new usr/ src/ pkg/ mani f est s/ syst em header . nf

new usr/ src/ pkg/ mani f est s/ syst em header . nf

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 dlr path:usrllncl Ude/llbp0| klt
96439 Wed May 15 07:34:02 2019 60 dir path=usr/include/ net
new usr/ src/ pkg/ mani f est s/ syst em header . nf 61 dir path=usr/include/netinet
10924 Need mtigation of L1TF (CVE-2018-3646) 62 dir path=usr/include/nfs
Revi ewed by: Robert Mistacchi <rm@ oyent.conm> 63 dir path=usr/include/protocol s
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr 64 dir path=usr/include/rpc
Revi ewed by: Peter Tribble <peter.tribble@mail.conm 65 dir path=usr/include/rpcsvc
IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE] 66 d'r path:usr/InCI ude/sasl
14# 67 dir path=usr/include/scsi
2 # CDDL HEADER START 68 dir path=usr/include/scsi/plugins
3 # 69 dir path=usr/include/scsi/plugins/ses
4 # The contents of this file are subject to the terns of the 70 dir path=usr/include/scsi/plugins/ses/framework
5 # Common Devel oprent and Distribution License (the "License") 71 dir path=usr/include/scsi/pl ugins/ses/vendor
6 # You may not use this file except in conpliance with the License. 72 dir path=usr/include/scsi/plugins/snp
7 # 73 dir path=usr/include/scsi/plugins/snp/engine
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 dir path=usr/include/scsi/plugins/snp/framework
9 # or http://ww.opensol aris.org/os/licensing. 75 dir path=usr/include/security
10 # See the License for the specific |anguage governing perm ssions 76 dir path=usr/include/sharefs
11 # and limtations under the License. 77 dir path=usr/include/sys
12 # 78 dir path=usr/include/sys/av
13 # Wen distributing Covered Code, include this CDDL HEADER in each 79 dir path=usr/include/sys/contract
14 # file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 dir path=usr/includel/sys/crypto
15 # If applicable, add the followi ng below this CDDL HEADER, with the 81 dir path=usr/include/sys/dktp
16 # fields enclosed by brackets "[]" replaced with your own identifying 82 dir path=usr/include/sys/fc4
17 # information: Portions Copyright [yyyy] [nane of copyright owner] 83 dir path=usr/include/sys/fm
18 # 84 dir path=usr/include/sys/fncpu
19 # CDDL HEADER END 85 dir path=usr/include/sys/fmfs
20 # 86 dir path=usr/include/sys/fnlio
87 $(sparc ONLY) di r pat h=usr/incl ude/sys/fpu
22 # 88 dir path=usr/include/sys/fs
23 # Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved. 89 dir path=usr/include/sys/hot pl ug
24 # Copyright (c) 2012 by Del phix. Al rights reserved. 90 dir path=usr/incl ude/ sys/ hot pl ug/ pci
25 # Copyright 2013 Saso Kiselkov. Al rights reserved. 91 dir path=usr/include/sys/ib
26 # Copyright 2014 Garrett D Anpre <garrett @anore. org> 92 dir path=usr/include/sys/ibl/adapters
27 # Copyright 2018 Nexenta Systens, Inc. 93 dir path=usr/include/sys/i b/ adapters/ hernon
28 # Copyright 2016 Hans Rosenfel d <rosenfel d@r unpf. hope-2000. or g> 94 dir path=usr/include/sys/i b/ adapters/tavor
29 # Copyright 2019 Peter Tribble. 95 dir path=usr/include/sys/ib/clients
30 # 96 dir path=usr/include/sys/ibl/clients/ibd
97 dir path=usr/include/sys/ibl/clients/of
32 set nane=pkg.fnri val ue=pkg:/system header @(PKGVERS) 98 dir path=usr/include/sys/ib/clients/of/rdm
33 set nane=pkg. description \ 99 dir path=usr/include/sys/ib/clients/of/sol_ofs
34 val ue="SunCS C/ C++ header files for general devel opnent of software" 100 dir path=usr/include/sys/ib/clients/of/sol_ucm
35 set nane=pkg. summary val ue="SunCS Header Files" 101 dir path=usr/include/sys/ib/clients/of/sol_unad
36 set nane=info.classification val ue=org. opensol ari s. cat egory. 2008: Syst en? Cor e 102 dir path=usr/include/sys/ib/clients/of/sol _uverbs
37 set nane=variant.arch val ue=$(ARCH) 103 dir path=usr/include/sys/ib/ibnex
38 dir path=usr group=sys 104 dir path=usr/include/sys/ib/ibtl
39 dir path=usr/include 105 dir path=usr/include/sys/ib/ibtl/inpl
40 $(i386_ONLY)dir path=usr/include/ $(ARCH64) 106 dir path=usr/include/sys/i b/ ngt
41 $(i386_ONLY)dir path=usr/include/ $(ARCH64)/ sys 107 dir path=usr/include/sys/ib/ ngt/ibnf
42 dir path=usr/incl ude/ ads 108 dir path=usr/include/sys/iso
43 dir path=usr/incl ude/arpa 109 dir path=usr/incl ude/ sys/ proc
44 dir pat h=usr/incl ude/ asm 110 dir path=usr/include/sys/rsm
45 dir pat h=usr/incl ude/ ast 111 $(| 386_ONLY) dir pat h=usr/include/ sys/sata group=sys
46 dir path=usr/include/bsm 112 dir path=usr/include/sys/scsi
47 dir path=usr/incl ude/ dat 113 dir path=usr/include/ sys/scsi/adapters
48 dir pat h=usr/i ncl ude/ des 114 dir pat h=usr/incl ude/ sys/scsi/conf
49 dir pat h=usr/incl ude/ gssapi 115 dir path=usr/incl ude/ sys/scsi/generic
50 dir path=usr/include/hal 116 dir path=usr/incl ude/sys/scsi/inpl
51 $(i386_ONLY)dir path=usr/include/ia32 117 dir path=usr/include/sys/scsi/targets
52 $(i386_ONLY)dir path=usr/include/ia32/sys 118 dir pat h=usr/incl ude/ sys/sysevent
53 dir path=usr/include/inet 119 dir path=usr/include/sys/tsol
54 dir path=usr/include/inet/kssl 120 dir path=usr/include/tsol
55 dir path=usr/include/ipp 121 dir path=usr/incl ude/ uuid
56 dir path=usr/include/ipp/ipgpc 122 $(sparc_ONLY)dir path=usr/include/v7
57 dir path=usr/include/iso 123 $(sparc_ONLY)dir path=usr/include/v7/sys
58 dir path=usr/incl ude/ kerberosv5 124 $(sparc_ONLY)dir path=usr/include/v9

new usr/ src/ pkg/ mani f est s/ syst em header . nf

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179 d
180
181
182
183
184
185
186
187
188
189
190

$(sparc_ONLY)dir path=usr/include/v9/sys
dir path=usr/include/vm
atf orm group=sys

dir path=usr/pl
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
$(sparc_ONLY) di
ONLY) di
ONLY) di
$(sparc_ONLY) di

S B
PLO-L¢
» n
hokel
Lo
==
(s X¢}
I

$(spar c_ONLY) di
$(| 386_ONLY) di
$(i 386 _ONLY)dir
$(i 386_ONLY) dir
$(i 386_ONLY) di r
$(i 386_ONLY)dir
r
r
r

=

$(i 386_ONLY) di
$(i 386_ONLY) di
$(i 386_ONLY) di
$(sparc_ONLY) di

$(spar c_ONLY) di

N o o S S S S o = —

NN~ = = =~ =

r

pat h=usr/ pl at f or mf SUNW A70 gr oup=sys

pat h=usr/ pl at f or mf SUNW Net r a- CP2300 gr oup=sys
pat h=usr/ pl at f or mf SUNW Net r a- CP2300/ i ncl ude
pat h=usr/ pl at f or mf SUNW Net r a- CP3010 gr oup=sys

pat h=usr/ pl at f or mf SUNW Net r a- CP3010/ i ncl ude
pat h=usr/ pl at f or mf SUNW Net r a- T12 gr oup=sys
pat h=usr/ pl at f or mf SUNW Netra- T4 gr oup=sys
pat h=usr/ pl at f or mf SUNW SPARC- Ent er pri se group=sys
pat h=usr/ pl at f or mf SUNW Ser ver bl adel group=sys
pat h=usr/ pl at f or mf SUNW Sun- Bl ade- 100 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Bl ade- 1000 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Bl ade- 1500 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Bl ade- 2500 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi re group=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi r e- 15000 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi r e- 280R gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi r e- 480R gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi r e- 880 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi re- V215 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi r e- V240 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi r e- V250 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi r e- V440 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi r e- V445 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi r e- V490 gr oup=sys
pat h=usr/ pl at f or mf SUNW Sun- Fi re- V890 gr oup=sys
pat h=usr/platform SUNWU tra-2 group=sys
pat h=usr/pl atform SUNW U tra-250 group=sys
pat h=usr/platform SUNWU tra-4 group=sys
pat h=usr/platform SUNW U tra-Enterprise group=sys
pat h=usr/pl at f ormf SUNW U t r aSPARC- | | e- Net raCT- 40 gr oup=sys
pat h=usr/pl at f or mf SUNW Ul t r aSPARC- | | e- Net r aCT- 60 gr oup=sys
pat h=usr/pl atform SUNW U traSPARC-11i-Netract group=sys

pat h=usr/pl atfornl i 86pc group=sys

pat h=usr/pl atfornl i 86pc/i ncl ude

pat h=usr/pl at forni i 86pc/i ncl ude/ sys

pat h=usr/pl atform i 86pc/include/ vm

pat h=usr/pl atform i 86xpv group=sys

pat h=usr/pl atfornm i 86xpv/incl ude

pat h=usr/ pl at f or m’ i 86xpv/i ncl ude/ sys

pat h=usr/pl atf ornf i 86xpv/incl ude/ vm
pat h=usr/ pl at f or mf sun4u group=sys
pat h=usr/ pl at f or mf sun4u/ i ncl ude
pat h=usr/ pl at f or mf sun4u/ i ncl ude/ sys
pat h=usr/ pl at f or mf sun4u/i ncl ude/ sys/i 2c
pat h=usr/ pl at f or mf sun4u/i ncl ude/ sys/i 2c/clients
pat h=usr/ pl at f or mf sun4u/ i ncl ude/ sys/i 2c/ m sc
pat h=usr/ pl at f or mf sun4u/i ncl ude/ vm
pat h=usr/pl at f or mf sun4v group=sys
pat h=usr/ pl at f or mf sun4v/i ncl ude
pat h=usr/ pl at f or mf sun4v/i ncl ude/ sys
pat h=usr/ pl at f or mf sun4v/i ncl ude/ vm

ir path=usr/share

r pat h=usr/share/ man
r pat h=usr/shar e/ man/ man3
r pat h=usr/ shar e/ man/ men3head
di r pat h=usr/shar e/ man/ man4
ir path=usr/share/ man/ man5
r pat h=usr/shar e/ man/ man7i
r pat h=usr/share/src group=sys

dir path=usr/share/src/uts
$(i 386_ONLY)dir path=usr/share/src/uts/i86pc
$(i 386_ONLY)dir pat h=usr/share/src/uts/i86xpv

$(sparc_ONLY) di

r

pat h=usr/shar e/ src/ uts/ sundu

new usr/ src/ pkg/ mani f est s/ syst em header . nf

191 $(sparc_ONLY)dir path=usr/share/src/uts/sundv

192 dir pat h=usr/xpg4

193 dir pat h=usr/xpg4/include

194 $(i386_ONLY)file path=usr/include/ $(ARCH64)/sys/ kdi _regs.h
195 $(i386_ONLY)file path=usr/include/ $(ARCH64)/sys/privnregs. h
196 $(i 386_ONLY)file path=usr/include/ $(ARCH64)/sys/ privregs.h

197 file path=usr/include/ads/ dsgetdc. h

198 file path=usr/include/aio.h

199 file path=usr/include/alloca.h

200 file path=usr/include/ apptrace.h

201 file path=usr/include/apptrace_inpl.h

202 file path=usr/include/ar.h

203 file path=usr/include/archives.h

204 file path=usr/include/arpa/ftp.h

205 file path=usr/include/arpalinet.h

206 file path=usr/include/arpal/ naneser.h

207 file path=usr/include/arpal/ nameser _conpat. h
208 file path=usr/include/arpal/telnet.h

209 file path=usr/include/arpa/tftp.h

210 $(i386_ONLY)file path=usr/include/asnm atomc.h
211 $(i 386_O\ILY)f| | e path=usr/incl ude/asni bi t map. h
212 $(i386_ONLY)file path=usr/include/asnfbyteorder.h
213 $(i386_ONLY)file path=usr/include/asn clock.h
214 $(i386_ONLY)file path=usr/include/asnicpu.h
215 $(i386_ONLY)file path=usr/include/asnf cpuvar.h
216 $(sparc_ONLY)file path=usr/include/asm flush.h
217 $(i386_ONLY)file path=usr/include/asm htable.h
218 $(i386_ONLY)file path=usr/include/asm mu.h
219 file path=usr/include/asn sunddi.h

220 file path=usr/include/asn thread. h

221 file path=usr/include/assert.h

222 file path=usr/include/ast/align.h

223 file path=usr/include/ast/ast.h

224 file path=usr/include/ast/ast_botch.h

225 file path=usr/includel/ast/ast_ccode. h

226 file path=usr/include/ast/ast_comon. h

227 file path=usr/include/ast/ast_dir.h

228 file path=usr/include/ast/ast_dirent.h

229 file path=usr/include/ast/ast_fcntl.h

230 file path=usr/include/ast/ast_float.h

231 file path=usr/include/ast/ast_fs.h

232 file path=usr/include/ast/ast_getopt.h

233 file path=usr/include/ast/ast_iconv.h

234 file path=usr/include/ast/ast_lib.h

235 file path=usr/include/ast/ast_limts.h

236 file path=usr/include/ast/ast_map.h

237 file path=usr/include/ast/ast_nmmap. h

238 file path=usr/include/ast/ast_node. h

239 file path=usr/include/ast/ast_nanval.h

240 file path=usr/include/ast/ast_ndbmh

241 file path=usr/include/ast/ast_nl_types.h

242 file path=usr/include/ast/ast_paramh

243 file path=usr/include/ast/ast_standards.h

244 file path=usr/include/ast/ast_std.h

245 file path=usr/include/ast/ast_stdio.h

246 file path=usr/include/ast/ast_sys.h

247 file path=usr/include/ast/ast_tine.h

248 file path=usr/include/ast/ast_tty.h

249 file path=usr/include/ast/ast_version.h

250 file path=usr/include/ast/ast_vfork.h

251 file path=usr/include/ast/ast_wait.h

252 file path=usr/include/ast/ast_wchar.h

253 file path=usr/include/ast/ast_w ndows. h

254 file path=usr/include/ast/bytesex.h

255 file path=usr/include/ast/ccode. h

256 file path=usr/include/ast/cdt.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

257 file path=usr/include/ast/cnd. h

258 file path=usr/include/ast/cndext.h
259 file path=usr/include/ast/debug.h
260 file path=usr/include/ast/dirent.h
261 file path=usr/include/ast/dlldefs.h
262 file path=usr/include/ast/dt.h

263 file path=usr/include/ast/endian.h
264 file path=usr/include/ast/error.h
265 file path=usr/include/ast/find. h
266 file path=usr/include/ast/fnmatch.h
267 file path=usr/include/ast/fnv.h

268 file path=usr/include/ast/fs3d.h
269 file path=usr/include/ast/fts.h

270 file path=usr/include/ast/ftw h

271 file path=usr/include/ast/ftwalk.h
272 file path=usr/include/ast/getopt.h
273 file path=usr/include/ast/glob.h
274 file path=usr/include/ast/hash.h
275 file path=usr/include/ast/hashkey. h
276 file path=usr/include/ast/hashpart.h
277 file path=usr/include/ast/history.h
278 file path=usr/include/ast/iconv.h
279 file path=usr/include/ast/ip6.h

280 file path=usr/include/ast/lc.h

281 file path=usr/include/ast/ls.h

282 file path=usr/include/ast/magic.h
283 file path=usr/include/ast/nagicid.h
284 file path=usr/include/ast/nt.h

285 file path=usr/include/ast/mme.h
286 file path=usr/include/ast/mt.h

287 file path=usr/include/ast/nodecanon. h
288 file path=usr/include/ast/nodex. h
289 file path=usr/include/ast/nanval.h
290 file path=usr/include/ast/nl_types.h
291 file path=usr/include/ast/nval.h
292 file path=usr/include/ast/option.h
293 file path=usr/include/ast/preroot.h
294 file path=usr/include/ast/proc.h
295 file path=usr/include/ast/prototyped.h
296 file path=usr/include/ast/re_conp.h
297 file path=usr/include/ast/recfnt.h
298 file path=usr/include/ast/regex.h
299 file path=usr/include/ast/regexp.h
300 file path=usr/include/ast/sfdisc.h
301 file path=usr/include/ast/sfio.h
302 file path=usr/include/ast/sfio_s.h
303 file path=usr/include/ast/sfio_t.h
304 file path=usr/include/ast/shcnd. h
305 file path=usr/include/ast/shell.h
306 file path=usr/include/ast/sig.h

307 file path=usr/include/ast/stack.h
308 file path=usr/include/ast/stak.h
309 file path=usr/include/ast/stdio.h
310 file path=usr/include/ast/stk.h

311 file path=usr/include/ast/sumh

312 file path=usr/include/ast/swap.h
313 file path=usr/include/ast/tar.h

314 file path=usr/include/ast/tines.h
315 file path=usr/include/ast/tmh

316 file path=usr/include/ast/tnx.h

317 file path=usr/include/ast/tok.h

318 file path=usr/include/ast/tv.h

319 file path=usr/include/ast/usage.h
320 file path=usr/include/ast/vdb.h

321 file path=usr/include/ast/vecargs.h
322 file path=usr/include/ast/vmalloc.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

323 file path=usr/include/ast/wait.h

324 file path=usr/include/ast/wchar.h

325 file path=usr/include/ast/wordexp.h

326 file path=usr/include/atomic.h

327 file path=usr/include/attr.h

328 file path=usr/include/auth_attr.h

329 file path=usr/include/bsnlfadt.h

330 file path=usr/include/bsnladt_event.h

331 file path=usr/include/bsnlaudit.h

332 file path=usr/include/bsnlaudit_kernel.h
333 file path=usr/include/bsnl audit_kevents. h
334 file path=usr/include/bsnfaudit_record.h
335 file path=usr/include/bsnfaudit_uevents.h
336 file path=usr/include/bsn devices. h

337 file path=usr/include/bsn|ibbsmh

338 file path=usr/include/config_adnmin.h

339 file path=usr/include/cpio.h

340 file path=usr/include/crypt.h

341 file path=usr/include/cryptoutil.h

342 file path=usr/include/ctype.h

343 file path=usr/include/curses.h

344 file path=usr/include/dat/dat.h

345 file path=usr/include/dat/dat_error.h

346 file path=usr/include/dat/dat_platformspecific.h
347 file path=usr/include/dat/dat_redirection.h
348 file path=usr/include/dat/dat_registry.h
349 file path=usr/include/dat/dat_vendor_specific.h
350 file path=usr/include/dat/udat.h

351 file path=usr/include/dat/udat_config.h
352 file path=usr/include/dat/udat_redirection.h
353 file path=usr/include/dat/udat_vendor_specific.h
354 file path=usr/include/deflt.h

355 file path=usr/include/des/des.h

356 file path=usr/include/des/desdata.h

357 file path=usr/include/des/softdes. h

358 file path=usr/include/devfsadm h

359 file path=usr/include/device_info.h

360 file path=usr/include/devid.h

361 file path=usr/include/devngnt.h

362 file path=usr/include/devpoll.h

363 file path=usr/include/dial.h

364 file path=usr/include/dirent.h

365 file path=usr/include/dlfcn.h

366 file path=usr/include/door.h

367 file path=usr/include/elf.h

368 file path=usr/include/endian.h

369 file path=usr/include/err.h

370 file path=usr/include/errno.h

371 file path=usr/include/eti.h

372 file path=usr/include/euc.h

373 file path=usr/include/ exacct.h

374 file path=usr/include/exacct_inpl.h

375 file path=usr/include/exec_attr.h

376 file path=usr/include/execinfo.h

377 file path=usr/include/fatal.h

378 file path=usr/include/fcntl.h

379 file path=usr/include/float.h

380 file path=usr/include/fntnsg.h

381 file path=usr/include/fnnatch.h

382 file path=usr/include/formh

383 file path=usr/include/fts.h

384 file path=usr/include/ftw h

385 file path=usr/include/gelf.h

386 file path=usr/include/getopt.h

387 file path=usr/include/getw dth.h

388 file path=usr/include/glob.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

389 file path=usr/include/grp.h

390 file path=usr/include/gssapi/gssapi.h

391 file path=usr/include/ gssapi/gssapi_ext.h

392 file path=usr/include/hal/libhal-storage.h

393 file path=usr/include/hal/libhal.

394 $(i386_ONLY)file path= usr/lnclude/|a32/sys/asnLIinkage.h
395 $(i386_ONLY)file path=usr/include/ia32/sys/kdi_regs.h
396 $(i386_ONLY)file path=usr/include/ia32/sys/ machtypes.h
397 $(i386_ONLY)file path=usr/include/ia32/sys/privnregs.h
398 $(i386_ONLY)file path=usr/include/ia32/sys/privregs.h
399 $(i386_ONLY)file path=usr/include/ia32/sys/psw.h
400 $(i386_ONLY)file path=usr/include/ia32/sys/pte.h
401 $(i386_ONLY)file path=usr/include/ia32/sys/reg.h
402 $(i386_ONLY)file path=usr/include/ia32/sys/stack.h
403 $(i386_ONLY)file path=usr/include/ia32/sys/trap.h
404 $(i386_ONLY)file path=usr/include/ia32/sys/traptrace.h
405 file path=usr/include/iconv.h

406 file path=usr/include/idmap.h

407 file path=usr/include/ieeefp.h

408 file path=usr/include/ifaddrs.h

409 file path=usr/include/inet/arp.h

410 file path=usr/include/inet/common.h

411 file path=usr/include/inet/ip.h

412 file path=usr/include/inet/ip6.h

413 file path=usr/include/inet/ip6_asp.h

414 file path=usr/include/inet/ip_arp.h

415 file path=usr/include/inet/ip_ ftable.h

416 file path=usr/include/inet/ip_i

417 file path=usr/include/inet/ip_i e h

418 file path=usr/include/inet/ip_mlti.h

419 file path=usr/include/inet/ip_netinfo.h

420 file path=usr/include/inet/ip_rts.h

421 file path=usr/include/inet/ip_stack.h

422 file path=usr/include/inet/ipclassifier.h

423 file path=usr/include/inet/ipdrop.h

424 file path=usr/include/inet/ipnet.h

425 file path=usr/include/inet/ipp_common.h

426 file path=usr/include/inet/kssl/ksslapi.h

427 file path=usr/include/inet/led. h

428 file path=usr/include/inet/m.h

429 file path=usr/include/inet/mb2. h

430 file path=usr/include/inet/nd.h

431 file path=usr/include/inet/optcomh

432 file path=usr/include/inet/sctp_itf.h

433 file path=usr/include/inet/snmpcom h

434 file path=usr/include/inet/tcp.h

435 file path=usr/include/inet/tcp_sack.h

436 file path=usr/include/inet/tcp_stack.h

437 file path=usr/include/inet/tcp_stats.h

438 file path=usr/include/inet/tunables.h

439 file path=usr/include/inet/wfi_ioctl.h

440 file path=usr/include/inttypes.h

441 file path=usr/include/ipnp.h

442 file path=usr/include/ipnmp_admn.h

443 file path=usr/include/ipnp_ npathd h

444 file path=usr/include/ipnp_query.

445 file path:usr/include/|pp/|pgpc/|pgpc h

446 file path=usr/include/ipp/ipp.h

447 file path=usr/include/ipp/ipp_config.h

448 file path=usr/include/ipp/ipp_inpl.h

449 file path=usr/include/ipp/ippctl.h

450 file path=usr/include/iso/ctype_iso.h

451 file path=usr/include/iso/limts_iso.h

452 file path=usr/include/isol/locale_iso.h

453 file path=usr/include/iso/setjnp_iso.h

454 file path=usr/include/isol/signal_iso.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

455 file path=usr/include/isol/stdarg_c99.h

456 file path=usr/include/iso/stdarg_iso.h

457 file path=usr/include/iso/stddef_iso.h

458 file path=usr/include/iso/stdio_c99.h

459 file path=usr/include/iso/stdio_iso.h

460 file path=usr/include/iso/stdlib_cll.h

461 file path=usr/include/iso/stdlib_c99.h

462 file path=usr/include/iso/stdlib_iso. h

463 file path=usr/include/iso/string_iso.h

464 file path=usr/include/iso/time_iso.h

465 file path=usr/include/iso/whar_c99.h

466 file path=usr/include/iso/whar_iso.h

467 file path:usr/include/lso/mntype iso.h

468 file path=usr/include/iso646.h

469 fil e path=usr/include/kerberosv5/comerr.h
470 fil e path=usr/include/kerberosv5/krb5. h
471 file path=usr/include/kerberosv5/|ocate_plugin.h
472 file path=usr/include/kerberosv5/ mt-sipb-copyright
473 fil e path=usr/include/ kerberosv5/nmt_copyright.h
474 file path=usr/include/klpd.h

475 file path=usr/include/knfapi.h

476 file path=usr/include/knftypes.h

477 file path=usr/include/kstat.h

478 file path=usr/include/ kvm h

479 file path=usr/include/langinfo.h

480 file path=usr/include/lastlog.h

481 file path=usr/include/lber.h

482 file path=usr/include/ldap.h

483 file path=usr/include/libcontract.h

484 file path=usr/include/libctf.h

485 file path=usr/include/libdevice.h

486 file path=usr/include/libdevinfo.h

487 file path=usr/include/libdl adm h

488 file path=usr/include/libdl bridge.h

489 file path=usr/include/libdlib.h

490 file path=usr/include/libdllink.h

491 file path=usr/include/libdlpi.h

492 file path=usr/include/libdlvlan. h

493 file path=usr/include/libelf.h

494 $(i386_ONLY)file path=usr/include/libfdisk.h
495 file path=usr/include/libfstyp.h

496 file path=usr/include/libfstyp_nodule.h
497 file path=usr/include/libgen.h

498 file path=usr/include/libgrubmgnt.h

499 file path=usr/include/libintl.h

500 file path=usr/include/libipm.h

501 file path=usr/include/libipp.h

502 file path=usr/include/libnvpair.h

503 file path=usr/include/libnwam h

504 file path=usr/include/libpolkit/libpolkit.h
505 file path=usr/include/libproc.h

506 file path=usr/include/librcmh

507 file path=usr/include/libscf.h

508 file path=usr/include/libscf_priv.h

509 file path=usr/include/libshare.h

510 file path=usr/include/libsysevent.h

511 file path=usr/include/libsysevent _inpl.h
512 file path=usr/include/libtsnet.h

513 $(sparc_ONLY)file path=usr/include/libvl2n.h
514 file path=usr/include/libw h

515 file path=usr/include/libzfs.h

516 file path=usr/include/libzfs_core.h

517 file path=usr/include/libzoneinfo.h

518 file path=usr/include/linmts.h

519 file path=usr/include/linenumh

520 file path=usr/include/link.h

h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

521 file path=usr/include/listen.h

522 file path=usr/include/locale.h

523 file path=usr/include/ macros.h

524 file path=usr/include/ maillock.h

525 file path=usr/include/ malloc.h

526 file path=usr/include/nd4. h

527 file path=usr/include/ mi5. h

528 file path=usr/include/ menory.h

529 file path=usr/include/ menu.h

530 file path=usr/include/non.h

531 file path=usr/include/ nonetary.h

532 file path=usr/include/np.h

533 file path=usr/include/ mqueue. h

534 file path=usr/include/ntnalloc.h

535 file path=usr/include/nan.h

536 file path=usr/include/ ndbm h

537 file path=usr/include/ndpd.h

538 file path=usr/include/net/af.h

539 file path=usr/include/net/bridge.h

540 file path=usr/include/net/if.h

541 file path=usr/include/net/if_arp.h

542 file path=usr/include/net/if_dl.h

543 file path=usr/include/net/if_types.h

544 file path=usr/include/nnet/pfkeyv2.h

545 file path=usr/include/net/pfpolicy.h

546 file path=usr/include/ net/ppp-conp.h

547 file path=usr/include/ net/ppp_defs.h

548 file path=usr/include/ net/pppio.h

549 file path=usr/include/net/radix.h

550 file path=usr/include/net/route.h

551 file path=usr/include/net/trill.h

552 file path=usr/include/net/vjconpress.h
553 file path=usr/include/netconfig.h

554 file path=usr/include/netdb.h

555 file path=usr/include/netdir.h

556 file path=usr/include/netinet/arp.h

557 file path=usr/include/netinet/dhcp.h

558 file path=usr/include/netinet/dhcp6.h
559 file path=usr/include/netinet/icnp6.h
560 file path=usr/include/netinet/icnp_var.h
561 file path=usr/include/netinet/if_ether.h
562 file path=usr/include/netinet/ignp.h

563 file path=usr/include/netinet/ignp_var.h
564 file path=usr/include/netinet/in.h

565 file path=usr/include/netinet/in_pch.h
566 file path=usr/include/netinet/in_systmh
567 file path=usr/include/netinet/in_var.h
568 file path=usr/include/netinet/ip.h

569 file path=usr/include/netinet/ip6.h

570 file path=usr/include/netinet/ip_icnp.h
571 file path=usr/include/netinet/ip_nroute.h
572 file path=usr/include/netinet/ip_var.h
573 file path=usr/include/netinet/pimh

574 file path=usr/include/netinet/sctp.h

575 file path=usr/include/netinet/tcp.h

576 file path=usr/include/netinet/tcp_debug.h
577 file path=usr/include/netinet/tcp_fsmh
578 file path=usr/include/netinet/tcp_seq.h
579 file path=usr/include/netinet/tcp_timer.h
580 file path=usr/include/netinet/tcp_var.h
581 file path=usr/include/netinet/tcpip.h
582 file path=usr/include/netinet/udp.h

583 file path=usr/include/netinet/udp_var.h
584 file path=usr/include/netinet/vrrp.h

585 file path=usr/include/nfs/auth.h

586 file path=usr/include/nfs/export.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

587 file path=usr/include/nfs/Imh

588 fil e path=usr/include/nfs/mapid.h

589 file path=usr/include/nfs/nount.h

590 file path=usr/include/nfs/nfs.h

591 file path=usr/include/nfs/nfs4.h

592 file path=usr/include/nfs/nfs4_attr.h
593 file path=usr/include/nfs/nfs4_clnt.h
594 file path=usr/include/nfs/nfs4_db_inpl.h
595 file path=usr/include/nfs/nfs4_idmap_inpl.h
596 file path=usr/include/nfs/nfs4_kprot.h
597 file path=usr/include/nfs/nfs_acl.h
598 file path=usr/include/nfs/nfs_clnt.h
599 file path=usr/include/nfs/nfs_cnd.h
600 file path=usr/include/nfs/nfs_log.h
601 file path=usr/include/nfs/nfs_sec.h
602 file path=usr/include/nfs/nfsid_nap.h
603 file path=usr/include/nfs/nfssys.h

604 file path=usr/include/nfs/rnode. h

605 file path=usr/include/nfs/rnode4.h

606 file path=usr/include/nl_types.h

607 file path=usr/include/nlist.h

608 file path=usr/include/note.h

609 file path=usr/include/nss_comon. h

610 file path=usr/include/ nss_dbdefs.h

611 file path=usr/include/nss_netdir.h

612 file path=usr/include/nsswitch.h

613 file path=usr/include/panel.h

614 file path=usr/include/paths.h

615 file path=usr/include/ pcsanple.h

616 file path=usr/include/pfnt.h

617 file path=usr/include/ pkgdev. h

618 fil e path=usr/include/pkginfo.h

619 file path=usr/include/pkglocs.h

620 file path=usr/include/pkgstrct.h

621 file path=usr/include/pkgtrans.h

622 file path=usr/include/poll.h

623 file path=usr/include/port.h

624 file path=usr/include/priv.h

625 file path=usr/include/proc_service.h
626 file path=usr/include/procfs.h

627 file path=usr/include/prof.h

628 file path=usr/include/prof_attr.h

629 file path=usr/include/project.h

630 file path=usr/include/protocol s/dunprestore.h
631 file path=usr/include/protocols/routed.h
632 file path=usr/include/protocols/rwhod. h
633 fil e path=usr/include/protocol s/tined.h
634 file path=usr/include/pthread.h

635 file path=usr/include/pw h

636 file path=usr/include/pwd. h

637 file path=usr/include/rcmnnodul e.h

638 file path=usr/include/rctl.h

639 file path=usr/include/re_conp.h

640 file path=usr/include/regex.h

641 file path=usr/include/regexp.h

642 file path=usr/include/regexpr.h

643 file path=usr/include/resolv.h

644 file path=usr/include/rje.h

645 file path=usr/include/rp_plugin. h

646 file path=usr/include/rpc/auth.h

647 file path=usr/include/rpc/auth_des.h
648 file path=usr/include/rpc/auth_sys.h
649 file path=usr/include/rpc/auth_unix.h
650 file path=usr/include/rpc/bootparam h
651 file path=usr/include/rpc/clnt.h

652 file path=usr/include/rpc/clnt_soc.h

10

new usr/ src/ pkg/ mani f est s/ syst em header . nf

653 file path=usr/include/rpc/clnt_stat.h

654 file path=usr/include/rpc/des_crypt.h

655 $(sparc_ONLY)file path=usr/include/rpc/ib.h
656 file path=usr/include/rpc/key_prot.h

657 file path=usr/include/rpc/nettype.h

658 file path=usr/include/rpc/pmap_clnt.h

659 file path=usr/include/rpc/pmap_prot.h

660 file path=usr/include/rpc/pmap_prot.x

661 file path=usr/include/rpc/pmap_rnt.h

662 file path=usr/include/rpc/rpc.h

663 file path=usr/include/rpc/rpc_comh

664 file path=usr/include/rpc/rpc_nsg.h

665 file path=usr/include/rpc/rpc_rdnma.h

666 file path=usr/include/rpc/rpc_sztypes.h
667 file path=usr/include/rpc/rpcbh_clnt.h

668 file path=usr/include/rpc/rpcb_prot.h

669 file path=usr/include/rpc/rpcb_prot.x

670 file path=usr/include/rpc/rpcent.h

671 file path=usr/include/rpc/rpcsec_gss.h

672 file path=usr/include/rpc/rpcsys.h

673 file path=usr/include/rpc/svc.h

674 file path=usr/include/rpc/svc_auth.h

675 file path=usr/include/rpc/svc_nt.h

676 file path=usr/include/rpc/svc_soc.h

677 file path=usr/include/rpc/types.h

678 file path=usr/include/rpc/xdr.h

679 file path=usr/include/rpcsvc/autofs_prot.h
680 file path=usr/include/rpcsvc/autofs_prot.x
681 file path=usr/include/rpcsvc/ boot param h
682 file path=usr/include/rpcsvc/ boot param prot.h
683 fil e path=usr/include/rpcsvc/boot param prot. x
684 file path=usr/include/rpcsvc/dbmh

685 file path=usr/include/rpcsvc/ key_prot.x
686 file path=usr/include/rpcsvc/ mount. h

687 file path=usr/include/rpcsvc/nount. x

688 file path=usr/include/rpcsvc/nfs4_prot.h
689 file path=usr/include/rpcsvc/ nfs4_prot.x
690 file path=usr/include/rpcsve/nfs_acl.h

691 file path=usr/include/rpcsvc/nfs_acl.x

692 file path=usr/include/rpcsvc/nfs_prot.h
693 file path=usr/include/rpcsvc/nfs_prot.x
694 file path=usr/include/rpcsvc/nis.h

695 file path=usr/include/rpcsvc/nis.x

696 file path=usr/include/rpcsvc/nis_db.h

697 file path=usr/include/rpcsvc/ni s_object. x
698 file path=usr/include/rpcsve/nislib.h

699 file path=usr/include/rpcsvc/nl mprot.h
700 file path=usr/include/rpcsvc/nl mprot.x
701 file path=usr/include/rpcsvc/nsmaddr.h
702 file path=usr/include/rpcsvc/ nsm addr. x
703 file path=usr/include/rpcsvc/rpc_sztypes.h
704 file path=usr/include/rpcsvc/rpc_sztypes. x
705 file path=usr/include/rpcsvc/rquota.h

706 file path=usr/include/rpcsvc/rquota.x

707 file path=usr/include/rpcsvc/rstat.h

708 file path=usr/include/rpcsvc/rstat.x

709 file path=usr/include/rpcsvc/rusers.h

710 file path=usr/include/rpcsvc/rusers. x

711 file path=usr/include/rpcsvc/rwall.h

712 file path=usr/include/rpcsvc/rwall.x

713 file path=usr/include/rpcsvc/sminter.h
714 file path=usr/include/rpcsvc/sminter.x
715 file path=usr/include/rpcsvc/spray.h

716 file path=usr/include/rpcsvc/spray. x

717 file path=usr/include/rpcsvc/ufs_prot.h
718 file path=usr/include/rpcsve/ ufs_prot.x

11

new usr/ src/ pkg/ mani f est s/ syst em header . nf

719 file path=usr/include/rpcsvec/yp.x

720 file path=usr/include/rpcsvc/yp_prot.h

721 file path=usr/include/rpcsvc/ypclnt.h

722 file path=usr/include/rpcsvc/yppasswd. h
723 file path=usr/|nclude/rpcsvc/ypupd h

724 file path=usr/include/rsnmapi.

725 file path=usr/include/rtld_ db h

726 file path=usr/include/sac.h

727 file path=usr/include/sasl/prop.h

728 file path=usr/includel/sasl/sasl.h

729 file path=usr/include/sasl/sasl plug.h

730 file path=usr/include/sasl/saslutil.h

731 file path=usr/include/sched. h

732 file path=usr/include/schedctl.h

733 file path=usr/include/scsi/libscsi.h

734 file path=usr/include/scsi/libses.h

735 file path=usr/include/scsi/libses_| plugln h
736 file path=usr/include/scsi/libsnp.h

737 file path=usr/include/scsi/libsnp_plugin.h
738 file path=usr/include/scsi/plugins/ses/framework/libses.h
739 file path=usr/include/scsi/plugins/ses/framework/ses2.h
740 file path=usr/include/scsi/plugins/ses/framework/ses2_inpl.h
741 file path=usr/include/scsi/plugins/ses/vendor/sun.h
742 file path=usr/include/sdp.h

743 file path=usr/include/search.h

744 file path=usr/include/secdb.h

745 file path=usr/include/security/auditd.h
746 file path=usr/include/security/cryptoki.h
747 file path=usr/include/security/pamappl.h
748 file path=usr/include/security/pam nodul es. h
749 file path=usr/include/security/pkcsll. h
750 file path=usr/include/security/pkcsllf.h
751 file path=usr/include/security/pkcsllt.h
752 file path=usr/include/ semaphore. h

753 file path=usr/include/setjnp.h

754 file path=usr/include/sgtty.h

755 file path=usr/include/shal.h

756 file path=usr/include/sha2.h

757 file path=usr/include/ shadow. h

758 file path=usr/include/sharefs/share.h

759 file path=usr/include/sharefs/sharefs.h
760 file path=usr/include/sharefs/sharetab.h
761 file path=usr/include/siginfo.h

762 file path=usr/include/signal.h

763 file path=usr/include/sip.h

764 file path=usr/include/skein.h

765 file path=usr/include/snbios.h

766 file path=usr/include/spawn. h

767 $(i386_ONLY)file path=usr/include/stack_unw nd. h
768 file path=usr/include/stdalign.h

769 file path=usr/include/stdarg.h

770 file path=usr/include/stdbool.h

771 file path=usr/include/stddef.h

772 file path=usr/include/stdint.h

773 file path=usr/include/stdio.h

774 file path=usr/include/stdio_ext.h

775 file path=usr/include/stdio_inpl.h

776 file path=usr/include/stdio_tag.h

777 file path=usr/include/stdlib.h

778 file path=usr/include/stdnoreturn.h

779 file path=usr/include/storclass.h

780 file path=usr/include/string.h

781 file path=usr/include/strings.h

782 file path=usr/include/stropts.h

783 file path=usr/include/syns.h

784 file path=usr/include/synch.h

12

new usr/ src/ pkg/ mani f est s/ syst em header . nf

785 file path=usr/include/sys/acct.h

786 file path=usr/include/sys/acctctl.h

787 file path=usr/include/sys/acl.h

788 file path=usr/include/sys/acl_inpl.h

789 file path=usr/include/sys/acpi_drv.h

790 file path=usr/include/sys/aio.h

791 file path=usr/include/sys/aio_inpl.h

792 file path=usr/include/sys/aio_req.h

793 file path=usr/include/sys/aioch.h

794 file path=usr/includel/sys/archsystmh

795 file path=usr/include/sys/ascii.h

796 file path=usr/include/sys/asm|inkage.h

797 file path=usr/include/sys/asynch. h

798 file path=usr/include/sys/atonmic.h

799 file path=usr/include/sys/attr.h

800 file path=usr/include/sys/autoconf.h

801 file path=usr/include/sys/auxv.h

802 file path=usr/include/sys/auxv_386.h

803 fil e path=usr/include/sys/auxv_SPARC. h

804 file path=usr/include/sys/av/iec61883.h

805 file path=usr/include/sys/avintr.h

806 file path=usr/include/sys/avl.h

807 file path=usr/include/sys/avl _inpl.h

808 file path=usr/include/sys/bitmp.h

809 file path=usr/include/sys/bitset.h

810 file path=usr/include/sys/bl.h

811 file path=usr/include/sys/bl kdev. h

812 file path=usr/include/sys/bofi.h

813 file path=usr/include/sys/bofi_inpl.h

814 file path=usr/include/sys/bootconf.h

815 $(i386_ONLY)file path=usr/include/sys/bootregs.h
816 file path=usr/include/sys/bootstat.h

817 $(i386_ONLY)file path=usr/include/sys/bootsvcs. h
818 file path=usr/include/sys/bpp_io.h

819 fil e path=usr/include/sys/brand. h

820 file path=usr/include/sys/buf.h

821 file path=usr/include/sys/bufnod. h

822 file path=usr/include/sys/bustypes.h

823 fil e path=usr/include/sys/byteorder.h

824 file path=usr/include/sys/callb.h

825 file path=usr/include/sys/callo.h

826 file path=usr/include/sys/cap_util.h

827 file path=usr/include/sys/cconpile.h

828 file path=usr/include/sys/cdio.h

829 file path=usr/include/sys/cis.h

830 file path=usr/include/sys/cis_handlers.h
831 file path=usr/include/sys/cis_protos.h

832 file path=usr/include/sys/cladmh

833 file path=usr/include/sys/class.h

834 file path=usr/include/sys/clconf.h

835 file path=usr/include/sys/cmb.h

836 file path=usr/include/sys/cm_err.h

837 $(sparc_ONLY)file path=usr/include/sys/cnpregs.h
838 file path=usr/include/sys/conpress.h

839 file path=usr/include/sys/condvar.h

840 file path=usr/include/sys/condvar_inpl.h
841 file path=usr/include/sys/conf.h

842 file path=usr/include/sys/consdev.h

843 file path=usr/include/sys/console.h

844 file path=usr/include/sys/consplat.h

845 fil e path=usr/include/sys/containerof.h

846 file path=usr/include/sys/contract.h

847 file path=usr/include/sys/contract/device.h
848 file path=usr/include/sys/contract/device_inpl.h
849 file path=usr/include/sys/contract/process.h
850 file path=usr/include/sys/contract/process_inpl

h

13

new usr/ src/ pkg/ mani f est s/ syst em header . nf

851 file path=usr/include/sys/contract_inpl.h
852 $(i386_ONLY)file path=usr/include/sys/controlregs.h
853 file path=usr/include/sys/copyops.h

854 file path=usr/include/sys/core.h

855 file path=usr/include/sys/corectl. h

856 file path=usr/include/sys/cpc_inp

857 file path=usr/include/sys/cpc_ pcbe h

858 file path=usr/include/sys/cpr.h

859 file path=usr/include/sys/cpu.h

860 file path=usr/include/sys/cpu_uarray.h
861 file path=usr/include/sys/cpucaps.h

862 file path=usr/include/sys/cpucaps_inpl.h
863 file path=usr/include/sys/cpupart.h

864 file path=usr/include/sys/cpuvar.h

865 file path=usr/include/sys/crc32.h

866 file path=usr/include/sys/cred.h

867 file path=usr/include/sys/cred_inpl.h

868 file path=usr/include/sys/crtctl.h

869 file path=usr/include/sys/crypto/api.h
870 file path=usr/include/sys/crypto/comon. h
871 file path=usr/include/sys/crypto/ioctl.h
872 file path=usr/include/sys/crypto/ioctladnin.h
873 file path=usr/include/sys/crypto/spi.h
874 file path=usr/include/sys/cs.h

875 file path=usr/include/sys/cs_priv.h

876 file path=usr/include/sys/cs_strings.h
877 file path=usr/include/sys/cs_stubs.h

878 file path=usr/include/sys/cs_types.h

879 file path=usr/include/sys/csiioctl.h

880 file path=usr/include/sys/ctf.h

881 file path=usr/include/sys/ctf_api.h

882 file path=usr/include/sys/ctfs.h

883 file path=usr/include/sys/ctfs_inpl.h

884 file path=usr/include/sys/ctype.h

885 file path=usr/include/sys/cyclic.h

886 file path=usr/include/sys/cyclic_inpl.h
887 file path=usr/include/sys/dacf.h

888 file path=usr/include/sys/dacf_inpl.h

889 file path=usr/include/sys/damap. h

890 file path=usr/include/sys/danmap_| |np

891 file path=usr/include/sys/dc_ki

892 file path=usr/include/sys/ddi. h

893 file path=usr/include/sys/ddi _hp.h

894 file path=usr/include/sys/ddi _hp_inpl.h
895 file path=usr/include/sys/ddi_inpldefs.h
896 file path=usr/include/sys/ddi_inplfuncs.h
897 file path=usr/include/sys/ddi_intr.h

898 file path=usr/include/sys/ddi _intr_inpl.h
899 file path=usr/include/sys/ddi_isa.h

900 file path=usr/include/sys/ddi_obsol ete. h
901 file path=usr/include/sys/ddi_periodic.h
902 file path=usr/include/sys/ddi devmap. h

903 file path=usr/include/sys/ddi dmareq. h

904 file path=usr/include/sys/ddifmh

905 file path=usr/include/sys/ddifm.inpl.h
906 file path=usr/include/sys/ddi mapreq.h

907 file path=usr/include/sys/ddi propdefs.h
908 file path=usr/include/sys/dditypes.h

909 file path=usr/include/sys/debug. h

910 $(i386_ONLY)file path=usr/include/sys/debugreg.h
911 file path=usr/include/sys/des.h

912 file path=usr/include/sys/devcache. h

913 file path=usr/include/sys/devcache_inpl.h
914 file path=usr/include/sys/devctl.h

915 fil e path=usr/include/sys/devimh

916 fil e path=usr/include/sys/devid_cache.h

14

new usr/ src/ pkg/ mani f est s/ syst em header . nf

917 file path=usr/include/sys/devinfo_inpl.h

918 fil e path=usr/include/sys/devops. h

919 file path=usr/include/sys/devpolicy.h

920 file path=usr/include/sys/devpoll.h

921 file path=usr/include/sys/dirent.h

922 file path=usr/include/sys/disp.h

923 file path=usr/include/sys/dkbad. h

924 file path=usr/include/sys/dkio.h

925 file path=usr/include/sys/dkioc_free_util.h
926 file path=usr/include/sys/dkl abel . h

927 $(sparc_ONLY)file path=usr/include/sys/dknpio.h
928 $(i386_ONLY)file path=usr/include/sys/dktp/altsctr.h
929 $(i386_ONLY)file path=usr/include/sys/dktp/cnpkt.h
930 file path=usr/include/sys/dktp/dadkio. h

931 file path=usr/include/sys/dktp/fdisk.h

932 file path=usr/include/sys/dl.h

933 file path=usr/include/sys/dld.h

934 file path=usr/include/sys/dlpi.h

935 file path=usr/include/sys/dls_ngnt.h

936 $(i386_ONLY)file path=usr/include/sys/dma_engine.h
937 file path=usr/include/sys/dma_i 8237A. h

938 file path=usr/include/sys/dnlc.h

939 file path=usr/include/sys/door.h

940 file path=usr/include/sys/door_data.h

941 file path=usr/include/sys/door_inpl.h

942 file path=usr/include/sys/dunphdr.h

943 file path=usr/include/sys/ecppio.h

944 file path=usr/include/sys/ecppreg.h

945 file path=usr/include/sys/ecppsys.h

946 file path=usr/include/sys/ecppvar.h

947 file path=usr/include/sys/edonr.h

948 file path:usrllnclude/sys/efl partltlon h
949 file path=usr/include/sys/elf

950 file path:usrllnclude/sys/elf_386 h

951 file path=usr/includel/sys/elf_SPARC h

952 file path=usr/include/sys/elf_and64.h

953 file path=usr/include/sys/elf_notes.h

954 file path=usr/include/sys/elftypes.h

955 file path=usr/include/sys/epmh

956 file path=usr/include/sys/epoll.h

957 file path=usr/include/sys/errno.h

958 file path=usr/include/sys/errorqg.h

959 file path=usr/include/sys/errorqg_inpl.h

960 file path=usr/include/sys/esunddi.h

961 file path=usr/include/sys/ethernet.h

962 file path=usr/include/sys/euc.h

963 file path=usr/include/sys/eucioctl.h

964 file path=usr/include/sys/eventfd.h

965 file path=usr/include/sys/exacct.h

966 file path=usr/include/sys/exacct_catal og. h
967 file path=usr/include/sys/exacct_inpl.h

968 file path=usr/include/sys/exec.h

969 file path=usr/include/sys/exechdr.h

970 file path=usr/include/sys/fault.h

971 file path=usr/include/sys/fbio.h

972 file path=usr/include/sys/fbuf.h

973 file path=usr/include/sys/fc4/fc.h

974 file path=usr/include/sys/fc4/fc_transport.h
975 file path=usr/include/sys/fc4/fcal.h

976 file path=usr/include/sys/fc4lfcal _Iinkapp.h
977 file path=usr/include/sys/fc4l/fcal _transport.h
978 file path=usr/include/sys/fc4/fcio.h

979 file path=usr/include/sys/fcd/fcp.h

980 fil e path=usr/includel/sys/fc4llinkapp.h

981 file path=usr/include/sys/fcntl.h

982 file path=usr/include/sys/fdbuffer.h

15

new usr/ src/ pkg/ mani f est s/ syst em header . nf

983 file path=usr/include/sys/fdio.h
984 $(sparc_ONLY)file path=usr/include/sys/fdreg. h

985 $(sparc_ONLY)file path=usr/include/sys/fdvar.

986 file path=usr/include/sys/feature_tests.h

987 file path=usr/include/sys/femh

988 file path=usr/include/sys/file.h

989 file path=usr/include/sys/filio.h

990 $(i386_ONLY)file path=usr/include/sys/firmoad.h

991 file path=usr/include/sys/flock.h

992 file path=usr/include/sys/flock_inp

993 $(sparc_ONLY)file path= usr/|ncIude/sys/fn1cpu/SPARC64 Vi.h
994 $(sparc_ONLY)file path=usr/include/sys/fmcpu/UtraSPARC-II.h
995 $(sparc_ONLY)file path=usr/include/sys/fm cpu/UtraSPARC-I11.h
996 $(sparc_ONLY)file path=usr/include/sys/fm cpu/UtraSPARC T1.h
997 file path=usr/include/sys/fmfs/zfs.h

998 file path=usr/include/sys/fnmio/ddi.h

999 file path=usr/include/sys/fmiol/disk.h

1000 file path=usr/include/sys/fmio/opl_nc_fmh

1001 file path=usr/include/sys/fmiol/pci.h

1002 file path=usr/include/sys/fmiol/scsi.h

1003 file path=usr/include/sys/fnliol/sundupci.h

1004 file path=usr/include/sys/fm protocol.h

1005 file path=usr/include/sys/fmutil.h

1006 file path=usr/include/sys/fork.h

1007 $(i386_ONLY)file path=usr/include/sys/fp.h

1008 $(sparc_ONLY)file path=usr/include/sys/fpu/fpu_simlator.h
1009 $(sparc_ONLY)file path=usr/include/sys/fpu/fpusystmh
1010 $(sparc_ONLY)file path=usr/include/sys/fpu/globals.h
1011 $(sparc_ONLY)file path=usr/include/sys/fpu/ieee.h
1012 file path=usr/include/sys/frane.h

1013 file path=usr/include/sys/fs/autofs.h

1014 file path=usr/include/sys/fs/deconp.h

1015 file path=usr/include/sys/fs/dv_node.h

1016 file path=usr/include/sys/fs/fifonode.h

1017 file path=usr/include/sys/fs/hsfs_isospec.h

1018 file path=usr/include/sys/fs/hsfs_node.h

1019 file path=usr/include/sys/fs/hsfs_rrip.h

1020 file path=usr/include/sys/fs/hsfs_spec.h

1021 file path=usr/include/sys/fs/hsfs_susp.h

1022 file path=usr/include/sys/fs/lofs_info.h

1023 file path=usr/include/sys/fs/lofs_node.h

1024 file path=usr/include/sys/fs/mtdata.h

1025 file path=usr/include/sys/fs/namenode. h

1026 file path=usr/include/sys/fs/pc_dir.h

1027 file path=usr/include/sys/fs/pc_fs.h

1028 file path=usr/include/sys/fs/pc_|abel.h

1029 file path=usr/include/sys/fs/pc_node.h

1030 file path=usr/include/sys/fs/pxfs_ki.h

1031 file path=usr/include/sys/fs/sdev_inpl.h

1032 file path=usr/include/sys/fs/snode.h

1033 file path=usr/include/sys/fs/swapnode. h

1034 file path=usr/include/sys/fs/tnp.h

1035 file path=usr/include/sys/fs/tnpnode.h

1036 file path=usr/include/sys/fs/udf_inode.h

1037 file path=usr/include/sys/fs/udf_vol unme.h

1038 file path=usr/include/sys/fs/ufs_acl.h

1039 file path=usr/include/sys/fs/ufs_bio.h

1040 file path=usr/include/sys/fs/ufs_filio.h

1041 file path=usr/include/sys/fs/ufs_fs.h

1042 file path=usr/include/sys/fs/ufs_fsdir.h

1043 file path=usr/include/sys/fs/ufs_inode.h

1044 file path=usr/include/sys/fs/ufs_lockfs.h

1045 file path=usr/include/sys/fs/ufs_log.h

1046 file path=usr/include/sys/fs/ufs_nount.h

1047 file path=usr/include/sys/fs/ufs_panic.h

1048 file path=usr/include/sys/fs/ufs_prot.h

16

new usr/ src/ pkg/ mani f est s/ syst em header . nf

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

fi
fi
fi
fi
fi
f
f
$
fi
fi
fi
fi
fi
fi
fi
fi
f
$
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
f
$
$
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi

i
i
i
i
i
|
(
i
i
i
i
i
i
i
i
(i
i
i
i
i
i
i
i
i
i
i
i
(i
(i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

e
e
e
e
e
e
e
p
e
e
e
e
e
e
e
e
e
3
e
e
e
e
e
e
e
e
e
e
e
e
3
3
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

pat h=usr/i ncl ude/ sys/ fs/ ufs_quota.h

pat h=usr /i ncl ude/ sys/fs/ufs_snap. h

pat h=usr/incl ude/ sys/fs/ufs_trans.h

pat h=usr/incl ude/ sys/fs/zfs.h

pat h=usr/i ncl ude/ sys/fs_reparse. h

pat h=usr/incl ude/ sys/fs_subr.h

pat h=usr/incl ude/ sys/fsid.h

arc_ONLY)file path=usr/include/sys/fsr.h

pat h=usr/i ncl ude/ sys/fss. h

pat h=usr /i ncl ude/ sys/fssnap. h

pat h=usr/incl ude/ sys/fssnap_if.h

pat h=usr/incl ude/ sys/fsspriocntl.h

pat h=usr/i ncl ude/ sys/fstyp. h

pat h=usr/incl ude/ sys/ftrace. h

pat h=usr/incl ude/ sys/fx.h

pat h=usr/i ncl ude/ sys/ fxpriocntl.h

pat h=usr/i ncl ude/ sys/ gfs. h

86_ONLY)fil e path=usr/include/sys/gfx_private.h
pat h=usr/incl ude/sys/gld.h

pat h=usr/i ncl ude/ sys/ gl dpriv.h

pat h=usr/i ncl ude/ sys/ group. h

pat h=usr /i ncl ude/ sys/ hdi o. h

pat h=usr /i ncl ude/ sys/ hook. h

pat h=usr /i ncl ude/ sys/ hook_event . h

pat h=usr/i ncl ude/ sys/ hook_i npl . h

pat h=usr /i ncl ude/ sys/ hot pl ug/ hpcsvc. h

pat h=usr /i ncl ude/ sys/ hot pl ug/ hpctrl . h

pat h=usr/i ncl ude/ sys/ hot pl ug/ pci / pci cfg. h

pat h=usr/i ncl ude/ sys/ hot pl ug/ pci / pci hp. h

pat h=usr/i ncl ude/ sys/ hwconf . h

86_ONLY)fil e path=usr/include/sys/hypervisor.h
86_ONLY)fil e path=usr/include/sys/i8272A. h

pat h=usr/incl ude/ sys/ia.h

pat h=usr/i ncl ude/ sys/iapriocntl.h

pat h=usr /i ncl ude/ sys/i b/ adapt er s/ her non/ her non_i octl . h
pat h=usr /i ncl ude/ sys/i b/ adapt er s/ m nx_unap. h
pat h=usr/incl ude/ sys/i b/ adapt ers/tavor/tavor
pat h=usr/incl ude/ sys/ib/clients/ibd/ibd. h
pat h=usr/incl ude/sys/ib/clients/of/ofa_solaris.h

pat h=usr/incl ude/sys/ib/clients/of/ofed_kernel.h

pat h=usr/incl ude/ sys/ib/clients/of/rdma/ib_addr.h

pat h=usr/incl ude/ sys/ib/clients/of/rdma/ib_user_nad. h

pat h=usr/incl ude/sys/ib/clients/of/rdnma/ib_user_sa.h

pat h=usr/incl ude/sys/ib/clients/of/rdma/ib_user_verbs. h

pat h=usr/incl ude/sys/ib/clients/of/rdma/ib_verbs. h

pat h=usr/incl ude/ sys/ib/clients/of/rdma/rdma_cm h

pat h=usr/incl ude/sys/ib/clients/of/rdma/rdma_user_cm h

pat h=usr/incl ude/sys/ib/clients/of/sol _ofs/sol_cma.h

pat h=usr /i ncl ude/ sys/ib/clients/of/sol _ofs/sol _ib_cma.h

pat h=usr /i ncl ude/ sys/i b/ clients/of/sol _of s/ sol _kverb_i npl.h
pat h=usr /i ncl ude/ sys/i b/ clients/of/ sol _of s/ sol _of s_comon. h
pat h=usr /i ncl ude/ sys/i b/ clients/of/sol _ucma/sol _rdma_user_cmh
pat h=usr/incl ude/ sys/ib/clients/of/sol _ucna/sol _ucna. h

pat h=usr/i ncl ude/ sys/ib/clients/of/sol _umad/ sol _unad. h

pat h=usr/i ncl ude/ sys/ib/clients/of/sol _uverbs/sol _uverbs.h

pat h=usr/incl ude/ sys/ib/clients/of/sol _uverbs/sol _uverbs2ucma. h
pat h=usr/incl ude/ sys/ib/clients/of/sol _uverbs/sol _uverbs_conp. h
pat h=usr/incl ude/ sys/ib/clients/of/sol _uverbs/sol _uverbs_event.h
pat h=usr/incl ude/ sys/i b/ clients/of/sol _uverbs/sol _uverbs_hca.h
pat h=usr/incl ude/ sys/ib/clients/of/sol _uverbs/sol _uverbs_gp.h
pat h=usr/incl ude/sys/ib/ib_pkt_hdrs.h

pat h=usr/incl ude/ sys/ib/ib_types.h

pat h=usr/i ncl ude/ sys/i b/ibnex/i bnex_devct!|.h

pat h=usr/incl ude/sys/ib/ibtl/ibci.h

pat h=usr/include/sys/ib/ibtl/ibti.h

pat h=usr/include/sys/ib/ibtl/ibti_cmh

_ioctl.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

—h £ —h —h —h —h —h —h —h —h —h —h —h —h —h —h £ —h
oo £ £ oo

('DfoD(D(DfoD(D(DfoD(D(D(DfD(D(D(DfoD(D(’DfDCA)(D('DfoD(D(DfoD(D(DfoD(D(D(}JfD(D(D(DfoD(D('DfoD(D('DfoD(D(DfoD(D(DCDfD(D(D(DfD(D

pat h=usr/incl ude/ sys/ib/ibtl/ibti_conmmon. h
pat h=usr/include/sys/ib/ibtl/ibtl_ci_types.h
pat h=usr/include/sys/ib/ibtl/ibtl_status.h
pat h=usr/incl ude/sys/ib/ibtl/ibtl_types.h
pat h=usr/incl ude/sys/ib/ibtl/ibvti.h

pat h=usr/include/sys/ib/ibtl/inpl/ibtl_uti
pat h=usr/include/sys/ib/mgt/ib_dmattr.h

pat h=usr/incl ude/ sys/i b/ mgt/ib_mad. h

pat h=usr/i ncl ude/ sys/i b/ mgt/ibnf/ibnf.h

pat h=usr/incl ude/ sys/ib/ngt/ibnf/ibnf_nsg.h
pat h=usr/incl ude/ sys/ib/ngt/ibnf/ibnf_saa.h
pat h=usr/incl ude/sys/ib/ngt/ibnf/ibnf_utils.h
pat h=usr/incl ude/ sys/i b/ nmgt/sa_recs. h

pat h=usr/incl ude/sys/ib/ngt/smattr.h

pat h=usr/incl ude/ sys/ibpart.h
pat h=usr/i ncl ude/ sys/i d32. h

pat h=usr/i ncl ude/ sys/i d_space. h
pat h=usr /i ncl ude/ sys/i dmap. h

pat h=usr/incl ude/sys/inline.h
pat h=usr /i ncl ude/ sys/instance. h
pat h=usr/i ncl ude/ sys/int_const.h
pat h=usr/include/sys/int_fntio.h
pat h=usr/include/sys/int_limts.h
pat h=usr/incl ude/ sys/int_types.h
pat h=usr/incl ude/ sys/inttypes. h
pat h=usr/i ncl ude/ sys/i occom h
pat h=usr/incl ude/sys/ioctl.h

86_ONLY)fil e path=usr/include/sys/iomulib.h

pat h=usr/i ncl ude/ sys/ipc. h
pat h=usr/i ncl ude/ sys/ipc_i nmpl.h
pat h=usr/include/sys/ipc_rctl.h
pat h=usr/incl ude/ sys/isa_defs.h
pat h=usr/i ncl ude/ sys/i so/ si gnal
pat h=usr/incl ude/ sys/jioctl.h
pat h=usr /i ncl ude/ sys/ kbd. h

pat h=usr /i ncl ude/ sys/ kbdreg. h
pat h=usr/i ncl ude/ sys/ kbi 0. h

pat h=usr/i ncl ude/ sys/ kcpc. h

pat h=usr /i ncl ude/ sys/ kd. h

pat h=usr /i ncl ude/ sys/ kdi . h

pat h=usr/i ncl ude/ sys/ kdi _i npl . h
pat h=usr/i ncl ude/ sys/ kdi _machi npl . h
86_ONLY)fil e path=usr/include/sys/kdi
pat h=usr /i ncl ude/ sys/ ki conv. h

pat h=usr /i ncl ude/ sys/ ki dmap. h

pat h=usr/i ncl ude/ sys/ kl pd. h

pat h=usr /i ncl ude/ sys/ kl wp. h

pat h=usr /i ncl ude/ sys/ knem h

pat h=usr/i ncl ude/ sys/ knmem_i npl . h

pat h=usr/i ncl ude/ sys/ kobj . h

pat h=usr/i ncl ude/ sys/ kobj _i npl . h

pat h=usr /i ncl ude/ sys/ ksocket . h

pat h=usr/incl ude/ sys/ kstat. h

pat h=usr/incl ude/ sys/ kstr.h

pat h=usr/i ncl ude/ sys/ ksyms. h

pat h=usr /i ncl ude/ sys/ ksynch. h

pat h=usr/incl ude/sys/lc_core.h

pat h=usr/incl ude/ sys/ I dtermh

pat h=usr/incl ude/ sys/ I grp.h

pat h=usr/incl ude/sys/lgrp_user.h

pat h=usr/incl ude/ sys/link.h

pat h=usr/incl ude/sys/list.h

pat h=usr/incl ude/sys/list_inpl.h

pat h=usr/include/sys/Ilcl.h

pat h=usr /i ncl ude/ sys/ | oadavg. h

pat h=usr/incl ude/ sys/ | ocal edef. h

_iso.h

_regs.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

1181 file path=usr/include/sys/lock.h

1182 file path=usr/include/sys/lockfs.h

1183 file path=usr/include/sys/lofi.h

1184 file path=usr/include/sys/log.h

1185 file path=usr/include/sys/| ogi ndmux. h

1186 file path=usr/include/sys/lwp.h

1187 file path=usr/include/sys/lwp_timer_inpl.h
1188 file path=usr/include/sys/|wp_upi mutex_i npl.h
1189 file path=usr/include/sys/mac. h

1190 file path=usr/include/sys/mac_ether.h

1191 file path=usr/include/sys/mac_flow. h

1192 file path=usr/include/ sys/ mac_provider.h
1193 fil e path=usr/include/sys/ machel f.h

1194 file path=usr/incl ude/sys/ machl ock. h

1195 file path=usr/include/sys/ machsig.h

1196 file path=usr/include/sys/ machtypes.h

1197 file path=usr/include/sys/ map. h

1198 $(i 386_ONLY)file path=usr/include/sys/nt.h
1199 $(i386_ONLY)file path=usr/include/sys/nc_anmd. h
1200 $(i386_ONLY)file path=usr/include/sys/nc_intel.h
1201 $(i 386_ONLY)file path=usr/include/sys/nca_and. h
1202 $(i386_ONLY)file path=usr/include/sys/nca_x86.h
1203 file path=usr/include/sys/ntontext.h

1204 file path=usr/include/sys/ 4. h

1205 file path=usr/include/sys/mi5. h

1206 file path=usr/include/sys/ mi5_consts.h
1207 file path=usr/include/sys/ ndi _inpldefs.h
1208 file path=usr/include/sys/memh

1209 file path=usr/include/sys/ memconfig.h
1210 file path=usr/include/sys/menist.h

1211 file path=usr/include/sys/ mhd. h

1212 file path=usr/include/sys/mi.h

1213 file path=usr/include/sys/miregs.h

1214 file path=usr/include/sys/ nkdev. h

1215 file path=usr/incl ude/sys/ man. h

1216 file path=usr/incl ude/sys/ mmapobj.h

1217 file path=usr/include/sys/mtent.h

1218 file path=usr/include/sys/mtio.h

1219 file path=usr/include/sys/mttab.h

1220 file path=usr/include/sys/nodctl.h

1221 file path=usr/include/sys/ node. h

1222 file path=usr/include/sys/ nodel.h

1223 file path=usr/incl ude/sys/ nmodhash. h

1224 file path=usr/incl ude/sys/ nodhash_i npl.h
1225 file path=usr/include/sys/mount.h

1226 file path=usr/include/sys/ nmouse. h

1227 file path=usr/include/sys/ nsacct.h

1228 file path=usr/include/sys/nmsg.h

1229 file path=usr/include/sys/msg_inpl.h

1230 file path=usr/include/sys/nmsio.h

1231 file path=usr/include/sys/msreg.h

1232 file path=usr/include/sys/ntio.h

1233 file path=usr/include/sys/mltidata.h

1234 file path=usr/include/sys/mtex.h

1235 $(i386_ONLY)file path=usr/include/sys/nutex_inpl.
1236 file path=usr/include/sys/ nbnm ock. h

1237 file path=usr/include/sys/ndi_inpldefs.h
1238 file path=usr/include/sys/ndifmh

1239 file path=usr/include/sys/netconfig.h

1240 file path=usr/include/sys/neti.h

1241 file path=usr/include/sys/ netstack.h

1242 file path=usr/include/sys/ nexusdefs.h

1243 file path=usr/include/sys/note.h

1244 file path=usr/include/sys/null.h

1245 file path=usr/include/sys/nvpair.h

1246 file path=usr/include/sys/nvpair_inpl.h

h

19

new usr/ src/ pkg/ mani f est s/ syst em header . nf 20
1247 file path=usr/include/sys/objfs.h

1248 file path=usr/include/sys/objfs_inpl.h

1249 file path=usr/include/sys/obpdefs.h

1250 file path=usr/include/sys/old_procfs.h

1251 file path=usr/include/sys/open.h

1252 file path=usr/incl ude/sys/ openpronio.h

1253 file path=usr/include/sys/panic.h

1254 file path=usr/include/sys/paramh

1255 file path=usr/include/sys/pathconf.h

1256 file path=usr/include/sys/pathnane. h

1257 file path=usr/include/sys/pattr.h

1258 file path=usr/include/sys/pbio.h

1259 file path=usr/include/sys/pch.h

1260 file path=usr/include/sys/pccard.h

1261 file path=usr/include/sys/pci.h

1262 $(i386_ONLY)fil e path=usr/include/sys/pcic_reg.h
1263 $(i 386_ONLY)file path=usr/include/sys/pcic_var.h
1264 file path=usr/include/sys/pcie.h

1265 file path=usr/include/sys/pcntia.h

1266 file path=usr/include/sys/pctypes.h

1267 file path=usr/include/sys/pfnod. h

1268 file path=usr/include/sys/pg.h

1269 file path=usr/include/sys/pghw. h

1270 file path=usr/include/sys/physnmem h

1271 $(i386_ONLY)file path=usr/include/sys/pic.h

1272 $(i386_ONLY)file path=usr/include/sys/pit.h

1273 file path=usr/incl ude/ sys/ pkp_hash. h

1274 file path=usr/include/sys/pmh

1275 $(i386_ONLY)file path=usr/include/sys/pmem h
1276 file path=usr/include/sys/policy.h

