1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2018 Joyent, Inc. 25 */ 26 27 /* 28 * Architecture-independent CPU control functions. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/var.h> 34 #include <sys/thread.h> 35 #include <sys/cpuvar.h> 36 #include <sys/cpu_event.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #include <sys/sdt.h> 62 #if defined(__x86) || defined(__amd64) 63 #include <sys/x86_archext.h> 64 #endif 65 #include <sys/callo.h> 66 67 extern int mp_cpu_start(cpu_t *); 68 extern int mp_cpu_stop(cpu_t *); 69 extern int mp_cpu_poweron(cpu_t *); 70 extern int mp_cpu_poweroff(cpu_t *); 71 extern int mp_cpu_configure(int); 72 extern int mp_cpu_unconfigure(int); 73 extern void mp_cpu_faulted_enter(cpu_t *); 74 extern void mp_cpu_faulted_exit(cpu_t *); 75 76 extern int cmp_cpu_to_chip(processorid_t cpuid); 77 #ifdef __sparcv9 78 extern char *cpu_fru_fmri(cpu_t *cp); 79 #endif 80 81 static void cpu_add_active_internal(cpu_t *cp); 82 static void cpu_remove_active(cpu_t *cp); 83 static void cpu_info_kstat_create(cpu_t *cp); 84 static void cpu_info_kstat_destroy(cpu_t *cp); 85 static void cpu_stats_kstat_create(cpu_t *cp); 86 static void cpu_stats_kstat_destroy(cpu_t *cp); 87 88 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 89 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 90 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 91 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 92 93 /* 94 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 95 * max_cpu_seqid_ever, and dispatch queue reallocations. The lock ordering with 96 * respect to related locks is: 97 * 98 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 99 * 100 * Warning: Certain sections of code do not use the cpu_lock when 101 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 102 * all cpus are paused during modifications to this list, a solution 103 * to protect the list is too either disable kernel preemption while 104 * walking the list, *or* recheck the cpu_next pointer at each 105 * iteration in the loop. Note that in no cases can any cached 106 * copies of the cpu pointers be kept as they may become invalid. 107 */ 108 kmutex_t cpu_lock; 109 cpu_t *cpu_list; /* list of all CPUs */ 110 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 111 cpu_t *cpu_active; /* list of active CPUs */ 112 static cpuset_t cpu_available; /* set of available CPUs */ 113 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 114 115 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */ 116 117 /* 118 * max_ncpus keeps the max cpus the system can have. Initially 119 * it's NCPU, but since most archs scan the devtree for cpus 120 * fairly early on during boot, the real max can be known before 121 * ncpus is set (useful for early NCPU based allocations). 122 */ 123 int max_ncpus = NCPU; 124 /* 125 * platforms that set max_ncpus to maxiumum number of cpus that can be 126 * dynamically added will set boot_max_ncpus to the number of cpus found 127 * at device tree scan time during boot. 128 */ 129 int boot_max_ncpus = -1; 130 int boot_ncpus = -1; 131 /* 132 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 133 * used to size arrays that are indexed by CPU id. 134 */ 135 processorid_t max_cpuid = NCPU - 1; 136 137 /* 138 * Maximum cpu_seqid was given. This number can only grow and never shrink. It 139 * can be used to optimize NCPU loops to avoid going through CPUs which were 140 * never on-line. 141 */ 142 processorid_t max_cpu_seqid_ever = 0; 143 144 int ncpus = 1; 145 int ncpus_online = 1; 146 147 /* 148 * CPU that we're trying to offline. Protected by cpu_lock. 149 */ 150 cpu_t *cpu_inmotion; 151 152 /* 153 * Can be raised to suppress further weakbinding, which are instead 154 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 155 * while individual thread weakbinding synchronization is done under thread 156 * lock. 157 */ 158 int weakbindingbarrier; 159 160 /* 161 * Variables used in pause_cpus(). 