * +--------------+ | | |
244 * | intr_thread_ |<-----+ | hi-level int |
245 * | prolog() | | +----------+ |
246 * +--------------+ +--->| hilevel_ | Not on intr stack |
247 * | | intr_ |-----------------+ |
248 * | | prolog() | | |
249 * +------------+ +----------+ | |
250 * | switch_sp_ | | On intr v |
251 * | and_call() | | Stack +------------+ |
252 * +------------+ | | switch_sp_ | |
253 * | v | and_call() | |
254 * v +-----------+ +------------+ |
255 * +-----------+ | dispatch_ | | |
256 * | dispatch_ | +-------------------| hilevel() |<------------+ |

new/usr/src/uts/i86pc/os/intr.c 5

257 * | hardint() | | +-----------+ |
258 * +-----------+ | |
259 * | v |
260 * | +-----+ +----------------------+ +-----+ hi-level |
261 * +---->| sti |->| av_dispatch_autovect |->| cli |---------+ |
262 * +-----+ +----------------------+ +-----+ | |
263 * | | | |
264 * v | | |
265 * +----------+ | | |
266 * | for each | | | |
267 * | handler | | | |
268 * | *intr() | | v |
269 * +--------------+ +----------+ | +----------------+ |
270 * | intr_thread_ | low-level | | hilevel_intr_ | |
271 * | epilog() |<-------------------------------+ | epilog() | |
272 * +--------------+ +----------------+ |
273 * | | | |
274 * | +----------------------v v---------------------+ |
275 * | +------------+ |
276 * | +---------------------->| *setlvlx() | |
277 * | | +------------+ |
278 * | | | |
279 * | | v |
280 * | | +--------+ +------------------+ +-------------+ |
281 * | | | return |<----| softint pending? |----->| dosoftint() |<-----+
282 * | | +--------+ no +------------------+ yes +-------------+
283 * | | ^ | |
284 * | | | softint pil too low | |
285 * | | +--------------------------------------+ |
286 * | | v
287 * | | +-----------+ +------------+ +-----------+
288 * | | | dispatch_ |<-----| switch_sp_ |<---------| *setspl() |
289 * | | | softint() | | and_call() | +-----------+
290 * | | +-----------+ +------------+
291 * | | |
292 * | | v
293 * | | +-----+ +----------------------+ +-----+ +------------+
294 * | | | sti |->| av_dispatch_autovect |->| cli |->| dosoftint_ |
295 * | | +-----+ +----------------------+ +-----+ | epilog() |
296 * | | +------------+
297 * | | | |
298 * | +--+ |
299 * v |
300 * +-----------+ |
301 * | interrupt | |
302 * | thread |<---+
303 * | blocked |
304 * +-----------+
305 * |
306 * v
307 * +----------------+ +------------+ +-----------+ +-------+ +---------+
308 * | set_base_spl() |->| *setlvlx() |->| splhigh() |->| sti() |->| swtch() |
309 * +----------------+ +------------+ +-----------+ +-------+ +---------+
310 *
311 * Calls made on Interrupt Stacks and Epilogue routines
312 *
313 * We use the switch_sp_and_call() assembly routine to switch our sp to the
314 * interrupt stacks and then call the appropriate dispatch function. In the
315 * case of interrupts which may block, softints and hardints, we always ensure
316 * that we are still on the interrupt thread when we call the epilog routine.
317 * This is not just important, it’s necessary. If the interrupt thread blocked,
318 * we won’t return from our switch_sp_and_call() function and instead we’ll go
319 * through and set ourselves up to swtch() directly.
320 *
321 * New Interrupt Flow
322 * ------------------

new/usr/src/uts/i86pc/os/intr.c 6

323 *
324 * The apix module has its own interrupt path. This is done for various
325 * reasons. The first is that rather than having global interrupt vectors, we
326 * now have per-cpu vectors.
327 *
328 * The other substantial change is that the apix design does not use the TPR to
329 * mask interrupts below the current level. In fact, except for one special
330 * case, it does not use the TPR at all. Instead, it only uses the IF flag
331 * (cli/sti) to either block all interrupts or allow any interrupts to come in.
332 * The design is such that when interrupts are allowed to come in, if we are
333 * currently servicing a higher priority interupt, the new interrupt is treated
334 * as pending and serviced later. Specifically, in the pcplusmp module’s
335 * apic_intr_enter() the code masks interrupts at or below the current
336 * IPL using the TPR before sending EOI, whereas the apix module’s
337 * apix_intr_enter() simply sends EOI.
338 *
339 * The one special case where the apix code uses the TPR is when it calls
340 * through the apic_reg_ops function pointer apic_write_task_reg in
341 * apix_init_intr() to initially mask all levels and then finally to enable all
342 * levels.
343 *
344 * Recall that we come into the interrupt handler with all interrupts masked
345 * by the IF flag. This is because we set up the handler using an
346 * interrupt-gate which is defined architecturally to have cleared the IF flag
347 * for us.
348 *
349 * +--------------+ +---------------------+
350 * | _interrupt() |--->| apix_do_interrupt() |
351 * +--------------+ +---------------------+
352 * |
353 * hard int? +----+--------+ softint?
354 * | | (but no low-level looping)
355 * +-----------+ |
356 * | *setlvl() | |
357 * +---------+ +-----------+ +----------------------------------+
358 * |apix_add_| check IPL | |
359 * |pending_ |<-------------+------+----------------------+ |
360 * |hardint()| low-level int| hi-level int| |
361 * +---------+ v v |
362 * | check IPL +-----------------+ +---------------+ |
363 * +--+-----+ | apix_intr_ | | apix_hilevel_ | |
364 * | | | thread_prolog() | | intr_prolog() | |
365 * | return +-----------------+ +---------------+ |
366 * | | | On intr |
367 * | +------------+ | stack? +------------+ |
368 * | | switch_sp_ | +---------| switch_sp_ | |
369 * | | and_call() | | | and_call() | |
370 * | +------------+ | +------------+ |
371 * | | | | |
372 * | +----------------+ +----------------+ |
373 * | | apix_dispatch_ | | apix_dispatch_ | |
374 * | | lowlevel() | | hilevel() | |
375 * | +----------------+ +----------------+ |
376 * | | | |
377 * | v v |
378 * | +-------------------------+ |
379 * | |apix_dispatch_by_vector()|----+ |
380 * | +-------------------------+ | |
381 * | !XC_HI_PIL| | | | |
382 * | +---+ +-------+ +---+ | |
383 * | |sti| |*intr()| |cli| | |
384 * | +---+ +-------+ +---+ | hi-level? |
385 * | +---------------------------+----+ |
386 * | v low-level? v |
387 * | +----------------+ +----------------+ |
388 * | | apix_intr_ | | apix_hilevel_ | |

new/usr/src/uts/i86pc/os/intr.c 7

389 * | | thread_epilog()| | intr_epilog() | |
390 * | +----------------+ +----------------+ |
391 * | | | |
392 * | v-----------------+--------------------------------+ |
393 * | +------------+ |
394 * | | *setlvlx() | +--+
395 * | +------------+ |
396 * | | | +--------------------------------+ low
397 * v v v------+ v | level
398 * +------------------+ +------------------+ +-----------+ | pending?
399 * | apix_do_pending_ |----->| apix_do_pending_ |----->| apix_do_ |--+
400 * | hilevel() | | hardint() | | softint() | |
401 * +------------------+ +------------------+ +-----------+ return
402 * | | |
403 * | while pending | while pending | while pending
404 * | hi-level | low-level | softint
405 * | | |
406 * +---------------+ +-----------------+ +-----------------+
407 * | apix_hilevel_ | | apix_intr_ | | apix_do_ |
408 * | intr_prolog() | | thread_prolog() | | softint_prolog()|
409 * +---------------+ +-----------------+ +-----------------+
410 * | On intr | |
411 * | stack? +------------+ +------------+ +------------+
412 * +--------| switch_sp_ | | switch_sp_ | | switch_sp_ |
413 * | | and_call() | | and_call() | | and_call() |
414 * | +------------+ +------------+ +------------+
415 * | | | |
416 * +------------------+ +------------------+ +------------------------+
417 * | apix_dispatch_ | | apix_dispatch_ | | apix_dispatch_softint()|
418 * | pending_hilevel()| | pending_hardint()| +------------------------+
419 * +------------------+ +------------------+ | | | |
420 * | | | | | | | |
421 * | +----------------+ | +----------------+ | | | |
422 * | | apix_hilevel_ | | | apix_intr_ | | | | |
423 * | | intr_epilog() | | | thread_epilog()| | | | |
424 * | +----------------+ | +----------------+ | | | |
425 * | | | | | | | |
426 * | +------------+ | +----------+ +------+ | | |
427 * | | *setlvlx() | | |*setlvlx()| | | | |
428 * | +------------+ | +----------+ | +----------+ | +---------+
429 * | | +---+ |av_ | +---+ |apix_do_ |
430 * +---------------------------------+ |sti| |dispatch_ | |cli| |softint_ |
431 * | apix_dispatch_pending_autovect()| +---+ |softvect()| +---+ |epilog() |
432 * +---------------------------------+ +----------+ +---------+
433 * |!XC_HI_PIL | | | |
434 * +---+ +-------+ +---+ +----------+ +-------+
435 * |sti| |*intr()| |cli| |apix_post_| |*intr()|
436 * +---+ +-------+ +---+ |hardint() | +-------+
437 * +----------+
438 */

440 #include <sys/cpuvar.h>
441 #include <sys/cpu_event.h>
442 #include <sys/regset.h>
443 #include <sys/psw.h>
444 #include <sys/types.h>
445 #include <sys/thread.h>
446 #include <sys/systm.h>
447 #include <sys/segments.h>
448 #include <sys/pcb.h>
449 #include <sys/trap.h>
450 #include <sys/ftrace.h>
451 #include <sys/traptrace.h>
452 #include <sys/clock.h>
453 #include <sys/panic.h>
454 #include <sys/disp.h>

new/usr/src/uts/i86pc/os/intr.c 8

455 #include <vm/seg_kp.h>
456 #include <sys/stack.h>
457 #include <sys/sysmacros.h>
458 #include <sys/cmn_err.h>
459 #include <sys/kstat.h>
460 #include <sys/smp_impldefs.h>
461 #include <sys/pool_pset.h>
462 #include <sys/zone.h>
463 #include <sys/bitmap.h>
464 #include <sys/archsystm.h>
465 #include <sys/machsystm.h>
466 #include <sys/ontrap.h>
467 #include <sys/x86_archext.h>
468 #include <sys/promif.h>
469 #include <sys/ht.h>
470 #include <vm/hat_i86.h>
471 #if defined(__xpv)
472 #include <sys/hypervisor.h>
473 #endif

475 /* If these fail, then the padding numbers in machcpuvar.h are wrong. */
476 #if !defined(__xpv)
477 #define MCOFF(member) \
478 (offsetof(cpu_t, cpu_m) + offsetof(struct machcpu, member))
479 CTASSERT(MCOFF(mcpu_pad) == MACHCPU_SIZE);
480 CTASSERT(MCOFF(mcpu_pad2) == MMU_PAGESIZE);
481 CTASSERT((MCOFF(mcpu_kpti) & 0xF) == 0);
474 #if defined(__amd64) && !defined(__xpv)
475 /* If this fails, then the padding numbers in machcpuvar.h are wrong. */
476 CTASSERT((offsetof(cpu_t, cpu_m) + offsetof(struct machcpu, mcpu_pad)) <
477 MMU_PAGESIZE);
478 CTASSERT((offsetof(cpu_t, cpu_m) + offsetof(struct machcpu, mcpu_kpti)) >=
479 MMU_PAGESIZE);
480 CTASSERT((offsetof(cpu_t, cpu_m) + offsetof(struct machcpu, mcpu_kpti_dbg)) <
481 2 * MMU_PAGESIZE);
482 CTASSERT((offsetof(cpu_t, cpu_m) + offsetof(struct machcpu, mcpu_pad2)) <
483 2 * MMU_PAGESIZE);
482 CTASSERT(((sizeof (struct kpti_frame)) & 0xF) == 0);
485 CTASSERT(((offsetof(cpu_t, cpu_m) +
486 offsetof(struct machcpu, mcpu_kpti_dbg)) & 0xF) == 0);
483 CTASSERT((offsetof(struct kpti_frame, kf_tr_rsp) & 0xF) == 0);
484 CTASSERT(MCOFF(mcpu_pad3) < 2 * MMU_PAGESIZE);
485 #endif

487 #if defined(__xpv) && defined(DEBUG)

489 /*
490 * This panic message is intended as an aid to interrupt debugging.
491 *
492 * The associated assertion tests the condition of enabling
493 * events when events are already enabled. The implication
494 * being that whatever code the programmer thought was
495 * protected by having events disabled until the second
496 * enable happened really wasn’t protected at all ..
497 */

499 int stistipanic = 1; /* controls the debug panic check */
500 const char *stistimsg = "stisti";
501 ulong_t laststi[NCPU];

503 /*
504 * This variable tracks the last place events were disabled on each cpu
505 * it assists in debugging when asserts that interrupts are enabled trip.
506 */
507 ulong_t lastcli[NCPU];

new/usr/src/uts/i86pc/os/intr.c 9

509 #endif

511 void do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);

513 void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *) = do_interrupt;
514 uintptr_t (*get_intr_handler)(int, short) = NULL;

516 /*
517 * Set cpu’s base SPL level to the highest active interrupt level
518 */
519 void
520 set_base_spl(void)
521 {
522 struct cpu *cpu = CPU;
523 uint16_t active = (uint16_t)cpu->cpu_intr_actv;

525 cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active);
526 }

528 /*
529 * Do all the work necessary to set up the cpu and thread structures
530 * to dispatch a high-level interrupt.
531 *
532 * Returns 0 if we’re -not- already on the high-level interrupt stack,
533 * (and *must* switch to it), non-zero if we are already on that stack.
534 *
535 * Called with interrupts masked.
536 * The ’pil’ is already set to the appropriate level for rp->r_trapno.
537 */
538 static int
539 hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp)
540 {
541 struct machcpu *mcpu = &cpu->cpu_m;
542 uint_t mask;
543 hrtime_t intrtime;
544 hrtime_t now = tsc_read();

546 ASSERT(pil > LOCK_LEVEL);

548 if (pil == CBE_HIGH_PIL) {
549 cpu->cpu_profile_pil = oldpil;
550 if (USERMODE(rp->r_cs)) {
551 cpu->cpu_profile_pc = 0;
552 cpu->cpu_profile_upc = rp->r_pc;
553 cpu->cpu_cpcprofile_pc = 0;
554 cpu->cpu_cpcprofile_upc = rp->r_pc;
555 } else {
556 cpu->cpu_profile_pc = rp->r_pc;
557 cpu->cpu_profile_upc = 0;
558 cpu->cpu_cpcprofile_pc = rp->r_pc;
559 cpu->cpu_cpcprofile_upc = 0;
560 }
561 }

563 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK;
564 if (mask != 0) {
565 int nestpil;

567 /*
568 * We have interrupted another high-level interrupt.
569 * Load starting timestamp, compute interval, update
570 * cumulative counter.
571 */
572 nestpil = bsrw_insn((uint16_t)mask);
573 ASSERT(nestpil < pil);
574 intrtime = now -

new/usr/src/uts/i86pc/os/intr.c 10

575 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)];
576 mcpu->intrstat[nestpil][0] += intrtime;
577 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
578 /*
579 * Another high-level interrupt is active below this one, so
580 * there is no need to check for an interrupt thread. That
581 * will be done by the lowest priority high-level interrupt
582 * active.
583 */
584 } else {
585 kthread_t *t = cpu->cpu_thread;

587 /*
588 * See if we are interrupting a low-level interrupt thread.
589 * If so, account for its time slice only if its time stamp
590 * is non-zero.
591 */
592 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) {
593 intrtime = now - t->t_intr_start;
594 mcpu->intrstat[t->t_pil][0] += intrtime;
595 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
596 t->t_intr_start = 0;
597 }
598 }

600 ht_begin_intr(pil);

602 /*
603 * Store starting timestamp in CPU structure for this PIL.
604 */
605 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now;

607 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);

609 if (pil == 15) {
610 /*
611 * To support reentrant level 15 interrupts, we maintain a
612 * recursion count in the top half of cpu_intr_actv. Only
613 * when this count hits zero do we clear the PIL 15 bit from
614 * the lower half of cpu_intr_actv.
615 */
616 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;
617 (*refcntp)++;
618 }

620 mask = cpu->cpu_intr_actv;

622 cpu->cpu_intr_actv |= (1 << pil);

624 return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK);
625 }

627 /*
628 * Does most of the work of returning from a high level interrupt.
629 *
630 * Returns 0 if there are no more high level interrupts (in which
631 * case we must switch back to the interrupted thread stack) or
632 * non-zero if there are more (in which case we should stay on it).
633 *
634 * Called with interrupts masked
635 */
636 static int
637 hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum)
638 {
639 struct machcpu *mcpu = &cpu->cpu_m;
640 uint_t mask;

new/usr/src/uts/i86pc/os/intr.c 11

641 hrtime_t intrtime;
642 hrtime_t now = tsc_read();

644 ASSERT(mcpu->mcpu_pri == pil);

646 cpu->cpu_stats.sys.intr[pil - 1]++;

648 ASSERT(cpu->cpu_intr_actv & (1 << pil));

650 if (pil == 15) {
651 /*
652 * To support reentrant level 15 interrupts, we maintain a
653 * recursion count in the top half of cpu_intr_actv. Only
654 * when this count hits zero do we clear the PIL 15 bit from
655 * the lower half of cpu_intr_actv.
656 */
657 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;

659 ASSERT(*refcntp > 0);

661 if (--(*refcntp) == 0)
662 cpu->cpu_intr_actv &= ~(1 << pil);
663 } else {
664 cpu->cpu_intr_actv &= ~(1 << pil);
665 }

667 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0);

669 intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)];
670 mcpu->intrstat[pil][0] += intrtime;
671 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;

673 /*
674 * Check for lower-pil nested high-level interrupt beneath
675 * current one. If so, place a starting timestamp in its
676 * pil_high_start entry.
677 */
678 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK;
679 if (mask != 0) {
680 int nestpil;

682 /*
683 * find PIL of nested interrupt
684 */
685 nestpil = bsrw_insn((uint16_t)mask);
686 ASSERT(nestpil < pil);
687 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now;
688 /*
689 * (Another high-level interrupt is active below this one,
690 * so there is no need to check for an interrupt
691 * thread. That will be done by the lowest priority
692 * high-level interrupt active.)
693 */
694 } else {
695 /*
696 * Check to see if there is a low-level interrupt active.
697 * If so, place a starting timestamp in the thread
698 * structure.
699 */
700 kthread_t *t = cpu->cpu_thread;

702 if (t->t_flag & T_INTR_THREAD)
703 t->t_intr_start = now;
704 }

706 ht_end_intr();

new/usr/src/uts/i86pc/os/intr.c 12

708 mcpu->mcpu_pri = oldpil;
709 (void) (*setlvlx)(oldpil, vecnum);

711 return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK);
712 }

714 /*
715 * Set up the cpu, thread and interrupt thread structures for
716 * executing an interrupt thread. The new stack pointer of the
717 * interrupt thread (which *must* be switched to) is returned.
718 */
719 static caddr_t
720 intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil)
721 {
722 struct machcpu *mcpu = &cpu->cpu_m;
723 kthread_t *t, *volatile it;
724 hrtime_t now = tsc_read();

726 ASSERT(pil > 0);
727 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
728 cpu->cpu_intr_actv |= (1 << pil);

730 /*
731 * Get set to run an interrupt thread.
732 * There should always be an interrupt thread, since we
733 * allocate one for each level on each CPU.
734 *
735 * t_intr_start could be zero due to cpu_intr_swtch_enter.
736 */
737 t = cpu->cpu_thread;
738 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) {
739 hrtime_t intrtime = now - t->t_intr_start;
740 mcpu->intrstat[t->t_pil][0] += intrtime;
741 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
742 t->t_intr_start = 0;
743 }

745 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);

747 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */

749 /*
750 * unlink the interrupt thread off the cpu
751 *
752 * Note that the code in kcpc_overflow_intr -relies- on the
753 * ordering of events here - in particular that t->t_lwp of
754 * the interrupt thread is set to the pinned thread *before*
755 * curthread is changed.
756 */
757 it = cpu->cpu_intr_thread;
758 cpu->cpu_intr_thread = it->t_link;
759 it->t_intr = t;
760 it->t_lwp = t->t_lwp;

762 /*
763 * (threads on the interrupt thread free list could have state
764 * preset to TS_ONPROC, but it helps in debugging if
765 * they’re TS_FREE.)
766 */
767 it->t_state = TS_ONPROC;

769 cpu->cpu_thread = it; /* new curthread on this cpu */
770 ht_begin_intr(pil);

772 it->t_pil = (uchar_t)pil;

new/usr/src/uts/i86pc/os/intr.c 13

773 it->t_pri = intr_pri + (pri_t)pil;
774 it->t_intr_start = now;

776 return (it->t_stk);
777 }

780 #ifdef DEBUG
781 int intr_thread_cnt;
782 #endif

784 /*
785 * Called with interrupts disabled
786 */
787 static void
788 intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil)
789 {
790 struct machcpu *mcpu = &cpu->cpu_m;
791 kthread_t *t;
792 kthread_t *it = cpu->cpu_thread; /* curthread */
793 uint_t pil, basespl;
794 hrtime_t intrtime;
795 hrtime_t now = tsc_read();

797 pil = it->t_pil;
798 cpu->cpu_stats.sys.intr[pil - 1]++;

800 ASSERT(it->t_intr_start != 0);
801 intrtime = now - it->t_intr_start;
802 mcpu->intrstat[pil][0] += intrtime;
803 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;

805 ASSERT(cpu->cpu_intr_actv & (1 << pil));
806 cpu->cpu_intr_actv &= ~(1 << pil);

808 /*
809 * If there is still an interrupted thread underneath this one
810 * then the interrupt was never blocked and the return is
811 * fairly simple. Otherwise it isn’t.
812 */
813 if ((t = it->t_intr) == NULL) {
814 /*
815 * The interrupted thread is no longer pinned underneath
816 * the interrupt thread. This means the interrupt must
817 * have blocked, and the interrupted thread has been
818 * unpinned, and has probably been running around the
819 * system for a while.
820 *
821 * Since there is no longer a thread under this one, put
822 * this interrupt thread back on the CPU’s free list and
823 * resume the idle thread which will dispatch the next
824 * thread to run.
825 */
826 #ifdef DEBUG
827 intr_thread_cnt++;
828 #endif
829 cpu->cpu_stats.sys.intrblk++;
830 /*
831 * Set CPU’s base SPL based on active interrupts bitmask
832 */
833 set_base_spl();
834 basespl = cpu->cpu_base_spl;
835 mcpu->mcpu_pri = basespl;
836 (*setlvlx)(basespl, vec);
837 (void) splhigh();
838 sti();

new/usr/src/uts/i86pc/os/intr.c 14

839 it->t_state = TS_FREE;
840 /*
841 * Return interrupt thread to pool
842 */
843 it->t_link = cpu->cpu_intr_thread;
844 cpu->cpu_intr_thread = it;
845 swtch();
846 panic("intr_thread_epilog: swtch returned");
847 /*NOTREACHED*/
848 }

850 /*
851 * Return interrupt thread to the pool
852 */
853 it->t_link = cpu->cpu_intr_thread;
854 cpu->cpu_intr_thread = it;
855 it->t_state = TS_FREE;

857 basespl = cpu->cpu_base_spl;
858 pil = MAX(oldpil, basespl);
859 mcpu->mcpu_pri = pil;
860 (*setlvlx)(pil, vec);
861 t->t_intr_start = now;
862 ht_end_intr();
863 cpu->cpu_thread = t;
864 }

______unchanged_portion_omitted_

956 static caddr_t
957 dosoftint_prolog(
958 struct cpu *cpu,
959 caddr_t stackptr,
960 uint32_t st_pending,
961 uint_t oldpil)
962 {
963 kthread_t *t, *volatile it;
964 struct machcpu *mcpu = &cpu->cpu_m;
965 uint_t pil;
966 hrtime_t now;

968 top:
969 ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending);

971 pil = bsrw_insn((uint16_t)st_pending);
972 if (pil <= oldpil || pil <= cpu->cpu_base_spl)
973 return (0);

975 /*
976 * XX64 Sigh.
977 *
978 * This is a transliteration of the i386 assembler code for
979 * soft interrupts. One question is "why does this need
980 * to be atomic?" One possible race is -other- processors
981 * posting soft interrupts to us in set_pending() i.e. the
982 * CPU might get preempted just after the address computation,
983 * but just before the atomic transaction, so another CPU would
984 * actually set the original CPU’s st_pending bit. However,
985 * it looks like it would be simpler to disable preemption there.
986 * Are there other races for which preemption control doesn’t work?
987 *
988 * The i386 assembler version -also- checks to see if the bit
989 * being cleared was actually set; if it wasn’t, it rechecks
990 * for more. This seems a bit strange, as the only code that
991 * ever clears the bit is -this- code running with interrupts
992 * disabled on -this- CPU. This code would probably be cheaper:
993 *

new/usr/src/uts/i86pc/os/intr.c 15

994 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending,
995 * ~(1 << pil));
996 *
997 * and t->t_preempt--/++ around set_pending() even cheaper,
998 * but at this point, correctness is critical, so we slavishly
999 * emulate the i386 port.