1277 file path=usr/include/sys/poll.h

1278 file path=usr/include/sys/poll _inpl.h

1279 file path=usr/include/sys/pool.h

1280 file path=usr/include/sys/pool _inpl.h

1281 file path=usr/include/sys/pool _pset.h

1282 file path=usr/include/sys/port.h

1283 file path=usr/include/sys/port_inpl.h

1284 file path=usr/include/sys/port_kernel.h

1285 file path=usr/include/sys/ppnio.h

1286 file path=usr/include/sys/priocntl.h

1287 file path=usr/include/sys/priv.h

1288 file path=usr/include/sys/priv_const.h

1289 file path=usr/include/sys/priv_inpl.h

1290 file path=usr/include/sys/priv_nanes.h

1291 $(i386_ONLY)file path=usr/include/sys/privnregs.h
1292 $(i386_ONLY)file path=usr/include/sys/privregs.h
1293 file path=usr/include/sys/prnio.h

1294 file path=usr/include/sys/proc.h

1295 file path=usr/include/sys/proc/prdata.h

1296 file path=usr/include/sys/processor.h

1297 file path=usr/include/sys/procfs.h

1298 file path=usr/include/sys/procfs_isa.h

1299 file path=usr/include/sys/procset.h

1300 file path=usr/include/sys/project.h

1301 $(i386_ONLY)file path=usr/include/sys/promenul.h
1302 $(i386_ONLY)file path=usr/include/sys/prom.isa.h
1303 $(i 386_ONLY)file path=usr/include/sys/promplat.h
1304 file path=usr/include/sys/promf.h

1305 file path=usr/include/sys/promnpl.h

1306 file path=usr/include/sys/protosw h

1307 file path=usr/include/sys/prsystmh

1308 file path=usr/include/sys/pset.h

1309 file path=usr/include/sys/psw h

1310 $(i386_ONLY)file path=usr/include/sys/pte.h

1311 file path=usr/include/sys/ptemh

1312 file path=usr/include/sys/ptns.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

1313 file path=usr/include/sys/ptyvar.h

1314 file path=usr/include/sys/queue. h

1315 file path=usr/include/sys/raidioctl.h

1316 file path=usr/include/sys/randisk.h

1317 file path=usr/include/sys/random h

1318 file path=usr/include/sys/rctl.h

1319 file path=usr/include/sys/rctl _inpl.h

1320 file path=usr/include/sys/rds.h

1321 file path=usr/include/sys/reboot.h

1322 file path=usr/include/sys/refstr.h

1323 file path=usr/include/sys/refstr_inpl.h

1324 file path=usr/include/sys/reg.h

1325 file path=usr/include/sys/regset.h

1326 file path=usr/include/sys/resource.h

1327 file path=usr/include/sys/rlioctl.h

1328 file path=usr/include/sys/rsmrsmh

1329 file path=usr/include/sys/rsnrsmconmon. h

1330 file path=usr/include/sys/rsmrsmapi _comon. h

1331 file path=usr/include/sys/rsmrsnka_path_int.h

1332 file path=usr/include/sys/rsmrsmdi.h

1333 file path=usr/include/sys/rsmrsnpi.h

1334 file path=usr/include/sys/rsmrsnpi_driver.h

1335 file path=usr/include/sys/rt.h

1336 $(i386_ONLY)file path= usr/lnclude/sys/rtc h

1337 file path=usr/include/sys/rtpriocnt

1338 file path=usr/include/sys/rw ock.h

1339 file path=usr/include/sys/rw ock_inpl.h

1340 file path=usr/include/sys/rwstlock.h

1341 file path=usr/include/sys/sad. h

1342 $(i386_ONLY)file path=usr/include/sys/satalsata_defs.h
1343 $(i 386_ONLY)file path=usr/include/sys/satalsata_hba.h
1344 file path=usr/include/sys/schedctl.h

1345 $(sparc_ONLY)file path=usr/include/sys/scsi/adapters/ifpio.h
1346 file path=usr/include/sys/scsi/adapters/scsi_vhci
1347 $(sparc_ONLY)file path= usr/lnclude/sys/sc5|/adapters/sfvar h
1348 file path=usr/include/sys/scsi/conf/autoconf.h

1349 file path=usr/include/sys/scsi/conf/device.h

1350 file path=usr/include/sys/scsi/generic/comands. h
1351 file path=usr/include/sys/scsi/generic/dad_node. h
1352 file path=usr/include/sys/scsi/generic/inquiry.h
1353 file path=usr/include/sys/scsi/generic/nessage. h
1354 file path=usr/include/sys/scsi/generic/node.h

1355 file path=usr/include/sys/scsi/generic/persist.h
1356 file path=usr/include/sys/scsi/generic/sense.h

1357 file path=usr/include/sys/scsi/generic/sff_franes.h
1358 file path=usr/include/sys/scsi/generic/snmp_frames.h
1359 file path=usr/include/sys/scsi/generic/status.h
1360 file path=usr/include/sys/scsi/inpl/comands. h

1361 file path=usr/include/sys/scsi/inpl/inquiry.h

1362 file path=usr/include/sys/scsi/inpl/node.h

1363 file path=usr/include/sys/scsi/inpl/scsi_reset_notify.h
1364 file path=usr/include/sys/scsi/inpl/scsi_sas.h

1365 file path=usr/include/sys/scsi/inpl/sense.h

1366 file path=usr/include/sys/scsi/inpl/services.h

1367 file path=usr/include/sys/scsi/inpl/snp_transport.h
1368 file path=usr/include/sys/scsi/inpl/spc3_types.h
1369 file path=usr/include/sys/scsi/inpl/status.h

1370 file path=usr/include/sys/scsi/inpl/transport.h
1371 file path=usr/include/sys/scsi/inpl/types.h

1372 file path=usr/include/sys/scsi/inpl/uscsi.h

1373 file path=usr/include/sys/scsi/inpl/usnp.h

1374 file path=usr/include/sys/scsi/scsi.h

1375 file path=usr/include/sys/scsi/scsi_address.h

1376 file path=usr/include/sys/scsi/scsi_ctl.h

1377 file path=usr/include/sys/scsi/scsi_fmh

1378 file path=usr/include/sys/scsi/scsi_nanes.h

21

new usr/ src/ pkg/ mani f est s/ syst em header . nf

1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444

DPDODODDDDDDDDDDDDDODDT DT DDDDDDPWWDDPTDPDDDDDDDMD D

p

pat h=usr/i ncl ude/ sys/ scsi/ scsi _parans. h

pat h=usr /i ncl ude/ sys/ scsi/scsi_pkt.h

pat h=usr /i ncl ude/ sys/ scsi/scsi _resource. h
pat h=usr/i ncl ude/ sys/ scsi/scsi _types. h

pat h=usr/i ncl ude/ sys/ scsi/scsi _watch. h

pat h=usr /i ncl ude/ sys/ scsi / t ar get s/ sddef . h
pat h=usr/incl ude/ sys/ scsi/targets/ses.h

pat h=usr/i ncl ude/ sys/ scsi/targets/sesio.h
pat h=usr/i ncl ude/ sys/ scsi/ targets/sgendef.h
pat h=usr /i ncl ude/ sys/ scsi/targets/snp.h
arc_ONLY)file path=usr/include/sys/scsi/targets/ssddef.h
pat h=usr/incl ude/ sys/ scsi/targets/stdef.h
pat h=usr/i ncl ude/ sys/ secfl ags. h
86_ONLY)fil e path=usr/include/sys/segnment.h
86_ONLY)fil e path=usr/include/sys/segnents. h
pat h=usr /i ncl ude/ sys/sel ect.h

pat h=usr/i ncl ude/ sys/ sem h

pat h=usr /i ncl ude/ sys/sem.inpl.h

pat h=usr /i ncl ude/ sys/ sema_i npl . h

pat h=usr /i ncl ude/ sys/ semaphore. h

pat h=usr/i ncl ude/ sys/ sendfile.h
arc_ONLY)file path=usr/includel/sys/ser_async.h
pat h=usr /i ncl ude/ sys/ ser_sync. h
arc_ONLY)file path=usr/include/sys/ser_zscc.h
pat h=usr/incl ude/ sys/ serializer.h

pat h=usr/i ncl ude/ sys/ sessi on. h

pat h=usr /i ncl ude/ sys/ shal. h

pat h=usr/i ncl ude/ sys/ sha2. h

pat h=usr/i ncl ude/ sys/ share. h

pat h=usr/i ncl ude/ sys/ shm h

pat h=usr /i ncl ude/ sys/ shm.inpl . h

pat h=usr/incl ude/sys/sid. h

pat h=usr/i ncl ude/ sys/ si gi nfo. h

pat h=usr/i ncl ude/ sys/ signal . h

pat h=usr /i ncl ude/ sys/signal fd. h

pat h=usr /i ncl ude/ sys/ skein. h

pat h=usr/i ncl ude/ sys/ sl eepqg. h

pat h=usr/i ncl ude/ sys/ snbi os. h

pat h=usr /i ncl ude/ sys/ snbi os_i npl . h

pat h=usr /i ncl ude/ sys/ snedi a. h

pat h=usr /i ncl ude/ sys/ sobj ect. h
arc_ONLY)file path=usr/include/sys/socal _cq_defs.h

$(sparc_ONLY)file path=usr/include/sys/socalio.h
$(sparc_ONLY)file path=usr/include/sys/socal map. h
$(sparc_ONLY)file path=usr/include/sys/socalreg.h
$(sparc_ONLY)file path=usr/include/sys/socal var. h

fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil
fil

OOODODODDODODDDDDDMD®MDMDMDMDMDD

pat h=usr /i ncl ude/ sys/ socket . h
pat h=usr /i ncl ude/ sys/ socket _i npl . h
pat h=usr /i ncl ude/ sys/ socket _proto.h
pat h=usr/i ncl ude/ sys/ socketvar. h
pat h=usr/i ncl ude/ sys/ socki 0. h

pat h=usr/incl ude/ sys/spl.h

pat h=usr /i ncl ude/ sys/ squeue. h

pat h=usr/i ncl ude/ sys/ squeue_i npl . h
pat h=usr/i ncl ude/ sys/ sservice. h
pat h=usr /i ncl ude/ sys/ stack. h

pat h=usr/incl ude/ sys/stat.h

pat h=usr/incl ude/ sys/stat_inpl.h
pat h=usr/incl ude/ sys/statfs.h

pat h=usr/incl ude/ sys/statvfs.h

pat h=usr /i ncl ude/ sys/ st dbool . h

pat h=usr /i ncl ude/ sys/ stddef. h

pat h=usr/incl ude/ sys/stdint.h

pat h=usr/incl ude/ sys/sternio. h

pat h=usr /i ncl ude/ sys/stream h

pat h=usr/include/sys/strft.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf 23

1445 file path=usr/include/sys/strlog.h

1446 file path=usr/include/sys/strndep.h

1447 file path=usr/include/sys/stropts.h

1448 file path=usr/include/sys/strredir.h

1449 file path=usr/include/sys/strstat.h

1450 file path=usr/include/sys/strsubr.h

1451 file path=usr/include/sys/strsun.h

1452 file path=usr/include/sys/strtty.h

1453 file path=usr/include/sys/sunddi.h

1454 file path=usr/include/sys/sunldi.h

1455 file path=usr/include/sys/sunldi_inpl.h
1456 file path=usr/include/sys/sunndi.h

1457 file path=usr/include/sys/sunndi.h

1458 file path=usr/include/sys/sunpm h

1459 file path=usr/include/sys/suntpi.h

1460 file path=usr/include/sys/suntty.h

1461 file path=usr/include/sys/swap.h

1462 file path=usr/include/sys/synch.h

1463 file path=usr/include/sys/syscall.h

1464 file path=usr/include/sys/sysconf.h

1465 file path=usr/include/sys/sysconfig.h
1466 file path=usr/include/sys/sysconfig_inpl.h
1467 file path=usr/include/sys/sysdc.h

1468 file path=usr/include/sys/sysdc_inpl.h
1469 file path=usr/include/sys/sysevent.h

1470 file path=usr/include/sys/sysevent/ap_driver.h
1471 file path=usr/include/sys/sysevent/dev.h
1472 file path=usr/include/sys/sysevent/donain.h
1473 file path=usr/include/sys/sysevent/dr.h
1474 file path=usr/include/sys/sysevent/env.h
1475 file path=usr/incl ude/sys/sysevent/eventdefs.h
1476 file path=usr/include/sys/sysevent/ipnp.h
1477 file path=usr/include/sys/sysevent/pwctl.h
1478 file path:usrlinclude/sys/sysevent/vrrp.h
1479 file path=usr/incl ude/sys/sysevent _i np
1480 $(i386_ONLY)file path= usr/|nclude/sys/sy5|86 h
1481 file path=usr/include/sys/sysinfo.h

1482 file path=usr/include/sys/syslog.h

1483 file path=usr/include/sys/sysmacros. h
1484 file path=usr/include/sys/system nfo.h
1485 file path=usr/include/sys/systmh

1486 file path=usr/include/sys/t_kuser.h

1487 file path=usr/include/sys/t_lock.h

1488 file path=usr/include/sys/task.h

1489 file path=usr/include/sys/taskq.h

1490 file path=usr/include/sys/taskq_inpl.h
1491 file path=usr/include/sys/telioctl.h

1492 file path=usr/include/sys/termo.h

1493 file path=usr/include/sys/term os.h

1494 file path=usr/include/sys/termox.h

1495 file path=usr/include/sys/thread.h

1496 file path=usr/include/sys/ticlts.h

1497 file path=usr/include/sys/ticots.h

1498 file path=usr/include/sys/ticotsord.h
1499 file path=usr/include/sys/tihdr.h

1500 file path=usr/include/sys/tine.h

1501 file path=usr/include/sys/time_inpl.

1502 file path=usr/include/sys/tine_std |nm
1503 file path=usr/include/sys/tineb.h

1504 file path=usr/include/sys/timer.h

1505 file path=usr/include/sys/tinmerfd.h

1506 file path=usr/include/sys/tines.h

1507 file path=usr/include/sys/tinex.h

1508 file path=usr/include/sys/tinod.h

1509 file path=usr/include/sys/tirdw.h

1510 file path=usr/include/sys/tiuser.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

1511 file path=usr/include/sys/tl.h

1512 file path=usr/include/sys/tnf.h

1513 file path=usr/include/sys/tnf_comh

1514 file path=usr/include/sys/tnf_probe.h

1515 file path=usr/include/sys/tnf_witer.h
1516 file path=usr/include/sys/todio.h

1517 file path=usr/include/sys/tpiconmmon. h

1518 file path=usr/include/sys/trap.h

1519 $(i 386_ONLY)file path=usr/include/sys/traptrace.h
1520 file path=usr/include/sys/ts.h

1521 file path=usr/include/sys/tsol/label.h
1522 file path=usr/include/sys/tsol/label _nmacro.h
1523 file path=usr/include/sys/tsol/priv.h

1524 file path=usr/include/sys/tsol/tndb.h

1525 file path=usr/include/sys/tsol/tsyscall.h
1526 file path=usr/include/sys/tspriocntl.h
1527 $(i386_ONLY)file path=usr/include/sys/tss.h
1528 file path=usr/include/sys/ttconpat.h

1529 file path=usr/include/sys/ttold.h

1530 file path=usr/include/sys/tty.h

1531 file path=usr/include/sys/ttychars.h

1532 file path=usr/include/sys/ttydev.h

1533 $(sparc_ONLY)file path=usr/include/sys/ttymx.h
1534 $(sparc_ONLY)fil e path=usr/include/sys/ttynuxuser
1535 file path=usr/include/sys/tuneable.h

1536 file path=usr/include/sys/turnstile.h

1537 file path=usr/include/sys/types.h

1538 file path=usr/include/sys/types32.h

1539 file path=usr/include/sys/tzfile.h

1540 file path=usr/include/sys/u8_textprep.h
1541 file path=usr/include/sys/uadmn.h

1542 $(i 386_ONLY)file path=usr/include/sys/ucode. h
1543 file path=usr/include/sys/ucontext.h

1544 file path=usr/include/sys/uio.h

1545 file path=usr/include/sys/ulimt.h

1546 file path=usr/include/sys/un.h

1547 file path=usr/include/sys/unistd.h

1548 file path=usr/include/sys/user.h

1549 file path=usr/include/sys/ustat.h

1550 file path=usr/include/sys/utine.h

1551 file path=usr/include/sys/utrap.h

1552 file path=usr/include/sys/utsnane. h

1553 file path=usr/include/sys/utssys.h

1554 file path=usr/include/sys/uuid.h

1555 file path=usr/include/sys/va_inpl.h

1556 file path=usr/include/sys/va_list.h

1557 file path=usr/include/sys/var.h

1558 file path=usr/include/sys/varargs.h

1559 file path=usr/include/sys/vfs.h

1560 file path=usr/include/sys/vfs_opreg.h

1561 file path=usr/include/sys/vfstab.h

1562 file path=usr/include/sys/videodev2. h

1563 file path=usr/include/sys/visual _io.h

1564 file path=usr/include/sys/vmh

1565 file path=usr/include/sys/vm usage. h

1566 file path=usr/include/sys/vnemh

1567 file path=usr/include/sys/vmem.inpl.h

1568 file path=usr/include/sys/vmem.inpl _user.h
1569 file path=usr/include/sys/vnparam h

1570 file path=usr/include/sys/vmsystmh

1571 file path=usr/include/sys/vnode. h

1572 file path=usr/include/sys/vt.h

1573 fil e path=usr/include/sys/vtdaenon. h

1574 file path=usr/include/sys/vtoc.h

1575 file path=usr/include/sys/vtrace.h

1576 file path=usr/include/sys/vuid_event.h

h

new usr/ src/ pkg/ mani f est s/ syst em header . nf

1577 file path=usr/include/sys/vuid_queue. h
1578 file path=usr/include/sys/vuid_state.h
1579 file path=usr/include/sys/vuid_store.h
1580 file path=usr/include/sys/vuid_wheel.h
1581 file path=usr/include/sys/wait.h

1582 file path=usr/include/sys/waitq.h

1583 file path=usr/include/sys/watchpoint.h
1584 $(i386_ONLY)file path=usr/include/sys/x86_archext.h
1585 $(i 386_ONLY)file path= usr/lnclude/sys/xen errno. h
1586 file path=usr/include/sys/xti_inet.
1587 file path=usr/include/sys/xti_osi. h
1588 file path=usr/include/sys/xti_xtiopt.h
1589 file path=usr/include/sys/zcons.h

1590 file path=usr/include/sys/znod. h

1591 file path=usr/include/sys/zone.h

1592 $(sparc_ONLY)fil e path=usr/include/sys/zsdev. h
1593 file path=usr/include/sysexits.h

1594 file path=usr/include/syslog.h

1595 file path=usr/include/tar.h

1596 file path=usr/include/tcpd.h

1597 file path=usr/include/termh

1598 file path=usr/include/ternctap.h

1599 file path=usr/include/termo.h

1600 file path=usr/include/termos.h

1601 file path=usr/include/thread.h

1602 file path=usr/include/thread_db.h

1603 file path=usr/include/threads.h

1604 file path=usr/include/tine.h

1605 file path=usr/include/tiuser.h

1606 file path=usr/include/tsol/label.h
1607 file path=usr/include/tzfile.h

1608 file path=usr/include/ucontext.h

1609 file path=usr/include/ucred. h

1610 file path=usr/include/uid_stp.h

1611 file path=usr/include/ulimt.h

1612 file path=usr/include/ unem h

1613 file path=usr/include/unem.inpl.h

1614 file path=usr/include/unctrl.h

1615 file path=usr/include/unistd.h

1616 file path=usr/include/user_attr.h

1617 file path=usr/include/userdefs.h

1618 file path=usr/include/ustat.h

1619 file path=usr/include/utility.h

1620 file path=usr/include/utinme.h

1621 file path=usr/include/utnp.h

1622 file path=usr/include/utnpx.h

1623 file path=usr/incl ude/uuid/uuid.h

1624 $(sparc ONLY) fil e path=usr/include/v7/sys/ machpch. h

1625 $(sparc_ONLY)fi
1626 $(sparc_ONLY)fi
1627 $(sparc_ONLY)fi
1628 $(sparc_ONLY)fi
1629 $(sparc_ONLY)fi
1630 $(sparc_ONLY)fi
1631 $(sparc_ONLY)fi

| e path=usr/include/v7/sys/machtrap. h
|
|
|
|
|
|
1632 $(sparc_ONLY)fil
|
|
|
|
|
|
|

pat h=usr /i ncl ude/ v7/ sys/ mutex_i npl . h
pat h=usr /i ncl ude/ v7/ sys/privregs.h
pat h=usr/incl ude/ v7/sys/prom.isa.h
pat h=usr/incl ude/ v7/sys/psr.h

pat h=usr/incl ude/ v7/ sys/traptrace. h
pat h=usr/i ncl ude/ v9/ sys/ asi . h

pat h=usr /i ncl ude/ v9/ sys/ machpcb. h
pat h=usr /i ncl ude/ v9/ sys/ machtrap. h
pat h=usr/i ncl ude/ v9/ sys/ menbar . h

pat h=usr /i ncl ude/ v9/ sys/ mutex_i npl . h
pat h=usr/incl ude/ v9/sys/privregs.h
pat h=usr/incl ude/ v9/ sys/prom.isa.h
pat h=usr /i ncl ude/ v9/ sys/ psr_conpat . h
pat h=usr/i ncl ude/ v9/ sys/vis_sinmulator. h

1633 $(sparc_ONLY)fi
1634 $(sparc_ONLY)fi
1635 $(sparc_ONLY)fi
1636 $(sparc ONLY) fi
1637 $(sparc_ONLY)fi
1638 $(sparc_ONLY)fi
1639 $(sparc_ONLY)fi
1640 file path=usr/include/valtools.h
1641 file path=usr/include/val ues.h

1642 file path=usr/include/varargs.h

ODODOODODDDPDDDDDDMDMD

25

new usr/ src/ pkg/ mani f est s/ syst em header . nf

1643 file path=usr/include/vm anon. h

1644 file path=usr/include/vm as.h

1645 file path=usr/include/vm faultcode. h

1646 file path=usr/include/vm hat.h

1647 file path=usr/include/vm kpm h

1648 file path=usr/include/vn page. h

1649 file path=usr/include/vm pvn.h

1650 file path=usr/include/vmrmh

1651 file path=usr/include/vm seg.h

1652 file path=usr/include/vm seg_dev.h

1653 file path=usr/include/vm seg_enum h

1654 file path=usr/include/vm seg_knem h

1655 file path=usr/include/vm seg_kp.h

1656 file path=usr/include/vm seg_kpm h

1657 file path=usr/include/vm seg_nap. h

1658 file path=usr/include/vm seg_spt.h

1659 file path=usr/include/vm seg_vn.h

1660 file path=usr/include/vm vpage. h

1661 file path=usr/include/vm vpmh

1662 file path=usr/include/vol ngt.h

1663 file path=usr/include/wait.h

1664 file path=usr/include/whar.h

1665 file path=usr/include/wchar _inpl.h

1666 file path=usr/include/ wctype.h

1667 file path=usr/include/wi dec.h

1668 file path=usr/include/ wordexp. h

1669 file path=usr/include/xlocal e.h

1670 file path=usr/include/xti.h

1671 file path=usr/include/xti_inet.h

1672 file path=usr/include/zone. h

1673 file path=usr/include/zonestat.h

1674 $(i386_ONLY)file path=usr/platforni86pc/include/sys/acpidev.h
1675 $(i386_ONLY)file path=usr/platformi86pc/include/sys/and_i ommu. h
1676 $(i 386_ONLY)file path=usr/platformi86pc/include/sys/asmnisc.h
1677 $(i 386_ONLY)file path=usr/platfornii86pc/include/sys/clock.h

1678 $(i 386_ONLY)file path=usr/platforni86pc/include/sys/cramh

1679 $(i386_ONLY)file path=usr/platforni86pc/include/sys/ddi_subrdefs.h
1680 $(i 386_ONLY)file path=usr/platforni86pc/include/sys/debug_info.h
1681 $(i 386_ONLY)file path=usr/platforni86pc/include/sys/fastboot.h
1682 $(i386_ONLY)file path=usr/platforni86pc/include/sys/ht.h

1683 $(i386_ONLY)fil e path=usr/platfornii86pc/include/sys/mach_nmu. h
1684 $(i386_ONLY)file path=usr/platfornii86pc/include/sys/ machclock.h
1685 $(i 386_ONLY)file path=usr/platforni86pc/include/sys/nmachcpuvar.h
1686 $(i386_ONLY)file path=usr/platfornii86pc/include/sys/machparam h
1687 $(i386_ONLY)fil e path=usr/platforni86pc/include/sys/machprivregs.h
1688 $(i386_ONLY)file path=usr/platfornii86pc/include/sys/nmachsystm h
1689 $(i 386_ONLY)file path=usr/platforni86pc/include/sys/nachthread.h
1690 $(i386_ONLY)file path=usr/platfornii86pc/include/sys/memode. h
1691 $(i386_ONLY)file path=usr/platforni86pc/include/sys/pc_mmu.h
1692 $(i 386_ONLY)file path=usr/platfornii86pc/include/sys/psmh

1693 $(i 386_ONLY)file path=usr/platformi86pc/include/sys/psmdefs.h
1694 $(i 386_ONLY)file path=usr/platforni86pc/include/sys/psmnodctl.h
1695 $(i 386_ONLY)file path=usr/platfornii86pc/include/sys/psmtypes.h
1696 $(i 386_ONLY)file path=usr/platformi86pc/include/sys/rmplatter.h
1697 $(i 386_ONLY)file path=usr/platfornii86pc/include/sys/sbhd_ioctl.h
1698 $(i 386_ONLY)file path=usr/platforni86pc/include/sys/snp_inpldefs.h
1699 $(i 386_ONLY)file path=usr/platforni86pc/include/sys/vmnachparam h
1700 $(i386_ONLY)file path=usr/platformi86pc/include/sys/x_call.h
1701 $(i 386_ONLY)file path=usr/platfornii86pc/include/sys/xc_|levels.h
1702 $(i 386_ONLY)file path=usr/platforni86pc/include/sys/xsvc.h

1703 $(i386_ONLY)file path=usr/platforni86pc/include/vnhat_i86.h
1704 $(i386_ONLY)file path=usr/platforni86pc/include/vm hat_pte.h
1705 $(i 386_ONLY)file path=usr/platformi86pc/include/vnhnent.h

1706 $(i 386_ONLY)file path=usr/platfornii86pc/include/vnlhtable.h

1707 $(i386_ONLY)file path=usr/platforni86pc/include/vn kboot_mm.h
1708 $(i386_ONLY)file path=usr/platforni86xpv/includel/sys/balloon.h

new usr/ src/ pkg/ mani f est s/ syst em header . nf 27 new usr/ src/ pkg/ mani f est s/ syst em header . nf

1709 $(i386_ONLY)file path=usr/platformi86xpv/include/sys/ machprivregs.h 1775 $(spar c_O\lLY)fl | e pat h=usr/pl atforn sundu/include/sys/sysctrl.h
1710 $(i 386_ONLY)file path=usr/platformi86xpv/include/sys/xen_mm.h 1776 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/ sysioerr.h
1711 $(i 386_ONLY)file path=usr/platfornii86xpv/include/sys/xpv_inpl.h 1777 $(spar c_O\JLY)ﬂ I e pat h=usr/pl at f or mi sun4u/i ncl ude/ sys/ sysi osbus. h
1712 $(i 386_ONLY)file path=usr/platformni86xpv/include/vm seg_nf.h 1778 $(sparc_ONLY)file path=usr/platforn sundu/include/sys/tod. h

1713 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/sys/ac.h 1779 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/todnostek. h
1714 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/ sys/async. h 1780 $(sparc_ONLY)file path=usr/platform sundu/include/sys/trapstat.h
1715 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/ cheet ahregs. h 1781 $(sparc_ONLY)file path=usr/platform sundu/include/sys/traptrace.h
1716 $(sparc_ONLY)file path=usr/platform sundu/incl ude/sys/cherrystone. h 1782 $(sparc_ONLY)file path=usr/platform sundu/include/sys/vis.h

1717 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/sys/clock.h 1783 $(sparc_ONLY)file path=usr/platfornf sundu/incl ude/ sys/vm machparam h
1718 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/sys/cnp.h 1784 $(spar c_O\lLY)fl I e path=usr/platform sundu/include/sys/x_call.h

1719 $(sparc_ONLY)file path=usr/platform sundu/include/sys/cpc_ultra.h 1785 $(sparc_ONLY)file path=usr/platform sundu/incl ude/sys/xc_inpl.h
1720 $(sparc_ONLY)fil e path=usr/platform sun4u/incl ude/ sys/cpr_inpl.h 1786 $(spar c_ONLY)fl | e pat h=usr/pl atform sundu/incl ude/ sys/zsmach. h

1721 $(sparc_ONLY)fil e path=usr/platform sundu/include/sys/cpu_inpl.h 1787 $(sparc_ONLY)file path=usr/platfornf sundu/incl ude/ v hat _sf mu. h
1722 $(sparc_ONLY)file path=usr/platform sun4u/include/ sys/ cpu_sgnbl k_defs.h 1788 $(spar c_G\lLY)fl | e pat h=usr/pl atform sun4u/incl ude/ vmi mach_sf mu. h
1723 $(sparc_ONLY)file path=usr/platform sundu/incl ude/sys/daktari.h 1789 $(sparc_ONLY)file path=usr/platform sundv/incl ude/ sys/cl ock.h

1724 $(sparc_ONLY)fil e path=usr/platform sun4u/incl ude/ sys/ddi _subrdefs. h 1790 $(sparc_ONLY)fil e path=usr/platform sundv/include/sys/cnp.h

1725 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/sys/dvna. h 1791 $(sparc_ONLY)file path=usr/platform sundv/include/sys/cpc_ultra.h
1726 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/sys/ecc_kstat.h 1792 $(spar c_G\lLY)fl | e pat h=usr/pl atform sundv/incl ude/ sys/ cpu_sgnbl k_defs. h
1727 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/ sys/ eeprom h 1793 $(sparc_ONLY)file path=usr/platform sundv/incl ude/ sys/ ddi _subrdefs.h
1728 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/ sys/envctrl.h 1794 $(sparc_ONLY)fil e path=usr/platform sundv/include/sys/ds_pri.h

1729 $(sparc_ONLY)file path=usr/platform sundu/include/sys/envctrl_gen.h 1795 $(sparc_ONLY)file path=usr/platform sundv/incl ude/sys/ds_snnp. h
1730 $(sparc_ONLY)file path=usr/platform sundu/include/sys/envctrl_ue250.h 1796 $(spar c_O\lLY) file path=usr/platform sundv/include/sys/dvma. h

1731 $(sparc_ONLY)file path=usr/platform sundu/incl ude/sys/envctrl_ued50. h 1797 $(sparc_ONLY)file path=usr/platform sundv/incl ude/ sys/ eeprom h

1732 $(spar c_ONLY)file path=usr/platform sundu/include/sys/environ.h 1798 $(spar c_ LY)file path=usr/platform sundv/include/sys/fcode.h

1733 $(sparc_ONLY)fil e path=usr/platform sundu/include/sys/errclassify.h 1799 $(sparc_ONLY)file path=usr/platform sundv/include/sys/hsvc.h

1734 $(sparc_ONLY)fil e path=usr/platform sundu/include/sys/fhc.h 1800 $(sparc_ONLY)file path=usr/platform sundv/include/sys/ht.h

1735 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/ sys/ gpi o_87317. h 1801 $(spar c_O\lLY)fl | e path=usr/pl atform sundv/incl ude/ sys/ hypervisor_api.h
1736 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/ hpc3130_events. h 1802 $(sparc_ONLY)file path=usr/platform sundv/incl ude/sys/idpromh

1737 $(sparc_ONLY)file path=usr/platform sundu/include/sys/ht.h 1803 $(spar c_O\lLY)fl | e path=usr/platforn sundv/include/sys/intr.h

1738 $(sparc_ONLY)fil e path=usr/platform sundu/include/sys/i2c/clients/hpc3130.h 1804 $(sparc_ONLY)file path=usr/platfornfsundv/include/sys/intreg.h

1739 $(sparc_ONLY)file path=usr/platform sundu/include/sys/i2c/clients/i2c_client.h 1805 $(spar c_CNLY)fl I e path=usr/platform sundv/include/sys/ivintr.h

1740 $(sparc_ONLY)file path=usr/platform sundu/include/sys/i2c/clients/|n¥5.h 1806 $(spar c_ LY)file path=usr/platform sundv/include/sys/ machasi.h
1741 $(sparc_ONLY)file path=usr/platform sundu/include/sys/i2c/clients/ max1617.h 1807 $(spar c_ LY)file path=usr/platform sundv/include/sys/ machcl ock. h
1742 $(sparc_ONLY)file path=usr/platform sundu/include/sys/i2c/clients/pcf8591. h 1808 $(sparc_ONLY)file path=usr/platfornf sundv/incl ude/ sys/ machcpuvar.h
1743 $(sparc_ONLY)fil e path=usr/platform sundu/include/sys/i2c/clients/ssc050.h 1809 $(spar c_O\lLY)fl I e pat h=usr/pl atform sun4dv/incl ude/ sys/ machi ntreg. h
1744 $(sparc_ONLY)file path=usr/platform sundu/include/sys/i2c/msc/i2c_svc.h 1810 $(sparc_ONLY)file path=usr/platform sundv/incl ude/ sys/ machparam h
1745 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/sys/idpromh 1811 $(spar c_ONLY)fl | e pat h=usr/pl atform sundv/incl ude/ sys/ machsystm h
1746 $(sparc_ONLY)file path=usr/platform sundu/include/sys/intr.h 1812 $(sparc_ONLY)file path=usr/platfornf sundv/include/sys/ macht hread. h
1747 $(sparc_ONLY)fil e path=usr/platform sundu/include/sys/intreg.h 1813 $(spar c_G\lLY)fl | e path=usr/platform sundv/include/sys/ mentist_plat.h
1748 $(sparc_ONLY)file path=usr/platform sundu/incl ude/sys/iocache.h 1814 $(sparc_ONLY)file path=usr/platform sundv/incl ude/ sys/ mermode. h
1749 $(sparc_ONLY)file path=usr/platform sundu/include/sys/ionmmu.h 1815 $(spar c_O\ILY)fl | e pat h=usr/pl atform sundv/incl ude/ sys/ mu. h

1750 $(sparc_ONLY)file path=usr/platform sundu/include/sys/ivintr.h 1816 $(sparc_ONLY)file path=usr/platfornf sundv/incl ude/ sys/ nexusdebug. h
1751 $(sparc_ONLY)fil e path=usr/platform sundu/include/sys/lomio.h 1817 $(spar c_O\lLY)fl | e pat h=usr/pl atform sundv/incl ude/ sys/ ni agar aasi . h
1752 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/ machasi.h 1818 $(sparc_ONLY)file path=usr/platform sundv/incl ude/ sys/ ni agar aregs. h
1753 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/ machcl ock. h 1819 $(spar c_O\lLY)fl | e pat h=usr/pl atformn sundv/incl ude/sys/ntwdt.h

1754 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/ sys/ machcpuvar. h 1820 $(sparc_ONLY)file path=usr/platforn sundv/include/sys/pri.h

1755 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/ sys/ machparam h 1821 $(spar c_O\lLY)fl | e pat h=usr/pl atform sundv/incl ude/ sys/ prom debug. h
1756 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/ machsystm h 1822 $(sparc_ONLY)file path=usr/platform sundv/incl ude/ sys/promplat.h
1757 $(sparc_ONLY)fil e path=usr/pl atform sun4u/incl ude/ sys/ macht hread. h 1823 $(spar c_O\JLY)ﬂ | e pat h=usr/platform sundv/include/sys/pte.h

1758 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/ sys/ mem cache. h 1824 $(spar c_ LY)file path=usr/platfornf sundv/include/sys/qcn.h

1759 $(sparc_ONLY)file path=usr/platform sundu/include/sys/menlist_plat.h 1825 $(spar c_ LY)file path=usr/platforn sundv/include/sys/sch.h

1760 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/ mermode. h 1826 $(sparc_ONLY)file path=usr/platfornm sundv/include/sys/soft_state.h
1761 $(sparc_ONLY)file path=usr/platform sundu/incl ude/sys/ mu.h 1827 $(sparc_ONLY)file path=usr/platform sundv/incl ude/sys/sundasi.h
1762 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/ nexusdebug. h 1828 $(spar c_O\ILY)fl | e pat h=usr/pl atform sundv/incl ude/ sys/tod. h

1763 $(sparc_ONLY)file path=usr/platform sundu/incl ude/sys/opl _hwdesc. h 1829 $(spar c_ LY)file path=usr/platform sundv/include/sys/trapstat.h
1764 $(sparc_ONLY)file path=usr/platform sundu/incl ude/sys/opl _nodul e. h 1830 $(sparc_ONLY)file path=usr/platform sundv/include/sys/traptrace.h
1765 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/ sys/ prom debug. h 1831 $(sparc_ONLY)file path=usr/platforn sundv/include/sys/vis.h

1766 $(sparc_ONLY)file path=usr/platform sundu/include/sys/promplat.h 1832 $(sparc_ONLY)file path=usr/platform sundv/include/sys/vm machparam h
1767 $(sparc_ONLY)file path=usr/platform sundu/include/sys/pte.h 1833 $(sparc_ONLY)file path=usr/platfornf sundv/include/sys/x_call.h

1768 $(spar Cc_ONLY)fil e path=usr/platforn sundu/incl ude/ sys/shd_ioctl.h 1834 $(sparc ONLY) file path=usr/platform sundv/include/sys/xc_inpl.h
1769 $(sparc_ONLY)file path=usr/platform sundu/include/sys/sch.h 1835 $(sparc_ONLY)file path=usr/platform sundv/incl ude/sys/zsmach. h

1770 $(sparc_ONLY)fil e path=usr/platform sun4u/incl ude/ sys/scsb_| ed. h 1836 $(sparc_ONLY)file path=usr/platform sundv/include/ v hat _sf nmu. h
1771 $(sparc_ONLY)fil e path=usr/platform sundu/incl ude/sys/sinmstat.h 1837 $(sparc_ONLY)file path=usr/platform sundv/include/ vimf nach_sfmmu. h
1772 $(sparc_ONLY)fil e path=usr/platforn sundu/incl ude/sys/spitregs.h 1838 file path=usr/share/ man/ man3head/ acct . h. 3head

1773 $(sparc_ONLY)file path=usr/platform sundu/incl ude/ sys/sram h 1839 fil e path=usr/share/ man/ man3head/ ai 0. h. 3head

1774 $(sparc_ONLY)file path=usr/platform sundu/incl ude/sys/sundasi.h 1840 fil e path=usr/share/ man/ man3head/ ar. h. 3head

new usr/ src/ pkg/ mani f est s/ syst em header . nf 29

pat h=usr/ shar e/ man/ man3head/ ar chi ves. h. 3head
pat h=usr/ shar e/ man/ man3head/ assert . h. 3head
pat h=usr/ shar e/ man/ man3head/ conpl ex. h. 3head
pat h=usr/ shar e/ man/ man3head/ cpi o. h. 3head

pat h=usr/ shar e/ man/ man3head/ di r ent . h. 3head
pat h=usr/ shar e/ man/ man3head/ endi an. h. 3head
pat h=usr/ shar e/ man/ man3head/ err no. h. 3head
pat h=usr/ shar e/ man/ man3head/ f cnt| . h. 3head
pat h=usr/ shar e/ man/ man3head/ f env. h. 3head

pat h=usr/ shar e/ man/ man3head/ f | oat . h. 3head
pat h=usr/ shar e/ man/ man3head/ f | oat i ngpoi nt . h. 3head
pat h=usr/ shar e/ man/ man3head/ f nt nsg. h. 3head
pat h=usr/ shar e/ man/ man3head/ f nmat ch. h. 3head
pat h=usr/ shar e/ man/ man3head/ f t w. h. 3head

pat h=usr/ shar e/ man/ man3head/ gl ob. h. 3head

pat h=usr/ shar e/ man/ man3head/ gr p. h. 3head

pat h=usr/ shar e/ man/ man3head/ i conv. h. 3head
pat h=usr/ shar e/ man/ man3head/ i f . h. 3head

pat h=usr/ shar e/ man/ man3head/ i n. h. 3head

pat h=usr/ shar e/ man/ man3head/ i net . h. 3head

pat h=usr/ shar e/ man/ man3head/ i ntt ypes. h. 3head
pat h=usr/ shar e/ man/ man3head/ i pc. h. 3head

pat h=usr/ shar e/ man/ man3head/ i so646. h. 3head
pat h=usr/ shar e/ man/ man3head/ | angi nf o. h. 3head
pat h=usr/ shar e/ man/ man3head/ | i bgen. h. 3head
pat h=usr/ shar e/ man/ man3head/ | i bi nt| . h. 3head
pat h=usr/ shar e/ man/ man3head/ | i mi t s. h. 3head
pat h=usr/ shar e/ man/ man3head/ | ocal e. h. 3head
pat h=usr/ shar e/ man/ man3head/ nat h. h. 3head

pat h=usr/ shar e/ man/ man3head/ nman. h. 3head

pat h=usr/ shar e/ man/ man3head/ nonet ary. h. 3head
pat h=usr/ shar e/ man/ man3head/ nqueue. h. 3head
pat h=usr/ shar e/ man/ man3head/ nsg. h. 3head

pat h=usr/ shar e/ man/ man3head/ ndbm h. 3head

pat h=usr/ shar e/ man/ man3head/ net db. h. 3head
pat h=usr/ shar e/ man/ man3head/ nl _t ypes. h. 3head
pat h=usr/ shar e/ man/ man3head/ pol | . h. 3head

pat h=usr/ shar e/ man/ man3head/ pt hr ead. h. 3head
pat h=usr/ shar e/ man/ man3head/ pwd. h. 3head

pat h=usr/ shar e/ man/ man3head/ queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ r egex. h. 3head
pat h=usr/ shar e/ man/ man3head/ r esour ce. h. 3head
pat h=usr/ shar e/ man/ man3head/ sched. h. 3head
pat h=usr/ shar e/ man/ man3head/ sear ch. h. 3head
pat h=usr/ shar e/ man/ man3head/ sel ect . h. 3head
pat h=usr/ shar e/ man/ man3head/ sem h. 3head

pat h=usr/ shar e/ man/ man3head/ senaphor e. h. 3head
pat h=usr/ shar e/ man/ man3head/ set j np. h. 3head
pat h=usr/ shar e/ man/ man3head/ shm h. 3head

pat h=usr/ shar e/ man/ man3head/ si gi nf 0. h. 3head
pat h=usr/ shar e/ man/ man3head/ si gnal . h. 3head
pat h=usr/ shar e/ man/ man3head/ socket . h. 3head
pat h=usr/ shar e/ man/ man3head/ spawn. h. 3head
pat h=usr/ shar e/ man/ man3head/ st at . h. 3head

pat h=usr/ shar e/ man/ man3head/ st at vf s. h. 3head
pat h=usr/ shar e/ man/ man3head/ st dbool . h. 3head
pat h=usr/ shar e/ man/ man3head/ st ddef . h. 3head
pat h=usr/ shar e/ man/ man3head/ st di nt . h. 3head
pat h=usr/ shar e/ man/ man3head/ st di 0. h. 3head
pat h=usr/ shar e/ man/ man3head/ st dl i b. h. 3head
pat h=usr/ shar e/ man/ man3head/ st ri ng. h. 3head
pat h=usr/ shar e/ man/ man3head/ st ri ngs. h. 3head
pat h=usr/ shar e/ man/ man3head/ st r opt s. h. 3head
pat h=usr/ shar e/ man/ man3head/ sysl og. h. 3head
pat h=usr/ shar e/ man/ man3head/ t ar . h. 3head

pat h=usr/ shar e/ man/ man3head/ t cp. h. 3head

new usr/ src/ pkg/ mani f est s/ syst em header . nf

1907 fil e path=usr/share/ man/ man3head/ t er mi os. h. 3head
1908 fil e path=usr/share/ man/ man3head/ t gnat h. h. 3head
1909 file path=usr/share/ man/ man3head/ ti ne. h. 3head
1910 fil e path=usr/share/ man/ man3head/ ti neb. h. 3head
1911 fil e path=usr/share/ man/ man3head/ ti nes. h. 3head
1912 file path=usr/share/ man/ man3head/ t ypes. h. 3head
1913 fil e path=usr/share/ man/ man3head/ t ypes32. h. 3head
1914 file path=usr/share/ man/ nen3head/ ucont ext . h. 3head
1915 fil e path=usr/share/ man/ man3head/ ui 0. h. 3head
1916 file path=usr/share/ man/ man3head/ ulimt. h. 3head
1917 file path=usr/share/ man/ man3head/ un. h. 3head

1918 fil e path=usr/share/ man/ man3head/ uni st d. h. 3head
1919 fil e path=usr/share/ man/ man3head/ uti ne. h. 3head
1920 fil e path=usr/share/ man/ man3head/ ut npx. h. 3head
1921 file path=usr/share/ man/ man3head/ ut snane. h. 3head
1922 fil e path=usr/share/ man/ man3head/ val ues. h. 3head
1923 fil e path=usr/share/ man/ man3head/ wai t . h. 3head
1924 file path=usr/share/ man/ man3head/ wchar . h. 3head
1925 file path=usr/share/ man/ man3head/ wct ype. h. 3head
1926 file path=usr/share/ man/ man3head/ wor dexp. h. 3head
1927 file path=usr/share/ man/ man3head/ x| ocal e. h. 3head
1928 file path=usr/share/ man/ man4/ note. 4

1929 file path=usr/share/ man/ man5/ prof.5

1930 file path=usr/share/ man/ man7i/cdio.7

1931 fil e path=usr/share/ man/ man7i/dki o. 7

1932 file path=usr/share/ man/ man7i/fbio.7

1933 file path=usr/share/ man/ man7i/fdio.7

1934 file path=usr/share/ man/ man7i/ hdio. 7

1935 file path=usr/share/ man/ man7i/i ec61883. 7i

1936 fil e path=usr/share/ man/ man7i/mhd. 7

1937 file path=usr/share/ man/ man7i/ntio. 7i

1938 file path=usr/share/ man/ man7i/prnio.7

1939 file path=usr/share/ man/ man7i/quotactl.7

1940 fil e path=usr/share/ man/ man7i/sesio. 7i

1941 file path=usr/share/ man/ man7i/ socki o. 7i

1942 file path=usr/share/ man/ man7i/stream o.7

1943 file path=usr/share/ man/ man7i/termo. 7i

1944 file path=usr/share/ man/ man7i/term ox. 7i

1945 file path=usr/share/ man/ man7i/uscsi. 7i

1946 file path=usr/share/ man/ man7i/visual _io.7i

1947 file path=usr/share/ man/ man7i/vt.7

1948 fil e path=usr/xpg4/include/ curses.h

1949 file path=usr/xpg4/include/termh

1950 file path=usr/xpg4/include/unctrl.h

1951 | egacy pkg=SUNwWhea \

1952 desc="Sun0S C/ C++ header files for general devel opnent of software" \
1953 name="SunCS Header Files"

1954 license cr_Sun |icense=cr_Sun

1955 license lic_CDDL |icense=lic_CDDL

li
li
1956 license license_in_headers |icense=license_in_headers
1957 license usr/src/lib/pkecsll/include/ TH RDPARTYLI CENSE \
1958 i cense=usr/src/lib/pkcsll/incl ude/ TH RDPARTYLI CENSE
1959 license usr/src/uts/comon/sys/ TH RDPARTYLI CENSE. firm oad \
1960 I'i cense=usr/ src/uts/comon/sys/ TH RDPARTYLI CENSE. fi r m oad
1961 |ink path=usr/include/iso/assert_iso.h target=../assert.h
1962 |ink path=usr/include/iso/errno_iso.h target=../errno.h
1963 link path=usr/include/iso/float_iso.h target=../float.h
1964 |ink path=usr/include/iso/iso646_iso.h target=../iso0646.h
1965 $(sparc_ONLY) | ink path=usr/pl atform SUNW A70/i ncl ude target=../sun4u/include
1966 $(sparc_ONLY)|ink path=usr/platfornm SUNW Netra-T12/i ncl ude \
1967 target=../sun4u/incl ude
1968 $(sparc_ONLY)link path=usr/platform SUNW Netra- T4/ i ncl ude \
1969 target=../sun4u/incl ude
1970 $(sparc_ONLY) | ink path=usr/pl atform SUNW SPARC- Ent er pri se/ i ncl ude \
1971 target=../sun4u/incl ude
1972 $(sparc_ONLY)link path=usr/platform SUNW Server bl adel/i ncl ude \

new usr/ src/ pkg/ mani f est s/ syst em header . nf 31

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038

target=../sun4u/incl ude

$(sparc_ONLY) | i nk pat h=usr/ pl at f or mf SUNW Sun- Bl ade- 100/ i ncl ude \

target=../sun4u/incl ude

$(sparc_ONLY) li nk pat h=usr/ pl at f or mf SUNW Sun- Bl ade- 1000/ i ncl ude \

target=../sun4u/include

$(sparc_ONLY) | i nk pat h=usr/ pl at f or m SUNW Sun- Bl ade- 1500/ i ncl ude \

target=../sun4u/incl ude

$(sparc_ONLY) | i nk pat h=usr/ pl at f or mf SUNW Sun- Bl ade- 2500/ i ncl ude \

target=../sun4u/incl ude

$(sparc_ONLY) | i nk pat h=usr/ pl at f or ml SUNW Sun- Fi r e- 15000/ i ncl ude \

target=../sun4u/incl ude

$(sparc_ONLY) link path=usr/platfornm SUNW Sun- Fi re-280R/ i ncl ude \

target=../sun4u/incl ude

$(sparc_ONLY) | i nk pat h=usr/ pl atfor i SUNW Sun- Fi r e- 480R/ i ncl ude \

target=../sun4u/incl ude

$(sparc_ONLY) | ink pat h=usr/platform SUNW Sun- Fi re-880/i ncl ude \

$(sparc_ONLY) | i nk pat h=usr/ pl at f or m SUNW Sun- Fi r e- V215/ i ncl ude
$(sparc_ONLY) li nk pat h=usr/pl atfornm SUNW Sun- Fi r e- V240/ i ncl ude
$(sparc_ONLY) | i nk pat h=usr/ pl at f or m SUNW Sun- Fi r e- V250/ i ncl ude
$(sparc_ONLY) link path=usr/pl atfornm SUNW Sun- Fi r e- V440/i ncl ude
$(sparc_ONLY) | i nk pat h=usr/ pl at f or ml SUNW Sun- Fi r e- V445/ i ncl ude
$(sparc_ONLY) i nk pat h=usr/ pl at f or mf SUNW Sun- Fi r e- V490/ i ncl ude
$(sparc_ONLY) | i nk path=usr/pl atform SUNW Sun- Fi r e- V890/ i ncl ude

target=../sun4u/incl ude

—

target=../sun4u/incl ude

—

target=../sun4u/incl ude

—

target=../sun4u/incl ude

—

target=../sun4u/incl ude

—

target=../sun4u/incl ude

—

target=../sun4u/incl ude

—

target=../sun4u/incl ude

$(sparc_ONLY) | i nk pat h=usr/ pl atform SUNW Sun-Fire/include \

target=../sun4u/incl ude

$(sparc_ONLY) i nk path=usr/platform SUNWU tra-2/include \

target=../sun4u/incl ude

$(sparc_ONLY) i nk path=usr/platforn SUNW U tra-250/include \

target=../sun4u/incl ude

$(sparc_ONLY) link path=usr/platform SUNWU tra-4/include \

target=../sun4u/incl ude

$(sparc_ONLY) | ink path=usr/platform SUNWU tra-Enterprise/include \

target=../sun4u/incl ude

$(sparc_ONLY) | i nk path=usr/platform SUNW U traSPARC- 11 e-NetraCT-40/incl ude \

target=../sun4u/incl ude

$(sparc_ONLY) | ink pat h=usr/pl atform SUNW U traSPARC- I | e- Net raCT- 60/ i ncl ude \

target=../sun4u/incl ude

$(sparc_ONLY) i nk path=usr/platform SUNWU traSPARC-11i-Netract/include \

nk
nk
nk

nk
nk
nk
nk
nk

target=../sun4u/incl ude
pat h= usr/ shar e/ man/ man3head/ LI ST_CLASS_ENTRY. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_CLASS_HEAD. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_CONCAT. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_EMPTY. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_ENTRY. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_FI RST. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_FOREACH. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_FOREACH FROM 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_FOREACH_FROM SAFE. 3head \

t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_FOREACH_SAFE. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_HEAD. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_HEAD_| NI Tl ALl ZER. 3head \

t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_I NI T. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_| NSERT_AFTER. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_| NSERT_BEFORE. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_| NSERT_HEAD. 3head t ar get =queue. h. 3head
pat h=usr/ shar e/ man/ man3head/ LI ST_NEXT. 3head t ar get =queue. h. 3head

new usr/ src/ pkg/ mani f est s/ syst em header . nf

2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104

nk pat h=usr/ shar e/ man/ man3head/ LI ST_PREV. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ LI ST_REMOVE. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ LI ST_SWAP. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_CLASS_ENTRY. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_CLASS_HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_CONCAT. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_EMPTY. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_ENTRY. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_FI RST. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ SLI ST_FOREACH. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ SLI ST_FOREACH_FROM 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_FOREACH_FROM SAFE. 3head \
tar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ SLI ST_FOREACH_SAFE. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_HEAD | NI Tl ALI ZER 3head \
tar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ SLI ST_I NI T. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_| NSERT_AFTER. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_| NSERT_HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_NEXT. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_REMOVE. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_REMOVE_AFTER. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_REMOVE_HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ SLI ST_SWAP. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ STAI LQ CLASS_ENTRY. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ CLASS_HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ CONCAT. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ STAI LQ EMPTY. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ STAI LQ ENTRY. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ FI RST. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ FOREACH. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ STAl LQ FOREACH FROM 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ FOREACH_FROM SAFE. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ FOREACH_SAFE. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ HEAD | NI Tl ALI ZER. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ | NI T. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ_| NSERT_AFTER. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ | NSERT_HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ STAI LQ_| NSERT_TAI L. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ STAI LQ_LAST. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ NEXT. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ REMOVE. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ STAI LQ REMOVE_AFTER. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ REMOVE_HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ STAI LQ SWAP. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ TAI LQ CLASS_ENTRY. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ TAI LQ CLASS_HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ CONCAT. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAI LQ EMPTY. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAI LQ ENTRY. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ TAlI LQ FI RST. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAI LQ FOREACH. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ FOREACH FROM 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ TAl LQ_FOREACH_FROM SAFE. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ FOREACH_REVERSE. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ FOREACH_REVERSE_FROM 3head \

new usr/ src/ pkg/ mani f est s/ syst em header . nf 33

2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170

t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ FOREACH_REVERSE_FROM SAFE. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ FOREACH REVERSE_SAFE. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ FOREACH_SAFE. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ TAI LQ HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ TAI LQ_HEAD_| NI TI ALI ZER. 3head \
t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAI LQ | NI T. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAI LQ | NSERT_AFTER. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAI LQ | NSERT_BEFORE. 3head \
tar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAI LQ_| NSERT_HEAD. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ TAI LQ_| NSERT_TAI L. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ TAl LQ_LAST. 3head t ar get =queue. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ TAI LQ_NEXT. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ PREV. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ REMOVE. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ TAl LQ SWAP. 3head t ar get =queue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ acct . 3head t ar get =acct . h. 3head
nk pat h=usr/shar e/ man/ man3head/ ai 0. 3head t ar get =ai 0. h. 3head
nk pat h=usr/shar e/ man/ man3head/ ar . 3head t ar get =ar. h. 3head
nk pat h=usr/shar e/ man/ man3head/ ar chi ves. 3head t ar get =ar chi ves. h. 3head
nk pat h=usr/shar e/ man/ man3head/ assert. 3head tar get =assert. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ conpl ex. 3head t ar get =conpl ex. h. 3head
nk pat h=usr/shar e/ man/ man3head/ cpi 0. 3head t ar get =cpi 0. h. 3head
nk pat h=usr/shar e/ man/ man3head/ di r ent. 3head t ar get =di rent. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ errno. 3head t ar get =errno. h. 3head
nk pat h=usr/shar e/ man/ man3head/ fcnt| . 3head target=fcntl.h. 3head
nk pat h=usr/shar e/ man/ man3head/ f env. 3head t ar get =f env. h. 3head
nk pat h=usr/shar e/ man/ man3head/ f | oat . 3head t arget =f| oat. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ f | oati ngpoi nt. 3head \
target =f| oati ngpoi nt. h. 3head
nk pat h=usr/shar e/ man/ man3head/ f nt nsg. 3head t ar get =f nt nsg. h. 3head
nk pat h=usr/shar e/ man/ man3head/ f nmat ch. 3head t ar get =f nmat ch. h. 3head
nk pat h=usr/shar e/ man/ man3head/ f t w. 3head tar get=ftw h. 3head
nk pat h=usr/ shar e/ man/ man3head/ gl ob. 3head t ar get =gl ob. h. 3head
nk pat h=usr/shar e/ man/ man3head/ gr p. 3head t ar get =gr p. h. 3head
nk pat h=usr/shar e/ man/ man3head/ i conv. 3head t ar get =i conv. h. 3head
nk pat h=usr/share/ man/ man3head/if.3head target=if.h. 3head
nk pat h=usr/shar e/ man/ man3head/ i n. 3head t ar get =i n. h. 3head
nk pat h=usr/shar e/ man/ man3head/ i net. 3head t ar get =i net. h. 3head
nk pat h=usr/shar e/ man/ man3head/ i nttypes. 3head target =i nttypes. h. 3head
nk pat h=usr/shar e/ man/ man3head/ i pc. 3head t ar get =i pc. h. 3head
nk pat h=usr/shar e/ man/ man3head/ i s0646. 3head t ar get =i s0646. h. 3head
nk pat h=usr/shar e/ man/ man3head/ | angi nf 0. 3head t ar get =| angi nf 0. h. 3head
nk pat h=usr/shar e/ man/ man3head/ | i bgen. 3head t ar get =l i bgen. h. 3head
nk pat h=usr/share/ man/ man3head/ | i bi ntl.3head target=Iibintl.h.3head
nk pat h=usr/share/ man/ man3head/ | i m ts. 3head target=limts.h. 3head
nk pat h=usr/shar e/ man/ man3head/ | ocal e. 3head t ar get =l ocal e. h. 3head
nk pat h=usr/shar e/ man/ man3head/ mat h. 3head t ar get =mat h. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ nman. 3head t ar get =mman. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ nonet ary. 3head t ar get =npnet ary. h. 3head
nk pat h=usr/ shar e/ man/ man3head/ nqueue. 3head t ar get =mgueue. h. 3head
nk pat h=usr/shar e/ man/ man3head/ msg. 3head t ar get =nsg. h. 3head
nk pat h=usr/shar e/ man/ man3head/ ndbm 3head t ar get =ndbm h. 3head
nk pat h=usr/ shar e/ man/ man3head/ net db. 3head t ar get =net db. h. 3head
nk pat h=usr/shar e/ man/ man3head/ nl _t ypes. 3head target=nl _types. h. 3head
nk pat h=usr/shar e/ man/ man3head/ pol | . 3head t ar get =pol | . h. 3head
nk pat h=usr/shar e/ man/ man3head/ pt hr ead. 3head t ar get =pt hr ead. h. 3head
nk pat h=usr/shar e/ man/ man3head/ pwd. 3head t ar get =pwd. h. 3head
nk pat h=usr/shar e/ man/ man3head/ r egex. 3head t ar get =r egex. h. 3head
nk pat h=usr/shar e/ man/ man3head/ r esour ce. 3head t ar get =r esour ce. h. 3head
nk pat h=usr/shar e/ man/ man3head/ sched. 3head t ar get =sched. h. 3head
nk pat h=usr/shar e/ man/ man3head/ sear ch. 3head t ar get =sear ch. h. 3head

new usr/ src/ pkg/ mani f est s/ syst em header . nf 34
2171 |ink path=usr/share/ man/ man3head/ sel ect . 3head t ar get =sel ect . h. 3head
2172 |ink pat h=usr/ shar e/ man/ mnan3head/ sem 3head t ar get =sem h. 3head

2173 link pat h=usr/ shar e/ man/ man3head/ semaphor e. 3head t ar get =semaphor e. h. 3head
2174 |ink path=usr/share/ man/ nen3head/ setj np. 3head tar get =setj np. h. 3head
2175 |ink path=usr/share/ man/ man3head/ shm 3head t ar get =shm h. 3head

2176 |ink pat h=usr/ share/ man/ man3head/ si gi nf 0. 3head t ar get =si gi nf 0. h. 3head
2177 link path=usr/share/ man/ man3head/ si gnal . 3head t ar get =si gnal . h. 3head
2178 |ink path=usr/share/ man/ man3head/ socket . 3head t ar get =socket . h. 3head
2179 |ink path=usr/share/ man/ man3head/ spawn. 3head t ar get =spawn. h. 3head
2180 | i nk pat h=usr/share/ man/ man3head/ st at . 3head t ar get =st at. h. 3head

2181 | i nk pat h=usr/ share/ man/ man3head/ st at vfs. 3head t ar get =st at vf s. h. 3head
2182 |ink path=usr/share/ man/ man3head/ st dbool . 3head t ar get =st dbool . h. 3head
2183 |ink path=usr/share/ man/ nen3head/ st ddef . 3head t ar get =st ddef . h. 3head
2184 | i nk pat h=usr/share/ man/ man3head/ st di nt. 3head t ar get =stdi nt. h. 3head
2185 | i nk pat h=usr/ shar e/ man/ man3head/ st di 0. 3head t ar get =st di 0. h. 3head
2186 |ink path=usr/share/ man/ man3head/ stdli b. 3head target=stdlib. h. 3head
2187 |ink path=usr/share/ man/ man3head/ string. 3head target=string.h. 3head
2188 | i nk pat h=usr/ shar e/ man/ man3head/ st ri ngs. 3head target =stri ngs. h. 3head
2189 | i nk pat h=usr/share/ man/ man3head/ st ropts. 3head t arget =stropts. h. 3head
2190 | i nk pat h=usr/ shar e/ man/ man3head/ sysl og. 3head t ar get =sysl og. h. 3head
2191 |ink path=usr/share/ man/ man3head/ t ar. 3head target =tar. h. 3head

2192 |ink pat h=usr/share/ man/ man3head/t cp. 3head t ar get =t cp. h. 3head

2193 | i nk pat h=usr/ share/ man/ man3head/t er m os. 3head t ar get =t erm os. h. 3head
2194 |ink pat h=usr/ shar e/ man/ man3head/ t gmat h. 3head t ar get =t gmat h. h. 3head
2195 |ink path=usr/share/ man/ man3head/ ti me. 3head target=tine. h. 3head

2196 |ink path=usr/share/ man/ man3head/ ti meb. 3head tar get=ti nmeb. h. 3head
2197 |ink pat h=usr/share/ man/ man3head/ ti nes. 3head target =ti nmes. h. 3head
2198 | i nk pat h=usr/ shar e/ man/ man3head/ t ypes. 3head t ar get =t ypes. h. 3head
2199 |ink path=usr/share/ man/ man3head/ t ypes32. 3head t ar get =t ypes32. h. 3head
2200 |ink path=usr/share/ man/ man3head/ ucont ext . 3head t ar get =ucont ext . h. 3head
2201 |ink pat h=usr/share/ man/ man3head/ ui 0. 3head t ar get =ui 0. h. 3head

2202 link path=usr/share/ man/ man3head/ ul i m t. 3head target=ulimt.h. 3head
2203 link path=usr/share/ man/ man3head/ un. 3head tar get =un. h. 3head

2204 |ink path=usr/share/ man/ man3head/ uni std. 3head target=uni std. h. 3head
2205 | i nk pat h=usr/share/ man/ man3head/ uti me. 3head t arget =uti ne. h. 3head
2206 |ink pat h=usr/share/ man/ man3head/ ut npx. 3head t ar get =ut npx. h. 3head
2207 |ink path=usr/share/ man/ man3head/ ut snane. 3head t ar get =ut snane. h. 3head
2208 |ink path=usr/share/ man/ nan3head/ val ues. 3head t ar get =val ues. h. 3head
2209 |ink pat h=usr/share/ man/ man3head/ wai t . 3head t ar get =wai t. h. 3head

2210 |ink pat h=usr/share/ man/ man3head/ wchar . 3head t ar get =wchar . h. 3head
2211 |ink pat h=usr/ shar e/ man/ man3head/ wct ype. 3head t ar get =wct ype. h. 3head
2212 |ink path=usr/share/ man/ nan3head/ wor dexp. 3head t ar get =wor dexp. h. 3head
2213 |ink pat h=usr/share/ man/ man3head/ x| ocal e. 3head t ar get =x| ocal e. h. 3head
2214 $(i386_ONLY)link path=usr/share/src/uts/i86pc/sys \

2215 target=../../../../platformi86pc/include/sys

2216 $(i 386 CNLY)I i nk pat h=usr/share/ src/uts/i86pc/vm\

2217 target=../../. .Iplatformi86pc/include/vm

2218 $(i386 O\ILY)I i nk pat h=usr/share/src/uts/i 86xpv/sys \

2219 target=../../../../platfornmi86xpv/include/sys

2220 $(i386 CNLY)I i nk pat h=usr/share/ src/uts/i86xpv/vm\

2221 target=../../../../platformi86xpv/include/vm

2222 $(sparc_ O\JLY)I i nk pat h=usr/ shar e/ sr ¢/ ut s/ sundu/ sys \

2223 target=../../../../platform sundu/include/sys

2224 $(sparc_| O\ILY)I i nk pat h=usr/ shar e/ src/ ut s/ sun4u/ vm \

2225 target=../../../../platform sun4u/include/vm

2226 $(sparc_ CNLY)I i nk pat h=usr/ shar e/ src/ ut s/ sundv/ sys \

2227 target=../../. ./ pl atforn sundv/incl ude/ sys

2228 $(sparc_| CNLY)I i nk pat h=usr/ shar e/ src/ ut s/ sundv/ vm \

2229 target=../../../../platform sun4dv/include/vm

new usr/src/ uts/comon/ di sp/ cpupart.c 1 new usr/src/ uts/comon/ di sp/ cpupart.c 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 */
30390 Wed May 15 07:34:02 2019
new usr/src/ uts/comon/ di sp/ cpupart.c 61 /*
10924 Need mitigation of L1TF (CVE-2018-3646) 62 * The cp_default partition is allocated statically, but its Igroup |oad average
Revi ewed by: Robert Mistacchi <rm@ oyent.conm> 63 * (Ipl) list is allocated dynamically after kmem subsystemis initialized. This
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr 64 * saves sonme nmenory since the space allocated reflects the actual nunber of
Revi ewed by: Peter Tribble <peter.tribble@mail.conm 65 * lgroups supported by the platform The Igrp facility provides a tenporary
IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE] 66 * SpaCe to hold Ipl Inforn«atlon dUrIng SyStem bootstrap
1/* 67 */
2 * CDDL HEADER START
3 * 69 cpupart_t *cp_list_head;
4 * The contents of this file are subject to the terms of the 70 cpupart _t cp_defaul t;
5 * Common Devel opnent and Distribution License (the "License"). 71 static cpupartid_t cp_i d_next;
6 * You may not use this file except in conpliance with the License. 72 uint_t cp_nunparts;
7 % 73 uint_t cp_nunparts_nonenpty;
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing. 75 | *
10 * See the License for the specific |anguage governing perm ssions 76 * Need to limt total nunber of partitions to avoid slow ng down the
11 * and limtations under the License. 77 * clock code too nuch. The clock code traverses the |ist of
12~ 78 * partitions and needs to be able to execute in a reasonabl e anount
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 * of time (less than 1/hz seconds). The maxinmumis sized based on
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 * max_ncpus so it shouldn't be a problemunless there are |arge
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 * nunbers of enpty partitions.
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 */
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 static uint_t cp_mex_nunparts;
18 =
19 * CDDL HEADER END 85 /*
20 */ 86 * Processor sets and CPU partitions are different but related concepts.
21 | * 87 * A processor set is a user-level abstraction allow ng users to create
22 * Copyright (c) 1996, 2010, O acle and/or its affiliates. Al rights reserved. 88 * sets of CPUs and bind threads exclusively to those sets. CPU
23 * 89 * partition is a kernel dispatcher object consisting of a set of CPUs
24 * Copyright 2018 Joyent, Inc. 90 * and a gl obal dispatch queue. The processor set abstraction is
25 * Copyright (c) 2017 by Del phix. Al rights reserved. 91 * inplenented via a CPU partition, and currently there is a 1-1
26 */ 92 * mappi ng between processor sets and partitions (excluding the default
93 * partition, which is not visible as a processor set). Hence, the
28 #include <sys/types. h> 94 * nunbering for processor sets and CPU partitions is identical. This
29 #include <sys/systm h> 95 * pmay not always be true in the future, and these macros coul d becone
30 #include <sys/cm_err. h> 96 * less trivial if we support e.g. a processor set containing nmultiple
31 #include <sys/cpuvar. h> 97 * CPU partitions.
32 #include <sys/thread. h> 98 */
33 #include <sys/disp. h> 99 #define PSTOCP(psi d) ((cpupartid_t)((psi d) == PS_NONE ? CP_DEFAULT : (psid)))
34 #include <sys/knmem h> 100 #define CPTOPS(cpid) ((psetid_t)((cpid) == CP DEFAULT ? PS_NONE : (cpid)))
35 #include <sys/debug. h>
36 #include <sys/cpupart.h> 102 static int cpupart_unbind_threads(cpupart_t *, boolean_t);
37 #include <sys/pset.h>
38 #include <sys/var.h> 104 /*
39 #include <sys/cyclic.h> 105 * Find a CPU partition given a processor set ID.
40 #include <sys/lgrp. h> 106 */
41 #incl ude <sys/pghw. h> 107 static cpupart_t *
42 #incl ude <sys/| oadavg. h> 108 cpupart _find_all (psetid_t psid)
43 #incl ude <sys/cl ass. h> 109 {
44 #include <sys/fss. h> 110 cpupart _t *cp;
45 #incl ude <sys/ pool . h> 111 cpupartid_t cpid = PSTOCP(psid);
46 #i ncl ude <sys/pool _pset.h>
47 #incl ude <sys/policy. h> 113 ASSERT(MUTEX_HELD(&pu_l ock)) ;
49 [* 115 /* default partition not visible as a processor set */
50 * Calling pool _|ock() protects the pools configuration, which includes 116 if (psid == CP_DEFAULT)
51 * CPU partitions. cpu_lock protects the CPU partition |list, and prevents 117 return (NULL);
52 * partitions frombeing created or destroyed while the lock is held.
53 * The lock ordering with respect to related |ocks is: 119 if (psid == PS_MvID)
54 * 120 return (curthread->t_cpupart);
55 * pool _l ock() ---> cpu_lock ---> pidlock --> p_lock
56 * 122 cp = cp_list_head,
57 * Blocking nenory allocations may be made while hol ding "pool _I ock" 123 do {
58 * or cpu_l ock. 124 if (cp->cp_id == cpid)

new usr/src/ uts/comon/ di sp/ cpupart.c

125
126
127
128

129 }

return (cp);
cp = cp->cp_next;
} while (cp !'= cp_list head);
return (NULL);

__unchanged_portion_onitted_

322 static int
323 cpupart_nove_cpu(cpu_t *cp, cpupart_t *newpp, int forced)

324 {

325
326
327
328
329
330
331
332
333
334

336
337

339
340
341

343
344
345
346
347
348

350

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

373
374
375
376
377
378
379

cpupart _t *ol dpp;
cpu_t *ncp, *newist;
kt hread_t *t;

int nove_t hreads = 1;
lgrp_id_t |grpid;
proc_t *p;

int lgrp_diff_lpl;

I pl_t *cpu Tpl;

int et;

bool ean t unbi nd_al |l _threads = (forced != 0);

ASSERT(MUTEX_HELD(& pu_l ock));
ASSERT(newpp != NULL);

ol dpp = cp->cpu_part;
ASSERT(ol dpp != NULL);
ASSERT(ol dpp->cp_ncpus > 0);
if (newpp == oldpp) {
/*
* Don't need to do anyt hing.

return (0);

}
cpu_state_change_noti fy(cp->cpu_id, CPU_CPUPART_QUT);
if (!disp_bound_partition(cp, 0)) {

/ *

* Don’t need to nove threads if there are no threads in
* the partition. Note that threads can’t enter the

* partition while we're hol ding cpu_| ock.