162 */ 163 static volatile char safe_list[NCPU]; 164 165 static struct _cpu_pause_info { 166 int cp_spl; /* spl saved in pause_cpus() */ 167 volatile int cp_go; /* Go signal sent after all ready */ 168 int cp_count; /* # of CPUs to pause */ 169 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 170 kthread_id_t cp_paused; 171 void *(*cp_func)(void *); 172 } cpu_pause_info; 173 174 static kmutex_t pause_free_mutex; 175 static kcondvar_t pause_free_cv; 176 177 178 static struct cpu_sys_stats_ks_data { 179 kstat_named_t cpu_ticks_idle; 180 kstat_named_t cpu_ticks_user; 181 kstat_named_t cpu_ticks_kernel; 182 kstat_named_t cpu_ticks_wait; 183 kstat_named_t cpu_nsec_idle; 184 kstat_named_t cpu_nsec_user; 185 kstat_named_t cpu_nsec_kernel; 186 kstat_named_t cpu_nsec_dtrace; 187 kstat_named_t cpu_nsec_intr; 188 kstat_named_t cpu_load_intr; 189 kstat_named_t wait_ticks_io; 190 kstat_named_t dtrace_probes; 191 kstat_named_t bread; 192 kstat_named_t bwrite; 193 kstat_named_t lread; 194 kstat_named_t lwrite; 195 kstat_named_t phread; 196 kstat_named_t phwrite; 197 kstat_named_t pswitch; 198 kstat_named_t trap; 199 kstat_named_t intr; 200 kstat_named_t syscall; 201 kstat_named_t sysread; 202 kstat_named_t syswrite; 203 kstat_named_t sysfork; 204 kstat_named_t sysvfork; 205 kstat_named_t sysexec; 206 kstat_named_t readch; 207 kstat_named_t writech; 208 kstat_named_t rcvint; 209 kstat_named_t xmtint; 210 kstat_named_t mdmint; 211 kstat_named_t rawch; 212 kstat_named_t canch; 213 kstat_named_t outch; 214 kstat_named_t msg; 215 kstat_named_t sema; 216 kstat_named_t namei; 217 kstat_named_t ufsiget; 218 kstat_named_t ufsdirblk; 219 kstat_named_t ufsipage; 220 kstat_named_t ufsinopage; 221 kstat_named_t procovf; 222 kstat_named_t intrthread; 223 kstat_named_t intrblk; 224 kstat_named_t intrunpin; 225 kstat_named_t idlethread; 226 kstat_named_t inv_swtch; 227 kstat_named_t nthreads; 228 kstat_named_t cpumigrate; 229 kstat_named_t xcalls; 230 kstat_named_t mutex_adenters; 231 kstat_named_t rw_rdfails; 232 kstat_named_t rw_wrfails; 233 kstat_named_t modload; 234 kstat_named_t modunload; 235 kstat_named_t bawrite; 236 kstat_named_t iowait; 237 } cpu_sys_stats_ks_data_template = { 238 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 239 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 240 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 241 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 242 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 243 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 244 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 245 { "cpu_nsec_dtrace", KSTAT_DATA_UINT64 }, 246 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 247 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 248 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 249 { "dtrace_probes", KSTAT_DATA_UINT64 }, 250 { "bread", KSTAT_DATA_UINT64 }, 251 { "bwrite", KSTAT_DATA_UINT64 }, 252 { "lread", KSTAT_DATA_UINT64 }, 253 { "lwrite", KSTAT_DATA_UINT64 }, 254 { "phread", KSTAT_DATA_UINT64 }, 255 { "phwrite", KSTAT_DATA_UINT64 }, 256 { "pswitch", KSTAT_DATA_UINT64 }, 257 { "trap", KSTAT_DATA_UINT64 }, 258 { "intr", KSTAT_DATA_UINT64 }, 259 { "syscall", KSTAT_DATA_UINT64 }, 260 { "sysread", KSTAT_DATA_UINT64 }, 261 { "syswrite", KSTAT_DATA_UINT64 }, 262 { "sysfork", KSTAT_DATA_UINT64 }, 263 { "sysvfork", KSTAT_DATA_UINT64 }, 264 { "sysexec", KSTAT_DATA_UINT64 }, 265 { "readch", KSTAT_DATA_UINT64 }, 266 { "writech", KSTAT_DATA_UINT64 }, 267 { "rcvint", KSTAT_DATA_UINT64 }, 268 { "xmtint", KSTAT_DATA_UINT64 }, 269 { "mdmint", KSTAT_DATA_UINT64 }, 270 { "rawch", KSTAT_DATA_UINT64 }, 271 { "canch", KSTAT_DATA_UINT64 }, 272 { "outch", KSTAT_DATA_UINT64 }, 273 { "msg", KSTAT_DATA_UINT64 }, 274 { "sema", KSTAT_DATA_UINT64 }, 275 { "namei", KSTAT_DATA_UINT64 }, 276 { "ufsiget", KSTAT_DATA_UINT64 }, 277 { "ufsdirblk", KSTAT_DATA_UINT64 }, 278 { "ufsipage", KSTAT_DATA_UINT64 }, 279 { "ufsinopage", KSTAT_DATA_UINT64 }, 280 { "procovf", KSTAT_DATA_UINT64 }, 281 { "intrthread", KSTAT_DATA_UINT64 }, 282 { "intrblk", KSTAT_DATA_UINT64 }, 283 { "intrunpin", KSTAT_DATA_UINT64 }, 284 { "idlethread", KSTAT_DATA_UINT64 }, 285 { "inv_swtch", KSTAT_DATA_UINT64 }, 286 { "nthreads", KSTAT_DATA_UINT64 }, 287 { "cpumigrate", KSTAT_DATA_UINT64 }, 288 { "xcalls", KSTAT_DATA_UINT64 }, 289 { "mutex_adenters", KSTAT_DATA_UINT64 }, 290 { "rw_rdfails", KSTAT_DATA_UINT64 }, 291 { "rw_wrfails", KSTAT_DATA_UINT64 }, 292 { "modload", KSTAT_DATA_UINT64 }, 293 { "modunload", KSTAT_DATA_UINT64 }, 294 { "bawrite", KSTAT_DATA_UINT64 }, 295 { "iowait", KSTAT_DATA_UINT64 }, 296 }; 297 298 static struct cpu_vm_stats_ks_data { 299 kstat_named_t pgrec; 300 kstat_named_t pgfrec; 301 kstat_named_t pgin; 302 kstat_named_t pgpgin; 303 kstat_named_t pgout; 304 kstat_named_t pgpgout; 305 kstat_named_t swapin; 306 kstat_named_t pgswapin; 307 kstat_named_t swapout; 308 kstat_named_t pgswapout; 309 kstat_named_t zfod; 310 kstat_named_t dfree; 311 kstat_named_t scan; 312 kstat_named_t rev; 313 kstat_named_t hat_fault; 314 kstat_named_t as_fault; 315 kstat_named_t maj_fault; 316 kstat_named_t cow_fault; 317 kstat_named_t prot_fault; 318 kstat_named_t softlock; 319 kstat_named_t kernel_asflt; 320 kstat_named_t pgrrun; 321 kstat_named_t execpgin; 322 kstat_named_t execpgout; 323 kstat_named_t execfree; 324 kstat_named_t anonpgin; 325 kstat_named_t anonpgout; 326 kstat_named_t anonfree; 327 kstat_named_t fspgin; 328 kstat_named_t fspgout; 329 kstat_named_t fsfree; 330 } cpu_vm_stats_ks_data_template = { 331 { "pgrec", KSTAT_DATA_UINT64 }, 332 { "pgfrec", KSTAT_DATA_UINT64 }, 333 { "pgin", KSTAT_DATA_UINT64 }, 334 { "pgpgin", KSTAT_DATA_UINT64 }, 335 { "pgout", KSTAT_DATA_UINT64 }, 336 { "pgpgout", KSTAT_DATA_UINT64 }, 337 { "swapin", KSTAT_DATA_UINT64 }, 338 { "pgswapin", KSTAT_DATA_UINT64 }, 339 { "swapout", KSTAT_DATA_UINT64 }, 340 { "pgswapout", KSTAT_DATA_UINT64 }, 341 { "zfod", KSTAT_DATA_UINT64 }, 342 { "dfree", KSTAT_DATA_UINT64 }, 343 { "scan", KSTAT_DATA_UINT64 }, 344 { "rev", KSTAT_DATA_UINT64 }, 345 { "hat_fault", KSTAT_DATA_UINT64 }, 346 { "as_fault", KSTAT_DATA_UINT64 }, 347 { "maj_fault", KSTAT_DATA_UINT64 }, 348 { "cow_fault", KSTAT_DATA_UINT64 }, 349 { "prot_fault", KSTAT_DATA_UINT64 }, 350 { "softlock", KSTAT_DATA_UINT64 }, 351 { "kernel_asflt", KSTAT_DATA_UINT64 }, 352 { "pgrrun", KSTAT_DATA_UINT64 }, 353 { "execpgin", KSTAT_DATA_UINT64 }, 354 { "execpgout", KSTAT_DATA_UINT64 }, 355 { "execfree", KSTAT_DATA_UINT64 }, 356 { "anonpgin", KSTAT_DATA_UINT64 }, 357 { "anonpgout", KSTAT_DATA_UINT64 }, 358 { "anonfree", KSTAT_DATA_UINT64 }, 359 { "fspgin", KSTAT_DATA_UINT64 }, 360 { "fspgout", KSTAT_DATA_UINT64 }, 361 { "fsfree", KSTAT_DATA_UINT64 }, 362 }; 363 364 /* 365 * Force the specified thread to migrate to the appropriate processor. 366 * Called with thread lock held, returns with it dropped. 367 */ 368 static void 369 force_thread_migrate(kthread_id_t tp) 370 { 371 ASSERT(THREAD_LOCK_HELD(tp)); 372 if (tp == curthread) { 373 THREAD_TRANSITION(tp); 374 CL_SETRUN(tp); 375 thread_unlock_nopreempt(tp); 376 swtch(); 377 } else { 378 if (tp->t_state == TS_ONPROC) { 379 cpu_surrender(tp); 380 } else if (tp->t_state == TS_RUN) { 381 (void) dispdeq(tp); 382 setbackdq(tp); 383 } 384 thread_unlock(tp); 385 } 386 } 387 388 /* 389 * Set affinity for a specified CPU. 390 * 391 * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for 392 * curthread, will set affinity to the CPU on which the thread is currently 393 * running. For other cpu_id values, the caller must ensure that the 394 * referenced CPU remains valid, which can be done by holding cpu_lock across 395 * this call. 396 * 397 * CPU affinity is guaranteed after return of thread_affinity_set(). If a 398 * caller setting affinity to CPU_CURRENT requires that its thread not migrate 399 * CPUs prior to a successful return, it should take extra precautions (such as 400 * their own call to kpreempt_disable) to ensure that safety. 401 * 402 * A CPU affinity reference count is maintained by thread_affinity_set and 403 * thread_affinity_clear (incrementing and decrementing it, respectively), 404 * maintaining CPU affinity while the count is non-zero, and allowing regions 405 * of code which require affinity to be nested. 