1000 */
1001 if (atomic_btr32((uint32_t *)
1002 &mcpu->mcpu_softinfo.st_pending, pil) == 0) {
1003 st_pending = mcpu->mcpu_softinfo.st_pending;
1004 goto top;
1005 }

1007 mcpu->mcpu_pri = pil;
1008 (*setspl)(pil);

1010 now = tsc_read();

1012 /*
1013 * Get set to run interrupt thread.
1014 * There should always be an interrupt thread since we
1015 * allocate one for each level on the CPU.
1016 */
1017 it = cpu->cpu_intr_thread;
1018 cpu->cpu_intr_thread = it->t_link;

1020 /* t_intr_start could be zero due to cpu_intr_swtch_enter. */
1021 t = cpu->cpu_thread;
1022 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) {
1023 hrtime_t intrtime = now - t->t_intr_start;
1024 mcpu->intrstat[pil][0] += intrtime;
1025 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
1026 t->t_intr_start = 0;
1027 }

1029 /*
1030 * Note that the code in kcpc_overflow_intr -relies- on the
1031 * ordering of events here - in particular that t->t_lwp of
1032 * the interrupt thread is set to the pinned thread *before*
1033 * curthread is changed.
1034 */
1035 it->t_lwp = t->t_lwp;
1036 it->t_state = TS_ONPROC;

1038 /*
1039 * Push interrupted thread onto list from new thread.
1040 * Set the new thread as the current one.
1041 * Set interrupted thread’s T_SP because if it is the idle thread,
1042 * resume() may use that stack between threads.
1043 */

1045 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);
1046 t->t_sp = (uintptr_t)stackptr;

1048 it->t_intr = t;
1049 cpu->cpu_thread = it;
1050 ht_begin_intr(pil);

1052 /*
1053 * Set bit for this pil in CPU’s interrupt active bitmask.
1054 */
1055 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
1056 cpu->cpu_intr_actv |= (1 << pil);

1058 /*
1059 * Initialize thread priority level from intr_pri

new/usr/src/uts/i86pc/os/intr.c 16

1060 */
1061 it->t_pil = (uchar_t)pil;
1062 it->t_pri = (pri_t)pil + intr_pri;
1063 it->t_intr_start = now;

1065 return (it->t_stk);
1066 }

1068 static void
1069 dosoftint_epilog(struct cpu *cpu, uint_t oldpil)
1070 {
1071 struct machcpu *mcpu = &cpu->cpu_m;
1072 kthread_t *t, *it;
1073 uint_t pil, basespl;
1074 hrtime_t intrtime;
1075 hrtime_t now = tsc_read();

1077 it = cpu->cpu_thread;
1078 pil = it->t_pil;

1080 cpu->cpu_stats.sys.intr[pil - 1]++;

1082 ASSERT(cpu->cpu_intr_actv & (1 << pil));
1083 cpu->cpu_intr_actv &= ~(1 << pil);
1084 intrtime = now - it->t_intr_start;
1085 mcpu->intrstat[pil][0] += intrtime;
1086 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;

1088 /*
1089 * If there is still an interrupted thread underneath this one
1090 * then the interrupt was never blocked and the return is
1091 * fairly simple. Otherwise it isn’t.
1092 */
1093 if ((t = it->t_intr) == NULL) {
1094 /*
1095 * Put thread back on the interrupt thread list.
1096 * This was an interrupt thread, so set CPU’s base SPL.
1097 */
1098 set_base_spl();
1099 it->t_state = TS_FREE;
1100 it->t_link = cpu->cpu_intr_thread;
1101 cpu->cpu_intr_thread = it;
1102 (void) splhigh();
1103 sti();
1104 swtch();
1105 /*NOTREACHED*/
1106 panic("dosoftint_epilog: swtch returned");
1107 }
1108 it->t_link = cpu->cpu_intr_thread;
1109 cpu->cpu_intr_thread = it;
1110 it->t_state = TS_FREE;
1111 ht_end_intr();
1112 cpu->cpu_thread = t;

1114 if (t->t_flag & T_INTR_THREAD)
1115 t->t_intr_start = now;
1116 basespl = cpu->cpu_base_spl;
1117 pil = MAX(oldpil, basespl);
1118 mcpu->mcpu_pri = pil;
1119 (*setspl)(pil);
1120 }
______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/Makefile 1

**
 2008 Wed May 15 07:34:08 2019
new/usr/src/uts/i86pc/sys/Makefile
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 # Copyright 2018 Joyent, Inc.
25 #
26 # uts/i86pc/sys/Makefile
27 #
28 UTSBASE = ../..

30 #
31 # include global definitions
32 #
33 include ../Makefile.i86pc

35 #
36 # Override defaults.
37 #
38 FILEMODE = 644

40 HDRS= \
41 acpidev.h \
42 amd_iommu.h \
43 asm_misc.h \
44 clock.h \
45 cram.h \
46 ddi_subrdefs.h \
47 debug_info.h \
48 fastboot.h \
49 ht.h \
50 mach_mmu.h \
51 machclock.h \
52 machcpuvar.h \
53 machparam.h \
54 machprivregs.h \
55 machsystm.h \
56 machthread.h \
57 memnode.h \
58 pc_mmu.h \

new/usr/src/uts/i86pc/sys/Makefile 2

59 psm.h \
60 psm_defs.h \
61 psm_modctl.h \
62 psm_types.h \
63 rm_platter.h \
64 smp_impldefs.h \
65 sbd_ioctl.h \
66 vm_machparam.h \
67 x_call.h \
68 xc_levels.h \
69 xsvc.h

71 ROOTHDRS= $(HDRS:%=$(USR_PSM_ISYS_DIR)/%)

73 ROOTDIR= $(ROOT)/usr/share/src
74 ROOTDIRS= $(ROOTDIR)/uts $(ROOTDIR)/uts/$(PLATFORM)

76 ROOTLINK= $(ROOTDIR)/uts/$(PLATFORM)/sys
77 LINKDEST= ../../../../platform/$(PLATFORM)/include/sys

79 CHECKHDRS= $(HDRS:%.h=%.check)

81 .KEEP_STATE:

83 .PARALLEL: $(CHECKHDRS) $(ROOTHDRS)

85 install_h: $(ROOTDIRS) .WAIT $(ROOTHDRS) $(ROOTLINK)

87 check: $(CHECKHDRS)

89 $(ROOTDIRS):
90 $(INS.dir)

92 $(ROOTLINK): $(ROOTDIRS)
93 -$(RM) -r $@; $(SYMLINK) $(LINKDEST) $@

95 FRC:

97 include ../../Makefile.targ

new/usr/src/uts/i86pc/sys/ht.h 1

**
 1094 Wed May 15 07:34:09 2019
new/usr/src/uts/i86pc/sys/ht.h
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2018 Joyent, Inc.
14 */

16 #ifndef _SYS_HT_H
17 #define _SYS_HT_H

19 #include <sys/types.h>
20 #include <sys/thread.h>

22 #ifdef __cplusplus
23 extern "C" {
24 #endif

26 struct cpu;

28 extern void ht_init(void);
29 extern void ht_intr_alloc_pil(uint_t);

31 extern int ht_acquire(void);
32 extern void ht_release(void);
33 extern void ht_mark(void);
34 extern void ht_begin_unsafe(void);
35 extern void ht_end_unsafe(void);
36 extern void ht_begin_intr(uint_t);
37 extern void ht_end_intr(void);
38 extern void ht_mark_as_vcpu(void);

40 extern boolean_t ht_should_run(kthread_t *, struct cpu *);
41 extern pri_t ht_adjust_cpu_score(kthread_t *, struct cpu *, pri_t);

43 #ifdef __cplusplus
44 }
45 #endif

47 #endif /* _SYS_HT_H */

new/usr/src/uts/i86pc/sys/machcpuvar.h 1

**
 7797 Wed May 15 07:34:09 2019
new/usr/src/uts/i86pc/sys/machcpuvar.h
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**
______unchanged_portion_omitted_

137 typedef struct cpu_ht {
138 lock_t ch_lock;
139 char ch_pad[56];
140 struct cpu *ch_sib;
141 volatile uint64_t ch_intr_depth;
142 volatile uint64_t ch_state;
143 volatile uint64_t ch_sibstate;
144 } cpu_ht_t;

146 /*
147 * This first value, MACHCPU_SIZE is the size of all the members in the cpu_t
148 * AND struct machcpu, before we get to the mcpu_pad and the kpti area.
149 * The KPTI is used to contain per-CPU data that is visible in both sets of
150 * page-tables, and hence must be page-aligned and page-sized. See
151 * hat_pcp_setup().
152 *
153 * There are CTASSERTs in os/intr.c that verify this all works out.
144 * There is a CTASSERT in os/intr.c that checks these numbers.
154 */
155 #define MACHCPU_SIZE (1568 + 688)
146 #define MACHCPU_SIZE (572 + 1584)
156 #define MACHCPU_PAD (MMU_PAGESIZE - MACHCPU_SIZE)
157 #define MACHCPU_PAD2 (MMU_PAGESIZE - 16 - 3 * sizeof (struct kpti_frame))

159 struct machcpu {
160 /*
161 * x_call fields - used for interprocessor cross calls
162 */
163 struct xc_msg *xc_msgbox;
164 struct xc_msg *xc_free;
165 xc_data_t xc_data;
166 uint32_t xc_wait_cnt;
167 volatile uint32_t xc_work_cnt;

169 int mcpu_nodeid; /* node-id */
170 int mcpu_pri; /* CPU priority */

172 struct hat *mcpu_current_hat; /* cpu’s current hat */

174 struct hat_cpu_info *mcpu_hat_info;

176 volatile ulong_t mcpu_tlb_info;

178 /* i86 hardware table addresses that cannot be shared */

180 user_desc_t *mcpu_gdt; /* GDT */
181 gate_desc_t *mcpu_idt; /* current IDT */

183 tss_t *mcpu_tss; /* TSS */
184 void *mcpu_ldt;
185 size_t mcpu_ldt_len;

187 kmutex_t mcpu_ppaddr_mutex;
188 caddr_t mcpu_caddr1; /* per cpu CADDR1 */
189 caddr_t mcpu_caddr2; /* per cpu CADDR2 */
190 uint64_t mcpu_caddr1pte;

new/usr/src/uts/i86pc/sys/machcpuvar.h 2

191 uint64_t mcpu_caddr2pte;

193 struct softint mcpu_softinfo;
194 uint64_t pil_high_start[HIGH_LEVELS];
195 uint64_t intrstat[PIL_MAX + 1][2];

197 struct cpuid_info *mcpu_cpi;

199 #if defined(__amd64)
200 greg_t mcpu_rtmp_rsp; /* syscall: temporary %rsp stash */
201 greg_t mcpu_rtmp_r15; /* syscall: temporary %r15 stash */
202 #endif

204 struct vcpu_info *mcpu_vcpu_info;
205 uint64_t mcpu_gdtpa; /* hypervisor: GDT physical address */

207 uint16_t mcpu_intr_pending; /* hypervisor: pending intrpt levels */
208 uint16_t mcpu_ec_mbox; /* hypervisor: evtchn_dev mailbox */
209 struct xen_evt_data *mcpu_evt_pend; /* hypervisor: pending events */

211 volatile uint32_t *mcpu_mwait; /* MONITOR/MWAIT buffer */
212 void (*mcpu_idle_cpu)(void); /* idle function */
213 uint16_t mcpu_idle_type; /* CPU next idle type */
214 uint16_t max_cstates; /* supported max cstates */

216 struct cpu_ucode_info *mcpu_ucode_info;

218 void *mcpu_pm_mach_state;
219 struct cmi_hdl *mcpu_cmi_hdl;
220 void *mcpu_mach_ctx_ptr;

222 /*
223 * A stamp that is unique per processor and changes
224 * whenever an interrupt happens. Userful for detecting
225 * if a section of code gets interrupted.
226 * The high order 16 bits will hold the cpu->cpu_id.
227 * The low order bits will be incremented on every interrupt.
228 */
229 volatile uint32_t mcpu_istamp;

231 cpu_ht_t mcpu_ht;

233 char mcpu_pad[MACHCPU_PAD];

235 /* This is the start of the page */
236 char mcpu_pad2[MACHCPU_PAD2];
237 struct kpti_frame mcpu_kpti;
238 struct kpti_frame mcpu_kpti_flt;
239 struct kpti_frame mcpu_kpti_dbg;
240 char mcpu_pad3[16];
241 };

______unchanged_portion_omitted_

new/usr/src/uts/i86xpv/Makefile.files 1

**
 5626 Wed May 15 07:34:09 2019
new/usr/src/uts/i86xpv/Makefile.files
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 #
25 # Copyright 2018 Joyent, Inc.
26 #

28 # This Makefile defines file modules in the directory uts/i86xpv
29 # and its children. These are the source files which are i86xpv
30 # "implementation architecture" dependent.
31 #

33 #
34 # object lists
35 #
36 CORE_OBJS += \
37 acpi_stubs.o \
38 balloon.o \
39 biosdisk.o \
40 cbe.o \
41 cmi.o \
42 cmi_hw.o \
43 cms.o \
44 confunix.o \
45 cpuid.o \
46 cpuid_subr.o \
47 cpupm.o \
48 cpupm_mach.o \
49 dis_tables.o \
50 ddi_impl.o \
51 dtrace_subr.o \
52 dvma.o \
53 fakebop.o \
54 fpu_subr.o \
55 fastboot.o \
56 fb_swtch.o \
57 graphics.o \
58 hardclk.o \

new/usr/src/uts/i86xpv/Makefile.files 2

59 hat_i86.o \
60 hat_kdi.o \
61 hment.o \
62 hold_page.o \
63 hrtimers.o \
64 ht.o \
65 htable.o \
66 i86_mmu.o \
67 ibft.o \
68 instr_size.o \
69 intr.o \
70 kboot_mmu.o \
71 kdi_idt.o \
72 kdi_idthdl.o \
73 kdi_asm.o \
74 lgrpplat.o \
75 mach_kdi.o \
76 mach_sysconfig.o \
77 machdep.o \
78 mem_config_stubs.o \
79 memnode.o \
80 microcode.o \
81 mlsetup.o \
82 mp_call.o \
83 mp_implfuncs.o \
84 mp_machdep.o \
85 mp_startup.o \
86 memscrub.o \
87 notes.o \
88 pci_bios.o \
89 pci_cfgacc.o \
90 pci_cfgacc_x86.o \
91 pci_cfgspace.o \
92 pci_mech1.o \
93 pci_mech2.o \
94 pci_neptune.o \
95 pci_orion.o \
96 pmem.o \
97 ppage.o \
98 startup.o \
99 ssp.o \
100 xpv_timestamp.o \
101 todpc_subr.o \
102 trap.o \
103 vm_machdep.o \
104 x_call.o

106 #
107 # Add the SMBIOS subsystem object files directly to the list of objects
108 # built into unix itself; this is all common code except for smb_dev.c.
109 #
110 CORE_OBJS += $(SMBIOS_OBJS)

112 #
113 # These get compiled twice:
114 # - once in the dboot (direct boot) identity mapped code
115 # - once for use during early startup in unix
116 #
117 BOOT_DRIVER_OBJS = \
118 boot_console.o \
119 boot_keyboard.o \
120 boot_keyboard_table.o \
121 boot_mmu.o \
122 boot_vga.o \
123 boot_fb.o \
124 boot_xconsole.o \

new/usr/src/uts/i86xpv/Makefile.files 3

125 dboot_multiboot2.o \
126 $(FONT_OBJS)

128 CORE_OBJS += $(BOOT_DRIVER_OBJS)

130 #
131 # Extra XEN files separated out for now.
132 #
133 CORE_OBJS += \
134 cpr_driver.o \
135 evtchn.o \
136 gnttab.o \
137 hypercall.o \
138 hyperevent.o \
139 hypersubr.o \
140 mp_xen.o \
141 panic_asm.o \
142 xenguest.o \
143 xenbus_client.o \
144 xenbus_comms.o \
145 xenbus_probe.o \
146 xenbus_xs.o \
147 xen_machdep.o \
148 xen_mmu.o \
149 xpv_panic.o \
150 xvdi.o

152 #
153 # locore.o is special. It must be the first file relocated so that it
154 # it is relocated just where its name implies.
155 #
156 SPECIAL_OBJS_32 += \
157 locore.o \
158 fast_trap_asm.o \
159 interrupt.o \
160 syscall_asm.o

162 SPECIAL_OBJS_64 += \
163 locore.o \
164 fast_trap_asm.o \
165 interrupt.o \
166 syscall_asm_amd64.o \
167 kpti_trampolines.o

169 SPECIAL_OBJS += $(SPECIAL_OBJS_$(CLASS))

171 #
172 # object files used to boot into full kernel
173 #
174 DBOOT_OBJS_32 = muldiv.o

176 DBOOT_OBJS_64 =

178 DBOOT_OBJS += \
179 dboot_asm.o \
180 dboot_printf.o \
181 dboot_startkern.o \
182 dboot_xen.o \
183 hypercall.o \
184 hypersubr.o \
185 memcpy.o \
186 memset.o \
187 string.o \
188 $(BOOT_DRIVER_OBJS) \
189 $(DBOOT_OBJS_$(CLASS))

new/usr/src/uts/i86xpv/Makefile.files 4

191 #
192 # driver & misc modules
193 #
194 BALLOON_OBJS += balloon_drv.o
195 DOMCAPS_OBJS += domcaps.o
196 EVTCHN_OBJS += evtchn_dev.o
197 GFX_PRIVATE_OBJS += gfx_private.o gfxp_pci.o gfxp_segmap.o \
198 gfxp_devmap.o gfxp_vgatext.o gfxp_vm.o vgasubr.o \
199 gfxp_fb.o gfxp_bitmap.o
200 IOAT_OBJS += ioat.o ioat_rs.o ioat_ioctl.o ioat_chan.o
201 ISANEXUS_OBJS += isa.o dma_engine.o i8237A.o
202 PCI_E_NEXUS_OBJS += npe.o npe_misc.o
203 PCI_E_NEXUS_OBJS += pci_common.o pci_kstats.o pci_tools.o
204 PCINEXUS_OBJS += pci.o pci_common.o pci_kstats.o pci_tools.o
205 PRIVCMD_OBJS += seg_mf.o privcmd.o privcmd_hcall.o
206 ROOTNEX_OBJS += rootnex.o
207 XPVTOD_OBJS += xpvtod.o
208 XPV_AUTOCONFIG_OBJS += xpv_autoconfig.o
209 XPV_PSM_OBJS += xpv_psm.o mp_platform_common.o mp_platform_xpv.o \
210 apic_regops.o psm_common.o xpv_intr.o
211 XPV_UPPC_OBJS += xpv_uppc.o psm_common.o
212 XENBUS_OBJS += xenbus_dev.o
213 XENCONS_OBJS += xencons.o
214 XPVD_OBJS += xpvd.o
215 XPVTAP_OBJS += xpvtap.o blk_common.o seg_mf.o
216 XNB_OBJS += xnb.o
217 XNBE_OBJS += xnbe.o
218 XNBO_OBJS += xnbo.o
219 XNBU_OBJS += xnbu.o
220 XNF_OBJS += xnf.o
221 XSVC_OBJS += xsvc.o
222 XDF_OBJS += xdf.o
223 XDB_OBJS += xdb.o
224 XDT_OBJS += xdt.o

226 #
227 # Build up defines and paths.
228 #
229 INC_PATH += -I$(UTSBASE)/i86xpv -I$(UTSBASE)/i86pc -I$(SRC)/common \
230 -I$(UTSBASE)/common/xen

232 #
233 # Since the assym files are derived, the dependencies must be explicit for
234 # all files including this file. (This is only actually required in the
235 # instance when the .nse_depinfo file does not exist.) It may seem that
236 # the lint targets should also have a similar dependency, but they don’t
237 # since only C headers are included when #defined(__lint) is true.
238 #