*

nove_t hreads = 0;
} else |f (ol'dpp->cp_ncpus == 1) {

*
* The last CPU is renoved froma partition which has threads
* running init. Some of these threads may be bound to this
* CPU.
*
* Attenpt to unbind threads fromthe CPU and fromthe processor
* set. Note that no threads should be bound to this CPU since
* cpupart_nove_threads will refuse to nove bound threads to
* ot her CPUs.
*
/

(voi d) cpu_unbi nd(ol dpp->cp_cpulist->cpu_id, B _FALSE);

(voi d) cpupart_unbind_t hreads(ol dpp, B FALSE)
if (!disp_bound_partition(cp, 0)) {
/*

* No bound threads in this partition any nore

*/

nove_t hreads = 0;
} else {

/*

new usr/src/ uts/comon/ di sp/ cpupart.c

380
381
382
383
384
385

387
388
389
390
391
392
393
394

396
397
398
399
400

402
403
404
405
406
407
408
409

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

agai n:

* There are still threads bound to the partition
*/

cpu_state_change_notify(cp->cpu_id, CPU_CPUPART_IN);
return (EBUSY);
}
/'k
* |f forced flag is set unbind any threads fromthis CPU.
* Ot herw se unbind soft-bound threads only.
*
/
if ((ret = cpu_unbind(cp->cpu_id, unbind_all _threads)) !'= 0) {
cpu_state_change_notify(cp->cpu_id, CPU CPUPART_IN);
return (ret);

}

*

* Stop further threads weak binding to this cpu.
*
/

cpu_i nmotion = cp;
nmenbar _enter();

/
Notify the Processor G oups subsystemthat the CPU
wi Il be noving cpu partitions. This is done before
CPUs are paused to provide an opportunity for any
* needed nenory all ocations.

*

/
pg_cpupart_out (cp, ol dpp);
pg_cpupart_i n(cp, newpp);

EE

if (rmove_threads) {
int | oop_count;
/*
* Check for threads strong or weak bound to this CPU.
*

for (loop_count = 0; disp_bound_threads(cp, 0); |oop_count++) {
1 f (loop_count >= 5)
cpu_state change notlfy(cp >cpu_id,
CPU_CPUPART_|
pg_cpupart _out (cp, newpp),
pg_cpupart |n(cp, ol dpp) ;
cpu_i nnotion = NULL;
return (EBUSY); /* sone threads still bound */

}
del ay(1);

}

/*

* Before we actually start changing data structures, notify

* the cyclic subsystemthat we want to nove this CPU out of its
* partition.

*/

if (lcyclic_nove_out(cp)) {
/*

* This CPU nust be the last CPU in a processor set with
* a bound cyclic.
*/

cpu_state_change_notify(cp->cpu_id, CPU CPUPART_IN);
pg_cpupart _out (cp, newpp);

pg_cpupart _in(cp, ol dpp);

cpu_i nnotion = NULL;

return (EBUSY);

new usr/src/ uts/comon/ di sp/ cpupart.c

447

449
450
451
452
453
454
455
456
457
458

460

462
463
464
465
466

468
469

471
472
473
474
475

477
478
479

481
482
483
484
485
486
487
488
489
490
491

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

509
510

pause_cpus(cp, NULL);
if (ane/_threads) {
*

* The thread on cpu before the pause thread may have read
* cpu_innotion before we raised the barrier above. Check
* again.
*
if (disp_bound_threads(cp, 1)) {

start_cpus();

goto again;

}

/*

* Now that CPUs are paused, |et the PG subsystem perform
* any necessary data structure updates.

*/

pg_cpupart_nove(cp, ol dpp, newpp);

/* save this cpu's Igroup -- it’ll be the same in the new partition */
I grpid = cp->cpu_l pl ->l pl _I grpid;

cpu_l pl = cp->cpu_lpl;

/*
* let the Igroup framework know cp has left the partition
*

I grp_confi g(LGRP_CONFI G_CPUPART_DEL, (uintptr_t)cp, lgrpid);

/* nove out of old partition */
ol dpp- >cp_ncpus- -;
if (ol dpp->cp_ncpus > 0) {

ncp = cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
cp- >cpu_next _part->cpu_prev_part = cp->cpu_prev_part;
if (ol dpp->cp_cpulist == cp)

ol dpp->cp_cpul i st = ncp;

} else {
ncp = ol dpp->cp_cpul i st = NULL;
cp_nunparts_nonenpty--;
ASSERT(cp_nunparts_nonenpty != 0);

}
ol dpp- >cp_gen++;

/* nove into new partition */

new i st = newpp->cp_cpuli st;

if (newist == NULL) {
newpp- >cp_cpul i st = cp->cpu_next_part = cp->cpu_prev_part = cp;
cp_nunparts_nonenpt y++;
ASSERT(cp_nunparts_nonenpty != 0);

} else {
cp->cpu_next_part = newist;
cp->cpu_prev_part = new ist->cpu_prev_part;
new i st->cpu_prev_part->cpu_next_part = cp;
new i st->cpu_prev_part = cp;

}

cp->cpu_part = newpp;
newpp- >Cp_Ncpus++;
newpp- >cp_gen++;

ASSERT(bi tset _i s_nul | (&ewpp->cp_hal tset));
ASSERT(bi t set _i s_nul | (&ol dpp->cp_hal tset));

new usr/src/ uts/comon/ di sp/ cpupart.c

512
513
514
515

517
518
519
520
521

523
524
525
526
527
528

530
532

534
535

537
539
541

543
544
545
546

548
549
550
551
552
553
554
555

557
558
559
560
561

563
564
565
566
567
568

570

572
573
574
575
576
573

*

* let the Igroup framework know cp has entered the partition
*
/
I grp_confi g(LGRP_CONFI G_CPUPART_ADD, (uintptr_t)cp, |grpid);

/*
* |f necessary, nove threads off processor.
*

if (rmove_threads) {
ASSERT(ncp != NULL);

/
Wal k thru the active process list to |ook for
threads that need to have a new hone | group,
or the last CPU they run on is the same CPU

/bei ng noved out of the partition.

* Ok ok k% ok

for (p = practive; p !'= NULL; p = p->p_next) {
t = p->p_tlist;

if (t == NULL)
conti nue;

lgrp_diff_lpl = 0;
do {
ASSERT(t->t _I pl != NULL);
/*
* Update the count of how many threads are
* in this CPUs Igroup but have a different |pl
*
/

i (t->t
t->t

= cpu_l pl &&
I pl _lgrpid == Igrpid)
iff_Ipl++

pl !
pl->
rp_d

_
|
I'g
the Igroup that t is assigned to no

ger has any CPUs in t’'s partition,

I'l have to choose a new | group for t.

1 f
| on
we'
/

* ok ok ok

if (!LGRP_CPUS_I N _PART(t->t_Ipl->Ipl_lgrpid,
t->t_cpupart))
I grp_nove_t hread(t,
| grp_choose(t, t->t_cpupart), 0);

}

/~k
* make sure I pl points to our own partition
*
/
ASSERT(t->t | pl >= t->t_cpupart->cp_| grpl oads &&
(t->t_Ipl < t->t_cpupart->cp_| grploads +
t->t _cpupart->cp_nl grpl oads));

ASSERT(t->t_| pl->lpl _ncpu > 0);

/* Update CPU last ran on if it was this CPU */
if (t->t_cpu == cp & & t->t_cpupart == ol dpp &&
t->t_bound_cpu != cp) {
t->t_cpu = disp_lowpri_cpu(ncp, t,
t->t_pri);
t->t_cpu = disp_|l owpri_cpu(ncp,

new usr/src/ uts/comon/ di sp/ cpupart.c

574
577
578
579

581
582
583
584
585

587
588
589

591
592
593
594
595

597

599
600

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

618
619
620
621

623

625
626
627
628
629
626
627
630

632
633

635
636
637
638
639

* ok ok ok %

t

t->t_Ipl, t->t_pri, NULL);
}

t =t->t_forw,
} while (t !'= p->p_tlist);

* Didn't find any threads in the same Igroup as this

* CPUwith a different Ipl, so remve the Igroup from
* the process | group bitnmask.
*/

if (Igrp_diff_Ipl)
kl grpset _del (p->p_I grpset, |grpid);

Wal k thread list looking for threads that need to be
rehoned, since there are sone threads that are not in
their process’'s p_tlist.

curthread;

ASSERT(t != NULL && t->t_Ipl 1= NULL);

/
If the Igroup that t is assigned to no
longer has any CPUs in t's partition,
we' Il have to choose a new | group for t.
Al so, choose best Igroup for honme when
thread has specified I group affinities,
since there nmay be an Igroup with nore
affinity available after noving CPUs
* around.
*/
if (!'LGRP_CPUS_I N PART(t->t_Ipl->Ipl_Ilgrpid,
t->t_cpupart) || t->t_lgrp_affinity) {
I grp_nove_t hread(t,
I grp_choose(t, t->t_cpupart), 1);

* ok Gk kR % F

}

/* make sure | pl points to our own partition */

ASSERT((t->t I pl >= t->t_cpupart->cp_| grpl oads) &&
(t->t_Ipl < t->t_cpupart->cp_| grploads +
t->t_cpupart->cp_nl grpl oads));

ASSERT(t->t _I pl ->I pl _ncpu > 0);

/* Update CPU last ran on if it was this CPU */
if (t->t_cpu == cp && t->t_cpupart == ol dpp &&
t->t _bound_cpu != cp
t->t_cpu = disp_|lowri_cpu(ncp, t,
t->t_pri);
t->t_cpu = disp_lowpri_cpu(ncp, t->t_Ipl,
t->t_pri, NULL);
}

t = t->t_next;

} while (t != curthread);

/| *

* Clear off the CPU s run queue, and the kp queue if the
* partition is now enpty.
*/

di sp_cpu_i nactive(cp);

new usr/src/ uts/comon/ di sp/ cpupart.c

641 /*

642 * Make cp switch to a thread fromthe new partition.
643 */

644 cp->cpu_runrun = 1;

645 cp- >cpu_kprunrun = 1;

646 1

648 cpu_i nmotion = NULL;

649 start_cpus();

651 /*

652 * Let anyone interested know that cpu has been added to the set.
653 */

654 cpu_state_change_noti fy(cp->cpu_id, CPU CPUPART_IN);

656 /*

657 * Now | et the cyclic subsystem know t hat

658 * bound to the new processor set.

659 */

660 cyclic_nove_in(cp);

662 return (0);

663 }

__unchanged_portion_omtted_

can reshuffle cyclics

new usr/src/ uts/comon/ di sp/disp.c

R R R R

70269 Wed May 15 07:34:02 2019

new usr/src/uts/comon/ di sp/disp.c

10924 Need nmitigation of L1TF (CVE-2018-3646)

Revi ewed by: Robert Mistacchi <rm@ oyent.conm>

Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr

Revi ewed by: Peter Tribble <peter.tribble@mail.conm

IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

-~

*
*
*
*
*
*
*
*
*
*
* Wen distributing Covered Code, include this CDDL HEADER i n each
*
*
*
*
*
*
*
*
*
*
*

21/

22 Copyri ght 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 Use is subject to |license terns.

24 /

26 /*

27 * Copyright (c) 2018, Joyent, Inc. Al rights reserved.
*
/

30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
31 /* Al Rights Reserved *

34 #include <sys/types. h>
35 #include <sys/param h>
36 #include <sys/sysnacros. h>
37 #include <sys/signal.h>
38 #include <sys/user.h>

39 #include <sys/systm h>
40 #incl ude <sys/sysinfo.h>
41 #include <sys/var.h>

42 #incl ude <sys/errno. h>
43 #incl ude <sys/cm_err. h>
44 #incl ude <sys/debug. h>
45 #include <sys/inline. h>
46 #include <sys/disp.h>

47 #incl ude <sys/cl ass. h>
48 #i ncl ude <sys/ bitnap. h>
49 #incl ude <sys/kmem h>

50 #include <sys/cpuvar. h>
51 #include <sys/vtrace. h>
52 #include <sys/tnf.h>

53 #include <sys/cpupart.h>
54 #include <sys/|grp. h>

55 #incl ude <sys/pg. h>

56 #i nclude <sys/cnt.h>

57 #include <sys/bitset.h>
58 #include <sys/schedctl.h>

new usr/src/uts/comon/ di sp/disp.c

#i

ncl ude <sys/atomic. h>

ncl ude <sys/dtrace. h>
ncl ude <sys/sdt. h>

ncl ude <sys/archsystm h>
ncl ude <sys/ht. h>

ncl ude <vni as. h>

#def i ne BOUND_CPU 0x1
#def i ne BOUND_PARTI TI ON 0x2
#def i ne BOUND_| NTR 0x4

| *
st

Di spatch queue allocation structure and functions */
ruct di sp_queue_info {

disp_t *dp;

di spg_t *ol ddi spq;

di spg_t *newdi spq;

ul ong_t *ol ddgact map;

ul ong_t *newdgact map;

int ol dngl obpri s;

_hnchanged_port ion_omtted_

1118 #define CPU_IDLINGpri) ((pri) == -1)

1123 static void
1124 cpu_resched(cpu_t *cp, pri_t tpri)

1125 {

1126 int call poke cpu = 0;

1127 pri_t cpupri = cp->cpu_ dlspatch pri;

1129 if (c ur| !'= CPU_IDLE_PRI && cpupri < tpri) {

1126 if (!CPU_IDLINGcpupri) & (cpupri < tpri)) {

1130 TRACE 2(TR FAC DI SP, TR CPU_RESCHED,

1131 "CPU_RESCHED: Tpri %l Cpupri %", tpri, cpupri);

1132 if (tpri >= upreenptpri && cp- >cpu_runrun == 0) {

1133 cp->cpu_runrun = 1;

1134 aston(cp->cpu_di spt hread);

1135 if (tpri < kpreenptpri && cp !'= CPU

1136 cal | _poke_cpu = 1;

1137 }

1138 if (tpri >= kpreenptpri && cp->cpu_kprunrun == 0) {

1139 cp->cpu_kprunrun = 1;

1140 if (cp T=CP

1141 cal | _poke_cpu = 1;

1142 }

1143 }

1145 /*

1146 */ Propagate cpu_runrun, and cpu_kprunrun to gl obal visibility.
1147 *

1148 menbar _enter();

1150 if (call_poke_cpu)

1151 poke_cpu(cp->cpu_id);

1152 }

1154 /*

1155 * setbackdq() keeps rungs bal anced such that the difference in | ength
1156 * between the chosen rung and the next one is no nore than RUNQNAX DI FF.
1157 * For threads with priorities bel ow RUNQ MATCH PRI |evels, the rung’s |engths
1158 * nmust match. Wien per-thread TS _RUNQVATCH flag is set, set backdq() will
1159 * try to keep runqgs perfectly bal anced regardl ess of the thread priority.
1160 */

1161 #define RUNQ MATCH PRI 16 /* pri bel ow which queue |engths nmust match */
1162 #defi ne RUNQ MAX_ DI FF 2 /* maxi numrung |l ength difference */

new usr/ src/ uts/ comon/ di sp/ disp.c 3 new usr/ src/ uts/ comon/ di sp/ disp.c 4
1163 #define RUNQ LEN(cp, pri) ((cp)->cpu_di sp->di sp_q[pri].dg_sruncnt) 1228 * request.
1229 * - The thread last ran outside its hone |group.
1165 /* 1225 * - The thread last ran outside it’s home Igroup.
1166 * Macro that evaluates to true if it is likely that the thread has cache 1230 *
1167 * warnth. This is based on the ambunt of tinme that has el apsed since the 1231 f ((!THREAD_HAS_CACHE_WARMTH(tp)) ||
1168 * thread last ran. If that anount of tine is |less than "rechoose_interval" 1232 I'ht _shoul d_run(tp, tp->t_cpu) ||
1169 * ticks, then we decide that the thread has enough cache warnth to warrant 1233 (tp->t_cpu == cpu_i nnotion) ||
1170 * sone affinity for t->t_cpu. 1234 ! LGRP_(IJ\ITAI NS CPU(tp->t_Ipl->lpl_lgrp, tp->t_cpu)) {
1171 */ 1235 cp = disp_Towpri_cpu(tp->t_cpu, tp, tpri);
1172 #defi ne THREAD_HAS_CACHE_WARMTH(t hr ead) \ 1228 (tp->t _Cpu_ == cpu_| innotion)) {
1173 ((thread == curthread) || \ 1229 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_Ipl, tpri, NULL);
1174 ((ddi _get _Ibolt() - thread->t_disp_tine) <= rechoose_interval)) 1230 } else if (!LGRP_CONTAINS CPU(tp->t_Ipl->Ipl_lgrp, tp->t_cpu)) {
1175 /* 1231 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_ipl, tpri,
1176 * Put the specified thread on the back of the dispatcher 1232 self ? tp->t_cpu : NULL);
1177 * queue corresponding to its current priority. 1236 } else {
1178 * 1237 cp = tp->t_cpu;
1179 * Called with the thread in transition, onproc or stopped state 1238 }
1180 * and | ocked (transition inplies |ocked) and at high spl.
1181 * Returns with the thread in TS_RUN state and still |ocked. 1240 if (tp- >t cpupart == cp->cpu_part) {
1182 */ 1241 qI en;
1183 voi d
1184 set backdq(kthread_t *tp) 1243 /*
1185 { 1244 * Performany CMI | oad bal anci ng
1186 di spq_t *dg; 1245 *
1187 disp_t *dp; 1246 cp = cnt_bal ance(tp, cp);
1188 cpu_t *cp;
1189 pri_t tpri; 1248 /*
1190 i nt bound; 1249 * Bal ance across the run queues
1191 bool ean_t sel f; 1250 *
1251 glen = RUNQ LEN(cp, tpri);
1193 ASSERT(THREAD_LOCK_HELD(t p)); 1252 if (tpri >= RUNQ MATCH PRI &&
1194 ASSERT((t p- >t _schedfl ag & TS ALLSTART) == 0); 1253 I (tp->t_schedflag & TS RUNQVATCH))
1195 ASSERT(!t hr ead_on_queue(tp)); /* make sure tp isn’t on a rung */ 1254 gl en -= RUNQ_MAX_ DI FF;
1255 if (glen > 0) {
1197 I* 1256 cpu_t *newcp;
1198 * |f thread is "swapped" or on the swap queue don’t
1199 * queue it, but wake sched. 1258 if (tp->t_Ipl->pl_lgrpid == LGRP_ROOTI D) {
1200 */ 1259 newcp = cp->cpu_next_part;
1201 if ((tp->t_schedflag & (TS_LOAD | TS_ON_.SWAPQ) != TS LOAD) { 1260 } else if ((newcp = cp->cpu_next_Ipl) == cp) {
1202 di sp_swapped_setrun(tp); 1261 newcp = cp->cpu_next_part;
1203 return; 1262 }
1204 }
1264 if (ht_should_run(tp, newcp) &&
1206 self = (tp == curthread); 1265 RUNQ LEN(newcp, tpri) < glen) {
1261 if (RUNQ LEN(newcp, tpri) < glen) {
1208 if (tp->t_bound_cpu || tp->t_weakbound_cpu) 1266 DTRACE_PROBE3(rung__bal ance,
1209 bound = 1; 1267 kthread_t *, tp,
1210 el se 1268 cpu_t *, cp, cpu_t *, newcp);
1211 bound = 0; 1269 cp = newcp;
1270 }
1213 tpri = DISP_PRIQ(tp); 1271 }
1214 if (ncpus == 1) 1272 } else {
1215 cp = tp->t_cpu; 1273 *
1216 else if (!bound) { 1274 * Mgrate to a cpu in the new partition.
1217 if (tpri >= kpgpri) { 1275 */
1218 set kpdq(tp, SETKP_BACK); 1276 cp = disp_l owpri_cpu(tp->t_cpupart->cp_cpulist, tp,
1219 return; 1277 tp->t_pri);
1220 } 1272 cp = disp_|l owpri_cpu(tp->t_cpupart->cp_cpulist,
1273 tp->t_Ipl, tp->t_pri, NULL);
1222 /* 1278 }
1223 * We'll generally let this thread continue to run where 1279 ASSERT((cp->cpu_flags & CPU QU ESCED) == 0);
1224 * it last ran...but will consider mgration if: 1280 } else {
1225 * - The thread probably doesn't have nuch cache warnth. 1281 /*
1226 * - HT exclusion would prefer us to run el sewhere 1282 * It is possible that t_weakbound_cpu != t_bound_cpu (for
1222 * - W thread probably doesn’t have nmuch cache warnth. 1283 * a short time until weak binding that existed when the
1227 * - The CPU where it last ran is the target of an offline 1284 * strong binding was established has dropped) so we nust

new usr/src/ uts/comon/ di sp/disp.c

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1301
1302
1303
1304
1305
1306

1308
1309

1311
1312
1313

1315
1316
1317
1318
1319

1321

1323
1324
1325

1327
1328
1329
1330
1331

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

1349
1350

* favour weak binding over strong.
*/

cp = tp->t_weakbound_cpu ?

t p- >t _weakbound_cpu : tp->t_bound_cpu;

—~—

B EEEE R
-~

but then chosen to run again by disp.
the queue is in TS _ONPROC state, don't set its t_waitrqg until a
repl acement process is actually scheduled in swtch(). In this

state.
if (('self) & (tp->t_waitrq == 0)) {
hrtime_t curtine;

curtime = gethrtinme_unscal ed();

(void) cpu_update_pct(tp, curtine);

tp->t_waitrq = curting;
} else {

(void) cpu_update_pct(tp, gethrtime_unscaled());
}

dp = cp->cpu_di sp;
di sp_| ock_ent er _hi gh(&dp->di sp_I ock);

DTRACE_SCHED3(enqueue, kthread t * tp, disp_t *, dp, int, 0);
TRACE_3(TR_FAC DI SP, TR _BACKQ, "setbackdq: pri %1 cpu % tid pr s
tpri, cp, tp);

#i f ndef NPROBE
/* Kernel probe */
if (tnf_tracing_active)
tnf_thread_queue(tp, cp, tpri);
#endi f /* NPROBE */

ASSERT(tpri >= 0 & tpri < dp->disp_npri)
THREAD_RUN(t p, &dp->di sp_I ock);

t p->t _di sp_queue = dp;
tp->t_link = NULL

/* set t_state to TS_RUN */

dq = &dp->disp_q[tpri];
dp- >di sp_nrunnabl e++;
if (!bound)
dp->di sp_steal = 0;
menbar _enter();

if (dg->dg_sruncnt++ != 0) {
ASSERT(dg->dq_first !'= NULL);
dg->dqg_l ast->t _link = tp;
dg- >dg_l ast = tp;
} else {
ASSERT(dg- >dq_first == NULL)
ASSERT(dq—>dq_I ast == NULL);
dg- >dqg_first dg- >dg_l ast = tp;
BT_SET(dp->di sp_gactmap, tpri);
if (tpri > dp->disp_maxrunpri) {
dp->di sp_nmexrunpri = tpri;
menbar _enter ();
cpu_resched(cp, tpri);

}

if (!bound && tpri > dp->di sp_max_unbound_pri) {
if (self && dp->disp_max_unbound_pri == -1 & & cp == CPU) {

A thread that is ONPROC nay be tenporarily placed on the run queue
If the thread we're placing on

situation, curthread is the only thread that could be in the ONPROC

new usr/src/uts/comon/ di sp/disp.c

1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

1366
1367
1368
1369
1370
1371
1372
1373

1374 void
{set frontdq(kthread_t *tp)

1375
1376
1377
1378
1379
1380
1381

1383
1384
1385

1387
1388
1389
1390
1391
1392
1393
1394

1396
1397
1398
1399

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1410
1415

O * ok * ok * ok * %
=22

/
If there are no other unbound threads on the
run queue, don't allow other CPUs to steal

this thread while we are in the mddle of a
context switch. W may just switch to it

again right away. CPU_DI SP_DONTSTEAL is cleared
in swch and swch_to.

* Ok kb % k¥

*/
cp->cpu_di sp_flags | = CPU_DI SP_DONTSTEAL;

dp- >di sp_max_unbound_pri = tpri;

}
(*di sp_enqg_t hread) (cp, bound);

Put the specified thread on the front of the dispatcher
queue corresponding to its current priority.

Called with the thread in transition, onproc or stopped state
and | ocked (transition inplies |ocked) and at high spl.
Returns with the thread in TS RUN state and still I ocked.

disp_t *dp;
di spq_t *dq;
cpu_t *cp;
pri_t tpri;
I nt bound;

ASSERT(THREAD_LOCK_HELD(tp));
ASSERT((t p->t _schedflag & TS _ALLSTART) == 0);
ASSERT(!t hr ead_on_queue(tp)); /* make sure tp isn’'t on a rung */

*

* |f thread is "swapped" or on the swap queue don’t
* queue it, but wake sched.
*

if ((tp->t_schedflag & (TS LOAD | TS_ON . SWAPQ)) != TS LOAD) {
di sp_swapped_set run(tp);

return;

}

if (tp->t_bound_cpu || tp->t_weakbound_cpu)
bound = 1;

el se
bound =

tpri = DISP_PRIQ(tp);
if (ncpus == 1)
cp = tp->t_cpuy;
else if (!bound) {
if (tpri >= kpgpri) {
set kpdq(tp, SETKP_FRONT);

return;
}
cp = tp->t_cpu;
if (tp->t_cpupart == cp->cpu_part) {
/*
* W'l generally let this thread continue to run
* where it last ran, but will consider mgration if:
* - The thread | ast ran outside its home |group.
* - The thread last ran outside it’'s hone Igroup.
*

- The CPU where it last ran is the target of an

new usr/ src/ uts/ comon/ di sp/ disp.c 7

1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1418
1419
1420
1421
1422
1423
1424
1425
1427
1428
1429
1430
1431
1432
1433
1432
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445

1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

1458
1459
1460
1461
1462
1463

1465
1466

1468
1469

1471
1472

#i f ndef

* offline request (a thread_nonmigrate() on the in
* notion CPU relies on this when forcing a preenpt).
* - The thread isn't the highest priority thread where
* it last ran, and it is considered not likely to
* have significant cache warnth
*/
if (!LGRP_CONTAINS CPU(tp->t_Ipl->lpl_lgrp, cp) ||
cp == cpu_inmotion ||
(tpri < cp->cpu_di sp->di sp_maxrunpri &&
! THREAD_HAS_CACHE_WARMTH(tp))) {
cp = disp_lowpri_cpu(tp->t_cpu, tp, tpri);
if ((!LGRP_CONTAINS CPU(tp->t_Ipl->Ipl_lgrp, cp)) ||
(cp == cpu inmotion)) {
cp = |sp_lowpr| _cpu(tp->t —cpy, tp->t_Ipl, tpri,
p == curthread) ? cp : NULL);

(t
} else if ((tpri < cp->cpu_disp->di sp_maxrunpri) &&
(! THREAD_HAS_CACHE_WARMTH(t p)))
cp = disp_l owpri _cpu(tp->t_cpu,
NULL);

tp->t_Ipl, tpri,

}
} else {
/*
* Mgrate to a cpu in the new partition.

cp = di sp | owpri _cpu(tp->t_cpupart->cp_cpulist,

tp, tp->t_pri);

tp->t_Ipl, tp->t_pri , NULL);
}
ASSERT((cp->cpu_flags & CPU_QUI ESCED) == 0);
} else {
* It is possible that t_weakbound_cpu != t_bound_cpu (for

* a short time until weak binding that existed when the
* strong binding was established has dropped) so we nust
* favour weak binding over strong.

*/

cp = tp->t_weakbound_cpu ?

t p- >t _weakbound_cpu : tp->t_bound_cpu;

*

* Athread that is ONPROC may be tenporarily placed on the run queue

* but then chosen to run again by disp. |f the thread we're placing on
* the queue is in TS ONPROC state, don’t set its t_waitrq until a

* replacenent process is actually scheduled in swch(). In this

* situation, curthread is the only thread that could be in the ONPROC
* state.

*

f

((tp !'= curthread) && (tp->t_waitrq == 0)) {
hrtime_t curtine;

curtime = gethrtime_unscal ed();
(void) cpu_l update pct(tp, curtine);
tp->t_waitrq = curtineg;

} else {
(voi d) cpu_update_pct(tp,

}

dp = cp->cpu_di sp;
di sp_I| ock_ent er _hi gh(&dp->di sp_I ock) ;

gethrtime_unscal ed());

TRACE_2(TR_FAC_DI SP, TR_FRONTQ, "frontq: pri
DTRACE_SCHED3(enqueue, kthread_t *, tp,

% tid %", tpri,
disp_t *, dp, int, 1);

tp);

NPROBE

/* Kernel probe */

new usr/src/ uts/comon/ di sp/disp.c

1473 if (tnf_tracing_active)

1474 tnf _thread_queue(tp, cp, tpri);

1475 #endif /* NPROBE */

1477 ASSERT(tpri >= 0 & tpri < dp->disp_npri);

1479 THREAD_RUN(t p, &dp->di sp_I ock); /* set TS _RUN state and |ock */
1480 tp- >t _di sp_queue = dp;

1482 dq = &dp->disp_q[tpri];

1483 dp- >di sp_nrunnabl e++;

1484 if (!bound)

1485 dp->di sp_steal = 0;

1486 menbar _enter();

1488 if (dg->dg_sruncnt++ != 0) {

1489 ASSERT(dq->dq_I ast = NULL);

1490 tp->t_link = dg->dq_first;

1491 dg->dq_fi rst =tp;

1492 } else {

1493 ASSERT(dg- >dq_| ast == NULL);

1494 ASSERT(dqg->dg_first == NULL)

1495 tp->t link = NULL

1496 dg->dq_first = dg->dqg_last = tp;

1497 BT_SET(dp->di sp_gactnmap, tpri);

1498 if (tpri > dp->disp_maxrunpri) {

1499 dp->di sp_maxrunpri = tpri;

1500 nmenbar _enter();

1501 cpu_resched(cp, tpri);

1502 }

1503 }

1505 if (!bound && tprl > dp->di sp_max_unbound_pri) {

1506 if (tp == curthread & dp->di sp_max_unbound_pri == -1 &&
1507 cp == CPU) {

1508 /*

1509 * |f there are no other unbound threads on the
1510 * run queue, don't allow other CPUs to steal
1511 * this thread while we are in the mddle of a
1512 * context switch. We may just switch to it
1513 * again right away. CPU DI SP_DONTSTEAL is cleared
1514 * in swch and swtch_to.

1515 */

1516 cp->cpu_di sp_flags | = CPU_DI SP_DONTSTEAL;
1517

1518 dp->di sp_nmax_unbound_pri = tpri;

1519 }

1520 (*di sp_eng_thread) (cp, bound);

1521 }

1523 /*

1524 * Put a high-priority unbound thread on the kp queue

1525 */

1526 static void

1527 setkpdg(kthread_t *tp, int borf)

1528 {

1529 di spg_t *dq;

1530 disp_t *dp;

1531 cpu_t *cp;

1532 pri_t tpri;

1534 tpri = DISP_PRIQ(tp);

1536 dp = &t p->t_cpupart->cp_kp_queue;

1537 di sp_I ock_ent er _hi gh(&p->di sp_| Iock)

new usr/src/ uts/comon/ di sp/disp.c

1539

1541
1542
1543
1544
1545
1546

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

1579
1580
1581
1582
1583
1584
1583
1585
1586

1588 #i f ndef
1589
1590
1591

TRACE_2(TR_FAC DI SP, TR FRONTQ “frontq:pri %l tid %", tpri, tp);
ASSERT(tpri >= 0 & tpri < dp->disp_npri);

DTRACE_SCHED3(enqueue, kthread_t tp, disp_t *, dp, int, borf);
THREAD_RUN(t p, &dp->disp_| ock); /* set t_state to TS_RUN */
tp->t _di sp_queue = dp;

dp- >di sp_nrunnabl e++;

dg = &p->disp_q[tpri];

if (dg->dg_sruncnt++ != 0)
if (borf == SETKP_BACK)
ASSERT(dg- >dq_f| rst !'= NULL);
tp->t_link = NULL;
dg->dq_last->t_link = tp;
dg->dq_l ast = tp;
} else {
ASSERT(dg- >dq_l ast != NULL);
tp->t_link = dg->dqg_first;
dg- >dq_ flrst =tp;

} else {

if (borf == SETKP_BACK) {
ASSERT(dqg->dq_first == NULL);
ASSERT(dg->dq_l ast == NULL);
dg->dq_first = dg->dg_last = tp;

} else {
ASSERT(dg->dq_| ast == NULL);
ASSERT(dqg->dq_first == NULL);
tp->t_link = NULL;
dg->dq_first = dg->dg_l ast = tp;

}
BT_SET(dp->di sp_gactmap, tpri);
if (tpri > dp->di sp_nax unbound prl)

dp- >di sp_max_unbound_pri = tpri;
if (tpri > dp->disp_maxrunpri) {
dp->di sp_mexrunpri = tpri;
nmenbar _enter();
}
}
cp = tp->t_cpu;
if (tp->t_cpupart != cp->cpu_part) {

/* migrate to a cpu in the new partition */
cp = tp->t_cpupart->cp_cpulist;

cp = disp_lowpri_cpu(cp, tp, tp->t_pri);

cp = disp_lowri_cpu(cp, tp->t_Ipl, tp->t_pri, NULL);
di sp_l ock_ent er _hi gh(&cp- >cpu_di sp- >di sp_| Iock)
ASSERT((cp->cpu_flags & CPU_QUI ESCED) == 0);

NPROBE

/* Kernel probe */

if (tnf_tracing_active)
tnf_thread_queue(tp, cp, tpri);

1592 #endif /* NPROBE */

1594
1595
1596
1597
1598
1599 }

if (cp->cpu_chosen_level < tpri)
cp->cpu_chosen_l evel = tpri;

cpu_resched(cp, tpri);

di sp_Il ock_exi t _hi gh(&cp >cpu_di sp->di sp_| ock) ;

(*di sp_eng_thread) (cp, 0);

__unchanged_portion_omtted_

2556 /*

2557 * Return a score rating this CPU for running this thread: lower is better.

new usr/ src/ uts/ comon/ di sp/ di sp.c 10
2556 * disp_lowpri_cpu - find CPU running the |owest priority thread.

2557 * The hint passed in is used as a starting point so we don’t favor

2558 * CPU 0 or any other CPU. The caller should pass in the npst recently
2559 * used CPU for the thread.

2558 *

2559 * If curthread is |ooking for a new CPU, then we ignore cpu_dispatch_pri for
2560 * curcpu (as that’s our own priority).

2561 * The I group and priority are used to determne the best CPU to run on
2562 * in a NUMA machine. The | group specifies which CPUs are cl osest while
2563 * the thread priority will indicate whether the thread will actually run
2564 * there. To pick the best CPU, the CPUs inside and outside of the given
2565 * I group which are running the lowest priority threads are found. The
2566 * renote CPU is chosen only if the thread will not run locally on a CPU
2567 * within the Igroup, but wll run on the remote CPU. If the thread

2568 * cannot imediately run on any CPU, the best local CPU will be chosen.
2561 *

2562 * |f a cpuis the target of an offline request, then try to avoid it.

2570 * The | pl specified also identifies the cpu partition from which

2571 * di sp_l owpri _cpu shoul d sel ect a CPU.

2563 *

2564 * Otherwise we'll use double the effective dispatcher priority for the CPU.
2573 * curcpu is used to indicate that disp_lowri_cpu is being called on
2574 * behal f of the current thread. (curthread is |ooking for a new cpu)
2575 * In this case, cpu_dispatch_pri for this thread’s cpu should be

2576 * i gnor ed.

2565 *

2566 * W do this so ht_adjust_cpu_score() can increment the score if needed,

2567 * without ending up over-riding a dispatcher priority.

2568 */

2569 static pri

2570 cpu_ score(cpu t *cp, kthread_t *tp)

2571 {

2572 pri_t score;

2574 if (tp == curthread && cp == curthread->t_cpu)

2575 score = 2 * CPU_IDLE_PRI

2576 else if (cp == = cpu_| i nmoti on)

2577 score = SHRT_MAX;

2578 el se

2579 score = 2 * cp->cpu_di spatch_pri ;

2581 if (2 * cp->cpu_disp->di sp_naxrunpri > score)

2582 score = 2 * cp->cpu_di sp->di sp_nmaxrunpri ;

2583 if (2 * cp->cpu_chosen_l evel > score)

2584 score = 2 * cp->cpu_chosen_| evel ;

2586 return (ht_adjust_cpu_score(tp, cp, score));

2587 }

2589 /*

2590 * disp_lowpri_cpu - find a suitable CPU to run the given thread.

2578 * If a cpuis the target of an offline request then try to avoid it.
2591 *

2592 * We are looking for a CPUw th an effective dispatch priority |ower than the
2593 * thread's, so that the thread will run i mediately rather than be enqueued.
2594 * For NUMA locality, we prefer "hone" CPUs within the thread’ s ->t_| pl group.
2595 * |f we don’t find an available CPU there, we will expand our search to include
2596 * wider locality levels. (Note these groups are already divided by CPU

2597 * partition.)

2598 *

2599 * If the thread cannot i mediately run on *any* CPU, we'll enqueue ourselves on
2600 * the best home CPU we found.

2601 *

2602 * The hint passed in is used as a starting point so we don’t favor CPU O or any
2603 * other CPU. The caller should pass in the nost recently used CPU for the
2604 * thread; it’'s of course possible that this CPUisn't in the home | group.

new usr/src/ uts/comon/ di sp/disp.c

2605
2606
2607
2608
2580
2581
2582
2609
2610
2611
2585

2612 {

2613
2614
2615

2591
2592

2617
2595

2619
2598

2600
2601
2602
2603
2604
2621
2622
2606
2607

2609
2610
2611
2612
2613
2614
2615
2616
2617
2624
2625
2620

2627
2622

2629
2630
2631

2626
2633

2635
2629
2636
2637
2638

2640

This function nust be called at either high SPL,
so that the "hint" CPU cannot be rempbved fromthe online CPU list while we
are traversing it.

=Dk ok R k% ok *

This function nust be called at either high SPL, or with preenption
di sabl ed, so that the "hint" CPU cannot be renobved fromthe online
CPU list while we are traversing it.

p_lowpri _cpu(cpu_t *hint, kthread t *tp, pri_t tpri)
_lowpri_cpu(cpu_t *hint, Ipl_t *Ipl, pri_t tpri, cpu_t *curcpu)

cpu_t *best cpu;
cpu_t *best honecpu;
cpu_t *cp, *cpstart;

pri_t bestpri;

pri_t cpupri;

kl grpset _t done;

kl grpset _t cur_set;

I pl_t *Ipl _iter, *lpl_leaf;
i nt 15

/*

* Scan for a CPU currently running the |owest priority thread.
* Cannot get cpu_l ock here because it is adaptive.
*/V‘é do not require lock on CPU |ist.
*
ASSERT(hint !'= NULL)
ASSERT(tp->t _| pl ->I pl _ncpu > 0);
ASSERT(| pl !'= NULL)
ASSERT(| pl - >l pl _ncpu > 0);

/
First exanmine local CPUs. Note that it's possible the hint CPU
passed in in renote to the specified hone | group. If our priority
isn’t sufficient enough such that we can run i mediately at honeg,
then exam ne CPUs renpte to our hone | group.
We would like to give preference to CPUs closest to "hone".
If we can’t find a CPU where we'll run at a given |evel

* of locality, we expand our search to include the next |evel.

*

/
best cpu = besthomecpu = NULL;
kl gr pset _cl ear (done);
/* start with I pl we were passed */

R S

Ipl_iter = tp->t_Ilpl;
Ipl_iter = 1pl;
do {

pri_t best = SHRT_MAX;
kl grpset _t cur_set;

bestpri = SHRT_MAX;
kl grpset _cl ear(cur_set);

for (int i =0; i <Ipl_iter->pl_nrset; i++) {
for (i =0; i <Ipl_iter->pl_nrset; i++) {
I pl _leaf = IpI iter->Ipl _rset[i];
if (klgrpset_ismenber(done, |pl_leaf->lpl_|grpid))
continue;

kl grpset _add(cur_set, Ipl_leaf->lpl_Ilgrpid);

11

or with preenption disabl ed,

new usr/ src/ uts/ comon/ di sp/ disp.c 12
2642 if (hint->cpu_lpl ==1 pI | eaf)

2643 cp = cpstart = hint;

2644 el se

2645 cp = cpstart = | pl_Ileaf->lpl_cpus;

2647 do {

2648 pri_t score = cpu_score(cp, tp);

2650 if (score < best) {

2651 best = score;

2642 if (cp == curcpu)

2643 cpuprl = -1;

2644 else if (cp == cpu i nnoti on)

2645 cpupri = SHRT_MAX;

2646 el se

2647 cpupri = cp->cpu_dispatch_pri;
2648 if (cp->cpu_disp->di sp_maxrunpri > cpupri)
2649 cpupri = cp->cpu_di sp->di sp_nmaxrunpri ;
2650 if (cp->cpu_chosen_level > cpupri)

2651 cpupri = cp->cpu_chosen_| evel ;
2652 if (cpuprl < bestpri) {

2653 (CPU_I DLI N cpupri)) {

2654 ASSERT((cp->cpu_flags &
2655 CPU_QUI ESCED) == 0);
2656 return (cp);

2657

2652 bestcpu = cp;

2654 /* An idle CPU. we're done. */
2655 if (score / 2 == CPU_|IDLE_PRI)
2656 goto out;

2659 bestpri = cpupri;

2657 }

2658 } while ((cp = cp->cpu_next_Ipl) != cpstart);
2659

2661 if (bestcpu != NULL && tpri > (best / 2))

2662 goto out;

2664 if (bestcpu & (tpri > bestpri)) {

2665 ASSERT((best cpu->cpu_flags & CPU_QUI ESCED) == 0);
2666 return (bestcpu);

2667 }

2664 1 f (besthomecpu == NULL)

2665 best homecpu = best cpu;

2667 /*

2668 * Add the I grps we just considered to the "done" set
2669 *

2670 kl grpset _or(done, cur_set);

2672 } while ((Ipl_iter = 1Ipl_iter->pl_parent) != NULL);

2674 /*

2675 * The specified priority isn't high enough to run i mmedi ately
2676 * anywhere, so just return the best CPU fromthe hone | group.
2677 */

2678 best cpu = best honecpu;

2680 out:

2681 ASSERT((best cpu->cpu_flags & CPU_QUI ESCED) == 0);

2682 return (bestcpu);

2681 ASSERT((best homecpu->cpu_flags & CPU QU ESCED) == 0);

2682 return (besthomecpu);

2683 }

__unchanged_portion_onitted_

new usr/src/ uts/comon/ di sp/disp.c

2697 /* ARGSUSED*/
2698 static void
2699 generic_eng_thread(cpu_t *cpu, int bound)

2700 {

2701 }

2703 cpu_t *

2704 di sp_choose_best_cpu(voi d)

2705 {

2706 kt hread_t *t = curthread

2707 cpu_t *curcpu = CPU

2709 ASSERT(t->t_preenpt > 0)

2710 ASSERT(t->t state == TS ONPROC) ;
2711 ASSERT(t->t _schedflag & TS VCPU);
2713 if (ht_should_run(t, curcpu))
2714 return (curcpu)

2716 return (disp_lowpri_cpu(curcpu, t
2717 }

____unchanged_portion_onitted_

t->t_pri));

13

new usr/src/uts/comon/di sp/thread.c 1 new usr/src/uts/comon/di sp/thread.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 #l ncl ude <SyS/ pset . h>
55398 Wed May 15 07:34: 03 2019 60 #incl ude <sys/door. h>
new usr/src/uts/comon/di sp/thread.c 61 #include <sys/spl.h>
10924 Need mitigation of L1TF (CVE-2018-3646) 62 #include <sys/copyops. h>
Revi ewed by: Robert Mistacchi <rm@ oyent.conm> 63 #include <sys/rctl.h>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr 64 #include <sys/brand. h>
Revi ewed by: Peter Tribble <peter.tribble@mail.conm 65 #i ncl ude <sys/pool . h>
IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE] 66 #I ncl ude <sys/ zone. h>
1/* 67 #include <sys/tsol/label.h>
2 * CDDL HEADER START 68 #include <sys/tsol/tndb. h>
3 * 69 #include <sys/cpc_inpl.h>
4 * The contents of this file are subject to the terms of the 70 #include <sys/sdt.h>
5 * Common Devel opnent and Distribution License (the "License"). 71 #include <sys/reboot.h>
6 * You may not use this file except in conpliance with the License. 72 #include <sys/kdi.h>
7 * 73 #include <sys/schedctl. h>
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 #include <sys/waitq.h>
9 * or http://ww.opensol aris.org/os/licensing. 75 #include <sys/cpucaps. h>
10 * See the License for the specific |anguage governing perm ssions 76 #include <sys/kiconv. h>
11 * and limtations under the License. 77 #include <sys/ctype. h>
12 * 78 #include <sys/ht.h>
13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 struct knmem . cache *thread_cache; /* cache of free threads */
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 struct knem cache *Iwp_cache; /* cache of free Iwps */
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 struct knem cache *turnstile_cache; /* cache of free turnstiles */
17 * information: Portions Copyright [yyyy] [nane of copyright owner] ,
18 = 84 /*
19 * CDDL HEADER END 85 * allthreads is only for use by kmemreaders. Al kernel |oops can use
20 */ 86 * the current thread as a start/end point.
87 *
22 | * 88 kthread_t *allthreads = &t0; /* circular list of all threads */
23 * Copyright (c) 1991, 2010, Oacle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2018 Joyent, Inc. 90 static kcondvar_t reaper_cv; /* synchronization var */
25 */ 91 kthread_t *t hread_deat hr ow, /* circular list of reapable threads */
92 kthread_t *| wp_deat hr ow; /* circular list of reapable threads */
27 #include <sys/types. h> 93 krut ex_t reapl ock; /* protects Iwp and thread deathrows */
28 #incl ude <sys/param h> 94 int thread_reapcnt = 0; /* nunber of threads on deathrow */
29 #include <sys/sysnmacros. h> 95 int | wp_reapcnt = 0; /* nunber of |wps on deathrow */
30 #include <sys/signal.h> 96 int reaplimt = 16; /* delay reaping until reaplimt */
31 #include <sys/stack. h>
32 #include <sys/pch. h> 98 thread_free_l ock_t *thread_free_| ock;
33 #include <sys/user. h> 99 /* protects tick thread fromreaper */
34 #include <sys/systm h>
35 #include <sys/sysinfo.h> 101 extern int nthread;
36 #include <sys/errno. h>
37 #include <sys/cm_err. h> 103 /* System Schedul ing cl asses. */
38 #include <sys/cred. h> 104 id_t sysci d; /* system scheduling class ID */
39 #include <sys/resource. h> 105 id_t sysdcci d = CLASS_UNUSED, /* reset when SDC | oads */
40 #incl ude <sys/task.h>
41 #include <sys/project.h> 107 void *segkp_t hread; /* cookie for segkp pool */
42 #include <sys/proc. h>
43 #incl ude <sys/debug. h> 109 int |wp_cache_sz = 32;
44 #incl ude <sys/disp. h> 110 int t_cache_sz = 8;
45 #incl ude <sys/cl ass. h> 111 static kt_did_t next_t_id = 1;
46 #include <vn seg_knem h>
47 #incl ude <vn seg_kp. h> 113 /* Default node for thread binding to CPUs and processor sets */
48 #i ncl ude <sys/ nmachl ock. h> 114 int defaul t_bindi ng_node = TB_ALLHARD;
49 #incl ude <sys/kmem h>
50 #include <sys/varargs. h> 116 /*
51 #include <sys/turnstile.h> 117 * Mn/Max stack sizes for stack size paraneters
52 #include <sys/poll.h> 118 */
53 #include <sys/vtrace. h> 119 #defi ne MAX_STKSI ZE (32 * DEFAULTSTKSZ)
54 #include <sys/callb. h> 120 #define M N_STKSI ZE DEFAULTSTKSZ
55 #include <c2/audit.h>
56 #include <sys/tnf.h> 122 /*
57 #include <sys/sobject.h> 123 * default_stksize overrides |wp_default_stksize if it is set.
58 #include <sys/cpupart.h> 124 */

new usr/src/uts/comon/di sp/thread.c 3 new usr/src/uts/comon/di sp/thread.c

125 int def aul t _stksi ze; 352 */
126 int | wp_def aul t _st ksi ze;
354 if (stksize < default_stksize)
128 static zone_key_t zone_thread_key; 355 st ksi ze = defaul t _stksize;
130 unsigned int kmem stacki nfo; /* stackinfo feature on-off */ 357 if (stksize == default_stksize) {
131 kmem stkinfo_t *knmem stkinfo_| og; /* stackinfo circular log */ 358 stk = (caddr_t)segkp_cache_get (segkp_t hread);
132 static kmutex_t knmem stkinfo_l ock; /* protects kmem stkinfo_log */ 359 } else {
360 st ksi ze = roundup(stksize, PAGESIZE);
134 /| * 361 stk = (caddr_t)segkp_get (segkp, stksize,
135 * forward declarations for internal thread specific data (tsd) 362 (KPD_HASREDZONE | KPD_NO ANON | KPD_LOCKED)) ;
136 */ 363 }
137 static void *tsd_realloc(void *, size_t, size_t);
365 ASSERT(stk != NULL);
139 void thread_reaper(void);
367 /*
141 /* forward declarations for stackinfo feature */ 368 * The machi ne- dependent nutex code nmay require that
142 static void stkinfo_begin(kthread_t *); 369 * thread pointers (since they may be used for mutex owner
143 static void stkinfo_end(kthread_t *); 370 * fields) have certain alignnent requirenents.
144 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t); 371 * PTR24_ALICN is the size of the alignnment quanta.
372 * XXX - assumes stack grows toward | ow addresses.
146 /* ARGSUSED*/ 373 */
147 static int 374 if (stksize <= sizeof (kthread t) + PTRRZ4A_ALIGN)
148 turnstile_constructor(void *buf, void *cdrarg, int knflags) 375 crm_err (CE_PANIC, "thread_create: proposed stack size"
149 { 376 " too small to hold thread.");
150 bzero(buf, sizeof (turnstile_t)); 377 #ifdef STACK_GROAMH_DOMN
151 return (0); 378 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1)
152 } 379 st k5| ze & -PTR24_ALI G\, /* make thread ali gned */
__unchanged_portion_omtted_ 380 t (kthread_t *)(stk + stksize);
381 bzero(t si zeof (kthread_t));
316 /* 382 if (audi t_active)
317 * Create a thread. 383 audit _thread_create(t);
318 * 384 t->t_stk = stk + stksize;
319 * thread_create() blocks for nenory if necessary. It never fails. 385 t->t_stkbase = stk;
320 * 386 #el se /* stack grows to | arger addresses */
321 * If stk is NULL, the thread is created at the base of the stack 387 st kS|ze -= SA(sizeof (kthread_t));
322 * and cannot be swapped. 388 t (kthread_t *)(stk);
323 */ 389 bzero(t si zeof (kthr ead_t)),
324 kthread_t * 390 t—>t_stk = stk + sizeof (kthread_t);
325 thread_create(391 t->t_stkbase = stk + stksize + sizeof (kthread_t);
326 caddr _t stk, 392 #endif /* STACK_GROAMH_DOWN */
327 size_t st ksi ze, 393 t->t_flag | = T_TALLOCSTK;
328 voi d (*proc)(), 394 t->t_swap = stk;
329 voi d *arg, 395 } else {
330 size_t len, 396 t = knem cache_al | oc(t hread_cache, KM SLEEP);
331 proc_t *pp, 397 bzero(t, sizeof (kthread_t));
332 I nt state, 398 ASSERT(((uintptr_t)t & (PTRRZ4_ALIGN - 1)) == 0);
333 pri_t pri) 399 if (audit_active)
334 { 400 audi t _thread_create(t);
335 kthread_t *t; 401 /*
336 extern struct classfuncs sys_cl assfuncs; 402 * |Initialize t_stk to the kernel stack pointer to use
337 turnstile_t *ts; 403 * upon entry to the kernel
404 */
339 /* 405 #i f def STACK_GROAMH_DOMN
340 * Every thread keeps a turnstile around in case it needs to bl ock. 406 t->t_stk = stk + stksize;
341 * The only reason the turnstile is not sinply part of the thread 407 t->t_stkbase = stk;
342 * structure is that we may have to break the associati on whenever 408 #el se
343 * nore than one thread bl ocks on a given synchronization object. 409 t->t_stk = stk; /* 3b2-1ike */
344 * From a nmenory- managenent standpoint, turnstiles are |ike the 410 t->t_stkbase = stk + stksize;
345 * "attached nbl ks" that hang off dblks in the streams allocator. 411 #endif /* STACK _GROMH DOMWN */
346 */ 412 }
347 ts = knem cache_al l oc(turnstil e_cache, KM SLEEP);
414 if (kmemstackinfo !'= 0)
349 if (stk == NULL) { 415 st ki nfo_begin(t);
350 /* 416 }

351 * alloc both thread and stack in segkp chunk

new usr/src/ uts/ comon/ di sp/thread.c

418

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

445

447
448
449
450
451
452

454
455
456
457
458
459
460
461

463
464
465
466
467
468

470

472
473
474
475
476

478
479
480
481
482
483

t->t_ts = ts;

/*

* p_cred could be NULL if it thread_create is called before cred_init
* 1s called in main.
*
/

mut ex_ent er (&pp- >p_crl ock) ;
if (pp->p_cred)

crhol d(t->t_cred = pp->p_cred);
mut ex_exi t (&pp->p_crl ock);
t->t_start = gethrestime_sec();
t->t_startpc = proc;
t->t_procp = pp;
t->t_clfuncs = &sys_cl assfuncs. thread;
t->t_cid = syscid;
t->t_pri = pri;
t->t_stime = ddi_get_lbolt();
t->t_schedflag = TS LOAD | TS_DONT_SWAP;
t->t_bind_cpu PBI ND_NONE;
t->t_bindflag (uchar _t) def aul t _bi ndi ng_node;
t->t_bind_pset = PS_NONE;
t->t_plockp = &pp->p_| ock;
t->t_copyops = NULL;
t->t_taskg = NULL;
t->t_anttine = 0;
t->t_hatdepth = 0;

t->t_dtrace_vtime = 1; /* assure vtinmestanp is always non-zero */

CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
#i f ndef NPROBE
/* Kernel probe */
tnf_thread_create(t);
#endi f /* NPROBE */
LOCK_I NI T_CLEAR(&t - >t _I| ock);

*

* Callers who give us a NULL proc nmust do their own
* stack initialization. e.g. |lwp_create()
*
/
if (proc !'= NULL)
t->t_stk = thread_stk_init(t->t_stk);
thread_l oad(t, proc, arg, len);

}

/*

* Put a hold on project0. If this thread is actually in a

* different project, then t_proj will be changed later in

* |wp_create(). Al kernel-only threads nmust be in project O.
*/

t->t_proj = project_hol d(proj0p);
lgrp_affinity_init(&->t_lgrp_affinity);

nmut ex_ent er (&pi dl ock);

nt hr ead++;

t->t_did = next_t_id++;
t->t_prev = curthread->t_prev;
t->t _next = curthread;

/
Add the thread to the list of all threads, and initialize
its t_cpu pointer. W need to block preenption since
cpu_offline wal ks the thread list |ooking for threads
with t_cpu pointing to the CPU being offlined. W want

to make sure that the list is consistent and that if t_cpu

I

new usr/src/ uts/ comon/ di sp/thread.c 6
484 * is set, the thread is on the |ist.

485 */

486 kpreenpt _di sabl e();

487 curthread->t _prev->t_next =t;

488 curthread->t _prev = t;

490 /*

491 * We'll always create in the default partition since that’'s where
492 * kernel threads go (we'll change this later if needed, in

493 * |wp_create()).

490 * Threads shoul d never have a NULL t_cpu pointer so assign it
491 * here. |If the thread is being created wth state TS RUN a

492 * better CPU may be chosen when it is placed on the run queue.
493 *

494 * W need to keep kernel preenption disabled when setting all
495 * three fields to keep themin sync. Also, always create in
496 * the default partition since that’'s where kernel threads go
497 * (if this isn't a kernel thread, t_cpupart will be changed

498 * in lwp_create before setting the thread runnable).

494 */

495 t->t_cpupart = &cp_default;

497 I*

498 * For now, affiliate this thread with the root | group.

499 * Since the kernel does not (presently) allocate its nmenory

500 * in a locality aware fashion, the root is an appropriate home.
501 * If this thread is |ater associated with an Iwp, it will have
502 * its Igroup re-assigned at that tine.

507 * it’s lgroup re-assigned at that tine.

503 */

504 I grp_nove_thread(t, &cp_default.cp_Igrploads[LGRP_ROOTID], 1);
506 /*

507 * |f the current CPUis in the default cpupart, use it. O herw se,
508 * pick one that is; before entering the dispatcher code, we'll
509 * make sure to keep the invariant that ->t_cpu is set. (In fact, we
510 * rely on this, in ht_should_run(), in the call tree of

511 * disp_l owpri_cpu().)

512 * Inherit the current cpu. |If this cpu isn't part of the chosen
513 * | group, a new cpu will be chosen by cpu_choose when the thread
514 * is ready to run.

512 */

513 if (CPU>cpu_part == &cp_default) {

516 if (CPU >cpu_part == &cp_default)

514 t->t_cpu = CPU;

515 } else {

516 t->t_cpu = cp_default.cp_cpulist;

517 t->t_cpu = disp_lowpri_cpu(t->t_cpu, t, t->t_pri);

518 }

518 el se

519 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_Ipl,
520 t->t_pri, NULL);

520 t->t_di sp_queue = t->t_cpu->cpu_disp;

521 kpreenmpt _enabl e();

523 I*

524 * Initialize thread state and the dispatcher |ock pointer.

525 * Need to hold onto pidlock to block allthreads wal kers until
526 * the state is set.

527

528 switch (state) {

529 case TS_RUN:

530 curthread->t_ol dspl = spl high(); /* get dispatcher spl */
531 THREAD SET STATE(t, TS _STOPPED, &transition_lock);

532 CL_SETRUN(t);

new usr/src/ uts/ comon/ di sp/thread.c

533
534

536
537
538

540
541
542
543
544
545
546
547
548

550
551
552

554
555
556
557
558
559 }

thread_unl ock(t);
br eak;

case TS_ONPROC:
THREAD_ONPROC(t, t->t_cpu);
br eak;

case TS_FREE:
/ *

* Free state will be used for intr threads.

* The interrupt routine nust set the thread dispatcher
* lock pointer (t_lockp) if starting on a CPU

* other than the current one.

*/

THREAD FREEI NTR(t, CPU);

br eak;

case TS_STOPPED:
THREAD_SET_STATE(t, TS_STOPPED, &stop_| ock);
br eak;
defaul t: /* TS_SLEEP, TS ZOWB or TS_TRANS */
crm_err (CE_PANIC, "thread_create: invalid state %", state);

}
mut ex_exi t (&pi dl ock) ;
return (t);

__unchanged_portion_onitted_

1302 /
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

*

*
*
*
*
*
*
*
*
*
*

*/

Unpin an interrupted thread.

When an interrupt occurs, the interrupt is handled on the stack

of an interrupt thread, taken froma pool linked to the CPU structure.

When swtch() is switching away froman interrupt thread because it
bl ocked or was preenpted, this routine is called to conplete the
saving of the interrupted thread state, and returns the interrupted
thread pointer so it may be resuned.

Called by swtch() only at high spl.

1314 kthread_t *
1315 thread_unpin()

1316 {
1317
1318
1319
1320

1322

1324
1325

1327

1329
1330
1331
1332

1334
1336

1337
1338

kt hread_t *t = curthread; /* current thread */

kt hread_t *itp; /* interrupted thread */
int i; /* interrupt |evel */
extern int intr_passivate();

ASSERT(t->t _intr != NULL)

itp = t->t_intr;
t->t_intr = NULL;

interrupted thread */
clear interrupt ptr */

* ok

—~—

ht _end_intr();

/*

* Get state frominterrupt thread for the one
* it interrupted.

*/

i = intr_passivate(t, itp);
TRACE_5(TR_FAC_I NTR, TR_I NTR_PASSI VATE,

"intr_passivate:level % curthread % (%) ithread % (%)",
i, t, t, itp, itp)

new usr/src/ uts/ comon/di sp/thread.c

1340 I*

1341 * Dissociate the current thread fromthe interrupted thread’ s LWP.
1342 */

1343 t->t_lwp = NULL;

1345 /*

1346 * Interrupt handl ers above the |evel that spinlocks block nust
1347 * not bl ock.

1348 */

1349 #if DEBUG

1350 if (i <0|| i > LOCK LEVEL)

1351 cnm_err (CE_PANIC, "thread_unpin: ipl out of range %", i);
1352 #endi f

1354 /*

1355 * Conpute the CPU s base interrupt |level based on the active
1356 * interrupts.

1357 */

1358 ASSERT(CPU->cpu_intr_actv & (1 << i));

1359 set _base_spl ();

1361 return (itp);

1362 }

__unchanged_portion_omtted_

new usr

*ok ok ok ok ok Kk

/'src/uts/ common/ fs/zfs/zvol.c

R R R R

54499 Wed May 15 07: 34:03 2019

new usr

/ src/uts/comon/fs/zfs/zvol.c

10924 Need nitigation of L1TF (CVE-2018-3646)

Revi ewed by: Robert Mistacch
Revi ewed by

<r m@ oyent . conp
Jerry Jelinek <jerry.jelinek@oyent.conr

Revi ewed by: Peter Tribble <peter.tribble@mail.conm

*k ok ok ok kk

1/*

*

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

21/

22 Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al

23

24 Portions Copyright 2010 Robert M | kowsk

25

26 Copyri ght 2017 Nexenta Systens, Inc. Al rights reserved

27 Copyright (c) 2012, 2017 by Del phix. Al rights reserved

28 Copyright (c) 2013, Joyent, Inc. Al rights reserved

28 Copyright (c) 2014 Integros [integros.conj

29 Copyri ght 2019 Joyent, Inc

30 Copyright (c) 2019, Joyent, Inc

30

32 /*

33 * ZFS volunme enul ation driver

34 *

35 * Makes a DMUJ object look like a volume of arbitrary size, up to 2"64 bytes
36 * Volunes are accessed through the synbolic |inks naned

37 *

38 * /dev/zvol/dsk/ <pool _nane>/ <dat aset _nane>

39 * /dev/zvol/rdsk/<pool _nane>/ <dat aset _nane>

40 *

41 * These links are created by the /dev filesystem (sdev_zvol ops. c)
42 * Vol unes are persistent through reboot. No user command needs to be
43 * run before opening and using a device

44 =/

46 #i
47 #i
48 #i
49 #i
50 #i
51 #i
52 #i
53 #i
54 #i
55 #i
56 #i

® Ok Sk ok Sk b ok o 3k OF Sk b SRk Sk F ok o ok O ok b k% ok % 3k
—~

Khkkhkhkkhkhkhkhkhkhkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkk k*

CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing

See the License for the specific | anguage governi ng perm ssions

and limtations under the License

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

ncl ude <sys/types. h>
ncl ude <sys/param h>
ncl ude <sys/errno. h>
ncl ude <sys/uio. h>
ncl ude <sys/buf. h>
ncl ude <sys/nodctl . h>
ncl ude <sys/open. h>
ncl ude <sys/knem h>
ncl ude <sys/conf. h>
ncl ude <sys/cmm_err. h>
ncl ude <sys/stat.h>

rights reserved

new usr/src/uts/comon/fs/zfs/zvol.c

103

109
110

112
113
114
115

#
#
#
#
#
#
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

#

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude

<sys/ zap. h>
<sys/spa. h>
<sys/spa_i npl . h>
<sys/ zi 0. h>
<sys/dmu_traverse
<sys/ dnode. h>
<sys/ dsl _dat aset .
<sys/ dsl _prop. h>
<sys/ dki 0. h>
<sys/efi_partitio
<sys/ byt eorder. h>
<sys/ pat hnane. h>
<sys/ddi. h>

<sys/ sunddi . h>
<sys/crc32. h>
<sys/dirent. h>
<sys/policy.h>
<sys/fs/zfs. h>
<sys/zfs_ioctl.h>
<sys/ nkdev. h>
<sys/zil.h>
<sys/refcount. h>
<sys/ zfs_znode. h>
<sys/ zfs_rl ock. h>
<sys/vdev_di sk. h>
<sys/vdev_i npl . h>
<sys/vdev_rai dz. h
<sys/ zvol . h>
<sys/ dunphdr. h>
<sys/zil _inpl.h>
<sys/ dbuf . h>
<sys/dmu_t x. h>
<sys/ zfeature. h>

. h>
h>

n. h>

>

<sys/ zi o_checksum h>

<sys/ zil _inpl.h>
<sys/ ht. h>

<sys/ dkioc_free_u
<sys/ zfs_rlock. h>

"zfs_nanmecheck. h"

void *zfsdev_state
static char *zvol _tag = "zvol _tag";

#defi ne ZVOL_DUWPSI ZE

/

*
*
*
*
*

til.h>

"dunpsi ze"

This lock protects the zfsdev_state structure from being nodified

while

finishes

e.g.