406 */ 407 void 408 thread_affinity_set(kthread_id_t t, int cpu_id) 409 { 410 cpu_t *cp; 411 412 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 413 414 if (cpu_id == CPU_CURRENT) { 415 VERIFY3P(t, ==, curthread); 416 kpreempt_disable(); 417 cp = CPU; 418 } else { 419 /* 420 * We should be asserting that cpu_lock is held here, but 421 * the NCA code doesn't acquire it. The following assert 422 * should be uncommented when the NCA code is fixed. 423 * 424 * ASSERT(MUTEX_HELD(&cpu_lock)); 425 */ 426 VERIFY((cpu_id >= 0) && (cpu_id < NCPU)); 427 cp = cpu[cpu_id]; 428 429 /* user must provide a good cpu_id */ 430 VERIFY(cp != NULL); 431 } 432 433 /* 434 * If there is already a hard affinity requested, and this affinity 435 * conflicts with that, panic. 436 */ 437 thread_lock(t); 438 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 439 panic("affinity_set: setting %p but already bound to %p", 440 (void *)cp, (void *)t->t_bound_cpu); 441 } 442 t->t_affinitycnt++; 443 t->t_bound_cpu = cp; 444 445 /* 446 * Make sure we're running on the right CPU. 447 */ 448 if (cp != t->t_cpu || t != curthread) { 449 ASSERT(cpu_id != CPU_CURRENT); 450 force_thread_migrate(t); /* drops thread lock */ 451 } else { 452 thread_unlock(t); 453 } 454 455 if (cpu_id == CPU_CURRENT) { 456 kpreempt_enable(); 457 } 458 } 459 460 /* 461 * Wrapper for backward compatibility. 462 */ 463 void 464 affinity_set(int cpu_id) 465 { 466 thread_affinity_set(curthread, cpu_id); 467 } 468 469 /* 470 * Decrement the affinity reservation count and if it becomes zero, 471 * clear the CPU affinity for the current thread, or set it to the user's 472 * software binding request. 473 */ 474 void 475 thread_affinity_clear(kthread_id_t t) 476 { 477 register processorid_t binding; 478 479 thread_lock(t); 480 if (--t->t_affinitycnt == 0) { 481 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 482 /* 483 * Adjust disp_max_unbound_pri if necessary. 484 */ 485 disp_adjust_unbound_pri(t); 486 t->t_bound_cpu = NULL; 487 if (t->t_cpu->cpu_part != t->t_cpupart) { 488 force_thread_migrate(t); 489 return; 490 } 491 } else { 492 t->t_bound_cpu = cpu[binding]; 493 /* 494 * Make sure the thread is running on the bound CPU. 495 */ 496 if (t->t_cpu != t->t_bound_cpu) { 497 force_thread_migrate(t); 498 return; /* already dropped lock */ 499 } 500 } 501 } 502 thread_unlock(t); 503 } 504 505 /* 506 * Wrapper for backward compatibility. 507 */ 508 void 509 affinity_clear(void) 510 { 511 thread_affinity_clear(curthread); 512 } 513 514 /* 515 * Weak cpu affinity. Bind to the "current" cpu for short periods 516 * of time during which the thread must not block (but may be preempted). 517 * Use this instead of kpreempt_disable() when it is only "no migration" 518 * rather than "no preemption" semantics that are required - disabling 519 * preemption holds higher priority threads off of cpu and if the 520 * operation that is protected is more than momentary this is not good 521 * for realtime etc. 522 * 523 * Weakly bound threads will not prevent a cpu from being offlined - 524 * we'll only run them on the cpu to which they are weakly bound but 525 * (because they do not block) we'll always be able to move them on to 526 * another cpu at offline time if we give them just a short moment to 527 * run during which they will unbind. To give a cpu a chance of offlining, 528 * however, we require a barrier to weak bindings that may be raised for a 529 * given cpu (offline/move code may set this and then wait a short time for 530 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 531 * 532 * There are few restrictions on the calling context of thread_nomigrate. 533 * The caller must not hold the thread lock. Calls may be nested. 534 * 535 * After weakbinding a thread must not perform actions that may block. 536 * In particular it must not call thread_affinity_set; calling that when 537 * already weakbound is nonsensical anyway. 538 * 539 * If curthread is prevented from migrating for other reasons 540 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 541 * then the weak binding will succeed even if this cpu is the target of an 542 * offline/move request. 