240 ASSYM_DEPS += \
241 copy.o \
242 desctbls_asm.o \
243 ddi_i86_asm.o \
244 exception.o \
245 fast_trap_asm.o \
246 float.o \
247 hyperevent.o \
248 i86_subr.o \
249 kdi_asm.o \
250 interrupt.o \
251 lock_prim.o \
252 locore.o \
253 panic_asm.o \
254 sseblk.o \
255 swtch.o \
256 syscall_asm.o \

new/usr/src/uts/i86xpv/Makefile.files 5

257 syscall_asm_amd64.o

259 $(KDI_ASSYM_DEPS:%=$(OBJS_DIR)/%): $(DSF_DIR)/$(OBJS_DIR)/kdi_assym.h

new/usr/src/uts/intel/ia32/ml/copy.s 1

**
 68145 Wed May 15 07:34:09 2019
new/usr/src/uts/intel/ia32/ml/copy.s
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2009, Intel Corporation
28 * All rights reserved.
29 */

31 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
32 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
33 /* All Rights Reserved */

35 /* Copyright (c) 1987, 1988 Microsoft Corporation */
36 /* All Rights Reserved */

38 /*
39 * Copyright (c) 2018 Joyent, Inc.
39 * Copyright 2016 Joyent, Inc.
40 */

42 #include <sys/errno.h>
43 #include <sys/asm_linkage.h>

45 #if defined(__lint)
46 #include <sys/types.h>
47 #include <sys/systm.h>
48 #else /* __lint */
49 #include "assym.h"
50 #endif /* __lint */

52 #define KCOPY_MIN_SIZE 128 /* Must be >= 16 bytes */
53 #define XCOPY_MIN_SIZE 128 /* Must be >= 16 bytes */
54 /*
55 * Non-temopral access (NTA) alignment requirement
56 */
57 #define NTA_ALIGN_SIZE 4 /* Must be at least 4-byte aligned */

new/usr/src/uts/intel/ia32/ml/copy.s 2

58 #define NTA_ALIGN_MASK _CONST(NTA_ALIGN_SIZE-1)
59 #define COUNT_ALIGN_SIZE 16 /* Must be at least 16-byte aligned */
60 #define COUNT_ALIGN_MASK _CONST(COUNT_ALIGN_SIZE-1)

62 /*
63 * With the introduction of Broadwell, Intel has introduced supervisor mode
64 * access protection -- SMAP. SMAP forces the kernel to set certain bits to
65 * enable access of user pages (AC in rflags, defines as PS_ACHK in
66 * <sys/psw.h>). One of the challenges is that the implementation of many of the
67 * userland copy routines directly use the kernel ones. For example, copyin and
68 * copyout simply go and jump to the do_copy_fault label and traditionally let
69 * those deal with the return for them. In fact, changing that is a can of frame
70 * pointers.
71 *
72 * Rules and Constraints:
73 *
74 * 1. For anything that’s not in copy.s, we have it do explicit calls to the
75 * smap related code. It usually is in a position where it is able to. This is
76 * restricted to the following three places: DTrace, resume() in swtch.s and
77 * on_fault/no_fault. If you want to add it somewhere else, we should be
78 * thinking twice.
79 *
80 * 2. We try to toggle this at the smallest window possible. This means that if
81 * we take a fault, need to try to use a copyop in copyin() or copyout(), or any
82 * other function, we will always leave with SMAP enabled (the kernel cannot
83 * access user pages).
84 *
85 * 3. None of the *_noerr() or ucopy/uzero routines should toggle SMAP. They are
86 * explicitly only allowed to be called while in an on_fault()/no_fault() handle
87 * which already takes care of ensuring that SMAP is enabled and disabled. Note
88 * this means that when under an on_fault()/no_fault() handler, one must not
89 * call the non-*_noeer() routines.
90 *
91 * 4. The first thing we should do after coming out of an lofault handler is to
92 * make sure that we call smap_enable again to ensure that we are safely
93 * protected, as more often than not, we will have disabled smap to get there.
94 *
95 * 5. The SMAP functions, smap_enable and smap_disable may not touch any
96 * registers beyond those done by the call and ret. These routines may be called
97 * from arbitrary contexts in copy.s where we have slightly more special ABIs in
98 * place.
99 *
100 * 6. For any inline user of SMAP, the appropriate SMAP_ENABLE_INSTR and
101 * SMAP_DISABLE_INSTR macro should be used (except for smap_enable() and
102 * smap_disable()). If the number of these is changed, you must update the
103 * constants SMAP_ENABLE_COUNT and SMAP_DISABLE_COUNT below.
104 *
105 * 7. Note, at this time SMAP is not implemented for the 32-bit kernel. There is
106 * no known technical reason preventing it from being enabled.
107 *
108 * 8. Generally this .s file is processed by a K&R style cpp. This means that it
109 * really has a lot of feelings about whitespace. In particular, if you have a
110 * macro FOO with the arguments FOO(1, 3), the second argument is in fact ’ 3’.
111 *
112 * 9. The smap_enable and smap_disable functions should not generally be called.
113 * They exist such that DTrace and on_trap() may use them, that’s it.
114 *
115 * 10. In general, the kernel has its own value for rflags that gets used. This
116 * is maintained in a few different places which vary based on how the thread
117 * comes into existence and whether it’s a user thread. In general, when the
118 * kernel takes a trap, it always will set ourselves to a known set of flags,
119 * mainly as part of ENABLE_INTR_FLAGS and F_OFF and F_ON. These ensure that
120 * PS_ACHK is cleared for us. In addition, when using the sysenter instruction,
121 * we mask off PS_ACHK off via the AMD_SFMASK MSR. See init_cpu_syscall() for
122 * where that gets masked off.
123 */

new/usr/src/uts/intel/ia32/ml/copy.s 3

125 /*
126 * The optimal 64-bit bcopy and kcopy for modern x86 processors uses
127 * "rep smovq" for large sizes. Performance data shows that many calls to
128 * bcopy/kcopy/bzero/kzero operate on small buffers. For best performance for
129 * these small sizes unrolled code is used. For medium sizes loops writing
130 * 64-bytes per loop are used. Transition points were determined experimentally.
131 */
132 #define BZERO_USE_REP (1024)
133 #define BCOPY_DFLT_REP (128)
134 #define BCOPY_NHM_REP (768)

136 /*
137 * Copy a block of storage, returning an error code if ‘from’ or
138 * ‘to’ takes a kernel pagefault which cannot be resolved.
139 * Returns errno value on pagefault error, 0 if all ok
140 */

142 /*
143 * I’m sorry about these macros, but copy.s is unsurprisingly sensitive to
144 * additional call instructions.
145 */
146 #if defined(__amd64)
147 #define SMAP_DISABLE_COUNT 16
148 #define SMAP_ENABLE_COUNT 26
149 #elif defined(__i386)
150 #define SMAP_DISABLE_COUNT 0
151 #define SMAP_ENABLE_COUNT 0
152 #endif

154 #define SMAP_DISABLE_INSTR(ITER) \
155 .globl _smap_disable_patch_/**/ITER; \
156 _smap_disable_patch_/**/ITER/**/:; \
157 nop; nop; nop;

159 #define SMAP_ENABLE_INSTR(ITER) \
160 .globl _smap_enable_patch_/**/ITER; \
161 _smap_enable_patch_/**/ITER/**/:; \
162 nop; nop; nop;

164 #if defined(__lint)

166 /* ARGSUSED */
167 int
168 kcopy(const void *from, void *to, size_t count)
169 { return (0); }

171 #else /* __lint */

173 .globl kernelbase
174 .globl postbootkernelbase

176 #if defined(__amd64)

178 ENTRY(kcopy)
179 pushq %rbp
180 movq %rsp, %rbp
181 #ifdef DEBUG
182 cmpq postbootkernelbase(%rip), %rdi /* %rdi = from */
183 jb 0f
184 cmpq postbootkernelbase(%rip), %rsi /* %rsi = to */
185 jnb 1f
186 0: leaq .kcopy_panic_msg(%rip), %rdi
187 xorl %eax, %eax
188 call panic
189 1:

new/usr/src/uts/intel/ia32/ml/copy.s 4

190 #endif
191 /*
192 * pass lofault value as 4th argument to do_copy_fault
193 */
194 leaq _kcopy_copyerr(%rip), %rcx
195 movq %gs:CPU_THREAD, %r9 /* %r9 = thread addr */

197 do_copy_fault:
198 movq T_LOFAULT(%r9), %r11 /* save the current lofault */
199 movq %rcx, T_LOFAULT(%r9) /* new lofault */
200 call bcopy_altentry
201 xorl %eax, %eax /* return 0 (success) */
202 SMAP_ENABLE_INSTR(0)

204 /*
205 * A fault during do_copy_fault is indicated through an errno value
206 * in %rax and we iretq from the trap handler to here.
207 */
208 _kcopy_copyerr:
209 movq %r11, T_LOFAULT(%r9) /* restore original lofault */
210 leave
211 ret
212 SET_SIZE(kcopy)

______unchanged_portion_omitted_

434 #undef ARG_FROM
435 #undef ARG_TO
436 #undef ARG_COUNT

438 #endif /* __i386 */
439 #endif /* __lint */

441 #if defined(__lint)

443 /* ARGSUSED */
444 void
445 bcopy(const void *from, void *to, size_t count)
446 {}

448 #else /* __lint */

450 #if defined(__amd64)

452 ENTRY(bcopy)
453 #ifdef DEBUG
454 orq %rdx, %rdx /* %rdx = count */
455 jz 1f
456 cmpq postbootkernelbase(%rip), %rdi /* %rdi = from */
457 jb 0f
458 cmpq postbootkernelbase(%rip), %rsi /* %rsi = to */
459 jnb 1f
460 0: leaq .bcopy_panic_msg(%rip), %rdi
461 jmp call_panic /* setup stack and call panic */
462 1:
463 #endif
464 /*
465 * bcopy_altentry() is called from kcopy, i.e., do_copy_fault.
466 * kcopy assumes that bcopy doesn’t touch %r9 and %r11. If bcopy
467 * uses these registers in future they must be saved and restored.
468 */
469 ALTENTRY(bcopy_altentry)
470 do_copy:
471 #define L(s) .bcopy/**/s
472 cmpq $0x50, %rdx /* 80 */
473 jae bcopy_ck_size

new/usr/src/uts/intel/ia32/ml/copy.s 5

475 /*
476 * Performance data shows many caller’s copy small buffers. So for
477 * best perf for these sizes unrolled code is used. Store data without
478 * worrying about alignment.
479 */
480 leaq L(fwdPxQx)(%rip), %r10
481 addq %rdx, %rdi
482 addq %rdx, %rsi
483 movslq (%r10,%rdx,4), %rcx
484 leaq (%rcx,%r10,1), %r10
485 jmpq *%r10

487 .p2align 4
488 L(fwdPxQx):
489 .int L(P0Q0)-L(fwdPxQx) /* 0 */
490 .int L(P1Q0)-L(fwdPxQx)
491 .int L(P2Q0)-L(fwdPxQx)
492 .int L(P3Q0)-L(fwdPxQx)
493 .int L(P4Q0)-L(fwdPxQx)
494 .int L(P5Q0)-L(fwdPxQx)
495 .int L(P6Q0)-L(fwdPxQx)
496 .int L(P7Q0)-L(fwdPxQx)

498 .int L(P0Q1)-L(fwdPxQx) /* 8 */
499 .int L(P1Q1)-L(fwdPxQx)
500 .int L(P2Q1)-L(fwdPxQx)
501 .int L(P3Q1)-L(fwdPxQx)
502 .int L(P4Q1)-L(fwdPxQx)
503 .int L(P5Q1)-L(fwdPxQx)
504 .int L(P6Q1)-L(fwdPxQx)
505 .int L(P7Q1)-L(fwdPxQx)

507 .int L(P0Q2)-L(fwdPxQx) /* 16 */
508 .int L(P1Q2)-L(fwdPxQx)
509 .int L(P2Q2)-L(fwdPxQx)
510 .int L(P3Q2)-L(fwdPxQx)
511 .int L(P4Q2)-L(fwdPxQx)
512 .int L(P5Q2)-L(fwdPxQx)
513 .int L(P6Q2)-L(fwdPxQx)
514 .int L(P7Q2)-L(fwdPxQx)

516 .int L(P0Q3)-L(fwdPxQx) /* 24 */
517 .int L(P1Q3)-L(fwdPxQx)
518 .int L(P2Q3)-L(fwdPxQx)
519 .int L(P3Q3)-L(fwdPxQx)
520 .int L(P4Q3)-L(fwdPxQx)
521 .int L(P5Q3)-L(fwdPxQx)
522 .int L(P6Q3)-L(fwdPxQx)
523 .int L(P7Q3)-L(fwdPxQx)

525 .int L(P0Q4)-L(fwdPxQx) /* 32 */
526 .int L(P1Q4)-L(fwdPxQx)
527 .int L(P2Q4)-L(fwdPxQx)
528 .int L(P3Q4)-L(fwdPxQx)
529 .int L(P4Q4)-L(fwdPxQx)
530 .int L(P5Q4)-L(fwdPxQx)
531 .int L(P6Q4)-L(fwdPxQx)
532 .int L(P7Q4)-L(fwdPxQx)

534 .int L(P0Q5)-L(fwdPxQx) /* 40 */
535 .int L(P1Q5)-L(fwdPxQx)
536 .int L(P2Q5)-L(fwdPxQx)
537 .int L(P3Q5)-L(fwdPxQx)
538 .int L(P4Q5)-L(fwdPxQx)
539 .int L(P5Q5)-L(fwdPxQx)
540 .int L(P6Q5)-L(fwdPxQx)

new/usr/src/uts/intel/ia32/ml/copy.s 6

541 .int L(P7Q5)-L(fwdPxQx)

543 .int L(P0Q6)-L(fwdPxQx) /* 48 */
544 .int L(P1Q6)-L(fwdPxQx)
545 .int L(P2Q6)-L(fwdPxQx)
546 .int L(P3Q6)-L(fwdPxQx)
547 .int L(P4Q6)-L(fwdPxQx)
548 .int L(P5Q6)-L(fwdPxQx)
549 .int L(P6Q6)-L(fwdPxQx)
550 .int L(P7Q6)-L(fwdPxQx)

552 .int L(P0Q7)-L(fwdPxQx) /* 56 */
553 .int L(P1Q7)-L(fwdPxQx)
554 .int L(P2Q7)-L(fwdPxQx)
555 .int L(P3Q7)-L(fwdPxQx)
556 .int L(P4Q7)-L(fwdPxQx)
557 .int L(P5Q7)-L(fwdPxQx)
558 .int L(P6Q7)-L(fwdPxQx)
559 .int L(P7Q7)-L(fwdPxQx)

561 .int L(P0Q8)-L(fwdPxQx) /* 64 */
562 .int L(P1Q8)-L(fwdPxQx)
563 .int L(P2Q8)-L(fwdPxQx)
564 .int L(P3Q8)-L(fwdPxQx)
565 .int L(P4Q8)-L(fwdPxQx)
566 .int L(P5Q8)-L(fwdPxQx)
567 .int L(P6Q8)-L(fwdPxQx)
568 .int L(P7Q8)-L(fwdPxQx)

570 .int L(P0Q9)-L(fwdPxQx) /* 72 */
571 .int L(P1Q9)-L(fwdPxQx)
572 .int L(P2Q9)-L(fwdPxQx)
573 .int L(P3Q9)-L(fwdPxQx)
574 .int L(P4Q9)-L(fwdPxQx)
575 .int L(P5Q9)-L(fwdPxQx)
576 .int L(P6Q9)-L(fwdPxQx)
577 .int L(P7Q9)-L(fwdPxQx) /* 79 */

579 .p2align 4
580 L(P0Q9):
581 mov -0x48(%rdi), %rcx
582 mov %rcx, -0x48(%rsi)
583 L(P0Q8):
584 mov -0x40(%rdi), %r10
585 mov %r10, -0x40(%rsi)
586 L(P0Q7):
587 mov -0x38(%rdi), %r8
588 mov %r8, -0x38(%rsi)
589 L(P0Q6):
590 mov -0x30(%rdi), %rcx
591 mov %rcx, -0x30(%rsi)
592 L(P0Q5):
593 mov -0x28(%rdi), %r10
594 mov %r10, -0x28(%rsi)
595 L(P0Q4):
596 mov -0x20(%rdi), %r8
597 mov %r8, -0x20(%rsi)
598 L(P0Q3):
599 mov -0x18(%rdi), %rcx
600 mov %rcx, -0x18(%rsi)
601 L(P0Q2):
602 mov -0x10(%rdi), %r10
603 mov %r10, -0x10(%rsi)
604 L(P0Q1):
605 mov -0x8(%rdi), %r8
606 mov %r8, -0x8(%rsi)

new/usr/src/uts/intel/ia32/ml/copy.s 7

607 L(P0Q0):
608 ret

610 .p2align 4
611 L(P1Q9):
612 mov -0x49(%rdi), %r8
613 mov %r8, -0x49(%rsi)
614 L(P1Q8):
615 mov -0x41(%rdi), %rcx
616 mov %rcx, -0x41(%rsi)
617 L(P1Q7):
618 mov -0x39(%rdi), %r10
619 mov %r10, -0x39(%rsi)
620 L(P1Q6):
621 mov -0x31(%rdi), %r8
622 mov %r8, -0x31(%rsi)
623 L(P1Q5):
624 mov -0x29(%rdi), %rcx
625 mov %rcx, -0x29(%rsi)
626 L(P1Q4):
627 mov -0x21(%rdi), %r10
628 mov %r10, -0x21(%rsi)
629 L(P1Q3):
630 mov -0x19(%rdi), %r8
631 mov %r8, -0x19(%rsi)
632 L(P1Q2):
633 mov -0x11(%rdi), %rcx
634 mov %rcx, -0x11(%rsi)
635 L(P1Q1):
636 mov -0x9(%rdi), %r10
637 mov %r10, -0x9(%rsi)
638 L(P1Q0):
639 movzbq -0x1(%rdi), %r8
640 mov %r8b, -0x1(%rsi)
641 ret

643 .p2align 4
644 L(P2Q9):
645 mov -0x4a(%rdi), %r8
646 mov %r8, -0x4a(%rsi)
647 L(P2Q8):
648 mov -0x42(%rdi), %rcx
649 mov %rcx, -0x42(%rsi)
650 L(P2Q7):
651 mov -0x3a(%rdi), %r10
652 mov %r10, -0x3a(%rsi)
653 L(P2Q6):
654 mov -0x32(%rdi), %r8
655 mov %r8, -0x32(%rsi)
656 L(P2Q5):
657 mov -0x2a(%rdi), %rcx
658 mov %rcx, -0x2a(%rsi)
659 L(P2Q4):
660 mov -0x22(%rdi), %r10
661 mov %r10, -0x22(%rsi)
662 L(P2Q3):
663 mov -0x1a(%rdi), %r8
664 mov %r8, -0x1a(%rsi)
665 L(P2Q2):
666 mov -0x12(%rdi), %rcx
667 mov %rcx, -0x12(%rsi)
668 L(P2Q1):
669 mov -0xa(%rdi), %r10
670 mov %r10, -0xa(%rsi)
671 L(P2Q0):
672 movzwq -0x2(%rdi), %r8

new/usr/src/uts/intel/ia32/ml/copy.s 8

673 mov %r8w, -0x2(%rsi)
674 ret

676 .p2align 4
677 L(P3Q9):
678 mov -0x4b(%rdi), %r8
679 mov %r8, -0x4b(%rsi)
680 L(P3Q8):
681 mov -0x43(%rdi), %rcx
682 mov %rcx, -0x43(%rsi)
683 L(P3Q7):
684 mov -0x3b(%rdi), %r10
685 mov %r10, -0x3b(%rsi)
686 L(P3Q6):
687 mov -0x33(%rdi), %r8
688 mov %r8, -0x33(%rsi)
689 L(P3Q5):
690 mov -0x2b(%rdi), %rcx
691 mov %rcx, -0x2b(%rsi)
692 L(P3Q4):
693 mov -0x23(%rdi), %r10
694 mov %r10, -0x23(%rsi)
695 L(P3Q3):
696 mov -0x1b(%rdi), %r8
697 mov %r8, -0x1b(%rsi)
698 L(P3Q2):
699 mov -0x13(%rdi), %rcx
700 mov %rcx, -0x13(%rsi)
701 L(P3Q1):
702 mov -0xb(%rdi), %r10
703 mov %r10, -0xb(%rsi)
704 /*
705 * These trailing loads/stores have to do all their loads 1st,
706 * then do the stores.
707 */
708 L(P3Q0):
709 movzwq -0x3(%rdi), %r8
710 movzbq -0x1(%rdi), %r10
711 mov %r8w, -0x3(%rsi)
712 mov %r10b, -0x1(%rsi)
713 ret

715 .p2align 4
716 L(P4Q9):
717 mov -0x4c(%rdi), %r8
718 mov %r8, -0x4c(%rsi)
719 L(P4Q8):
720 mov -0x44(%rdi), %rcx
721 mov %rcx, -0x44(%rsi)
722 L(P4Q7):
723 mov -0x3c(%rdi), %r10
724 mov %r10, -0x3c(%rsi)
725 L(P4Q6):
726 mov -0x34(%rdi), %r8
727 mov %r8, -0x34(%rsi)
728 L(P4Q5):
729 mov -0x2c(%rdi), %rcx
730 mov %rcx, -0x2c(%rsi)
731 L(P4Q4):
732 mov -0x24(%rdi), %r10
733 mov %r10, -0x24(%rsi)
734 L(P4Q3):
735 mov -0x1c(%rdi), %r8
736 mov %r8, -0x1c(%rsi)
737 L(P4Q2):
738 mov -0x14(%rdi), %rcx

new/usr/src/uts/intel/ia32/ml/copy.s 9

739 mov %rcx, -0x14(%rsi)
740 L(P4Q1):
741 mov -0xc(%rdi), %r10
742 mov %r10, -0xc(%rsi)
743 L(P4Q0):
744 mov -0x4(%rdi), %r8d
745 mov %r8d, -0x4(%rsi)
746 ret

748 .p2align 4
749 L(P5Q9):
750 mov -0x4d(%rdi), %r8
751 mov %r8, -0x4d(%rsi)
752 L(P5Q8):
753 mov -0x45(%rdi), %rcx
754 mov %rcx, -0x45(%rsi)
755 L(P5Q7):
756 mov -0x3d(%rdi), %r10
757 mov %r10, -0x3d(%rsi)
758 L(P5Q6):
759 mov -0x35(%rdi), %r8
760 mov %r8, -0x35(%rsi)
761 L(P5Q5):
762 mov -0x2d(%rdi), %rcx
763 mov %rcx, -0x2d(%rsi)
764 L(P5Q4):
765 mov -0x25(%rdi), %r10
766 mov %r10, -0x25(%rsi)
767 L(P5Q3):
768 mov -0x1d(%rdi), %r8
769 mov %r8, -0x1d(%rsi)
770 L(P5Q2):
771 mov -0x15(%rdi), %rcx
772 mov %rcx, -0x15(%rsi)
773 L(P5Q1):
774 mov -0xd(%rdi), %r10
775 mov %r10, -0xd(%rsi)
776 L(P5Q0):
777 mov -0x5(%rdi), %r8d
778 movzbq -0x1(%rdi), %r10
779 mov %r8d, -0x5(%rsi)
780 mov %r10b, -0x1(%rsi)
781 ret