*/
knmut ex_t
static uint32_t zvol _m nors

it's being used
an open doesn’t g

zf sdev_state_| ock

e.g.
et a spurious EBUSY

typedef struct zvol _extent {

list_node_t ze
dva_t ze
uint64_t ze

116 } zvol _extent _t
____unchanged_portion_onitted_

1215 int

1216 zvol _strategy(buf _t

1217 {

1218

*bp)

zfs_soft_state_t *

_node;
_dva;
_nbl ks;

/* nunber

zs = NULL

an open that cones in before a create
It also protects tenporary opens of the dataset so that

of blocks in extent

/* dva associated with this extent

*/

*/

new usr/src/uts/comon/fs/zfs/zvol.c

1219
1220
1221
1222
1223
1224
1225
1226
1227

1229
1230
1231
1232
1233
1234
1235
1236
1237

1239
1240
1241
1242
1243

1245

1247
1248
1249
1250
1251

1253
1254

1256
1257

1259
1260
1261

1263
1264
1265
1266
1267

1269
1270
1271
1272
1273

1275

1277
1278
1279
1280
1281
1282

1284

zvol _state t *zv;

uint64_t off, volsize;

size_t resid;

char *addr;

obj set _t *os;

int error = 0;

bool ean_t doread = bp->b_flags & B_READ;
bool ean_t i s_dunpifi ed;

bool ean_t sync;

if (getminor(bp->b_edev) == 0) {
error = SET_ERROR(ElI NVAL) ;
} else {

zs = ddi _get _soft_state(zfsdev_state, getmn nor(bp->b_edev));

if (zs == NULL)
error = SET_ERROR(ENXI O);
else if (zs->zss_type != ZSST_zZVQL.)
error = SET_ERROR(EI NVAL) ;

}

if (error) {
bi oerror(bp, error);
bi odone(bp);

) return (0);

zv = zs->zss_dat a;

if (!(bp->b_flags & B_READ) && (zv->zv_flags & ZVOL_RDONLY)) {
bi oerror (bp, EROFS);
bi odone(bp);
return (0);

}

of f = | dbt ob(bp->b_bl kno);
vol size = zv->zv_vol si ze;

0s = zv->zv_obj set;
ASSERT(o0s != NULL);

bp_napi n(bp)
addr = bp->b_un. b_addr;
resid = bp->b_bcount;

if (resid >0 & (off < 0 || off >= volsize)) {
bi oerror(bp, EIO;
bi odone(bp);
return (0);

}

is_dumpified = zv->zv_flags & ZVOL_DUMPI FI ED;

sync = ((!(bp->b_flags & B_ASYNC) &&
1'(zv->zv_flags & ZVOL_WCE)) ||
(zv->zv_obj set->0s_sync == ZFS_SYNC_ALWAYS)) &&
Idoread && !is_dunpified;

ht _begi n_unsafe();

/*

* There nust be no buffer changes when doing a dmu_sync() because

* we can’'t change the data whilst calculating the checksum

*/

| ocked_range_t *lr = rangel ock_ent er (&v->zv_rangel ock, off, resid,
doread ? RL_READER : RL_WRITER);

while (resid !'= 0 & of f < volsize) {

new usr/src/uts/comon/fs/zfs/zvol.c

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

1317
1318

1320
1321
1322
1324

1326

1327 }
__unchanged_portion_onitted_

size_t size = MN(resid, zvol _nmaxphys);
if (is_dumpified) {
size = M N(size, P2END(of f, zv->zv_vol bl ocksi ze)
error = zvol durrpl o(zv, addr, off, size,
doread, B_FALSE);
} else if (doread)
error = dmu_read(os, ZVOL_0OBJ, off, size, addr,
DMJ_READ PREFETCH) ;
} else {
dmu_tx_t *tx = dnmu_tx_create(os);
drmu”t x hoId \Mlte(tx ZVOL_0BJ, off, si ze);
error = dnu_tx_assign(tx, TXG_V\AI T);
if (error)
drmu_t x_abort (tx);
} else {
dmu_write(os, ZVvOL_0OBJ, off, size, addr,
zvol _log_wite(zv, tx, off, size, sync);
drmu_t x_commi t (tx);

}

}
if (error) {
/* convert checksumerrors into |Oerrors */
if (error == ECKSUM
error = SET_ERROR(EIO);

br eak;
of f += size;
addr += size;
resid -= size;
rangel ock_exit(lr);

if ((bp->b_resid = resid) == bp->b_bcount)
bi oerror(bp, off > volsize ? EINVAL : error);

if (sync)

zil _commt(zv->zv_zilog, ZVOL_OBJ);
bi odone(bp);
ht _end_unsafe();

return (0);

1379 /* ARGSUSED*/
1380 int
1381 zvol _read(dev_t dev, uio_t *uio, cred_t *cr)

1382 {

1383
1384
1385
1386

1388
1389
1390

1392
1393
1394
1395

1397
1398
1399

m nor_t mnor = getmnor(dev);
zvol _state_t *zv;

uint64_t vol si ze;

int error = 0;

zv = zfsdev_get_soft_state(m nor, ZSST_zVQ);
if (zv == NULL)
return (SET_ERROR(ENXIO));

vol size = zv->zv_vol si ze;
if (uio->uio_resid > 0 &&
(uio->uio_loffset < 0 || uio->uio_loffset >= vol size))
return (SET_ERROR(EIO);

if (zv->zv flags & ZVOL_DUWPI FI ED)
error = physio(zvol _strategy, NULL, dev, B_READ,
zvol _m nphys, uio);

- off);

tx);

new usr/src/uts/comon/fs/zfs/zvol.c

1400
1401

1403

1405
1406
1407
1408

1410
1411
1412

1414
1415
1416
1417
1418
1419
1420
1421
1422

1424

1426
1427

1429
1430
1431

1433
1434
1435
1436
1437

1439
1440
1441

1443
1444
1445
1446

1448
1449
1450
1451
1452

1454

1456
1457

1459
1460
1461
1462
1463
1464

return (error);

}
ht _begi n_unsafe();

| ocked_range_t *Ir = rangel ock_enter(&v->zv_rangel ock,
ui 0->ui o_l of fset, uio->uio_resid, RL_READER);
while (uio->uio_resid > 0 &% uio->uio_|offset < volsize) {
uint64_t bytes = M N(uio->uio_resid, DMJ_MAX_ACCESS >> 1);

/* don’t read past the end */
if (bytes > volsize - uio->uio_|offset)
bytes = vol size - uio->uio_|offset;

error = dmu_read_uio(zv->zv_objset, ZVO._0OBJ, uio, bytes);
if (error) {
/* convert checksumerrors into IO errors */
if (error == ECKSUM
error = SET_ERROR(EI O ;
br eak;

}
rangel ock_exit(lr);
ht _end_unsafe();

return (error);

/ * ARGSUSED*/

zvol _wite(dev_t dev, uio_t *uio, cred_t *cr)
1432 {

m nor_t mnor = getmnor(dev);
zvol _state_t *zv;

uint64_t vol si ze;

int error = 0;

bool ean_t sync;

zv = zfsdev_get _soft_state(m nor, ZSST_zZVQL);
if (zv == NULL)
return (SET_ERROR(ENXI O));

vol size = zv->zv_vol si ze;
if (uio->uio_resid > 0 &&)))
(uio->uio_loffset < 0 || uio->uio_|offset >= volsize))

return (SET_ERROR(EIO);

if (zv->zv_flags & ZVOL_DUWPI FI ED) {
error = physio(zvol _strategy, NULL, dev, B WRI TE,
zvol _m nphys, uio);
return (error);

}
ht _begi n_unsafe();

sync = ! (zv->zv_flags & ZVOL_WCE) ||
(zv->zv_obj set->0s_sync == ZFS_SYNC_ALVAYS);

| ocked_range_t *Ir = rangel ock_enter(&v->zv_rangel ock,
ui o->uio_| offset, uio->uio resid, RL_WRI TER);
while (uio->uio_resid > 0 & uio->uio_| offset < volsize) {
uint64_t bytes = M N(uio->uio_resid, DMJ _MAX_ACCESS >> 1);
uint64_t off ui 0->ui o_| of f set;
dmu_t x_t *tx dmu_t x_create(zv->zv_obj set);

Innoun

new usr/src/uts/comon/fs/zfs/zvol.c

1466
1467

1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

1480
1481
1482
1483

1485
1486

1488
1490
1491 }

1646 /*

if (bytes > volsize - off)
bytes = vol size - off;

dnu_t x_hol d_write(tx, ZVvO._0OBJ, off, bytes);
error = dnu_tx_assign(tx, TXG WAIT);
if (error)
dmu_t x_abort (tx);
br eak;
error = dmu_write_uio_dnode(zv->zv_dn, uio, bytes, tx);
if (error ==
zvol _log_wite(zv, tx, off, bytes, sync);
dnu_t x_commi t (tx);

if (error)
br eak;

}
rangel ock_exit(lr);

if (sync)
zil _commit(zv->zv_zilog, ZVOL_OBJ);

ht _end_unsafe();

return (error);

__unchanged_portion_onitted_

1647 * Dirtbag ioctls to support nkfs(1M for UFS filesystens. See dkio(71).
1648 * Also a dirtbag dkio 1octl for unmap/free-block functionality.

1649 */

1650 /* ARGSUSED*/

1651 int

1652 zvol _ioctl (dev_t dev, int cnd, intptr_t arg, int flag, cred_t *cr, int *rvalp)

1653 {
1654
1655
1656
1657

1659
1661

1663
1664
1665
1666
1667

1669

1671
1672
1673

1675
1676
1677
1678
1679
1680
1681
1682
1683

zvol _state_t *zv;

struct dk_cal | back *dkc;
int error = 0;

| ocked_range_t *Ir;

nmut ex_ent er (&f sdev_state_| ock);
zv = zfsdev_get _soft_state(getm nor(dev), ZSST_zZVQ.);

if (zv == NULL) {
mut ex_exi t (&f sdev_state_| ock);
return (SET_ERROR(ENXIO));

}
ASSERT(zv->zv_total _opens > 0);
switch (cnd) {

case DKI OCI NFO
{

struct dk_cinfo dki;

bzero(&dki, sizeof (dki));
(void) strcpy(dki.dki_cname, "zvol");
(void) strcpy(dki.dki_dname, "zvol");
dki . dki _ctype = DKC_UNKNOWN
dki . dki _unit = getm nor (dev);
dki . dki _maxtransfer =
1 << (SPA_OLD MAXBLOCKSHI FT - zv->zv_mi n_bs);
mut ex_exi t (&fsdev_state_| ock);
if (ddi _copyout(&dki, (void *)arg, sizeof (dki), flag))

/* don't wite past the end */

new usr/src/uts/comon/fs/zfs/zvol.c

1684
1685
1686

1688
1689
1690

1692
1693
1694
1695
1696
1697
1698
1699
1700

1702
1703
1704

1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

1717
1718
1719
1720

1722
1723
1724
1725

1727
1728
1729

1731

1733
1734
1735
1736
1737

1739
1741

1743
1744
1745
1746
1747
1748
1749

}

error = SET_ERROR(EFAULT);
return (error);

case DKI QOGVEDI Al NFO
{

}

struct dk_m nfo dkm

bzero(&km sizeof (dkm);

dkm dki _I| bsi ze = 1U << zv->zv_ni n_bs;

dkm dki capamty = zv->zv_vol si ze >> zv->zv_nin_bs;

dkm dki _nedi a_type = DK_UNKNOAK;

mut ex_exi t (&fsdev_state_| ock);

if (ddi _copyout(&JIkm (void *)arg sizeof (dkm), flag))
error = SET_ERROR(EFAULT);

return (error);

case DKI OCGVEDI Al NFOEXT:
{

}

struct dk_m nfo_ext dknmext;

bzer o(&dkmext, sizeof (dknext));

dknext . dki _I bsize = 1U << zv->zv_mi n_bs;

dknmext . dki _pbsi ze = zv->zv_vol bl ocksi ze;

dknmext . dki _capacity = zv->zv_vol size >> zv->zv_m n_bs;

dkmext . dki _medi a_t ype = DK_UNKNOW\;

mut ex_exi t (&f sdev_state_| ock);

if (ddi copyout(&dkmext, “(void *)arg, sizeof (dkmext), flag))
error = SET_ERROR(EFAULT);

return (error);

case DKI OCCGETEFI :
{

}

uint64_t vs = zv->zv_vol si ze;
uint8_t bs = zv->zv_m n_bs;

mut ex_exi t (&f sdev_state_| ock);
error = zvol _getefi((void *)arg, flag, vs, bs);
return (error);

case DKI OCFLUSHWRI TECACHE:

dkc = (struct dk_call back *)arg;
mut ex_exi t (&zf sdev_st ate_| ock);

ht _begi n_unsafe();

zil _commt(zv->zv_zilog, ZVOL_OBJ);

if ((flag & FKIOCTL) && dkc !'= NULL && dkc->dkc_cal | back) {
(*dkc->dkc_cal | back) (dkc->dkc_cooki e, error);
error = 0;

}

ht _end_unsafe();

return (error);

case DKI OCGETWCE:
{

int we = (zv->zv_flags & ZVOL_WCE) ? 1 : O;
if (ddi _copyout(&zce, (void *)arg, sizeof (int),
flag))
error = SET_ERROR(EFAULT);
br eak;

new usr/src/uts/comon/fs/zfs/zvol.c

1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770

1772
1773
1774
1775
1776
1777
1778
1779

1781
1782
1783
1784
1785
1786

1788
1789
1790
1791
1792
1793
1794
1795

1797
1798
1799
1800

1802
1803

1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815

}
case DKI OCSETWCE:
{

case
case

case

case

case

int wece
if (ddl
}

1f (wee)

} else {

return (

DKI OCGGEOVt
DKI OCGVTCC:
/ *

_copyin((void *)arg, &ce, sizeof (int),
ag))

error = SET_ERROR(EFAULT);
br eak;

{
zv->zv_flags | = ZVOL_WCE;
mut ex_exi t (&f sdev_state_l ock);

zv->zv_flags &= ~ZVOL_WCE;

mut ex_exi t (&fsdev_state Iock)

ht _begi n_unsafe();

zil _commit(zv- >zv_zi | og, ZVOL_OBJ);
ht _end_unsafe();

0);

* commands using these (like prtvtoc) expect ENOTSUP
* since we're enulating an EFl | abel

*/
error =
br eak;

SET_ERROR(ENOTSUP) ;

DKI OCDUMPI NI T
I'r = rangel ock_enter(&zv->zv_rangel ock, 0, zv->zv_vol size

RL_WRI TER) ;
error = zvol dunpl fy(zv);
rangel ock _exit(lr);
br eak;
DKI CCDUVPFI NI
if (1(zv->zv_flags & ZVOL_DUMPI Fl ED))
br eak;
Ir = rangel ock_enter(&zv->zv_rangel ock, 0, zv->zv_vol size,
RL_WRI TER) ;
error = zvol durrp fini(zv);
rangel ock_exit(Ir);
br eak;
DKI OCFREE:!
dkioc_free_list_t *dfl;
dnu_tx_t *tx;

if (!zvol _unmap_enabl ed)

if (1(fI

} else {

br eak;

ag & FKICCTL)) {
error = dfl _copyin((void *)arg, &dfl, flag, KM SLEEP);
if (error '=0)

br eak;

dfl = (dkioc_free_list_t *)arg;
ASSERT3U(df | =>df | _num exts, <=, DFL_COPYI N MAX_EXTS);
if (dfl->dfl_numexts > DFL C(PYIN MAX_EXTS) {
error = SET_ERROR(EINVAL) ;
break;

new usr/src/uts/comon/fs/zfs/zvol.c

1816
1818
1820

1822
1823
1824
1825

1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837

1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851

1853

1855
1856
1857

1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872

1874
1875

1877

1879
1880

}
mut ex_exi t (&f sdev_state_| ock);

ht _begi n_unsafe();

for (int i =0; i <dfl->dfl_numexts; i++) {
uint64_t start = dfl->dfl_exts[i].dfle_start,
length = dfl->dfl _exts[i].dfle_length,

end = start + |length;

/*
* Apply Postel’s Law to | ength-checking. |f they
* overshoot, just blank out until the end, if there's
* a need to blank out anything.
*
/
if (start >= zv->zv_vol si ze)
conti nue; /* No need to do anything... */
if (end > zv->zv_vol size) {
end = DMJ_OBJECT_END,
length = end - start;

}

I r = rangel ock_enter(&v->zv_rangel ock, start, |ength,
RL_WRI TER) ;
tx = dnu_tx_create(zv->zv_objset);
error = dmu_tx_assign(tx, TXG WAIT);
if (error I'=0)
dmu_t x_abort (tx);
} else {
zvol _l og_truncate(zv, tx, start, length,
B _TRUE) ;
dmu_t x_commi t (tx);
error = dnu_free_|l ong_range(zv->zv_obj set,
ZVOL_0BJ, start, length);
}

rangel ock_exit(lr);

if (error = 0)
br eak;

-

* Ok ok k% ok %

If the wite-cache is disabled, 'sync’' property
is set to 'always', or if the caller is asking for
a synchronous free, commit this operation to the zil.
This will sync any previous unconmtted wites to the
zvol object.
/Can be overridden by the zvol _unmap_sync_enabl ed tunabl e.
*
if ((error == 0) && zvol _unmap_sync_enabl ed &&

(! (zv->zv_flags & ZVOL._WCE)

(zv->zv_obj set->0s_sync == ZFS_SYNC_ALWAYS) ||

(df I ->dfl _flags & DF_WAIT_SYNCO))) {

zil _comm t(zv->zv_zilog, ZVOL_0BJ);

}

if (!(flag & FKICCTL))
df | _free(dfl);

ht _end_unsafe();

return (error);

new usr/src/uts/comon/fs/zfs/zvol.c

1882 defaul t:

1883 error = SET_ERROR(ENOTTY);
1884 br eak;

1886 }

1887 mut ex_exi t (&zf sdev_state_l ock);
1888 return (error);

1889 }

__unchanged_portion_omtted_

10

new usr/ src/ uts/ comon/ os/cpu.c

R R R R

96822 Wed May 15 07: 34: 04 2019
new usr/ src/ uts/comon/ os/cpu. c
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

389 /*

390 * Set affinity for a specified CPU.

391 *

392 * Specifying a cpu_id of CPU CURRENT, allowed _only_ when setting affinity for
393 * curthread, will set affinity to the CPU on which the thread is currently
394 * running. For other cpu_id values, the caller nmust ensure that the

395 * referenced CPU remmins valid, which can be done by hol ding cpu_|l ock across
396 * this call.

397 *

398 * CPU affinity is guaranteed after return of thread_affinity_set(). If a
399 * caller setting affinity to CPU CURRENT requires that its thread not migrate
400 * CPUs prior to a successful return, it should take extra precautions (such as
401 * their own call to kpreenpt_disabl e) to ensure that safety.

402 *

403 * CPU_BEST can be used to pick a "best" CPU to migrate to, including

404 * potentially the current CPU.

405 *

406 * A CPU affinity reference count is maintained by thread_affinity_set and
407 * thread_affinity clear (incrementing and decrenmenting it, respectively),
408 * nmmintaining CPU affinity while the count is non-zero, and al | owi ng regions
409 * of code which require affinity to be nested.

410 */

411 void

412 thread_affinity_set(kthread_id_t t, int cpu_id)

413 {

414 cpu_t *cp;

416 ASSERT(! (t == curthread && t->t_weakbound_cpu != NULL));

418 if (cpu_id == CPU CURRENT) {

419 VERI FYSP(t ==, curthread);

420 kpr eenpt _dl sabl e();

421 cp = CPU;

422 } else if (cpu_id == CPU_BEST) {

423 VERI FY3P(t, ==, curthread);

424 kpreenpt _di sabl e();

425 cp = disp_choose_best_cpu();

426 } else {

427 /*

428 * We shoul d be asserting that cpu_lock is held here, but
429 * the NCA code doesn’t acquire it. The follow ng assert
430 * shoul d be uncomment ed when the NCA code is fixed.

431 *

432 */ASSERT(MJTEX_HELD(&cpu_| ock));

433 *

434 VERIFY((cpu id >= 0) &k (cpu_id < NCPU));

435 cp = cpu[cpu_id];

437 /* user must provide a good cpu_id */

438 VERI FY(cp !'= NULL)

439 1

441 /*

442 * |f there is already a hard affinity requested, and this affinity
443 * conflicts with that, panic.

444 */

new usr/ src/ uts/comon/os/cpu.c

445
446
447
448
449
450
451

453
454
455
456
457
458
459
460
461

463
456
464
458
465 }

thread_| ock(t);
if (t->t_affinitycnt > 0 & t->t_bound_cpu != cp) {
panic("affinity_set: setting % but already bound to %",
(void *)cp, (void *)t->t_bound_cpu);

t->t_affinitycnt++;
t->t_bound_cpu = cp;

/*

* Make sure we’'re running on the right CPU.

*

/

if (cp!=t->_cpu || t !'= curthread) {
ASSERT(cpu_id ! = CPU_CURRENT) ;
force_thread_migrate(t);

} else {

) t hread_unl ock(t);

if (cpu_id == CPU CURRENT || cpu_id == CPU BEST)
if (cpu_i d CPU J CURRENT) {

kpr eerrpt enabl e();
}

/* drops thread | ock */

__unchanged_portion_onitted_

1262 /*

1263 * Take the indicated CPU of fline.

1264 */
1265 int

1266 cpu_offline(cpu_t *cp, int flags)

1267 {
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1283

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297

1299
1300
1301
1302

cpupart t *pp;

int error = 0;

cpu_t *nep;

int intr_enabl e;

int cyclic_off = 0;
int call out _off = 0;
int | oop_count;

i nt no_qui esce = 0;
in

(*bound_func) (struct cpu *, int);
kthread _t *t;
Ipl _t “*cpu_lpl;
proc_t *p;
I nt lgrp_diff_lpl;
bool ean_t unbind_all _threads = (flags & CPU FORCED) != O0;

ASSERT(MUTEX_HELD(&cpu_l ock));

/*
* |f we're going fromfaulted or spare to offline, just
* clear these flags and update CPU state.
*/
if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
if (cp->cpu_flags & CPU_FAULTED) {
cp->cpu_flags & ~CPU_FAULTED,
np_cpu_faul ted_exit(cp);

}

cp->cpu_flags & ~CPU_SPARE;
cpu_set_state(cp);

return (0);

}

/*
* Handl e off-1ine request.
*

pp = cp->cpu_part;

new usr/ src/ uts/ comon/ os/cpu.c

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

1321
1322
1323
1324
1325

1327
1328
1329
1330

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

1360
1361
1362
1363
1364
1365
1366
1367
1368

/*
*/
if
/*
*/
err
if
/*

*

if

/*

*

Don't offline last online CPUin partition

(ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
return (EBUSY);

Unbi nd all soft-bound threads bound to our CPU and hard bound threads

if we were asked to.

or = cpu_unbi nd(cp->cpu_id, unbind_all_threads);
(error 1= 0)
return (error);

We shoul dn’t be bound to this CPU oursel ves.
*/

(curthread->t_bound_cpu == cp)
return (EBUSY);

Tell interested parties that this CPUis going offline.
*/

CPU_NEW GENERATI ON(cp) ;
cpu_state_change_notify(cp->cpu_id, CPU OFF);

*/
P9

-~
*

- -
—~=
~1

—hIT % ok ok k *

¥k ok ok ok ok % Ok kb ko

*/

Tell the PG subsystemthat the CPU is |leaving the partition

_cpupart_out(cp, pp);

Take the CPU out of interrupt participation so we won’t find
bound kernel threads. |If the architecture cannot conpletely
shut off interrupts on the CPU, don't quiesce it, but don’t
run anything but interrupt thread... this is indicated by
the CPU_OFFLINE flag being on but the CPU QU ESCE fl ag being
of f.

enabl e = cp->cpu_flags & CPU_ENABLE;
intr_enabl e)
no_qui esce = cpu_intr_disabl e(cp);

Record that we are aining to offline this cpu. This acts as

a barrier to further weak binding requests in thread_nonigrate
and al so causes cpu_choose, disp_lowri_cpu and setfrontdg to

| ean away fromthis cpu. Furt her strong bindings are al ready
avoi ded since we hold cpu_lock. Since threads that are set
runnabl e around now and others com ng off the target cpu are
directed away fromthe target, existing strong and weak bindings
(especially the latter) to the target cpu stand naxi mum chance of
bei ng able to unbind during the short delay |oop below (if other
unbound t hreads conpete they may not see cpu in tine to unbind
even if they would do so i mediately.

cpu_i nmotion = cp;
menbar _enter();

-~

* ok ok ok ok ok ok ok ¥

Check for kernel threads (strong or weak) bound to that CPU.
Strongly bound threads nay not unbind, and we'll have to return
EBUSY. Weakly bound threads shoul d al ways di sappear - we’ve

st opped nore weak binding with cpu_innotion and existing

bindings will drain inmmnently (they may not block). Nonetheless

we Will wait for a fixed period for all bound threads to di sappear.

Inactive interrupt threads are OK (they’' |l be in TS _FREE
state). If test finds sone bound threads, wait a few ticks

new usr/ src/ uts/ common/os/cpu. c

1369
1370
1371
1372
1373
1374

1376
1377
1378
1379
1380

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398

1400
1401
1402
1403

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

1416
1417
1418
1419
1420
1421

1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434

*
*
*
*

*

bound_func = no_qui esce ? disp_bound_threads :

agai n:

if

}
if

}
/*

*
*

*/

if

/*
*
*

if

to give short-lived threads (such as interrupts) chance to
conplete. Note that if no_quiesce is set, i.e. this cpu

is required to service interrupts, then we take the route

that permts interrupt threads to be active (or bypassed).

di sp_bound_anyt hr eads;
r (loop_count = 0; (*bound_func)(cp, 0); |oop_count++) {

if (loop_count >= 5)

error = EBUSY;
break;

/* sone threads still bound */

-

* ok % ok ok b ok o ok Ok k% ok ¥

If sone threads were assigned, give them
a chance to conplete or nove.

This assunes that the clock_thread is not bound
to any CPU, because the clock_thread is needed to
do the del ay(hz/100).

Note: we still hold the cpu_l ock while waiting for
the next clock tick. This is OKsince it isn't
needed for anything el se except processor_bind(2),
and systeminitialization. |f we drop the |ock,
we woul d risk another p_online disabling the |ast
processor.

*

del ay(hz/ 100);

(error == 0 && callout_off == 0) {
cal | out _cpu_ offllne(cp)
cal lout _off = 1;

(error == 0 & cyclic_off == 0) {
if (!cyclic_offline(cp)) {
/*
* W nust have bound cyclics...
*

error = EBUSY;
goto out;

}
cyclic_off =1;

Call mp_cpu_stop() to performany special operations
needed for this machine architecture to offline a CPU

(error ==

error = np_cpu_stop(cp); /* arch-dep hook */

If that all worked, take the CPU offline and decrenent

ncpus_onl i ne.
*/

(erro; == 0) {

* Put all the cpus into a known safe pl ace.

* No nutexes can be entered while CPUs are paused.
*/

pause_cpus(cp, NULL);

/*

* Repeat the operation, if necessary, to nake sure that

new usr/ src/ uts/ comon/ os/cpu.c

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

1453
1454
1455
1456

1458
1459
1460
1461
1462

1464
1465

1467

1469
1470

1472

1474
1475
1476
1477
1478
1479
1480
1481
1482

1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

1495
1496
1497
1498
1499
1500

* ok ok ok % ok % ok

if

}

al | outstanding |lowlevel interrupts run to conpletion
before we set the CPU_ QU ESCED flag. It’'s also possible
that a thread has weak bound to the cpu despite our raising
cpu_i nnotion above since it may have | oaded that

val ue before the barrier becanme visible (this would have
to be the thread that was on the target cpu at the tine

we raised the barrier).

((!'no_qui esce & cp->cpu_intr_actv !'=0) ||
(*bound_func) (cp, 1)) {
start_cpus();
(void) nmp_cpu_start(cp);
goto agal n;

ncp = cp->cpu_next _part;
cpu_l pl = cp->cpu_lpl;
ASSERT(cpu_l pl != NULL);

| *

*

Renove the CPU fromthe list of active CPUs.
*/

cpu_renove_active(cp);

/

* ok kb

Wal k the active process list and | ook for threads
whose hore | group needs to be updated, or

the last CPU they run on is the one being offlined now.
/

ASSERT(curthread->t _cpu != cp);
for (p = practive; p !'= NULL; p = p->p_next) {

t = p->p_tlist;

if (t == NULL)
conti nue;

lgrp_diff_lpl = 0;

do {
ASSERT(t->t | pl != NULL)
/*

* Taking last CPU in Ipl offline

* Rehone thread if it is in this |Ipl

* Otherw se, update the count of how nany
* threads are in this CPU s | group but have
* adifferent Ipl.

*

/

if (cpu_lpl->lpl_ncpu == 0) {
if (t->t_Ipl == cpu_lpl)
I grp_nove_t hread(t,
I grp_choose(t,
t->t_cpupart), 0);
else if (t->t_Ipl->lpl_lgrpid ==
cpu_l pl ->l pl _I grpid)
I grp_diff_Ipl++;

}
ASSERT(t->t_| pl->lpl _ncpu > 0);

/*

* Update CPU last ran on if it was this CPU
*/

if (t->t_cpu == cp && t->t_bound_cpu != cp)

t->t_cpu = disp_lowpri_cpu(ncp, t,
t->t_pri);

new usr/src/ uts/comon/os/cpu. c

1493
1494
1501
1502

1504
1505

1507
1508
1509
1510
1511

1513
1514
1515

1517
1518
1519
1520
1521

1523
1524
1525

1527
1528
1529
1530

1532
1533
1534

1536

1538
1539
1540

1542
1543

1536
1537
1538
1539
1545
1546
1547

1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560

t->t_cpu = disp_|l owpri_cpu(ncp,
t->t_Ipl, t->t_pri, NULL);
ASSERT(t->t_cpu !'= cp || t->t_bound_cpu == cp ||
t->t _weakbound_cpu == cp);

t =t->t_forw,
} while (t !'= p->p_tlist);

/*

* Didn't find any threads in the same Igroup as this
* CPUwith a different Ipl, so remove the I group from
* the process | group bitnmask.
*/

if (lgrp_diff_lpl == 0)
kl grpset _del (p->p_l grpset, cpu_l pl->lpl_lgrpid);

}

/*
* Walk thread list looking for threads that need to be
* rehonmed, since there are sone threads that are not in
* their process’'s p_tlist.
*

/

t = curthread;

do {
ASSERT(t != NULL &% t->t Ipl !'= NULL)
/*
* Rehorme threads with same | pl as this CPU when this
* is the last CPUin the Ipl.
*

/

if ((cpu_lpl->pl_ncpu == 0) & (t->t_Ipl == cpu_lpl))
I grp_nove_t hread(t,
I grp_choose(t, t->t_cpupart), 1);

ASSERT(t->t _| pl->lpl _ncpu > 0);

/*
* Update CPU last ran on if it was this CPU
*/

if (t->t_cpu == cp & t->t_bound_cpu != cp)
t->t_cpu = disp_lowpri_cpu(ncp, t, t->t_pri);

if (t->t_cpu == cp && t->t_bound_cpu != cp) {
t->t_cpu = disp_|l owpri_cpu(ncp,
t->t_Ipl, t->t_pri, NULL);

}

ASSERT(t->t_cpu !=cp || t->t_bound_cpu == cp ||
t->t _weakbound_cpu == cp);

t = t->t_next

} while (t !'= curthread);
ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
cp->cpu_flags | = CPU_COFFLI NE;
di sp_cpu_i nactive(cp);
if (!'no_quiesce)
cp->cpu_flags | = CPU_QUI ESCED;
ncpus_online--;
cpu_set_state(cp);
cpu_i nnotion = NULL;
start_cpus();
cpu_stats_kstat_destroy(cp);
cpu_del ete_intrstat(cp);

new

usr/src/ uts/common/ os/cpu. c

1561 | grp_kstat _destroy(cp);

1562

1564 out:

1565 cpu_i nmotion = NULL;

1567 /*

1568 * If we failed, re-enable interrupts.

1569 * Do this even if cpu_intr_disable returned an error, because
1570 * it may have partially disabled interrupts.

1571

1572 if (error & intr_enable)

1573 cpu_i ntr_enabl e(cp);

1575 /*

1576 * If we failed, but nmanaged to offline the cyclic subsystemon this
1577 * CPU, bring it back online.

1578 */

1579 if (error & cyclic_off)

1580 cyclic_online(cp);

1582 /*

1583 * If we failed, but nmanaged to offline callouts on this CPU,
1584 * bring it back online.

1585 *

1586 if (error & callout_off)

1587 cal l out _cpu_online(cp);

1589 *

1590 * |f we failed, tell the PG subsystemthat the CPU is back
1591 */

1592 pg_cpupart_in(cp, pp);

1594 /*

1595 * If we failed, we need to notify everyone that this CPU is back on.
1596 */

1597 if (error I=0) {

1598 CPU_NEW GENERATI ON(cp) ;

1599 cpu_state_change_notify(cp->cpu_id, CPUON);

1600 cpu_state_change_notify(cp->cpu_id, CPU_INTR ON);
1601 }

1603 return (error);

1604 }

__unchanged_portion_onitted_

new usr/src/uts/comon/os/lgrp.c

R R R R

119462 Wed May 15 07: 34: 04 2019
new usr/src/uts/comon/os/1grp.c
10924 Need nitigation of L1TF (CVE-2018-3646)

Revi ewed by: Robert Mistacchi
Revi ewed by:

<r m@ oyent . conp
Jerry Jelinek <jerry.jelinek@oyent.conr

Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

1/*

*

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

I
w
E N I I I N D T I I R SR R R I R

I S I I
~

CDDL HEADER START

The contents of this file are subject to the terms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END
Copyri ght 2009 Sun Mcrosystens, Inc. All

Use is subject to |license terns.
Copyri ght 2018 Joyent, Inc.

rights reserved.

Basi ¢ NUMA support in ternms of locality groups

Sol ari s needs to know which CPUs, nenory, etc. are near each other to

provi de good performance on NUVA nachines by optim zing for locality.

In order to do this, a new abstraction called a "locality group (Igroup)"
has been introduced to keep track of which CPU-like and nenory-1ike hardware
resources are close to each other. Currently, latency is the only neasure
used to determ ne how to group hardware resources into |groups, but this
does not limt the groupings to be based solely on latency. Gher factors
may be used to determ ne the groupings in the future.

Lgroups are organi zed into a hieararchy or topology that represents the

| atency topol ogy of the nmachine. There is always at least a root lgroup in
the system It represents all the hardware resources in the machine at a

| atency big enough that any hardware resource can at |east access any other
hardware resource within that |atency. A Uniform Menory Access (UWA)
machine is represented with one Igroup (the root). In contrast, a NUVA
machine is represented at |east by the root Igroup and some nunber of |eaf
| groups where the |eaf |groups contain the hardware resources within the

| east latency of each other and the root Igroup still contains all the
resources in the machine. Sone nunber of internediate |Igroups may exist
whi ch represent nore levels of locality than just the local latency of the
| eaf |groups and the systemlatency of the root Igroup. Non-leaf |groups
(eg. root and internediate |groups) contain the next nearest resources to
its children | groups. Thus, the Igroup hierarchy froma given |eaf |group
to the root Igroup shows the hardware resources fromclosest to farthest
fromthe leaf Igroup such that each successive ancestor |group contains
the next nearest resources at the next |evel of locality fromthe previous.

The kernel uses the Igroup abstraction to know how to all ocate resources
near a given process/thread. At fork() and Iwp/thread_create() tinme, a

new usr/src/uts/comon/os/lgrp.c

113

115
116
117
118

120
121
122

124

*
*
*
*
*
*
*
*
*
*

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

| grp_gen_t
lgrp_t *lgrp_tab

int nl gr ps;
i nt lgrp_alloc_hint = -1;
int Igrp_alloc_max = 0;

*
*
*
*
*
*
*
*
*

root
/

“honme" Igroup is chosen for a thread. This is done by picking the |Igroup
with the lowest |oad average. Binding to a processor or processor set wll
change the home I group for a thread. The schedul er has been nodified to try
to dispatch a thread on a CPU in its horme I group. Physical nmenory
allocation is I group aware too, so nmenory will be allocated fromthe current
thread’s hone Igroup if possible. |f the desired resources are not

avail abl e, the kernel traverses the I group hierarchy going to the parent
Igroulp to find resources at the next level of locality until it reaches the
group.

ncl ude <sys/Igrp. h>

ncl ude <sys/|grp_user. h>
ncl ude <sys/types. h>
ncl ude <sys/ mman. h>

ncl ude <sys/param h>
ncl ude <sys/var. h>

ncl ude <sys/thread. h>
ncl ude <sys/cpuvar. h>
ncl ude <sys/cpupart.h>
ncl ude <sys/knem h>

ncl ude <vni seg. h>

ncl ude <vni seg_knmem h>
ncl ude <vnf seg_spt. h>
ncl ude <vnf seg_vn. h>
ncl ude <vnias. h>

ncl ude <sys/atom c. h>
ncl ude <sys/systm h>
ncl ude <sys/errno. h>

ncl ude <sys/cmm_err. h>
ncl ude <sys/kstat.h>

ncl ude <sys/sysnmacros. h>
ncl ude <sys/ pg. h>

ncl ude <sys/prom f.h>
ncl ude <sys/sdt. h>

ncl ude <sys/ht.h>

| /* generation of |group hierarchy */
| table of all initialized Igrp_t structs */
i ndexed by lgrp_id */

nunber of | groups in nachine */

hint for where to try to allocate next */
max | group ID allocated so far */

grp_gen = O;
e[NLGRPS_MAX] ;

~————
* ok ok ok %k

Kstat data for |groups.

Actual kstat data is collected in Igrp_stats array.

The | grp_kstat_data array of naned kstats is used to extract data from
lgrp_stats and present it to kstat framework. It is protected frompartallel
nodi fications by | grp_kstat_nutex. This may cause sone contention when
several kstat commands run in parallel but this is not the
performance-critical path.

*/

extern struct

/*

*

lgrp_stats lgrp_stats[]; /* table of per-lIgrp stats */

Decl are kstat names statically for enuns as defined in the header file.

*/

LGRP_KSTAT_NAMES;

st
st
st

st

atic void
atic int
atic void

I grp_kstat_init(void);
| grp_kstat _extract(kstat_t *,
I grp_kstat_reset(lgrp_id_t);

int);

atic struct kstat_naned | grp_kstat_data[LGRP_NUM STATS] ;

new usr/src/uts/comon/os/lgrp.c 3 new usr/src/uts/comon/os/lgrp.c
125 static kmutex_t |grp_kstat_mutex;
192 /*
193 * Whether to do processor set aware nenory allocation by default
128 /* 194 */
129 * max nunber of | groups supported by the platform 195 int | grp_mem pset_aware = O;
130 */
131 int nl grpsmax = 0; 197 /*
198 * Set the default menory allocation policy for root |group
133 /* 199 */
134 * The root |group. Represents the set of resources at the system w de 200 | grp_mem policy_t I grp_mem policy_root = LGRP_MEM PCLI CY_RANDOM
135 * level of locality.
136 */ 202 | *
137 lgrp_t *| grp_root = NULL; 203 * Set the default nenory allocation policy. For npost platforns,
204 * next touch is sufficient, but sone platfornms may wi sh to override
139 /* 205 * this.
140 * During system bootstrap cp_default does not contain the list of Igrp |oad 206 */
141 * averages (cp_lgrploads). The list is allocated after the first CPU Is brought 207 | grp_nmem policy_t | grp_mem defaul t _policy = LGRP_MEM POLI CY_NEXT;
142 * on-line when cp_default is initialized by cpupart_initialize_default().
143 * Configuring CPUO may create a two-level topology with root and one |eaf node
144 * containing CPUD. This topology is initially constructed in a special 210 /*
145 * statically allocated 2-elenent Ipl list |pl_bootstrap_list and later cloned 211 * lgroup CPU event handlers
146 * to cp_default when cp_default is initialized. The |Ipl_bootstrap_list is used 212 */
147 * for all Ipl operations until cp_default is fully constructed. 213 static void lgrp_cpu_init(struct cpu *);
148 * 214 static void lgrp_cpu_fini(struct cpu *, lgrp_id_t);
149 * The | pl _bootstrap_list is naintained by the code in Igrp.c. Every other 215 static lgrp_t *l grp_cpu_to_|l grp(struct cpu *);
150 * consuner who needs default |pl should use |pl_bootstrap which is a pointer to
151 * the first element of |pl_bootstrap_list. 217 |*
152 * 218 * |group nenory event handlers
153 * CPUs that are added to the system but have not yet been assigned to an 219 */
154 * Igrp will use Ipl_bootstrap as a default Ipl. This is necessary because 220 static void lgrp_mem.init(int, Igrp_handl e_t, boolean_t);
155 * on sonme architectures (x86) it's possible for the slave CPU startup thread 221 static void lgrp_memfini(int, Igrp_handle_t, boolean_t);
156 * to enter the dispatcher or allocate nenory before calling Igrp_cpu_init(). 222 static void lgrp_memrenane(int, lgrp_handle_t, Igrp_handle_t);
157 */
158 #define LPL_BOOTSTRAP_SI ZE 2 224 | *
159 static Ipl_t | pl _bootstrap_list[LPL_BOOTSTRAP_SI ZE] ; 225 * |group CPU partition event handlers
160 I pl _t *| pl _boot strap; 226 */
161 static |Ipl_t *| pl _boot strap_rset [LPL_BOOTSTRAP_SI ZE] ; 227 static void | grp_part_add_cpu(struct cpu *, Igrp_id_t);
162 static int | pl _boot strap_i d2rset [LPL_BOOTSTRAP_SI ZE] ; 228 static void | grp_part_del _cpu(struct cpu *);
164 /* 230 /*
165 * If cp still references the bootstrap Ipl, it has not yet been added to 231 * lgroup framework initialization
166 * an lgrp. | grp_nmemchoose() uses this macro to detect the case where 232 */
167 * a thread is trying to allocate menory close to a CPU that has no |grp. 233 static void I grp_main_init(void);
168 * 234 static void I grp_mai n_np_init(void);
169 #define LGRP_CPU HAS NO LGRP(cp) ((cp)->cpu_l pl == Ipl_bootstrap) 235 static void lgrp_root_init(void);
236 static void | grp_setup(void);
171 static Igrp_t I root;
238 /*
173 /* 239 * |pl topol ogy
174 * Size, in bytes, beyond which random nmenory allocation policy is applied 240 */
175 * to non-shared nenory. Default is the maximum size, so random nmenory 241 static void Ipl _init(lpl_t *, Ipl_t *, Ilgrp_t *);
176 * allocation won't be used for non-shared nenory by default. 242 static void Ipl _clear(lpl_t *);
177 */ 243 static void Ipl _leaf _insert(lpl_t *, struct cpupart *);
178 size_t lgrp_privmrandomthresh = (size_t)(-1); 244 static void I pl _l eaf _remove(lpl_t *, struct cpupart *);
245 static void Ipl _rset_add(lpl_t *, Ipl_t *);
180 /* the maxi mum effect that a single thread can have on it’'s Igroup’s |load */ 246 static void Ipl _rset_del (Ipl_t *, Ipl_t *);
181 #define LGRP_LOADAVG MAX EFFECT(ncpu) \ 247 static int I pl _rset_contains(lpl_t *, Ipl_t *);
182 ((lgrp_l oadavg_max_effect) / (ncpu)) 248 static void I pl _cpu_adjcnt(lpl_act_t, struct cpu *);
183 uint32_t | grp_l oadavg_max_ef fect = LGRP_LOADAVG THREAD_MAX; 249 static void I pl _child_update(lpl_t *, struct cpupart *);
250 static int Ipl _pick(lpl_t *, Ipl_t *);
251 static void I pl _verify_wapper(struct cpupart *);
186 /*
187 * Size, in bytes, beyond which random nmenory allocation policy is applied to 253 | *
188 * shared menory. Default is 8MB (2 | SM pages). 254 * defines for Ipl topology verifier return codes
189 */ 255 */
190 size_t Igrp_shmrandomthresh = 8*1024*1024;

new usr/src/uts/comon/os/lgrp.c

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

273
274
275
276
277

279
280
281
282
283
284
285
286
287
288
289

291

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

LPL_TOPO_CORRECT
LPL_TOPO_PART_HAS_NO LPL
LPL_TOPO_CPUS_NOT_ENPTY
LPL_TOPO_LGRP_M SVATCH
LPL_TOPO_M SSTNG_PARENT
LPL_TOPO_PARENT_M SMATCH
LPL_TOPO_BAD_CPUCNT
LPL_TOPO_RSET_M SMATCH
LPL_TOPO_LPL_ORPHANED

' o
CoONOUITRhWNE

LPL_TOPO_LPL_BAD NCPU -
LPL_TOPO RSET_MSSNG LF
LPL_TOPO_CPU_HAS BAD_LPL
LPL_TOPO_NONLEAF_HAS_CPUS
LPL_TOPO_LGRP_NOT_LEAF
LPL_TOPO_BAD RSETCNT

* Return whether |group optim zations should be enabled on this system
*/

int

| grp_optim zations(void)
278 {

292 }
__unchanged_portion_onitted_

516
517
518
519

/*

* Finish Igrp initialization after all

/*
* System nust have nore than 2 I groups to enable Igroup optim zations
*
* XXX This assunes that a 2 | group system has an enpty root | group
* with one child Igroup containing all the resources. A 2 | group
* systemwith a root Igroup directly containing CPUs or nenory m ght
* need | group optimzations with its child Igroup, but there
* isn't such a nachine for now. ...
*/
if (nlgrps > 2)
return (1);
return (0);

CPUS are brought on-line.

* This routine is called after start_other_cpus().

*/

520 static void
521 |l grp_main_np_init(void)
522 {

523
525

527
528
529
530
531
532

533 }
__unchanged_portion_onitted_

kl grpset _t changed;
ht_init();

/*

* Update | group topology (if necessary)
*/

kl gr pset _cl ear (changed) ;

(void) Igrp_topo_update(lgrp_table,
Igrp_topo_initialized = 1;

I grp_alloc_max + 1, &changed);

new usr/src/ uts/comon/ sys/ cpuvar. h 1

R R R R

29542 Wed May 15 07:34: 05 2019
new usr/src/uts/comon/sys/cpuvar. h
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License.
12 *
13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 /*
23 * Copyright (c) 1989, 2010, Oacle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2012 by Del phix. Al rights reserved.
25 * Copyright 2014 |gor Kozhukhov <i kozhukhov@nusil . conp.
26 * Copyright 2018 Joyent, Inc.
27 * Copyright 2017 RackTop Systens.
28 * Copyright 2019 Joyent, Inc.
*

/

31 #ifndef _SYS CPUVAR H
32 #define _SYS _CPUVAR H

34 #include <sys/thread. h>

35 #include <sys/sysinfo.h> /* has cpu_stat_t definition */
36 #include <sys/disp. h>

37 #include <sys/processor. h>

38 #include <sys/kcpc. h> /* has kcpc_ctx_t definition */

40 #i ncl ude <sys/| oadavg. h>

41 #if (defined(_KERNEL) || defined(_KMEMUSER)) && defi ned(_MACHDEP)
42 #incl ude <sys/nmachcpuvar. h>

43 #endi f

45 #include <sys/types. h>

46 #include <sys/file.h>

47 #incl ude <sys/ bitmap. h>

48 #i ncl ude <sys/rw ock. h>

49 #include <sys/nsacct. h>

50 #if defined(__GNUC) && defined(_ASM | NLINES) && defined(_KERNEL) && \

51 (defined(__i386) || defined(__and64))
52 #include <asm cpuvar. h>
53 #endi f

55 #ifdef _ cplusplus
56 extern "C' {
57 #endif

new
59

73

479
480
481
482
483
484
485
486

488
489

491
492

494
495

497
499
501
503
505

508

510
511
512
513
514
515
516
517
518
519
520
521
522
523

525
526
527

usr/ src/ uts/ common/ sys/ cpuvar. h

struct squeue_set_s;

#def i ne CPU_CACHE_COHERENCE_SI ZE 64

/*

* For fast event tracing.

*/

struct ftrace_record;

typedef struct ftrace_data {
int

kmut ex_t

struct ftrace_record

struct ftrace_record

struct ftrace_record
} ftrace_data_t;

__unchanged_portion_onitted_

/
At oni c cpuset operations

ftd_state;
ftd_unused;
*ftd_cur;

*ftd_first;
*ftd_|l ast;

ftrace flags */

ftrace buffer |ock, unused */
current record */

first record */

last record */

—~————
EE

These are safe to use for concurrent cpuset nanipul ations.

if the add or del was success

deleting a cpu that’s not in the cpuset)

/

#defi ne CPUSET_ATOM C DEL(set, c
#defi ne CPUSET_ATOM C_ADD(set, c

#def i ne CPUSET_ATOM C_XADD(set ,
#def i ne CPUSET_ATOM C_XDEL(set,

#defi ne CPUSET_OR(set1, set?2)
#def i ne CPUSET_XOR(set1, set?2)
#def i ne CPUSET_AND(set 1, set?2)
#def i ne CPUSET_ZERQ(set)

#endi f /* defined(_MACHDEP) */

extern cpuset_t cpu_seqid_i nuse;

ful, or "-1" if not successful.
(e.g. attenpting to add a cpu to a cpuset that’s already there, or

*
*
*
* "xdel " and "xadd" are exclusive operations, that set "result" to "0"
*
*
*
*

pu) cpuset _at om c_del (&(set), cpu)
pu) cpuset _atom c_add(&(set), cpu)

. cpu, result) \
(result) = cpuset_atom c_xadd(&(set), cpu)

cpu, result) \
(result) = cpuset_atom c_xdel (& set), cpu)

cpuset _or(&(setl), &(set2))

cpuset _xor (&(setl), &(set2))

cpuset _and(&(setl), &(set2))

cpuset _zero(&(set))

extern struct cpu *cpul]; [*
extern struct cpu **cpu_seq; I
extern cpu_t *cpu_list; /*
extern cpu_t *cpu_acti ve; /*
extern cpuset _t cpu_active_set; [*
extern int ncpus; /*
extern int ncpus_onl i ne; /*
extern int max_ncpus; /*
extern int boot _max_ncpus; /*
extern int boot _ncpus; /*
extern processorid_t mex_cpui d; /*
extern struct cpu *cpu_i nnotion; [/*
extern cpu_t *clock_cpu_list;

extern processorid_t max_cpu_seqi d_ever;
#if defined(__i386) || defined(__and64)

extern struct cpu *curcpup(void)
#defi ne CPU (curcpup

0) I

i ndexed by CPU nunber */

i ndexed by sequential CPU id */
list of CPUs */

list of active CPUs */

cached set of active CPUs */

nunber of CPUs present */

nunber of CPUs not quiesced */

max present before ncpus is known */
Ii ke max_ncpus but for real */

cpus present @ boot */

maxi mum CPU nunber */

of fline or partition nove target */

/* maxi mum seqi d ever given */

Pointer to current CPU */

new usr/src/ uts/comon/sys/cpuvar. h

528 #el se

529 #define CPU (curthread->t_cpu) /* Pointer to current CPU */
530 #endif

532 /| *

533 * CPU_CURRENT indicates to thread_affinity_set() to use whatever curthread's
534 * current CPU is; holding cpu_lock is not required.

532 * CPU_CURRENT indicates to thread_affinity_set to use CPU->cpu_id

533 * as the target and to grab cpu_l ock instead of requiring the caller

534 * to grab it.

535 */

536 #define CPU_CURRENT -3

538 /*

539 * CPU_BEST can be used by thread_affinity set() callers to set affinity to a
540 * good CPU (in particular, an ht_acquire()-friendly choice); holding cpu_l ock
541 * is not required.

*/

542

543 #define CPU_BEST -4
545 [*

546 * Per-CPU statistics

547 *

548 * cpu_stats_t contains nunerous systemand VMrel ated statistics, in the form
549 * of gauges or nonotonically-increasing event occurrence counts.
550 */

552 #define CPU_STATS_ENTER K() kpreenpt _di sabl e()

553 #define CPU_STATS EXI T_K() kpr eenpt _enabl e()

555 #define CPU_STATS_ADD K(cl ass, stat, anpunt) \

556 { kpreenpt _di sable(); /* keep from sw tching CPUs */\

557 CPU_STATS_ADDQ(CPU, cl ass, stat, anount);

558 kpreenpt _enabl e(); \

559

561 #define CPU_STATS ADDQ(cp, class, stat, anount) \
562 extern void __dtrace_probe___ cpu_##cl ass##i nf o_##stat (uint _t, \
563 uinté4_t *, cpu_t *); \
564 uint64_t *stataddr = & (cp)->cpu_stats.class.stat); \
565 __dtrace_probe___ cpu_##cl ass##i nf o_##st at ((anount), \
566 stataddr, cp); \
567 *(stataddr) += (anount); \
568 }

__unchanged_portion_onitted_

new usr/src/uts/comon/sys/disp.h

R R R R

6027 Wed May 15 07:34: 05 2019

new usr/src/uts/comon/sys/disp.h

10924 Need nmitigation of LITF (CVE-2018-3646)

Revi ewed by: Robert Mistacchi <rm@ oyent.conm>

Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr

Revi ewed by: Peter Tribble <peter.tribble@mail.conm

IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

-~

I ik I N
-~

21/

22 Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved.
23 Use is subject to |license terns.

24

25 Copyright 2013 Nexenta Systems, Inc. Al rights reserved.
26

27 Copyri ght 2018 Joyent, Inc.

28

30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

31 /* Al Rights Reserved *

34 #ifndef _SYS DI SP_H
35 #define _SYS DI SP_H

37 #include <sys/priocntl.h>
38 #include <sys/thread. h>
39 #include <sys/class. h>

41 #ifdef __cplusplus
42 extern "C' {

43 #endi f

45 [*

46 * The following is the format of a di spatcher queue entry.
*/

48 typedef struct dispq {

49 kt hread_t *dq_first; /* first thread on queue or NULL */
50 kt hread_t *dg_| ast; /* last thread on queue or NULL */
51 int dg_sruncnt; /* nunber of |oaded, runnable */

52 /* threads on queue */

53 } dispq_t;

__unchanged_portion_onitted_
84 #if defined(_KERNEL) || defined(_FAKE_KERNEL)
86 #defi ne MAXCLSYSPRI 99

new usr/src/uts/comon/sys/disp.h

87 #define M NCLSYSPRI 60

90 /*

91 * dobal scheduling variables.

92 * - See sys/cpuvar.h for CPU-local vari ables.

93 */

94 extern int nswapped; /* nunber of swapped threads */

95 * nswapped protected by swap_| ock */

97 extern pri_t m ncl syspri ; /* mnimumlevel of any systemclass */
98 extern pri_ maxcl syspri ; /* maxi num | evel of any systemclass */
99 extern pri_t intr_pri; /* interrupt thread priority base |evel */
101 #endif /* KERNEL || _FAKE KERNEL */

102 #if defined(_KERNEL)

104 /*

105 * Mnimm anmount of tine that a thread can remain runnable before it can
106 * be stolen by another CPU (in nanoseconds).

107 */

108 extern hrtime_t nosteal _nsec;

110 /*

111 * Kernel preenption occurs if a higher-priority thread is runnable with
112 * a priority at or above kpreenptpri.

113 *

114 * So that other processors can watch for such threads, a separate

115 * dispatch queue with unbound work above kpreenptpri is maintained.

116 * This is part of the CPU partition structure (cpupart_t).

117 */

118 extern pri_t kpreenptpri; /* level above which preenption takes place */
120 extern void di sp_kp_al loc(disp_t *, pri_t); /* allocate kp queue */
121 extern void di sp_kp_free(disp_t *); /* free kp queue */
123 /*

124 * Macro for use by scheduling classes to decide whether the thread is about
125 * to be scheduled or not. This returns the maxi numrun priority.

126 *

127 #define DI SP_MAXRUNPRI (t) ((t)->t_di sp_queue->di sp_maxrunpri)

129 /*

130 * Platform callbacks for various dispatcher operations

131 ~*

132 * idle_cpu() is invoked when a cpu goes idle, and has nothing to do.

133 * disp_eng_thread() is invoked when a thread is placed on a run queue.
134

135 extern void (*idle_cpu)();

136 extern void (*disp_enqg_thread)(struct cpu *, int);

139 extern int di spdeq(kthread_t *);

140 extern void di spinit(void);

141 extern void di sp_add(sclass_t *);

142 extern int intr actlve(struct cpu *, int);

143 extern int servi cing_i nterrupt(void);

144 extern void preenpt (voi d) ;

145 extern void set backdg(kthread_t *);

146 extern void setfrontdq(kthread_t *);

147 extern void swt ch(voi d);

148 extern void sw ch_to(kthread_t *);

149 extern void swt ch_from zonbi e(voi d)

150 NORET! X

151
152

extern void
extern void

dq_sruni nc(kthread t *);
dg_srundec(kthread_t *);

new usr/src/uts/comon/sys/disp.h

153 extern void cpu_rechoose(kthread_t *);

154 extern void cpu_surrender (kthread_t *);

155 extern void kpreenpt (int);

156 extern struct cpu *di sp_|l owpri _cpu(struct cpu *, kthread_t *, pri_t);
154 extern struct cpu *di sp_l owpri _cpu(struct cpu *, struct Igrp_ld *, pri_t,
155 struct cpu *);

157 extern int di sp_bound_t hreads(struct cpu *, int);
158 extern int di sp_bound_anyt hreads(struct cpu *, int);
159 extern int di sp_bound_partition(struct cpu *, int);
160 extern void di sp_cpu_init(struct cpu *);

161 extern void di sp_cpu_fini(struct cpu *);

162 extern void di sp_cpu_i nactive(struct cpu *);

163 extern void di sp_adj ust _unbound_pri (kthread_t *);
164 extern void resume(kthread_t *);

165 extern void resume_from.intr(kthread_t *);

166 extern void resunme_from zonbi e(kt hread_t *)

167 __NORETURN,

168 extern void di sp_swapped_enq(kthread_t *);

169 extern int di sp_anywor k(voi d);

171 extern struct cpu *di sp_choose_best _cpu(voi d);

173 #define KPREEMPT_SYNC (-1)

174 #define kpreenpt_disabl e() \

175 { \

176 curt hread- >t _preenpt ++; \

177 ASSERT(curt hread->t _preenpt >= 1); \

178 1

179 #define kpreenpt_enabl e() \

180 { \

181 ASSERT(curt hread->t _preenpt >= 1); \

182 if (--curthread->t_preenpt == 0 && \

183 CPU- >cpu_kpr unrun) \

184 kpr eenpt (KPREEMPT_SYNC) ; \

185 }

187 #endif /* _KERNEL */
189 #define CPU IDLE_ PR (-1)
191 #ifdef __ cplusplus

192 }
__unchanged_portion_onitted_

new usr/src/uts/comon/sys/thread. h

R R R R

27314 Wed May 15 07:34: 06 2019
new usr/src/uts/comon/sys/thread. h
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

100

102
103
104
105
106
107
108
109

111
112

114
115

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

typedef struct _kthread *kthread_id_t;

struct turnstile;
struct panic_trap_info;
struct upi nutex;

struct kproject;

struct on_trap_data;
struct waitq;

struct _kcpc_ctx;
struct _kcpc_set;

/* Definition for kernel thread identifier type */
typedef uint64_t kt_did_t;

typedef struct _kthread {
struct _kthread *t_link; /* dispqg, sleepq, and free queue link */

caddr _t t_stk; /* base of stack (kernel sp value to use) */
voi d (*t startpc)(v0|) /* PC where thread started */

struct cpu *t_bound_cpu; /* cpu bound to, or NULL if not bound */
short t_affinitycnt; /* nesting |level of kernel affinity-setting */
short t _bind_cpu; /* user-specified CPU binding (-1 if none) */
ushort_t t_flag; /* nodified only by current thread */
ushort_t t_proc_fl ag; /* modified holding ttproc(t)->p_lock */
ushort_t t_schedfl ag; /* nodified holding thread_|l ock(t) */
volatile char t_preenpt; /* don't preenpt thread if set */

vol atile char t_preenpt_Ik;
uint_t t_state; /* thread state (protected by thread_| ock)
pri_t t_pri; /* assigned thread priority */
pri_t t_epri; /* inherited thread priority */
pri_t t_cpri; /* thread scheduling class priority */
char t_writer; /* sleeping in | wp_rw ock_| ock(RW WRI TE_LOCK)
uchar _t t_bindfl ag; /* CPU and pset binding type */
| abel _t t_pch; /* pcb, save area when sw tching */
I'wpchan_t t_Il wpchan; /* reason for blocking */

#def i ne t_wchan0 t _l wpchan. | c_wchan0

#define t_wchan t _I wpchan. | c_wchan
struct _sobj_ops *t_sobj _ops;
id_t t_cid; /* scheduling class id */
struct thread_ops *t_cl funcs; /* scheduling class ops vector */
voi d *t_cl data; /* per scheduling class specific data */

/* thread context */

uintptr_t t Iofault /* ret pc for failed page faults */

| abel _t *t_onfaul t; /* on_fault() setjnp buf */

struct on_trap_data *t_ontrap; /* on_trap() protection data */

ctxop_t *t_ctx;

caddr _t t_swap; /* the bottomof the stack, if fromsegkp */
lock_t t_lock; /* used to resune() a thread */

uint8_t t Iockstat /* set while thread is in |ockstat code */
uint8_t t p|I /* interrupt thread PIL */

di sp_l ock_t t _pi _I ock; /* lock protecting t_prioinv Iist */
char t _nomi grate; /* do not migrate if set */

struct cpu *t_cpu; /* CPU that thread last ran on */
struct cpu *t _weakbound_cpu; /* cpu weakly bound to */
struct Igrp_ld *t_Ipl; /* |oad average for home |group */
voi d *t Igrp reserv[2]; /* reserved for future */
struct _kthread *t_intr; /* interrupted (pinned) thread */

*/

new usr/src/uts/comon/sys/thread. h

156
157
158
159
160

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

195
196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220
221

ui nt 64_t t_intr_start;
kt_did_t t_did;

/* timestanp when tinme slice began */
/* thread id for kernel debuggers */

caddr _t t_tnf_tpdp; /* Trace facility data pointer */

struct _kcpc_ctx *t_cpc_ctx; /* performance counter context */

struct _kcpc_set *t_cpc_set; /* set this thread has bound */

/*

*/non swappabl e part of the lwp state.

*

id_t t_tid, /* Twp's id */

id_t t_waitfor; /* target Iwp idin Iwp_wait() */

struct sigqueue *t _si gqueue; /* queue of siginfo structs */

k_si gset _t sig; /* signals pending to this process */

k_si gset _t t_extsi g; /* signals sent from another contract */

k_sigset _t t _hol d; /* hold signal bit mask */

k_si gset _t t S|gv\a|t /* sigtinmedwait/sigfd accepting these */

struct kt hread *t_forw, /* process’s forward thread |ink */

struct _kthread *t_back; /* process’s backward thread Iink */

struct _kthread *t_thlink; /* tid (Iwpid) |ookup hash Iink */

klwp_t *t_lwp; /* thread' s |wp pointer */

struct proc *t_procp; /* proc pointer */

struct t_audit_data *t_audit_dat a; /* per thread audit data */

struct kthread *t_next; /* doubly linked list of all threads */

struct _kthread *t_prev;

ushort_t t_whystop; /* reason for stopping */

ushort_t t_whatstop; /* nore detailed reason */

int t_dslot; /* index in proc’s thread directory */

struct pollstate *t_pollstate; /* state used during poll(2) */

struct pollcache *t_pollcache; /* to pass a pcache ptr by /dev/poll */

struct cred *t_cred; /* pointer to current cred */

tine_t t_start; /* start tine, seconds since epoch */

clock_t t_lbolt; /* Ibolt at |ast clock_tick() */

hrtime_t t_stoptine; /* tinmestanp at stop() */

uint_t t_pctcpu; /* 9%pu at last clock_tick(), binary */
/* point at right of high-order bit */

short t_sysnum /* systemcall nunber */

kcondvar _t t _delay_cv;

kmut ex_t t _del ay_| ock;

/*

* Pointer to the dispatcher |lock protecting t_state and state-rel ated
* flags. This pointer can change during waits on the |ock, so

* it should be grabbed only by thread_| ock().

*/

di sp_l ock_t *t _l ockp; pointer to the dispatcher |ock */

/*
ushort _t t_oldspl; /* spl level before dispatcher |ocked */
vol atile char t_pre_sys; /* pre-syscall work needed */
lock_t t _lock_flush; /* for lock_nutex_flush() inpl */

*

;*

/*

struct _disp *1_di sp_queue; run queue for chosen CPU */
cl ock_t t_disp_tinme; last tine this thread was running */
ui nt _t t_kpri_req; kernel priority required */

/
Post -syscall / post-trap flags.

No lock is required to set these.

These nust be cleared only by the thread itself.

t_astflag indicates that some post-trap processing is required,
possibly a signal or a preenption. The thread will not
return to user with this set.

t _post_sys indicates that sone unusualy post-system call
handling is required, such as an error or tracing.

t_sig_check indicates that some condition in ISSI Q) nust be
checked, but doesn't prevent returning to user.

t_post_sys_ast is a way of checki ng whether any of these three
flags are set.

¥k ok ok ok ok % ok kb k% F %

new usr/src/uts/comon/sys/thread. h

222 */

223 union __tu {

224 struct __ts {

225 vol atile char _t_astflag; /* AST requested */
226 vol atile char _t_sig_check; /* 1SSIG required */
227 vol atil e char _t_post_sys; /* post_syscall

228 vol atile char _t_trapret; /* call CL_TRAPRET */
229 } _ts;

230 vol atile int _t_post_sys_ast; /* OR of these flags */
231 } _tu;

232 #define t_astflag _tu._ts._t_astflag

233 #define t_sig_check _tu._ts._t_sig_check

234 #define t_post_sys _tu._ts._t_post_sys

235 #define t_trapret _tu. | ts. _t_trapret

236 #define t_post_sys ast _tu._t_post_sys_ast

238 /*

239 * Real tine microstate profiling.

240 */

241 /* possible 4-byte filler */

242 hrtime_t t_waitrq; /* timestanp for run queue wait time */
243 int t_nstate; /* current mcrostate */

244 struct rprof {

245 I nt rp_anystate; /* set if any state non-zero */
246 uint_t rp_state[NVSTATES]; /* mstate profiling counts */
247 } *t_rprof;

249 /*

250 * There is a turnstile inserted into the list below for

251 * every priority inverted synchronization object that

252 * this thread holds.

253 */

255 struct turnstile *t_prioinv;

257 I*

258 * Pointer to the turnstile attached to the synchronization

259 * object where this thread is bl ocked.

260 */

262 struct turnstile *t_ts;

264 /*

265 * kernel thread specific data

266 */ Borrowed from userland inplenentation of POSI X tsd

267 *

268 struct tsd_thread {

269 struct tsd_thread *ts_next; /* threads with TSD */

270 struct tsd_thread *ts_prev; /* threads with TSD */

271 ui nt _t ts_nkeys; /* entries in value array */
272 void **ts_val ue; /* array of val uelkey */

273 } *t_tsd;

275 clock_t t_sting; /* tinme stanp used by the swapper */
276 struct door_data *t_door; /* door invocation data */

277 kmut ex_t *t _pl ockp; /* pointer to process’s p_lock */

279 struct sc_shared *t_schedctl; /* schedul er activations shared data */
280 uintptr_t t _sc_uaddr; /* user-level address of shared data */
282 struct cpupart *t_cpupart; /* partition containing thread */

283 int t _bi nd_pset; /* processor set binding */

285 struct copyops *t_copyops; /* copy in/out ops vector */

287 caddr _t t _st kbase; /* base of the the stack */

new usr/src/uts/comon/sys/thread. h

288 struct page *t_red_pp; /* if non-NULL, redzone is mapped */
290 afd_t t_activefd; /* active file descriptor table */

292 struct _kthread *t_priforw /* sleepqg per-priority sublist */

293 struct _kthread *t_pri back;

295 struct sleepq *t_sleepq; /* sl eep queue thread is waiting on */
296 struct panic_trap_info *t_panic_trap; /* saved data fromfatal trap */
297 int *t_lgrp_affinity; /* I group affinity */

298 struct upinutex *t_upi nutex; /* list of upinutexes owned by thread */
299 uint32_t t _nupi nest; /* nunber of nested held upi nutexes */
300 struct kproject *t_proj; /* project containing this thread */
301 ui nt8_t t _unpark; /* nodified holding t_delay_|ock */

302 uint8_t t _rel ease; /* Iwp_rel ease() waked up the thread */
303 uint8_t t _hat dept h; /* depth of recursive hat_nenl oads */
304 ui nt 8_t t_xpventr; /* see xen_block_migrate() */

305 kcondvar _t t _j oi ncv; /* cv used to wait for thread exit */
306 voi d *t _taskq; /* for threads belonging to taskq */
307 hrtime_t t_anttine; /* nost recent tine anticipatory |load */
308 /* was added to an lgroup’s |oad */
309 I on this thread s behal f */

310 char *t _pdmsg; /* privilege debuggi ng nessage */

312 ui nt _t t _predcache; /* DIrace predicate cache */

313 hrtime_t t_dtrace_vtinme; /* Dlrace virtual time */

314 hrtime_t t_dtrace_start; /* DIrace slice start tine */

316 uint8_t t_dtrace_stop; /* indicates a Dirace-desired stop */
317 ui nt 8_t t_dtrace_sig; /* signal sent via DTrace’s raise() */
319 union _ tdu {

320 struct __tds {

321 uint8_t _t_dtrace_on; /* hit a fasttrap tracepoint */
322 uint8_t _t dtrace_step; /* about to return to kernel */
323 uint8_t _t dtrace ret; /* handling a return probe */
324 uint8_t _t_dtrace_ast; /* saved ast flag */

325 #ifdef __and64

326 uint8_t _t_dtrace_reg; /* nodified register */

327 #endi f

328 } _tds;

329 ulong_t _t_dtrace_ft; /* bitwise or of these flags */
330 } _tdu;

331 #define t_dtrace_ft _tdu. _t_dtrace_ft

332 #define t_dtrace_on _tdu._tds._t_dtrace_on

333 #define t_dtrace_step _tdu._tds._t_dtrace_step

334 #define t_dtrace_ret _tdu._tds._t_dtrace_ret

335 #define t_dtrace_ast _tdu._tds._t_dtrace_ast

336 #ifdef __and64

337 #define t_dtrace_reg _tdu._tds._t_dtrace_reg

338 #endi f

340 uintptr_t t _dtrace_pc; /* DIrace saved pc fromfasttrap */

341 uintptr_t t_dtrace_npc; /* DIrace next pc fromfasttrap */

342 uintptr_t t_dtrace_scrpc; /* Dlrace per-thread scratch |ocation */
343 uintptr_t t_dtrace_astpc; /* DTrace return sequence |ocation */
344 #ifdef _ ami64

345 ui nt 64_t t_dtrace_regv; /* Dlrace saved reg fromfasttrap */
346 ui nt 64_t t _useracc; /* SMAP state saved across swich() */
347 #endi f

348 hrtime_t t_hrtineg; /* high-res last tine on cpu */

349 kmut ex_t t _ctx_Il ock; /* protects t_ctx in renovectx() */
350 struct waitq *t_waitq /* wait queue */

351 kmut ex_t t_wait _nut ex; /* used in CV wait functions */

353 char *t _nane;

/* thread nane */

new usr/src/uts/comon/sys/thread. h

355
356

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

407
408
409
410
411
412
413
414
415
416
417
418
419

ui nt 64_t t _unsafe; /* unsafe to run with HT VCPU thread */

} kthread_t;
/*

* Thread flag (t_flag) definitions.

* These flags nust be changed only for the current thread,

* and not during preenption code, since the code being

* preenpted could be nodifying the flags.

*

* For the nost part these flags do not need | ocking.

* The following flags will only be changed while the thread_l ock is held,
* to give assurrance that they are consistent with t_state:

* T_WAKEABLE

*

/
#define T_INTR_ THREAD 0x0001 /* thread is an interrupt thread */
#defi ne T_WAKEABLE 0x0002 /* thread is blocked, signals enabled */
#defi ne T_TOVASK 0x0004 /* use |wp_sigoldnmask on return from signal */
#define T_TALLOCSTK 0x0008 /* thread structure allocated fromstk */
#defi ne T_FORKALL 0x0010 /* thread was cloned by forkall () */
#def i ne T_WOULDBLOCK 0x0020 /* for lockfs */
#defi ne T_DONTBLOCK 0x0040 /* for lockfs */
#def i ne T_DONTPEND 0x0080 /* for lockfs */
#define T_SYS_PROF 0x0100 /* profiling on for duration of systemcall */
#defi ne T_WAI TCVSEM 0x0200 /* waiting for a |wp_cv or |wp_sema on sleepq */
#def i ne T_WATCHPT 0x0400 /* thread undergoing a watchpoint enul ation */
#define T_PANIC 0x0800 /* thread initiated a system panic */
#def i ne T_LWPREUSE 0x1000 /* stack and LW can be reused */
#defi ne T_CAPTURI NG 0x2000 /* thread is in page capture logic */
#def i ne T_VFPARENT 0x4000 /* thread is vfork parent, nust call vfwait */
#def i ne T_DONTDTRACE 0x8000 /* disable DTrace probes */
/*

* Flags in t_proc_flag.