543 */ 544 void 545 thread_nomigrate(void) 546 { 547 cpu_t *cp; 548 kthread_id_t t = curthread; 549 550 again: 551 kpreempt_disable(); 552 cp = CPU; 553 554 /* 555 * A highlevel interrupt must not modify t_nomigrate or 556 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 557 * interrupt thread cannot migrate and we can avoid the 558 * thread_lock call below by short-circuiting here. In either 559 * case we can just return since no migration is possible and 560 * the condition will persist (ie, when we test for these again 561 * in thread_allowmigrate they can't have changed). Migration 562 * is also impossible if we're at or above DISP_LEVEL pil. 563 */ 564 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 565 getpil() >= DISP_LEVEL) { 566 kpreempt_enable(); 567 return; 568 } 569 570 /* 571 * We must be consistent with existing weak bindings. Since we 572 * may be interrupted between the increment of t_nomigrate and 573 * the store to t_weakbound_cpu below we cannot assume that 574 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 575 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 576 * always the case. 577 */ 578 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 579 if (!panicstr) 580 panic("thread_nomigrate: binding to %p but already " 581 "bound to %p", (void *)cp, 582 (void *)t->t_weakbound_cpu); 583 } 584 585 /* 586 * At this point we have preemption disabled and we don't yet hold 587 * the thread lock. So it's possible that somebody else could 588 * set t_bind_cpu here and not be able to force us across to the 589 * new cpu (since we have preemption disabled). 590 */ 591 thread_lock(curthread); 592 593 /* 594 * If further weak bindings are being (temporarily) suppressed then 595 * we'll settle for disabling kernel preemption (which assures 596 * no migration provided the thread does not block which it is 597 * not allowed to if using thread_nomigrate). We must remember 598 * this disposition so we can take appropriate action in 599 * thread_allowmigrate. If this is a nested call and the 600 * thread is already weakbound then fall through as normal. 601 * We remember the decision to settle for kpreempt_disable through 602 * negative nesting counting in t_nomigrate. Once a thread has had one 603 * weakbinding request satisfied in this way any further (nested) 604 * requests will continue to be satisfied in the same way, 605 * even if weak bindings have recommenced. 606 */ 607 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 608 --t->t_nomigrate; 609 thread_unlock(curthread); 610 return; /* with kpreempt_disable still active */ 611 } 612 613 /* 614 * We hold thread_lock so t_bind_cpu cannot change. We could, 615 * however, be running on a different cpu to which we are t_bound_cpu 616 * to (as explained above). If we grant the weak binding request 617 * in that case then the dispatcher must favour our weak binding 618 * over our strong (in which case, just as when preemption is 619 * disabled, we can continue to run on a cpu other than the one to 620 * which we are strongbound; the difference in this case is that 621 * this thread can be preempted and so can appear on the dispatch 622 * queues of a cpu other than the one it is strongbound to). 623 * 624 * If the cpu we are running on does not appear to be a current 625 * offline target (we check cpu_inmotion to determine this - since 626 * we don't hold cpu_lock we may not see a recent store to that, 627 * so it's possible that we at times can grant a weak binding to a 628 * cpu that is an offline target, but that one request will not 629 * prevent the offline from succeeding) then we will always grant 630 * the weak binding request. This includes the case above where 631 * we grant a weakbinding not commensurate with our strong binding. 