783 .p2align 4
784 L(P6Q9):
785 mov -0x4e(%rdi), %r8
786 mov %r8, -0x4e(%rsi)
787 L(P6Q8):
788 mov -0x46(%rdi), %rcx
789 mov %rcx, -0x46(%rsi)
790 L(P6Q7):
791 mov -0x3e(%rdi), %r10
792 mov %r10, -0x3e(%rsi)
793 L(P6Q6):
794 mov -0x36(%rdi), %r8
795 mov %r8, -0x36(%rsi)
796 L(P6Q5):
797 mov -0x2e(%rdi), %rcx
798 mov %rcx, -0x2e(%rsi)
799 L(P6Q4):
800 mov -0x26(%rdi), %r10
801 mov %r10, -0x26(%rsi)
802 L(P6Q3):
803 mov -0x1e(%rdi), %r8
804 mov %r8, -0x1e(%rsi)

new/usr/src/uts/intel/ia32/ml/copy.s 10

805 L(P6Q2):
806 mov -0x16(%rdi), %rcx
807 mov %rcx, -0x16(%rsi)
808 L(P6Q1):
809 mov -0xe(%rdi), %r10
810 mov %r10, -0xe(%rsi)
811 L(P6Q0):
812 mov -0x6(%rdi), %r8d
813 movzwq -0x2(%rdi), %r10
814 mov %r8d, -0x6(%rsi)
815 mov %r10w, -0x2(%rsi)
816 ret

818 .p2align 4
819 L(P7Q9):
820 mov -0x4f(%rdi), %r8
821 mov %r8, -0x4f(%rsi)
822 L(P7Q8):
823 mov -0x47(%rdi), %rcx
824 mov %rcx, -0x47(%rsi)
825 L(P7Q7):
826 mov -0x3f(%rdi), %r10
827 mov %r10, -0x3f(%rsi)
828 L(P7Q6):
829 mov -0x37(%rdi), %r8
830 mov %r8, -0x37(%rsi)
831 L(P7Q5):
832 mov -0x2f(%rdi), %rcx
833 mov %rcx, -0x2f(%rsi)
834 L(P7Q4):
835 mov -0x27(%rdi), %r10
836 mov %r10, -0x27(%rsi)
837 L(P7Q3):
838 mov -0x1f(%rdi), %r8
839 mov %r8, -0x1f(%rsi)
840 L(P7Q2):
841 mov -0x17(%rdi), %rcx
842 mov %rcx, -0x17(%rsi)
843 L(P7Q1):
844 mov -0xf(%rdi), %r10
845 mov %r10, -0xf(%rsi)
846 L(P7Q0):
847 mov -0x7(%rdi), %r8d
848 movzwq -0x3(%rdi), %r10
849 movzbq -0x1(%rdi), %rcx
850 mov %r8d, -0x7(%rsi)
851 mov %r10w, -0x3(%rsi)
852 mov %cl, -0x1(%rsi)
853 ret

855 /*
856 * For large sizes rep smovq is fastest.
857 * Transition point determined experimentally as measured on
858 * Intel Xeon processors (incl. Nehalem and previous generations) and
859 * AMD Opteron. The transition value is patched at boot time to avoid
860 * memory reference hit.
861 */
862 .globl bcopy_patch_start
863 bcopy_patch_start:
864 cmpq $BCOPY_NHM_REP, %rdx
865 .globl bcopy_patch_end
866 bcopy_patch_end:

868 .p2align 4
869 ALTENTRY(bcopy_ck_size)

new/usr/src/uts/intel/ia32/ml/copy.s 11

869 .globl bcopy_ck_size
870 bcopy_ck_size:
871 cmpq $BCOPY_DFLT_REP, %rdx
872 jae L(use_rep)

874 /*
875 * Align to a 8-byte boundary. Avoids penalties from unaligned stores
876 * as well as from stores spanning cachelines.
877 */
878 test $0x7, %rsi
879 jz L(aligned_loop)
880 test $0x1, %rsi
881 jz 2f
882 movzbq (%rdi), %r8
883 dec %rdx
884 inc %rdi
885 mov %r8b, (%rsi)
886 inc %rsi
887 2:
888 test $0x2, %rsi
889 jz 4f
890 movzwq (%rdi), %r8
891 sub $0x2, %rdx
892 add $0x2, %rdi
893 mov %r8w, (%rsi)
894 add $0x2, %rsi
895 4:
896 test $0x4, %rsi
897 jz L(aligned_loop)
898 mov (%rdi), %r8d
899 sub $0x4, %rdx
900 add $0x4, %rdi
901 mov %r8d, (%rsi)
902 add $0x4, %rsi

904 /*
905 * Copy 64-bytes per loop
906 */
907 .p2align 4
908 L(aligned_loop):
909 mov (%rdi), %r8
910 mov 0x8(%rdi), %r10
911 lea -0x40(%rdx), %rdx
912 mov %r8, (%rsi)
913 mov %r10, 0x8(%rsi)
914 mov 0x10(%rdi), %rcx
915 mov 0x18(%rdi), %r8
916 mov %rcx, 0x10(%rsi)
917 mov %r8, 0x18(%rsi)

919 cmp $0x40, %rdx
920 mov 0x20(%rdi), %r10
921 mov 0x28(%rdi), %rcx
922 mov %r10, 0x20(%rsi)
923 mov %rcx, 0x28(%rsi)
924 mov 0x30(%rdi), %r8
925 mov 0x38(%rdi), %r10
926 lea 0x40(%rdi), %rdi
927 mov %r8, 0x30(%rsi)
928 mov %r10, 0x38(%rsi)
929 lea 0x40(%rsi), %rsi
930 jae L(aligned_loop)

932 /*
933 * Copy remaining bytes (0-63)
934 */

new/usr/src/uts/intel/ia32/ml/copy.s 12

935 L(do_remainder):
936 leaq L(fwdPxQx)(%rip), %r10
937 addq %rdx, %rdi
938 addq %rdx, %rsi
939 movslq (%r10,%rdx,4), %rcx
940 leaq (%rcx,%r10,1), %r10
941 jmpq *%r10

943 /*
944 * Use rep smovq. Clear remainder via unrolled code
945 */
946 .p2align 4
947 L(use_rep):
948 xchgq %rdi, %rsi /* %rsi = source, %rdi = destination */
949 movq %rdx, %rcx /* %rcx = count */
950 shrq $3, %rcx /* 8-byte word count */
951 rep
952 smovq

954 xchgq %rsi, %rdi /* %rdi = src, %rsi = destination */
955 andq $7, %rdx /* remainder */
956 jnz L(do_remainder)
957 ret
958 #undef L
959 SET_SIZE(bcopy_ck_size)

961 #ifdef DEBUG
962 /*
963 * Setup frame on the run-time stack. The end of the input argument
964 * area must be aligned on a 16 byte boundary. The stack pointer %rsp,
965 * always points to the end of the latest allocated stack frame.
966 * panic(const char *format, ...) is a varargs function. When a
967 * function taking variable arguments is called, %rax must be set
968 * to eight times the number of floating point parameters passed
969 * to the function in SSE registers.
970 */
971 call_panic:
972 pushq %rbp /* align stack properly */
973 movq %rsp, %rbp
974 xorl %eax, %eax /* no variable arguments */
975 call panic /* %rdi = format string */
976 #endif
977 SET_SIZE(bcopy_altentry)

______unchanged_portion_omitted_

3179 #endif /* __amd64 || __i386 */

3181 #endif /* __lint */

3183 #ifndef __lint

3185 .data
3186 .align 4
3187 .globl _smap_enable_patch_count
3188 .type _smap_enable_patch_count,@object
3189 .size _smap_enable_patch_count, 4
3190 _smap_enable_patch_count:
3191 .long SMAP_ENABLE_COUNT

3193 .globl _smap_disable_patch_count
3194 .type _smap_disable_patch_count,@object
3195 .size _smap_disable_patch_count, 4
3196 _smap_disable_patch_count:
3197 .long SMAP_DISABLE_COUNT

3199 #endif /* __lint */

new/usr/src/uts/intel/ia32/ml/swtch.s 1

**
 14241 Wed May 15 07:34:10 2019
new/usr/src/uts/intel/ia32/ml/swtch.s
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright 2019 Joyent, Inc.
27 * Copyright (c) 2018 Joyent, Inc.
28 */

30 /*
31 * Process switching routines.
32 */

34 #if defined(__lint)
35 #include <sys/thread.h>
36 #include <sys/systm.h>
37 #include <sys/time.h>
38 #else /* __lint */
39 #include "assym.h"
40 #endif /* __lint */

34 #include <sys/asm_linkage.h>
35 #include <sys/asm_misc.h>
36 #include <sys/regset.h>
37 #include <sys/privregs.h>
38 #include <sys/stack.h>
39 #include <sys/segments.h>
40 #include <sys/psw.h>

42 #include "assym.h"

44 /*
45 * resume(thread_id_t t);
46 *
47 * a thread can only run on one processor at a time. there
48 * exists a window on MPs where the current thread on one
49 * processor is capable of being dispatched by another processor.

new/usr/src/uts/intel/ia32/ml/swtch.s 2

50 * some overlap between outgoing and incoming threads can happen
51 * when they are the same thread. in this case where the threads
52 * are the same, resume() on one processor will spin on the incoming
53 * thread until resume() on the other processor has finished with
54 * the outgoing thread.
55 *
56 * The MMU context changes when the resuming thread resides in a different
57 * process. Kernel threads are known by resume to reside in process 0.
58 * The MMU context, therefore, only changes when resuming a thread in
59 * a process different from curproc.
60 *
61 * resume_from_intr() is called when the thread being resumed was not
62 * passivated by resume (e.g. was interrupted). This means that the
63 * resume lock is already held and that a restore context is not needed.
64 * Also, the MMU context is not changed on the resume in this case.
65 *
66 * resume_from_zombie() is the same as resume except the calling thread
67 * is a zombie and must be put on the deathrow list after the CPU is
68 * off the stack.
69 */

77 #if !defined(__lint)

71 #if LWP_PCB_FPU != 0
72 #error LWP_PCB_FPU MUST be defined as 0 for code in swtch.s to work
73 #endif /* LWP_PCB_FPU != 0 */

83 #endif /* !__lint */

85 #if defined(__amd64)

75 /*
76 * Save non-volatile regs other than %rsp (%rbx, %rbp, and %r12 - %r15)
77 *
78 * The stack frame must be created before the save of %rsp so that tracebacks
79 * of swtch()ed-out processes show the process as having last called swtch().
80 */
81 #define SAVE_REGS(thread_t, retaddr) \
82 movq %rbp, T_RBP(thread_t); \
83 movq %rbx, T_RBX(thread_t); \
84 movq %r12, T_R12(thread_t); \
85 movq %r13, T_R13(thread_t); \
86 movq %r14, T_R14(thread_t); \
87 movq %r15, T_R15(thread_t); \
88 pushq %rbp; \
89 movq %rsp, %rbp; \
90 movq %rsp, T_SP(thread_t); \
91 movq retaddr, T_PC(thread_t); \
92 movq %rdi, %r12; \
93 call __dtrace_probe___sched_off__cpu

95 /*
96 * Restore non-volatile regs other than %rsp (%rbx, %rbp, and %r12 - %r15)
97 *
98 * We load up %rsp from the label_t as part of the context switch, so
99 * we don’t repeat that here.
100 *
101 * We don’t do a ’leave,’ because reloading %rsp/%rbp from the label_t
102 * already has the effect of putting the stack back the way it was when
103 * we came in.
104 */
105 #define RESTORE_REGS(scratch_reg) \
106 movq %gs:CPU_THREAD, scratch_reg; \
107 movq T_RBP(scratch_reg), %rbp; \
108 movq T_RBX(scratch_reg), %rbx; \
109 movq T_R12(scratch_reg), %r12; \

new/usr/src/uts/intel/ia32/ml/swtch.s 3

110 movq T_R13(scratch_reg), %r13; \
111 movq T_R14(scratch_reg), %r14; \
112 movq T_R15(scratch_reg), %r15

114 /*
115 * Get pointer to a thread’s hat structure
116 */
117 #define GET_THREAD_HATP(hatp, thread_t, scratch_reg) \
118 movq T_PROCP(thread_t), hatp; \
119 movq P_AS(hatp), scratch_reg; \
120 movq A_HAT(scratch_reg), hatp

122 #define TSC_READ() \
123 call tsc_read; \
124 movq %rax, %r14;

126 /*
127 * If we are resuming an interrupt thread, store a timestamp in the thread
128 * structure. If an interrupt occurs between tsc_read() and its subsequent
129 * store, the timestamp will be stale by the time it is stored. We can detect
130 * this by doing a compare-and-swap on the thread’s timestamp, since any
131 * interrupt occurring in this window will put a new timestamp in the thread’s
132 * t_intr_start field.
133 */
134 #define STORE_INTR_START(thread_t) \
135 testw $T_INTR_THREAD, T_FLAGS(thread_t); \
136 jz 1f; \
137 0: \
138 TSC_READ(); \
139 movq T_INTR_START(thread_t), %rax; \
140 cmpxchgq %r14, T_INTR_START(thread_t); \
141 jnz 0b; \
142 1:

156 #elif defined (__i386)

158 /*
159 * Save non-volatile registers (%ebp, %esi, %edi and %ebx)
160 *
161 * The stack frame must be created before the save of %esp so that tracebacks
162 * of swtch()ed-out processes show the process as having last called swtch().
163 */
164 #define SAVE_REGS(thread_t, retaddr) \
165 movl %ebp, T_EBP(thread_t); \
166 movl %ebx, T_EBX(thread_t); \
167 movl %esi, T_ESI(thread_t); \
168 movl %edi, T_EDI(thread_t); \
169 pushl %ebp; \
170 movl %esp, %ebp; \
171 movl %esp, T_SP(thread_t); \
172 movl retaddr, T_PC(thread_t); \
173 movl 8(%ebp), %edi; \
174 pushl %edi; \
175 call __dtrace_probe___sched_off__cpu; \
176 addl $CLONGSIZE, %esp

178 /*
179 * Restore non-volatile registers (%ebp, %esi, %edi and %ebx)
180 *
181 * We don’t do a ’leave,’ because reloading %rsp/%rbp from the label_t
182 * already has the effect of putting the stack back the way it was when
183 * we came in.
184 */
185 #define RESTORE_REGS(scratch_reg) \
186 movl %gs:CPU_THREAD, scratch_reg; \
187 movl T_EBP(scratch_reg), %ebp; \

new/usr/src/uts/intel/ia32/ml/swtch.s 4

188 movl T_EBX(scratch_reg), %ebx; \
189 movl T_ESI(scratch_reg), %esi; \
190 movl T_EDI(scratch_reg), %edi

192 /*
193 * Get pointer to a thread’s hat structure
194 */
195 #define GET_THREAD_HATP(hatp, thread_t, scratch_reg) \
196 movl T_PROCP(thread_t), hatp; \
197 movl P_AS(hatp), scratch_reg; \
198 movl A_HAT(scratch_reg), hatp

200 /*
201 * If we are resuming an interrupt thread, store a timestamp in the thread
202 * structure. If an interrupt occurs between tsc_read() and its subsequent
203 * store, the timestamp will be stale by the time it is stored. We can detect
204 * this by doing a compare-and-swap on the thread’s timestamp, since any
205 * interrupt occurring in this window will put a new timestamp in the thread’s
206 * t_intr_start field.
207 */
208 #define STORE_INTR_START(thread_t) \
209 testw $T_INTR_THREAD, T_FLAGS(thread_t); \
210 jz 1f; \
211 pushl %ecx; \
212 0: \
213 pushl T_INTR_START(thread_t); \
214 pushl T_INTR_START+4(thread_t); \
215 call tsc_read; \
216 movl %eax, %ebx; \
217 movl %edx, %ecx; \
218 popl %edx; \
219 popl %eax; \
220 cmpxchg8b T_INTR_START(thread_t); \
221 jnz 0b; \
222 popl %ecx; \
223 1:

225 #endif /* __amd64 */

227 #if defined(__lint)

229 /* ARGSUSED */
230 void
231 resume(kthread_t *t)
232 {}

234 #else /* __lint */

236 #if defined(__amd64)

144 .global kpti_enable

146 ENTRY(resume)
147 movq %gs:CPU_THREAD, %rax
148 leaq resume_return(%rip), %r11

150 /*
151 * Deal with SMAP here. A thread may be switched out at any point while
152 * it is executing. The thread could be under on_fault() or it could be
153 * pre-empted while performing a copy interruption. If this happens and
154 * we’re not in the context of an interrupt which happens to handle
155 * saving and restoring rflags correctly, we may lose our SMAP related
156 * state.
157 *
158 * To handle this, as part of being switched out, we first save whether
159 * or not userland access is allowed ($PS_ACHK in rflags) and store that

new/usr/src/uts/intel/ia32/ml/swtch.s 5

160 * in t_useracc on the kthread_t and unconditionally enable SMAP to
161 * protect the system.
162 *
163 * Later, when the thread finishes resuming, we potentially disable smap
164 * if PS_ACHK was present in rflags. See uts/intel/ia32/ml/copy.s for
165 * more information on rflags and SMAP.
166 */
167 pushfq
168 popq %rsi
169 andq $PS_ACHK, %rsi
170 movq %rsi, T_USERACC(%rax)
171 call smap_enable

173 /*
174 * Save non-volatile registers, and set return address for current
175 * thread to resume_return.
176 *
177 * %r12 = t (new thread) when done
178 */
179 SAVE_REGS(%rax, %r11)

182 LOADCPU(%r15) /* %r15 = CPU */
183 movq CPU_THREAD(%r15), %r13 /* %r13 = curthread */

185 /*
186 * Call savectx if thread has installed context ops.
187 *
188 * Note that if we have floating point context, the save op
189 * (either fpsave_begin or fpxsave_begin) will issue the
190 * async save instruction (fnsave or fxsave respectively)
191 * that we fwait for below.
192 */
193 cmpq $0, T_CTX(%r13) /* should current thread savectx? */
194 je .nosavectx /* skip call when zero */

196 movq %r13, %rdi /* arg = thread pointer */
197 call savectx /* call ctx ops */
198 .nosavectx:

200 /*
201 * Call savepctx if process has installed context ops.
202 */
203 movq T_PROCP(%r13), %r14 /* %r14 = proc */
204 cmpq $0, P_PCTX(%r14) /* should current thread savectx? */
205 je .nosavepctx /* skip call when zero */

207 movq %r14, %rdi /* arg = proc pointer */
208 call savepctx /* call ctx ops */
209 .nosavepctx:

211 /*
212 * Temporarily switch to the idle thread’s stack
213 */
214 movq CPU_IDLE_THREAD(%r15), %rax /* idle thread pointer */

216 /*
217 * Set the idle thread as the current thread
218 */
219 movq T_SP(%rax), %rsp /* It is safe to set rsp */
220 movq %rax, CPU_THREAD(%r15)

222 /*
223 * Switch in the hat context for the new thread
224 *
225 */

new/usr/src/uts/intel/ia32/ml/swtch.s 6

226 GET_THREAD_HATP(%rdi, %r12, %r11)
227 call hat_switch

229 /*
230 * Clear and unlock previous thread’s t_lock
231 * to allow it to be dispatched by another processor.
232 */
233 movb $0, T_LOCK(%r13)

235 /*
236 * IMPORTANT: Registers at this point must be:
237 * %r12 = new thread
238 *
239 * Here we are in the idle thread, have dropped the old thread.
240 */
241 ALTENTRY(_resume_from_idle)
242 /*
243 * spin until dispatched thread’s mutex has
244 * been unlocked. this mutex is unlocked when
245 * it becomes safe for the thread to run.
246 */
247 .lock_thread_mutex:
248 lock
249 btsl $0, T_LOCK(%r12) /* attempt to lock new thread’s mutex */
250 jnc .thread_mutex_locked /* got it */

252 .spin_thread_mutex:
253 pause
254 cmpb $0, T_LOCK(%r12) /* check mutex status */
255 jz .lock_thread_mutex /* clear, retry lock */
256 jmp .spin_thread_mutex /* still locked, spin... */

258 .thread_mutex_locked:
259 /*
260 * Fix CPU structure to indicate new running thread.
261 * Set pointer in new thread to the CPU structure.
262 */
263 LOADCPU(%r13) /* load current CPU pointer */
264 cmpq %r13, T_CPU(%r12)
265 je .setup_cpu

267 /* cp->cpu_stats.sys.cpumigrate++ */
268 incq CPU_STATS_SYS_CPUMIGRATE(%r13)
269 movq %r13, T_CPU(%r12) /* set new thread’s CPU pointer */

271 .setup_cpu:
272 /*
273 * Setup rsp0 (kernel stack) in TSS to curthread’s saved regs
274 * structure. If this thread doesn’t have a regs structure above
275 * the stack -- that is, if lwp_stk_init() was never called for the
276 * thread -- this will set rsp0 to the wrong value, but it’s harmless
277 * as it’s a kernel thread, and it won’t actually attempt to implicitly
278 * use the rsp0 via a privilege change.
279 *
280 * Note that when we have KPTI enabled on amd64, we never use this
281 * value at all (since all the interrupts have an IST set).
282 */
283 movq CPU_TSS(%r13), %r14
284 #if !defined(__xpv)
285 cmpq $1, kpti_enable
286 jne 1f
287 leaq CPU_KPTI_TR_RSP(%r13), %rax
288 jmp 2f
289 1:
290 movq T_STACK(%r12), %rax
291 addq $REGSIZE+MINFRAME, %rax /* to the bottom of thread stack */

new/usr/src/uts/intel/ia32/ml/swtch.s 7

292 2:
293 movq %rax, TSS_RSP0(%r14)
294 #else
295 movq T_STACK(%r12), %rax
296 addq $REGSIZE+MINFRAME, %rax /* to the bottom of thread stack */
297 movl $KDS_SEL, %edi
298 movq %rax, %rsi
299 call HYPERVISOR_stack_switch
300 #endif /* __xpv */

302 movq %r12, CPU_THREAD(%r13) /* set CPU’s thread pointer */
303 mfence /* synchronize with mutex_exit() */
304 xorl %ebp, %ebp /* make $<threadlist behave better */
305 movq T_LWP(%r12), %rax /* set associated lwp to */
306 movq %rax, CPU_LWP(%r13) /* CPU’s lwp ptr */