* These flags nust be nodified only when holding the p_| ock

* for the associated process.

*

/
#def i ne TP_DAEMON 0x0001 /* this is an LWP_DAEMON |wp */
#defi ne TP_HOLDLWP 0x0002 /* hold thread' s Iwp */
#define TP_TWAI T 0x0004 /* wait to be freed by Iwp_wait() */
#define TP_LWPEXI T 0x0008 /* |wp has exited */
#defi ne TP_PRSTOP 0x0010 /* thread is being stopped via /proc */
#defi ne TP_CHKPT 0x0020 /* thread is being stopped via CPR checkpoint */
#defi ne TP_EXI TLWP 0x0040 /* terminate this Iw */
#def i ne TP_PRVSTOP 0x0080 /* thread is virtually stopped via /proc */
#def i ne TP_MSACCT 0x0100 /* collect mcro-state accounting information */
#defi ne TP_STOPPI NG 0x0200 /* thread is executing stop() */
#defi ne TP_WATCHPT 0x0400 /* process has watchpoints in effect */
#def i ne TP_PAUSE 0x0800 /* process is being stopped via pausel wps() */
#define TP_CHANGEBIND 0x1000 /* thread has a new cpu/ cpupart binding */
#def i ne TP_ZTHREAD 0x2000 /* this is a kernel thread for a zone */
#def i ne TP_WATCHSTOP 0x4000 /* thread is stopping via hol dwatch() */
/*

* Thread scheduler flag (t_schedflag) definitions.

The thread nust be Tocked via thread_|l ock() or equiv. to change these.

*

/
#define TS _LOAD 0x0001 /* thread is in nmenmory */
#def i ne TS_DONT_SWAP 0x0002 /* thread/|wp should not be swapped */
#defi ne TS_SWAPENQ 0x0004 /* swap thread when it reaches a safe point */
#define TS_ON_SWAPQ 0x0008 /* thread is on the swap queue */
#define TS _SI GNALLED 0x0010 /* thread was awakened by cv_signal ()
#define TS_PRQIWAI TQ 0x0020 /* thread is on its project’s waitq */
#define TS_ZONEWAI TQ 0x0040 /* thread is on its zone's waitq */
#define TS_VCPU 0x0080 /* thread will enter guest context */
#defi ne TS_CSTART 0x0100 /* setrun() by continuel wps() */

new usr/src/uts/comon/sys/thread. h

420
421
422
423
424
425
426
427
428

430
431
432
433
434
435

437
438
439
440
441
442
443

445
446
447
448
449

451
452
453

455
456
457

459
460

462
463
464

466
467
468
469
470

472
473
474
475
476
477

479
480
481

483
484

#def i ne TS_UNPAUSE 0x0200 /* setrun() by unpausel wps()

#defi ne TS_XSTART 0x0400 /* setrun() by SI GCONT *

#defi ne TS_PSTART 0x0800 /* setrun() by /proc */

#defi ne TS RESUVE 0x1000 /* setrun() by CPR resume process */

#defi ne TS_CREATE 0x2000 /* setrun() by syslwp_create() */

#defi ne TS_RUNQVATCH 0x4000 /* exact run queue bal anci ng by setbackdq()

#define TS _ALLSTART \
(TS_CSTART| TS_UNPAUSE| TS_XSTART| TS_PSTART| TS_RESUME| TS_CREATE)
#define TS ANYWAI TQ (TS_PROJVAI TQ TS_ZONEWAI TQ)

/*

* Thread binding types

*/

#defi ne TB_ALLHARD 0

#defi ne TB_CPU SOFT 0x01 /* soft binding to CPU */
#defi ne TB_PSET_SOFT 0x02 /* soft binding to pset */

#define TB_CPU_SOFT_SET(t) ((t)->t_bindflag | = TB_CPU_SOFT)
#define TB_CPU_HARD SET(t) ((t)->t _bindflag & ~TB_CPU SOFT)
#define TB_PSET_SOFT_SET(t) ((t)->t_bindflag | = TB_PSET_SOFT)
#define TB_PSET_HARD SET(t) ((t)->t_bindflag & ~TB_PSET_SOFT)
#define TB_CPU IS SOFT(t) ((t)->t_bindflag & TB_CPU_SCFT)
#define TB_CPU_|'S HARD(t) (I'TB_CPU I S SOFT(t))
#define TB_PSET_I'S SOFT(t) ((t)->t_bindflag & TB_PSET_SOFT)
/*

* No | ocking needed for AST field.

*

/
#define aston(t)

((t)->t_astflag = 1)
((t)->t_astflag = 0)

/* True if thread is stopped on an event of interest */
#define | STOPPED(t) ((t)->t_state == TS_STOPPED && \
1 ((t)->t_schedfTag & TS _PSTART))

#define astoff(t)

/* True if
#defi ne

thread is asleep and wakeabl e */
SV\AKEABLE(t) (((t)->t_state == TS SLEEP && \
((t)->t_flag & T_WAKEABLE)))

/* True if thread is on the wait queue */
#define ISWAITING(t) ((t)->t_state == TS_WAIT)

/* simlar to | STOPPED except the event of interest is CPR */
#define CPR_| STOPPED(t) ((t) >t _state == TS_STOPPED && \
I((t)->t_schedfl ag & TS_RESUME))

/*
* True if thread is virtually stopped (is or was asleep in
* one of the Iwp_*() systemcalls and marked to stop by /proc.)
*
/
#def i ne VSTOPPED(t) ((t)->t_proc_flag & TP_PRVSTOP)

/* simlar to VSTOPPED except the point of interest is CPR */
#def i ne CPR_VSTOPPED(t)
((t)->t_state == TS_SLEEP &&
(t)->t_wchan0 != NULL &&
t)->t_flag & T_WAKEABLE) &&

E %t)->t _proc_flag & TP_CHKPT))
f

——— —

/* True if thread has been stopped by hol d*() or was created stopped */
#define SUSPENDED(t) ((t)->t_state == TS STOPPED && \
((t)->t_schedflag & (TS_CSTART| TS_UNPAUSE))

/* True i

if thread possesses an inherited priority */
#define | NH 0)

ERI TED(t) ((t)->t_epri !=

*/

I = (TS_CSTART| TS_UNPAUSE))

new usr/src/uts/comon/sys/thread. h

486
487

489
490

492
493
494
495
496

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

534
535

537

539
540
541
542
543

545
546

548
549
550
551

/* The dispatch priority of a thread */

#define DISP_PRIQ(t) ((t)->t_epri > (t)->t_pri ? (t)->t_epri (t)->t_pri)
/* The assigned priority of a thread */

#defi ne ASSI GNED PRI O(t) ((t)->t_pri)

/*
* Macros to determine whether a thread can be swapped.
* I f

t_lock is held, the thread is either on a processor or being swapped.

*/

#define SWAP_OK(t)
/

(! LOCK_HELD(&(t)->t _| ock))

proctot (x)
convert a proc pointer to a thread pointer. this only works with
procs that have only one |wp.

proct ol wp(x)
convert a proc pointer to a Iwp pointer. this only works with
procs that have only one |wp.

ttol wp(x)
convert a thread pointer to its |Iwp pointer.

ttoproc(x)
convert a thread pointer to its proc pointer.

ttoproj (x)
convert a thread pointer to its project pointer.

ttozone(x)
convert a thread pointer to its zone pointer.

| wpt ot (x)
convert a lwp pointer to its thread pointer.

| wpt opr oc(x)
convert a lwp to its proc pointer.

X)->p_tlist)
X)->p_tlist->t_Ilwp)
X) - >t _| wp)

X) - >t _procp)
X)->t_proj)
X
X
X

I T

*/
#defi ne proctot (x) ((
#defi ne proct ol wp(x) ((
#define ttol wp(x) ((
#define ttoproc(x) ((
#define ttoproj(x) ((
#define ttozone(x) ((
#def i ne | wpt ot (x) ((
#defi ne | wpt oproc(x) ((

)->t _procp->p_zone)
) - >l wp_t hread)
) - >l wp_procp)

t_pcb.val [0

#define t_pc]
t_pch.val [1]

#define t_sp
#ifdef _KERNEL

extern kthread_t
#define curthread
#define curproc
#defi ne curproj
#defi ne curzone

(ttoproj (curthread))
(curproc->p_zone)

* ok

—~—

current zone pointer */

/* the schedul er thread */
/* gl obal process lock */

extern struct _kthread tO;
extern krutex_t pi dl ock;

/*
* thread_free_|ock is used by the tick accounting thread to keep a thread
* frombeing freed while it is being exanined.

threadp(void); / inline, returns thread pointer */
(threadp()) /* current thread pointer */
(ttoproc(curthread)) /* current process pointer */
current project pointer */

new usr/src/uts/comon/sys/thread. h

552
553
554
555
556
557
558
559
560
561
562

564
565
566
567

* Thread structures are 32-byte aligned structures. That is why we use the

* following formila.
*/

#def i ne THREAD_FREE_BI TS
#def i ne THREAD_FREE_NUM
#def i ne THREAD_FREE_MASK
#def i ne THREAD_FREE_1
#def i ne THREAD_FREE 2

#defi ne THREAD_FREE_SH FT(t)

10
(1 << THREAD FREE_BI TS)

(THREAD_FREE_NUM - 1)
PTR24_LSB

(PTR24_LSB + THREAD FREE BI TS)
\

(((ulong t)(t) >> THREAD FREE 1) ~ ((ulong_t)(t) >> THREAD FREE 2))

#def i ne THREAD FREE_HASH(t)

(THREAD_FREE_SHI FT(t) & THREAD FREE MASK)

typedef struct thread_free_|l ock {
1 .

kmut ex_t tf
uchar _t
} thread_free_l ock_t;
__unchanged_portion omtted

tf pad[64 - sizeof (kmutex_t)]:

new usr/src/uts/i86pc/ Makefile.files

R R R R

6324 Wed May 15 07:34:06 2019
new usr/src/uts/i86pc/ Makefile.files
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel oprent and Distribution License (the "License")

6 # You may not use this file except in conpliance with the License

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing

10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #

19 # CDDL HEADER END
20 #
22 #
23 # Copyright (c) 1992, 2010, Oracle and/or its affiliates. Al rights reserved
24 #
25 # Copyright (c) 2010, Intel Corporation
26 # Copyright 2018 Joyent, Inc
27 # Copyright 2019 Omi CS Community Edition (Omi OSce) Association
28 #
29 # This Makefile defines file nodules in the directory uts/i86pc
30 # and its children. These are the source files which are i86pc
31 # "inpl ementation architecture" dependent.
32 #
34 #
35 # object lists
36 #
37 CORE_OBJS += \
38 acpi _stubs.o \
39 bi osdi sk. o \
40 bios_call.o \
41 che. o \
42 cm.o \
43 cm _hw. o \
44 Ccns. 0 \
45 conmm page. o \
46 confuni x. o \
a7 cpu_idle.o \
48 cpuid.o \
49 cpui d_subr.o \
50 cpupm o \
51 cpupm_mach. o \
52 cpupm and. o \
53 cpupm.intel.o \
54 cpupmthrottle.o \
55 cpu_acpi .o \
56 dis_tables.o \
57 ddi _inpl .o \
58 dtrace_subr.o \

new usr/src/uts/i86pc/ Makefile.files

dvma. o
fpu_subr.o
f akebop. o
fastboot. o
fb_swtch.o
graphics. o
hardcl k. o
hat _i 86. 0
hat _kdi .o
hma_f pu. o
hment . o

hol d_page. o
hrtimers.o
ht.o
htabl e. o
hypercal |l .o
hyper subr. o
i 86_mmu. o
ibft.o
instr_size.o
intr.o
kboot _mu. o
kdi _idt.o
kdi _i dthdl .o
kdi _asm o

I grpplat.o
mach_kdi . o

mach_sysconfig. o

machdep. o
mem config.o

mem config_stubs. o
mem config_arch.o

menl i st_new. o
nemode. o

m crocode. o
mcrofind. o

m setup. o
np_call.o

mp_i npl funcs. o

np_machdep. o
np_pc. o
np_startup.o
nmenscrub. o
npcore. o
notes. o

pci _bios.o
pci _cfgacc. o

pci _cfgacc_x86.0
pci _cfgspace. o

pci _mechl. o

pci _mechl_and. o

pci _mech2. o
pci _neptune. o
pci _orion.o
prem o
ppage. o

pwr now. o
speedst ep. o
ssp. o
startup.o
tinmestanp. o
t odpc_subr. o
trap.o
turbo.o

vm nachdep. o

xpv_platformo

o e o o e o o e o e e e e

new usr/src/uts/i86pc/ Makefile.files

125 x_call.o

127 #

128 # Add the SMBI OS subsystem object files directly to the |ist of objects
129 # built into unix itself; this is all common code except for snb_dev.c.
130 #

131 CORE_OBJS += $(SMBI 0S_OBJS)

133 #

134 # These get conpiled tw ce:

135 # - once in the dboot (direct boot) identity napped code
136 # - once for use during early startup in unix

137 #

138 BOOT_DRI VER OBJS = \

139 boot _consol e. o \

140 boot _keyboard. o \

141 boot _keyboard_t abl e. o \

142 boot _vga. o \

143 boot _fb.o \

144 boot _nmmu. o \

145 dboot _nul ti boot 2. 0 \

146 $(FONT_OBJS,

148 CORE_OBJS += $(BOOT_DRI VER_OBJS)

150 #

151 # locore.o is special. It nmust be the first file relocated so that it
152 # it is relocated just where its nane inplies.
153 #

154 SPECI AL_OBJS 32 += \

155 | ocore. o \

156 fast_trap_asmo \

157 interrupt.o \

158 syscal | _asm o

160 SPECI AL_OBJS 64 += \

161 | ocore. o \

162 fast_trap_asmo \

163 interrupt.o \

164 syscal | _asm and64. o \

165 kpti_tranpolines.o

167 SPECI AL_OBJS += $(SPECI AL_OBJS_$(CLASS))

169 #

170 # Objects that get conpiled into the identity mapped PT_LQOAD section of unix
171 # to handle the earliest part of booting.

172 #

173 DBOOT_OBJS_32 =

175 DBOOT_OBJS_64 += dboot _el fl oad. o

177 DBOOT_OBJS += \

178 dboot _asm o \

179 dboot _grub. o \

180 dboot _printf.o \

181 dboot _startkern. o \

182 nencpy. o \

183 nenset . o \

184 mul div. o \

185 shal. o \

186 string.o \

187 $(BOOT_DRI VER_OBJS) \

188 $(DBOOT_OBJS_$(CLASS))

190

#

new usr/src/uts/i86pc/ Makefile.files

191

#

192 #
GFX_PRI VATE_OBJS

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

211
212

214
215
216

218

220
221
222
223
224
225
226
227
228
229
230

232
234

236
237

239
240
241
242
243

245
246
247
248
249
250

252
253
254
255
256

driver and m sc nodul es

+= gf x_private.o gf xp_pci.o gfxp_segnap.o \
gf xp_devnap. o gf xp_vgatext.o gf xp_vm o vgasubr.o \
gf xp_fb. o gf xp_bi tmap. o

FI PE_OBJS += fipe_drv.o fipe_pmo
| OAT_OBJS += ioat.o
| SANEXUS_OBJS += isa. o dma_engine.o i 8237A. 0

PCl E_M SC_OBJS += pci e_acpi .o pci ehpc_acpi.o pcie_x86.0
PCl _E_NEXUS_OBJS += i

PCl _E_NEXUS_OBJS +=

PClI NEXUS_OBJS += pci .

PCPLUSMP_OBJS += api

API X_OBJS += apix. 0 ap
i
Tt

ACPI

ACPI NEX_0OBJS

api x_
api ¢

ioat_rs.o ioat_ioctl.o ioat_chan.o

npe. o npe_ni sc. o

pci _common. o pci _kstats.o pci_tools.o

0 pci_common. o pci_kstats.o pci_tools.o

C.0 api C_regops.0 psm.conmon.o api c_introp.o \
np_pl atform conmmon. o np_pl atformnmisc.o \
hpet _acpi .o api c_common. o apic_tinmer.o

i c_regops. o psm.conmon.o apix_intr.o apix_utils.o \

rmo np_pl atform conmon. o hpet_acpi.o api c_commn.o \

i mer.o api x_regops. o

DRV_OBJS += acpi _drv.o acpi _video.o

CPUDRV_0BJS +=\

cpudrv.o \
cpudrv_mach.

PPM_OBJS +=p

ACPI PPM_0BJS

+= acpi nex_drv. o acpi nex_event. o

o]

pm subr.o ppmo ppmplat.o

+= acpi ppm o acpi sl eep. o

ACPI DEV_OBJS += acpi dev_drv.o \

acpi dev_scop
acpi dev_cont
acpi dev_cpu.
acpi dev_dr. o
acpi dev_neno
acpi dev_pci .
acpi dev_reso
acpi dev_usbp

e. 0 acpi dev_device.o \
ainer.o \

o\

\

ry.o \

o\

urce.o \

ort.o \

acpidev_util.o

DRVACH_ACPI _OBJS +=

drmach_acpi.o dr_util.o drmach_err.o

DR OBJS += dr.o dr_cpu.o dr_err.o dr_io.o dr_nem acpi.o dr_quiesce.o dr_util.o

ROOTNEX_OBJS += rootnex. o inmmu.o i mmu_dnmar.o i nmu_dvma. o \

i mmu_|

TZMON_OBJS +=t
UPPC_OBJS += uppc. o
XSVC_OBJS += xsvc. 0
AVD_| OMMJ_OBJS +=

Build up def

LL_DEFS += -

ce the assymfi
files includin
tance when the

intrmap. o i mmu_ginv.o inmu_regs. o

znon. o
psm_conmon. o

amd_i omru. o and_i ommu_i npl . o and_i onmu_acpi .o \
anmd_i ommu_cnd. o and_i onmu_| og. o and_i onmu_page_t abl es. o

ines and paths.

Di 86pc
$(UTSBASE) / i 86pc -1 $(SRC) / conmon
$(UTSBASE) / i 86xpv - | $(UTSBASE) / common/ xen

les are derived, the dependencies must be explicit for
g this file. (This is only actually required in the
.nse_depinfo file does not exist.

new usr/src/uts/i86pc/ Makefile.files

258 ASSYM DEPS += \
259 copy. o \
260 desctbls_asmo \
261 ddi _i 86_asm o \
262 exception. o \
263 fast_trap_asmo \
264 float.o \
265 i 86_subr.o \
266 interrupt.o \
267 lock_primo \
268 | ocore. o \
269 npcore. o \
270 ssebl k. o \
271 swtch. o \
272 syscal | _asm o \
273 syscal | _asm and64. o \
274 kpti_tranpolines.o \
275 cpr_wakecode. o

277 CPR_IMPL_OBJS = cpr_inpl.o cpr_wakecode. o

279 $(KDI _ASSYM DEPS: %=$(OBJS_DIR)/ % : $(DSF_DI R)/ $(OBJS_DI R)/ kdi _assym h

new usr/src/uts/i86pc/iolapix/apix_intr.c 1 new usr/src/uts/i86pc/iolapix/apix_intr.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 #I ncl ude <SyS/rm pl atter h>
25174 Wed May 15 07:34:06 2019 60 #include <sys/privregs. h>
new usr/src/uts/i86pc/iolapix/apix_intr. 61 #include <sys/note. h>
10924 Need mitigation of L1TF (CVE-2018- 3646) 62 #include <sys/pci_intr_lib.h>
Revi ewed by: Robert Mistacchi <rm@ oyent.conm> 63 #include <sys/spl.h>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr 64 #include <sys/cl ock. h>
Revi ewed by: Peter Tribble <peter.tribble@mail.conm 65 #i ncl ude <sys/dditypes. h>
IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE] 66 #' ncl ude <SyS/SUndd|) h>
1/* 67 #include <sys/x_call.h>
2 * CDDL HEADER START 68 #incl ude <sys/reboot. h>
3 * 69 #include <vn hat_i 86. h>
4 * The contents of this file are subject to the terms of the 70 #include <sys/stack. h>
5 * Common Devel opnent and Distribution License (the "License"). 71 #include <sys/apix. h>
6 * You may not use this file except in conpliance with the License. 72 #include <sys/ht.h>
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 static void api x_post_hardint(int);
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing perm ssions 76 | *
11 * and limtations under the License. 77 * Insert an vector into the tail of the interrupt pending |ist
12 = 78 */
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 static __inline__ void
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 api x_i nsert_pendi ng_av(api x_i npl _t *api xp, struct autovec *avp, int ipl)
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 {
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 struct autovec **head = api xp->x_i ntr_head;
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 struct autovec **tail = apixp->x_intr_tail;
18 =
19 * CDDL HEADER END 85 avp->av_ipl _link = NULL;
20 */ 86 if (tall[lpl] == NULL) {
87 [|p|] = tail[ipl] = avp;
22 /* 88 ret urn;
23 * Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved. 89 }
24 * Copyright 2018 Western Digital Corporation. Al rights reserved.
25 * Copyright 2018 Joyent, Inc. 91 tail[ipl]->av_ipl_link = avp;
26 */ 92 tail[ipl] = avp;
93
28 #include <sys/cpuvar. h> __unchanged_portion_onitted_
29 #include <sys/cpu_event. h>
30 #include <sys/param h> 229 static caddr_t
31 #include <sys/cmm_err. h> 230 api x_do_softint_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil,
32 #include <sys/t_Il ock. h> 231 caddr _t stackptr)
33 #include <sys/knmem h> 232 {
34 #incl ude <sys/nmachl ock. h> 233 kthread_t *t, *volatile it;
35 #include <sys/systm h> 234 struct machcpu *ntpu = &cpu->cpu_m
36 #include <sys/archsystm h> 235 hrtime_t now,
37 #include <sys/atomc. h>
38 #include <sys/sdt.h> 237 UNREFERENCED_1PARAMETER(ol dpi |) ;
39 #include <sys/processor. h> 238 ASSERT(pi| > ntpu->ntpu_pri &% pil > cpu->cpu_base_spl);
40 #include <sys/tinme. h>
41 #incl ude <sys/psm h> 240 atomi c_and_32((ui nt32_t *)&nmcpu->ncpu_softinfo.st_pending, ~(1 << pil));
42 #include <sys/snp_inpl defs. h>
43 #incl ude <sys/cram h> 242 ncpu- >ncpu_pri = pil;
44 #incl ude <sys/apic. h>
45 #include <sys/pit.h> 244 now = tsc_read();
46 #include <sys/ddi.h>
47 #incl ude <sys/sunddi . h> 246 /*
48 #incl ude <sys/ddi _i npl defs. h> 247 * Cet set to run interrupt thread.
49 #include <sys/pci.h> 248 * There shoul d al ways be an interrupt thread since we
50 #include <sys/promf.h> 249 * allocate one for each | evel on the CPU.
51 #include <sys/x86_archext.h> 250 */
52 #include <sys/cpc_inpl.h> 251 it = cpu->cpu_intr_thread;
53 #include <sys/uadm n. h> 252 ASSERT(it != NULL);
54 #include <sys/panic. h> 253 cpu->cpu_intr_thread = it->t_link;
55 #i ncl ude <sys/debug. h>
56 #include <sys/trap.h> 255 I* t _intr_start could be zero due to cpu_intr_swtch_enter. */
57 #include <sys/machsystm h> 256 t = Ccpu->cpu_t hread;
58 #include <sys/sysnmacros. h> 257 if ((t->t_flag & T_ I NTR X THREAD) && t->t_intr_start != 0) {

new usr/src/uts/i86pc/iolapix/apix_intr.c

258
259
260
261
262

264
265
266
267
268
269
270
271

273
274
275
276
277
278

280
281

283
284
285

287
288
289
290
291

293
294
295
296
297
298

300
301 }

hrtime_t intrtine = now - t->t_intr_start;
ncpu->intrstat[pil][0] += intrtineg;

cpu->cpu_i ntracct[cpu->cpu_nstate] += intrting;
t->t_intr_start = 0;

*
* Note that the code in kcpc_overflow.intr -relies- on the
* ordering of events here - in partlcular that t->t_|wp of
* the interrupt thread is set to the pinned thread *pef or e*
* curthread is changed.
*
/
t
t

->t _lwp

= t->t_lwp;
->t_state =

S ONPRCC;

*

* Push interrupted thread onto list fromnew thread.

* Set the new thread as the current one.

* Set interrupted thread’s T_SP because if it is the idle thread,
*/resums() may use that stack between threads.

*

ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);
t->t_sp = (uintptr_t)stackptr;

it->t_intr =t;
cpu->cpu_ thread = it;
ht beglnlntr(pll)

/*

* Set bit for this pil in CPUs interrupt active bitmask.
*

/
ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
cpu->cpu_intr_actv |= (1 << pil);

*

* Initialize thread priority level fromintr_pri
*/

it->t_pil = (uchar_t)pil;
it->t_pri = (pri_t)pil + intr_pri;
it->t_intr_start = now,

return (it->t_stk);

303 static void
304 api x_do_softint_epilog(struct cpu *cpu, uint_t oldpil)

305 {
306
307
308
309
310

312
313

315

317
318

320
321
322

struct n'achcpu *ncpu = &cpu->cpu_m
kthread_t *t, *it;

uint_t pil, basespl ;

hrtime_t intrtime;

hrtime_t now = tsc_read();

it = cpu->cpu_thread;
pil =1t->t_pil;

cpu->cpu_stats.sys.intr[pil - 1]++;

ASSERT(cpu->cpu_intr_actv & (1 << pil));
cpu->cpu_intr_actv & ~(1 << pil);

intrtime = now - it-
nmcpu->intrstat[pil][
cpu->cpu_intracct[cp

>t_intr_start;
0] +=intrtinme;
u->cpu_nstate] += intrtine;

new usr/src/uts/i86pc/iolapix/apix_intr.c

324
325
326
327
328
329
330
331
332
333
334
335

337
338
339
340
341
342

344
345
346
347
348
349
350
351
352
353
354
355
356
357

359
360
361
362
363
364 }

/*
* If there is still an interrupted thread underneath this one
* then the interrupt was never blocked and the returnis

* fairly sinple. Oherwise it isn't.

*

ifo((t :/it—>t_intr) == NULL) {

* Put thread back on the interrupt thread |ist.
* This was an interrupt thread, so set CPU s base SPL.

*

/

set _base_spl ();

/* ntpu->ntpu_pri = cpu->cpu_base_spl; */
/*

* |f there are pending interrupts, send a softint to
* re-enter apix_do_interrupt() and get them processed.
*

if (apixs[cpu->cpu_id]->x_intr_pending)
siron();

it->t_state = TS_FREE;
it->t_link = cpu- >cpu intr_thread;

cpu->cpu_intr_thread = it;
(voi d) spl high();

sti();

swtch(),

| * NOTREACHED* /
pani c("dosoftint_epilog: swtch returned");

}

it->t_link = cpu->cpu_intr_thread;
cpu->cpu_ |ntr _thread = it;
it->t_state = TS_FREE;

ht _end_intr();

cpu—>cpu_thread =t;

if (t->t_flag & T_I NTR THREAD)
t->t_intr_start = now

basespl = cpu->cpu_base_spl;
pil = MAX(ol dpil, basespl);
ncpu->ncpu_pri = pil;

__unchanged_portion_omtted_

415 static int
416 api x_hilevel _intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil,

417
418 {
419
420
421
422
423

425

427
428
429
430
431
432
433
434
435
436
437

struct regs *rp)

struct machcpu *ncpu = &cpu->cpu_m
hrtime_t intrtine;

hrtime_t now = tsc_read();

api x_inpl _t *api xp = api xs[cpu->cpu_id];
uint_t mask;

ASSERT(pi| > ntpu->ntpu_pri &% pil > cpu->cpu_base_spl);

if (pil == CBEHGHPIL) { [* 14 */

cpu->cpu_profile_pil = oldpil;

if (USERMODE(rp->r_cs)) {
cpu->cpu_profile_pc = 0;
cpu->cpu_profile_upc = rp- >r_pc;
cpu->cpu_cpcprofile_pc = O,
cpu->cpu_cpcprofile_upc = rp->r_pc;

} else {

cpu->cpu_profile_pc = rp->r_pc;
cpu->cpu_profile_upc = 0;
cpu->cpu_cpcprofile_pc = rp->r_pc;

new usr/src/uts/i86pc/iolapix/apix_intr.c 5 new usr/src/uts/i86pc/iolapix/apix_intr.c
438 cpu->cpu_cpcprofile_upc = 0;
439 1 505 pil = ncpu->ncpu_pri;
440 } 506 cpu->cpu_stats.sys.intr[pil - 1]++
442 ncpu- >ncpu_pri = pil; 508 ASSERT(cpu->cpu_intr_actv & (1 << pil));
444 mask = cpu->cpu_intr_actv & CPU_I NTR_ACTV_H GH LEVEL_MASK; 510 if (pil == 15) {
445 if (mask '=0) { 511 /*
446 int nestpil; 512 * To support reentrant level 15 interrupts, we maintain a
513 * recursion count in the top half of cpu_intr_actv. Only
448 /* 514 * when this count hits zero do we clear the PIL 15 bit from
449 * We have interrupted another high-level interrupt. 515 * the lower half of cpu_intr_actv.
450 * Load starting tinmestanp, conpute interval, update 516 */
451 * cumul ative counter. 517 uintl6_t *refcntp = (uintl6_t *)&cpu->cpu_intr_actv + 1;
452 */
453 nestpil = bsrw_insn((uint16_t)mask); 519 ASSERT(*refcntp > 0);
454 intrtime = now -
455 ncpu->pi | _high_start[nestpil - (LOCK_LEVEL + 1)]; 521 if (--(*refcntp) == 0)
456 ncpu->intrstat[nestpil][0] += intrtine; 522 cpu->cpu_intr_actv & ~(1 << pil);
457 cpu->cpu_i ntracct[cpu->cpu_nstate] += intrtine; 523 } else {
458 } else { 524 cpu->cpu_intr_actv & ~(1 << pil);
459 kthread_t *t = cpu->cpu_thread; 525 }
461 /* 527 ASSERT(ntpu->pi | _high_start[pil - (LOCK_LEVEL + 1)] != 0);
462 * See if we are interrupting a |owlevel interrupt thread.
463 * |f so, account for its time slice only if its tine stanp 529 intrtime = now - ncpu->pil_high_start[pil - (LOCK_LEVEL + 1)];
464 * is non-zero. 530 nmcpu->intrstat[pil][0] += intrtinme;
465 */ 531 cpu->cpu_i ntracct[cpu->cpu_nstate] += intrtine;
466 if ((t->t_flag & T_INTR. THREAD) != 0 && t->t_intr_start != 0) {
467 intrtime = now - t->t_intr_start; 533 /*
468 ncpu->intrstat[t->t_pil][0] += intrtineg; 534 * Check for lower-pil nested high-level interrupt beneath
469 cpu->cpu_i ntracct[cpu->cpu_nstate] += intrtine; 535 * current one. |If so, place a starting tinmestanp inits
470 t->t_intr_start = 0; 536 * pil_high_start entry.
471 } 537 */
472 } 538 mask = cpu->cpu_intr_actv & CPU_|I NTR_ACTV_H GH_LEVEL_MASK;
539 if (mask !'= 0)
474 ht _begin_intr(pil); 540 int nestpil;
476 /* store starting timestanp in CPu structure for this IPL */ 542 /*
477 ncpu->pi |l _high_start[pil - (LOCK_LEVEL + 1)] = now, 543 * find PIL of nested interrupt
544 */
479 if (pil == 15) { 545 nestpil = bsrw_insn((uint16_t)mask);
480 /* 546 ASSERT(nestpil < pil);
481 * To support reentrant level 15 interrupts, we maintain a 547 ncpu->pil _high_start[nestpil - (LOCK_LEVEL + 1)] = now;
482 * recursion count in the top half of cpu_intr_actv. Only 548 *
483 * when this count hits zero do we clear the PIL 15 bit from 549 * (Another high-level interrupt is active below this one,
484 * the |lower half of cpu_intr_actv. 550 * so there is no need to check for an interrupt
485 */ 551 * thread. That will be done by the |owest priority
486 uint1l6_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 552 * high-level interrupt active.)
487 (*refcntp) ++; 553 */
488 } 554 } else {
555 /*
490 cpu->cpu_intr_actv |= (1 << pil); 556 * Check to see if there is a lowlevel interrupt active.
491 /* clear pending ipl level bit */ 557 * |f so, place a starting tinmestanp in the thread
492 api xp->x_intr_pending & ~(1 << pil); 558 * structure.
559 */
494 return (mask); 560 kthread_t *t = cpu->cpu_thread;
495 }
562 if (t->t_flag & T_I NTR_THREAD)
497 static int 563 t->t_intr_start = now,
498 api x_hil evel _intr_epilog(struct cpu *cpu, uint_t oldpil) 564 }
499 {
500 struct machcpu *ntpu = &cpu- >cpu_m 566 ht _end_intr();
501 uint_t mask, pil;
502 hrtime_t intrtinme; 568 ncpu- >ncpu_pri = ol dpil;
503 hrtime_t now = tsc_read(); 569 if (pil < CBE_LHIGH PIL)

new usr/src/uts/i86pc/iolapix/apix_intr.c

570

572
573 }

(void) (*setlvlx)(oldpil, 0);

return (nmask);

__unchanged_portion_omtted_

616 /*

617 * Get an interrupt thread and swith to it. It's called fromdo_interrupt().

618 * The IF flag is cleared and thus all naskable interrupts are bl ocked at
619 * the time of calling.

620 */

621 static caddr_t
622 api x_intr_thread_prol og(struct cpu *cpu, uint_t pil, caddr_t stackptr)
623 {

624
625
626
627

629

631
632
633
634

636
637
638
639
640
641
642
643
644
645
646
647
648

650
651
652
653
654
655

657
659

661
662
663
664
665
666
667
668
669
670

672
673
674
675

api x_i npl _t *api xp = api xs[cpu->cpu_id];
struct machcpu *ntpu = &cpu->cpu_m
hrtime_t now = tsc_read();

kthread_t *t, *volatile it;

ASSERT(pi |l > ncpu->ncpu_pri & pil > cpu->cpu_base_spl);

api xp->x_intr_pending & ~(1 << pil);
ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);

cpu->cpu_intr_actv |= (1 << pil);
ncpu- >ncpu_pri = pil;
/*

* CGet set to run interrupt thread.
* There should always be an interrupt thread since we
* allocate one for each | evel on the CPU.
*
/
/* t_intr_start could be zero due to cpu_intr_swch_enter. */
= cpu->cpu_t hread;
|f ((t->t_flag &TINTR X THREAD) && t->t_intr_start != 0) {
hrtime_t intrtime = now - t->t_intr_start;
ncpu->intrstat[pil][0] += intrtinme;
cpu->cpu_i ntracct[cpu->cpu_nstate] += intrting;
t->t_intr_start = 0;

-

S

Push interrupted thread onto |ist fromnew thread.

Set the new thread as the current one.

Set interrupted thread’s T_SP because if it is the idle thread,
/resums() may use that stack between threads.

ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);

t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */

/
Note that the code in kcpc_overflow intr -relies- on the
ordering of events here - in particular that t->t_|w of
the interrupt thread is set to the pinned thread *before*
curthread i s changed.

/
it = cpu->cpu_intr_thread;

cpu->cpu_intr_thread = it->t_link;
it->t_intr =t;
it->t_lw = t->t_|wp;

/*

* (threads on the interrupt thread free |ist could have state
* preset to TS ONPROC, but it helps in debugging if

* they' re TS_FREE.)

* Ok K ok kot

new usr/src/uts/i86pc/iolapix/apix_intr.c

676
677

679
680

682
683
684
685
686
687

689
690

692
693

695
696
697
698
699

701
702

704
705

707
708
709
710

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

732
733
734
735
736
737
738
739

741

}

*

/

it->t_state = TS_ONPRCC;

cpu->cpu_thread = it;

ht _begin_intr(pil);

/*

* Initialize thread priority level fromintr_pri
*/

it->t_pil = (uchar_t)pil;

it->t_pri = (pri_t)pil + intr_pri;

it->t_intr_start = now,

return (it->t_stk);

static void
api x_i ntr_thread_epil og(struct cpu *cpu, uint_t oldpil)
694 {

struct machcpu *ntpu = &cpu->cpu_m
kthread_t *t, *it = cpu->cpu_thread;
uint_t pil, basespl;

hrtime_t intrtinme;

hrtime_t now = tsc_read();

pil =it->t_pil;
cpu->cpu_stats.sys.intr[pil - 1]++

ASSERT(cpu->cpu_intr_actv & (1 << pil));
cpu->cpu_intr_actv & ~(1 << pil);

ASSERT(it->t_intr_start != 0);

intrtinme = now - it->t _intr_start;
ncpu->intrstat[pil][0] += intrtime;
cpu->cpu_intracct[cpu->cpu_nstate] += intrtine;

/*

* |f there is still an interrupted thread underneath this one
* then the interrupt was never blocked and the return is

* fairly sinple. Oherwise it isn't.

*

if ((t =it->t_intr) == NULL) {

|
*

* The interrupted thread is no | onger pinned underneath
* the interrupt thread. This neans the interrupt nust
* have bl ocked, and the interrupted thread has been

* unpi nned, and has probably been running around the

* systemfor a while.
*
*
*
*
*

Since there is no longer a thread under this one, put
this interrupt thread back on the CPU s free list and
resume the idle thread which will dispatch the next
thread to run.

*

/

cpu->cpu_stats. sys.intrbl k++;
/*

* Put thread back on the interrupt thread |ist.
* This was an interrupt thread, so set CPU s base SPL.

*

/

set _base_spl ();

basespl = cpu->cpu_ base_spl ;
ncpu- >nTpu_pri basespl ;

(*setlvlx)(basespl 0);
/*

new usr/src/uts/i86pc/iolapix/apix_intr.c

742 * |f there are pending interrupts, send a softint to
743 * re-enter apix_do_interrupt() and get them processed.
744 */

745 if (apixs[cpu->cpu_id]->x_intr_pending)
746 siron();

748 it->t_state = TS_FREE;

749 /*

750 * Return interrupt thread to pool

751 */

752 it->t_link = cpu->cpu_intr_thread,;

753 cpu->cpu_intr_thread = it;

755 (voi d) splhigh();

756 sti();

757 swtch();

758 | * NOTREACHED* /

759 pani c("dosoftint_epilog: swtch returned");
760 1

762 /*

763 * Return interrupt thread to the pool

764 */

765 it->t_link = cpu->cpu_intr_thread;

766 cpu->cpu_intr_thread = it;

767 it->t_state = TS_FREE;

769 ht _end_intr();

770 cpu->cpu_thread = t;

772 if (t->t_flag & T_I NTR_THREAD)

773 t->t_intr_start = now

774 basespl = cpu->cpu_base_spl;

775 ncpu- >ncpu_pri = MAX(ol dpi |, basespl);

776 (*setl vl x) (nmcpu->nmcpu_pri, 0);

777 }

__unchanged_portion_onitted_

new usr

*ok ok ok ok ok Kk

/'src/uts/i86pc/iolapix/apix_utils.c

R R R R

48773 Wed May 15 07:34:06 2019

new usr

/'src/uts/i86pc/iolapix/apix_utils.c

10924 Need mitigation of L1TF (CVE-2018-3646)

Revi ewed by: Robert Mistacchi <rm@ oyent.conm>

Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

*k ok ok ok kk

1/*

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

*
26 *
*

29 /*
30 *
31 *
32 *

*

35 #i
36 #i
37 #i
38 #i
39 #i
40 #i
41 #i
42 #i
43 #i
44 #i
45 #i
46 #i
47 #i
48 #i
49 #i
50 #i
51 #i
52 #i
53 #i
54 #i
55 #i
56 #i
57 #i
58 #i

23 *
*/

Khkkhkhkkhkhkhkhkhkhkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkk k*

CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2010, Intel Corporation.
Al rights reserved.

*/

Copyri ght 2013 Nexenta Systens, Inc. Al rights reserved.
Copyright 2013 Pl uribus Networks, Inc.

Copyri ght 2018 Joyent, Inc.

/

ncl ude <sys/ processor. h>
ncl ude <sys/tinme. h>

ncl ude <sys/psm h>

ncl ude <sys/snp_i npl defs. h>
ncl ude <sys/cram h>

ncl ude <sys/acpi/acpi.h>
ncl ude <sys/acpi ca. h>

ncl ude <sys/psm common. h>
ncl ude <sys/pit.h>

ncl ude <sys/ddi. h>

ncl ude <sys/sunddi . h>

ncl ude <sys/ddi _i npl defs. h>
ncl ude <sys/ pci.h>

ncl ude <sys/prom f.h>

ncl ude <sys/ x86_ar chext. h>
ncl ude <sys/cpc_inpl . h>
ncl ude <sys/uadm n. h>

ncl ude <sys/panic. h>

ncl ude <sys/debug. h>

ncl ude <sys/archsystm h>
ncl ude <sys/trap. h>

ncl ude <sys/ machsystm h>
ncl ude <sys/sysmacros. h>
ncl ude <sys/cpuvar. h>

Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.

new usr/src/uts/i86pc/iolapix/apix_utils.c

#i nclude <sys/rmplatter.h>
#i ncl ude <sys/privregs. h>
#i ncl ude <sys/note. h>
#include <sys/pci_intr_lib.h>
#i ncl ude <sys/spl.h>

#i ncl ude <sys/cl ock. h>

#i ncl ude <sys/dditypes. h>
#i ncl ude <sys/sunddi . h>

#i ncl ude <sys/x_call.h>

#i ncl ude <sys/reboot. h>

#i ncl ude <sys/ api x. h>

#i ncl ude <sys/ht.h>

static int apix_get_avail _vector_oncpu(uint32_t, int, int);

static apix_vector t *apix_init_vector(processorid_t, uchar_t);

static void api x _cleanup_vect or (api x_vector _t

static void apix_insert_av(apix_vector_t *, voi d *, avfunc, caddr_t, caddr_t,
uinté4_t *, int, dev_info_t *);

static void api x_rem)ve_av(apl X_vector_t *, struct autovec *);

static void apix_clear_dev_map(dev_info_t *, i nt int);

static bool ean_t api x_i s_cpu_enabl ed(pr ocessorl _t);

static void api x_wait_till_seen(processorid_t, int);

#define GET_I NTR_I NUM i hdl p) \
(((ihdlp) !'= NULL) ? ((ddi _intr_handle_inpl_t *)(ihdlp))->ih_inum: 0)

85 api x_rebind_info_t apix_rebindinfo = {0, 0, 0, NULL, 0, NULL};
87 /*

88 * Allocate IPI

89 *

90 * Return vector nunber or 0 on error

91 */

92 uchar_t

93 apix_alloc_ipi(int ipl)

94 {

95 api x_vector_t *vecp;

96 uchar _t vector;

97 int cpun;

98 int nproc;

100 APl X_ENTER_CPU_LQOCK(0) ;

102 vector = apix_get_avail_vector_oncpu(0, APIX_IPI_MN, APIX_IPI_MAX);
103 if (vector == 0)

104 APl X_LEAVE_CPU_LOCK(0) ;

105 crm_err (CE_WARN, "api x: no available IPI\n");
106 api c_error |= APIC_ERR CET_I PI VECT_FAI L;

107 return (0);

108 }

110 nproc = max(api c_nproc, apic_max_nproc);

111 for (cpun = 0; cpun < nproc; cpun++) {

112 vecp = xv_vector(cpun, vector);

113 if (vecp == NULL) {

114 vecp = knem zal | oc(si zeof (apix_vector_t), KM NOSLEEP);
115 if (vecp == NULL) {

116 com_err (CE_WARN, "apix: No nenory for ipi");
117 goto fail;

118 }

119 Xv_vector (cpun, vector) = vecp;

120

121 vecp->v_state = APl X_STATE_ALLOCED,

122 vecp->v_type = API X_TYPE_I PI;

123 vecp->v_cpuid = vecp->v_bound_cpuid = cpun;
124 vecp->v_vector = vector;

new usr/src/uts/i86pc/iolapix/apix_utils.c

125 vecp->v_pri = ipl;
126 }
127 APl X_LEAVE_CPU_LOCK(0) ;
128 return (vector);
130 fail:
131 while (--cpun >= 0)
132 api x_cl eanup_vect or (xv_vector(cpun, vector));
133 APl X_LEAVE_CPU_LOCK(0) ;
134 return (0);
135 }
__unchanged_portion_onitted_
772 | *
773 * Qperations on avintr
774 x|
776 #define INIT_AUTOVEC(p, intr_id, f, argl, arg2, ticksp, ipl, dip) \
777 do { \
778 (p)->av_intr_id = intr_id; \
779 (p)->av_vector = f; \
780 (p)->av_intargl = argl; \
781 (p)->av_intarg2 = arg2; \
782 (p)->av_ticksp = ticksp; \
783 (p)->av_prilevel =ipl; \
784 (p)->av_dip = dip; \
785 (p)->av_flags = 0; \
786 _NOTE(CONSTCOND)} whil e (O)
788 [*
789 * Insert an interrupt service routine into chain by its priority from
790 * high to |l ow
791 */
792 static void
793 api x_i nsert_av(api x_vector_t *vecp, void *intr_id, avfunc f, caddr_t argil,
794 caddr _t arg2, uint64_t *ticksp, int ipl, dev_info_t *dip)
795 {
796 struct autovec *p, *prep, *nem
798 APl C_VERBOSE(| NTR, (CE_CONT, "apix_insert_av: dip %, vector Ox%,
799 "cpu %\ n", (void *)dip, vecp->v_vector, vecp->v_cpuid));
801 mem = kmem zal | oc(si zeof (struct autovec), KM SLEEP);
802 I NI T_AUTOVEC(mem |ntr id, f, argl, arg2, ticksp, |p| dip);
803 if (vecp->v_type == APl X_ TYPE FI XED && apic_| evel _i ntr[vecp >v_i nuni)
804 mem >av_flags | = AV_PENTRY_LEVEL;
806 vecp- >v_shar e++;
807 vecp->v_pri = (ipl > vecp->v_pri) ? ipl vecp->v_pri;
809 ht _intr_alloc_pil (vecp->v_pri);
811 if (vecp->v_autovect == NULL) { /* Nothing on list - put it at head */
812 vecp->v_autovect = mem
813 return;
814 }
816 if (DDl _INTR_ I S_MSI_OR_MSI X(vecp->v_type)) { /* MBIIX */
817 TASSERT(vecp->v_share == 1); /* No sharing for MBI/ X */
819 I Nl T_AUTOVEC(vecp->v_autovect, intr_id, f, argl, arg2, ticksp,
820 ipl, dip);
821 prep = vecp->v_autovect->av_| i nk;
822 vecp->v_aut ovect->av_|ink = NULL;
824 /* Free the followi ng autovect chain */

new usr/src/uts/i86pc/iolapix/apix_utils.c

825
826

828
829
830
831

833
834
835

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

853
854
855
856
857
858
859

860 }
__unchanged_portion_onitted_

whil e (prep I'= NULL) {
SSERT(pr ep- >av_vector == NULL);

p = prep;
prep = prep->av_link;
kmem free(p, sizeof (struct aut ovec));

}
kmem free(mem sizeof (struct autovec));
return;

}

/* find where it goes in list */

prep = NULL;

for (p = vecp->v_autovect; p !'= NULL; p = p->av_link) {
if (p->av_vector && p->av_prilevel <= ipl)
break;
prep = p;

}
if (prep !'= NULL)
if (prep->av_vector == NULL) { /* freed struct available */
I Nl T_AUTOVEC(prep, Intr_id, f, argl, arg2,
ticksp, ipl, dip);

prep->av_flags = mem >av_fl ags;
kmem free(mem sizeof (struct autovec));
return;

}

mem >av_| i nk = prep->av_link;
prep->av_|link = nmem

} else {
/* insert new intpt at beginning of chain */
mem >av_| i nk = vecp->v_aut ovect;
vecp->v_autovect = mem

}

new usr/src/uts/i86pc/iolpcplusnp/apic.c 1

R R R R

33081 Wed May 15 07:34:07 2019
new usr/src/uts/i86pc/iolpcplusnp/apic.c
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing perm ssions

11 * and limtations under the License.

12 *

13 * Wen distributing Covered Code, include this CDDL HEADER i n each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]

18 =

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright (c) 1993, 2010, Oacle and/or its affiliates. Al rights reserved.
24 */

25 /*

26 * Copyright (c) 2010, Intel Corporation.

27 * Al rights reserved.

28 :/Oopyri ght 2018 Joyent, Inc.

31 /*
32 * To understand how the pcplusnp nbdule interacts with the interrupt subsystem
33 * read the theory statenent in uts/i86pc/os/intr.c.

*/

34

36 /*

37 * PSM 1.1 extensions are supported only in 2.6 and |later versions.
38 * PSM 1.2 extensions are supported only in 2.7 and |ater versions.
39 * PSM 1.3 and 1.4 extensions are supported in Solaris 10.

40 * PSM 1.5 extensions are supported in Solaris Nevada.

41 * PSM 1.6 extensions are supported in Solaris Nevada

42 */PSM 1.7 extensions are supported in Solaris Nevada

43 *

44 #define PSM _1_7

46 #incl ude <sys/processor.h>

47 #include <sys/tinme. h>

48 #include <sys/psm h>

49 #include <sys/snp_i npl defs. h>
50 #include <sys/cram h>

51 #include <sys/acpi/acpi.h>

52 #include <sys/acpica. h>

53 #i nclude <sys/psm common. h>
54 #incl ude <sys/apic. h>

55 #include <sys/pit.h>

56 #i nclude <sys/ddi.h>

57 #include <sys/sunddi . h>

58 #incl ude <sys/ddi _i npl defs. h>

new usr/src/uts/i86pc/iolpcplusnp/apic.c

59 #include <sys/pci.h>

60 #include <sys/prom f.h>

61 #incl ude <sys/x86_archext. h>
62 #include <sys/cpc_inpl.h>

63 #include <sys/uadm n. h>

64 #include <sys/panic. h>

65 #i ncl ude <sys/debug. h>

66 #i nclude <sys/archsystm h>
67 #include <sys/trap. h>

68 #include <sys/machsystm h>
69 #include <sys/sysmacros. h>
70 #include <sys/cpuvar. h>

71 #include <sys/rmplatter.h>
72 #include <sys/privregs. h>

73 #include <sys/note. h>

74 #include <sys/pci_intr_lib.h>
75 #include <sys/spl.h>

76 #include <sys/cl ock. h>

77 #include <sys/cyclic. h>

78 #include <sys/dditypes. h>

79 #include <sys/sunddi.h>

80 #include <sys/x_call.h>

81 #include <sys/reboot. h>

82 #include <sys/hpet. h>

83 #i ncl ude <sys/api c_conmon. h>
84 #include <sys/apic_tinmer.h>
85 #include <sys/ht.h>

87 /*
88 * Local Function Prototypes
89 */
90 static void apic_init_intr(void);
92 /*
93 * standard MP entries
94 */
95 static int api c_probe(void);
96 static int apic_getclkirg(int ipl);
97 static void api c_init(void);
98 static void apic_picinit(void);
99 static int api c_post _cpu_start(void);
100 static int apic_intr_enter(int ipl, int *vect);
101 static void api c_setspl (int ipl);
102 static int api c_addspl (int ipl, int vector, int min_ipl, int max_ipl);
103 static int apic_delspl(int ipl, int vector, int mn_ipl, int max_ipl);
104 static int api c_di sabl e_intr(processorid_t cpun);
105 static void api c_enabl e_intr(processorid_t cpun);
106 static int api c_get _Ipivect(int ipl, int type);
107 static void api c_post _cyclic_setup(void *arg);

109 #define UCHAR MAX Ul NT8_MAX

111 /*

112 * The foll owing vector assignnments influence the value of ipltopri and

113 * vectortoipl. Note that vectors 0 - Ox1f are not used. W can program
114 * idle to O and IPL 0 to Oxf to differentiate idle in case

115 * we care to do so in future. Note sone |IPLs which are rarely used
116 * will share the vector ranges and heavily used IPLs (5 and 6) have
117 * a wi de range.

118 *

119 * This array is used to initialize apic_ipls[] (in apic_init()).

120 *

121 * I PL Vector range. as passed to intr_enter
122 * 0 none.

123 * 1,2,3 0x20- Ox2f 0x0- Oxf

124 * 4 0x30- Ox 3f 0x10- Ox1f

new usr/src/uts/i86pc/iolpcplusnp/apic.c

125 ~* 5 0x40- Ox5f 0x20- Ox 3f
126 * 6 0x60- Ox7f 0x40- Ox5f
127 * 7,8,9 0x80- Ox8f 0x60- Ox 6f
128 * 10 0x90- Ox9f 0x70- Ox7f
129 * 11 0xa0- Oxaf 0x80- Ox8f
130 * C C
131 * 15 0xe0- Oxef 0xcO0- Oxcf
132 * 15 Oxf 0- Oxf f 0xdO- Oxdf
133 */
134 uchar_t apic_vectortoipl [APl C_AVAI L_VECTOR / APIC VECTOR PER | PL] = {
135 3, 4,5 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
136 };
__unchanged_portion_omtted_
278 void
279 apic_init(void)
280 {
281 int i;
282 int i =1
284 psm get _i oapi cid = api c_get_i oapi ci d;
285 psm_get _| ocal api cid = api c_get_| ocal api ci d;
286 psm x|l ate_vector_by_irq = apic_xlate_vector_by_irq;
288 ap|C|pIt0pr|[0] = API C_VECTOR PER IPL; /* leave 0 for idle */
289 r (i =0, i < (API C_AVAI L_VECTOR / API C VECTOR PER I PL); i++) {
290 if ((i < ((APTC_AVATL_VECTOR / APIC VECTOR PER | PL) - 1)) &&
291 (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
292 /* get to highest vector at the same ipl */
293 conti nue;
294 for (; j <= apic vectort0|pl[|], j++) {
295 apic_ipltopri[j] = (i << APIC_IPL_SH FT) +
296 API C_BASE_VECT;
297 }
298 }
299 for (; j < MAXIPL + 1; j+4+)
300 /* fill up any enpty ipltopri slots */
301 apic_ipltopri[j] = (i << APIC_IPL_SH FT) + API C_BASE_VECT;
302 api c_i nit _comon();
304 /*
305 * For pcplusnp, we'll keep things sinple and al ways disable this.
306 */
307 ht _intr_alloc_pil (XC_CPUPCKE_PIL);
309 api c_pir_vect = apic_get_ipivect(XC CPUPCKE_PIL, -1);
311 #if !defined(__and64)
312 if (cpuid_have cr8access(CPU))
313 api c_have_32bit_cr8 = 1;
314 #endif
315 }

__unchanged_portion_onitted_

new usr/src/uts/i86pc/os/cpuid.c

R R R R

197440 Wed May 15 07: 34: 07 2019
new usr/src/uts/i86pc/os/cpuid.c
10924 Need nmitigation of L1TF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@nuil.conr

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

2123 static void

2124 spec_| 1d_f 1 ush_noop(voi d)
2125 {

2126 }

2128 static void

2129 spec_| 1d_fl ush_msr (voi d)

2130 {

2131 wr s (MSR_| A32_FLUSH CMD, | A32_FLUSH CMD L1D);
2132 }

2134 void (*spec_| 1d_flush)(void) = spec_| 1d_fl ush_noop;

2136 static void
2137 cpuid_scan_security(cpu_t *cpu, uchar_t *featureset)

2138 {

2139 struct cpuid_info *cpi = cpu->cpu_m ntpu_cpi;

2141 if (cpi->cpi_vendor == X86_VENDOR_AMD &&

2142 cpi - >cpi _xmaxeax >= CPUl D_LEAF_EXT_8)

2143 if (cpi->cpi_extd[8].cp_ebx & CPU D _AVD EBX_| BPB)

2144 add_x86_f eat ure(feat ureset, X86FSET_| BPB);
2145 if (cpi->cpi_extd[8].cp_ebx & CPU D AVD_EBX_| BRS)

2146 add_x86_f eat ure(f eat ureset, X86FSET_| BRS);

2147 if (cpi->cpi_extd[8].cp_ebx & CPU D AVD EBX_STI BP)
2148 add_x86_f eature(featureset, X86FSET_STIBP);
2149 if (cpi->cpi_extd[8].cp _ebx & CPU D AMD EBX | BRS ALL)
2150 add_x86_f eat ure(f eatureset, X86FSET_| BRS_ALL);
2151 if (cpi->cpi_extd[8].cp_ebx & CPU D _AVD EBX_STI BP ALL)
2152 add_x86_f eat ure(feat ureset, X86FSET_STIBP_ALL);
2153 if (cpi->cpi_extd[8].cp ebx & CPU D AVD EBX PREFER | BRS)
2154 add_x86_f eat ure(f eat ureset, X86FSET_RSBA) ;
2155 if (cpi->cpi_extd[8].cp_ebx & CPU D_AVD_EBX_SSBD)

2156 add_x86_f eat ure(f eat ureset, X86FSET_SSBD) ;

2157 if (cpi->cpi_extd[8].cp ebx & CPU D AVD EBX VI RT SSBD)
2158 add_x86_f eat ure(f eat ureset, X86FSET_SSBD VI RT) ;
2159 if (cpi->cpi_extd[8].cp_ebx & CPU D_AMD EBX_SSB_NO
2160 add_x86 feature(featureset “X86FSET_SSB_NO) ;
2161 } else if (cpi->cpi_ “vendor == X86_VENDOR Intel &&

2162 cpi - >cpi _maxeax >= 7)

2163 struct cpuid _regs *ecp;

2164 ecp = &cpi->cpi_std[7];

2166 if (ecp->cp_edx & CPUI D_I NTC_EDX_7_0_SPEC CTRL) {

2167 add_x86_f eat ure(f eat ureset, X86FSET_| BRS);
2168 add_x86_f eat ure(feat ureset, X86FSET_| BPB);

2169 }

2171 if (ecp->cp_edx & CPUI D_|I NTC_EDX_7_0_STI BP)

2172 add_x86_f eature(featureset, X86FSET_STIBP);
2173 }

2175 /*

2176 * Don't read the arch caps MSR on xpv where we |ack the
2177 * on_trap().

2178 */

new usr/src/uts/i86pc/os/cpuid.c 2
2179 #ifndef __ xpv

2180 if (ecp->cp_edx & CPU D I NTC EDX_7_0_ARCH CAPS) {

2181 on_trap_data_t otd;

2183 /*

2184 * Be paranoid and assune we’' |l get a #GP.

2185 */

2186 if (lon_trap(&otd, OT_DATA_ACCESS)) {

2187 uint64_t reg;

2189 reg = rdmsr (MSR_I A32_ARCH_CAPABI LI TI ES) ;
2190 if (reg & | A32_ARCH CAP_RDCL_NO

2191 add_x86_f eat ure(featureset,

2192 “X86FSET_RDCL_NO) ;

2193 }

2194 if (reg & | A32_ARCH CAP_I BRS_ALL) {

2195 add_x86 feature(featureset

2196 TX86FSET_|I BRS_ALL) ;

2197 }

2198 if (reg & | A32_ARCH CAP_RSBA)

2199 add_x86_f eat ur e(f eat ur eset,

2200 “X86FSET_RSBA) ;

2201 }

2202 if (reg & | A32_ARCH CAP_SKI P_L1DFL_VMENTRY) {
2203 add_x86_f eat ur e(f eat ur eset,

2204 TX86FSET_L1D VM NO) ;

2205 }

2206 if (reg & | A32_ARCH CAP_SSB_NO {

2207 add_x86_f eat ur e(f eat ur eset,

2208 “X86FSET_SSB_NO) ;

2209 }

2210 }

2211 no_trap();

2212 }

2213 #endif /* | __xpv */

2215 if (ecp->cp_edx & CPUI D_| NTC_EDX_7_0_SSBD)

2216 add_x86_f eat ure(f eat ureset, X86FSET_SSBD);

2218 if (ecp->cp_edx & CPU D I NTC EDX 7_0 FLUSH CMVD)

2219 add_x86_f eature(featureset, X86FSET_FLUSH C\D);
2220 }

2222 if (cpu->cpu_id != 0)

2223 return;

2225 /*

2226 * W're the boot CPU, so let’s figure out our L1TF status.

2227 *

2228 * First, if this is a RDCL_NO CPU, then we are not vul nerable: we don’t
2229 * need to exclude with ht_acquire(), and we don’t need to flush.
2230 */

2231 f (is_x86_feature(featureset, X86FSET_RDCL_NO) {

2232 extern int ht_exclusion;

2233 ht _excl usion = O'

2234 spec_| 1d_flush = spec_| 1d_f | ush_noop;

2235 membar _pr oducer () ;

2236 return;

2237 }

2239 /*

2240 * |f HT is enabled, we will need HT exclusion, as well as the flush on
2241 * VWentry. |If HT isn't enabled, we still need at |east the flush for
2242 * the L1TF sequential case.

2243 *

2244 * However, if X86FSET_L1D VM NO is set, we're nost likely running

new usr/src/uts/i86pc/os/cpuid.c

2245 * inside a VM ourselves, and we don’t need the flush.
2246 *

2247 * |f we don't have the FLUSH CMD available at all, we'd better just
2248 * hope HT is disabled.

2249

2250 if (is_x86_feature(featureset, X86FSET_FLUSH CVD) &&
2251 lis_x86_feature(featureset, X86FSET_L1D VM NO)) {
2252 spec_| 1d_flush = spec_l 1d_fl ush_nsr;

2253 } else {

2254 spec_I| 1d_flush = spec_I| 1d_f | ush_noop;

2255 1

2257 nmenbar _producer () ;

2258 }

____unchanged_portion_onitted_

new usr

*ok ok ok ok ok Kk

/src/uts/i86pc/os/ht.c 1

R R R R

15578 Wed May 15 07:34:08 2019

new usr

/src/uts/i86pc/os/ht.c

10924 Need nitigation of L1TF (CVE-2018-3646)

Revi ewed by: Robert Mistacchi
Revi ewed by:

<r m@ oyent . conp
Jerry Jelinek <jerry.jelinek@oyent.conr

Revi ewed by: Peter Tribble <peter.tribble@nuil.conr

*k ok ok ok kk

1/*

*

[
QOWONOUTAWN
* ok kb k% k%

w
=y
® Ok ok ok ok ok ok O S Ok R b 3k OF Sk R R b Sk Sk ok F S R Ok SR 3k b 3k b 3k ok ok b ok ok ok % bk b ¥

Khkkhkhkkhkhkhkhkhkhkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkk k*

This file and its contents are supplied under the terms of the
Conmmon Devel opment and Di stribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL should have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://wwv.illunps.org/license/ CODL.

/

Copyri ght 2018 Joyent, Inc.
*
/

HT exclusion: prevent a sibling in a hyper-threaded core fromrunning in VMX
non-root guest node, when certain threads are running on the other sibling.
Thi s avoi ds specul ati on-based i nformati on | eaks such as L1TF bei ng avail abl e
to the untrusted guest. The stance we take is that threads fromthe sane
zone as the guest VPCU thread are considered safe to run al ongside, but all
other threads (except the idle thread), and all interrupts, are unsafe. Note
that due to the inplenentation here, there are significant sections of e.g.

t he di spatcher code that can run concurrently with a guest, until the thread
reaches ht_mark(). This code assunes there are only two HT threads per core.

The entry points are as follows:
ht _mark_as_vcpu()

Al'l threads that enter guest npde (i.e. VCPU threads) need to call this at

| east once, which sets TS VCPU in ->t_schedfl ag.

ht _mar k()

A new ->cpu_thread is now curthread (although interrupt threads have their
own separate handling). After preventing any interrupts, we wll take our
own CPU s spinlock and update our own state in ntpu_ht.

If our sibling is poisoned (i.e.
around it), and we’'re not conpatible (that is,

in guest node or the little bit of code
sane zone ID, or the idle

thread), then we need to ht_kick() that sibling. ht_kick() itself waits for
the sibling to call ht_release(), and it will not re-enter guest node until
al | oned.

Note that we ignore the fact a process can change its zone I D: poisoning
threads never do so, and we can ignore the other cases.

ht _acquire()

We are a VCPU thread about to start guest execution. |Interrupts are

di sabl ed. W nust have already run ht _nmark() to be in this code, so there's
no need to take our *own* spinlock in order to mark oursel ves as CM PO SONED.
Instead, we take our sibling’s lock to also mark ourselves as poisoned in the
sibling cpu_ht_t. This is so ht_mark() will only ever need to look at its

| ocal nctpu_ht.

W'l | oop here for

up to ht_acquire_wait_tinme mcroseconds; this is mainly

new usr/src/uts/i86pc/os/ht.c 2
59 * to wait out any sibling interrupt: many of themw |l conplete quicker than
60 * this.

61 *

62 * Finally, if we succeeded in acquiring the core, we'll flush the L1 cache as
63 * mitigation against L1TF: no inconpatible thread will now be able to popul ate
64 * the L1 cache until *we* ht_rel ease().

65 *

66 * ht_rel ease()

67 *

68 * Sinply unpoison ourselves simlarly to ht_acquire(); ht_kick() will wait for
69 * this to happen if needed.

70 *

71 * ht_begin_intr()

72 *

73 * In an interrupt prolog. W're either a hilevel interrupt, or a pinning

74 * interrupt. In both cases, we mark our interrupt depth, and potentially

75 * ht_kick(). This enforces exclusion, but doesn’t otherwi se nodify ->ch_state:
76 * we want the dispatcher code to essentially ignore interrupts.

7 *

78 * ht_end_intr()

79 *

80 * In an interrupt epilogue *or* thread_unpin(). |In the first case, we never
81 * slept, and we can sinply decrenent our counter. |In the second case, we're an
82 * interrupt thread about to sleep: we'll still just decrement our counter, and
83 * henceforth treat the thread as a nornal thread when it next gets schedul ed,
84 * until it finally gets to its epilogue.

85 *

86 * ht_mark_unsafe() / ht_mark_safe()

87 *

88 * Mark the current thread as tenporarily unsafe (guests should not be executing
89 * while a sibling is narked unsafe). This can be used for a thread that's

90 * otherwi se considered safe, if it needs to handle potentially sensitive data.
91 * Right now, this neans certain |I/O handling operations that reach down into
92 * the networking and ZFS sub-systens.

93 *

94 * ht_shoul d_run(thread, cpu)

95 *

96 * This is used by the di spatcher when neking scheduling decisions: if the

97 * sibling is conpatible wth the given thread, we return B_TRUE. This is

98 * essentially trying to guess if any subsequent ht_acquire() will fail, by

99 * peeking at the sibling CPUs state. The peek is racy, but if we get things
100 * wong, the "only" consequence is that ht_acquire() may | ose.

101 *

102 * ht_adjust_cpu_score()

103 *

104 * Used when scoring other CPUs in disp_lowpri_cpu(). |If we shouldn't run here,
105 * we'll add a small penalty to the score. This also makes sure a VCPU thread
106 * migration behaves properly.

107 */

109 #incl ude <sys/archsystm h>

110 #i ncl ude <sys/disp. h>

111 #include <sys/cnt.h>

112 #include <sys/systm h>

113 #incl ude <sys/cpu. h>

114 #incl ude <sys/var.h>

115 #i ncl ude <sys/xc_l evel s. h>

116 #i ncl ude <sys/cmm_err. h>

117 #include <sys/sysnacros. h>

118 #i ncl ude <sys/x86_ar chext. h>

120 #define CS_SHI FT (8)

121 #define CS_MASK ((1 << CS_SHIFT) - 1)

122 #define CS_MARK(s) ((s) & CS_MASK)

123
124

#def i ne CS_ZONE(s) ((s) >> CS_SHIFT)

#defi ne CS_MK(s,

z) ((s) | (z << CS_SHFT))

new usr/src/uts/i86pc/os/ht.c

126 typedef enum ch_mark {

127 1IDLE = O, /* running CPU idle thread */

128 CM_THREAD, /* running general non-VCPU thread */

129 CM_UNSAFE, /* running ->t_unsafe thread */

130 CM_VCPU, /* running VCPU thread */

131 CM_PO SONED /* running in guest */

132 } ch_mark_t;

134 /* Doubl e-check our false-sharing padding. */

135 CTASSERT(offsetof(cpu ht _t, ch_sib) == 64);

136 CTASSERT(CM I DLE =

137 CTASSERT(CM PO SO\IED < (1 << CS_SHFT));

138 CTASSERT(CM PO SONED > CM VCPU);

139 CTASSERT(CM VCPU > CM UNSAFE) ;

141 static uint_t enpty_pil = XC CPUPOKE_PIL;

143 /*

144 * |f disabled, no HT exclusion is perforned, and systemis potentially
145 * vulnerable to L1TF if hyper-threading is enabled, and we don’t have the "not
146 * vul nerable" CPUID bit.

147 *

148 int ht_exclusion = 1;

150 /*

151 * How long ht_acquire() will spin trying to acquire the core, in mcro-seconds.
152 * This is enough time to wait out a significant proportion of interrupts.
153 *

154 clock_t ht_acquire_wait_time = 64;

156 static cpu_t *

157 ht_find_sibling(cpu_t *cp)

158 {

159 for (uint_t i =0; i < GROUP_SI ZE(&cp- >cpu_pg->cnt _pgs); i++) {
160 pg_cnt _t *pg = GROUP_ACCESS(&cp- >cpu_pg->cnt _pgs, i);
161 group_t *cg = &pg->cnt_pg. pghw_pg. pg_cpus;

163 if (pg->cnt_pg. pghw_hw ! = PGHW | Pl PE)

164 conti nue;

166 if (GROUP_SIZE(cg) == 1)

167 break;

169 VERI FY3U(GROUP_SI ZE(cg), ==, 2);

171 if (GROUP_ACCESS(cg, 0) != cp)

172 return (GROUP_ AOCESS(cg, 0));

174 VERI FY3P(GROUP_ACCESS(cg, 1), !=, cp);

176 return (GROUP_ACCESS(cg, 1));

177 1

179 return (NULL);

180 }

182 /*

183 * Initialize HT links. W have to be careful here not to race with
184 * ht_begin/end_intr(), which also conplicates trying to do this initialization
185 * froma cross-call; hence the slightly odd approach bel ow.