632 * 633 * If our cpu does appear to be an offline target then we're inclined 634 * not to grant the weakbinding request just yet - we'd prefer to 635 * migrate to another cpu and grant the request there. The 636 * exceptions are those cases where going through preemption code 637 * will not result in us changing cpu: 638 * 639 * . interrupts have already bypassed this case (see above) 640 * . we are already weakbound to this cpu (dispatcher code will 641 * always return us to the weakbound cpu) 642 * . preemption was disabled even before we disabled it above 643 * . we are strongbound to this cpu (if we're strongbound to 644 * another and not yet running there the trip through the 645 * dispatcher will move us to the strongbound cpu and we 646 * will grant the weak binding there) 647 */ 648 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 649 t->t_bound_cpu == cp) { 650 /* 651 * Don't be tempted to store to t_weakbound_cpu only on 652 * the first nested bind request - if we're interrupted 653 * after the increment of t_nomigrate and before the 654 * store to t_weakbound_cpu and the interrupt calls 655 * thread_nomigrate then the assertion in thread_allowmigrate 656 * would fail. 657 */ 658 t->t_nomigrate++; 659 t->t_weakbound_cpu = cp; 660 membar_producer(); 661 thread_unlock(curthread); 662 /* 663 * Now that we have dropped the thread_lock another thread 664 * can set our t_weakbound_cpu, and will try to migrate us 665 * to the strongbound cpu (which will not be prevented by 666 * preemption being disabled since we're about to enable 667 * preemption). We have granted the weakbinding to the current 668 * cpu, so again we are in the position that is is is possible 669 * that our weak and strong bindings differ. Again this 670 * is catered for by dispatcher code which will favour our 671 * weak binding. 672 */ 673 kpreempt_enable(); 674 } else { 675 /* 676 * Move to another cpu before granting the request by 677 * forcing this thread through preemption code. When we 678 * get to set{front,back}dq called from CL_PREEMPT() 679 * cpu_choose() will be used to select a cpu to queue 680 * us on - that will see cpu_inmotion and take 681 * steps to avoid returning us to this cpu. 682 */ 683 cp->cpu_kprunrun = 1; 684 thread_unlock(curthread); 685 kpreempt_enable(); /* will call preempt() */ 686 goto again; 687 } 688 } 689 690 void 691 thread_allowmigrate(void) 692 { 693 kthread_id_t t = curthread; 694 695 ASSERT(t->t_weakbound_cpu == CPU || 696 (t->t_nomigrate < 0 && t->t_preempt > 0) || 697 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 698 getpil() >= DISP_LEVEL); 699 700 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 701 getpil() >= DISP_LEVEL) 702 return; 703 704 if (t->t_nomigrate < 0) { 705 /* 706 * This thread was granted "weak binding" in the 707 * stronger form of kernel preemption disabling. 708 * Undo a level of nesting for both t_nomigrate 709 * and t_preempt. 710 */ 711 ++t->t_nomigrate; 712 kpreempt_enable(); 713 } else if (--t->t_nomigrate == 0) { 714 /* 715 * Time to drop the weak binding. We need to cater 716 * for the case where we're weakbound to a different 717 * cpu than that to which we're strongbound (a very 718 * temporary arrangement that must only persist until 719 * weak binding drops). We don't acquire thread_lock 720 * here so even as this code executes t_bound_cpu 721 * may be changing. So we disable preemption and 722 * a) in the case that t_bound_cpu changes while we 723 * have preemption disabled kprunrun will be set 724 * asynchronously, and b) if before disabling 725 * preemption we were already on a different cpu to 726 * our t_bound_cpu then we set kprunrun ourselves 727 * to force a trip through the dispatcher when 728 * preemption is enabled. 729 */ 730 kpreempt_disable(); 731 if (t->t_bound_cpu && 732 t->t_weakbound_cpu != t->t_bound_cpu) 733 CPU->cpu_kprunrun = 1; 734 t->t_weakbound_cpu = NULL; 735 membar_producer(); 736 kpreempt_enable(); 737 } 738 } 739 740 /* 741 * weakbinding_stop can be used to temporarily cause weakbindings made 742 * with thread_nomigrate to be satisfied through the stronger action of 743 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 744 */ 745 746 void 747 weakbinding_stop(void) 748 { 749 ASSERT(MUTEX_HELD(&cpu_lock)); 750 weakbindingbarrier = 1; 751 membar_producer(); /* make visible before subsequent thread_lock */ 752 } 753 754 void 755 weakbinding_start(void) 756 { 757 ASSERT(MUTEX_HELD(&cpu_lock)); 758 weakbindingbarrier = 0; 759 } 760 761 void 762 null_xcall(void) 763 { 764 } 765 766 /* 767 * This routine is called to place the CPUs in a safe place so that 768 * one of them can be taken off line or placed on line. What we are 769 * trying to do here