308 movq T_SP(%r12), %rsp /* switch to outgoing thread’s stack */
309 movq T_PC(%r12), %r13 /* saved return addr */

311 /*
312 * Call restorectx if context ops have been installed.
313 */
314 cmpq $0, T_CTX(%r12) /* should resumed thread restorectx? */
315 jz .norestorectx /* skip call when zero */
316 movq %r12, %rdi /* arg = thread pointer */
317 call restorectx /* call ctx ops */
318 .norestorectx:

320 /*
321 * Call restorepctx if context ops have been installed for the proc.
322 */
323 movq T_PROCP(%r12), %rcx
324 cmpq $0, P_PCTX(%rcx)
325 jz .norestorepctx
326 movq %rcx, %rdi
327 call restorepctx
328 .norestorepctx:

330 STORE_INTR_START(%r12)

332 /*
333 * If we came into swtch with the ability to access userland pages, go
334 * ahead and restore that fact by disabling SMAP. Clear the indicator
335 * flag out of paranoia.
336 */
337 movq T_USERACC(%r12), %rax /* should we disable smap? */
338 cmpq $0, %rax /* skip call when zero */
339 jz .nosmap
340 xorq %rax, %rax
341 movq %rax, T_USERACC(%r12)
342 call smap_disable
343 .nosmap:

345 call ht_mark

347 /*
348 * Restore non-volatile registers, then have spl0 return to the
349 * resuming thread’s PC after first setting the priority as low as
350 * possible and blocking all interrupt threads that may be active.
351 */
352 movq %r13, %rax /* save return address */
353 RESTORE_REGS(%r11)
354 pushq %rax /* push return address for spl0() */
355 call __dtrace_probe___sched_on__cpu
356 jmp spl0

new/usr/src/uts/intel/ia32/ml/swtch.s 8

358 resume_return:
359 /*
360 * Remove stack frame created in SAVE_REGS()
361 */
362 addq $CLONGSIZE, %rsp
363 ret
364 SET_SIZE(_resume_from_idle)

______unchanged_portion_omitted_

459 #elif defined (__i386)

461 ENTRY(resume)
462 movl %gs:CPU_THREAD, %eax
463 movl $resume_return, %ecx

465 /*
466 * Save non-volatile registers, and set return address for current
467 * thread to resume_return.
468 *
469 * %edi = t (new thread) when done.
470 */
471 SAVE_REGS(%eax, %ecx)

473 LOADCPU(%ebx) /* %ebx = CPU */
474 movl CPU_THREAD(%ebx), %esi /* %esi = curthread */

476 #ifdef DEBUG
477 call assert_ints_enabled /* panics if we are cli’d */
478 #endif
479 /*
480 * Call savectx if thread has installed context ops.
481 *
482 * Note that if we have floating point context, the save op
483 * (either fpsave_begin or fpxsave_begin) will issue the
484 * async save instruction (fnsave or fxsave respectively)
485 * that we fwait for below.
486 */
487 movl T_CTX(%esi), %eax /* should current thread savectx? */
488 testl %eax, %eax
489 jz .nosavectx /* skip call when zero */
490 pushl %esi /* arg = thread pointer */
491 call savectx /* call ctx ops */
492 addl $4, %esp /* restore stack pointer */
493 .nosavectx:

495 /*
496 * Call savepctx if process has installed context ops.
497 */
498 movl T_PROCP(%esi), %eax /* %eax = proc */
499 cmpl $0, P_PCTX(%eax) /* should current thread savectx? */
500 je .nosavepctx /* skip call when zero */
501 pushl %eax /* arg = proc pointer */
502 call savepctx /* call ctx ops */
503 addl $4, %esp
504 .nosavepctx:

506 /*
507 * Temporarily switch to the idle thread’s stack
508 */
509 movl CPU_IDLE_THREAD(%ebx), %eax /* idle thread pointer */

511 /*
512 * Set the idle thread as the current thread
513 */
514 movl T_SP(%eax), %esp /* It is safe to set esp */
515 movl %eax, CPU_THREAD(%ebx)

new/usr/src/uts/intel/ia32/ml/swtch.s 9

517 /* switch in the hat context for the new thread */
518 GET_THREAD_HATP(%ecx, %edi, %ecx)
519 pushl %ecx
520 call hat_switch
521 addl $4, %esp

523 /*
524 * Clear and unlock previous thread’s t_lock
525 * to allow it to be dispatched by another processor.
526 */
527 movb $0, T_LOCK(%esi)

529 /*
530 * IMPORTANT: Registers at this point must be:
531 * %edi = new thread
532 *
533 * Here we are in the idle thread, have dropped the old thread.
534 */
535 ALTENTRY(_resume_from_idle)
536 /*
537 * spin until dispatched thread’s mutex has
538 * been unlocked. this mutex is unlocked when
539 * it becomes safe for the thread to run.
540 */
541 .L4:
542 lock
543 btsl $0, T_LOCK(%edi) /* lock new thread’s mutex */
544 jc .L4_2 /* lock did not succeed */

546 /*
547 * Fix CPU structure to indicate new running thread.
548 * Set pointer in new thread to the CPU structure.
549 */
550 LOADCPU(%esi) /* load current CPU pointer */
551 movl T_STACK(%edi), %eax /* here to use v pipeline of */
552 /* Pentium. Used few lines below */
553 cmpl %esi, T_CPU(%edi)
554 jne .L5_2
555 .L5_1:
556 /*
557 * Setup esp0 (kernel stack) in TSS to curthread’s stack.
558 * (Note: Since we don’t have saved ’regs’ structure for all
559 * the threads we can’t easily determine if we need to
560 * change esp0. So, we simply change the esp0 to bottom
561 * of the thread stack and it will work for all cases.)
562 */
563 movl CPU_TSS(%esi), %ecx
564 addl $REGSIZE+MINFRAME, %eax /* to the bottom of thread stack */
565 #if !defined(__xpv)
566 movl %eax, TSS_ESP0(%ecx)
567 #else
568 pushl %eax
569 pushl $KDS_SEL
570 call HYPERVISOR_stack_switch
571 addl $8, %esp
572 #endif /* __xpv */

574 movl %edi, CPU_THREAD(%esi) /* set CPU’s thread pointer */
575 mfence /* synchronize with mutex_exit() */
576 xorl %ebp, %ebp /* make $<threadlist behave better */
577 movl T_LWP(%edi), %eax /* set associated lwp to */
578 movl %eax, CPU_LWP(%esi) /* CPU’s lwp ptr */

580 movl T_SP(%edi), %esp /* switch to outgoing thread’s stack */
581 movl T_PC(%edi), %esi /* saved return addr */

new/usr/src/uts/intel/ia32/ml/swtch.s 10

583 /*
584 * Call restorectx if context ops have been installed.
585 */
586 movl T_CTX(%edi), %eax /* should resumed thread restorectx? */
587 testl %eax, %eax
588 jz .norestorectx /* skip call when zero */
589 pushl %edi /* arg = thread pointer */
590 call restorectx /* call ctx ops */
591 addl $4, %esp /* restore stack pointer */
592 .norestorectx:

594 /*
595 * Call restorepctx if context ops have been installed for the proc.
596 */
597 movl T_PROCP(%edi), %eax
598 cmpl $0, P_PCTX(%eax)
599 je .norestorepctx
600 pushl %eax /* arg = proc pointer */
601 call restorepctx
602 addl $4, %esp /* restore stack pointer */
603 .norestorepctx:

605 STORE_INTR_START(%edi)

607 /*
608 * Restore non-volatile registers, then have spl0 return to the
609 * resuming thread’s PC after first setting the priority as low as
610 * possible and blocking all interrupt threads that may be active.
611 */
612 movl %esi, %eax /* save return address */
613 RESTORE_REGS(%ecx)
614 pushl %eax /* push return address for spl0() */
615 call __dtrace_probe___sched_on__cpu
616 jmp spl0

618 resume_return:
619 /*
620 * Remove stack frame created in SAVE_REGS()
621 */
622 addl $CLONGSIZE, %esp
623 ret

625 .L4_2:
626 pause
627 cmpb $0, T_LOCK(%edi)
628 je .L4
629 jmp .L4_2

631 .L5_2:
632 /* cp->cpu_stats.sys.cpumigrate++ */
633 addl $1, CPU_STATS_SYS_CPUMIGRATE(%esi)
634 adcl $0, CPU_STATS_SYS_CPUMIGRATE+4(%esi)
635 movl %esi, T_CPU(%edi) /* set new thread’s CPU pointer */
636 jmp .L5_1

638 SET_SIZE(_resume_from_idle)
639 SET_SIZE(resume)

641 #endif /* __amd64 */
642 #endif /* __lint */

644 #if defined(__lint)

646 /* ARGSUSED */
647 void

new/usr/src/uts/intel/ia32/ml/swtch.s 11

648 resume_from_zombie(kthread_t *t)
649 {}

651 #else /* __lint */

653 #if defined(__amd64)

367 ENTRY(resume_from_zombie)
368 movq %gs:CPU_THREAD, %rax
369 leaq resume_from_zombie_return(%rip), %r11

371 /*
372 * Save non-volatile registers, and set return address for current
373 * thread to resume_from_zombie_return.
374 *
375 * %r12 = t (new thread) when done
376 */
377 SAVE_REGS(%rax, %r11)

379 movq %gs:CPU_THREAD, %r13 /* %r13 = curthread */

381 /* clean up the fp unit. It might be left enabled */

383 #if defined(__xpv) /* XXPV XXtclayton */
384 /*
385 * Remove this after bringup.
386 * (Too many #gp’s for an instrumented hypervisor.)
387 */
388 STTS(%rax)
389 #else
390 movq %cr0, %rax
391 testq $CR0_TS, %rax
392 jnz .zfpu_disabled /* if TS already set, nothing to do */
393 fninit /* init fpu & discard pending error */
394 orq $CR0_TS, %rax
395 movq %rax, %cr0
396 .zfpu_disabled:

398 #endif /* __xpv */

400 /*
401 * Temporarily switch to the idle thread’s stack so that the zombie
402 * thread’s stack can be reclaimed by the reaper.
403 */
404 movq %gs:CPU_IDLE_THREAD, %rax /* idle thread pointer */
405 movq T_SP(%rax), %rsp /* get onto idle thread stack */

407 /*
408 * Sigh. If the idle thread has never run thread_start()
409 * then t_sp is mis-aligned by thread_load().
410 */
411 andq $_BITNOT(STACK_ALIGN-1), %rsp

413 /*
414 * Set the idle thread as the current thread.
415 */
416 movq %rax, %gs:CPU_THREAD

418 /* switch in the hat context for the new thread */
419 GET_THREAD_HATP(%rdi, %r12, %r11)
420 call hat_switch

422 /*
423 * Put the zombie on death-row.
424 */
425 movq %r13, %rdi

new/usr/src/uts/intel/ia32/ml/swtch.s 12

426 call reapq_add

428 jmp _resume_from_idle /* finish job of resume */

430 resume_from_zombie_return:
431 RESTORE_REGS(%r11) /* restore non-volatile registers */
432 call __dtrace_probe___sched_on__cpu

434 /*
435 * Remove stack frame created in SAVE_REGS()
436 */
437 addq $CLONGSIZE, %rsp
438 ret
439 SET_SIZE(resume_from_zombie)

729 #elif defined (__i386)

731 ENTRY(resume_from_zombie)
732 movl %gs:CPU_THREAD, %eax
733 movl $resume_from_zombie_return, %ecx

735 /*
736 * Save non-volatile registers, and set return address for current
737 * thread to resume_from_zombie_return.
738 *
739 * %edi = t (new thread) when done.
740 */
741 SAVE_REGS(%eax, %ecx)

743 #ifdef DEBUG
744 call assert_ints_enabled /* panics if we are cli’d */
745 #endif
746 movl %gs:CPU_THREAD, %esi /* %esi = curthread */

748 /* clean up the fp unit. It might be left enabled */

750 movl %cr0, %eax
751 testl $CR0_TS, %eax
752 jnz .zfpu_disabled /* if TS already set, nothing to do */
753 fninit /* init fpu & discard pending error */
754 orl $CR0_TS, %eax
755 movl %eax, %cr0
756 .zfpu_disabled:

758 /*
759 * Temporarily switch to the idle thread’s stack so that the zombie
760 * thread’s stack can be reclaimed by the reaper.
761 */
762 movl %gs:CPU_IDLE_THREAD, %eax /* idle thread pointer */
763 movl T_SP(%eax), %esp /* get onto idle thread stack */

765 /*
766 * Set the idle thread as the current thread.
767 */
768 movl %eax, %gs:CPU_THREAD

770 /*
771 * switch in the hat context for the new thread
772 */
773 GET_THREAD_HATP(%ecx, %edi, %ecx)
774 pushl %ecx
775 call hat_switch
776 addl $4, %esp

778 /*
779 * Put the zombie on death-row.

new/usr/src/uts/intel/ia32/ml/swtch.s 13

780 */
781 pushl %esi
782 call reapq_add
783 addl $4, %esp
784 jmp _resume_from_idle /* finish job of resume */

786 resume_from_zombie_return:
787 RESTORE_REGS(%ecx) /* restore non-volatile registers */
788 call __dtrace_probe___sched_on__cpu

790 /*
791 * Remove stack frame created in SAVE_REGS()
792 */
793 addl $CLONGSIZE, %esp
794 ret
795 SET_SIZE(resume_from_zombie)

797 #endif /* __amd64 */
798 #endif /* __lint */

800 #if defined(__lint)

802 /* ARGSUSED */
803 void
804 resume_from_intr(kthread_t *t)
805 {}

807 #else /* __lint */

809 #if defined(__amd64)

441 ENTRY(resume_from_intr)
442 movq %gs:CPU_THREAD, %rax
443 leaq resume_from_intr_return(%rip), %r11

445 /*
446 * Save non-volatile registers, and set return address for current
447 * thread to resume_from_intr_return.
448 *
449 * %r12 = t (new thread) when done
450 */
451 SAVE_REGS(%rax, %r11)

453 movq %gs:CPU_THREAD, %r13 /* %r13 = curthread */
454 movq %r12, %gs:CPU_THREAD /* set CPU’s thread pointer */
455 mfence /* synchronize with mutex_exit() */
456 movq T_SP(%r12), %rsp /* restore resuming thread’s sp */
457 xorl %ebp, %ebp /* make $<threadlist behave better */

459 /*
460 * Unlock outgoing thread’s mutex dispatched by another processor.
461 */
462 xorl %eax, %eax
463 xchgb %al, T_LOCK(%r13)

465 STORE_INTR_START(%r12)

467 call ht_mark

469 /*
470 * Restore non-volatile registers, then have spl0 return to the
471 * resuming thread’s PC after first setting the priority as low as
472 * possible and blocking all interrupt threads that may be active.
473 */
474 movq T_PC(%r12), %rax /* saved return addr */
475 RESTORE_REGS(%r11);

new/usr/src/uts/intel/ia32/ml/swtch.s 14

476 pushq %rax /* push return address for spl0() */
477 call __dtrace_probe___sched_on__cpu
478 jmp spl0

480 resume_from_intr_return:
481 /*
482 * Remove stack frame created in SAVE_REGS()
483 */
484 addq $CLONGSIZE, %rsp
485 ret
486 SET_SIZE(resume_from_intr)

856 #elif defined (__i386)

858 ENTRY(resume_from_intr)
859 movl %gs:CPU_THREAD, %eax
860 movl $resume_from_intr_return, %ecx

862 /*
863 * Save non-volatile registers, and set return address for current
864 * thread to resume_return.
865 *
866 * %edi = t (new thread) when done.
867 */
868 SAVE_REGS(%eax, %ecx)

870 #ifdef DEBUG
871 call assert_ints_enabled /* panics if we are cli’d */
872 #endif
873 movl %gs:CPU_THREAD, %esi /* %esi = curthread */
874 movl %edi, %gs:CPU_THREAD /* set CPU’s thread pointer */
875 mfence /* synchronize with mutex_exit() */
876 movl T_SP(%edi), %esp /* restore resuming thread’s sp */
877 xorl %ebp, %ebp /* make $<threadlist behave better */

879 /*
880 * Unlock outgoing thread’s mutex dispatched by another processor.
881 */
882 xorl %eax,%eax
883 xchgb %al, T_LOCK(%esi)

885 STORE_INTR_START(%edi)

887 /*
888 * Restore non-volatile registers, then have spl0 return to the
889 * resuming thread’s PC after first setting the priority as low as
890 * possible and blocking all interrupt threads that may be active.
891 */
892 movl T_PC(%edi), %eax /* saved return addr */
893 RESTORE_REGS(%ecx)
894 pushl %eax /* push return address for spl0() */
895 call __dtrace_probe___sched_on__cpu
896 jmp spl0

898 resume_from_intr_return:
899 /*
900 * Remove stack frame created in SAVE_REGS()
901 */
902 addl $CLONGSIZE, %esp
903 ret
904 SET_SIZE(resume_from_intr)

906 #endif /* __amd64 */
907 #endif /* __lint */

909 #if defined(__lint)

new/usr/src/uts/intel/ia32/ml/swtch.s 15

911 void
912 thread_start(void)
913 {}

915 #else /* __lint */

917 #if defined(__amd64)

488 ENTRY(thread_start)
489 popq %rax /* start() */
490 popq %rdi /* arg */
491 popq %rsi /* len */
492 movq %rsp, %rbp
493 call *%rax
494 call thread_exit /* destroy thread if it returns. */
495 /*NOTREACHED*/
496 SET_SIZE(thread_start)

929 #elif defined(__i386)

931 ENTRY(thread_start)
932 popl %eax
933 movl %esp, %ebp
934 addl $8, %ebp
935 call *%eax
936 addl $8, %esp
937 call thread_exit /* destroy thread if it returns. */
938 /*NOTREACHED*/
939 SET_SIZE(thread_start)

941 #endif /* __i386 */

943 #endif /* __lint */

new/usr/src/uts/intel/sys/x86_archext.h 1

**
 41781 Wed May 15 07:34:10 2019
new/usr/src/uts/intel/sys/x86_archext.h
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright 2019, Joyent, Inc.
31 * Copyright 2012 Jens Elkner <jel+illumos@cs.uni-magdeburg.de>
32 * Copyright 2012 Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
33 * Copyright 2014 Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
34 * Copyright 2018 Nexenta Systems, Inc.
35 */

37 #ifndef _SYS_X86_ARCHEXT_H
38 #define _SYS_X86_ARCHEXT_H

40 #if !defined(_ASM)
41 #include <sys/regset.h>
42 #include <sys/processor.h>
43 #include <vm/seg_enum.h>
44 #include <vm/page.h>
45 #endif /* _ASM */

47 #ifdef __cplusplus
48 extern "C" {
49 #endif

51 /*
52 * cpuid instruction feature flags in %edx (standard function 1)
53 */

55 #define CPUID_INTC_EDX_FPU 0x00000001 /* x87 fpu present */
56 #define CPUID_INTC_EDX_VME 0x00000002 /* virtual-8086 extension */
57 #define CPUID_INTC_EDX_DE 0x00000004 /* debugging extensions */
58 #define CPUID_INTC_EDX_PSE 0x00000008 /* page size extension */

new/usr/src/uts/intel/sys/x86_archext.h 2

59 #define CPUID_INTC_EDX_TSC 0x00000010 /* time stamp counter */
60 #define CPUID_INTC_EDX_MSR 0x00000020 /* rdmsr and wrmsr */
61 #define CPUID_INTC_EDX_PAE 0x00000040 /* physical addr extension */
62 #define CPUID_INTC_EDX_MCE 0x00000080 /* machine check exception */
63 #define CPUID_INTC_EDX_CX8 0x00000100 /* cmpxchg8b instruction */
64 #define CPUID_INTC_EDX_APIC 0x00000200 /* local APIC */
65 /* 0x400 - reserved */
66 #define CPUID_INTC_EDX_SEP 0x00000800 /* sysenter and sysexit */
67 #define CPUID_INTC_EDX_MTRR 0x00001000 /* memory type range reg */
68 #define CPUID_INTC_EDX_PGE 0x00002000 /* page global enable */
69 #define CPUID_INTC_EDX_MCA 0x00004000 /* machine check arch */
70 #define CPUID_INTC_EDX_CMOV 0x00008000 /* conditional move insns */
71 #define CPUID_INTC_EDX_PAT 0x00010000 /* page attribute table */
72 #define CPUID_INTC_EDX_PSE36 0x00020000 /* 36-bit pagesize extension */
73 #define CPUID_INTC_EDX_PSN 0x00040000 /* processor serial number */
74 #define CPUID_INTC_EDX_CLFSH 0x00080000 /* clflush instruction */
75 /* 0x100000 - reserved */
76 #define CPUID_INTC_EDX_DS 0x00200000 /* debug store exists */
77 #define CPUID_INTC_EDX_ACPI 0x00400000 /* monitoring + clock ctrl */
78 #define CPUID_INTC_EDX_MMX 0x00800000 /* MMX instructions */
79 #define CPUID_INTC_EDX_FXSR 0x01000000 /* fxsave and fxrstor */
80 #define CPUID_INTC_EDX_SSE 0x02000000 /* streaming SIMD extensions */
81 #define CPUID_INTC_EDX_SSE2 0x04000000 /* SSE extensions */
82 #define CPUID_INTC_EDX_SS 0x08000000 /* self-snoop */
83 #define CPUID_INTC_EDX_HTT 0x10000000 /* Hyper Thread Technology */
84 #define CPUID_INTC_EDX_TM 0x20000000 /* thermal monitoring */
85 #define CPUID_INTC_EDX_IA64 0x40000000 /* Itanium emulating IA32 */
86 #define CPUID_INTC_EDX_PBE 0x80000000 /* Pending Break Enable */