186 */

187 voi d

188 ht_init(void)

189 {

190 cpu_t *scp = CPy;

new usr/src/uts/i86pc/os/ht.c 4
191 cpu_t *cp = scp;

192 ulong_t fl ags

194 if (!ht_exclusion)

195 return;

197 nmut ex_ent er (&cpu_l ock) ;

199 do {

200 thread_affinity_set(curthread, cp->cpu_id);

201 flags = intr_clear();

203 cp->cpu_m ntpu_ht.ch_intr_depth = 0;

204 cp->cpu_m ntpu_ht.ch_state = CS | (CM THREAD, GLOBAL_ZONEI D) ;
205 cp->cpu_m ncpu_ht.ch_sibstate = CS_MK(CM THREAD, GLOBAL_. ZONEI D) ;
206 ASSERT3P(cp->cpu_m ntpu_ht. ch_sib, == NULL);

207 cp->cpu_m ncpu_ht.ch_sib = ht_find_sibli ng(cp)

209 intr_restore(flags);

210 thread_affinity_clear(curthread);

211 } while ((cp = cp->cpu_next_onln) != scp);

213 mut ex_exi t (&cpu_l ock);

214 }

216 /*

217 * We're adding an interrupt handl er of sone kind at the given PIL. [If this
218 * happens to be the same PIL as XC_CPUPOKE_PIL, then we need to disable our
219 * pil_needs_kick() optimzation, as there is now potentially an unsafe

220 * interrupt handler at that PIL. This typically won't occur, so we're not that
221 * careful about what's actually getting added, which CPUit’s on, or if it gets
222 * renmoved. This also presunes that softints can’t cover our enpty_pil.

223 */

224 void

225 ht_intr_alloc_pil (uint_t pil)

226 {

227 ASSERT(pi | <= PIL_MAX);

229 if (empty_pil == pil)

230 enpty_pil = PIL_MAX + 1;

231 }

233 /[*

234 * If our sibling is also a VCPU thread froma different zone, we need one of
235 * themto give up, otherwise they will just battle each other for exclusion
236 * until they exhaust their quantum

237 *

238 * W arbitrate between them by dispatch priority: clearly, a higher-priority
239 * thread deserves to win the acquisition. However, under CPU load, it'll be
240 * very commpn to see both threads with ->t_pri == If so, we'll break the
241 * tie by cpu_id (which is hopefully arbitrary enough).

242 *

243 * |f we lose, the VMM code will take this as a hint to call

244 * thread_affinity_set(CPUBEST), which will likely mgrate the VCPU thread
245 * somewhere el se.

246 *

247 * Note that all of this state exam nation is racy, as we don’t own any | ocks
248 * here.

249 */

250 static bool ean_t

251 yield_to_vcpu(cpu_t *sib, zoneid_t zoneid)

252 {

253 cpu_ht _t *sibht = &sib->cpu_m ntpu_ht;

254 uint64_t sibstate = sibht->ch_state;

256 /*

new usr/src/uts/i86pc/os/ht.c

257
258
259
260

262
263
264
265
266

268
269

271
272
273

275
276

278
279

281

283
284

286
287

289
290

292
293

295

296 ht

}

* |f we're likely just waiting for an interrupt, don't yield.
*
/
if (sibht->ch_intr_depth !'= 0)
return (B_FALSE);

/*
* We're only interested in VCPUs froma different zone.
*/
if (CS_MARK(sibstate) < CM VCPU || CS_ZONE(sibstate) == zoneid)
return (B_FALSE);

if (curthread->t_pri < sib->cpu_dispatch_pri)
return (B_TRUE);
if (curthread->t_pri == sib->cpu_dispatch_pri &&
CPU->cpu_id < Slb >cpu i d)
return (B_TRUE);

return (B_FALSE);

static inline bool ean_t
si bling_conpatible(cpu_ht_t *sibht, zoneid_t zoneid)
280 {

}

297 {

298
299
300
301
302

304

306
307
308
309
310

312

314
315
316
317
318
319

321

nt

uint64_t sibstate = sibht->ch_state;

if (sibht->ch_intr_depth != 0)
return (B_FALSE);

if (CS_MARK(sibstate) == CM UNSAFE)
return (B_| FALSE

if (CS_MARK(sibstate) == CM I DLE)
return (B_TRUE);

return (CS_ZONE(sibstate) == zoneid);

_acqui re(void)

clock_t wait = ht_acquire_wait_tine;
cpu_ht _t *ht = &CPU->cpu_m ntpu_ht;
zonei d_t zoneid = getzoneid();
cpu_ht _t *sibht;

int ret =0;

ASSERT(!interrupts_enabl ed());

if (ht->ch_sib == NULL) {
/* For the "sequential" L1TF case. */
spec_I| 1d_flush();
return (1);

}
si bht = &ht->ch_si b->cpu_m ntpu_ht;

/* A VCPU thread should never change zone. */

ASSERT3U(CS_ZONE(ht->ch_state), ==, zoneid);
ASSERT3U(CS_MARK(ht - >ch_state), ==, CM VCPU);
ASSERT3U(zonei d, !=, GLOBAL_ZONEID);

ASSERT3U(curt hread- >t _preenpt, >=, 1);
ASSERT(curt hread- >t _schedflag & TS_VCPU);

while (ret == 0 & wait > 0) {

new usr/src/uts/i86pc/os/ht.c

zonei d);

323 if (yield_to_vcpu(ht->ch_sib, zoneid)) {
324 ret = -1;

325 br eak;

326 }

328 if (sibling_conpatible(sibht, zoneid)) {
329 | ock_set (&si bht - >ch_l ock) ;

331 if (sibling_conpatible(sibht, zoneid)) {
332 ht->ch_state = CS_| (CM PO SONED, zonei d);
333 si bht ->ch_si bst ate = CS_MK(CM PO SONED,
334 manbar enter();

335 ret = 1;

336 }

338 | ock_cl ear (&si bht - >ch_l ock) ;

339 } else {

340 drv_usecwai t (10);

341 wait -= 10;

342 }

343 }

345 DTRACE_PROBE4(ht __acquire, int, ret, uint64_t, sibht->ch_state,
346 uint64_t, sibht->ch_intr_depth, clock_t, wait);
348 if (ret == 1)

349 spec_I| 1d_fl ush();

351 return (ret);

352 }

354 void

355 ht_rel ease(void)

356 {

357 cpu_ht _t *ht = &CPU->cpu_m ntpu_ht;

358 zonei d_t zoneid = getzoneid();

359 cpu_ht _t *sibht;

361 ASSERT(!interrupts_enabl ed());

363 if (ht->ch_sib == NULL)

364 return;

366 ASSERT3U(zonei d, !=, GLOBAL_ZONEID);

367 ASSERT3U(CS_. ZCNE(ht->ch_state), ==, zoneid);

368 ASSERT3U(CS_MARK(ht - >ch_state), ==, CM PO SONED);
369 ASSERT3U(curt hread- >t _preenpt, >=, 1);

371 si bht = &ht->ch_si b->cpu_m ntpu_ht;

373 | ock_set (&si bht->ch_| ock) ;

375 ht->ch_state = CS_MK(CM _VCPU, zoneid);

376 si bht->ch_si bstate = CS_MK(CM _VCPU, zoneid);

377 nmenbar _producer () ;

379 | ock_cl ear (&si bht - >ch_l ock) ;

380 }

382 static void

383 ht_kick(cpu_ht _t *ht, zoneid_t zoneid)

384 {

385 uint64_t sibstate;

387 ASSERT(LOCK_HELD(&t - >ch_| ock));

388 ASSERT(!interrupts_enabl ed());

new usr/src/uts/i86pc/os/ht.c 7

390

392
393

395
396

398

400
401
402
403
404
405
406

408
409
410

412
413

415
416 }

poke_cpu(ht->ch_sib->cpu_id);

nmenbar _consuner () ;
sibstate = ht->ch_sibstate;

if (CS_MARK(sibstate) != CM PO SONED || CS_ZONE(sibstate) == zoneid)
return;

| ock_cl ear (&ht - >ch_l| ock) ;

/*

* Spin until we can see the sibling has been kicked out or is otherw se
*

*/CK.

for (;;) {

menbar _consuner () ;
sibstate = ht->ch_si bst at e;

if (CS_MARK(sibstate) !'= CM PO SONED | |
CS_ZONE(si bstate) == zonei d)
break;

SMT_PAUSE() ;

| ock_set (&ht - >ch_l ock) ;

418 static bool ean_t
419 pil _needs_kick(uint_t pil)

420 {
421
422 }

424 void

return (pil !'= enpty_pil);

425 ht _begin_intr(uint_t pil)

426 {
427
428

430

432
433

435
436
437
438

440
441

443

445
446

448
449

451
452 }

454 void

ulong_t flags;
cpu_ht _t *ht;

ASSERT(pi| <= PIL_MAX);

flags = intr_clear();

ht = &CPU->cpu_m nctpu_ht;

if (ht->ch_sib == NULL)
intr_restore(flags);
return;

}

if (atomc_inc_64_nv(&t->ch_intr_depth) == 1 && pil_needs_kick(pil)) {
| ock_set (&ht - >ch_I ock);

menbar _consuner () ;

if (CS_MARK(ht->ch_sibstate) == CM PO SONED)
ht _ki ck(ht, GLOBAL_ZONEID);

| ock_cl ear (&ht - >ch_| ock) ;

}

intr_restore(flags);

new usr/src/uts/i86pc/os/ht.c 8

455 ht _end_i ntr(void)
456 {

457
458

460
461

463
464
465
466

468
469

471
472

474
475
476
477

479
480

482
483

485
486

488
489

491
492
493
494
495

497

499
500

502
503
504
505

507

509
510
511
512
513
514
515

517
518
519
520

}

ulong_t flags;
cpu_ht _t *ht;

flags = intr_clear();
ht = &CPU->cpu_m ntpu_ht;

if (ht->ch_sib == NULL) {
intr_restore(flags);
return;

}

ASSERT3U(ht - >ch_i ntr_depth, >, 0);
atom c_dec_64(&ht->ch_i ntr_depth);

intr_restore(flags);

static inline bool ean_t
ht _need_ki ck(cpu_ht_t *ht, zoneid_t zoneid)
{

}

voi d

menbar _consuner () ;

if (CS_MARK(ht->ch_sibstate) != CM PO SONED)
return (B_FALSE);

if (CS_MARK(ht->ch_state) == CM UNSAFE)
return (B_TRUE);

return (CS_ZONE(ht->ch_sibstate) != zoneid);

ht _mar k(voi d)
490 {

zonei d_t zoneid = getzoneid();
kthread_t *t = curthread;
ulong_t flags;

cpu_ht _t *ht;

cpu_t *cp;

flags = intr_clear();

cp = CPU,
ht = &cp->cpu_m ntpu_ht;

if (ht->ch_sib == NULL) {
intr_restore(flags);
return;

}
| ock_set (&ht - >ch_l ock) ;

/*
* |f we were a nested interrupt and went through the resunme_from.intr()
* path, we can now be resunming to a pinning interrupt thread; in which
* case, skip marking, until we later resume to a "real" thread.
*/
if (ht->ch_intr_depth > 0)

ASSERT3P(t->t _intr, != NULL);

if (ht_need_kick(ht, zoneid))
ht _ki ck(ht, zoneid);
goto out;

new usr/src/uts/i86pc/os/ht.c 9 new usr/src/uts/i86pc/os/ht.c 10

587 return (B_FALSE);
522 if (t ==t->t_cpu->cpu_idle_thread) { 588 return (CS_ZONE(si bst at e) == ttozone(t)->zone_id);
523 ASSERTBU(zonel d, ==, GLOBAL_ZONEID); 589 }
524 ht->ch_state CS_M<(CM_I DLE, zoneid);
525 } else { 591 if (CS_MARK(sibstate) < CM VCPU)
526 uint64_t state = CM THREAD; 592 return (B_TRUE);
528 if (t->t_unsaf e) 594 return (CS_ZONE(sibstate) == ttozone(t)->zone_id);
529 state = CM UNSAFE; 595 }
530 else if (t->t_schedflag & TS VCPU)
531 state = CM_VCPU; 597 pri
598 ht ad] ust _cpu_score(kthread_t *t, struct cpu *cp, pri_t score)
533 ht->ch_state = CS_MK(state, zoneid); 599 {
600 if (ht_should_run(t, cp))
535 if (ht_need_kick(ht, zoneid)) 601 return (score);
536 ht _ki ck(ht, zoneid);
537 } 603 /*
604 * |If we’'re a VCPU thread scoring our current CPU, we are nost |ikely
539 out: 605 * asking to be reschedul ed el sewhere after |losing ht_acquire(). In
540 menbar _producer () ; 606 * this case, the current CPU is not a good choice, nost likely, and we
541 | ock_cl ear (&ht - >ch _| ock); 607 * shoul d go el sewhere.
542 intr_restore(flags); 608 */
543 } 609 if ((t->t_schedflag & TS_VCPU) &&cp == t->t_cpu & score < 0)
610 return ((v.v_maxsyspri + 1) * 2);
545 void
546 ht_begi n_unsaf e(voi d) 612 return (score + 1);
547 { 613 }
548 curt hread- >t _unsaf e++;
549 ht _mar k() ;
550 }
552 void
553 ht_end_unsafe(voi d)
554 {
555 ASSERT3U(curt hread- >t _unsafe, >, 0);
556 curthread->t _unsafe--;
557 ht _mark();
558 }
560 void
561 ht_mark_as_vcpu(void)
562 {
563 thread_| ock(curthread);
564 curthread->t _schedflag | = TS_VCPU;
565 ht _mar k() ;
566 thread_unl ock(curthread);
567 }

569 bool ean_t
570 ht_shoul d_run(kthread_t *t, cpu_t *cp)

571 {

572 uint64_t sibstate;

573 cpu_t *sib;

575 if (t == t->t_cpu->cpu_idle_thread)

576 return (B_TRUE) ;

578 if ((sib = cp->cpu_mnctpu_ht.ch_sib) == NULL)
579 return (B_TRUE);

581 sibstate = sib->cpu_m ntpu_ht.ch_state;
583 if ((t->t_schedflag & TS_VCPU)) {

584 if (CS_MARK(sibstate) == CM.|DLE)
585 return (B_ TRUE)

586 if (CS_MARK(sibstate) == CM UNSAFE)

new usr/src/uts/i86pc/os/intr.c

R R R R

57826 Wed May 15 07:34:08 2019
new usr/src/uts/i86pc/os/intr.c
10924 Need nitigation of L1TF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>

Revi ewed by:

Jerry Jelinek <jerry.jelinek@oyent.conr

Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

1/*

*

I T

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

I
w
E N I I I I I T R R I SR N R R I I

CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2004, 2010, Oracle and/or its affiliates. Al rights reserved.
* Copyright (c) 2018 Joyent, Inc. All rights reserverd.

*

/

To understand the present state of interrupt handling on i86pc, we nust
first consider the history of interrupt controllers and our way of handling
interrupts.

History of Interrupt Controllers on i86pc

Intel 8259 and 8259A

The first interrupt controller that attai ned w despread use on i 86pc was
the Intel 8259(A) Progranmeble Interrupt Controller that first saw use with
the 8086. It took up to 8 interrupt sources and conbined theminto one
output wre.
Wth the switch to the 8259A, |evel node interrupts becane possible. For a
long tinme on i86pc the 8259A was the only way to handle interrupts and it
had its own set of quirks. The 8259A and its corresponding interval tinmer
the 8254 are programmed using outb and inb instructions.

Intel Advanced Programmable Interrupt Controller (APIC)

Starting around the time of the introduction of the P6 famly

m croarchitecture (i686) Intel introduced a new interrupt controller.
Instead of having the series of slaved 8259A devices, Intel opted to outfit
each processor with a Local APIC (lapic) and to outfit the systemw th at

| east one, but potentially nore, 1/0O APICs (ioapic). The lapics and ioapics
initially communi cated over a dedicated bus, but this has since been
replaced. Each physical core and even hyperthread currently contains its
own | ocal apic, which is not shared. There are a few exceptions for
hyperthreads, but that does not usually concern us.

Instead of talking directly to 8259 for status, sending End O |Interrupt

Up to 8 8259s could be slaved together providing up to 64 | RQs.

new usr/src/uts/i86pc/os/intr.c 2

® Ok ok ok E ok ok o E SR SF b SR OF 3k ok Sk b SR SF Sk F S 3k O E O 3R b Sk OF 3k ok Sk ok SR F Sk F o 3k O F O 3k b 3k b R ok Sk ok R ok % b Ok O o ok ok 3k

(EQ), etc. a microprocessor now conmuni cates directly to the lapic. This
also allows for each mi croprocessor to be able to have independent controls.
The progranming nethod is different fromthe 8259. Consuners map the |apic
registers into uncacheable nenory to read and mani pul ate the state.

The nunber of addressable interrupt vectors was increased to 256. However
vectors 0-31 are reserved for the processor exception handling, |eaving the
renmai ning vectors for general use. In addition to hardware generated
interrupts, the lapic provides a way for generating inter-processor
interrupts (IPl) which are the basis for CPU cross calls and CPU pokes.

AMD ended up inplenenting the Intel APIC architecture in lieu of their work
with Cyrix.

Intel x2apic

The x2apic is an extension to the lapic which started showi ng up around the
sanme tine as the Sandy Bridge chipsets. It provides a new progranmm ng node

as well as new features. The goal of the x2apic is to solve a few problens
with the previous generation of |lapic and the x2apic is backwards conpati bl e
with the previous programm ng and nodel . The only downsi des to using the
backwards conpatibility is that you are not able to take advantage of the new
x2api c features.

o The APIC ID is increased froman 8-bit value to a 32-bit value. This

i ncreases the maxi mum nunber of addressabl e physical processors beyond
256. This new ID is assenbled in a simlar manner as the information that
is obtainable by the extended cpuid topol ogy |eaves.

o A new neans of generating |Pls was introduced.

o Instead of nenory napping the registers, the x2apic only allows for
programming it through a series of wnsrs. This has inportant semantic
side effects. Recall that the registers were previously all mapped to
uncachabl e menory whi ch meant that all operations to the |ocal apic were
serializing instructions. Wth the switch to using wnsrs this has been
rel axed and these operations can no | onger be assuned to be serializing
instructions.

Note for the rest of this we are only going to concern ourselves with the
api ¢ and x2apic which practically all of i86pc has been using now for
quite sone tine.

Interrupt Priority Levels

On i86pc systens there are a total of fifteen interrupt priority levels
(ipls) which range from 1-15. Level O is for normal processing and
non-interrupt processing. To nanipul ate these values the famly of spl
functions (which date back to UNI X on the PDP-11) are used. Specifically,
splr() to raise the priority level and splx() to lower it. One should not
general ly call setspl() directly.

Both i 86pc and the supported SPARC pl atforms honor the same conventions for
the neani ng behind these I PLs. The npbst inportant IPL is the platforms
LOCK_LEVEL (Oxa on i86pc). If a thread is above LOCK_LEVEL it _nust_ not

sl eep on any synchroni zati on object. The only all owed synchronization
primtive is a nutex that has been specifically initialized to be a spin
lock (see nmutex_init(9F)). Another inportant level is DI SP_LEVEL (Oxb on
i86pc). You nust be at DISP_LEVEL if you want to control the dispatcher.
The XC H _PIL is the highest level (0xf) and is used during cross-calls.

Each interrupt that is registered in the systemfires at a specific IPL.
General ly nost interrupts fire bel ow LOCK_LEVEL.

PSM Dri vers

new usr/src/uts/i86pc/os/intr.c

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

B I T T S

We currently have three sets of PSM (platformspecific nobdule) drivers

avai | abl e. uppc, pcplusnp, and api x. uppc (uni-processor PC) is the original
driver that interacts with the 8259A and 8254. In general, it is not used
anynore given the preval ence of the apic.

The system prefers to use the apix driver over the pcplusnp driver. The apix
driver requires HWsupport for an x2apic. If there is no x2apic HW apix
will not be used. In general we prefer using the apix driver over the

pcpl usnp driver because it gives us nuch nore flexibility with respect to
interrupts. In the apix driver each local apic has its own independent set
of interrupts, whereas the pcplusnp driver only has a single global set of
interrupts. This is why pcplusnp only supports a finite nunber of interrupts
per IPL -- generally 16, often less. The apix driver supports using either
the x2apic or the local apic progran ng nodes. The programm ng node does not
change the nunber of interrupts available, just the nunber of processors
that we can address. For the apix driver, the x2apic node is enabled if the
system supports interrupt re-mappi ng, otherw se the nodul e manages the
x2apic in |ocal node.

Wien there is no x2apic present, we default back to the pcplusnp PSMdriver.
In general, this is not problematic unless you have nore than 256
processors in the machine or you do not have enough interrupts avail able.

Controlling Interrupt Generation on i86pc

There are two different ways to mani pul ate which interrupts will be
generated on i86pc. Each offers different degrees of control.

The first is through the flags register (eflags and rflags on i 386 and and64
respectively). The |F bit determ nes whether or not interrupts are enabl ed
or disabled. This is nanipulated in one of several ways. The npbst conmmon way
is through the cli and sti instructions. These clear the |IF flag and set it,
respectively, for the current processor. The other common way is through the
use of the intr_clear and intr_restore functions.

Assuming interrupts are not blocked by the IF flag, then the second formis
through the Processor-Priority Register (PPR). The PPR is used to deternine
whet her or not a pending interrupt should be delivered. If the ipl of the
new interrupt is higher than the current value in the PPR then the lapic
will either deliver it imediately (if interrupts are not in progress) or it
will deliver it once the current interrupt processing has issued an EO. The
hi ghest unmasked interrupt will be the one delivered.

The PPR register is based upon the max of the following two registers in the
lapic, the TPR register (also known as CR8 on and64) that can be used to
mask interrupt levels, and the current vector. Because the pcplusnp nodul e
al ways sets TPR appropriately early in the do_interrupt path, we can usually
just think that the PPRis the TPR The pcpl usnp nodul e al so issues an EQ
once it has set the TPR, so higher priority interrupts can conme in while
we're servicing a lower priority interrupt.

Handl ing Interrupts

Interrupts can be broken down into three categories based on priority and
source:

o High |evel
o Low | evel
o Low | evel

interrupts
hardware interrupts
software interrupts

Hi gh Level Interrupts

new usr/src/uts/i86pc/os/intr.c

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

B T T I T T I T T R

Hi gh level interrupts enconpasses both hardware-sourced and sof tware-sourced
interrupts. Exanples of high level hardware interrupts include the serial
consol e. High level software-sourced interrupts are still delivered through
the local apic through IPIs. This is primarily cross calls.

When a high level interrupt cones in,
current Iwp to the processor. W will use its lwp, but our own interrupt
stack and process the high level interrupt in-situ. These handlers are
designed to be very short in nature and cannot go to sleep, only block on a
spin lock. If the interrupt has a lot of work to do, it nust generate a
lowpriority software interrupt that will be processed later.

we will raise the SPL and then pin the

Low | evel hardware interrupts

Low | evel hardware interrupts start off |ike their high-level cousins. The
current CPU contains a nunber of kernel threads (kthread_t) that can be used
to process low |level interrupts. These are shared between both | ow | evel
hardware and software interrupts. Note that while we run with our

kthread_t, we borrow the pinned threads Iwp_t until such a time as we hit a
synchroni zation object. If we hit one and need to sleep, then the schedul er

wi |l instead create the rest of what we need.

Low | evel software interrupts
Low | evel software interrupts are handled in a simlar way as hardware
interrupts, but the notification vector is different. Each CPU has a bitmask

of pending software interrupts. We can notify a CPU to process software
interrupts through a specific trap vector as well as through several
checks that are perforned throughout the code. These checks will |ook at
processing software interrupts as we | ower our spl.

We attenpt to process the highest pending software interrupt that we can
which is greater than our current IPL. If none currently exist, then we nove
on. W process a software interrupt in a simlar fashion to a hardware
interrupt.

Traditional Interrupt Flow

The follow ng diagramtracks the flow of the traditional uppc and pcplusnp
interrupt handlers. The apix driver has its own version of do_interrupt().
We cone into the interrupt handler with all interrupts masked by the IF

flag. This is because we set up the handler using an interrupt-gate, which
is defined architecturally to have cleared the IF flag for us.
Fom e eeeaaaas + Fom e eeeaaaaao + Fommmeeeaaas +
| _interrupt() [--->| do_interrupt() |---> *setlvl() |
______________ + e e m e — e — - - e m e —— -
| | |
| | |
| ow| evel | | | softint
HWint | | e T +

Fommmmme e + | |
| intr_thread_ |<----- + | hi-level int
| prolog() | | + _
—————————————— +--->| hilevel _ | Not on intr stack

| | intr_ |- +

| | prolog() | |
Fom e + P + |
| switch_sp_ | | Onintr v
| and_call () | | Stac AR +
R + | switch_sp_ |

| \% | and_call () |

Vv B - + . +
Foomiie o + | dispatch_ | |
| dispatch_ | LR LR R | hilevel () |<------------ +

4

new usr/src/uts/i86pc/os/intr.c

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

| hardint() | | L +
----------- |
| \Y
| +o---- R S + - + hi-level
+---->| sti |-> av_dispatch_autovect |[->| cli |--------- +
[g R + H----- + |
| | |
v | |
oo + | |
| for each | | |
| handler | | |
| *intr() | | v
Fommmmma e + Heeeemaaaa- | Fommmmmme e +
| intr_thread_ | | ow | evel | | hilevel _intr_ |
| epilog() [<omromro e ¥ | epilog() |
| |
oo e cemem e Vv 1 +
B R +
R >| *setlvlx() |
|
v
domemanns + L + deeeeeeeeaeas +
| return |<———-| sof tint pendlng”l ————— >| dosoftint() |<-----
Fomeo-o NO +------cmmmomaaoo + yes H-------------
") , | |
| softint pil too |ow | |
S N SSS + |
v
Fomm e e + B + Fomm e +
| dispatch_ |<----- | switch_sp_ |[<--------- | *setspl() |
| softint() | | and_call () | L +
Fommmmeaaaas + Fommmmmaaaaaa +
|
v
oema- L + oo L T +
| sti |-> av_dispatch_autovect |->| cli |->| dosoftint_ |
+o-- - R R R T R + Ao + | epilog() |
| |
B T N N N N e . + |
v |
R + |
| interrupt | |
| thread [e +
| bl ocked |
Fomm e +
|
\%
L RS - + Feccccnccaaa- + ecememceaas + eceea-- R S - +

| set_base_spl() |->| *setlvlix() |-> splhigh() |->] sti() |-> swtch() |
+ 4+ + o+ + o+ + o+

Calls made on Interrupt Stacks and Epil ogue routines

We use the switch_sp_and_call () assenbly routine to switch our sp to the
interrupt stacks and then call the appropriate dispatch function. In the
case of interrupts which may bl ock, softints and hardints, we always ensure
that we are still on the interrupt thread when we call the epilog routine.
This is not just inportant, it’'s necessary.
we won't return fromour switch_sp_and_call() function and instead we'll go
through and set ourselves up to swch() directly.

New I nterrupt Flow

If the interrupt thread bl ocked,

new usr/src/uts/i86pc/os/intr.c

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

B T T I T T I T T R

The api x nodule has its own interrupt path. This is done for various
reasons. The first is that rather than having global interrupt vectors, we
now have per-cpu vectors.

The other substantial change is that the api x design does not use the TPR to
mask interrupts below the current level. In fact, except for one special
case, it does not use the TPR at all. Instead, it only uses the IF flag
(cli/sti) to either block all interrupts or al | ow any interrupts to cone in.
The design is such that when interrupts are allowed to come in, if we are
currently servicing a higher priority interupt, the newi nterrupt |s treated
as_pending and serviced later. Specifically, in the pcplusnp nodule's
apic_intr_enter() the code masks interrupts at or bel ow the current

I PL using the TPR before sending EO, whereas the apix nodule’'s

api x_intr_enter() sinply sends EQ .

The one special case where the api x code uses the TPRis when it calls
through the apic_reg_ops function pointer apic_wite_task_reg in
apix_init_intr() toinitially mask all levels and then finally to enable all
| evel s.

Recal | that we come into the interrupt handler with all interrupts masked
by the IF flag. This is because we set up the handl er using an
interrupt-gate which is defined architecturally to have cleared the IF flag
for us.

S + o e e eea oo +
| _interrupt() |[--->| apix_do_interrupt() |
hard int? +----+-------- + softint?
| | (but no |owlevel |ooping)
| *setlvl() | |
[— N DU o e e e e e e e eee—aaao o +
| api x_add_| check I PL |
|pending_ | <------c-mmmmab b +
| har di nt()| IOW~Ievel |nt| hi-1evel int]|
Fommo--- v v
| check I PL oo + R R T +
EEEE SR + api x_intr | api x_hi l evel _ |
| | thread_prol og() | | intr_prolog() |
return T T + LT
| | Onintr
B + | stack? +------------ +
| switch_sp_ | Fommaa - | switch_sp_ |
| and_call () | | | and_call () |
Fomm e - - + | B +
I [I
- + e +
| apix_dispatch_ | | apix_dispatch_ |
| 1owevel () | | hilevel () |
Fomemee e + Fommme e eeaa +
| |
v v
B +
|ap|x di spatch_by_ vector()|----+
!XCiHliPI L| | | |
+---+ oo - +---+ |
| sti] |*|ntr()| lcli] |
Foeet Aeeaa - P | hi-level?
e e e e eeeacaeeaaaaaa oo+
v I ow1| evel ? v
Frmmm e + R LT +
| apix_intr_ | apix_hilevel _ |

new usr/src/uts/i86pc/os/intr.c

389 | thr
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

| *setlvlx() | +---

< ——

| api x_do_pendi ng_
| hilevel ()

whi | e pendi ng
-level

| apix_hilevel |
intr_prolog() |
+

| switch_sp_
| and_call ()

i x_di spatch |
ndi ng_ h||evel()| |
+

@ T,

| apix_hilevel |
| intr_epilog() |
+

[IXCH _PIL | |

B e +
| sti]
ER—

lclil
ER—

R A i T T T T T I

/

440 #include <sys/cpuvar. h>
441 #include <sys/cpu_event. h>
442 #incl ude <sys/regset. h>
443 #incl ude <sys/psw. h>

444 #incl ude <sys/types. h>

445 #i ncl ude <sys/thread. h>
446 #incl ude <sys/systm h>

447 #incl ude <sys/segnents. h>
448 #incl ude <sys/pcb. h>

449 #include <sys/trap. h>

450 #i ncl ude <sys/ftrace. h>
451 #include <sys/traptrace. h>
452 #incl ude <sys/cl ock. h>

453 #i ncl ude <sys/panic. h>

454 #incl ude <sys/disp. h>

7
ead epllog()l | intr_epilog() | |
____________________________ |

| | |
mmme e e e eieeeeeecee-aaamaaaaa + |
|
___ +
R + | ow
v | level
o + Foee e + | pending?
>| apix_do_pending_ |----- >| apix_do_ |--+
| hardint() | | softint() | |
------------------ Fomemeie-o-t return
| |
| while pending | while pending
| lowlevel | softint
+-|- --------------- + +-|- --------------- +
| apix_intr_ | api x_do_ |
| thread_prol og() | | softint_prol og()|
| |
-+ Fom e e e e n + Fom e e e n +
| | switch_sp_ | | switch_sp_ |
| | and_call () | | and_call () |
-+ U + U +
| |
.................. + g
api x_di spatch_ | | api x_di spatch_softi nt()|
pendi ng_har di nt()| ————————————————————————
------------------ | | |
| | | | | |
R EERRPREREEEEE LR | |
| | apix_intr | | | | |
| | thread epllog()l | | | |
| e [| |
| | | | | |
|- LECEEEES o | |
| I*Setlv|X()I | | | |
[+ R +
| +---+ |av_ | +---+ |apix_do_ |
————————— + |sti| |dispatch_ | |cli| |softint_ |
utovect()| +---+ |softvect ()| +---+ |epilog() |
___________________ e e m -
| |
L + Hommmman +
| api x_post _| |*|ntr()|
| hardint() | A+-------

new usr/src/uts/i86pc/os/intr.c

455 #incl ude <vn seg_kp. h>

456 #incl ude <sys/stack. h>

457 #incl ude <sys/sysnacros. h>
458 #i ncl ude <sys/cm_err. h>

459 #incl ude <sys/kstat.h>

460 #i ncl ude <sys/snp_i npl defs. h>
461 #i ncl ude <sys/pool _pset.h>
462 #include <sys/zone. h>

463 #i ncl ude <sys/ bitmap. h>

464 #incl ude <sys/archsystm h>
465 #i ncl ude <sys/machsystm h>
466 #i ncl ude <sys/ontrap. h>

467 #incl ude <sys/x86_archext. h>
468 #i nclude <sys/promf.h>

469 #i ncl ude <sys/ht.h>

470 #i ncl ude <vni hat_i 86. h>

471 #if defined(__xpv)

472 #include <sys/hypervisor. h>
473 #endi f

475 [* |f these fail,
476 #if !defined(__xpv)

477 #defi ne MCOFF(nenber) \
478 (of fsetof (cpu_t,
479 CTASSERT(MCOFF(ncpu_pad) == MACHCPU_SI ZE) ;
480 CTASSERT(MCOFF(ntpu_pad2) == MVJ_PAGESI ZE)
481 CTASSERT((MCOFF(ntpu_kpti) & OxF) == 0);
474 #if defined(__and64) && !defi ned(_xpv)
475 [* |If this fails,

476 CTASSERT((of fsetof (cpu_t, cpu_m + offsetof(struct

477 MVU_PAGESI ZE) ;

478 CTASSERT((of fsetof (cpu_t, cpu_m + offsetof(struct
479 MVU_PAGESI ZE) ;

480 CTASSERT((of fsetof (cpu_t, cpu_m + offsetof(struct
481 2 * MMJ_PAGESI ZE) ;

482 CTASSERT((of f set of(cpu t, cpu_m + offsetof(struct
483 2 * MWMJ_PAGESI ZE) ;

482 CTASSERT(((si zeof (struct kpti_frane)) & OxF)
485 CTASSERT(((of fsetof (cpu_t, cpu_m +
486 of f set of (struct machcpu, ntpu_kpti
483 CTASSERT((of fsetof (struct kpti_|
484 CTASSERT(MCOFF(ntpu_pad3) < 2 *
485 #endi f

MMJ_PAGESI ZE) ;

487 #if defined(__xpv) && defined(DEBUG

_dbg)) & OxF)
frame, kf_tr_rsp) &OxF)

cpu_n) + of f set of (struct nmachcpu,

then the paddi ng nunbers in machcpuvar.h are wong. */

nmenber))

then the paddi ng nunbers in machcpuvar.h are wong. */

machcpu, nctpu_pad)) <
machcpu, ncpu_kpti)) >=
machcpu, mcpu_kpti_dbg)) <
machcpu, ntpu_pad2)) <
= 0);

== 0);

489 [*

490 * This panic nessage is intended as an aid to interrupt debuggi ng.
491 *

492 * The associ ated assertion tests the condition of enabling

493 * events when events are already enabled. The inplication

494 * peing that whatever code the programmer thought was

495 * protected by having events disabled until the second

496 * enabl e happened really wasn’t protected at all

497 */

499 int stistipanic 1; /* controls the debug panic check */

500 const char *stistinmsg =
501 ulong_t laststi[NCPU;

"stisti";

503 /*

504 * This variable tracks the | ast place events were di sabl ed on each cpu

505 * it assists in debugging when asserts that
506 *

507 ulong_t lastcli[NCPU ;

interrupts are enabled trip.

new usr/src/uts/i86pc/os/intr.c 9
509 #endif

511 void do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);

513 void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *) = do_interrupt;
514 uintptr_t (*get_intr_handler)(int, short) = NULL,;

516 /*

517 * Set cpu's base SPL level to the highest active interrupt |evel

518 */

519 void

520 set_base_spl (void)

521 {

522 struct cpu *cpu = CPU,

523 uintl6_t active = (uint16_t)cpu->cpu_intr_actyv;

525 cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active);

526 }

528 [/ *

529 * Do all the work necessary to set up the cpu and thread structures
530 * to dispatch a high-level interrupt.

531 *

532 * Returns O if we're -not- already on the high-level interrupt stack,
533 * (and *must* switch to it), non-zero if we are already on that stack.
534 *

535 * Called with interrupts nasked.

536 * The 'pil’ is already set to the appropriate |level for rp->r_trapno.
537 */

538 static int

539 hilevel _intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp)
540 {

541 struct machcpu *ntpu = &cpu- >cpu_m

542 ui nt _t nmask;

543 hrtime_t intrtinme;

544 hrtime_t now = tsc_read();

546 ASSERT(pi |l > LOCK_LEVEL);

548 if (pil == CBE_H GH PIL)

549 cpu->cpu_profile_pil = oldpil;

550 if (USERMODE(rp->r_cs)) {

551 cpu->cpu_profile_pc = 0;

552 cpu->cpu_profile_upc = rp->r_pc;

553 cpu->cpu_cpcprofile_pc = 0;

554 cpu->cpu_cpcprofile_upc = rp->r_pc;

555 } else {

556 cpu->cpu_profile_pc = rp->r_pc;

557 cpu->cpu_profile_upc = 0;

558 cpu->cpu_cpcprofile_pc = rp->r_pc;

559 cpu->cpu_cpcprofile_upc = 0;

560 }

561 }

563 mask = cpu->cpu_intr_actv & CPU_I NTR_ACTV_H GH_LEVEL_MASK;

564 if (mask !'= 0)

565 int nestpil;

567 /*

568 * We have interrupted another high-level interrupt.
569 * Load starting tinestanp, conpute interval, update
570 * cunul ative counter.

571 */

572 nestpil = bsrw_insn((uint16_t)nask);

573 ASSERT(nestpil < pil);

574 intrtime = now -

new usr/src/uts/i86pc/os/intr.c

575
576
577
578
579
580
581
582
583
584
585

587
588
589
590
591
592
593
594
595
596
597
598

600

602
603
604
605

607

609
610
611
612
613
614
615
616
617
618

620
622

624
625

627
628
629
630
631
632
633
634
635
636
637

}
/

s
h

638 {

639
640

*
*
*
*
*
*
*
*
*
t

ncpu- >pi | _high_start[nestpil - (LOCK_LEVEL + 1)];
ncpu->intrstat[nestpil][0] += intrtineg;
cpu->cpu_i ntracct[cpu->cpu_nstate] += intrting;
/*
is active below this one, so

* Anot her high-1level interrupt

* there is no need to check for an interrupt thread. That
* will be done by the lowest priority high-level interrupt
* active.
*

} else {
kthread_t *t = cpu->cpu_thread;
/*

* See if we are interrupting a |lowlevel interrupt thread.

* |f so, account for its tine slice only if its time stanp

* is non-zero.

*

if ((t->t_flag & T_INTR.THREAD) != 0 && t->t_intr_start != 0)
intrtime = now - t->t_intr_start;

mecpu->intrstat[t->t_pil][0] += intrtinme;
cpu->cpu_i ntracct[cpu->cpu_nstate] += intrtine;
t->t_intr_start = 0;

}

ht _begin_intr(pil);

/*
* Store starting tinestanp in CPU structure for this PIL.
*

nmcpu->pi |l _high_start[pil - (LOCK_LEVEL + 1)] =

0);

now,
ASSERT((cpu->cpu_intr_actv & (1 << pil)) ==

if (pil == 15) {
/*
* To support reentrant level 15 interrupts, we maintain a
* recursion count in the top half of cpu_intr_actv. Only
* when this count hits zero do we clear the PIL 15 bit from
* the lower half of cpu_intr_actv.
*

uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;
(*refcntp) ++;

}
mask = cpu->cpu_intr_actv;
cpu->cpu_intr_actv |= (1 << pil);

return (mask & CPU_I NTR_ACTV_HI GH LEVEL_MASK) ;

Does nost of the work of returning froma high level interrupt.
Returns 0 if there are no nore high level interrupts (in which
case we nust switch back to the interrupted thread stack) or
non-zero if there are nore (in which case we should stay on it).
Called with interrupts nasked

/

atic int

I evel _intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum

struct machcpu *ntpu =
uint _t mask;

&cpu- >cpu_m

10

{

new usr/src/uts/i86pc/os/intr.c

641
642

644
646
648

650
651
652
653
654
655
656
657

659

661
662
663
664
665

667

669
670
671

673
674
675
676
677
678
679
680

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

702
703
704

706

hrtime_t intrtine;
hrtime_t now = tsc_read();

ASSERT(ntpu->ntpu_pri == pil);
cpu->cpu_stats.sys.intr[pil - 1]++
ASSERT(cpu->cpu_intr_actv & (1 << pil));
if (pil /== 15) {

*

* To support reentrant level 15 interrupts, we maintain a
* recursion count in the top half of cpu_intr_actv. Only
*

when this count hits zero do we clear the PIL 15 bit from

* the lower half of cpu_intr_actv.
uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;
ASSERT(*refcntp > 0);

if (--(*refcntp) == 0)
cpu->cpu_intr_actv & ~(1 << pil);

} else {
cpu->cpu_intr_actv & ~(1 << pil);
}
ASSERT(ntpu->pi |l _high_start[pil - (LOCK_LEVEL + 1)] != 0);
intrtime = now - ncpu->pil_high_start[pil - (LOCK LEVEL + 1)];

ncpu->intrstat[pil][0] += intrtime;
cpu->cpu_intracct[cpu->cpu_nstate] += intrtine;

*

* Check for |ower-pil nested high-level interrupt beneath
* current one. |If so, place a starting timestanp inits
* pil _high_start entry.

*/

mask = cpu->cpu_intr_actv & CPU_I NTR_ACTV_H GH_LEVEL_MASK;
if (mask !'= 0)

int nestpil;
/*

* find PIL of nested interrupt

*

/

nestpil = bsrw_insn((uintl6_t)mask);
ASSERT(nestpil < pil);
ncpu->pi | _high_start[nestpil - (LOCK_LEVEL + 1)] = now;
/*

* (Another high-level interrupt is active below this one,
* so there is no need to check for an interrupt

* thread. That will be done by the lowest priority

* high-level interrupt active.)

*

} else {
/*

* Check to see if there is a lowlevel interrupt active.
* |f so, place a starting tinestanp in the thread

* structure.

*/

kthread_t *t = cpu->cpu_thread;

if (t->t_flag & T_I NTR_THREAD)
t->t _intr_start = now,

}
ht _end_intr();

11

new usr/src/uts/i86pc/os/intr.c

708
709

711
712 }

714 |
715
716
717
718

*

* Set

* executing an interrupt thread.

ncpu- >ncpu_pri = ol dpil;
(void) (*setlvlx)(oldpil, vecnum;

return (cpu->cpu_intr_actv & CPU_| NTR_ACTV_H GH LEVEL_MASK) ;

up the cpu, thread and interrupt thread structures for
The new stack pointer of the

* interrupt thread (which *nust* be switched to) is returned.
*/

719 static caddr_t
720 intr_thread_prol og(struct cpu *cpu, caddr_t stackptr, uint_t pil)

721 {
722
723
724

726
727
728

730
731
732
733
734
735
736
737
738
739
740
741
742
743

745
747

749
750
751
752
753
754
755
756
757
758
759
760

762
763
764
765
766
767

769
770

struct machcpu *ntpu = &cpu->cpu_m
kthread_t *t, *volatile it;
hrtime_t now = tsc_read();

ASSERT(pil > 0);
ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
cpu->cpu_intr_actv |= (1 << pil);

/
Get set to run an interrupt thread.

There shoul d al ways be an interrupt thread, since we
al l ocate one for each | evel on each CPU.

t_intr_start could be zero due to cpu_intr_swtch_enter.

R

/
t = cpu->cpu_thread;
if ((t->t_flag & T_INTR_ THREAD) && t->t_intr_start != 0) {
hrtime_t intrtime = now - t->t_intr_start;
ncpu->intrstat[t->t_pil][0] += intrtine;
cpu->cpu_i ntracct[cpu->cpu_nstate] += intrting;
t->t_intr_start = 0;

}
ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);

12

t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resune */
/*

* unlink the interrupt thread off the cpu

*

* Note that the code in kcpc_overflow intr -relies- on the

* ordering of events here - in partlcular that t->t_|wp of

* the interrupt thread is set to the pinned thread *pef or e*

* curthread is changed.

*

/

it = cpu->cpu_intr_thread;
cpu->cpu_intr_thread = |t—>t_|ink;
it->t_intr =1t;

it->t_lwp = t- >t_|wp;

/*

* (threads on the interrupt thread free list could have state
* preset to TS _ONPROC, but it helps in debugging if

* they're TS_FREE.)

*

it->t_state = TS_ONPRCC;

cpu->cpu_thread = it; /* new curthread on this cpu */

ht _begin_intr(pil);

it->t_pil = (uchar_t)pil;

new usr/src/uts/i86pc/os/intr.c

773 it->t_pri = intr_pri + (pri_t)pil;

774 it->t_intr_start = now,

776 return (it->t_stk);

777 }

780 #ifdef DEBUG

781 int intr_thread_cnt;

782 #endi f

784 | *

785 * Called with interrupts disabl ed

786 */

787 static void

;gg i{nt r_thread_epil og(struct cpu *cpu, uint_t vec, uint_t oldpil)

790 struct machcpu *ntpu = &cpu->cpu_m

791 kthread_t *t;

792 kthread_t *it = cpu->cpu_thread; /* curthread */

793 uint_t pil, basespl;

794 hrtime_t intrtinme;

795 hrtime_t now = tsc_read();

797 pil =it->t_pil;

798 cpu->cpu_stats.sys.intr[pil - 1]++;

800 ASSERT(it->t_intr_start !'= 0);

801 intrtime = now - it->t_intr_start;

802 ncpu->intrstat[pil][0] += intrtinme;

803 cpu->cpu_intracct[cpu->cpu_nstate] += intrtine;

805 ASSERT(cpu->cpu_intr_actv & (1 << pil));

806 cpu->cpu_intr_actv & ~(1 << pil);

808 I*

809 * If there is still an interrupted thread underneath this one
810 * then the interrupt was never blocked and the return is

811 * fairly sinple. Oherwise it isn't.

812 */

813 if ((t =it->t_intr) == NULL) {

814 /*

815 * The interrupted thread is no | onger pinned underneath
816 * the interrupt thread. This neans the interrupt nust
817 * have bl ocked, and the interrupted thread has been
818 * unpi nned, and has probably been running around the
819 * systemfor a while.

820 *

821 * Since there is no longer a thread under this one, put
822 * this interrupt thread back on the CPU s free |ist and
823 * resume the idle thread which will dispatch the next
824 * thread to run.

825 */

826 #ifdef DEBUG

827 intr_thread_cnt ++;

828 #endi f

829 cpu- >cpu_stats. sys.intrbl k++;

830 /*

831 * Set CPU s base SPL based on active interrupts bitmask
832 */

833 set _base_spl ();

834 basespl = cpu->cpu_base_spl;

835 ncpu- >ncpu_pri = basespl;

836 (*setl vl x) (basespl, vec);

837 (void) splhigh();

838 sti();

13

new usr/src/uts/i86pc/os/intr.c 14
839 it->t_state = TS_FREE;
840 /*
841 * Return interrupt thread to pool
842 */
843 it->t_link = cpu->cpu_intr_thread;
844 cpu->cpu_intr_thread = it;
845 swtch();
846 panic("intr_thread_epilog: swtch returned");
847 / * NOTREACHED* /
848 }
850 /*
851 * Return interrupt thread to the pool
852 */
853 it->t_link = cpu->cpu_intr_thread;
854 cpu->cpu_intr_thread = it;
855 it->t_state = TS_FREE;
857 basespl = cpu->cpu_base_spl;
858 pil = MAX(ol dpil, basespl);
859 ncpu- >ncpu_pri = pil;
860 (*setlvlx)(pil, vec);
861 t->t_intr_start = now,
862 ht _end_intr();
863 cpu->cpu_thread = t;
864 }

__unchanged_portion_onitted_

956 static caddr_t
957 dosoftint_prol og(

958
959
960
961
962 {
963
964
965
966

968 top:
969

971
972
973

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

struct cpu *cpu,
caddr _t stackptr,

ui nt32_t st_pending,
uint_t oldpil)

kthread_t *t, *volatile it;

struct machcpu *ntpu = &cpu->cpu_m
uint_t pil;

hrtime_t now,

ASSERT(st _pendi ng == ntpu->ntpu_softinfo.st_pending);

pil = bsrw_insn((uintl6_t)st_pending);
if (pil <= oldpil || pil <= cpu->cpu_base_spl)
return (0);
/
XX64 Si gh.

This is a transliteration of the i386 assenbl er code for

soft interrupts. One question is "why does this need

to be atomi c?" One possible race is -other- processors

posting soft interrupts to us in set_pending() i.e. the

CPU mi ght get preenpted just after the address conputation,

but just before the atomc transaction, so another CPU would
actually set the original CPU s st_pending bit. However,

it looks like it would be sinpler to disable preenption there.
Are there other races for which preenption control doesn't work?

The i 386 assenbl er version -al so- checks to see if the bit
being cleared was actually set; if it wasn't, it rechecks
for nore. This seens a bit strange, as the only code that
ever clears the bit is -this- code running with interrupts
di sabled on -this- CPU This code woul d probably be cheaper:

¥k ok ok ok ok ok ok ok % o % ok % ok F ok

new usr/src/uts/i86pc/os/intr.c

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

1007
1008

1010

1012
1013
1014
1015
1016
1017
1018

1020
1021
1022
1023
1024
1025
1026
1027

1029
1030
1031
1032
1033
1034
1035
1036

1038
1039
1040
1041
1042
1043

1045
1046

1048
1049
1050

1052
1053
1054
1055
1056

1058
1059

at om c_and 32((u| nt32_t *)&rcpu->ncpu_sof tinfo. st_pendi ng,
-(1 2< pil));

but at this point, correctness is critical, so we sIaV|sth

*

*

*

* and t->t_preenpt--/++ around set_pending() even cheaper,
*

* emul ate the 1386 port

*

/

if (atomic_btr32((uint32_t *)

&nmcpu->nepu_softinfo.st_pending, pil) == 0)
st _pendi ng = ntpu->ntpu_softinfo.st_pendi ng;
goto top;
}
ncpu->ncpu_pri = pil;

(*setspl)(pil);

now = tsc_read();

/*

* Get set to run interrupt thread.

* There should always be an interrupt thread since we
* allocate one for each | evel on the CPU.

*/
it = cpu->cpu_intr_thread;
cpu->cpu_intr_thread = it->t_link;

/* t_intr_start could be zero due to cpu_intr_swtch_enter. */

t = cpu->cpu_t hread;

if ((t->t_flag &TINTRTHREAD) && t->t _intr_start != 0) {
hrtime_t intrtime = now - t->t_intr_start;
nmecpu->intrstat[pil][0] += intrtime;
cpu->cpu_i ntracct[cpu->cpu_nstate] += intrting;
t->t_intr_start = 0;

*
* Note that the code in kcpc_overflow.intr -relies- on the
* ordering of events here - in particular that t->t_|w of
* the interrupt thread is set to the pinned thread *before*
* curthread is changed.
*
/
t
t

->t_lwp = t->t_|wp;
>t_state = S ONPRCC;

* Push interrupted thread onto list fromnew thread.

* Set the new thread as the current one.

* Set interrupted thread's T_SP because if it is the idle thread,
*/resume() may use that stack between threads.

*

ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);
t->t_sp = (uintptr_t)stackptr;

it->t_intr =t;
cpu->cpu_thread = it;
ht beglnlntr(pll)

/*

* Set bit for this pil in CPUs interrupt active bitmask.
*/

ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
cpu->cpu_intr_actv |= (1 << pil);

/*

* Initialize thread priority level fromintr_pri

new usr/src/uts/i86pc/os/intr.c

1060
1061
1062
1063

1065
1066 }

*/
it->t_pil = (uchar_t)pil;
it->t_pri = (pri_t)pil + intr_pri;

it->t_intr_start = now,

return (it->t_stk);

1068 static void
1069 dosoftint_epilog(struct cpu *cpu, uint_t oldpil)

1070 {
1071
1072
1073
1074
1075

1077
1078

1080

1082
1083
1084
1085
1086

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

1114
1115
1116
1117
1118
1119
1120 }

struct machcpu *ntpu = &cpu->cpu_m
kthread_t *t, *it;

uint_t pil, basespl

hrtime_t intrt|me

hrtime_t now = tsc_read();

it = cpu->cpu_thread;
pil =1t->t_pil;

cpu->cpu_stats.sys.intr[pil - 1]++;

ASSERT(cpu->cpu_intr_actv & (1 << pil));
cpu->cpu_| |ntr _actv & ~(1 << pil);

intrtime = now - it->t_intr_start;
ncpu->intrstat[pil][0] += |ntrt|ne
cpu->cpu_intracct[cpu->cpu_nstate] += intrtine;

/
If there is still an interrupted thread underneath this one
then the interrupt was never blocked and the return is
fairly sinple. Oherwise it isn't.

* ok ok k¥
-~

ifo((t :/it—>t_intr) == NULL) {

* Put thread back on the interrupt thread list.
*/This was an interrupt thread, so set CPU s base SPL.
*

set _base_spl ();

it->t_state = TS_FREE;

it->t_link = cpu->cpu_intr_thread;
cpu->cpu_intr_thread = it;

(voi d) splhigh();

sti();

swt ch()

| * NOTREACHED* /

pani c("dosoftint_epilog: swtch returned");

}

it->t_link = cpu->cpu_intr_thread;
cpu->cpu_intr_thread = it;
it->t_state = TS_FREE;

ht _end_intr();

cpu->cpu_thread = t;

if (t->t_flag & T_I NTR_THREAD)
t->t_intr_start = now,

basespl = cpu->cpu_base_spl;
pil = MAX(ol dpil, basespl);
ncpu- >ncpu_pri = pil;

(*setspl)(pil);

__unchanged_portion_onitted_

new usr/src/uts/i86pc/sys/ Makefile

R R R R

2008 Wed May 15 07:34:08 2019
new usr/src/uts/i86pc/sys/ Makefile
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel oprent and Distribution License (the "License")

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2009 Sun M crosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 # Copyright 2018 Joyent, Inc.

25 #

26 # uts/i86pc/sys/ Makefile

27 #

28 UTSBASE = .. /..

30 #

31 # include global definitions

32 #

33 include ../ Mkefile.i86pc

w
a1
FH*

36 # Override defaults.
#
38 FI LEMODE = 644

40 HDRS= \

41 acpi dev. h \
42 amd_i ormu. h \
43 asmm sc. h \
44 clock. h \
45 cram h \
46 ddi _subrdefs.h \
a7 debug_i nfo. h \
48 fastboot. h \
49 ht.h \
50 mach_nmu. h \
51 machcl ock. h \
52 machcpuvar. h \
53 machpar am h \
54 machprivregs.h \
55 machsystm h \
56 macht hread. h \
57 memmode. h \
58 pc_nmmu. h \

new usr/src/uts/i86pc/sys/ Makefile

psm h \
psmdefs. h \
psm nodct! . h \
psmtypes. h \
rmplatter.h \
snmp_i npl defs.h \
sbd_ioctl.h \
vm machparam h \
x_call.h \
xc_l evel s. h \
xsvc. h
ROOTHDRS= $(HDRS: %=$(USR_PSM | SYS_DI R)/ %
ROOTDI R= $(ROOT) / usr/ share/src
ROOTDI RS= $(ROOTDI R)/ ut s $(ROOTDI R) / ut s/ $(PLATFORM
ROOTLI NK= $(ROOTDl R) / ut s/ $(PLATFORM) / sys
LI NKDEST= . ./ platforn $(PLATFORM /i ncl ude/ sys
CHECKHDRS= $(HDRS: % h=% check)
. KEEP_STATE:
. PARALLEL: $(CHECKHDRS) $(ROOTHDRS)
install _h: $(ROOTDI RS) . WAI T $(ROOTHDRS) $(ROOTLI NK)
check: $(CHECKHDRS)
$(ROOTDI RS) :
$(INS.dir)
$(ROOTLI NK) : $(ROOTDI RS)
-$(RM -r $@ $(SYM.INK) $(LINKDEST) $@
FRC:
include ../../Makefile.targ

new usr/src/uts/i86pc/sys/ht.h

R R R R

1094 Wed May 15 07:34:09 2019
new usr/src/uts/i86pc/sys/ht.h
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@nuil.conr

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

1/*

2 * This file and its contents are supplied under the terms of the

3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL should have acconpanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://wmvillunmos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2018 Joyent, Inc.

14 */

16 #ifndef _SYS HT_H

17 #define _SYS_HT_H

19 #include <sys/types. h>
20 #include <sys/thread. h>
22 #ifdef __cplusplus

23 extern "C' {

24 #endif

26 struct cpu;

28 extern void ht_init(void);
29 extern void ht_intr_alloc_pil(uint_t);

31 extern int ht_acquire(void);

32 extern void ht_rel ease(void);

33 extern void ht_nmark(void);

34 extern void ht_begi n_unsafe(void);
35 extern void ht_end_unsafe(void);
36 extern void ht_begin_intr(uint_t);
37 extern void ht_end_intr(void);

38 extern void ht_mark_as_vcpu(void);

40 extern bool ean_t ht_shoul d_run(kthread_t *, struct cpu *);
41 extern pri_t ht_adjust_cpu_score(kthread_t *, struct cpu *, pri_t);

43 #ifdef __cplusplus
}
45 #endi f
47 #endif /* _SYS HT_H */

new usr/src/uts/i86pc/sys/ machcpuvar. h

R R R R

7797 Wed May 15 07:34:09 2019
new usr/src/uts/i86pc/sys/ machcpuvar. h
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

137 typedef struct cpu_ht {
138 lock_t ch_l ock;

139 char ch_pad[56] ;

140 struct cpu *ch_sib;

141 vol atile uint64_t ch_intr_depth;

142 vol atile uint64_t ch_state;

143 vol atile uint64_t ch_sibstate;

144 } cpu_ht _t;

146 /*

147 * This first value, MACHCPU SIZE is the size of all the nmenmbers in the cpu_t
148 * AND struct machcpu, before we get to the ntpu_pad and the kpti area.

149 * The KPTI is used to contain per-CPU data that is visible in both sets of
150 * page-tables, and hence nust be page-aligned and page-sized. See

151 * hat_pcp_setup().

152 *

153 * There are CTASSERTs in os/intr.c that verify this all works out.

144 * There is a CTASSERT in os/intr.c that checks these nunbers.

154 */

155 #define MACHCPU_SI ZE
146 #define MACHCPU S| ZE
156 #define MACHCPU_PAD

157 #defi ne MACHCPU_PAD2

(1568 + 688)

(572 + 1584)

(MMU_PAGESI ZE - MACHCPU_SI ZE)

(MMU_PAGESI ZE - 16 - 3 * sizeof (struct kpti_frane))

159 struct machcpu {
/*

160

161 * x_call fields - used for interprocessor cross calls
162 */

163 struct xc_nsg *xc_nsgbox;

164 struct xc_nsg *xc_free;

165 xc_data_t xc_dat a;

166 uint32_t XC_wait_cnt;

167 vol atile uint32_t xc_work_cnt;

169 int ncpu_nodei d; /* node-id */
170 int nTpu_pri; /* CPU priority */
172 struct hat *mcpu_current _hat; /* cpu’s current hat */
174 struct hat_cpu_info *mcpu_hat _i nf o;

176 vol atile ulong_t nmcpu_tlb_info;

178 /* 186 hardware table addresses that cannot be shared */
180 user _desc_t *ncpu_gdt; /* CDT */

181 gate_desc_t *ncpu_li dt; /* current I1DT */

183 tss_t *nmcpu_tss; /* TSS */

184 voi d *ncpu_| dt;

185 size_t ncpu_| dt _|en;

187 kmut ex_t ntpu_ppaddr _nmut ex;

188 caddr _t ncpu_caddr 1; /* per cpu CADDRL */
189 caddr _t ncpu_caddr 2; /* per cpu CADDR2 */
190 ui nt 64_t ncpu_caddr 1pte;

new usr/src/uts/i86pc/sys/ machcpuvar.

h

191 ui nt 64_t ntpu_caddr 2pt e;

193 struct softint ntpu_softinfo;

194 ui nt 64_t pil _high_start[H GH LEVELS];

195 ui nt 64_t intrstat[PIL_MAX + 1][2];

197 struct cpuid_info *ncpu_cpi;

199 #if defined(__and64)

200 greg_t ntpu_rtnp_rsp; /* syscall: tenporary % sp stash */
201 greg_t ntpu_rtnp_r15; /* syscall: tenporary % 15 stash */
202 #endi f

204 struct vcpu_info *nctpu_vcpu_i nfo;

205 ui nt 64_t ncpu_gdt pa; /* hypervisor: GDT physical address */
207 uint16_t ntpu_i ntr_pending; /* hypervisor: pending intrpt |evels */
208 uint16_t nctpu_ec_nbox; /* hypervisor: evtchn_dev mail box */
209 struct xen_evt_data *ntpu_evt_pend; /* hypervisor: pending events */
211 volatile uint32_t *ncpu_mwait; /* MONITOR MMAIT buffer */

212 void (*ntpu_idle_cpu)(void); /* idle function */

213 uint16_t ncpu_idle_type; /* CPU next idle type */

214 uint16_t nmax_cst at es; /* supported max cstates */

216 struct cpu_ucode_info *ntpu_ucode_info;

218 voi d *mcpu_pm nmach_st at e;

219 struct cm _hdl *mecpu_cm _hdl ;

220 voi d *mcpu_mach_ct x_ptr;

222 /*

223 * A stanp that is unique per processor and changes

224 * whenever an interrupt happens. Userful for detecting

225 * if a section of code gets interrupted.

226 * The high order 16 bits will hold the cpu->cpu_id.

227 * The low order bits will be incremented on every interrupt.

228 */

229 vol atile uint32_t ncpu_i st anp;

231 cpu_ht _t ncpu_ht;

233 char ncpu_pad[MACHCPU_PAD] ;

235 /* This is the start of the page */

236 char ncpu_pad2[MACHCPU_PAD2] ;

237 struct kpti_frane nmecpu_kpti ;

238 struct kpti_frane mcpu_kpti _flt;

239 struct kpti_frane nmcpu_kpti _dbg;

240 char ncpu_pad3[16] ;

241 };

__unchanged_portion_onitted_

new usr/src/uts/i86xpv/ Makefile.files 1 new usr/src/uts/i86xpv/ Makefile.files
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 hat |860 \
5626 Wed May 15 07:34:09 2019 60 hat _kdi . o \
new usr/src/uts/i86xpv/ Makefile.files 61 hment . o \
10924 Need mitigation of L1TF (CVE-2018-3646) 62 hol d_page. o \
Revi ewed by: Robert Mistacchi <rm@ oyent.conm> 63 hrtimers.o \
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr 64 ht.o \
Revi ewed by: Peter Tribble <peter.tribble@mail.conm 65 ht abl e. o \
IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE] 66 |86 mmu. o \
1# 67 ibft.o \
2 # CDDL HEADER START 68 instr_size.o \
3 # 69 intr.o \
4 # The contents of this file are subject to the terns of the 70 kboot _nmmu. o \
5 # Common Devel oprent and Distribution License (the "License"). 71 kdi _idt.o \
6 # You may not use this file except in conpliance with the License. 72 kdi _idthdl.o \
7 # 73 kdi _asm o \
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 Igrpplat.o \
9 # or http://ww.opensol aris.org/os/licensing. 75 mach_kdi . o \
10 # See the License for the specific |anguage governing perm ssions 76 mach_sysconfig. o \
11 # and limtations under the License. 77 machdep. o \
12 # 78 mem config_stubs.o \
13 # Wen distributing Covered Code, include this CDDL HEADER in each 79 nemode. o \
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 m crocode. o \
15 # If applicable, add the followi ng below this CDDL HEADER, with the 81 m setup. o \
16 # fields enclosed by brackets "[]" replaced with your own identifying 82 mp_call.o \
17 # information: Portions Copyright [yyyy] [nane of copyright owner] 83 np_i npl funcs. o \
18 # 84 np_machdep. o \
19 # CDDL HEADER END 85 mp_startup.o \
20 # 86 nmenscr ub. o \
87 notes. o \
22 # 88 pci _bios.o \
23 # Copyright (c) 2007, 2010, Oracle and/or its affiliates. Al rights reserved. 89 pci _cfgacc. o \
24 # 90 pci _cfgacc_x86.0 \
25 # Copyright 2018 Joyent, Inc. 91 pci _cfgspace. o \
26 # 92 pci _mechl. o \
93 pci _mech2. o \
28 # This Makefile defines file nodules in the directory uts/i86xpv 94 pci _neptune. o \
29 # and its children. These are the source files which are i86xpv 95 pci _orion.o \
30 # "inpl emrentation architecture" dependent. 96 pnem o \
31 # 97 ppage. o \
98 startup.o \
33 # 99 ssp. 0 \
34 # object lists 100 Xpv_tinmestanp. o \
35 # 101 t odpc_subr. o \
36 CORE_OBJS += \ 102 trap.o \
37 acpi _stubs.o \ 103 vm_machdep. o \
38 bal | oon. o \ 104 x_call.o
39 bi osdi sk. o \
40 che. o \ 106 #
41 cm.o \ 107 # Add the SMBI OS subsystem object files directly to the list of objects
42 cm _hw. o \ 108 # built into unix itself; this is all commpn code except for snb_dev.c.
43 cns. 0 \ 109 #
44 conf uni x. o \ 110 CORE_OBJS += $(SMBI GS_OBJS)
45 cpuid.o \
46 cpuid_subr.o \ 112 #
47 cpupm o \ 113 # These get conpiled twice:
48 cpupm_nmach. o \ 114 # - once in the dboot (direct boot) identity napped code
49 dis_tables.o \ 115 # - once for use during early startup in unix
50 ddi _inpl.o \ 116 #
51 dtrace_subr.o \ 117 BOOT_DRI VER OBJS = \
52 dvma. o \ 118 boot _consol e. o \
53 f akebop. o \ 119 boot _keyboard. o \
54 fpu_subr.o \ 120 boot _keyboard_t abl e. 0 \
55 fast boot. o \ 121 boot _nmmu. o \
56 fb_swtch.o \ 122 boot _vga. o \
57 graphics.o \ 123 boot _fb.o \
58 hardcl k. o \ 124 boot _xconsol e. o \

new usr/src/uts/i86xpv/ Makefile.files 3 new usr/src/uts/i86xpv/ Makefile.files
125 dboot _mul ti boot 2. 0 \ 191 #
126 $(FONT_OBJS) 192 # driver & misc nodul es
193 #
128 CORE_OBJS += $(BOOT_DRI VER_OBJS) 194 BALLOON OBJS += bal l oon_drv. o
195 DOMCAPS _OBJS += dontaps. 0
130 # 196 EVTCHN OBJS += evtchn_dev. o
131 # Extra XEN files separated out for now. 197 GFX_PRIVATE_OBJS += gfx_private.o gfxp_pci.o gf xp_segmap.o \
132 # 198 gf xp_devmap. o gf xp_vgatext.o gf xp_vm o vgasubr.o \
133 CORE_OBJS += \ 199 gf xp_fb.o gf xp_bitmap. o
134 cpr_driver.o \ 200 | OAT_OBJS += ioat.o ioat_rs.o ioat_ioctl.o ioat_chan.o
135 evtchn. o \ 201 | SANEXUS_OBJS += isa.o dma_engine.o i 8237A. 0
136 gnttab. o \ 202 PCl _E_NEXUS_OBJS += npe. o npe_mi sc.o
137 hypercal |l .o \ 203 PCl _E_NEXUS_OBJS += pci _conmmon. o pci_kstats.o pci_tools.o
138 hyperevent. o \ 204 PCI NEXUS_OBJS += pci.o pci_conmon. o pci _kstats.o pCI tools.o
139 hypersubr. o \ 205 PRI VCVD _OBJS += seg_nf.o privend.o privemd_hcall .
140 np_xen. o \ 206 ROOTNEX_OBJS += root nex. o
141 pani c_asm o \ 207 XPVTOD_OBJS += xpvtod. o
142 xenguest. o \ 208 XPV_AUTOCONFI G OBJS += xpv_autoconfig. o
143 xenbus_client.o \ 209 XPV_PSM OBJS += Xpv_psm o np_pl atform conmon. o np_pl atform 1Xpv.o \
144 xenbus_coms. 0 \ 210 api c_regops. 0 psm.common. o xpv_intr.
145 xenbus_probe. o \ 211 XPV_UPPC_OBJS += Xpv_uppc.0 psm conmmon. 0
146 xenbus_xs. o \ 212 XENBUS_OBJS += xenbus_dev. o
147 xen_machdep. o \ 213 XENCONS_OBJS += xencons. o
148 xen_nmu. o \ 214 XPVD_OBJS += xpvd. o
149 Xpv_pani c. o \ 215 XPVTAP_OBJS += xpvtap.o bl k_comon. o seg_nf.o
150 xvdi . 0 216 XNB_OBJS += xnb. 0
217 XNBE_OBJS += xnbe. o
152 # 218 XNBO OBJS += xnbo. o
153 # locore.o is special. It nmust be the first file relocated so that it 219 XNBU_OBJS += xnbu. o
154 # it is relocated just where its nane inplies. 220 XNF_OBJS += xnf.o
155 # 221 XSVC_OBJS += xsvc. o
156 SPECI AL_OBJS 32 += \ 222 XDF_OBJS += xdf.o
157 | ocore. o \ 223 XDB_OBJS += xdb. o
158 fast_trap_asmo \ 224 XDT_OBJS += xdt.o
159 interrupt.o \
160 syscal |l _asm o 226 #
227 # Build up defines and paths.
162 SPECI AL_OBJS 64 += \ 228 #
163 | ocore. o \ 229 | NC_PATH += - | $(UTSBASE) / i 86xpv -1 $(UTSBASE) /i 86pc -1 $(SRC)/ common \
164 fast_trap_asmo \ 230 -1 $(UTSBASE) / conmon/ xen
165 interrupt.o \
166 syscal | _asm and64. o \ 232 #
167 kpti_tranpolines.o 233 # Since the assymfiles are derived, the dependencies nmust be explicit for
234 # all files including this file. (This is only actually required in the
169 SPECI AL_OBJS += $(SPECI AL_OBJS_$(CLASS)) 235 # instance when the .nse_depinfo file does not exist.) It nay seemthat
236 # the lint targets should al so have a sim|ar dependency, but they don't
171 # 237 # since only C headers are included when #defined(__lint) is true.
172 # object files used to boot into full kernel 238 #
173 #
174 DBOOT_OBJS 32 = nuldiv.o 240 ASSYM DEPS += \
241 copy. o \
176 DBOOT_OBJS 64 = 242 desctbl s_asm o \
243 ddi _i 86_asm o \
178 DBOOT_OBJS += \ 244 exception. o \
179 dboot _asm o \ 245 fast_trap_asmo \
180 dboot _printf.o \ 246 float.o \
181 dboot _startkern. o \ 247 hyperevent. o \
182 dboot _xen. o \ 248 i 86_subr.o \
183 hypercal |l .o \ 249 kdi _asm o \
184 hypersubr. o \ 250 interrupt.o \
185 mencpy. o \ 251 lock_primo \
186 nmenset. o \ 252 | ocore. o \
187 string.o \ 253 pani c_asm o \
188 $(BOOT_DRI VER_OBJS) \ 254 ssebl k. o \
189 $(DBOOT_OBJS_$(CLASS)) 255 swtch. o \
256 syscal |l _asm o \

new usr/src/uts/i86xpv/ Makefile.files
257 syscal | _asm and64. o
259 $(KDI _ASSYM DEPS: %$(OBJS_DIR)/ % : $(DSF_DI R)/ $(OBIS_DI R)/ kdi _assym h

new usr/src/uts/intel/ia32/m/copy.s

R R R R

68145 Wed May 15 07:34:09 2019

new usr/src/uts/intel/ia32/m/copy.s

10924 Need mitigation of L1TF (CVE-2018-3646)

Revi ewed by: Robert Mistacchi <rm@ oyent.conm>

Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr

Revi ewed by: Peter Tribble <peter.tribble@mail.conm

IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END
Copyri ght 2009 Sun Mcrosystens, Inc. Al rights reserved.