is prevent a thread from traversing the list 770 * of active CPUs while we are changing it or from getting placed on 771 * the run queue of a CPU that has just gone off line. We do this by 772 * creating a thread with the highest possible prio for each CPU and 773 * having it call this routine. The advantage of this method is that 774 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 775 * This makes disp faster at the expense of making p_online() slower 776 * which is a good trade off. 777 */ 778 static void 779 cpu_pause(int index) 780 { 781 int s; 782 struct _cpu_pause_info *cpi = &cpu_pause_info; 783 volatile char *safe = &safe_list[index]; 784 long lindex = index; 785 786 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 787 788 while (*safe != PAUSE_DIE) { 789 *safe = PAUSE_READY; 790 membar_enter(); /* make sure stores are flushed */ 791 sema_v(&cpi->cp_sem); /* signal requesting thread */ 792 793 /* 794 * Wait here until all pause threads are running. That 795 * indicates that it's safe to do the spl. Until 796 * cpu_pause_info.cp_go is set, we don't want to spl 797 * because that might block clock interrupts needed 798 * to preempt threads on other CPUs. 799 */ 800 while (cpi->cp_go == 0) 801 ; 802 /* 803 * Even though we are at the highest disp prio, we need 804 * to block out all interrupts below LOCK_LEVEL so that 805 * an intr doesn't come in, wake up a thread, and call 806 * setbackdq/setfrontdq. 807 */ 808 s = splhigh(); 809 /* 810 * if cp_func has been set then call it using index as the 811 * argument, currently only used by cpr_suspend_cpus(). 812 * This function is used as the code to execute on the 813 * "paused" cpu's when a machine comes out of a sleep state 814 * and CPU's were powered off. (could also be used for 815 * hotplugging CPU's). 816 */ 817 if (cpi->cp_func != NULL) 818 (*cpi->cp_func)((void *)lindex); 819 820 mach_cpu_pause(safe); 821 822 splx(s); 823 /* 824 * Waiting is at an end. Switch out of cpu_pause 825 * loop and resume useful work. 826 */ 827 swtch(); 828 } 829 830 mutex_enter(&pause_free_mutex); 831 *safe = PAUSE_DEAD; 832 cv_broadcast(&pause_free_cv); 833 mutex_exit(&pause_free_mutex); 834 } 835 836 /* 837 * Allow the cpus to start running again. 838 */ 839 void 840 start_cpus() 841 { 842 int i; 843 844 ASSERT(MUTEX_HELD(&cpu_lock)); 845 ASSERT(cpu_pause_info.cp_paused); 846 cpu_pause_info.cp_paused = NULL; 847 for (i = 0; i < NCPU; i++) 848 safe_list[i] = PAUSE_IDLE; 849 membar_enter(); /* make sure stores are flushed */ 850 affinity_clear(); 851 splx(cpu_pause_info.cp_spl); 852 kpreempt_enable(); 853 } 854 855 /* 856 * Allocate a pause thread for a CPU. 857 */ 858 static void 859 cpu_pause_alloc(cpu_t *cp) 860 { 861 kthread_id_t t; 862 long cpun = cp->cpu_id; 863 864 /* 865 * Note, v.v_nglobpris will not change value as long as I hold 866 * cpu_lock. 867 */ 868 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 869 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 870 thread_lock(t); 871 t->t_bound_cpu = cp; 872 t->t_disp_queue = cp->cpu_disp; 873 t->t_affinitycnt = 1; 874 t->t_preempt = 1; 875 thread_unlock(t); 876 cp->cpu_pause_thread = t; 877 /* 878 * Registering a thread in the callback table is usually done 879 * in the initialization code of the thread. In this 880 * case, we do it right after thread creation because the 881 * thread itself may never run, and we need to register the 882 * fact that it is safe for cpr suspend. 883 */ 884 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 885 } 886 887 /* 888 * Free a pause thread for a CPU. 889 */ 890 static void 891 cpu_pause_free(cpu_t *cp) 892 { 893 kthread_id_t t; 894 int cpun = cp->cpu_id; 895 896 ASSERT(MUTEX_HELD(&cpu_lock)); 897 /* 898 * We have to get the thread and tell it to die. 899 */ 900 if ((t = cp->cpu_pause_thread) == NULL) { 901 ASSERT(safe_list[cpun] == PAUSE_IDLE); 902 return; 903 } 904 thread_lock(t); 905 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 906 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 907 t->t_pri = v.v_nglobpris - 1; 908 ASSERT(safe_list[cpun] == PAUSE_IDLE); 909 safe_list[cpun] = PAUSE_DIE; 910 THREAD_TRANSITION(t); 911 setbackdq(t); 912 thread_unlock_nopreempt(t); 913 914 /* 915 * If we don't wait for the thread to actually die, it may try to 916 * run on the wrong cpu as part of an actual call to pause_cpus(). 