88 /*
89 * cpuid instruction feature flags in %ecx (standard function 1)
90 */

92 #define CPUID_INTC_ECX_SSE3 0x00000001 /* Yet more SSE extensions */
93 #define CPUID_INTC_ECX_PCLMULQDQ 0x00000002 /* PCLMULQDQ insn */
94 #define CPUID_INTC_ECX_DTES64 0x00000004 /* 64-bit DS area */
95 #define CPUID_INTC_ECX_MON 0x00000008 /* MONITOR/MWAIT */
96 #define CPUID_INTC_ECX_DSCPL 0x00000010 /* CPL-qualified debug store */
97 #define CPUID_INTC_ECX_VMX 0x00000020 /* Hardware VM extensions */
98 #define CPUID_INTC_ECX_SMX 0x00000040 /* Secure mode extensions */
99 #define CPUID_INTC_ECX_EST 0x00000080 /* enhanced SpeedStep */
100 #define CPUID_INTC_ECX_TM2 0x00000100 /* thermal monitoring */
101 #define CPUID_INTC_ECX_SSSE3 0x00000200 /* Supplemental SSE3 insns */
102 #define CPUID_INTC_ECX_CID 0x00000400 /* L1 context ID */
103 /* 0x00000800 - reserved */
104 #define CPUID_INTC_ECX_FMA 0x00001000 /* Fused Multiply Add */
105 #define CPUID_INTC_ECX_CX16 0x00002000 /* cmpxchg16 */
106 #define CPUID_INTC_ECX_ETPRD 0x00004000 /* extended task pri messages */
107 #define CPUID_INTC_ECX_PDCM 0x00008000 /* Perf/Debug Capability MSR */
108 /* 0x00010000 - reserved */
109 #define CPUID_INTC_ECX_PCID 0x00020000 /* process-context ids */
110 #define CPUID_INTC_ECX_DCA 0x00040000 /* direct cache access */
111 #define CPUID_INTC_ECX_SSE4_1 0x00080000 /* SSE4.1 insns */
112 #define CPUID_INTC_ECX_SSE4_2 0x00100000 /* SSE4.2 insns */
113 #define CPUID_INTC_ECX_X2APIC 0x00200000 /* x2APIC */
114 #define CPUID_INTC_ECX_MOVBE 0x00400000 /* MOVBE insn */
115 #define CPUID_INTC_ECX_POPCNT 0x00800000 /* POPCNT insn */
116 #define CPUID_INTC_ECX_TSCDL 0x01000000 /* Deadline TSC */
117 #define CPUID_INTC_ECX_AES 0x02000000 /* AES insns */
118 #define CPUID_INTC_ECX_XSAVE 0x04000000 /* XSAVE/XRESTOR insns */
119 #define CPUID_INTC_ECX_OSXSAVE 0x08000000 /* OS supports XSAVE insns */
120 #define CPUID_INTC_ECX_AVX 0x10000000 /* AVX supported */
121 #define CPUID_INTC_ECX_F16C 0x20000000 /* F16C supported */
122 #define CPUID_INTC_ECX_RDRAND 0x40000000 /* RDRAND supported */
123 #define CPUID_INTC_ECX_HV 0x80000000 /* Hypervisor */

new/usr/src/uts/intel/sys/x86_archext.h 3

125 /*
126 * cpuid instruction feature flags in %edx (extended function 0x80000001)
127 */

129 #define CPUID_AMD_EDX_FPU 0x00000001 /* x87 fpu present */
130 #define CPUID_AMD_EDX_VME 0x00000002 /* virtual-8086 extension */
131 #define CPUID_AMD_EDX_DE 0x00000004 /* debugging extensions */
132 #define CPUID_AMD_EDX_PSE 0x00000008 /* page size extensions */
133 #define CPUID_AMD_EDX_TSC 0x00000010 /* time stamp counter */
134 #define CPUID_AMD_EDX_MSR 0x00000020 /* rdmsr and wrmsr */
135 #define CPUID_AMD_EDX_PAE 0x00000040 /* physical addr extension */
136 #define CPUID_AMD_EDX_MCE 0x00000080 /* machine check exception */
137 #define CPUID_AMD_EDX_CX8 0x00000100 /* cmpxchg8b instruction */
138 #define CPUID_AMD_EDX_APIC 0x00000200 /* local APIC */
139 /* 0x00000400 - sysc on K6m6 */
140 #define CPUID_AMD_EDX_SYSC 0x00000800 /* AMD: syscall and sysret */
141 #define CPUID_AMD_EDX_MTRR 0x00001000 /* memory type and range reg */
142 #define CPUID_AMD_EDX_PGE 0x00002000 /* page global enable */
143 #define CPUID_AMD_EDX_MCA 0x00004000 /* machine check arch */
144 #define CPUID_AMD_EDX_CMOV 0x00008000 /* conditional move insns */
145 #define CPUID_AMD_EDX_PAT 0x00010000 /* K7: page attribute table */
146 #define CPUID_AMD_EDX_FCMOV 0x00010000 /* FCMOVcc etc. */
147 #define CPUID_AMD_EDX_PSE36 0x00020000 /* 36-bit pagesize extension */
148 /* 0x00040000 - reserved */
149 /* 0x00080000 - reserved */
150 #define CPUID_AMD_EDX_NX 0x00100000 /* AMD: no-execute page prot */
151 /* 0x00200000 - reserved */
152 #define CPUID_AMD_EDX_MMXamd 0x00400000 /* AMD: MMX extensions */
153 #define CPUID_AMD_EDX_MMX 0x00800000 /* MMX instructions */
154 #define CPUID_AMD_EDX_FXSR 0x01000000 /* fxsave and fxrstor */
155 #define CPUID_AMD_EDX_FFXSR 0x02000000 /* fast fxsave/fxrstor */
156 #define CPUID_AMD_EDX_1GPG 0x04000000 /* 1GB page */
157 #define CPUID_AMD_EDX_TSCP 0x08000000 /* rdtscp instruction */
158 /* 0x10000000 - reserved */
159 #define CPUID_AMD_EDX_LM 0x20000000 /* AMD: long mode */
160 #define CPUID_AMD_EDX_3DNowx 0x40000000 /* AMD: extensions to 3DNow! */
161 #define CPUID_AMD_EDX_3DNow 0x80000000 /* AMD: 3DNow! instructions */

163 /*
164 * AMD extended function 0x80000001 %ecx
165 */

167 #define CPUID_AMD_ECX_AHF64 0x00000001 /* LAHF and SAHF in long mode */
168 #define CPUID_AMD_ECX_CMP_LGCY 0x00000002 /* AMD: multicore chip */
169 #define CPUID_AMD_ECX_SVM 0x00000004 /* AMD: secure VM */
170 #define CPUID_AMD_ECX_EAS 0x00000008 /* extended apic space */
171 #define CPUID_AMD_ECX_CR8D 0x00000010 /* AMD: 32-bit mov %cr8 */
172 #define CPUID_AMD_ECX_LZCNT 0x00000020 /* AMD: LZCNT insn */
173 #define CPUID_AMD_ECX_SSE4A 0x00000040 /* AMD: SSE4A insns */
174 #define CPUID_AMD_ECX_MAS 0x00000080 /* AMD: MisAlignSse mnode */
175 #define CPUID_AMD_ECX_3DNP 0x00000100 /* AMD: 3DNowPrefectch */
176 #define CPUID_AMD_ECX_OSVW 0x00000200 /* AMD: OSVW */
177 #define CPUID_AMD_ECX_IBS 0x00000400 /* AMD: IBS */
178 #define CPUID_AMD_ECX_XOP 0x00000800 /* AMD: Extended Operation */
179 #define CPUID_AMD_ECX_SKINIT 0x00001000 /* AMD: SKINIT */
180 #define CPUID_AMD_ECX_WDT 0x00002000 /* AMD: WDT */
181 /* 0x00004000 - reserved */
182 #define CPUID_AMD_ECX_LWP 0x00008000 /* AMD: Lightweight profiling */
183 #define CPUID_AMD_ECX_FMA4 0x00010000 /* AMD: 4-operand FMA support */
184 /* 0x00020000 - reserved */
185 /* 0x00040000 - reserved */
186 #define CPUID_AMD_ECX_NIDMSR 0x00080000 /* AMD: Node ID MSR */
187 /* 0x00100000 - reserved */
188 #define CPUID_AMD_ECX_TBM 0x00200000 /* AMD: trailing bit manips. */
189 #define CPUID_AMD_ECX_TOPOEXT 0x00400000 /* AMD: Topology Extensions */
190 #define CPUID_AMD_ECX_PCEC 0x00800000 /* AMD: Core ext perf counter */

new/usr/src/uts/intel/sys/x86_archext.h 4

191 #define CUPID_AMD_ECX_PCENB 0x01000000 /* AMD: NB ext perf counter */
192 /* 0x02000000 - reserved */
193 #define CPUID_AMD_ECX_DBKP 0x40000000 /* AMD: Data breakpoint */
194 #define CPUID_AMD_ECX_PERFTSC 0x08000000 /* AMD: TSC Perf Counter */
195 #define CPUID_AMD_ECX_PERFL3 0x10000000 /* AMD: L3 Perf Counter */
196 #define CPUID_AMD_ECX_MONITORX 0x20000000 /* AMD: clzero */
197 /* 0x40000000 - reserved */
198 /* 0x80000000 - reserved */

200 /*
201 * AMD uses %ebx for some of their features (extended function 0x80000008).
202 */
203 #define CPUID_AMD_EBX_CLZERO 0x000000001 /* AMD: CLZERO instr */
204 #define CPUID_AMD_EBX_IRCMSR 0x000000002 /* AMD: Ret. instrs MSR */
205 #define CPUID_AMD_EBX_ERR_PTR_ZERO 0x000000004 /* AMD: FP Err. Ptr. Zero */
206 #define CPUID_AMD_EBX_IBPB 0x000001000 /* AMD: IBPB */
207 #define CPUID_AMD_EBX_IBRS 0x000004000 /* AMD: IBRS */
208 #define CPUID_AMD_EBX_STIBP 0x000008000 /* AMD: STIBP */
209 #define CPUID_AMD_EBX_IBRS_ALL 0x000010000 /* AMD: Enhanced IBRS */
210 #define CPUID_AMD_EBX_STIBP_ALL 0x000020000 /* AMD: STIBP ALL */
211 #define CPUID_AMD_EBX_PREFER_IBRS 0x000040000 /* AMD: Don’t retpoline */
212 #define CPUID_AMD_EBX_SSBD 0x001000000 /* AMD: SSBD */
213 #define CPUID_AMD_EBX_VIRT_SSBD 0x002000000 /* AMD: VIRT SSBD */
214 #define CPUID_AMD_EBX_SSB_NO 0x004000000 /* AMD: SSB Fixed */

216 /*
217 * Intel now seems to have claimed part of the "extended" function
218 * space that we previously for non-Intel implementors to use.
219 * More excitingly still, they’ve claimed bit 20 to mean LAHF/SAHF
220 * is available in long mode i.e. what AMD indicate using bit 0.
221 * On the other hand, everything else is labelled as reserved.
222 */
223 #define CPUID_INTC_ECX_AHF64 0x00100000 /* LAHF and SAHF in long mode */

225 /*
226 * Intel also uses cpuid leaf 7 to have additional instructions and features.
227 * Like some other leaves, but unlike the current ones we care about, it
228 * requires us to specify both a leaf in %eax and a sub-leaf in %ecx. To deal
229 * with the potential use of additional sub-leaves in the future, we now
230 * specifically label the EBX features with their leaf and sub-leaf.
231 */
232 #define CPUID_INTC_EBX_7_0_FSGSBASE 0x00000001 /* FSGSBASE */
233 #define CPUID_INTC_EBX_7_0_TSC_ADJ 0x00000002 /* TSC adjust MSR */
234 #define CPUID_INTC_EBX_7_0_SGX 0x00000004 /* SGX */
235 #define CPUID_INTC_EBX_7_0_BMI1 0x00000008 /* BMI1 instrs */
236 #define CPUID_INTC_EBX_7_0_HLE 0x00000010 /* HLE */
237 #define CPUID_INTC_EBX_7_0_AVX2 0x00000020 /* AVX2 supported */
238 /* Bit 6 is reserved */
239 #define CPUID_INTC_EBX_7_0_SMEP 0x00000080 /* SMEP in CR4 */
240 #define CPUID_INTC_EBX_7_0_BMI2 0x00000100 /* BMI2 instrs */
241 #define CPUID_INTC_EBX_7_0_ENH_REP_MOV 0x00000200 /* Enhanced REP MOVSB */
242 #define CPUID_INTC_EBX_7_0_INVPCID 0x00000400 /* invpcid instr */
243 #define CPUID_INTC_EBX_7_0_RTM 0x00000800 /* RTM instrs */
244 #define CPUID_INTC_EBX_7_0_PQM 0x00001000 /* QoS Monitoring */
245 #define CPUID_INTC_EBX_7_0_DEP_CSDS 0x00002000 /* Deprecates CS/DS */
246 #define CPUID_INTC_EBX_7_0_MPX 0x00004000 /* Mem. Prot. Ext. */
247 #define CPUID_INTC_EBX_7_0_PQE 0x00080000 /* QoS Enforcement */
248 #define CPUID_INTC_EBX_7_0_AVX512F 0x00010000 /* AVX512 foundation */
249 #define CPUID_INTC_EBX_7_0_AVX512DQ 0x00020000 /* AVX512DQ */
250 #define CPUID_INTC_EBX_7_0_RDSEED 0x00040000 /* RDSEED instr */
251 #define CPUID_INTC_EBX_7_0_ADX 0x00080000 /* ADX instrs */
252 #define CPUID_INTC_EBX_7_0_SMAP 0x00100000 /* SMAP in CR 4 */
253 #define CPUID_INTC_EBX_7_0_AVX512IFMA 0x00200000 /* AVX512IFMA */
254 /* Bit 22 is reserved */
255 #define CPUID_INTC_EBX_7_0_CLFLUSHOPT 0x00800000 /* CLFLUSOPT */
256 #define CPUID_INTC_EBX_7_0_CLWB 0x01000000 /* CLWB */

new/usr/src/uts/intel/sys/x86_archext.h 5

257 #define CPUID_INTC_EBX_7_0_PTRACE 0x02000000 /* Processor Trace */
258 #define CPUID_INTC_EBX_7_0_AVX512PF 0x04000000 /* AVX512PF */
259 #define CPUID_INTC_EBX_7_0_AVX512ER 0x08000000 /* AVX512ER */
260 #define CPUID_INTC_EBX_7_0_AVX512CD 0x10000000 /* AVX512CD */
261 #define CPUID_INTC_EBX_7_0_SHA 0x20000000 /* SHA extensions */
262 #define CPUID_INTC_EBX_7_0_AVX512BW 0x40000000 /* AVX512BW */
263 #define CPUID_INTC_EBX_7_0_AVX512VL 0x80000000 /* AVX512VL */

265 #define CPUID_INTC_EBX_7_0_ALL_AVX512 \
266 (CPUID_INTC_EBX_7_0_AVX512F | CPUID_INTC_EBX_7_0_AVX512DQ | \
267 CPUID_INTC_EBX_7_0_AVX512IFMA | CPUID_INTC_EBX_7_0_AVX512PF | \
268 CPUID_INTC_EBX_7_0_AVX512ER | CPUID_INTC_EBX_7_0_AVX512CD | \
269 CPUID_INTC_EBX_7_0_AVX512BW | CPUID_INTC_EBX_7_0_AVX512VL)

271 #define CPUID_INTC_ECX_7_0_PREFETCHWT1 0x00000001 /* PREFETCHWT1 */
272 #define CPUID_INTC_ECX_7_0_AVX512VBMI 0x00000002 /* AVX512VBMI */
273 #define CPUID_INTC_ECX_7_0_UMIP 0x00000004 /* UMIP */
274 #define CPUID_INTC_ECX_7_0_PKU 0x00000008 /* umode prot. keys */
275 #define CPUID_INTC_ECX_7_0_OSPKE 0x00000010 /* OSPKE */
276 #define CPUID_INTC_ECX_7_0_WAITPKG 0x00000020 /* WAITPKG */
277 #define CPUID_INTC_ECX_7_0_AVX512VBMI2 0x00000040 /* AVX512 VBMI2 */
278 /* bit 7 is reserved */
279 #define CPUID_INTC_ECX_7_0_GFNI 0x00000100 /* GFNI */
280 #define CPUID_INTC_ECX_7_0_VAES 0x00000200 /* VAES */
281 #define CPUID_INTC_ECX_7_0_VPCLMULQDQ 0x00000400 /* VPCLMULQDQ */
282 #define CPUID_INTC_ECX_7_0_AVX512VNNI 0x00000800 /* AVX512 VNNI */
283 #define CPUID_INTC_ECX_7_0_AVX512BITALG 0x00001000 /* AVX512 BITALG */
284 /* bit 13 is reserved */
285 #define CPUID_INTC_ECX_7_0_AVX512VPOPCDQ 0x00004000 /* AVX512 VPOPCNTDQ */
286 /* bits 15-16 are reserved */
287 /* bits 17-21 are the value of MAWAU */
288 #define CPUID_INTC_ECX_7_0_RDPID 0x00400000 /* RPID, IA32_TSC_AUX */
289 /* bits 23-24 are reserved */
290 #define CPUID_INTC_ECX_7_0_CLDEMOTE 0x02000000 /* Cache line demote */
291 /* bit 26 is resrved */
292 #define CPUID_INTC_ECX_7_0_MOVDIRI 0x08000000 /* MOVDIRI insn */
293 #define CPUID_INTC_ECX_7_0_MOVDIR64B 0x10000000 /* MOVDIR64B insn */
294 /* bit 29 is reserved */
295 #define CPUID_INTC_ECX_7_0_SGXLC 0x40000000 /* SGX Launch config */
296 /* bit 31 is reserved */

298 /*
299 * While CPUID_INTC_ECX_7_0_GFNI, CPUID_INTC_ECX_7_0_VAES, and
300 * CPUID_INTC_ECX_7_0_VPCLMULQDQ all have AVX512 components, they are still
301 * valid when AVX512 is not. However, the following flags all are only valid
302 * when AVX512 is present.
303 */
304 #define CPUID_INTC_ECX_7_0_ALL_AVX512 \
305 (CPUID_INTC_ECX_7_0_AVX512VBMI | CPUID_INTC_ECX_7_0_AVX512VNNI | \
306 CPUID_INTC_ECX_7_0_AVX512BITALG | CPUID_INTC_ECX_7_0_AVX512VPOPCDQ)

308 /* bits 0-1 are reserved */
309 #define CPUID_INTC_EDX_7_0_AVX5124NNIW 0x00000004 /* AVX512 4NNIW */
310 #define CPUID_INTC_EDX_7_0_AVX5124FMAPS 0x00000008 /* AVX512 4FMAPS */
311 #define CPUID_INTC_EDX_7_0_FSREPMOV 0x00000010 /* fast short rep mov */
312 /* bits 5-17 are resreved */
313 #define CPUID_INTC_EDX_7_0_PCONFIG 0x00040000 /* PCONFIG */
314 /* bits 19-26 are reserved */
315 #define CPUID_INTC_EDX_7_0_SPEC_CTRL 0x04000000 /* Spec, IBPB, IBRS */
316 #define CPUID_INTC_EDX_7_0_STIBP 0x08000000 /* STIBP */
317 #define CPUID_INTC_EDX_7_0_FLUSH_CMD 0x10000000 /* IA32_FLUSH_CMD */
318 #define CPUID_INTC_EDX_7_0_ARCH_CAPS 0x20000000 /* IA32_ARCH_CAPS */
319 #define CPUID_INTC_EDX_7_0_SSBD 0x80000000 /* SSBD */

321 #define CPUID_INTC_EDX_7_0_ALL_AVX512 \
322 (CPUID_INTC_EDX_7_0_AVX5124NNIW | CPUID_INTC_EDX_7_0_AVX5124FMAPS)

new/usr/src/uts/intel/sys/x86_archext.h 6

324 /*
325 * Intel also uses cpuid leaf 0xd to report additional instructions and features
326 * when the sub-leaf in %ecx == 1. We label these using the same convention as
327 * with leaf 7.
328 */
329 #define CPUID_INTC_EAX_D_1_XSAVEOPT 0x00000001 /* xsaveopt inst. */
330 #define CPUID_INTC_EAX_D_1_XSAVEC 0x00000002 /* xsavec inst. */
331 #define CPUID_INTC_EAX_D_1_XSAVES 0x00000008 /* xsaves inst. */

333 #define REG_PAT 0x277
334 #define REG_TSC 0x10 /* timestamp counter */
335 #define REG_APIC_BASE_MSR 0x1b
336 #define REG_X2APIC_BASE_MSR 0x800 /* The MSR address offset of x2APIC */

338 #if !defined(__xpv)
339 /*
340 * AMD C1E
341 */
342 #define MSR_AMD_INT_PENDING_CMP_HALT 0xC0010055
343 #define AMD_ACTONCMPHALT_SHIFT 27
344 #define AMD_ACTONCMPHALT_MASK 3
345 #endif

347 #define MSR_DEBUGCTL 0x1d9

349 #define DEBUGCTL_LBR 0x01
350 #define DEBUGCTL_BTF 0x02

352 /* Intel P6, AMD */
353 #define MSR_LBR_FROM 0x1db
354 #define MSR_LBR_TO 0x1dc
355 #define MSR_LEX_FROM 0x1dd
356 #define MSR_LEX_TO 0x1de

358 /* Intel P4 (pre-Prescott, non P4 M) */
359 #define MSR_P4_LBSTK_TOS 0x1da
360 #define MSR_P4_LBSTK_0 0x1db
361 #define MSR_P4_LBSTK_1 0x1dc
362 #define MSR_P4_LBSTK_2 0x1dd
363 #define MSR_P4_LBSTK_3 0x1de

365 /* Intel Pentium M */
366 #define MSR_P6M_LBSTK_TOS 0x1c9
367 #define MSR_P6M_LBSTK_0 0x040
368 #define MSR_P6M_LBSTK_1 0x041
369 #define MSR_P6M_LBSTK_2 0x042
370 #define MSR_P6M_LBSTK_3 0x043
371 #define MSR_P6M_LBSTK_4 0x044
372 #define MSR_P6M_LBSTK_5 0x045
373 #define MSR_P6M_LBSTK_6 0x046
374 #define MSR_P6M_LBSTK_7 0x047

376 /* Intel P4 (Prescott) */
377 #define MSR_PRP4_LBSTK_TOS 0x1da
378 #define MSR_PRP4_LBSTK_FROM_0 0x680
379 #define MSR_PRP4_LBSTK_FROM_1 0x681
380 #define MSR_PRP4_LBSTK_FROM_2 0x682
381 #define MSR_PRP4_LBSTK_FROM_3 0x683
382 #define MSR_PRP4_LBSTK_FROM_4 0x684
383 #define MSR_PRP4_LBSTK_FROM_5 0x685
384 #define MSR_PRP4_LBSTK_FROM_6 0x686
385 #define MSR_PRP4_LBSTK_FROM_7 0x687
386 #define MSR_PRP4_LBSTK_FROM_8 0x688
387 #define MSR_PRP4_LBSTK_FROM_9 0x689
388 #define MSR_PRP4_LBSTK_FROM_10 0x68a

new/usr/src/uts/intel/sys/x86_archext.h 7

389 #define MSR_PRP4_LBSTK_FROM_11 0x68b
390 #define MSR_PRP4_LBSTK_FROM_12 0x68c
391 #define MSR_PRP4_LBSTK_FROM_13 0x68d
392 #define MSR_PRP4_LBSTK_FROM_14 0x68e
393 #define MSR_PRP4_LBSTK_FROM_15 0x68f
394 #define MSR_PRP4_LBSTK_TO_0 0x6c0
395 #define MSR_PRP4_LBSTK_TO_1 0x6c1
396 #define MSR_PRP4_LBSTK_TO_2 0x6c2
397 #define MSR_PRP4_LBSTK_TO_3 0x6c3
398 #define MSR_PRP4_LBSTK_TO_4 0x6c4
399 #define MSR_PRP4_LBSTK_TO_5 0x6c5
400 #define MSR_PRP4_LBSTK_TO_6 0x6c6
401 #define MSR_PRP4_LBSTK_TO_7 0x6c7
402 #define MSR_PRP4_LBSTK_TO_8 0x6c8
403 #define MSR_PRP4_LBSTK_TO_9 0x6c9
404 #define MSR_PRP4_LBSTK_TO_10 0x6ca
405 #define MSR_PRP4_LBSTK_TO_11 0x6cb
406 #define MSR_PRP4_LBSTK_TO_12 0x6cc
407 #define MSR_PRP4_LBSTK_TO_13 0x6cd
408 #define MSR_PRP4_LBSTK_TO_14 0x6ce
409 #define MSR_PRP4_LBSTK_TO_15 0x6cf