Use is subject to |license terns.
/

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN
L I R I I S T I

27 * Copyright (c) 2009, Intel Corporation
28 * Al rights reserved.

*

/

29

31 /* Copyright (c) 1990, 1991 UN X System Laboratories, Inc.
32 /* Oopyrlght (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T
33 /* Al Rights Reser ved

35 /* Copyright (c) 1987, 1988 M crosoft Corporation

36 /* Al Rights Reserved

38 /*

39 * Copyright (c) 2018 Joyent, Inc.
39 * Copyright 2016 Joyent, Inc.

*

/

42 #incl ude <sys/errno. h>
43 #include <sys/asm | inkage. h>

45 #if defined(__lint)
46 #incl ude <sys/types. h>
47 #include <sys/systm h>

48 #el se /* _lint */

49 #include "assym h"

50 #endif /* __lint */

52 #define KCOPY_M N_SI ZE 128 /* Must be >= 16 bytes */
53 #define XCOPY_M N_SIZE 128 /* Must be >= 16 bytes */
54 [*

55 * Non-tenopral access (NTA) alignnent requirenent

56 */

57 #define NTA _ALIGN_SIZE 4 /* Must be at |east 4-byte aligned */

*/
*/

*/
*/

new usr/src/uts/intel/ia32/m/copy.s 2

58 #define NTA ALI GN_MASK _ CONST(NTA ALl GN_SI ZE- 1)

59 #define COUNT_ALIGN_SI ZE 7* Mist be at least 16-byte aligned */
60 #define COUNT_ALI GN_MASK _CONST(COUNT_ALI GN_SI ZE- 1)

62 /*

63 * Wth the introduction of Broadwell, Intel has introduced supervisor node

64 * access protection -- SVAP. SVAP forces the kernel to set certain bits to

65 * enable access of user pages (ACin rflags, defines as PS_ACHK in

66 * <sys/psw. h>). One of the challenges is that the inplenentation of many of the
67 * userland copy routines directly use the kernel ones. For exanple, copyin and
68 * copyout sinply go and junp to the do_copy_fault |abel and traditionall y let
69 * those deal with the return for them In fact, changing that is a can of frane
70 * pointers.

71 *

72 * Rules and Constraints:

73 *

74 * 1. For anything that’'s not in copy.s, we have it do explicit calls to the

75 * smap related code. It usually is in a position where it is able to. This is
76 * restricted to the following three places: DIrace, resume() in swch.s and

77 * on_fault/no_fault. If you want to add it sonewhere el se, we should be

78 * thinking tw ce.

79 *

80 * 2. W try to toggle this at the smallest wi ndow possible. This nmeans that if
81 * we take a fault, need to try to use a copyop in copyin() or copyout(), or any
82 * other function, we will always |eave with SVAP enabl ed (the kernel cannot

83 * access user pages).

84 *

85 * 3. None of the *_noerr() or ucopy/uzero routines should toggle SVAP. They are
86 * explicitly only allowed to be called while in an on_fault()/no_fault() handle
87 * which already takes care of ensuring that SMAP i s enabl ed and di sabl ed. Note
88 * this neans that when under an on_fault()/no_fault() handler, one nust not

89 * call the non-*_noeer() routines.

90 *

91 * 4. The first thing we should do after com ng out of an lofault handler is to
92 * nmeke sure that we call smap_enable again to ensure that we are safely

93 * protected, as nore often than not, we will have disabled smap to get there.
94 *

95 * 5. The SMAP functions, smap_enabl e and smap_di sabl e may not touch any

96 * registers beyond those done by the call and ret. These routines nay be called
97 * fromarbitrary contexts in copy.s where we have slightly nore special ABIs in
98 * place.

99 *

100 * 6. For any inline user of SMAP, the appropriate SVMAP_ENABLE_| NSTR and

101 * SMAP_DI SABLE | NSTR macro shoul d be used (except for smap_ enabl e() and

102 * smap_disable()). If the nunber of these is changed, you nust update the

103 * constants SMAP_ENABLE COUNT and SMAP_DI SABLE_COUNT bel ow.

104 *

105 * 7. Note, at this time SMAP is not inplenented for the 32-bit kernel. There is
106 * no known technical reason preventing it from being enabl ed.

107 *

108 * 8. Generally this .s file is processed by a K&R style cpp. This neans that it
109 * really has a lot of feelings about whitespace. In particular, if you have a
110 * nacro FOO with the arguments FOO(1l, 3), the second argument is in fact ' 3'.
111 *

112 * 9. The smap_enabl e and smap_di sabl e functions shoul d not generally be cal | ed.
113 * They exist such that DTrace and on_trap() may use them that’'s it.

114 *

115 * 10. In general, the kernel has its own value for rflags that gets used. This
116 * is maintained in a few different places which vary based on how the thread
117 * comes into existence and whether 1t’'s a user thread. In general, when the
118 * kernel takes a trap, it always will set ourselves to a known set of flags,
119 * nmminly as part of ENABLE | NTR_FLAGS and F_OFF and F_ON. These ensure that

120 * PS_ACHK is cleared for us. In addition, when using the sysenter instruction,
121 * we mask off PS_ACHK off via the AVMD _SFMASK MSR See init_cpu_syscall () for
122 * where that gets masked off.

123 *

new usr/src/uts/intel/ia32/m/copy.s

125
126
127
128
129
130
131
132
133
134

136
137
138
139
140

142
143
144
145
146
147
148
149
150
151
152

154
155
156
157

159
160
161
162

164

166
167
168
169

173
174

176

178
179
180
181
182
183
184
185
186
187
188
189

/*
* The optinal 64-bit bcopy and kcopy for npbdern x86 processors uses

* "rep snmovq" for large sizes. Perfornmance data shows that many calls to

* bcopy/ kcopy/ bzero/ kzero operate on small buffers. For best performance for
* these snall sizes unrolled code is used. For nedium sizes |oops witing

*

64-bytes per loop are used. Transition points were determ ned experinentally.

*
/
#defi ne BZERO USE_REP (1024)
#defi ne BCOPY_DFLT_REP (128)
#define BCOPY_NHM REP (768)

/*
* Copy a block of storage, returning an error code if ‘from or
* ‘to’ takes a kernel pagefault which cannot be resol ved.

* Returns errno value on pagefault error, 0 if all ok

*

/*
* 1"msorry about these nacros,
* additional call instructions.

*/

but copy.s is unsurprisingly sensitive to

#i f defined(__and64)

#def i ne SMAP_DI SABLE_COUNT 16
#defi ne SMAP_ENABLE_COUNT 26
#elif defined(__i386)

#def i ne SMAP_DI SABLE_COUNT 0
#def i ne SMAP_ENABLE_COUNT 0
#endi f

#defi ne SMAP_DI SABLE | NSTR(| TER)
.globl _snmap_di sabl e_patch_/**/1 TEF{
_smap_di sabl e_pat ch_/**/ | TER/ **/ :
nop; nop; nop;

———

#def i ne SMAP_ENABLE_| NSTR(| TER)
.globl _smap_enabl e_patch_/**/| TER
_smap_enabl e_patch_/**/ | TER/ **/ :
nop; nop; nop;

———

#if defined(__lint)

/* ARGSUSED */

int

kcopy(const void *from void *to,
{ return (0);

size_t count)

#el se /* _lint */

.gl obl kernel base

. gl obl postboot ker nel base
#if defined(__and64)

ENTRY(kcopy)

pushq %b

novq % sp, % bp
#i f def DEBUG

cnpq post boot ker nel base(% i p), % di /* %di = from*/
jb of
cnpq post boot ker nel base(% i p), % si /* %si =to */
jnb

0: | eaq kcopy panic_nmsg(%ip), %di
xor | O/«seax Yeax
cal | pani ¢

1:

new usr/src/uts/intel/ia32/m/copy.s

190 #endif
191
192 * pass |lofault value as 4th argunent to do_copy_fault
193 *
194 | eaq _kcopy_copyerr (% p) % cx
195 nmovq %ys: CPU_THREAD, % 9 /* %9 = thread addr */
197 do_copy_faul t:
198 novq T_LOFAULT(%9), % 11 /* save the current |ofault */
199 nmovq wcex, T LO:AULT(% 9) /* new | ofault */
200 cal | bcopy altentry
201 xor | Y%eax, Yeax /* return O (success) */
202 SMAP_ENABLE_I NSTR(0)
204 I*
205 * A fault during do_copy_fault is indicated through an errno val ue
206 *in %ax and we iretq fromthe trap handler to here.
207 */
208 _kcopy_copyerr:
209 novq 9% 11, T_LOFAULT(% 9) /* restore original lofault */
210 | eave
211 ret
212 SET_SI ZE(kcopy)
__unchanged_portion_omtted_
434 #undef ARG _FROM
435 #undef ARG TO
436 #undef ARG _COUNT
438 #endif /* __i386 */
439 #endif /* __lint */
441 #if defined(__lint)
443 | * ARGSUSED */
444 void
445 bcopy(const void *from void *to, size_t count)
446 {}
448 #el se /* _lint */
450 #if defined(__and64)
452 ENTRY(bcopy)
453 #i fdef DEBUG
454 orq o% dx, 9% dx /* %dx = count */
455 jz 1f
456 cnpq post boot ker nel base(% i p), % di /* %di = from*/
457 jb of
458 cnpq post boot ker nel base(% i p), % si /* %si =to */
459 jnb
460 O: | eaq bcopy_pani c_msg(%ip), % di
461 jnp cal | _panic /* setup stack and call panic */
462 1:
463 #endi f
464 /*
465 * bcopy_altentry() is called fromkcopy, i.e., do_copy_fault.
466 * kcopy assunes that bcopy doesn’t touch %9 and % 11. |f bcopy
467 * uses these registers in future they nust be saved and restored.
468
469 ALTENTRY(bcopy_al tentry)
470 do_copy:
471 #define L(s) .bcopy/**/s
472 cnpq $0x50, % dx /* 80 */
473 jae bcopy_ck_si ze

new usr/src/uts/intel/ia32/m/copy.s

475
476
477
478
479
480
481
482
483
484
485

487
488
489

490
491
492
493
494
495
496

498
499
500
501
502
503
504
505

507
508
509
510
511
512
513
514

516
517
518
519
520
521
522
523

525
526
527
528
529
530
531
532

534
535
536
537
538
539
540

/*
* Perfornmance data shows many caller’s copy small

* best perf for these sizes unrolled code is used. Store data without

* worrying about alignment.
*/

| eaq
addq
addq
novsl g
| eaq
jmpq
.p2align 4
L(fmUPxCx)

L(fwdPxQx) (% i p),
% dx,
% dx,
(% 10, % dx, 4),
(% cx, % 10,1),
*0% 10

% 10
% di

% si

% cx

% 10

SSSSEEES
IITIPIYY

SSSSEEES
IIPPPIIL

*ﬁﬁ**ﬁﬁﬁ
IIPPPIIT

X X X X

—h —h —h —h —h —h —h —h
X X

PU'UQ'U'U'U'U

—h —h —h —h —h —h —h —h
X X X X X X X X

- o - - | g | g
I) g)) G) P P UG 5 Y 5 P G A)) 5 S S) S Y) 5 A S 0)) A
TUUYUUUU UUUPUUYUU UUUUUIYUU UUUUUIUUU TUUUUUIUU TUUULUIUTUD
QU WNEO ~NOOBWNEO ~NOOBWNEO ~NOOBWNEO ~NOOBWNEO ~NOUBSWNEO
8888888 RRILRILE BBERBERE SRELRELR LLELRELEEE 88888888
) g g e) s R ey)) el R) R) S R) s R UG) R RO) g) g) g
§5%558% 55555555 55555555 B5555555 B5555555 BEEEEE8EE

VIV JVIVIVIVY TVIVIVIVIVIUITT

X X X X X X X

BRELRER RRRRVREYY RRYRYRYY RRYRYRLL LRYVLYRE LRE/RLXY

—h = —h —h —h —h —h

buffers. So for

[* 0 */

/* 8 */

new usr/src/uts/intel/ia32/m/copy.s

541

543
544
545
546
547
548
549
550

552
553
554
555
556
557
558
559

561
562
563
564
565
566
567
568

570
571
572
573
574
575
576
577

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

L(POQO):

L(POGB) :

L(POQY) :

L(POQB) :

L(POCB):

L(POQY) :

L(POGB) :

L(POQR) :

L(POQL):

.int L(P7Q5) - L(f wdPxQx)
int L(POQB) - L(f wdPxQx)
i nt L(P1Q6) - L(f wdPxQx)
i nt L(P2Q6) - L(f wdPxQx)
int L(P3Q6) - L(f wdPxQXx)
int L(P4Q8) - L(f wdPxQx)
int L(P5Q6) - L(f wdPxQx)
i nt L(P6Q6) - L(f wdPxQx)
int L(P7Q6) - L(f wdPxQXx)

.int L(POQY7) - L(f wdPxQXx)

.int L(P1Q7) - L(f wdPxQx)

.int L(P2Q7) - L(f wdPxQXx)

.int L(P3Q7) - L(f wdPx(QXx)

.int L(P4Q7) - L(f wdPx(X)

.int L(P5Q7) - L(f wdPxQx)

.int L(P6Q7) - L(f wdPxQXx)

.int L(P7Q7) - L(f wdPxQXx)

.int L(PO@8) - L(f wdPxQx)

.int L(P1@8B) - L(f wdPx(QXx)

.int L(P2@Q8) - L(f wdPx(Xx)

.int L(P3@8) - L(f wdPx(X)

.int L(P4Q8B) - L(f wdPxQx)

.int L(P5@8) - L(f wdPx(QXx)

.int L(P6@B) - L(f wdPx(Xx)

.int L(P7@8) - L(f wdPx(Xx)
i nt L(POQO) - L(f wdPxQx)
i nt L(P1Q0) - L(f wdPxQXx)
int L(P2Q0) - L(f wdPxQx)

.int L(P3Q0) - L(f wdPxQx)

.int L(P4Q9) - L(f wdPxQXx)
int L(P5Q0) - L(f wdPx(QXx)
int L(P6QO) - L(f wdPxQx)
int L(P7Q) - L(f wdPxQx)

.p2align 4

nmov -0x48(% di), %cx

nov % cx, -0x48(% si)

mov -0x40(% di), % 10

nmov % 10, -0x40(% si)

nmv -0x38(%di), %8

nmov % 8, -0x38(%si)

nov -0x30(% di), % cx

nov % cx, -0x30(% si)

nov -0x28(%di), % 10

nov % 10, -0x28(% si)

nmv -0x20(% di), %8

nmov % 8, -0x20(% si)

nov -0x18(% di), % cx

nmv % cx, -0x18(%si)

v -0x10(% di), 9% 10

nov % 10, -O0x10(% si)

nmov -0x8(%di), %8

nmov % 8, -0x8(%si)

| *

/*

48

56

64

72

79

*/

*/

*/

*/

*/

new usr/src/uts/intel/ia32/m/copy.s

607
608

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

L(POQO) :

L(P1(9):

L(P1GB):

L(P1Q7):

L(P1GQB):

L(P1GB):

L(P1CY4):

L(P1GB):

L(P1Q):

L(P1QL):

L(P1QD):

L(P2Q) :

L(P2G8):

L(P2Q7):

L(P2@QB)

L(P2GB):

L(P2Q¥):

L(P2@QB):

L(P2Q):

L(P2QL):

L(P2QD) :

ret

.p2align 4

nmv -0x49(% di), %8
nmov % 8, -0x49(%si)
nov -0x41(%di), % cx
nmv % cx, -0x41(%si)
nmov -0x39(%wdi), % 10
nov % 10, -0x39(% si)
mov -0x31(% di), %8
nov % 8, -0x31(%Wsi)
nmv -0x29(% di), % cx
nmov % cx, -0x29(%si)
nov -0x21(%di), % 10
nmv % 10, -O0x21(%si)
nov -0x19(% di), %8
nov %8, -0x19(%si)
nmv -0x11(% di), % cx
mv 9% cx, -0x11(%si)
nov -0x9(%di), %10

nmov % 10, -Ox9(% si)

novzbg -0x1(%di), %8
nov % 8b, -O0x1(%si)
ret

.p2align 4

nmv -Oxd4a(%di), %8
nov % 8, -Oxda(uwsi)
nov -0x42(% di), % cx
nmv % cx, -0x42(%si)
nmov -0x3a(%wdi), % 10
nov % 10, -O0x3a(%si)
nmov -0x32(%di), %8
nov % 8, -0x32(%si)
nov -0x2a(%di), % cx
nmv % cx, -O0x2a(%si)
nov -0x22(%di), % 10
nov % 10, -0x22(% si)
nmov -Oxla(%di), %8
nov % 8, -Oxla(%si)
nmv -0x12(% di), % cx
nmov 9% cx, -0x12(%si)
nov -Oxa(%di), %10
nmv % 10, -Oxa(%si)

movzwg -0x2(%di), %8

new usr/src/uts/intel/ia32/m/copy.s

673
674

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

L(P3Q0)

L(P3C8):

L(P3Q7):

L(P3Q5):

L(P3G5):

L(P3Q4):

L(P3@8):

L(P3Q):

L(P3QL):

nov % 8w, -0x2(%si)
ret
.p2align 4
‘mov -Ox4b(%di), %8
nmov % 8, -O0x4b(%si)
nov -0x43(%di), % cx
nmv % cx, -0x43(%si)
nmov -0x3b(%di), % 10
nov % 10, - O0x3b(% si)
mov -0x33(%di), %8
nov % 8, -0x33(%si)
nmv -0x2b(% di), % cx
nmov 9% cx, -O0x2b(%si)
nov -0x23(%di), % 10
nmv % 10, -O0x23(%si)
nmov -0x1b(% di), %8
nov %8, -O0x1b(%si)
nmv -0x13(%wdi), %cx
nmov 9% cx, -0x13(%si)
nov -0xb(%di), %10
nmv % 10, -Oxb(% si)
/*
* These trailing |oads/stores have to do all their |oads 1st,
* then do the stores.
*
/

L(P3QD):

movzwg -0x3(%di), %8
novzbg -0x1(%di), % 10

L(P4Q9):

L(P4GB) :

L(PAQT) :

L(P4QB) :

L(P4Q®B) :

L(PAQY):

L(P4QB):

L(P4Q@):

nmv % 8w, -Ox3(%si)
nmov % 10b, -Ox1(% si)
ret

.p2align 4

nmov -0x4c(%di), %8
nov % 8, -O0x4c(%si)
nmov -0x44(% di), %cx
mv 9% cx, -0x44(%si)
nov -0x3c(%di), % 10
nmv % 10, -0Ox3c(%si)
nov -0x34(%di), %8
nov %8, -0x34(%si)
nmov -0x2c(%di), %cx
nov % cx, -0x2c(% si)
nmv -0x24(% di), % 10
nmov % 10, -0x24(%si)
nov -Ox1lc(%di), %8
nmv % 8, -O0xlc(%si)
nmov -0x14(%di), % cx

new usr/src/uts/intel/ia32/m/copy.s

739
740
741
742
743
744
745
746

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77
778
779
780
781

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

L(P4QL):

L(PAQD) :

L(P5Q0) :

L(P5Q8):

L(P5Q7):

L(P5Q6) :

L(P5G6)

L(P5Q4):

L(P5@8):

L(P5Q2):

L(P5QL):

L(P5QD) :

L(P6Q):

L(P6Q8):

L(P6QT) :

L(P6QB) :

L(P6GB) :

L(P6QY) :

L(P6QB) :

nov % cx, -0x14(%si)
v -0xc(%di), % 10
nov % 10, -Oxc(%si)
nmv -0x4(% di), 9% 8d
nmov % 8d, -O0x4(%si)
ret

.p2align 4

nmov -0x4d(% di), %8
nov %8, -0x4d(%si)
nmov -0x45(% di), % cx
nmov % cx, -0x45(%si)
nmv -0x3d(%di), % 10
nmv % 10, -0Ox3d(%si)
nov -0x35(%di), %8
nmv % 8, -O0x35(%si)
nmov -0x2d(% di), %cx
nov % cx, -0x2d(% si)
nmv -0x25(% di), % 10
nov % 10, -0x25(% si)
nov -0x1d(%di), %8
nmov % 8, -0x1d(%si)
nov -0x15(% di), %cx
nov % cx, -O0x15(% si)
nmov -0xd(% di), % 10
nov % 10, -Oxd(% si)
nmv -0x5(% di), % 8d
nmovzbg -0x1(%di), % 10
nov % 8d, -Ox5(% si)
nov % 10b, -Ox1(% si)
ret

.p2align 4

nmv -Oxde(%di), %8
nmov % 8, -O0xde(usi)
nov -0x46(% di), % cx
nov % cx, -0x46(% si)
nmov -0x3e(%wdi), % 10
nov % 10, -0x3e(% si)
nmv -0x36(%di), %8
nmov % 8, -O0x36(%si)
nov -0x2e(%di), % cx
nmv % cx, -0x2e(%si)
nmov -0x26(% di), % 10
nov % 10, -0x26(% si)
nmov -Oxle(%di), %8
nov %8, -Oxle(%si)

805
806
807
808
809
810
811

L(P6QR) :

L(P6QL):

L(P6QO):

new usr/src/uts/intel/ia32/m/copy.s
nmov -0x16(% di), % cx
nmov % cx, -O0x16(% si)
nov -Oxe(%di), %10
nmv % 10, -Oxe(%si)
nov -0x6(%di), 9% 8d

812
813
814
815
816

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

855
856
857
858
859
860
861
862
863
864
865
866

868
869

L(P7Q9):

L(P7Q8):

L(P7Q7):

L(P7Q6) :

L(P7®p) :

L(P7Q4):

L(P7@):

L(P7Q2):

L(P7QL):

L(P7QD):

nmovzwg -0x2(%di), % 10
nmv % 8d, -Ox6(% si)
nmov % 10w, -O0x2(% si)

ret

.p2align 4

nov -0x4f (% di), %8
nov %8, -O0x4f(%si)
nmv -0x47(% di), % cx
nmv 9% cx, -0x47(%si)
nmv -Ox3f (% di), % 10
nmov % 10, -Ox3f(%si)
nov -0x37(%di), %8
nov %8, -0x37(%si)
nov -0x2f (% di), %cx
nov % cx, -O0x2f(%si)
nmv -0x27(% di), % 10
nmov % 10, -O0x27(%si)
nov -0x1f (% di), %8
nmv %8, -Ox1f (% si)
nmv -0x17(%di), % cx
nov % cx, -O0x17(%si)
nmov -oxf(9%di), %10
nmv % 10, -Oxf(%si)
nov -0x7(%di), % 8d

movzwg -0x3(% di), % 10
novzbg -0x1(%di), % cx
nov % 8d, -O0x7(%si)
nmv % 10w, -Ox3(%si)
nmov %1, -0x1(%si)

*
* For large sizes rep snovq is fastest.

* Transition point determined experinmentally as measured on

* Intel Xeon processors (incl. Nehal emand previous generations) and
* AMD Opteron. The transition value is patched at boot tine to avoid
* nmenory reference hit.

. gl obl bcopy_patch_start

bcopy_patch_start:

npq $BCOPY_NHM REP, % dx
. gl obl bcopy_pat ch_end

bcopy_pat ch_end:

.p2align 4
ALTENTRY(bcopy_ck_si ze)

10

new usr/src/uts/intel/ia32/m/copy.s
869 . gl obl bcopy_ck_size
870 bcopy_ck_si ze:
871 cnpq $BCOPY_DFLT_REP, % dx
872 j ae L(use_rep)
874 /*
875 * Align to a 8-byte boundary. Avoids penalties fromunaligned stores
876 * as well as from stores spanning cachelines.
877 */
878 t est $0x7, % si
879 jz L(al i gned_| oop)
880 test $0x1, 9% si
881 jz 2
882 movzbg (% di), %8
883 dec % dx
884 inc % di
885 nov % 8b, (% si)
886 inc % si
887 2:
888 test $0x2, % si
889 jz 4f
890 mvzwg (%di), %8
891 sub $0x2, % dx
892 add $0x2, % di
893 nov o% 8w, (% si)
894 add $0x2, % si
895 4:
896 test $0x4, 9% si
897 jz L(al i gned_l oop)
898 nov (%di), % 8d
899 sub $0x4, % dx
900 add $0x4, % di
901 nov 9% 8d, (%si)
902 add $0x4, % si
904 /*
905 * Copy 64-bytes per |oop
906 */
907 .p2align 4
908 L(aligned_|l oop):
909 nmov (%di), %8
910 nov 0x8(9di), 9% 10
911 | ea -0x40(% dx), % dx
912 nmov %8, (%si)
913 nov 9% 10, Ox8(% si)
914 nov 0x10(% di), 9% cx
915 nmv 0x18(% di), %8
916 nmov % cx, Ox10(% si)
917 nov % 8, 0x18(% si)
919 cnp $0x40, % dx
920 nmv 0x20(% di), % 10
921 nov 0x28(% di), % cx
922 nov % 10, Ox20(% si)
923 nov o% cx, Ox28(%si)
924 nmv 0x30(%di), %8
925 nmov 0x38(% di), % 10
926 |l ea 0x40(% di), % di
927 nov % 8, Ox30(% si)
928 nmv % 10, Ox38(% si)
929 | ea 0x40(%si), % si
930 jae L(al i gned_| oop)
932 /*
933 * Copy renmining bytes (0-63)
934 */

11

new usr/src/uts/intel/ia32/m/copy.s 12
935 L(do_remmi nder):
936 | eaq L(fwdPxQx) (%ip), % 10
937 addq 9% dx, 9% di
938 addq o% dx, 9% si
939 nmovsl g (% 10, % dx, 4), % cx
940 | eaq (%cx,%10,1), % 10
941 j npq *o% 10
943 /*
944 * Use rep snovq. O ear remainder via unrolled code
945 */
946 .p2align 4
947 L(use rep)
948 xchgq % di, % si /* % si = source, %di = destination */
949 novq % dx, % cx /* % cx = count */
950 shrq $3, %cx /* 8-byte word count */
951 rep
952 smovq
954 xchgq % si, %di /* %di = src, %si = destination */
955 andq $7, % dx /* remai nder */
956 jnz L(do_r emai nder)
957 ret
958 #undef L
959 SET_SI ZE(bcopy_ck_si ze)
961 #ifdef DEBUG
962
963 * Setup franme on the run-tinme stack. The end of the input argunent
964 * area nmust be aligned on a 16 byte boundary. The stack pointer % sp,
965 * always points to the end of the latest allocated stack frane.
966 * panic(const char *format, ...) is a varargs function. Wen a
967 * function taking variable argunents is called, % ax nust be set
968 * to eight tinmes the nunber of floating point paraneters passed
969 * to the function in SSE registers.
970 */
971 cal | _pani c:
972 pushqg % bp /* align stack properly */
973 nmovq % sp, % bp
974 xor | %eax, %eax /* no variable argunents */
cal | pani c /* %di = format string */

975

976 #endi f

977 SET_SI ZE(bcopy_al tentry)
__unchanged_portion_omtted_

3179 #endif /* __and64 || __i386 */
3181 #endif /* __lint */

3183 #ifndef __lint

3185 .data

3186 .align 4
3187 .globl _smap_enabl e_patch_count
3188 .type _smap_enabl e_patch_count, @bj ect

3189 .size _smap_enabl e_patch_count, 4
3190 _smap_enabl e_pat ch_count:
3191 .long SMAP_ENABLE_COUNT

3193 .globl _snap_di sabl e_pat ch_count
3194 .type _smap_di sabl e_pat ch_count, @bj ect

3195 .size _smap_di sabl e_patch_count, 4
3196 _smap_di sabl e_patch_count:

3197 .l ong” SMAP_DI SABLE_COUNT
3199 #endif /* __lint */

new usr/src/uts/intel/ia32/m/swch.s

R R R R

14241 Wed May 15 07:34:10 2019

new usr/src/uts/intel/ia32/m/swch.s

10924 Need nmitigation of LITF (CVE-2018-3646)

Revi ewed by: Robert Mistacchi <rm@ oyent.conm>

Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr

Revi ewed by: Peter Tribble <peter.tribble@nuil.conr

IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

*
*
*
*
*
*
*
*
*
*
* Wen distributing Covered Code, include this CDDL HEADER i n each
*
*
*
*
*
*
*
*
*
*
*

21/

22 Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved.
23 Use is subject to |license terns.

24 /

27 * Copyright 2019 Joyent, Inc.

27 * Copyright (c) 2018 Joyent, Inc.
*
/

28

30 /*

31 * Process switching routines.
32 */

34 #if defined(__lint)

35 #include <sys/thread. h>
36 #include <sys/systm h>
37 #include <sys/tine.h>

38 #else /* __lint */
39 #include "assym h"
40 #endif /* __lint */

34 #include <sys/asm|inkage. h>
35 #include <sys/asmm sc. h>

36 #include <sys/regset. h>

37 #include <sys/privregs. h>

38 #incl ude <sys/stack. h>

39 #include <sys/segnents. h>

40 #incl ude <sys/psw. h>

42 #include "assym h"
44 | *
resune(thread_id_t t);

exi sts a window on MPs where the current thread on one

*
*
47 * a thread can only run on one processor at a tinme. there
*
* processor is capable of being dispatched by another processor.

new usr/src/uts/intel/ia32/m/swch.s

sonme overlap between outgoing and incomi ng threads can happen
when they are the sane thread. in this case where the threads

are the same, resune() on one processor will spin on the incom ng
thread until resune() on the other processor has finished with
the outgoing thread.

The MWMUJ context changes when the resunming thread resides in a different
process. Kernel threads are known by resune to reside in process 0.
The MMJ context, therefore, only changes when resunming a thread in

a process different from curproc.

resume_fromintr() is called when the thread being resuned was not
passivated by resume (e.g. was interrupted). This neans that the
resume lock Is already held and that a restore context is not needed.
Al 'so, the MW context is not changed on the resune in this case.

resunme_from zonbie() is the same as resune except the calling thread
is a zonmbie and nust be put on the deathrow |ist after the CPU is
of f the stack.

/

#if ldefined(__lint)

* Ok ok ok Sk Rk ok S O R b kb k% ok % k¥

#if LWP_PCB FPU != 0
#error LWP_PCB_FPU MUST be defined as O for code in swtch.s to work

#endif /* LWP_PCB FPU I= 0 */
#endif /* 1 __lint */
#if defined(__and64)

/*
* Save non-vol atile regs other than %sp (% bx, %bp, and %12 - % 15)

*

* The stack frane nust be created before the save of % sp so that tracebacks
* of swtch()ed-out processes show the process as having last called swtch().
*

#def i ne SAVE_REGS(thread_t, retaddr)
nmovq % bp, T_RBP(thread_t);
novq % bx, T_RBX(thread_t);
nmovq %12, T_Rl12(thread_t);
novq % 13, T_R13(thread_t);
nmovq % 14, T_Rl4(thread_t);
novq 9% 15, T_R15(t hread_t);
pushq % bp;
novq % sp, % bp;
nmovq % sp, T_SP(thread_t);
nmovq retaddr, T_PC(thread_t);
nmovq %wdi, %12;
cal | __dtrace_probe___sched_off__cpu

e —

Restore non-vol atile regs other than %sp (%bx, %bp, and % 12 - % 15)

W load up %sp fromthe label _t as part of the context switch, so
we don’'t repeat that here.

W don’t do a 'leave,’ because reloading % sp/ % bp fromthe | abel _t
already has the effect of putting the stack back the way it was when
we cane in.

* ok kb % Ok Ok Ok 3k

*

/

#def i ne RESTORE_REGS(scr at ch_r eg)
nmovq %s: CPU_THREAD, scratch_reg;
nmovq T_RBP(scratch_reg), % bp;
novq T_RBX(scratch_reg), % bx;
novq T_R12(scratch_reg), % 12;

—— - ——

new usr/src/uts/intel/ia32/m/swch.s

110
111
112

114
115
116
117
118
119
120

122
123
124

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

156

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

178
179
180
181
182
183
184
185
186
187

/

#

#

#

1:

#
/

#

#

novq T_R13(scratch_reg), % 13; \
nmovq T_Rl4(scratch_reg), % 14; \
novq T_R15(scratch_reg), % 15
*
* CGet pointer to a thread' s hat structure
*
/
defi ne GET_THREAD HATP(hatp, thread_t, scratch_reg) \
novq T_PROCP(thread_t), hatp; \
nmovq P_AS(hat p), scratch_reg; \
movq A HAT(scratch_reg), hatp
defi ne TSC_READ() \
cal l tsc_read; \
novq % ax, % 14;
*
* If we are resunming an interrupt thread, store a timestanp in the thread
* structure. If an interrupt occurs between tsc_read() and its subsequent
* store, the tinestanp will be stale by the tinme it is stored. W can detect
* this by doing a conpare-and-swap on the thread’ s tinmestanp, since any
* interrupt occurring in this windoww !l put a newtimestanp in the thread' s
* t_intr_start field.
*
define STORE_I NTR _START(thread_t) \
testw $T_INTR_THREAD, T_FLAGS(thread_t); \
jz 1f; \
\
TSC_READ() ; \
novq T_| I NTR START(thread_t), % ax; \
cnpxchgq % 14, T_INTR START(thread t) \
jnz Ob; \
elif defined (__i386)
Save non-vol atile registers (%bp, %si, %di and %ebx)

The stack frane nust be created before the save of %esp so that tracebacks
of swtch()ed-out processes show the process as having | ast called swch().
*/

*
*
*
*
*

defi ne SAVE_REGS(thread_t, retaddr) \
nmovl %bp, T_EBP(thread_t); \
nmov| %bx, T_EBX(thread_t); \
nov| %si, T_ESI(thread_t); \
nmov| %di, T_EDI(thread_t); \
pushl %ebp; \
nmovl %esp, Yebp; \
nov| %sp, T_SP(thread_t); \
nov| retaddr, T_PC(thr ead_t) ; \
nmovl 8(°/ebp) %edi ; \
pushl %di ; \
cal | __dt race_probe_sched_off_cpu; \
addl $CLONGSI ZE, %esp

Restore non-vol atile registers (%bp, %si, %di and %bx)

*
*
*
* W don't do a 'leave,’ because reloading % sp/%bp fromthe | abel _t
*

al ready has the effect of putting the stack back the way it was when
* we cane in.

*/

def i ne RESTORE_REGS(scr at ch_r eg) \
nmovl %ys: CPU_THREAD, scratch_reg; \
nmovl T _EBP(scratch_reg), %bp; \

new usr/src/uts/intel/ia32/m/swch.s

188 nov| T_EBX(scratch_reg), %bx; \

189 nmovl T_ESI (scratch_reg), %esi; \

190 nmov| T_EDI (scratch_reg), %di

192 /*

193 * Get pointer to a thread’ s hat structure

194 */

195 #define GET_THREAD HATP(hatp, thread_t, scratch_reg) \

196 nov| T_PROCP(thread_t), hatp; \

197 nmovl P_AS(hat p) , scratch_reg; \

198 nmovl A HAT(scratch_reg), hatp

200 /*

201 * If we are resunming an interrupt thread, store a timestanp in the thread
202 * structure. If an interrupt occurs between tsc_read() and its subsequent
203 * store, the tinestanp will be stale by the time it is stored. W can detect
204 * this by doing a conpare-and-swap on the thread’ s tinmestanp, since any

205 * interrupt occurring in this window will put a new timestanp in the thread' s
206 * t_intr_start field.

207 *

208 #define STORE_INTR START(thread_t) \

209 testw $T_INTR THREAD, T_FLAGS(thread_t); \

210 jz 1f; \

211 pushl °/ecx; \

212 0: \

213 pushl T_I NTR_START(thread_t); \

214 pushl T_I NTR_START+4(t hr ead_| t) \

215 cal | tsc_read; \

216 novl Y%eax, %ebx; \

217 novl %dx, %ecx; \

218 popl %edx; \

219 popl Y%eax; \

220 cnpxchg8b T_ I NTR_START(thread_t); \

221 jnz Ob; \

222 popl %ecx; \

223 1:

225 #endif [* __anmd64 */

227 #if defined(__lint)

229 /* ARGSUSED */

230 void

231 resune(kthread_t *t)

232 {}

234 #else [* __lint */

236 #if defined(__and64)

144 . gl obal kpti_enable

146 ENTRY(r esune)

147 nmovq %ys: CPU_THREAD, % ax

148 | eaq resume_return(%ip), %11

150 I*

151 * Deal with SMAP here. A thread nay be sw tched out at any point while
152 * it is executing. The thread coul d be under on_fault() or it could be
153 * pre-enpted while performng a copy interruption. If this happens and
154 * we're not in the context of an interrupt which happens to handle
155 * saving and restoring rflags correctly, we may | ose our SVAP rel ated
156 * state.

157 *

158 * To handle this, as part of being switched out, we first save whether
159 * or not userland access is allowed ($PS_ACHK in rflags) and store that

new usr/src/uts/intel/ia32/m/swch.s

160 * in t_useracc on the kthread_t and unconditionally enable SMAP to
161 * protect the system

162 *

163 * Later, when the thread finishes resuming, we potentially disable smap
164 * if PS_ACHK was present in rflags. See uts/intel/ia32/m/copy.s for
165 * nore information on rflags and SMAP.

166 */

167 pushfq

168 popq % si

169 andq $PS_ACHK, 9% si

170 movq 9% si, T_USERACC(% ax)

171 cal | smap_enabl e

173 /*

174 * Save non-vol atile registers, and set return address for

175 * thread to resune_return.

176 *

177 * %612 =t (new thread) when done

178 *

179 SAVE_REGS(% ax, % 11)

182 LOADCPU(% 15) /* % 15 = CPU */

183 novq CPU_THREAD(% 15), % 13 /* %13 = curthread */
185 /*

186 * Call savectx if thread has installed context ops.

187 *

188 * Note that if we have floating point context, the save op

189 * (either fpsave_begin or fpxsave_begin) wll issue the

190 * async save instruction (fnsave or fxsave respectively)

191 * that we fwait for bel ow

192 *

193 cnpq $0, T_CTX(% 13) /* should current thread savectx? */
194 je . nosavect x /* skip call when zero */

196 novq % 13, % di /* arg = thread pointer */

197 call savect x /* call ctx ops */

198 . nosavect x:

200 /*

201 * Call savepctx if process has installed context ops.

202 */

203 nmovq T_PROCP(% 13), % 14 /* % 14 = proc */

204 cnpq $0, P_PCTX(% 14) /* shoul d current thread savectx? */
205 je . nosavepct x /* skip call when zero */

207 novq % 14, % di /* arg = proc pointer */

208 call savepct x /* call ctx ops */

209 . nosavepct x:

211 /*

212 * Tenporarily switch to the idle thread’ s stack

213 */

214 novq CPU_| DLE_THREAD(% 15), % ax /* idle thread pointer */
216 /*

217 * Set the idle thread as the current thread

218 */

219 nmovq T_SP(% ax), % sp /* It is safe to set rsp */

220 movq % ax, CPU THREAD(% 15)

222 /*

223 * Switch in the hat context for the new thread

224 *

225 */

new usr/src/uts/intel/ia32/m/swch.s

226 GET_THREAD HATP(% di, %12, % 11)

227 cal | hat _swi tch

229 /*

230 * Clear and unlock previous thread' s t_| ock

231 * to allowit to be dispatched by another processor.

232 */

233 novb $0, T_LOCK(% 13)

235 /*

236 * | MPORTANT: Regi sters at this point nust be:

237 * % 12 = new thread

238 *

239 * Here we are in the idle thread, have dropped the old thread.
240 */

241 ALTENTRY(_resune_from. dl e)

242 /*

243 * spin until dispatched thread’ s nmutex has

244 * been unlocked. this mutex is unlocked when

245 * it becomes safe for the thread to run.

246 */

247 .1 ock_t hread_nut ex:

248 I ock

249 bt sl $0, T_LOCK(% 12) /* attenpt to |l ock new thread s nutex */
250 jnc .thread_nut ex_| ocked /* got it */

252 . spin_thread_nutex:

253 pause

254 cnpb $0, T_LOCK(% 12) /* check mutex status */

255 jz .l ock_t hread_nut ex /* clear, retry lock */

256] . spi n_t hread_nmnut ex /* still locked, spin... */

258 .thread_nutex_| ocked:

259 /*

260 * Fix CPU structure to indicate new running thread.

261 * Set pointer in newthread to the CPU structure.

262 *

263 LOADCPU(% 13) /* load current CPU pointer */
264 cnpq 9% 13, T_CPU(% 12)

265 je .setup_cpu

267 /* cp->cpu_stats.sys.cpum grate++ */

268 incq CPU_STATS_SYS_CPUM GRATE(% 13)

269 nmovq % 13, T_CPU(% 12) /* set new thread’ s CPU pointer */
271 . setup_cpu:

272 /*

273 * Setup rsp0 (kernel stack) in TSS to curthread s saved regs

274 * structure. |If this thread doesn't have a regs structure above
275 * the stack -- that is, if Iwp_stk_init() was never called for the
276 * thread -- this will set rsp0 to the wong value, but it's harnless
277 * as it’s a kernel thread, and it won't actually attenpt to inplicitly
278 * use the rsp0 via a privilege change.

279 *

280 * Note that when we have KPTI enabl ed on and64, we never use this
281 * value at all (since all the interrupts have an I ST set).

282 */

283 novq CPU_TSS(% 13), % 14

284 #if !defined(__xpv)

285 cnpq $1, kpti_enable

286 jne 1f

287 | eaq CPU_KPTI _TR_RSP(% 13), % ax

288 jmp 2f

289 1:

290 movq T _STACK(% 12), % ax

291 addq $REGSI ZE+M NFRAME, % ax /* to the bottom of thread stack */

new usr/src/uts/intel/ia32/m/swch.s 7 new usr/src/uts/intel/ia32/m/swch.s
292 2: 358 resunme_return:
293 movq 9% ax, TSS_RSPO(% 14) 359 /*
294 #el se 360 * Renpve stack frane created in SAVE _REGS()
295 novq T_STACK(% 12), 9% ax 361 */
296 addq $REGS| ZE+M NFRAME, % ax /* to the bottom of thread stack */ 362 addq $CLONGSI ZE, % sp
297 novl $KDS_SEL, %edi 363 ret
298 novq % ax, 9% si 364 SET_SI ZE(_resune_from.idl e)
299 cal | HYPERVI SOR_st ack_swi t ch ______unchanged_portion_omtted_
300 #endif [/* __xpv */
459 #elif defined (__i386)
302 novq 9% 12, CPU THREAD(% 13) /* set CPU s thread pointer */
303 nfence /* synchronize with mutex_exit() */ 461 ENTRY(r esune)
304 xor | %bp, %ebp /* make $<threadlist behave better */ 462 novl %ys: CPU_THREAD, %ax
305 nmovq T_LWP(% 12), % ax /* set associated Iwp to */ 463 nmov| $resune_return, %ecx
306 novq % ax, CPU_LWP(% 13) /* CPUs lwp ptr */
465 /*
308 novq T_SP(% 12), % sp /* switch to outgoing thread s stack */ 466 * Save non-volatile registers, and set return address for current
309 nmovq T_PC(% 12), % 13 /* saved return addr */ 467 * thread to resune_return.
468 *
311 /* 469 * %di =t (new thread) when done.
312 * Call restorectx if context ops have been installed. 470 *
313 */ 471 SAVE_REGS(%ax, %ecx)
314 cnpq $0, T_CTX(% 12) /* shoul d resunmed thread restorectx? */
315 jz . nor estorectx /* skip call when zero */ 473 LOADCPU(%ebx) /* %bx = CPU */
316 novq %12, % di /* arg = thread pointer */ 474 nov| CPU_THREAD(%ebx), %esi /* %si = curthread */
317 call restorectx /* call ctx ops */
318 . norestorectx: 476 #ifdef DEBUG
477 cal | assert_i nts_enabl ed /* panics if we are cli’'d */
320 /* 478 #endi f
321 * Call restorepctx if context ops have been installed for the proc. 479 /*
322 */ 480 * Call savectx if thread has installed context ops.
323 movq T_PROCP(% 12), % cx 481 *
324 cnpq $0, P_PCTX(% cx) 482 * Note that if we have floating point context, the save op
325 jz . nor est orepct x 483 * (either fpsave_begin or fpxsave_begin) wll issue the
326 nmovq % cx, % di 484 * async save instruction (fnsave or fxsave respectively)
327 cal | restorepctx 485 * that we fwait for bel ow
328 . norestorepctx: 486 *
487 nov| T_CTX(%esi), %eax /* shoul d current thread savectx? */
330 STORE_| NTR_START(% 12) 488 testl %ax, %Yeax
489 jz . nosavect x /* skip call when zero */
332 /* 490 pushl %esi /* arg = thread pointer */
333 * |f we cane into swch with the ability to access userland pages, go 491 cal l savect x /* call ctx ops */
334 * ahead and restore that fact by disabling SMAP. dear the indicator 492 addl $4, Y%esp /* restore stack pointer */
335 * flag out of paranoia. 493 . nosavect x:
336 */
337 novq T_USERACC(% 12), % ax /* shoul d we di sabl e smap? */ 495 /*
338 cnpq $0, % ax /* skip call when zero */ 496 * Call savepctx if process has installed context ops.
339 jz . nosmap 497 */
340 xorq % ax, % ax 498 nmovl T_PROCP(%esi), Yeax /* %ax = proc */
341 novq % ax, T_USERACC(% 12) 499 cnpl $0, P_PCTX(%eax) [* should current thread savectx? */
342 call smap_di sabl e 500 je . nosavepct x /* skip call when zero */
343 . nosmap: 501 pushl Yeax /* arg = proc pointer */
502 call savepct x /* call ctx ops */
345 call ht _mar k 503 addl $4, Y%esp
504 . nosavepct x:
347 /*
348 * Restore non-volatile registers, then have spl0 return to the 506 I *
349 * resuming thread’s PC after first setting the priority as |ow as 507 * Tenporarily switch to the idle thread' s stack
350 * possible and blocking all interrupt threads that may be active. 508 */
351 */ 509 nmovl CPU_I| DLE_THREAD(%ebx), %eax /* idle thread pointer */
352 novq % 13, % ax /* save return address */
353 RESTORE_REGS(% 11) 511 =
354 pushqg % ax /* push return address for spl0O() */ 512 * Set the idle thread as the current thread
355 cal | __dtrace_probe___sched_on__cpu 513 */
356 jmp spl O 514 nmovl T_SP(%ax), Yesp /* It is safe to set esp */
515 nov| %ax, CPU_THREAD(%ebx)

new usr/src/uts/intel/ia32/m/swch.s

517
518
519
520
521

523
524
525
526
527

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

546
547
548
549
550
551
552
553
554
555
556
5517
558
559
560
561
562
563
564
565
566
567

569
570
571
572

574
575
576
577
578

580
581

. L4:

.L5_1:

/* switch in the hat context for the new thread */
CET_THREAD_HATP(%ecx, %edi, %ecx)

pushl %ecx

cal l hat _switch
addl $4, Y%esp
/*

* Clear and unlock previous thread' s t_| ock
* to allowit to be dispatched by another processor.

*/

novb $0, T_LOCK(%esi)

/*

* | MPORTANT: Regi sters at this point nust be:

i %di = new thread

*

* Here we are in the idle thread, have dropped the ol d thread.
*/

ALTENTRY(_resune_from. dl e)

/*

* spin until dispatched thread’ s nmutex has

* been unl ocked. this nutex is unlocked when

* it becomes safe for the thread to run.

*/

| ock

bt sl $0, T_LOCK(%edi) /* lock new thread s nutex */

jc .L4_2 /* lock did not succeed */
/*

* Fix CPU structure to indicate new running thread.
* Set pointer in new thread to the CPU structure.

#if !defined(__xpv

#el se

#endi f

saved return addr */

*/
LOADCPU(%esi) /* load current CPU pointer */
nmovl T_STACK(%edi), Yeax /* here to use v pipeline of */
/* Pentium Used few |ines bel ow */
cnpl Y%esi, T_CPU(%edi)
jne .L5_2
/*
* Setup esp0O (kernel stack) in TSS to curthread’ s stack.
* (Note: Since we don't have saved 'regs’ structure for all
* the threads we can't easily determne if we need to
* change esp0. So, we sinply change the esp0 to bottom
* of the thread stack and it will work for all cases.)
*/
nmovl CPU_TSS(%si), %ecx
addl $REGSI ZE+M NFRAME, %ax /* to the bottom of thread stack */
)
nov| %ax, TSS _ESPO(%ecx)
pushl Yeax
pushl $KDS_SEL
cal l HYPERVI SOR_st ack_swi tch
add| $8, Y%esp
I* __xpv */
nov| %di, CPU THREAD(%esi) /* set CPU s thread pointer */
nfence /* synchronize with nutex_exit() */
xor | %bp, %ebp /* make $<threadlist behave better */
nmov| T_LWP(%di), %ax /* set associated Iwp to */
nov| %ax, CPU_LWP(%esi) /* CPUs lwp ptr */
nmovl T_SP(%di), %Yesp /* switch to outgoing thread s stack */
nmovl T_PC(%edi), %esi /*

583
584
585
586
587
588
589
590
591

new usr/src/uts/intel/ia32/m/swch.s
/*
* Call restorectx if context ops have been installed.
*/
nov| T_CTX(%di), %ax /* shoul d resunmed thread restorectx? */
testl %eax, %eax
jz . norestorectx /* skip call when zero */
pushl Y%edi [* arg = thread pointer */
cal l restorectx /* call ctx ops */
addl $4, Y%esp /* restore stack pointer */

592

594
595
596
597
598
599
600
601
602
603

605

607
608
609
610
611
612
613
614
615
616

618
619
620
621
622
623

625
626
627
628
629

631
632
633
634
635
636

638
639

641
642

. norestorectx:

*

* Call restorepctx if context ops have been installed for the proc.
*/

nov| T_PROCP(%di), %ax

cnpl $0, P_PCTX(%eax)

je . nor est or epct x

pushl Yeax /* arg = proc pointer */

cal l restorepctx

addl $4, Y%esp /* restore stack pointer */

. nor est or epct x:

STORE_| NTR_START(%di)

/*

* Restore non-vol atile registers, then have spl0 return to the

* resuming thread’s PC after first setting the priority as |ow as
*

possi bl e and bl ocking all interrupt threads that may be active.
*/

mov| % si, Y%eax /* save return address */
RESTORE_REGS(%ecX)

pushl Y%eax /* push return address for spl0O() */
call __dtrace_probe___sched_on__cpu

jm spl O

resune_return:
/*

.L4_2:

L5 _2:

#endi f
#endi f

* Renpve stack frane created in SAVE _REGS()
*/
addl $CLONGSI ZE,
ret

%esp

pause
cnpb
je

$0, T_LOCK(%di)
L4
inmp L4 2

/* cp->cpu_stats.sys.cpum grate++ */

addl $1, CPU_STATS_SYS CPUM GRATE(%esi)
adcl $0, CPU_STATS_SYS_CPUM GRATE+4(%esi)
nov| Y%esi, T_CPU(%edi) /* set new thread’ s CPU pointer */

i mp L5 1

SET_SI ZE(_resune_from.i dl e)
SET_SI ZE(r esune)

__and64 */

/‘k
/* lint */

644 #if defined(__lint)

646
647

/* ARGSUSED */

voi d

10

new usr/src/uts/intel/ia32/m/swch.s

648 resune_from zonbi e(kthread_t *t)
649 {}
651 #el se /* _lint */

653 #if defined(__and64)

367 ENTRY(resune_from zonbi e)

368 nmvq %ys: CPU_THREAD, % ax

369 | eaq resunme_from zonbie_return(%ip), %11

371 /*

372 * Save non-volatile registers, and set return address for current
373 * thread to resune_from zonbi e_return.

374 *

375 * 0612 =t (new thread) when done

376 */

377 SAVE_REGS(% ax, % 11)

379 novq %gs: CPU_THREAD, % 13 /* 9% 13 = curthread */

381 /* clean up the fp unit. It mght be left enabled */

383 #if defined(__xpv) [* XXPV XXtclayton */

384 /*

385 * Renpve this after bringup.

386 * (Too many #gp's for an instrunmented hypervisor.)

387 */

388 STTS(% ax)

389 #el se

390 nmovq %r0, % ax

391 testq $CRO_TS, % ax

392 jnz . zf pu_di sabl ed [* if TS already set, nothing to do */
393 fninit /* init fpu & discard pending error */
394 orq $CRO_TS, % ax

395 % ax, %rO0

novq
396 . zf pu_di sabl ed:
398 #endif [* __xpv */

400 /*

401 * Tenporarily switch to the idle thread’s stack so that the zonbie
402 * thread' s stack can be reclaimed by the reaper.

403 */

404 novq %s: CPU_I DLE_THREAD, % ax /* idle thread pointer */
405 novq T_SP(% ax), % sp /* get onto idl e thread stack */
407 I*

408 * Sigh. If the idle thread has never run thread_start()
409 * then t_sp is mis-aligned by thread_| oad().

410 */

411 andq $_BI TNOT(STACK_ALI GN-1), % sp

413 /*

414 * Set the idle thread as the current thread.

415 */

416 movq 9% ax, Y%gs: CPU THREAD

418 /* switch in the hat context for the new thread */

419 GET_THREAD HATP(% di, %12, % 11)

420 cal | hat _swi tch

422 /*

423 * Put the zonbie on death-row

424 */

425 novq % 13, % di

11

new usr/src/uts/intel/ia32/m/swch.s

426 call reapq_add

428 jnp _resunme_from.idle /* finish job of resume */

430 resunme_from zonbi e_return:

431 RESTORE_REGS(% 11) /* restore non-volatile registers */
432 call __dtrace_probe___sched_on__cpu

434 /*

435 * Renpve stack frane created in SAVE_REGS()

436 */

437 addq $CLONGSI ZE, % sp

438 ret

439 SET_SI ZE(r esune_f rom zonbi e)

729 #elif defined (__i386)

731 ENTRY(resune_from zonbi e)

732 nmovl %gs: CPU_THREAD, %eax

733 nov| $resune_from zonbi e_return, %cx

735 /*

736 * Save non-vol atile registers, and set return address for current
737 * thread to resune_from zonbi e_return.

738 *

739 * %edi =t (new thread) when done.

740 */

741 SAVE_REGS(%eax, %ecx)

743 #ifdef DEBUG

744 cal | assert_ints_enabl ed /* panics if we are cli’'d */

745 #endi f

746 nov| %s: CPU_THREAD, %esi /* %si = curthread */

748 /* clean up the fp unit. It mght be |left enabled */

750 nmov| %r0, %ax

751 testl $CRO_TS, Y%eax

752 jnz . zf pu_di sabl ed /* if TS already set, nothing to do */
753 fninit /* init fpu & discard pending error */
754 orl $CRO_TS, %ax

755 novl %ax, %r0

756 . zf pu_di sabl ed:

758 /*

759 * Tenporarily switch to the idle thread’s stack so that the zonbie
760 * thread’ s stack can be reclained by the reaper.

761 */

762 nmov| %s: CPU_I| DLE_THREAD, %ax /* idle thread pointer */

763 nov| T_SP(%ax), %esp /* get onto idl e thread stack */
765 /*

766 * Set the idle thread as the current thread.

767 */

768 nov| %ax, %gs: CPU_THREAD

770 I *

771 * switch in the hat context for the new thread

772 */

773 CET_THREAD_HATP(%ecx, %edi, %ecx)

774 pushl %ecx

775 cal | hat _swi tch

776 addl $4, Y%esp

778 /*

779 * Put the zonbie on death-row

12

new usr/src/uts/intel/ia32/m/swch.s

780 */

781 pushl %esi

782 cal | reapg_add

783 addl $4, Y%esp

784 jnp _resune_from.idle /* finish job of resume */

786 resune_from zonbi e_return:

787 RESTORE_REGS(%&cX) /* restore non-volatile registers */
788 call __dtrace_probe___sched_on__cpu

790 I*

791 * Renpve stack frane created in SAVE_REGS()

792 *

793 add| $CLONGSI ZE, %esp

794 ret

795 SET_SI ZE(r esune_from zonbi e)

797 #endif [/* __and64 */

798 #endif /* __lint */

800 #if defined(__lint)

802 /* ARGSUSED */

803 void

804 resune_fromintr(kthread_t *t)

805 {}

807 #else [* __lint */

809 #if defined(__and64)

441 ENTRY(resunme_from.intr)

442 nmovq %s: CPU_THREAD, % ax

443 | eaq resume_fromintr_return(%ip), %11

445 /*

446 * Save non-vol atile registers, and set return address for current
447 * thread to resune_from.intr_return.

448 *

449 * %612 =t (new thread) when done

450 *

451 SAVE_REGS(% ax, % 11)

453 nmovq %s: CPU_THREAD, % 13 /* % 13 = curthread */

454 novq % 12, %gs: CPU_THREAD /* set CPU s thread pointer */
455 nfence /* synchronize with mutex_exit() */
456 nmovq T_SP(% 12), % sp /* restore resunming thread s sp */
457 xor | %bp, %ebp /* make $<threadlist behave better */
459 I

460 * Unl ock outgoing thread’s mutex di spatched by another processor.
461 */

462 xor | Y%eax, %Yeax

463 xchgh %l , T_LOCK(% 13)

465 STORE_| NTR_START(% 12)

467 call ht _mar k

469 /*

470 * Restore non-volatile registers, then have spl0 return to the
471 * resuming thread’s PC after first setting the priority as |ow as
472 * possible and blocking all interrupt threads that nmay be active.
473 */

474 novq T_PC(% 12), % ax /* saved return addr */

475 RESTORE_REGS(% 11) ;

13

476
477
478

480
481
482
483
484
485
486

856

858
859
860

862
863
864
865
866
867
868

870

872
873
874
875
876
877

879
880
881
882
883

885

887
888
889
890
891
892
893
894
895
896

898
899
900
901
902
903
904

906
907

909

new usr/src/uts/intel/ia32/m/swch.s

pushg % ax /* push return address for spl0O() */
cal | __dtrace_probe___sched_on__cpu
jmp spl 0

resune_f rgm_i ntr_return:

/* Rermove stack frame created in SAVE_REGS()
$CLONGSI ZE,
SET_SI ZE(resune_from.intr)

% sp

#elif defined (__i386)

ENTRY(resunme_from.intr)
nov| %s: CPU_THREAD, %eax
nmovl $resune_from.intr_return, %ecx
/*
* Save non-vol atile registers, and set return address for current
* thread to resune_return.
*
* 9%di =t (new thread) when done.
*/
SAVE_REGS(%eax, %ecx)
#i f def DEBUG
call assert_ints_enabl ed /* panics if we are cli’'d */
#endi f
nov| %ys: CPU_THREAD, %esi /* %si = curthread */
nmovl %di, %gs: CPU_THREAD /* set CPU s thread pointer */
nfence /* synchronize with nutex_exit() */
nov| T_SP(%di), %esp /* restore resunming thread s sp */
xor | %bp, %ebp /* make $<threadlist behave better */
*
* Unl ock outgoing thread’s mutex di spatched by another processor.
*/
xor | Y%eax, Yeax
xchgb %l , T_LOCK(%esi)
STORE_| NTR_START(%edi)
/*
* Restore non-volatile registers, then have spl0O return to the
* resuming thread's PC after first setting the priority as |ow as
* possible and blocking all interrupt threads that may be active.
*/
nmovl T_PC(%di), %eax /* saved return addr */
RESTORE_REGS(%&cX)
pushl Yeax /* push return address for spl0O() */
cal | __dtrace_probe___sched_on__cpu
jmp spl O

resume_from.intr_return:
*

: Renove stack frame created in SAVE_REGS()
ad{jl $CLONGSI ZE, %esp
rSEIT_SI ZE(resune_from.intr)

#endif /* __and64 */

#endif /* __lint */

#if defined(__lint)

14

new usr/src/uts/intel/ia32/m/swch.s

911 void

912 thread_start(void)
913 {}

915 #el se /* __lint */

917 #if defined(__and64)

488 ENTRY(t hread_start)
489 popq % ax

490 popq % di

491 popq % si

492 nmovq % sp, % bp
493 call * 0% ax

494 call thread_exit
495 / * NOTREACHED* /

496 SET_SI ZE(t hread_start)

929 #elif defined(__i386)

931 ENTRY(t hread_start)
932 popl Yeax

933 nmovl %esp, Yebp
934 addl $8, %bp

935 call *Oeax

936 addl $8, Y%esp

937 call thread_exit
938 / * NOTREACHED* /

939 SET_SI ZE(t hread_start)
941 #endif [* __i386 */

943 #endif [/* __lint */

/* start() */
/* arg */
/* len */

/* destroy thread if

/* destroy thread if

it

it

returns.

returns.

*/

*/

15

new usr/src/uts/intel/sys/x86_archext.h

R R R R

41781 Wed May 15 07:34:10 2019
new usr/src/uts/intel/sys/x86_archext.h
10924 Need nitigation of L1TF (CVE-2018-3646)

Revi ewed by: Robert Mistacchi

Revi ewed by:

<r m@ oyent . conp

Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

1/*

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

I T N T N SN N N
-~

21/

22

23 Copyri ght
24

25/

26 Copyri ght
27

28 /

29 /

30 Copyri ght
31 Copyri ght
32 Copyri ght
33 Copyri ght
34 Copyri ght
35 */

37 #ifndef _SYS_
38 #define _SYS
40 #if

When distributing Covered Code,
file and include the License file at
I f applicable,
fields enclosed by brackets "[]"
information:

* CDDL HEADER START

Portions Copyright [yyyy]

CDDL HEADER END

(c) 2011 by Del phix. Al

(c) 2010, Intel Corporation.

Al rights reserved.

2019, Joyent, Inc.

2012 Jens Elkner <jel +illunps@s. uni
2012 Hans Rosenfel d <rosenfel d@r unpf. hope-2000. or g>

2014 Josef ' Jeff’
2018 Nexenta Systens, Inc.

X86_ARCHEXT H
X86_ARCHEXT_H

I def i ned(_ASM

41 #include <sys/regset. h>

42 #incl ude <sys/processor.h>
43 #incl ude <vnil seg_enum h>
44 #incl ude <vnm page. h>

45 #endif /* _AS|

47 #if def
48 extern "C
49 #endi f

51 /*

55 #define CPU D_I NTC_
56 #define CPUI D_|I NTC_EDX_VME
57 #define CPUI D_INTC_
58 #define CPU D_I NTC_

M */

__cplusplus

) EDX_FPU 0x00000001
) 0x00000002
) EDX_DE 0x00000004

EDX_PSE 0x00000008

—~———

Copyright (c) 1995, 2010, Oracle and/or its affiliates. Al
rights reserved.