411 /*
412 * General Xeon based MSRs
413 */
414 #define MSR_PPIN_CTL 0x04e
415 #define MSR_PPIN 0x04f
416 #define MSR_PLATFORM_INFO 0x0ce

418 #define MSR_PLATFORM_INFO_PPIN (1 << 23)
419 #define MSR_PPIN_CTL_MASK 0x03
420 #define MSR_PPIN_CTL_LOCKED 0x01
421 #define MSR_PPIN_CTL_ENABLED 0x02

423 /*
424 * Intel IA32_ARCH_CAPABILITIES MSR.
425 */
426 #define MSR_IA32_ARCH_CAPABILITIES 0x10a
427 #define IA32_ARCH_CAP_RDCL_NO 0x0001
428 #define IA32_ARCH_CAP_IBRS_ALL 0x0002
429 #define IA32_ARCH_CAP_RSBA 0x0004
430 #define IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY 0x0008
431 #define IA32_ARCH_CAP_SSB_NO 0x0010

433 /*
434 * Intel Speculation related MSRs
435 */
436 #define MSR_IA32_SPEC_CTRL 0x48
437 #define IA32_SPEC_CTRL_IBRS 0x01
438 #define IA32_SPEC_CTRL_STIBP 0x02
439 #define IA32_SPEC_CTRL_SSBD 0x04

441 #define MSR_IA32_PRED_CMD 0x49
442 #define IA32_PRED_CMD_IBPB 0x01

444 #define MSR_IA32_FLUSH_CMD 0x10b
445 #define IA32_FLUSH_CMD_L1D 0x01

447 #define MCI_CTL_VALUE 0xffffffff

449 #define MTRR_TYPE_UC 0
450 #define MTRR_TYPE_WC 1
451 #define MTRR_TYPE_WT 4
452 #define MTRR_TYPE_WP 5
453 #define MTRR_TYPE_WB 6
454 #define MTRR_TYPE_UC_ 7

new/usr/src/uts/intel/sys/x86_archext.h 8

456 /*
457 * For Solaris we set up the page attritubute table in the following way:
458 * PAT0 Write-Back
459 * PAT1 Write-Through
460 * PAT2 Unchacheable-
461 * PAT3 Uncacheable
462 * PAT4 Write-Back
463 * PAT5 Write-Through
464 * PAT6 Write-Combine
465 * PAT7 Uncacheable
466 * The only difference from h/w default is entry 6.
467 */
468 #define PAT_DEFAULT_ATTRIBUTE \
469 ((uint64_t)MTRR_TYPE_WB | \
470 ((uint64_t)MTRR_TYPE_WT << 8) | \
471 ((uint64_t)MTRR_TYPE_UC_ << 16) | \
472 ((uint64_t)MTRR_TYPE_UC << 24) | \
473 ((uint64_t)MTRR_TYPE_WB << 32) | \
474 ((uint64_t)MTRR_TYPE_WT << 40) | \
475 ((uint64_t)MTRR_TYPE_WC << 48) | \
476 ((uint64_t)MTRR_TYPE_UC << 56))

478 #define X86FSET_LARGEPAGE 0
479 #define X86FSET_TSC 1
480 #define X86FSET_MSR 2
481 #define X86FSET_MTRR 3
482 #define X86FSET_PGE 4
483 #define X86FSET_DE 5
484 #define X86FSET_CMOV 6
485 #define X86FSET_MMX 7
486 #define X86FSET_MCA 8
487 #define X86FSET_PAE 9
488 #define X86FSET_CX8 10
489 #define X86FSET_PAT 11
490 #define X86FSET_SEP 12
491 #define X86FSET_SSE 13
492 #define X86FSET_SSE2 14
493 #define X86FSET_HTT 15
494 #define X86FSET_ASYSC 16
495 #define X86FSET_NX 17
496 #define X86FSET_SSE3 18
497 #define X86FSET_CX16 19
498 #define X86FSET_CMP 20
499 #define X86FSET_TSCP 21
500 #define X86FSET_MWAIT 22
501 #define X86FSET_SSE4A 23
502 #define X86FSET_CPUID 24
503 #define X86FSET_SSSE3 25
504 #define X86FSET_SSE4_1 26
505 #define X86FSET_SSE4_2 27
506 #define X86FSET_1GPG 28
507 #define X86FSET_CLFSH 29
508 #define X86FSET_64 30
509 #define X86FSET_AES 31
510 #define X86FSET_PCLMULQDQ 32
511 #define X86FSET_XSAVE 33
512 #define X86FSET_AVX 34
513 #define X86FSET_VMX 35
514 #define X86FSET_SVM 36
515 #define X86FSET_TOPOEXT 37
516 #define X86FSET_F16C 38
517 #define X86FSET_RDRAND 39
518 #define X86FSET_X2APIC 40
519 #define X86FSET_AVX2 41
520 #define X86FSET_BMI1 42

new/usr/src/uts/intel/sys/x86_archext.h 9

521 #define X86FSET_BMI2 43
522 #define X86FSET_FMA 44
523 #define X86FSET_SMEP 45
524 #define X86FSET_SMAP 46
525 #define X86FSET_ADX 47
526 #define X86FSET_RDSEED 48
527 #define X86FSET_MPX 49
528 #define X86FSET_AVX512F 50
529 #define X86FSET_AVX512DQ 51
530 #define X86FSET_AVX512PF 52
531 #define X86FSET_AVX512ER 53
532 #define X86FSET_AVX512CD 54
533 #define X86FSET_AVX512BW 55
534 #define X86FSET_AVX512VL 56
535 #define X86FSET_AVX512FMA 57
536 #define X86FSET_AVX512VBMI 58
537 #define X86FSET_AVX512VPOPCDQ 59
538 #define X86FSET_AVX512NNIW 60
539 #define X86FSET_AVX512FMAPS 61
540 #define X86FSET_XSAVEOPT 62
541 #define X86FSET_XSAVEC 63
542 #define X86FSET_XSAVES 64
543 #define X86FSET_SHA 65
544 #define X86FSET_UMIP 66
545 #define X86FSET_PKU 67
546 #define X86FSET_OSPKE 68
547 #define X86FSET_PCID 69
548 #define X86FSET_INVPCID 70
549 #define X86FSET_IBRS 71
550 #define X86FSET_IBPB 72
551 #define X86FSET_STIBP 73
552 #define X86FSET_SSBD 74
553 #define X86FSET_SSBD_VIRT 75
554 #define X86FSET_RDCL_NO 76
555 #define X86FSET_IBRS_ALL 77
556 #define X86FSET_RSBA 78
557 #define X86FSET_SSB_NO 79
558 #define X86FSET_STIBP_ALL 80
559 #define X86FSET_FLUSH_CMD 81
560 #define X86FSET_L1D_VM_NO 82
561 #define X86FSET_FSGSBASE 83
562 #define X86FSET_CLFLUSHOPT 84
563 #define X86FSET_CLWB 85
564 #define X86FSET_MONITORX 86
565 #define X86FSET_CLZERO 87
566 #define X86FSET_XOP 88
567 #define X86FSET_FMA4 89
568 #define X86FSET_TBM 90
569 #define X86FSET_AVX512VNNI 91
570 #define X86FSET_AMD_PCEC 92

572 /*
573 * Intel Deep C-State invariant TSC in leaf 0x80000007.
574 */
575 #define CPUID_TSC_CSTATE_INVARIANCE (0x100)

577 /*
578 * Intel Deep C-state always-running local APIC timer
579 */
580 #define CPUID_CSTATE_ARAT (0x4)

582 /*
583 * Intel ENERGY_PERF_BIAS MSR indicated by feature bit CPUID.6.ECX[3].
584 */
585 #define CPUID_EPB_SUPPORT (1 << 3)

new/usr/src/uts/intel/sys/x86_archext.h 10

587 /*
588 * Intel TSC deadline timer
589 */
590 #define CPUID_DEADLINE_TSC (1 << 24)

592 /*
593 * x86_type is a legacy concept; this is supplanted
594 * for most purposes by x86_featureset; modern CPUs
595 * should be X86_TYPE_OTHER
596 */
597 #define X86_TYPE_OTHER 0
598 #define X86_TYPE_486 1
599 #define X86_TYPE_P5 2
600 #define X86_TYPE_P6 3
601 #define X86_TYPE_CYRIX_486 4
602 #define X86_TYPE_CYRIX_6x86L 5
603 #define X86_TYPE_CYRIX_6x86 6
604 #define X86_TYPE_CYRIX_GXm 7
605 #define X86_TYPE_CYRIX_6x86MX 8
606 #define X86_TYPE_CYRIX_MediaGX 9
607 #define X86_TYPE_CYRIX_MII 10
608 #define X86_TYPE_VIA_CYRIX_III 11
609 #define X86_TYPE_P4 12

611 /*
612 * x86_vendor allows us to select between
613 * implementation features and helps guide
614 * the interpretation of the cpuid instruction.
615 */
616 #define X86_VENDOR_Intel 0
617 #define X86_VENDORSTR_Intel "GenuineIntel"

619 #define X86_VENDOR_IntelClone 1

621 #define X86_VENDOR_AMD 2
622 #define X86_VENDORSTR_AMD "AuthenticAMD"

624 #define X86_VENDOR_Cyrix 3
625 #define X86_VENDORSTR_CYRIX "CyrixInstead"

627 #define X86_VENDOR_UMC 4
628 #define X86_VENDORSTR_UMC "UMC UMC UMC "

630 #define X86_VENDOR_NexGen 5
631 #define X86_VENDORSTR_NexGen "NexGenDriven"

633 #define X86_VENDOR_Centaur 6
634 #define X86_VENDORSTR_Centaur "CentaurHauls"

636 #define X86_VENDOR_Rise 7
637 #define X86_VENDORSTR_Rise "RiseRiseRise"

639 #define X86_VENDOR_SiS 8
640 #define X86_VENDORSTR_SiS "SiS SiS SiS "

642 #define X86_VENDOR_TM 9
643 #define X86_VENDORSTR_TM "GenuineTMx86"

645 #define X86_VENDOR_NSC 10
646 #define X86_VENDORSTR_NSC "Geode by NSC"

648 /*
649 * Vendor string max len + \0
650 */
651 #define X86_VENDOR_STRLEN 13

new/usr/src/uts/intel/sys/x86_archext.h 11

653 /*
654 * Some vendor/family/model/stepping ranges are commonly grouped under
655 * a single identifying banner by the vendor. The following encode
656 * that "revision" in a uint32_t with the 8 most significant bits
657 * identifying the vendor with X86_VENDOR_*, the next 8 identifying the
658 * family, and the remaining 16 typically forming a bitmask of revisions
659 * within that family with more significant bits indicating "later" revisions.
660 */

662 #define _X86_CHIPREV_VENDOR_MASK 0xff000000u
663 #define _X86_CHIPREV_VENDOR_SHIFT 24
664 #define _X86_CHIPREV_FAMILY_MASK 0x00ff0000u
665 #define _X86_CHIPREV_FAMILY_SHIFT 16
666 #define _X86_CHIPREV_REV_MASK 0x0000ffffu

668 #define _X86_CHIPREV_VENDOR(x) \
669 (((x) & _X86_CHIPREV_VENDOR_MASK) >> _X86_CHIPREV_VENDOR_SHIFT)
670 #define _X86_CHIPREV_FAMILY(x) \
671 (((x) & _X86_CHIPREV_FAMILY_MASK) >> _X86_CHIPREV_FAMILY_SHIFT)
672 #define _X86_CHIPREV_REV(x) \
673 ((x) & _X86_CHIPREV_REV_MASK)

675 /* True if x matches in vendor and family and if x matches the given rev mask */
676 #define X86_CHIPREV_MATCH(x, mask) \
677 (_X86_CHIPREV_VENDOR(x) == _X86_CHIPREV_VENDOR(mask) && \
678 _X86_CHIPREV_FAMILY(x) == _X86_CHIPREV_FAMILY(mask) && \
679 ((_X86_CHIPREV_REV(x) & _X86_CHIPREV_REV(mask)) != 0))

681 /* True if x matches in vendor and family, and rev is at least minx */
682 #define X86_CHIPREV_ATLEAST(x, minx) \
683 (_X86_CHIPREV_VENDOR(x) == _X86_CHIPREV_VENDOR(minx) && \
684 _X86_CHIPREV_FAMILY(x) == _X86_CHIPREV_FAMILY(minx) && \
685 _X86_CHIPREV_REV(x) >= _X86_CHIPREV_REV(minx))

687 #define _X86_CHIPREV_MKREV(vendor, family, rev) \
688 ((uint32_t)(vendor) << _X86_CHIPREV_VENDOR_SHIFT | \
689 (family) << _X86_CHIPREV_FAMILY_SHIFT | (rev))

691 /* True if x matches in vendor, and family is at least minx */
692 #define X86_CHIPFAM_ATLEAST(x, minx) \
693 (_X86_CHIPREV_VENDOR(x) == _X86_CHIPREV_VENDOR(minx) && \
694 _X86_CHIPREV_FAMILY(x) >= _X86_CHIPREV_FAMILY(minx))

696 /* Revision default */
697 #define X86_CHIPREV_UNKNOWN 0x0

699 /*
700 * Definitions for AMD Family 0xf. Minor revisions C0 and CG are
701 * sufficiently different that we will distinguish them; in all other
702 * case we will identify the major revision.
703 */
704 #define X86_CHIPREV_AMD_F_REV_B _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0xf, 0x0001)
705 #define X86_CHIPREV_AMD_F_REV_C0 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0xf, 0x0002)
706 #define X86_CHIPREV_AMD_F_REV_CG _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0xf, 0x0004)
707 #define X86_CHIPREV_AMD_F_REV_D _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0xf, 0x0008)
708 #define X86_CHIPREV_AMD_F_REV_E _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0xf, 0x0010)
709 #define X86_CHIPREV_AMD_F_REV_F _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0xf, 0x0020)
710 #define X86_CHIPREV_AMD_F_REV_G _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0xf, 0x0040)

712 /*
713 * Definitions for AMD Family 0x10. Rev A was Engineering Samples only.
714 */
715 #define X86_CHIPREV_AMD_10_REV_A \
716 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x10, 0x0001)
717 #define X86_CHIPREV_AMD_10_REV_B \
718 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x10, 0x0002)

new/usr/src/uts/intel/sys/x86_archext.h 12

719 #define X86_CHIPREV_AMD_10_REV_C2 \
720 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x10, 0x0004)
721 #define X86_CHIPREV_AMD_10_REV_C3 \
722 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x10, 0x0008)
723 #define X86_CHIPREV_AMD_10_REV_D0 \
724 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x10, 0x0010)
725 #define X86_CHIPREV_AMD_10_REV_D1 \
726 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x10, 0x0020)
727 #define X86_CHIPREV_AMD_10_REV_E \
728 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x10, 0x0040)

730 /*
731 * Definitions for AMD Family 0x11.
732 */
733 #define X86_CHIPREV_AMD_11_REV_B \
734 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x11, 0x0002)

736 /*
737 * Definitions for AMD Family 0x12.
738 */
739 #define X86_CHIPREV_AMD_12_REV_B \
740 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x12, 0x0002)

742 /*
743 * Definitions for AMD Family 0x14.
744 */
745 #define X86_CHIPREV_AMD_14_REV_B \
746 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x14, 0x0002)
747 #define X86_CHIPREV_AMD_14_REV_C \
748 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x14, 0x0004)

750 /*
751 * Definitions for AMD Family 0x15
752 */
753 #define X86_CHIPREV_AMD_15OR_REV_B2 \
754 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x15, 0x0001)

756 #define X86_CHIPREV_AMD_15TN_REV_A1 \
757 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x15, 0x0002)

759 #define X86_CHIPREV_AMD_150R_REV_C0 \
760 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x15, 0x0003)

762 #define X86_CHIPREV_AMD_15KV_REV_A1 \
763 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x15, 0x0004)

765 #define X86_CHIPREV_AMD_15F60 \
766 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x15, 0x0005)

768 #define X86_CHIPREV_AMD_15ST_REV_A0 \
769 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x15, 0x0006)

771 /*
772 * Definitions for AMD Family 0x16
773 */
774 #define X86_CHIPREV_AMD_16_KB_A1 \
775 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x16, 0x0001)

777 #define X86_CHIPREV_AMD_16_ML_A1 \
778 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x16, 0x0002)

780 /*
781 * Definitions for AMD Family 0x17
782 */

784 #define X86_CHIPREV_AMD_17_ZP_B1 \

new/usr/src/uts/intel/sys/x86_archext.h 13

785 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x17, 0x0001)

787 #define X86_CHIPREV_AMD_17_ZP_B2 \
788 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x17, 0x0002)

790 #define X86_CHIPREV_AMD_17_PiR_B2 \
791 _X86_CHIPREV_MKREV(X86_VENDOR_AMD, 0x17, 0x0003)

793 /*
794 * Various socket/package types, extended as the need to distinguish
795 * a new type arises. The top 8 byte identfies the vendor and the
796 * remaining 24 bits describe 24 socket types.
797 */

799 #define _X86_SOCKET_VENDOR_SHIFT 24
800 #define _X86_SOCKET_VENDOR(x) ((x) >> _X86_SOCKET_VENDOR_SHIFT)
801 #define _X86_SOCKET_TYPE_MASK 0x00ffffff
802 #define _X86_SOCKET_TYPE(x) ((x) & _X86_SOCKET_TYPE_MASK)

804 #define _X86_SOCKET_MKVAL(vendor, bitval) \
805 ((uint32_t)(vendor) << _X86_SOCKET_VENDOR_SHIFT | (bitval))

807 #define X86_SOCKET_MATCH(s, mask) \
808 (_X86_SOCKET_VENDOR(s) == _X86_SOCKET_VENDOR(mask) && \
809 (_X86_SOCKET_TYPE(s) & _X86_SOCKET_TYPE(mask)) != 0)

811 #define X86_SOCKET_UNKNOWN 0x0
812 /*
813 * AMD socket types
814 */
815 #define X86_SOCKET_754 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x01)
816 #define X86_SOCKET_939 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x02)
817 #define X86_SOCKET_940 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x03)
818 #define X86_SOCKET_S1g1 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x04)
819 #define X86_SOCKET_AM2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x05)
820 #define X86_SOCKET_F1207 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x06)
821 #define X86_SOCKET_S1g2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x07)
822 #define X86_SOCKET_S1g3 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x08)
823 #define X86_SOCKET_AM _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x09)
824 #define X86_SOCKET_AM2R2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x0a)
825 #define X86_SOCKET_AM3 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x0b)
826 #define X86_SOCKET_G34 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x0c)
827 #define X86_SOCKET_ASB2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x0d)
828 #define X86_SOCKET_C32 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x0e)
829 #define X86_SOCKET_S1g4 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x0f)
830 #define X86_SOCKET_FT1 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x10)
831 #define X86_SOCKET_FM1 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x11)
832 #define X86_SOCKET_FS1 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x12)
833 #define X86_SOCKET_AM3R2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x13)
834 #define X86_SOCKET_FP2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x14)
835 #define X86_SOCKET_FS1R2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x15)
836 #define X86_SOCKET_FM2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x16)
837 #define X86_SOCKET_FP3 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x17)
838 #define X86_SOCKET_FM2R2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x18)
839 #define X86_SOCKET_FP4 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x19)
840 #define X86_SOCKET_AM4 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x1a)
841 #define X86_SOCKET_FT3 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x1b)
842 #define X86_SOCKET_FT4 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x1c)
843 #define X86_SOCKET_FS1B _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x1d)
844 #define X86_SOCKET_FT3B _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x1e)
845 #define X86_SOCKET_SP3 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x1f)
846 #define X86_SOCKET_SP3R2 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x20)
847 #define X86_NUM_SOCKETS_AMD 0x21

850 /*

new/usr/src/uts/intel/sys/x86_archext.h 14

851 * Definitions for Intel processor models. These are all for Family 6
852 * processors. This list and the Atom set below it are not exhuastive.
853 */
854 #define INTC_MODEL_MEROM 0x0f
855 #define INTC_MODEL_PENRYN 0x17
856 #define INTC_MODEL_DUNNINGTON 0x1d

858 #define INTC_MODEL_NEHALEM 0x1e
859 #define INTC_MODEL_NEHALEM2 0x1f
860 #define INTC_MODEL_NEHALEM_EP 0x1a
861 #define INTC_MODEL_NEHALEM_EX 0x2e

863 #define INTC_MODEL_WESTMERE 0x25
864 #define INTC_MODEL_WESTMERE_EP 0x2c
865 #define INTC_MODEL_WESTMERE_EX 0x2f

867 #define INTC_MODEL_SANDYBRIDGE 0x2a
868 #define INTC_MODEL_SANDYBRIDGE_XEON 0x2d
869 #define INTC_MODEL_IVYBRIDGE 0x3a
870 #define INTC_MODEL_IVYBRIDGE_XEON 0x3e

872 #define INTC_MODEL_HASWELL 0x3c
873 #define INTC_MODEL_HASWELL_ULT 0x45
874 #define INTC_MODEL_HASWELL_GT3E 0x46
875 #define INTC_MODEL_HASWELL_XEON 0x3f

877 #define INTC_MODEL_BROADWELL 0x3d
878 #define INTC_MODEL_BROADELL_2 0x47
879 #define INTC_MODEL_BROADWELL_XEON 0x4f
880 #define INTC_MODEL_BROADWELL_XEON_D 0x56

882 #define INCC_MODEL_SKYLAKE_MOBILE 0x4e
883 #define INTC_MODEL_SKYLAKE_XEON 0x55
884 #define INTC_MODEL_SKYLAKE_DESKTOP 0x5e