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the
You may not use this file except

"Li cense")

in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

i nclude this CDDL HEADER in each
usr/ src/ OPENSCLARI S. LI CENSE.
add the follow ng below this CDDL HEADER, with the
replaced with your own identifying
[name of copyright owner]

- magdebur g. de>

R

Si pek <j ef f pc@ osef si pek. net >

52 * cpuid instruction feature flags in %dx (standard function 1)
*/

x87 fpu present */
virtual - 8086 extension */
debuggi ng extensions */
page size extension */

rights reserved.

new usr/src/uts/intel/sys/x86_archext.h

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CPUI D_I NTC_EDX_TSC
CPUI D_I NTC_EDX_MBR
CPUI D_| NTC_EDX_PAE
CPUI D_| NTC_EDX_MCE
CPUI D_I NTC_EDX_CX8
CPUI D_I NTC_EDX_API C

CPUI D_I NTC_EDX_SEP

CPUI D_I NTC_EDX_MIRR
CPUI D_| NTC_EDX_PGE
CPUI D_I NTC_EDX_MCA
CPUI D_I NTC_EDX_CMOV
CPUI D_I NTC_EDX_PAT
CPUI D_I NTC_EDX_PSE36
CPUI D_I NTC_EDX_PSN
CPUI D_I NTC_EDX_CLFSH
CPUI D_I NTC_EDX_DS
CPUI D_I NTC_EDX_ACPI
CPUI D_I NTC_EDX_MVX
CPUI D_I NTC_EDX_FXSR
CPUI D_| NTC_EDX_SSE
CPUI D_I NTC_EDX_SSE2
CPUI D_I NTC_EDX_SS
CPUI D_I NTC_EDX_HTT
CPUI D_I NTC_EDX_TM
CPUI D_I NTC_EDX_| A64
CPUI D_I NTC_EDX_PBE

0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000800
0x00001000
0x00002000
0x00004000
0x00008000
0x00010000
0x00020000
0x00040000
0x00080000

0x00200000
0x00400000
0x00800000
0x01000000
0x02000000
0x04000000
0x08000000
0x10000000
0x20000000
0x40000000
0x80000000

— e e —

i I

time stanp counter */
rdnsr and wrmsr */

physi cal addr extension */
machi ne check exception */
cnpxchg8b instruction */
local APIC */

0x400 - reserved */
sysenter and sysexit */
nenory type range reg */
page gl obal enable */
machi ne check arch */
condi tional nove insns */
page attribute table */
36-bit pagesi ze extension */
processor serial nunber */
cl flush instruction */
0x100000 - reserved */
debug store exists */
monitoring + clock ctrl */
MWX instructions */

fxsave and fxrstor */
stream ng SIMD extensions */
SSE extensions */

sel f-snoop */

Hyper Thread Technology */
thermal nonitoring */
I'taniumenul ating | A32 */
Pendi ng Break Enable */

* cpuid instruction feature flags in %cx (standard function 1)
*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CPUI D_I NTC_ECX_SSE3 0x00000001
CPUI D_I NTC_ECX_PCLMULQDQ 0x00000002
CPUI D_I NTC_ECX_DTES64 0x00000004
CPUI D_I NTC_ECX_MON 0x00000008
CPUI D_I NTC_ECX_DSCPL 0x00000010
CPUI D_I NTC_ECX_VMX 0x00000020
CPUI D_I NTC_ECX_SMX 0x00000040
CPUI D_I NTC_ECX_EST 0x00000080
CPUI D_I NTC_ECX_TM2 0x00000100
CPUI D_I NTC_ECX_SSSE3 0x00000200
CPUI D_I NTC_ECX_CI D 0x00000400
CPUI D_I NTC_ECX_FMA 0x00001000
CPUI D_I NTC_ECX_CX16 0x00002000
CPUI D_I NTC_ECX_ETPRD 0x00004000
CPUI D_I NTC_ECX_PDCM 0x00008000
CPUI D_I NTC_ECX_PCI D 0x00020000
CPUI D_I NTC_ECX_DCA 0x00040000
CPUI D_I NTC_ECX_SSE4_1 0x00080000
CPUI D_I NTC_ECX_SSE4_2 0x00100000
CPUI D_I NTC_ECX_X2APTC 0x00200000
CPUI D_I NTC_ECX_MOVBE 0x00400000
CPUI D_I NTC_ECX_POPCNT ~ 0x00800000
CPUI D_I NTC_ECX_TSCDL 0x01000000
CPUI D_I NTC_ECX_AES 0x02000000
CPUI D_I NTC_ECX_XSAVE 0x04000000
CPUI D_I NTC_ECX_OSXSAVE 0x08000000
CPUI D_I NTC_ECX_AVX 0x10000000
CPUI D_I NTC_ECX_F16C 0x20000000
CPUI D_I NTC_ECX_RDRAND ~ 0x40000000
CPUI D_I NTC_ECX_HV 0x80000000

e e e

® Ok Sk ok ok b ok O F Rk b R ok Sk F SRk Sk E ok Ok b % bk Ok % ok 3k

Yet nore SSE extensions */
PCLMULQDQ i nsn */

64-bit DS area */

MONI TOR/ MMAIL T */

CPL-qual i fi ed debug store */
Har dwar e VM ext ensi ons */
Secure node extensions */
enhanced SpeedStep */
thermal nonitoring */
Suppl emrental SSE3 insns */
L1 context 1D */
0x00000800 - reserved */
Fused Ml tiply Add */
cnmpxchgl6 */

extended task pri nmessages */
Per f/ Debug Capability MSR */
0x00010000 - reserved */
process-context ids */
direct cache access */
SSE4.1 insns */

SSE4. 2 insns */

X2API C */

MOVBE i nsn */

POPCNT i nsn */

Deadl i ne TSC */

AES insns */

XSAVE/ XRESTOR i nsns */

OS supports XSAVE insns */
AVX supported */

F16C supported */

RDRAND supported */
Hypervi sor */

new usr/src/uts/intel/sys/x86_archext.h

125 /*
126
127 */

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

163 /*
164
165

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne
ne
ne
ne
ne

ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne

ne

ne

ne
ne

CPU D_AMD_EDX_FPU
CPU D_AMD_EDX_VME
CPU D_AMD_EDX_DE
CPU D_AMD_EDX_PSE
CPU D_AMD_EDX_TSC
CPU D_AMD_EDX_MBR
CPU D_AMD_EDX_PAE
CPU D_AMD_EDX_MCE
CPU D_AMD_EDX_CX8
CPU D_AMD_EDX_API C

CPUI D_AMD_EDX_SYSC
CPU D_AMD_EDX_MIRR
CPU D_AMD_EDX_PGE
CPU D_AMD_EDX_MCA
CPU D_AMD_EDX_CMOV
CPU D_AND_EDX_PAT
CPU D_AMD_EDX_FCMOV
CPU D_AMD_EDX_PSE36

CPUI D_AND_EDX_NX

CPU D_AMD_EDX_MWXand
CPUI D_AMD_EDX_MWX
CPUI D_AMD_EDX_FXSR
CPUI D_AMD_EDX_FFXSR
CPU D_AMD_EDX_1GPG
CPUI D_AMD_EDX_TSCP

CPUI D_AMD_EDX_ LM

CPUI D_AMD_EDX_3DNowx
CPUI D_AMD_EDX_3DNow

CPUI D_AMD_ECX_AHF64

CPU D_AMD_ECX_CMP_LGCY

CPU D_AMD_ECX_SVM
CPU D_AMD_ECX_EAS
CPU D_AMD_ECX_CR8D
CPU D_AMD_ECX_LZCNT
CPU D_AMD_ECX_SSE4A
CPU D_AMD_ECX_MAS
CPU D_AMD_ECX_3DNP
CPU D_AMD_ECX_CSVW
CPU D_AMD_ECX_| BS
CPU D_AMD_ECX_XOP
CPU D_AMD_ECX_SKINI T
CPU D_AMD_ECX_WDT

CPUI D_AMD_ECX_LWP
CPUI D_AMD_ECX_FMA4
CPUI D_AMD_ECX_NI DVBR
CPUI D_AMD_ECX_TBM

CPUI D_AMD_ECX_TCPOEXT
CPU D_AMD_ECX_PCEC

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000800
0x00001000
0x00002000
0x00004000
0x00008000
0x00010000
0x00010000
0x00020000
/* 0x00040000
/* 0x00080000
0x00100000
/* 0x00200000
0x00400000
0x00800000
0x01000000
0x02000000
0x04000000
0x08000000
/* 0x10000000
0x20000000
0x40000000
0x80000000

* AMD ext ended function 0x80000001 %ecx
*

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
/* 0x00004000
0x00008000
0x00010000
/* 0x00020000
/* 0x00040000
0x00080000
/* 0x00100000
0x00200000
0x00400000
0x00800000

* cpuid instruction feature flags in %dx (extended functi on 0x80000001)

x87 fpu present */
virtual - 8086 extension */
debuggi ng extensions */
page size extensions */
time stanp counter */
rdmsr and wrnsr */
physi cal addr extension */
machi ne check exception */
cnpxchg8b instruction */
| ocal APIC */
0x00000400 - sysc on Kénb */
AMD: syscall and sysret */
menory type and range reg */
page gl obal enable */
machi ne check arch */
condi tional nove insns */
K7: page attribute table */
/* FCMOvVcc etc. */
/* 36-bit pagesize extension */
reserved */

reserved */
/* AMD: no-execute page prot */
served */

AMD: MWX ext ensions */

MWX instructions */
fxsave and fxrstor */
fast fxsavel/fxrstor */

1GB page */
rdtscp instruction */
erved */
AMVD: | ong node */
AMVD: extensions to 3DNowl */
AMD: 3DNow! instructions */

T T

— e —

re
| *
| *
| *
| *
| *
| *
res
| *
| *
| *

LAHF and SAHF in | ong node */
AVD: nulticore chip */

AMD: secure VM */

extended api c space */

32-bit nov %r8 */
LZCNT insn */

SSE4A insns */

M sAl i gnSse nmode */
3DNowPr ef ect ch */

Oosvw */

I BS */

Ext ended Operation */
SKINIT */

WOT */

served */

AMD: Li ghtwei ght profiling */
/* ANVD: 4-operand FMA support */
reserved */

reserved */

/* AVD: Node I D MSR */

reserved */

/* AVD: trailing bit manips. */
/* AVD: Topol ogy Extensions */
/* AVD: Core ext perf counter */

B e e e e

H Dk Gk ok Rk ok Sk ok % b % b ¥ o

new usr/src/uts/intel/sys/x86_archext.h

191 #define CUPI D_AMD_ECX PCENB 0x01000000 /* AVD: NB ext perf counter */
192 /* 0x02000000 - reserved */

193 #define CPU D_AMD_ECX_DBKP 0x40000000 /* ANVD: Data breakpoint */

194 #define CPU D_AMD_ECX_PERFTSC 0x08000000 /* AMD: TSC Perf Counter */
195 #define CPU D_AMD_ECX_PERFL3 0x10000000 /* ANVD: L3 Perf Counter */

196 #define CPU D_AMD_ECX_MONI TORX 0x20000000 /* AVD: clzero */

197 /* 0x40000000 - reserved */

198 /* 0x80000000 - reserved */

200 /*

201 * AMD uses %bx for sone of their features (extended functi on 0x80000008)

202 */

203 #define CPU D _AVMD_EBX_CLZERO 0x000000001 /* AMD: CLZERO instr */
204 #define CPU D _AMD _EBX_| RCMSR 0x000000002 /* AMD: Ret. instrs MSR */
205 #define CPU D_AMD_EBX_ERR PTR_ZERO 0x000000004 /* AMD: FP Err. Ptr. Zero */
206 #define CPU D_AVD_EBX_| BPB 0x000001000 /* AMD: | BPB */

207 #define CPU D_AMD_EBX_| BRS 0x000004000 /* AMD: |BRS */

208 #define CPU D _AMD_EBX_STI BP 0x000008000 /* ANMD: STIBP */

209 #define CPU D_AVD_EBX_| BRS_ALL 0x000010000 /* AMD: Enhanced |BRS */
210 #define CPU D_AMD EBX_STI BP_ALL 0x000020000 /* AMD: STIBP ALL */

211 #define CPU D_AMD_EBX_PREFER_| BRS 0x000040000 /* AMD: Don't retpoline */
212 #define CPU D_AMD_EBX_SSBD 0x001000000 /* AMD: SSBD */

213 #define CPU D_AMD_EBX VI RT_SSBD 0x002000000 /* AMD: VIRT SSBD */

214 #define CPU D_AMD_EBX_SSB_NO 0x004000000 /* AMD: SSB Fi xed */

216 /*

217 * Intel now seens to have clained part of the "extended" function

218 * space that we previously for non-Intel inplementors to use

219 * More excitingly still, they ve clained bit 20 to nean LAHF/ SAHF

220 * is available in long node i.e. what AMD indicate using bit 0

221 * On the other hand, everything else is |abelled as reserved

222 *

223 #define CPU D_I NTC_ECX_AHF64 0x00100000 /* LAHF and SAHF in | ong node */
225 | *

226 * Intel also uses cpuid leaf 7 to have additional instructions and features.
227 * Like sonme other |eaves, but unlike the current ones we care about, it

228 * requires us to specify both a leaf in %ax and a sub-leaf in %cx. To dea
229 * with the potential use of additional sub-leaves in the future, we now

230 * specifically label the EBX features with their |eaf and sub-I|eaf

231 */

232 #define CPUI D_| NTC_EBX 7_0_FSGSBASE 0x00000001 /* FSGSBASE */

233 #define CPU D_I NTC_EBX_7_0_TSC _ADJ 0x00000002 /* TSC adjust MSR */
234 #define CPU D_I NTC_EBX_7_0_SGX 0x00000004 /* SGX */

235 #define CPU D_INTC_ EBX_7_0_BM 1 0x00000008 /* BM1 instrs */

236 #define CPU D_I NTC_EBX_7_0_HLE 0x00000010 /* HLE */

237 #define CPU D_I NTC_EBX 7_0_AVX2 0x00000020 /* AVX2 supported */
238 /* Bit 6 is reserved */

239 #define CPU D_I NTC_EBX_7_0_SMEP 0x00000080 /* SMEP in CR4 */

240 #define CPU D_I NTC_EBX_7_0_BM 2 0x00000100 /* BM2 instrs */

241 #define CPU D_I NTC_EBX_7_0_ENH REP_MOV 0x00000200 /* Enhanced REP MOVSB */
242 #define CPU D_INTC EBX_7_0_INVPCID 0x00000400 /* invpcid instr */
243 #define CPU D_I NTC_EBX_7_0_RTM 0x00000800 /* RTMinstrs */

244 #define CPU D_I NTC_EBX_7_0_PQM 0x00001000 /* QoS Monitoring */
245 #define CPU D_I NTC_EBX_7_0_DEP_CSDS 0x00002000 /* Deprecates CS/DS */
246 #define CPU D_I NTC_EBX_7_0_MPX 0x00004000 /* Mem Prot. Ext. */
247 #define CPU D_INTC_EBX_7_0_PQE 0x00080000 /* QoS Enforcenent */
248 #define CPU D_I NTC_EBX_7_0_AVX512F 0x00010000 /* AVX512 foundation */
249 #define CPU D_I NTC_EBX_7_0_AVX512DQ 0x00020000 /* AVX512DQ */

250 #define CPU D_| NTC_EBX_7_0_RDSEED 0x00040000 /* RDSEED instr */

251 #define CPU D_I NTC_EBX_7_0_ADX 0x00080000 /* ADX instrs */

252 #define CPU D_I NTC_EBX_7_0_SMAP 0x00100000 /* SMAP in CR 4 */

253 #define CPU D_I NTC_EBX_7_0_AVX512I FMA 0x00200000 /* AVX5121 FMA */

254 /* Bit 22 is reserved */

255 #define CPU D_I NTC_EBX_7_0_CLFLUSHOPT 0x00800000 /* CLFLUSOPT */

256 #define CPU D_I NTC_EBX_7_0_CLWB 0x01000000 /* CLVB */

new usr/src/uts/intel/sys/x86_archext.h

257 #define CPU D_I NTC_EBX 7_0_PTRACE 0x02000000
258 #define CPU D_| NTC_EBX_7_0_AVX512PF 0x04000000
259 #define CPU D_| NTC_EBX_7_0_AVX512ER 0x08000000
260 #define CPU D_I NTC_EBX_ 7_0_AVX512CD 0x10000000
261 #define CPU D_I NTC_EBX_7_0_SHA 0x20000000
262 #define CPU D_| NTC_EBX_7_0_AVX512BW 0x40000000
263 #define CPU D_I NTC_EBX_7_0_AVX512VL 0x80000000
265 #define CPU D I NTC_EBX_7_O ALL_AVX512 \

266 (CPUID_INTC EBX 7 0_AVX512F | CPUI D I NTC EB
267 CPUI D TNTC EBX_7_0_AVX512I FMA | CPU D_| NTC EBX
268 CPUI D_I NTC_EBX_7_0_AVX512ER | CPUI D_I NTC_EBX_7_
269 CPUI D_I NTC_EBX_7_0_AVX512BW | CPUI D_I| NTC_EBX_7_
271 #define CPU D_I NTC_ECX_7_0_PREFETCHWI1 0x00000001
272 #define CPU D_| NTC_ECX_7_0_AVX512VBM 0x00000002
273 #define CPU D_INTC_ECX_7_0_UM P 0x00000004
274 #define CPU D_I NTC_ECX_7_0_PKU 0x00000008
275 #define CPU D_I NTC_ECX_7_0_OSPKE 0x00000010
276 #define CPU D_| NTC_ECX_7_0_WAlI TPKG 0x00000020
277 #define CPU D_I NTC_ECX_7_0_AVX512VBM 2 0x00000040
278 /* bit 7 is reserved */

279 #define CPU D_INTC_ECX_7_0_GFNI 0x00000100
280 #define CPU D_| NTC_ECX_7_0_VAES 0x00000200
281 #define CPU D_I NTC_ECX_7_0_VPCLMJLQDQ 0x00000400
282 #define CPU D_I NTC_ECX_7_0_AVX512VNNI 0x00000800
283 #define CPU D_| NTC_ECX_7_0_AVX512BI TALG 0x00001000
284 [* bit 13 is reserved */

285 #define CPU D_INTC ECX 7_0 AVX512VP(PCDQ 0x00004000
286 /* bits 15-16 are reserved */

287 /* bits 17-21 are the value of MAWAU */

288 #define CPU D_INTC ECX 7 _0_RDPI D 0x00400000
289 /* bits 23-24 are reserved */

290 #define CPU D_I NTC_ECX 7_0_CLDEMOTE 0x02000000
291 /* bit 26 is resrved */

292 #define CPUI D_INTC ECX_7_0_MOVDI RI 0x08000000
293 #define CPU D_| NTC_ECX_7_0_MOVDI R64B 0x10000000
294 [* bit 29 is reserved */

295 #define CPU D_I NTC_ECX 7_0_SGXLC 0x40000000

~—————

~—————

~———

/

/
/

~—
*

/

* Ok ok ok ok ok ¥

Processor Trace */
AVX512PF */
AVX512ER */
AVX512CD */
SHA ext ensi ons */
AVX512BW */
AVX512VL */

_AVX512DQ | \
0_AVXS12PF | \
—“AVX512CD | \
—AVX512VL)

* % ok k% F

* ok ok ok

*

*

*

*

PREFETCHWI1 */
AVX512VBM */
UM P */

unpde prot.
OSPKE */

WAI TPKG */
AVX512 VBM 2 */

keys */

GFNI */
VAES */
VPCLMULQDQ */
AVX512 VNNI */
AVX512 Bl TALG */

AVX512 VPOPCNTDQ */

RPI D, |1 A32_TSC AUX */
Cache |ine denmote */

MOVDI Rl insn */

* MOVDI R64B insn */

SGX Launch config */

296 /* bit 31 is reserved */

298 /*

299 * Wiile CPUID_INTC ECX_7_0_GFNI, CPU D_| NTC_ECX 7_0_VAES, and

300 * CPUDINTCECX 70 VPCLNULQDQ al | have AVX512 conponents, they are still
301 * valid when AVX512 is not. However, the following flags all are only valid
302 * when AVX512 is present.

303 */

304 #define CPU D _INTC ECX 7 0 ALL_AVX512 \

305 (CPU D_I NTC_ECX_7_0_AVX512VBM | CPUI D_I NTC_ ECX_7_0_AVX512VNNI | \
306 CPUI D_TNTC_ECX_7_0_AVX512BI TALG | CPUI D_I NTC_ECX_7_0_AVX512VPOPCDQ
308 /* bits 0-1 are reserved */

309 #define CPUI D_I NTC_EDX_7_0_AVX5124NNI W 0x00000004 /* AVX512 4ANNIW */
310 #define CPU D_I NTC_EDX_7_0_AVX5124FMAPS 0x00000008 /* AVX512 AFNAPS */
311 #define CPU D_I NTC_EDX_7_0_FSREPMOV 0x00000010 /* fast short rep nobv */
312 /* bits 5-17 are resreved */

313 #define CPU D_I NTC_EDX_7_0_PCONFI G 0x00040000 /* PCONFI G */

314 /* bits 19-26 are reserved */

315 #define CPUI D_I NTC_EDX 7_0_SPEC CTRL 0x04000000 /* Spec, |BPB, |BRS */
316 #define CPU D_|I NTC_EDX_7_0_STI BP 0x08000000 /* STIBP */

317 #define CPU D_I NTC_EDX_7_0_FLUSH CVD 0x10000000 /* 1 A32_FLUSH CVD */
318 #define CPU D_| NTC_EDX_7_0_ARCH CAPS 0x20000000 /* | A32_ARCH CAPS */
319 #define CPU D_I NTC_EDX_7_0_SSBD 0x80000000 /* SSBD */

321 #define CPU D_INTC EDX _7_0_ALL_AVX512 \

322 (CPUI D_I NTC_EDX_7_0_AVX5124NNI W/| CPUI D_I NTC_EDX_7_0_AVX5124FNAPS)

new usr/src/uts/intel/sys/x86_archext.h

324 | *

325 * Intel also uses cpuid leaf Oxd to report additional
326 * when the sub-leaf in %cx == 1. We | abel
327 * with leaf 7.

328 */

329 #define CPU D_I NTC_EAX_D 1 XSAVEOPT
330 #define CPU D_| NTC_EAX_D_1_XSAVEC
331 #define CPU D_I NTC_EAX_D_1_XSAVES
333 #define REG PAT 0x277
334 #define REG TSC 0x10
335 #defi ne REG _API C_BASE_MSR Ox1b
336 #define REG_X2API C_BASE_MSR 0x800
338 #if !defined(__xpv)

339 /*

340 * AMD ClE

341 */

342 #define MSR_AMD_| NT_PENDI NG CMP_HALT
343 #define AMD_ACTONCMPHALT_SHI FT ~27
344 #define AMD_ACTONCMPHALT_MASK 3

345 #endi f

347 #defi ne MSR_DEBUGCTL 0x1d9
349 #define DEBUGCTL_LBR 0x01
350 #defi ne DEBUGCTL_BTF 0x02
352 /* Intel P6, ANMD */

353 #define MSR_LBR_FROM Ox1db
354 #define MSR_LBR_TO Ox1ldc
355 #define MBR_LEX_FROM Ox1dd
356 #define MSR_LEX_TO Ox1lde
358 /* Intel P4 (pre-Prescott, non P4 M
359 #define MSR_P4_LBSTK_TOS Oxlda
360 #define MSR P4_LBSTK_ 0 Ox1db
361 #define MSR_P4_LBSTK_ 1 Ox1ldc
362 #define MSR_P4_LBSTK 2 Ox1dd
363 #define MSR_P4_LBSTK 3 Ox1lde
365 /* Intel PentiumM */

366 #define MSR_P6M LBSTK _TOS 0Ox1c9
367 #define MSR_P6M LBSTK_ 0 0x040
368 #define MSR_P6M LBSTK 1 0x041
369 #define MSR_P6M LBSTK 2 0x042
370 #define MBR_P6M LBSTK 3 0x043
371 #define MSR_P6M LBSTK 4 0x044
372 #define MSR_P6M LBSTK_5 0x045
373 #define MSR_P6M LBSTK_6 0x046
374 #define MBR_P6M LBSTK 7 0x047
376 /* Intel P4 (Prescott) */

377 #define MSR_PRP4_LBSTK TOS Ox1lda
378 #define MSR PRP4_LBSTK FROM 0 0x680
379 #define MSR_PRP4_LBSTK_FROM 1 0x681
380 #define MSR_PRPA_LBSTK_FROM 2 0x682
381 #define MSR_PRP4_LBSTK_FROM 3 0x683
382 #define MSR_PRP4_LBSTK_FROM 4 0x684
383 #defi ne MSR_PRP4_LBSTK_FROM 5 0x685
384 #define MBR_PRP4_LBSTK_FROM 6 0x686
385 #define MSR_PRP4_LBSTK_FROM 7 0x687
386 #define MSR_PRP4_LBSTK_FROM 8 0x688
387 #define MBR_PRP4_LBSTK_ FROM 9 0x689
388 #define MSR_PRP4_LBSTK_FROM 10 0x68a

al instructions and features
these using the sane convention as

0x00000001 /* xsaveopt inst. */
0x00000002 /* xsavec inst. */
0x00000008 /* xsaves inst. */

/* timestanp counter */

/* The MBSR address offset of x2APIC */

0xC0010055

*/

new usr/src/uts/intel/sys/x86_archext.h 7 new usr/src/uts/intel/sys/x86_archext.h
389 #define MSR_PRP4_LBSTK FROM 11 0x68b
390 #define MSR_PRP4_LBSTK _FROM 12 0x68c 456 | *
391 #define MBR_PRP4_LBSTK_FROM 13 0x68d 457 * For Solaris we set up the page attritubute table in the follow ng way:
392 #define MSR_PRP4_LBSTK_FROM 14 0x68e 458 * PATO Wite-Back
393 #define MSR_PRP4_LBSTK_FROM 15 0x68f 459 * PAT1 Wite-Through
394 #define MSR PRP4_LBSTK TO 0 0x6¢c0 460 * PAT2 Unchacheabl e-
395 #define MBR_PRP4_LBSTK TO 1 Ox6cl 461 * PAT3 Uncacheabl e
396 #define MSR_PRP4_LBSTK_TO 2 0x6¢2 462 * PAT4 Wite-Back
397 #define MSR_PRP4_LBSTK_TO 3 0x6c3 463 * PAT5 Wite-Through
398 #define MSR_PRP4_LBSTK_TO 4 Ox6c4 464 * PAT6 Wit e- Conbine
399 #define MSR_PRP4_LBSTK TO 5 0x6¢c5 465 * PAT7 Uncacheabl e
400 #define MBSR_PRP4_LBSTK_TO 6 0x6c6 466 * The only difference fromh/w default is entry 6.
401 #define MSR_PRP4_LBSTK_TO 7 0x6¢c7 467 */
402 #define MBR_PRP4_LBSTK_TO 8 0x6¢c8 468 #defi ne PAT_DEFAULT_ATTRI BUTE \
403 #define MSR_PRP4_LBSTK_TO 9 0x6¢c9 469 ((uint64_t)MIRR_TYPE_ VB | \
404 #define MSR_PRP4_LBSTK_TO 10 Ox6ca 470 ((uint64_t)MIRR_TYPE_WI << 8) | \
405 #define MSR_PRP4_LBSTK_TO 11 0x6¢chb 471 ((uint64_t)MIRR_TYPE_UC << 16) | \
406 #define MSR_PRP4_LBSTK TO 12 Ox6cc 472 ((ui nt64_t) MIRR_TYPE_UC << 24) | \
407 #define MBR_PRP4_LBSTK TO 13 oxécd 473 ((uint64_t)MIRR TYPE_WB << 32) | \
408 #define MSR_PRP4_LBSTK TO 14 Ox6ce 474 ((ui nt64_t) MIRR_TYPE_WI << 40) | \
409 #define MSR_PRP4_LBSTK_TO 15 0x6c¢f 475 ((uint64_t)MIRR_TYPE_WC << 48) | \
476 ((uint64_t)MIRR_TYPE_UC << 56))
411 | *
412 * Ceneral Xeon based MSRs 478 #defi ne X86FSET_LARGEPAGE 0
413 */ 479 #define X86FSET_TSC 1
414 #define MSR_PPI N_CTL 0x04e 480 #define X86FSET_MSR 2
415 #define MSR_PPIN_ 0x04f 481 #define X86FSET_MIRR 3
416 #define MBR_PLATFORM | NFO 0x0ce 482 #define X86FSET_PGE 4
483 #define X86FSET_DE 5
418 #define MSR_PLATFORM | NFO PPIN (1 << 23) 484 #define X86FSET_CMOV 6
419 #define MBR_PPI N_CTL_MASK ™ 0x03 485 #define X86FSET_MWX 7
420 #define MBR_PPI N_CTL_LOCKED 0x01 486 #define X86FSET_MCA 8
421 #define MSR_PPI N_CTL_ENABLED 0x02 487 #define X86FSET_PAE 9
488 #define X86FSET_CX8 10
423 | * 489 #define X86FSET_PAT 11
424 * Intel |1A32_ARCH CAPABI LI TI ES MSR 490 #define X86FSET_SEP 12
425 */ 491 #define X86FSET_SSE 13
426 #define MSR_| A32_ARCH CAPABI LI TI ES 0x10a 492 #define X86FSET_SSE2 14
427 #define | A32_ARCH CAP_RDCL_NO 0x0001 493 #define X86FSET_HTT 15
428 #define | A32_ARCH CAP_I BRS_ALL 0x0002 494 #defi ne X86FSET_ASYSC 16
429 #define | A32_ARCH CAP_RSBA ™ 0x0004 495 #define X86FSET_NX 17
430 #define | A32_ARCH CAP_SKI P_L1DFL_VMENTRY 0x0008 496 #define X86FSET_SSE3 18
431 #define | A32_ARCH_CAP_SSB_NO 0x0010 497 #define X86FSET_CX16 19
498 #defi ne X86FSET_CMP 20
433 | * 499 #define X86FSET_TSCP 21
434 * Intel Speculation related MSRs 500 #define X86FSET_MMIT 22
435 */ 501 #define X86FSET_SSE4A 23
436 #define MSR_| A32_SPEC CTRL 0x48 502 #define X86FSET_CPU D 24
437 #define | A32_SPEC CTRL_I BRS 0x01 503 #define X86FSET_SSSE3 25
438 #define | A32_SPEC_CTRL_STI BP 0x02 504 #define X86FSET_SSE4_1 26
439 #define | A32_SPEC CTRL_SSBD 0x04 505 #define X86FSET_SSE4_2 27
506 #define X86FSET_1GPG 28
441 #define MSR_| A32_PRED _CMD 0x49 507 #define X86FSET_CLFSH 29
442 #define | A32_PRED_CMVD_| BPB 0x01 508 #define X86FSET_64 30
509 #define X86FSET_AES 31
444 #define MSR | A32_FLUSH CMD 0x10b 510 #define X86FSET_PCLMULQDQ 32
445 #define | A32_FLUSH CMD_L1D 0x01 511 #define X86FSET_XSAVE 33
512 #define X86FSET_AVX 34
447 #define M _CTL_VALUE Oxffffffff 513 #define X86FSET_VMX 35
514 #define X86FSET_SVM 36
449 #define MIRR_TYPE_UC 0 515 #defi ne X86FSET_TOPOEXT 37
450 #define MIRR TYPE_WC 1 516 #define X86FSET_F16C 38
451 #define MIRR_TYPE_WI 4 517 #define X86FSET_RDRAND 39
452 #define MTRR_TYPE_WP 5 518 #define X86FSET_X2API C 40
453 #defi ne MIRR_TYPE_V\B 6 519 #define X86FSET_AVX2 41
454 #define MIRR_TYPE_UC_ 7 520 #define X86FSET_BM 1 42

new usr/src/uts/intel/sys/x86_archext.h

521 #define X86FSET_BM 2 43
522 #define X86FSET_FMA 44
523 #define X86FSET_SMEP 45
524 #define X86FSET_SMAP 46
525 #define X86FSET_ADX 47
526 #define X86FSET_RDSEED 48
527 #define X86FSET_MPX 49
528 #define X86FSET_AVX512F 50
529 #define X86FSET_AVX512DQ 51
530 #define X86FSET_AVX512PF 52
531 #define X86FSET_AVX512ER 53
532 #define X86FSET_AVX512CD 54
533 #define X86FSET_AVX512BW 55
534 #define X86FSET_AVX512VL 56
535 #define X86FSET_AVX512FNVA 57
536 #define X86FSET_AVX512VBM 58
537 #define X86FSET_AVX512VPOPCDQ 59
538 #define X86FSET_AVX512NNI W 60
539 #define X86FSET_AVX512FNVAPS 61
540 #defi ne X86FSET_XSAVECOPT 62
541 #define X86FSET_XSAVEC 63
542 #define X86FSET_XSAVES 64
543 #define X86FSET_SHA 65
544 #define X86FSET_UM P 66
545 #define X86FSET_PKU 67
546 #define X86FSET_OSPKE 68
547 #define X86FSET_PCI D 69
548 #define X86FSET_I NVPCI D 70
549 #define X86FSET_| BRS 71
550 #define X86FSET_| BPB 72
551 #define X86FSET_STI BP 73
552 #defi ne X86FSET_SSBD 74
553 #define X86FSET_SSBD VI RT 75
554 #define X86FSET_RDCL_NO 76
555 #define X86FSET_I BRS_ALL 7
556 #define X86FSET_RSBA 78
557 #define X86FSET_SSB_NO 79
558 #define X86FSET_STI BP_ALL 80
559 #define X86FSET_FLUSH CMVD 81
560 #define X86FSET_L1D VM NO 82
561 #define X86FSET_FSGSBASE 83
562 #define X86FSET_CLFLUSHOPT 84
563 #define X86FSET_CLWB 85
564 #define X86FSET_MONI TORX 86
565 #define X86FSET_CLZERO 87
566 #define X86FSET_XOP 88
567 #define X86FSET_FMA4 89
568 #define X86FSET_TBM 90
569 #define X86FSET_AVX512VNNI 91
570 #define X86FSET_AMD_ PCEC 92
572 | *

573 */Int el Deep C-State invariant TSC in | eaf 0x80000007.
574 *

575 #define CPU D_TSC_CSTATE_| NVARI ANCE (0x100)
577 | *

578 * Intel Deep C-state always-running |local APIC tiner
579 */
580 #define CPU D_CSTATE ARAT (0x4)

582 /*

583 * Intel ENERGY_PERF_BIAS MSR indicated by feature bit CPU D. 6. ECX] 3].
584 */

585 #define CPU D_EPB_SUPPORT (1 << 3)

new usr/src/uts/intel/sys/x86_archext.h

587 /*

588 * Intel TSC deadline tiner

589 */

590 #define CPU D_DEADLI NE_TSC (1 << 24)
592 /*

593 * x86_type is a legacy concept; this is supplanted
594 * for nost purposes by x86_featureset; nodern CPUs
595 * shoul d be X86_TYPE_OTHER

596 */

597 #define X86_TYPE_OTHER

598 #define X86_TYPE_486

599 #define X86_TYPE_P5

600 #define X86_TYPE_P6

601 #define X86_TYPE_CYRI X_486

602 #define X86_TYPE_CYRI X_6x86L
603 #define X86_TYPE_CYRI X_6x86
604 #define X86_TYPE_CYRI X_GXm
605 #define X86_TYPE_CYRI X_6x86MX
606 #define X86_TYPE_CYRI X_Medi aGX
607 #define X86_TYPE_CYRI X M|

608 #define X86_TYPE_VIA CYRI X_I 11
609 #define X86_TYPE_P4

OCO~NOURWNEO

B
N O

611 /*

612 * x86_vendor allows us to sel ect between

613 * inplenmentation features and hel ps gui de

614 * the interpretation of the cpuid instruction.
615 */

616 #define X86_VENDOR I ntel 0

617 #define X86_VENDORSTR_ I ntel "Cenui nel ntel "

619 #define X86_VENDOR I ntel d one 1

621 #define X86_VENDOR AMD 2

622 #define X86_VENDORSTR_AMD " Aut hent i cAMD"
624 #define X86_VENDOR Cyri x 3

625 #define X86_VENDORSTR_CYRI X "Cyri xI nst ead"
627 #define X86_VENDOR UMC 4

628 #define X86_VENDORSTR_UMC "UMC UMC UMC "
630 #define X86_VENDOR NexGen 5

631 #define X86_VENDORSTR_NexCen "NexGenDri ven"
633 #define X86_VENDOR_Cent aur 6

634 #define X86_VENDORSTR_Cent aur " Cent aur Haul s"
636 #define X86_VENDOR_Ri se 7

637 #define X86_VENDORSTR_Ri se "Ri seRi seRi se"
639 #define X86_VENDOR Si S 8

640 #define X86_VENDORSTR_Si S "SiSSiSSiS"
642 #define X86_VENDOR_TM 9

643 #define X86_VENDORSTR_TM " Genui neTMk86"
645 #define X86_VENDOR _NSC 10

646 #define X86_VENDORSTR_NSC "CGeode by NSC'
648 [*

649 * Vendor string max len +\0

650 *

651 #define X86_VENDOR STRLEN 13

10

new usr/src/uts/intel/sys/x86_archext.h 11

653
654
655
656
657
658
659
660

662
663
664
665
666

668
669
670
671
672
673

675
676
677
678
679

681
682
683
684
685

687
688
689

691
692
693
694

696
697

699
700
701
702
703
704
705
706
707
708
709
710

712
713
714
715
716
717
718

/*

* Sonme vendor/fam | y/ nodel / steppi ng ranges are conmmonly grouped under

* a single identifyi ng banner by the vendor. The follow ng encode

* that "revision" in a uint32_t with the 8 npst significant bits

* |dent|fy| ng the vendor with X86_VENDOR *, the next 8 identifying the

* family, and the renmaining 16 typically form ng a bitmask of revi si ons

* within that famly with nmore significant bits indicating "later" revisions.
*

/

#def i ne _X86_CHI PREV_VENDOR_MASK
#def i ne _X86_CHI PREV_VENDOR_SHI FT
#def i ne _X86_CHI PREV_FAM LY_MASK
#def i ne _X86_CHI PREV_FAM LY_SHI FT
#def i ne _X86_CHI PREV_REV_MASK

0xf f 000000u
24
0x00f f 0000u
16
0x0000ffffu

#def i ne _X86_CHI PREV_VENDOR(x) \
((x) & _X86_CHI PREV_VENDOR_MASK) >> _X86_CHI PREV_VENDOR_SHI FT)
#define _X86_CH PREV_FAM LY(X) \
((x) & _X86_CHI PREV FAM LY_MASK) >> _X86_CHI PREV_FAM LY_SHI FT)
#define _X86_CH PREV_REV(x) \

((x) & _X86_CH PREV_REV_MASK)

—~

/* True if x matches in vendor and famly and if x matches the given rev nask */
#defi ne X86_CHI PREV_MATCH(x, mask) \

(_X86_CHI PREV_VENDOR(x) == _X86_CHI PREV_VENDOR(mask) && \

_X86_CHI PREV_FAM LY(x) == _X86_CHI PREV_FAM LY(mask) && \

((_X86_CHI PREV_REV(x) & _X86_CH PREV_REV(mask)) != 0))

/* True if x matches in vendor and fam'ly, and rev is at least mnx */
#def i ne X86_CHI PREV_ATLEAST(x, mi nx) \
(_X86_CH PREV_VENDOR(x) == _X86_CH PREV_VENDOR(mi nx) && \
X86_CHI PREV_FAM LY(x) == _X86_CHI PREV_FAM LY(mi nx) && \
”X86_CHI PREV_REV(x) >= _X86_O—|I PREV_REV(mi nx))

#define _X86_CHH PREV_MKREV(vendor, famly, rev) \
((uint32_t)(vendor) << _X86_CHI PREV_VENDOR SHIFT | \
(famly) << _X86_CH PREV_FAMLY_SHI FT | (rev))

/* True if x matches in vendor, and famly is at |least mnx */
#def i ne X86_CHI PFAM ATLEAST(x, mi nx) \
(_X86_CH PREV_VENDOR(x) == _X86_CHI PREV_VENDOR(mi nx) && \
_X86_CHI PREV_FAM LY(x) >= _X86_CH PREV_FAM LY(mi nx))

/* Revision default */
#def i ne X86_CHI PREV_UNKNOMN 0x0

/*

* Definitions for AMD Family Oxf. Mnor revisions CO and CG are

* sufficiently different that we will distinguish them in all other

*/case we will identify the major revision.

*

#defi ne X86_CH PREV_AMD_F_REV_B _X86_CHI PREV_MKREV(X86_VENDOR_AMD, Oxf, 0x0001)
#define X86_CH PREV_AMD_F_REV_C0 _X86_CH PREV_MKREV(X86_VENDCR_AND, Oxf 0x0002)
#define X86_CH PREV_AMD_F_REV_CG _X86_CHI PREV_MKREV(X86_VENDOR_AMD, Oxf, 0x0004)
#def i ne X86_CH PREV_AMD_F_REV_D _X86_CHI PREV_MKREV(X86_VENDOR_AMD, Oxf, 0x0008)
#define X86_CH PREV_AMD_F_REV_E _X86_CH PREV_MKREV(X86_VENDOR_AMD, Oxf, 0x0010)
#define X86_CH PREV_AMD_F_REV_F _X86_CHI PREV_MKREV(X86_VENDOR_AMD, Oxf, 0x0020)
#def i ne X86_CH PREV_AMD_F_REV_G _X86_CHI PREV_MKREV(X86_VENDOR_AMD, Oxf, 0x0040)

/*
* Definitions for AVMD Family 0x10. Rev A was Engineering Sanples only.
*
/
#defi ne X86_CH PREV_AMD_10_REV_A \
X86_CHI PREV_MKREV(X86_VENDOR_AMD, 0x10, 0x0001)
#define X86_CH PREV_AMD 10_REV B \
_X86_CHI PREV_MKREV(X86_VENDOR_AMD, 0x10, 0x0002)

new usr/src/uts/intel/sys/x86_archext.h

719
720
721
722
723
724
725
726
727
728

730
731
732
733
734

736
737
738
739
740

742
743
744
745
746
747
748

750
751
752
753
754

756
757

759
760

762
763

765
766

768
769

771
772
773
774
775

77
778

780
781
782

784

#define X86_CH PREV_AMD_10_REV_C2 \

X86_CHI PREV_MKREV(X86_VENDOR_AMD,

#define X86_CH PREV_AMD_10_REV_C3 \

X86_CH PREV_MKREV(X86_VENDOR_AND,

#define X86_CHI PREV_AMD_10_REV_DO \

X86_CHI PREV_MKREV(X86_VENDOR_AMD,

#define X86_CH PREV_AMD_10_REV_D1 \

X86_CHI PREV_MKREV(X86_VENDOR_AND,

#define X86_CHI PREV_AMD_10_REV_E \

_X86_CHI PREV_MKREV(X86_VENDOR_AND,
/*
* Definitions for AVMD Family Ox11.
*
/
#defi ne X86_CHH PREV_AMD 11 _REV_B \

_X86_CHI PREV_MKREV(X86_VENDOR_AMD,
/*
* Definitions for AVD Fam |y 0x12.
*
#defi ne X86_CH PREV_AMD_12_REV_B \

_X86_CHI PREV_MKREV(X86_VENDOR_AMD,
/*
* Definitions for AVMD Family 0x14.
*
/
#defi ne X86_CHI PREV_AMD 14_REV_B \

X86_CHI PREV_MKREV(X86_VENDOR_AMD,

#define X86_CHI PREV_AMD_14_REV_C \

_X86_CHI PREV_MKREV(X86_VENDCR_AMD,
/*
* Definitions for AVMD Family 0x15
*/
#defi ne X86_CH PREV_AMD_150R REV_B2 \

_X86_CHI PREV_MKREV(X86_VENDOR_AMD,

#define X86_CH PREV_AMD_15TN_REV_A1 \

_X86_CHI PREV_MKREV(X86_VENDOR_AND,

#defi ne X86_CH PREV_AMD_150R _REV_CO \

_X86_CHI PREV_MKREV(X86_VENDOR_AMD

#def i ne X86_CHI PREV_AMD 15KV_REV_A1l \

_X86_CHI PREV_MKREV(X86_VENDCOR_AMD,

#define X86_CH PREV_AMD_15F60 \

_X86_CHI PREV_MKREV(X86_VENDCR_AND,

#define X86_CH PREV_AMD_15ST_REV_AOQ \

_X86_CHI PREV_MKREV(X86_VENDOR_AND,
/*
* Definitions for AVMD Family 0x16
*/
#defi ne X86_CH PREV_AMD_16_KB_Al \

_X86_CHI PREV_MKREV(X86_VENDOR_AND,

#define X86_CH PREV_AMD 16_M__Al \

_X86_CHI PREV_MKREV(X86_VENDOR_AND,
/*
* Definitions for AMD Family 0x17
*
/
#define X86_CH PREV_AVD 17_ZP Bl \

0x10,
0x10,
0x10,
0x10,
0x10,

0x11,

0x12,

0x14,
0x14,

0x15,

0x15,

0x15,

0x15,

0x15,

0x15,

0x16,

0x16,

0x0004)
0x0008)
0x0010)
0x0020)
0x0040)

0x0002)

0x0002)

0x0002)
0x0004)

0x0001)

0x0002)

0x0003)

0x0004)

0x0005)

0x0006)

0x0001)

0x0002)

12

new usr/src/uts/intel/sys/x86_archext.h

785

787
788

790
791

793
794
795
796
797

799
800
801
802

804
805

807
808
809

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

850

_X86_CHI PREV_NMKREV(X86_VENDOR_AMD, 0x17, 0x0001)

#define X86_CH PREV_AMD_17_ZP B2 \
_X86_CHI PREV_MKREV(X86_VENDOR_AMD, 0x17, 0x0002)

#def i ne X86_CHI PREV_AMD 17 _PiR B2 \
_X86_CHI PREV_MKREV(X86_VENDOR_AMD, 0x17, 0x0003)

/*
* Various socket/package types, extended as the need to distinguish
* a new type arises. The top 8 byte identfies the vendor and the

* remaining 24 bits describe 24 socket types
*/

#defi ne _X86_SOCKET_VENDOR SHI FT 24
#define _X86_SOCKET_VENDOR(x) (x) >> _X86_SOCKET_VENDOR_SHI FT)
#define _X86_SOCKET_TYPE_MASK OxOOffffff
#def i ne _X86_SOCKET_TYPE(x) ((x) & _X86_SOCKET_TYPE_MASK)
#defi ne _X86_SOCKET_MKVAL(vendor, bitval) \

((uint32_t)(vendor) << _X86_SOCKET_VENDOR SH FT | (bitval))
#def i ne X86_SOCKET_NMATCH(s, nask) \

(_X86_SOCKET VENE[FKS) == _X86_SOCKET_VENDOR(mask) && \

(_X86_SOCKET_TYPE(s) & _X86_SOCKET_TYPE(mask)) != 0)
#def i ne X86_SOCKET_UNKNOWN 0x0

/*

*/AND socket types

*
#def i ne X86_SOCKET_754 _X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x01)
#def i ne X86_SOCKET_939 ~X86_SOCKET_MKVAL(X86_VENDOR_AND, 0x02)
#def i ne X86_SOCKET_940 —X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x03)
#def i ne X86_SOCKET_Slgl —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x04)
#define X86_SOCKET_AM2 —X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x05)
#defi ne X86_SOCKET_F1207 ~X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x06)
#defi ne X86_SOCKET_S1g2 ~—X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x07)
#def i ne X86_SOCKET_S1g3 —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x08)
#def i ne X86_SOCKET_AM —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x09)
#def i ne X86_SOCKET_AM2R2 ~X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x0a)
#def i ne X86_SOCKET_AM3 —X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x0b)
#defi ne X86_SOCKET_G34 —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x0c)
#def i ne X86_SOCKET_ASB2 —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x0d)
#def i ne X86_SOCKET_C32 ~X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x0e)
#defi ne X86_SOCKET_Slg4 ~X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0xOf)
#def i ne X86_SOCKET_FT1 —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x10)
#def i ne X86_SOCKET_FML —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x11)
#def i ne X86_SOCKET_FS1 ~X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x12)
#defi ne X86_SOCKET_AMBR2 ~X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x13)
#def i ne X86_SOCKET_FP2 —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x14)
#defi ne X86_SOCKET_FS1R2 —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x15)
#define X86_SOCKET_FM2 —X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x16)
#defi ne X86_SOCKET_FP3 ~X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x17)
#defi ne X86_SOCKET_FM2R2 —X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x18)
#def i ne X86_SOCKET_FP4 —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x19)
#define X86_SOCKET_AMA4 —X86_SOCKET_MKVAL (X86_VENDOR_AMD, Oxla)
#defi ne X86_SOCKET_FT3 ~X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x1b)
#defi ne X86_SOCKET_FT4 —X86_SOCKET _MKVAL(X86_ VENDOR_AND, Ox1c)
#def i ne X86_SOCKET_FS1B —X86_SOCKET_MKVAL(X86_VENDOR_AMD, 0x1d)
#defi ne X86_SOCKET_FT3B —X86_SOCKET_MKVAL (X86_VENDOR_AMD, Ox1le)
#def i ne X86_SOCKET_SP3 ~X86_SOCKET_MKVAL(X86_VENDOR_AMD, O0x1f)
#def i ne X86_SOCKET_SP3R2 X86_SOCKET_MKVAL (X86_VENDOR_AMD, 0x20)
#def i ne X86_NUM SOCKETS_AND 0x21~

| *

13

new usr/src/uts/intel/sys/x86_archext.h

0xOf
0x17
Ox1d

Oxle
Ox1f

Oxla
Ox2e

0x25
0x2c
ox2f

Ox2a
0x2d
0x3a
Ox3e

0x3c
0x45
0x46
0x3f

0x3d
0x47
0ox4f
0x56

Ox4e
0x55
0x5e

0x8e
0x9e

Ox1lc
0x26
0x27
0x35
0x36
0x37
0x4d
Ox4c
0x5c¢
0x5f

Ox7a

851 * Definitions for Intel processor nodels
852 * processors. This list and the Atom set below it
853 */

854 #define | NTC_MODEL_MEROM

855 #define | NTC_MODEL_PENRYN

856 #define | NTC_MODEL_DUNNI NGTON

858 #define | NTC_MODEL_NEHALEM

859 #define | NTC_MODEL_NEHALEMR

860 #define | NTC_MODEL_NEHALEM EP

861 #define | NTC_MODEL_NEHALEM EX

863 #define | NTC_MODEL_WESTMERE

864 #define | NTC_MODEL_WESTMERE_EP

865 #define | NTC_MODEL_WESTMERE_EX

867 #define | NTC_MODEL_SANDYBRI DGE

868 #define | NTC_MODEL_SANDYBRI DGE_XEON
869 #define | NTC_MODEL_| VYBRI DGE

870 #define | NTC_MODEL_| VYBRI DGE_XEON
872 #define | NTC_MODEL_HASWELL

873 #define | NTC_MODEL_HASWELL_ULT

874 #define | NTC_MODEL_HASWELL_GT3E

875 #define | NTC_MODEL_HASWELL_XEON

877 #define | NTC_MODEL_BROADWELL

878 #define | NTC_MODEL_BROADELL_2

879 #define | NTC_MODEL_BROADWELL_XEON
880 #define | NTC_MODEL_BROADWELL_XEON D
882 #define | NCC_MODEL_SKYLAKE_MOBI LE
883 #define | NTC_MODEL_SKYLAKE_XEON

884 #define | NTC_MODEL_SKYLAKE DESKTOP
886 #define | NTC_MODEL_KABYLAKE_MOBI LE
887 #define | NTC_MODEL_KABYLAKE_DESKTOP
889 /*

890 * Atom Processors

891 */

892 #define | NTC_MODEL_SI LVERTHORNE

893 #define | NTC_MODEL_LI NCROFT

894 #define | NTC_MODEL_PENVELL

895 #define | NTC_MODEL_CLOVERVI EW

896 #define | NTC_MODEL_CEDARVI EW

897 #define | NTC_MODEL_BAY TRAI L

898 #define | NTC_MODEL_AVATON

899 #define | NTC_MODEL_Al RMONT

900 #define | NTC_MODEL_GOLDMONT

901 #define | NTC_MODEL_DENVERTON

902 #define | NTC_MODEL_GEM NI _LAKE

904 /*

905 * xgetbv/xsetbv support

906 * See section 13.3 in vol. 1 of the Inte
907 */

909 #define XFEATURE_ENABLED_MASK 0x0
910 /*

911 * XFEATURE _ENABLED MASK val ues (eax)
912 * See setup_xfen().

913 */

914 #defi ne XFEATURE_LEGACY_FP Ox1
915 #defi ne XFEATURE_SSE 0x2
916 #defi ne XFEATURE_AVX 0ox4

These are all for Famly 6
are not exhuastive.

devl opers nanual

14

new

917
918
919
920
921
922
923

925
926
927
928
929
930
931
932

948

965
966
967
968
969
970
971
972
973
974

usr/src/uts/intel/sys/x86_archext.h 15

#def i ne XFEATURE_MPX 0x18 /* 2 bits, both 0 or 1 */

#def i ne XFEATURE_AVX512 0xe0 /* 3 bits, all 0 or 1 */
/* bit 8 unused */

#def i ne XFEATURE_PKRU 0x200

#def i ne XFEATURE_FP_ALL \
(XFEATURE_LEGACY _FP | XFEATURE_SSE | XFEATURE_AVX | XFEATURE_MPX | \

XFEATURE_AVX512 | XFEATURE_PKRU)
/*
* Define the set of xfeature flags that should be considered valid in the xsave
* state vector when we initialize an Iwp. This is distinct fromthe full set so
* that all of the processor’s normal logic and tracking of the xsave state is
* usable. This should correspond to the state that's been initialized by the
* ABI to hold neaningful values. Adding additional bits here can have serious
* performance inplications and cause performance degradati ons when using the
* FPU vector (xmm registers.
*
#def i ne XFEATURE_FP_I NI TI AL (XFEATURE_LEGACY_FP | XFEATURE_SSE)

#i f !defined(_ASM
#if defined(_KERNEL) || defined(_KMEMUSER)

#def i ne NUM_X86_FEATURES 93

extern uchar_t x86_featureset[];

extern void free_x86_featureset(void *featureset);

extern bool ean_t is_x86_feature(void *featureset, uint_t feature);
extern void add_x86_feature(void *featureset, uint_t feature);
extern void renpve_x86_feature(void *featureset, uint_t feature);

extern bool ean_t conpare_x86_featureset(void *setA, void *setB);
extern void print_x86_featureset(void *featureset);

extern uint_t x86_type;

extern uint_t x86_vendor;

extern uint_t x86_clflush_size;
extern uint_t pentiunpro_bug4046376;
extern const char Cyrixlnstead[];
extern void (*spec_| 1d_fl ush) (void);
#endi f

#if defined(_KERNEL)

/*
* This structure is used to pass argunents and get return val ues back

* fromthe CPU D instruction in __cpuid_insn() routine.
*
/
struct cpuid_regs {
ui nt32_t cp_eax;
ui nt 32_t cp_ebx;
ui nt 32_t cp_ecx;
uint 32_t cp_edx;
b

__unchanged_portion_omtted_

new usr/src/uts/intel/zfs/ Makefile

R R R R

3551 Wed May 15 07:34:11 2019
new usr/src/uts/intel/zfs/ Makefile
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

H*

[
©
HHHF HHHHHFHHFHHHBHHHFHHE R E TSR

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and |limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END
Copyri ght 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

This makefile drives the production of the zfs file system
kernel nodul e.

Copyright 2013 Saso Kiselkov. Al rights reserved.
Copyright (c) 2016 by Del phix. Al rights reserved.

Copyri ght 2019 Joyent, Inc.
Copyright (c) 2018, Joyent, Inc.

Path to the base of the uts directory tree (usually /usr/src/uts).

36

37 UTSBASE = ../..

39 ARCHDI R:sh = cd ..; basenane ‘pwd’

41 #

42 # Define the nodul e and object file sets.

43 #

44 MODULE = zfs

45 OBJECTS = $(ZFS_OBIS: %$(OBIS_ DIR /% $(LUA OBIS: %=$(OBIS_ DR /%
46 # LUA OBJS are intentionally omtted from LINTS

47 LINTS = $(ZFS_OBJS: % 0=$(LINTS_DIR)/ % n)
48 ROOTMODULE = $(ROOT_DRV_DI R) / $(MODULE)

49 ROOTLI NK = $(ROOT_FS_DI R) / $(MODULE)

50 CONF_SRCDI R = $(UTSBASE) / cormon/ f s/ zfs

52 #

53 # I ncl ude common rul es.

54 #

55 include ../ Mkefile.$(ARCHD R)

57 #

new usr/src/uts/intel/zfs/ Makefile

Define targets

#

ALL_TARGET = $(BI NARY) $(SRC_CONFI LE)

LI NT_TARGET = $(MODULE) . |l i nt

I NSTALL_TARGET = $(BI NARY) $(ROOTMODULE) $(ROOTLI NK) $(ROOT_CONFFI LE)

#

Overrides and depends_on

#

MODSTUBS DI R = $(0BJS_D R

LDFLAGS += -dy -Nfs/specfs -Ncrypto/swand -Nm sc/idmap -Nnm sc/sha2 \
- Nmi sc/ skein - Nm sc/ edonr

I NC_PATH += - | $(UTSBASE) / common/ fs/ zf s

| NC_PATH += -1 $(UTSBASE) / common/ f s/ zf s/ | ua

| NC_PATH += -1 $(SRC)/ cormpn

I NC_PATH += -1 $(COWONBASE) / zf s

| NC_PATH += - | $(UTSBASE) / i 86pc

C99L MODE= - Xc99=%al |

#

For now, disable these lint checks; maintainers should endeavor

to investigate and renpve these for nmaxi mumlint coverage.
Please do not carry these forward to new Makefiles.
#

LI NTTAGS += -errof f =E_SUSPI Cl OQUS_COVPARI SON
LI NTTAGS += -errof f =E_BAD_PTR_CAST_ALI GN

LI NTTAGS += -errof f =E_SUPPRESSI ON_DI RECTI VE_UNUSED
LI NTTAGS += -errof f =E_STATI C_UNUSED

LI NTTAGS += -errof f =E_PTRDI FF_OVERFLOW

LI NTTAGS += -errof f =E_ASSI GN_NARROW CONV
CERRVWARN += -_gcc=-Wo-type-linmts

CERRWARN += -_gcc=-Who-sw tch

CERRWARN += -_gcc=- Who- par ent heses

CERRWARN += -_gcc=- Who- unused-vari abl e
CERRVWARN += -_gcc=- Who- unused- function
CERRWARN += -_gcc=- Who- unused- | abel

needs work

SMOFF += al | _func_returns,indenting

$(OBIS_ DIR)/Ilex.o : = SMOFF += index_overf| ow
$(OBJS_DIR)/ netasl ab. o : = SMOFF += no_i f _bl ock
$(OBIS_DIR)/zfs_vnops.o := SMOFF += signed

needs work

$(OBIS_DIR)/zvol.o : = SMOFF += deref _check, si gned

fal se positives
$(OBIS_ DIR)/zfs_ctldir.o := SMOFF += strcpy_overflow
$(OBIS_DIR)/zfs_ioctl.o := SMOFF += strcpy_overfl ow

g Default build targets.
.#KEEP_STATE:

def : $(DEF_DEPS)

all: $(ALL_DEPS)

cl ean: $(CLEAN_DEPS)
cl obber: $(CLOBBER_DEPS)
lint: $(LI NT_DEPS)

new usr/src/uts/intel/zfs/ Makefile

125 nodlintlib: $(MODLI NTLI B_DEPS)

127 clean.lint: $(CLEAN_LI NT_DEPS)

129 install: $(1 NSTALL_DEPS)

131 $(ROOTLI NK) : $(ROOT_FS_DI R) $(ROOTMODULE)
132 -$(RVM $@ I n $(ROOTMODULE) $@

134 #

135 # I ncl ude conmon targets.

136 #

137 include ../ Makefile.targ

new usr/src/ uts/sparc/zfs/ Makefile

R R R R

3303 Wed May 15 07:34:11 2019
new usr/src/ uts/sparc/zfs/ Makefile
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

#

[
©
HHHF HHFHHFHHFHFHFFHHFHFEHFE TR

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and |limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END
Copyri ght 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

This makefile drives the production of the zfs file system
kernel nodul e.

Copyright 2013 Saso Kiselkov. Al rights reserved.
Copyright (c) 2016 by Del phix. Al rights reserved.
Copyri ght 2018 Joyent, Inc.

Path to the base of the uts directory tree (usually /usr/src/uts).

37

38 UTSBASE = ../..

40 ARCHDI R:sh = cd ..; basenane ‘pwd’

42 #

43 # Define the nodul e and object file sets.

44 #

45 MODULE = zfs

46 OBJECTS = $(ZFS_OBIS: %$(OBIS_ DIR /% $(LUA OBIS: %=$(OBIS_ DR /%
47 # LUA OBJS are intentionally omtted from LINTS

48 LINTS = $(ZFS_OBJS: % 0=$(LINTS_DIR)/ % n)
49 ROOTMODULE = $(ROOT_DRV_DI R) / $(MODULE)

50 ROOTLI NK = $(ROOT_FS_DI R)/ $(MODULE)

51 CONF_SRCDI R = $(UTSBASE) / cormon/ f s/ zfs

53 #

54 # I ncl ude common rul es.

55 #

56 include ../ Mkefile.$(ARCHD R)

58 #

new usr/src/ uts/sparc/zfs/ Makefile

123
124

Define targets

#

ALL_TARGET = $(Bl NARY) $(SRC_CONFI LE)

LI NT_TARGET = $(MODULE) . |l i nt

I NSTALL_TARGET = $(BI NARY) $(ROOTMODULE) $(ROOTLI NK) $(ROOT_CONFFI LE)
#

Overrides and depends_on

#

We require sched/ SDC because by the time vfs_nmountroot() runs,
we can no |onger |oad nodul es through OBP.

#
MODSTUBS_DI R = $(0BIJS_ DR
LDFLAGS += -dy -Nfs/specfs -Ncrypto/swand -Nmisc/idmap \

-Nsched/ SDC - Nmi sc/ sha2 - Nm sc/ skein -Nm sc/ edonr
I NC_PATH += -1 $(UTSBASE) / cormon/ fs/ zf s
I NC_PATH += -1 $(UTSBASE) / common/ f s/ zf s/ | ua
I NC_PATH += -1 $(SRC)/ cormon
| NC_PATH += -1 $(COMVONBASE) / zf s
I NC_PATH += -1 $(UTSBASE) / sun4
CO9LMODE= - Xc99=%al |
#
For now, disable these |int checks; maintainers shoul d endeavor

to investigate and renove these for maxi mumlint coverage.
Please do not carry these forward to new Makefiles.

#

LI NTTAGS += -errof f=E_SUSPI Cl OUS_COVPARI SON

LI NTTAGS += -errof f=E_BAD PTR CAST ALI GN

LI NTTAGS += -errof f =E_SUPPRESSI ON_DI RECTI VE_UNUSED

LI NTTAGS += -errof f =E_STATI C_UNUSED

LI NTTAGS += -errof f =E_PTRDI FF_OVERFLOW

LI NTTAGS += -errof f =E_ASSI GN_NARROW CONV

CERRWARN += -_gcc=-Wio-type-limts

CERRVWARN += -_gcc=-Wo-sw tch

CERRWARN += -_gcc=- Who- par ent heses

CERRWARN += -_gcc=- Who- unused-vari abl e

CERRWARN += -_gcc=- Who- unused-f unction

CERRWARN += -_gcc=- Who- unused- | abel

#

Default build targets.

#

. KEEP_STATE:

def: $(DEF_DEPS)

all: $(ALL_DEPS)

cl ean: $(CLEAN_DEPS)

cl obber: $(CLOBBER_DEPS)

lint: $(LI NT_DEPS)

nodlintlib: $(MODLI NTLI B_DEPS)

clean.lint: $(CLEAN_LI NT_DEPS)

install: $(| NSTALL_DEPS)

$(ROOTLI NK) : $(ROOT_FS_DI R) $(ROOTMODULE)
-$(RVM $@ In $(ROOTMODULE) $@

new usr/src/ uts/sparc/zfs/ Makefile

126 #

127 # I ncl ude common targets.
128 #

129 include ../ Makefile.targ

new usr/src/uts/sund/sys/ht.h 1

R R R R

824 Wed May 15 07:34:11 2019
new usr/src/uts/sund/sys/ht.h
10924 Need nmitigation of LITF (CVE-2018-3646)
Revi ewed by: Robert Mistacchi <rm@ oyent.conm>
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@nuil.conr

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

1/*

2 * This file and its contents are supplied under the terms of the

3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL should have acconpanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://wmvillunmos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2018 Joyent, Inc.

14 */

16 #ifndef _SYS HT_H

17 #define _SYS_HT_H

19 #include <sys/types. h>
20 #include <sys/thread. h>
22 #ifdef __cplusplus

23 extern "C' {

24 #endif

26 #define ht_init() {}
28 #define ht_should_run(t, c) (B_TRUE)
29 #define ht_adjust_cpu_score(t, c, p) (p)
30 #define ht_begin_unsafe(void) {}
31 #define ht_end_unsafe(void) {}
32 #define ht_end_intr(void) {}
34 #ifdef __cplusplus
}
36 #endif

38 #endif /* _SYS HT H */

new usr/src/uts/sundu/ sys/ Makefile 1 new usr/src/uts/sundu/ sys/ Makefile

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 58 nexusdebugh \
3735 Wed May 15 07:34:11 2019 59 prom debug. h \
new usr/ src/ uts/sundu/ sys/ Makefile 60 scb. h \
10924 Need mitigation of L1TF (CVE-2018-3646) 61 sundasi . h \
Revi ewed by: Robert Mistacchi <rm@ oyent.conm> 62 tod. h \
Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr 63 trapstat.h \
Revi ewed by: Peter Tribble <peter.tribble@mail.conm 64 vis.h \
IR R R R R R R RS R R R S R RS EEE RS E R R R R ERREREREREEEEEEE] 65 vm rTHChpafamh \
14# 66 x_call.h \
2 # CDDL HEADER START 67 xc_inpl.h \
3 # 68 zsmach. h
4 # The contents of this file are subject to the terns of the
5 # Common Devel oprent and Distribution License (the "License"). 70 HDRS= \
6 # You may not use this file except in conpliance with the License. 71 cheetahregs. h \
7 # 72 cpr_inpl.h \
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 73 cpu_inpl.h \
9 # or http://ww.opensol aris.org/os/licensing. 74 ecc_kstat.h \
10 # See the License for the specific |anguage governing perm ssions 75 envctrl.h \
11 # and limtations under the License. 76 envctrl _gen. h \
12 # 77 envctrl _ue250. h \
13 # Wen distributing Covered Code, include this CDDL HEADER in each 78 envctrl _ue450. h \
14 # file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 79 gpi 0_87317. h \
15 # If applicable, add the followi ng below this CDDL HEADER, with the 80 i ocache. h \
16 # fields enclosed by brackets "[]" replaced with your own identifying 81 i ommu. h \
17 # information: Portions Copyright [yyyy] [nane of copyright owner] 82 machasi . h \
18 # 83 machcl ock. h \
19 # CDDL HEADER END 84 machcpuvar. h \
20 # 85 machparam h \
21 # Copyright 2009 Sun M crosystens, Inc. Al rights reserved. 86 machsystm h \
22 # Use is subject to license terns. 87 macht hread. h \
23 # Copyright 2019 Peter Tribble. 88 mem cache. h \
24 # 89 mu. h \
25 # Copyright 2018 Joyent, Inc. 90 opl _nodul e. h \
25 # uts/sundul/ sys/ Makefile 91 promplat.h \
26 # 92 pte.h \
27 UTSBASE = .. /.. 93 sbd_ioctl.h \
94 spitregs. h \
29 # 95 sysioerr.h \
30 # include global definitions 96 sysi osbus. h \
31 # 97 t odnost ek. h \
32 include ../ Mkefile.sundu 98 traptrace. h
34 # 100 | 2CHDRS = clients/ max1617. h misc/i2c_svc.h clients/i2c_client.h \
35 # Override defaults. 101 clients/hpc3130.h clients/In¥5.h
36 # 102 clients/pcf8591.h clients/ssc050.h
37 FI LEMODE = 644
104 |12C DI RS= clients msc
39 SUN4_HDRS= \ 105 USR_PSM | SYS | 2C ROOT= $(USR_PSM I SYS_DIR)/i 2¢
40 async. h \ 106 USR PSM | SYS | 2C DIRS= $(USR_PSM. | SYS_ | 2C _ROOT) \
41 cl oclﬁ. h t 107 $(12C_DIRS: %=$(USR_PSM_| SYS_| 2C_ROOT) / %
42 cnp.
43 cpc_ultra.h \ 109 ROOTI 2CHDRS= $(1 2CHDRS: %=$(USR_PSM | SYS_| 2C_ROOT) / %
44 cpu_sgnbl k_defs. h \
45 ddi _subrdefs. h \ 111 MONHDRS=
46 dvma. h \ 112 #MONHDRS= eeprom h i dprom h keyboard. h password. h
47 eeprom h \
48 errclassify.h \ 114 USR_PSM MON_DI R= $(USR_PSM | SYS_DI R)/ non
49 fcode. h \
50 fc_plat.h \ 116 ROOTHDRS= $(HDRS: %$(USR_PSM_| SYS_DI R)/ %
51 ht.h \
52 i dprom h \ 118 SUN4_ROOTHDRS= $(SUN4_HDRS: %$(USR_PSM | SYS_DI R) / %
53 intr.h \
54 intreg. h \ 120 ROOTMONHDRS= $(MONHDRS: %=$(USR_PSM_MON_DI R) / %
55 ivintr.h \
56 menist_plat.h \ 122 ROOTDI R= $(ROOT) / usr/ share/src
57 nermmode. h \ 123 ROOTDI RS= $(ROOTDI R)/ ut s $(ROOTDI R) / ut s/ $(PLATFORM

new usr/src/ uts/sundu/ sys/ Makefil e

125 ROOTLI NK= $(RCDTDI R)/ ut s/ $(PLATFORM / sys

126 LI NKDEST= .o 1. Iplatform $(PLATFORM /i ncl ude/ sys
128 CHECKHDRS= $(HDRS: % h=% check) \

129 $(MONHDRS: % h=npn/ % check) \

130 $(SUN4_HDRS: % h=% cmmcheck)

132 . KEEP_STATE:
134 . PARALLEL: $(CHECKHDRS) $(ROOTHDRS) $(ROOTMONHDRS) $(SUN4_ROOTHDRS)
136 install_h: $(ROOTDI RS) $(USR_PSM ISYS | 2C DIRS) . WAIT \

137 $(ROOTHDRS) $(ROOTI 2CHDRS) \
138 $(ROOTMONHDRS) \
139 $(SUN4_ROOTHDRS) $(ROOTLI NK)

141 check: $(CHECKHDRS)

143 #

144 # install rules

145 #

146 $(USR_PSM MON DI R) : $(USR_PSM | SYS_DI R)
147 $(INS. dir)

149 $(USR_PSM | SYS | 2C DI RS):
150 $(INS. dir)

152 $(USR PSM ISYS DIR)/% ../../sfrmmu/sys/ % $(USR_PSM | SYS_DI R)
153 $(INS.Tile)

155 $(USR PSM ISYS DIR)/% ../../sun4/sys/ % $(USR_PSM | SYS DI R)
156 $(INS.File)

158 $(USR_PSM MON DI R)/ % mon/ % $(USR_PSM_MON_DI R)

159 $(INSfile)

161 $(ROOTDI RS) :

162 $(INS.dir)

164 # -r because this used to be a directory and is now a |ink.
165 $(ROOTLI NK) : $(ROOTDI RS)

166 -$(RM -r $@ $(SYM.INK) $(LINKDEST) $@

168 non/ % check: non/ % h

169 $(DOT_H_CHECK)

171 % check: .l sfamu/ sys/ % h

172 $(DOT_H_CHECK)

173 % cmmcheck: ./ ../sund/sys/%h

174 $(DOT_H_CHECK)

176 FRC:

178 include ../../Makefile.targ

new usr/src/ uts/sundv/sys/ Makefil e

R R R R

2813 Wed May 15 07:34:12 2019

new usr/src/uts/sundv/sys/ Makefile

10924 Need nmitigation of LITF (CVE-2018-3646)

Revi ewed by: Robert Mistacchi <rm@ oyent.conm>

Revi ewed by: Jerry Jelinek <jerry.jelinek@oyent.conr
Revi ewed by: Peter Tribble <peter.tribble@mail.conm

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkkkhkkkkkkkkhkkkkkkkkk ok k ok k k%

H*

HHFHHFHHET HHHFHBHHFFHHEHT TR

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and |limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyri ght 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

Copyri ght 2018 Joyent, Inc.

ut s/ sun4v/ sys/ Makefil e

i ncl ude gl obal definitions
o

UTSBASE =

#
#
#
1

#
#
#
F

SUN4_HDRS=

i ncl ude .

i ncl ude gl obal definitions

./ Makefile.sundv

Override defaults.
| LEMODE = 644

clock. h
cnp. h

cpc_ultra.h
cpu_sgnbl k_defs. h
ddi _subrdefs. h
dvma. h

eeprom h

fcode. h

ht.h

i dprom h

intr.h

intreg.h

ivintr.h

mem i st pl at.h
memmode.
nexusdebug h

S s)

new usr/src/ uts/sundv/sys/ Makefile

115

119

121
122

prom debug. h
scbh. h

sundasi . h

tod. h

trapst at.h
vis.

vm_machpar am h
x_call.h
xc_inpl.h
zsmach. h

e —

HDRS= \
ds_pri.h
ds_snnp. h
hypervi sor_api . h
hsvc. h
nachasi . h
machcl ock. h
machcpuvar. h
mach_descrip. h
machi ntreg. h
machpar am h
machsystm h
macht hread. h
mu. h
ni agar aasi . h
ni agar aregs. h
ntwdt . h
pte.h
promplat.h
qcn. h
soft_state.h
traptrace. h
vlds. h

e e —

ROOTHDRS= $(HDRS: %$(USR_PSM_| SYS DI R)/ %
$(SUN4_HDRS: %3$(USR_PSM_| SYS_DI R) / %9

$(ROOT) / usr/share/src
$(ROOTDI R)/ uts $(ROOTDI R) / ut s/ $(PLATFORM)

$(ROOTDI R)/ ut s/ $(PLATFORM / sys
./ platform $(PLATFCRM/ i ncl ude/ sys

SUN4_ROOTHDRS=

ROOTDI R=
ROOTDI RS=

ROOTLI NK=
LI NKDEST= o]

CHECKHDRS= $(HDRS: % h=% check) \

$(SUN4_HDRS: % h=% crmcheck)
. KEEP_STATE:
. PARALLEL: $(CHECKHDRS) $(ROOTHDRS) $(SUN4_ROOTHDRS)
install _h: $(ROOTDIRS) .WAIT \
$(ROOTHDRS) . WAI T \
$(SUN4_ROOTHDRS) . WAI T $(ROOTLI NK)
check: $(CHECKHDRS)

#
install rules

#
$(USR PSM ISYS DIR) /% ../../sfmmu/sys/% $(USR_PSM | SYS DI R)
$(INS.Tile)

$(USR_PSM | SYS DIR) /% ../../sun4/sys/ % $(USR_PSM | SYS DI R)
$(INS.file)

new usr/src/ uts/sundv/sys/ Makefil e
124 $(ROOTDI RS) :
125 $(INS. dir)

127 # -r because this used to be a directory and is now a |ink.
128 $(ROOTLI NK) : $(ROOTDI RS)

129 -$(RV) -r $@ $(SYM.INK) $(LINKDEST) $@
131 non/ % check: nmon/ % h

132 $(DOT_H_CHECK)

134 % check: /Isfmm/sys/%h

135 $(DOT_H_CHECK)

136 % cmmcheck: ..l..lsun4d/sys/ % h

137 $(DOT_H_CHECK)

139 FRC

141 include ../../Makefile.targ