886 #define INTC_MODEL_KABYLAKE_MOBILE 0x8e
887 #define INTC_MODEL_KABYLAKE_DESKTOP 0x9e

889 /*
890 * Atom Processors
891 */
892 #define INTC_MODEL_SILVERTHORNE 0x1c
893 #define INTC_MODEL_LINCROFT 0x26
894 #define INTC_MODEL_PENWELL 0x27
895 #define INTC_MODEL_CLOVERVIEW 0x35
896 #define INTC_MODEL_CEDARVIEW 0x36
897 #define INTC_MODEL_BAY_TRAIL 0x37
898 #define INTC_MODEL_AVATON 0x4d
899 #define INTC_MODEL_AIRMONT 0x4c
900 #define INTC_MODEL_GOLDMONT 0x5c
901 #define INTC_MODEL_DENVERTON 0x5f
902 #define INTC_MODEL_GEMINI_LAKE 0x7a

904 /*
905 * xgetbv/xsetbv support
906 * See section 13.3 in vol. 1 of the Intel devlopers manual.
907 */

909 #define XFEATURE_ENABLED_MASK 0x0
910 /*
911 * XFEATURE_ENABLED_MASK values (eax)
912 * See setup_xfem().
913 */
914 #define XFEATURE_LEGACY_FP 0x1
915 #define XFEATURE_SSE 0x2
916 #define XFEATURE_AVX 0x4

new/usr/src/uts/intel/sys/x86_archext.h 15

917 #define XFEATURE_MPX 0x18 /* 2 bits, both 0 or 1 */
918 #define XFEATURE_AVX512 0xe0 /* 3 bits, all 0 or 1 */
919 /* bit 8 unused */
920 #define XFEATURE_PKRU 0x200
921 #define XFEATURE_FP_ALL \
922 (XFEATURE_LEGACY_FP | XFEATURE_SSE | XFEATURE_AVX | XFEATURE_MPX | \
923 XFEATURE_AVX512 | XFEATURE_PKRU)

925 /*
926 * Define the set of xfeature flags that should be considered valid in the xsave
927 * state vector when we initialize an lwp. This is distinct from the full set so
928 * that all of the processor’s normal logic and tracking of the xsave state is
929 * usable. This should correspond to the state that’s been initialized by the
930 * ABI to hold meaningful values. Adding additional bits here can have serious
931 * performance implications and cause performance degradations when using the
932 * FPU vector (xmm) registers.
933 */
934 #define XFEATURE_FP_INITIAL (XFEATURE_LEGACY_FP | XFEATURE_SSE)

936 #if !defined(_ASM)

938 #if defined(_KERNEL) || defined(_KMEMUSER)

940 #define NUM_X86_FEATURES 93
941 extern uchar_t x86_featureset[];

943 extern void free_x86_featureset(void *featureset);
944 extern boolean_t is_x86_feature(void *featureset, uint_t feature);
945 extern void add_x86_feature(void *featureset, uint_t feature);
946 extern void remove_x86_feature(void *featureset, uint_t feature);
947 extern boolean_t compare_x86_featureset(void *setA, void *setB);
948 extern void print_x86_featureset(void *featureset);

951 extern uint_t x86_type;
952 extern uint_t x86_vendor;
953 extern uint_t x86_clflush_size;

955 extern uint_t pentiumpro_bug4046376;

957 extern const char CyrixInstead[];

959 extern void (*spec_l1d_flush)(void);

961 #endif

963 #if defined(_KERNEL)

965 /*
966 * This structure is used to pass arguments and get return values back
967 * from the CPUID instruction in __cpuid_insn() routine.
968 */
969 struct cpuid_regs {
970 uint32_t cp_eax;
971 uint32_t cp_ebx;
972 uint32_t cp_ecx;
973 uint32_t cp_edx;
974 };

______unchanged_portion_omitted_

new/usr/src/uts/intel/zfs/Makefile 1

**
 3551 Wed May 15 07:34:11 2019
new/usr/src/uts/intel/zfs/Makefile
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # This makefile drives the production of the zfs file system
26 # kernel module.
27 #
28 # Copyright 2013 Saso Kiselkov. All rights reserved.
29 #
30 # Copyright (c) 2016 by Delphix. All rights reserved.
31 #
32 # Copyright 2019 Joyent, Inc.
32 # Copyright (c) 2018, Joyent, Inc.

34 #
35 # Path to the base of the uts directory tree (usually /usr/src/uts).
36 #
37 UTSBASE = ../..

39 ARCHDIR:sh = cd ..; basename ‘pwd‘

41 #
42 # Define the module and object file sets.
43 #
44 MODULE = zfs
45 OBJECTS = $(ZFS_OBJS:%=$(OBJS_DIR)/%) $(LUA_OBJS:%=$(OBJS_DIR)/%)
46 # LUA_OBJS are intentionally omitted from LINTS
47 LINTS = $(ZFS_OBJS:%.o=$(LINTS_DIR)/%.ln)
48 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
49 ROOTLINK = $(ROOT_FS_DIR)/$(MODULE)
50 CONF_SRCDIR = $(UTSBASE)/common/fs/zfs

52 #
53 # Include common rules.
54 #
55 include ../Makefile.$(ARCHDIR)

57 #

new/usr/src/uts/intel/zfs/Makefile 2

58 # Define targets
59 #
60 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
61 LINT_TARGET = $(MODULE).lint
62 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOTLINK) $(ROOT_CONFFILE)

64 #
65 # Overrides and depends_on
66 #
67 MODSTUBS_DIR = $(OBJS_DIR)
68 LDFLAGS += -dy -Nfs/specfs -Ncrypto/swrand -Nmisc/idmap -Nmisc/sha2 \
69 -Nmisc/skein -Nmisc/edonr

71 INC_PATH += -I$(UTSBASE)/common/fs/zfs
72 INC_PATH += -I$(UTSBASE)/common/fs/zfs/lua
73 INC_PATH += -I$(SRC)/common
74 INC_PATH += -I$(COMMONBASE)/zfs
75 INC_PATH += -I$(UTSBASE)/i86pc

77 C99LMODE= -Xc99=%all

79 #
80 # For now, disable these lint checks; maintainers should endeavor
81 # to investigate and remove these for maximum lint coverage.
82 # Please do not carry these forward to new Makefiles.
83 #
84 LINTTAGS += -erroff=E_SUSPICIOUS_COMPARISON
85 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
86 LINTTAGS += -erroff=E_SUPPRESSION_DIRECTIVE_UNUSED
87 LINTTAGS += -erroff=E_STATIC_UNUSED
88 LINTTAGS += -erroff=E_PTRDIFF_OVERFLOW
89 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV

91 CERRWARN += -_gcc=-Wno-type-limits
92 CERRWARN += -_gcc=-Wno-switch
93 CERRWARN += -_gcc=-Wno-parentheses
94 CERRWARN += -_gcc=-Wno-unused-variable
95 CERRWARN += -_gcc=-Wno-unused-function
96 CERRWARN += -_gcc=-Wno-unused-label

98 # needs work
99 SMOFF += all_func_returns,indenting
100 $(OBJS_DIR)/llex.o := SMOFF += index_overflow
101 $(OBJS_DIR)/metaslab.o := SMOFF += no_if_block
102 $(OBJS_DIR)/zfs_vnops.o := SMOFF += signed
103 # needs work
104 $(OBJS_DIR)/zvol.o := SMOFF += deref_check,signed

106 # false positives
107 $(OBJS_DIR)/zfs_ctldir.o := SMOFF += strcpy_overflow
108 $(OBJS_DIR)/zfs_ioctl.o := SMOFF += strcpy_overflow

110 #
111 # Default build targets.
112 #
113 .KEEP_STATE:

115 def: $(DEF_DEPS)

117 all: $(ALL_DEPS)

119 clean: $(CLEAN_DEPS)

121 clobber: $(CLOBBER_DEPS)

123 lint: $(LINT_DEPS)

new/usr/src/uts/intel/zfs/Makefile 3

125 modlintlib: $(MODLINTLIB_DEPS)

127 clean.lint: $(CLEAN_LINT_DEPS)

129 install: $(INSTALL_DEPS)

131 $(ROOTLINK): $(ROOT_FS_DIR) $(ROOTMODULE)
132 -$(RM) $@; ln $(ROOTMODULE) $@

134 #
135 # Include common targets.
136 #
137 include ../Makefile.targ

new/usr/src/uts/sparc/zfs/Makefile 1

**
 3303 Wed May 15 07:34:11 2019
new/usr/src/uts/sparc/zfs/Makefile
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # This makefile drives the production of the zfs file system
26 # kernel module.
27 #
28 # Copyright 2013 Saso Kiselkov. All rights reserved.
29 #
30 # Copyright (c) 2016 by Delphix. All rights reserved.
31 #
32 # Copyright 2018 Joyent, Inc.
33 #

35 #
36 # Path to the base of the uts directory tree (usually /usr/src/uts).
37 #
38 UTSBASE = ../..

40 ARCHDIR:sh = cd ..; basename ‘pwd‘

42 #
43 # Define the module and object file sets.
44 #
45 MODULE = zfs
46 OBJECTS = $(ZFS_OBJS:%=$(OBJS_DIR)/%) $(LUA_OBJS:%=$(OBJS_DIR)/%)
47 # LUA_OBJS are intentionally omitted from LINTS
48 LINTS = $(ZFS_OBJS:%.o=$(LINTS_DIR)/%.ln)
49 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
50 ROOTLINK = $(ROOT_FS_DIR)/$(MODULE)
51 CONF_SRCDIR = $(UTSBASE)/common/fs/zfs

53 #
54 # Include common rules.
55 #
56 include ../Makefile.$(ARCHDIR)

58 #

new/usr/src/uts/sparc/zfs/Makefile 2

59 # Define targets
60 #
61 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
62 LINT_TARGET = $(MODULE).lint
63 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOTLINK) $(ROOT_CONFFILE)

65 #
66 # Overrides and depends_on
67 #
68 # We require sched/SDC because by the time vfs_mountroot() runs,
69 # we can no longer load modules through OBP.
70 #
71 MODSTUBS_DIR = $(OBJS_DIR)
72 LDFLAGS += -dy -Nfs/specfs -Ncrypto/swrand -Nmisc/idmap \
73 -Nsched/SDC -Nmisc/sha2 -Nmisc/skein -Nmisc/edonr

75 INC_PATH += -I$(UTSBASE)/common/fs/zfs
76 INC_PATH += -I$(UTSBASE)/common/fs/zfs/lua
77 INC_PATH += -I$(SRC)/common
78 INC_PATH += -I$(COMMONBASE)/zfs
79 INC_PATH += -I$(UTSBASE)/sun4

81 C99LMODE= -Xc99=%all

83 #
84 # For now, disable these lint checks; maintainers should endeavor
85 # to investigate and remove these for maximum lint coverage.
86 # Please do not carry these forward to new Makefiles.
87 #
88 LINTTAGS += -erroff=E_SUSPICIOUS_COMPARISON
89 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
90 LINTTAGS += -erroff=E_SUPPRESSION_DIRECTIVE_UNUSED
91 LINTTAGS += -erroff=E_STATIC_UNUSED
92 LINTTAGS += -erroff=E_PTRDIFF_OVERFLOW
93 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV

95 CERRWARN += -_gcc=-Wno-type-limits
96 CERRWARN += -_gcc=-Wno-switch
97 CERRWARN += -_gcc=-Wno-parentheses
98 CERRWARN += -_gcc=-Wno-unused-variable
99 CERRWARN += -_gcc=-Wno-unused-function
100 CERRWARN += -_gcc=-Wno-unused-label

102 #
103 # Default build targets.
104 #
105 .KEEP_STATE:

107 def: $(DEF_DEPS)

109 all: $(ALL_DEPS)

111 clean: $(CLEAN_DEPS)

113 clobber: $(CLOBBER_DEPS)

115 lint: $(LINT_DEPS)

117 modlintlib: $(MODLINTLIB_DEPS)

119 clean.lint: $(CLEAN_LINT_DEPS)

121 install: $(INSTALL_DEPS)

123 $(ROOTLINK): $(ROOT_FS_DIR) $(ROOTMODULE)
124 -$(RM) $@; ln $(ROOTMODULE) $@

new/usr/src/uts/sparc/zfs/Makefile 3

126 #
127 # Include common targets.
128 #
129 include ../Makefile.targ

new/usr/src/uts/sun4/sys/ht.h 1

**
 824 Wed May 15 07:34:11 2019
new/usr/src/uts/sun4/sys/ht.h
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2018 Joyent, Inc.
14 */

16 #ifndef _SYS_HT_H
17 #define _SYS_HT_H

19 #include <sys/types.h>
20 #include <sys/thread.h>

22 #ifdef __cplusplus
23 extern "C" {
24 #endif

26 #define ht_init() {}

28 #define ht_should_run(t, c) (B_TRUE)
29 #define ht_adjust_cpu_score(t, c, p) (p)
30 #define ht_begin_unsafe(void) {}
31 #define ht_end_unsafe(void) {}
32 #define ht_end_intr(void) {}

34 #ifdef __cplusplus
35 }
36 #endif

38 #endif /* _SYS_HT_H */

new/usr/src/uts/sun4u/sys/Makefile 1

**
 3735 Wed May 15 07:34:11 2019
new/usr/src/uts/sun4u/sys/Makefile
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 # Copyright 2019 Peter Tribble.
24 #
25 # Copyright 2018 Joyent, Inc.
25 # uts/sun4u/sys/Makefile
26 #
27 UTSBASE = ../..

29 #
30 # include global definitions
31 #
32 include ../Makefile.sun4u

34 #
35 # Override defaults.
36 #
37 FILEMODE = 644

39 SUN4_HDRS= \
40 async.h \
41 clock.h \
42 cmp.h \
43 cpc_ultra.h \
44 cpu_sgnblk_defs.h \
45 ddi_subrdefs.h \
46 dvma.h \
47 eeprom.h \
48 errclassify.h \
49 fcode.h \
50 fc_plat.h \
51 ht.h \
52 idprom.h \
53 intr.h \
54 intreg.h \
55 ivintr.h \
56 memlist_plat.h \
57 memnode.h \

new/usr/src/uts/sun4u/sys/Makefile 2

58 nexusdebug.h \
59 prom_debug.h \
60 scb.h \
61 sun4asi.h \
62 tod.h \
63 trapstat.h \
64 vis.h \
65 vm_machparam.h \
66 x_call.h \
67 xc_impl.h \
68 zsmach.h

70 HDRS= \
71 cheetahregs.h \
72 cpr_impl.h \
73 cpu_impl.h \
74 ecc_kstat.h \
75 envctrl.h \
76 envctrl_gen.h \
77 envctrl_ue250.h \
78 envctrl_ue450.h \
79 gpio_87317.h \
80 iocache.h \
81 iommu.h \
82 machasi.h \
83 machclock.h \
84 machcpuvar.h \
85 machparam.h \
86 machsystm.h \
87 machthread.h \
88 mem_cache.h \
89 mmu.h \
90 opl_module.h \
91 prom_plat.h \
92 pte.h \
93 sbd_ioctl.h \
94 spitregs.h \
95 sysioerr.h \
96 sysiosbus.h \
97 todmostek.h \
98 traptrace.h

100 I2CHDRS = clients/max1617.h misc/i2c_svc.h clients/i2c_client.h \
101 clients/hpc3130.h clients/lm75.h \
102 clients/pcf8591.h clients/ssc050.h

104 I2C_DIRS= clients misc
105 USR_PSM_ISYS_I2C_ROOT= $(USR_PSM_ISYS_DIR)/i2c
106 USR_PSM_ISYS_I2C_DIRS= $(USR_PSM_ISYS_I2C_ROOT) \
107 $(I2C_DIRS:%=$(USR_PSM_ISYS_I2C_ROOT)/%)

109 ROOTI2CHDRS= $(I2CHDRS:%=$(USR_PSM_ISYS_I2C_ROOT)/%)

111 MONHDRS=
112 #MONHDRS= eeprom.h idprom.h keyboard.h password.h

114 USR_PSM_MON_DIR= $(USR_PSM_ISYS_DIR)/mon

116 ROOTHDRS= $(HDRS:%=$(USR_PSM_ISYS_DIR)/%)

118 SUN4_ROOTHDRS= $(SUN4_HDRS:%=$(USR_PSM_ISYS_DIR)/%)

120 ROOTMONHDRS= $(MONHDRS:%=$(USR_PSM_MON_DIR)/%)

122 ROOTDIR= $(ROOT)/usr/share/src
123 ROOTDIRS= $(ROOTDIR)/uts $(ROOTDIR)/uts/$(PLATFORM)

new/usr/src/uts/sun4u/sys/Makefile 3

125 ROOTLINK= $(ROOTDIR)/uts/$(PLATFORM)/sys
126 LINKDEST= ../../../../platform/$(PLATFORM)/include/sys

128 CHECKHDRS= $(HDRS:%.h=%.check) \
129 $(MONHDRS:%.h=mon/%.check) \
130 $(SUN4_HDRS:%.h=%.cmncheck)

132 .KEEP_STATE:

134 .PARALLEL: $(CHECKHDRS) $(ROOTHDRS) $(ROOTMONHDRS) $(SUN4_ROOTHDRS)

136 install_h: $(ROOTDIRS) $(USR_PSM_ISYS_I2C_DIRS) .WAIT \
137 $(ROOTHDRS) $(ROOTI2CHDRS) \
138 $(ROOTMONHDRS) \
139 $(SUN4_ROOTHDRS) $(ROOTLINK)

141 check: $(CHECKHDRS)

143 #
144 # install rules
145 #
146 $(USR_PSM_MON_DIR): $(USR_PSM_ISYS_DIR)
147 $(INS.dir)

149 $(USR_PSM_ISYS_I2C_DIRS):
150 $(INS.dir)

152 $(USR_PSM_ISYS_DIR)/%: ../../sfmmu/sys/% $(USR_PSM_ISYS_DIR)
153 $(INS.file)

155 $(USR_PSM_ISYS_DIR)/%: ../../sun4/sys/% $(USR_PSM_ISYS_DIR)
156 $(INS.file)

158 $(USR_PSM_MON_DIR)/%: mon/% $(USR_PSM_MON_DIR)
159 $(INS.file)

161 $(ROOTDIRS):
162 $(INS.dir)

164 # -r because this used to be a directory and is now a link.
165 $(ROOTLINK): $(ROOTDIRS)
166 -$(RM) -r $@; $(SYMLINK) $(LINKDEST) $@

168 mon/%.check: mon/%.h
169 $(DOT_H_CHECK)

171 %.check: ../../sfmmu/sys/%.h
172 $(DOT_H_CHECK)
173 %.cmncheck: ../../sun4/sys/%.h
174 $(DOT_H_CHECK)

176 FRC:

178 include ../../Makefile.targ

new/usr/src/uts/sun4v/sys/Makefile 1

**
 2813 Wed May 15 07:34:12 2019
new/usr/src/uts/sun4v/sys/Makefile
10924 Need mitigation of L1TF (CVE-2018-3646)
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright 2018 Joyent, Inc.
26 #
26 # uts/sun4v/sys/Makefile
27 #
27 # include global definitions
28 UTSBASE = ../..

30 #
31 # include global definitions
32 #
33 include ../Makefile.sun4v

35 #
36 # Override defaults.
37 #
38 FILEMODE = 644

40 SUN4_HDRS= \
41 clock.h \
42 cmp.h \
43 cpc_ultra.h \
44 cpu_sgnblk_defs.h \
45 ddi_subrdefs.h \
46 dvma.h \
47 eeprom.h \
48 fcode.h \
49 ht.h \
50 idprom.h \
51 intr.h \
52 intreg.h \
53 ivintr.h \
54 memlist_plat.h \
55 memnode.h \
56 nexusdebug.h \

new/usr/src/uts/sun4v/sys/Makefile 2

57 prom_debug.h \
58 scb.h \
59 sun4asi.h \
60 tod.h \
61 trapstat.h \
62 vis.h \
63 vm_machparam.h \
64 x_call.h \
65 xc_impl.h \
66 zsmach.h

68 HDRS= \
69 ds_pri.h \
70 ds_snmp.h \
71 hypervisor_api.h \
72 hsvc.h \
73 machasi.h \
74 machclock.h \
75 machcpuvar.h \
76 mach_descrip.h \
77 machintreg.h \
78 machparam.h \
79 machsystm.h \
80 machthread.h \
81 mmu.h \
82 niagaraasi.h \
83 niagararegs.h \
84 ntwdt.h \
85 pte.h \
86 prom_plat.h \
87 qcn.h \
88 soft_state.h \
89 traptrace.h \
90 vlds.h

92 ROOTHDRS= $(HDRS:%=$(USR_PSM_ISYS_DIR)/%)

94 SUN4_ROOTHDRS= $(SUN4_HDRS:%=$(USR_PSM_ISYS_DIR)/%)

96 ROOTDIR= $(ROOT)/usr/share/src
97 ROOTDIRS= $(ROOTDIR)/uts $(ROOTDIR)/uts/$(PLATFORM)

99 ROOTLINK= $(ROOTDIR)/uts/$(PLATFORM)/sys
100 LINKDEST= ../../../../platform/$(PLATFORM)/include/sys

102 CHECKHDRS= $(HDRS:%.h=%.check) \
103 $(SUN4_HDRS:%.h=%.cmncheck)

105 .KEEP_STATE:

107 .PARALLEL: $(CHECKHDRS) $(ROOTHDRS) $(SUN4_ROOTHDRS)

109 install_h: $(ROOTDIRS) .WAIT \
110 $(ROOTHDRS) .WAIT \
111 $(SUN4_ROOTHDRS) .WAIT $(ROOTLINK)

113 check: $(CHECKHDRS)

115 #
116 # install rules
117 #
118 $(USR_PSM_ISYS_DIR)/%: ../../sfmmu/sys/% $(USR_PSM_ISYS_DIR)
119 $(INS.file)

121 $(USR_PSM_ISYS_DIR)/%: ../../sun4/sys/% $(USR_PSM_ISYS_DIR)
122 $(INS.file)

new/usr/src/uts/sun4v/sys/Makefile 3

124 $(ROOTDIRS):
125 $(INS.dir)

127 # -r because this used to be a directory and is now a link.
128 $(ROOTLINK): $(ROOTDIRS)
129 -$(RM) -r $@; $(SYMLINK) $(LINKDEST) $@

131 mon/%.check: mon/%.h
132 $(DOT_H_CHECK)

134 %.check: ../../sfmmu/sys/%.h
135 $(DOT_H_CHECK)
136 %.cmncheck: ../../sun4/sys/%.h
137 $(DOT_H_CHECK)

139 FRC:

141 include ../../Makefile.targ