917 */ 918 mutex_enter(&pause_free_mutex); 919 while (safe_list[cpun] != PAUSE_DEAD) { 920 cv_wait(&pause_free_cv, &pause_free_mutex); 921 } 922 mutex_exit(&pause_free_mutex); 923 safe_list[cpun] = PAUSE_IDLE; 924 925 cp->cpu_pause_thread = NULL; 926 } 927 928 /* 929 * Initialize basic structures for pausing CPUs. 930 */ 931 void 932 cpu_pause_init() 933 { 934 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 935 /* 936 * Create initial CPU pause thread. 937 */ 938 cpu_pause_alloc(CPU); 939 } 940 941 /* 942 * Start the threads used to pause another CPU. 943 */ 944 static int 945 cpu_pause_start(processorid_t cpu_id) 946 { 947 int i; 948 int cpu_count = 0; 949 950 for (i = 0; i < NCPU; i++) { 951 cpu_t *cp; 952 kthread_id_t t; 953 954 cp = cpu[i]; 955 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 956 safe_list[i] = PAUSE_WAIT; 957 continue; 958 } 959 960 /* 961 * Skip CPU if it is quiesced or not yet started. 962 */ 963 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 964 safe_list[i] = PAUSE_WAIT; 965 continue; 966 } 967 968 /* 969 * Start this CPU's pause thread. 970 */ 971 t = cp->cpu_pause_thread; 972 thread_lock(t); 973 /* 974 * Reset the priority, since nglobpris may have 975 * changed since the thread was created, if someone 976 * has loaded the RT (or some other) scheduling 977 * class. 978 */ 979 t->t_pri = v.v_nglobpris - 1; 980 THREAD_TRANSITION(t); 981 setbackdq(t); 982 thread_unlock_nopreempt(t); 983 ++cpu_count; 984 } 985 return (cpu_count); 986 } 987 988 989 /* 990 * Pause all of the CPUs except the one we are on by creating a high 991 * priority thread bound to those CPUs. 992 * 993 * Note that one must be extremely careful regarding code 994 * executed while CPUs are paused. Since a CPU may be paused 995 * while a thread scheduling on that CPU is holding an adaptive 996 * lock, code executed with CPUs paused must not acquire adaptive 997 * (or low-level spin) locks. Also, such code must not block, 998 * since the thread that is supposed to initiate the wakeup may 999 * never run. 1000 * 1001 * With a few exceptions, the restrictions on code executed with CPUs 1002 * paused match those for code executed at high-level interrupt 1003 * context. 1004 */ 1005 void 1006 pause_cpus(cpu_t *off_cp, void *(*func)(void *)) 1007 { 1008 processorid_t cpu_id; 1009 int i; 1010 struct _cpu_pause_info *cpi = &cpu_pause_info; 1011 1012 ASSERT(MUTEX_HELD(&cpu_lock)); 1013 ASSERT(cpi->cp_paused == NULL); 1014 cpi->cp_count = 0; 1015 cpi->cp_go = 0; 1016 for (i = 0; i < NCPU; i++) 1017 safe_list[i] = PAUSE_IDLE; 1018 kpreempt_disable(); 1019 1020 cpi->cp_func = func; 1021 1022 /* 1023 * If running on the cpu that is going offline, get off it. 1024 * This is so that it won't be necessary to rechoose a CPU 1025 * when done. 1026 */ 1027 if (CPU == off_cp) 1028 cpu_id = off_cp->cpu_next_part->cpu_id; 1029 else 1030 cpu_id = CPU->cpu_id; 1031 affinity_set(cpu_id); 1032 1033 /* 1034 * Start the pause threads and record how many were started 1035 */ 1036 cpi->cp_count = cpu_pause_start(cpu_id); 1037 1038 /* 1039 * Now wait for all CPUs to be running the pause thread. 1040 */ 1041 while (cpi->cp_count > 0) { 1042 /* 1043 * Spin reading the count without grabbing the disp 1044 * lock to make sure we don't prevent the pause 1045 * threads from getting the lock. 1046 */ 1047 while (sema_held(&cpi->cp_sem)) 1048 ; 1049 if (sema_tryp(&cpi->cp_sem)) 1050 --cpi->cp_count; 1051 } 1052 cpi->cp_go = 1; /* all have reached cpu_pause */ 1053 1054 /* 1055 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1056 * to PAUSE_WAIT.) 1057 */ 1058 for (i = 0; i < NCPU; i++) { 1059 while (safe_list[i] != PAUSE_WAIT) 1060 ; 1061 } 1062 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1063 cpi->cp_paused = curthread; 1064 } 1065 1066 /* 1067 * Check whether the current thread has CPUs paused 1068 */ 1069 int 1070 cpus_paused(void) 1071 { 1072 if (cpu_pause_info.cp_paused != NULL) { 1073 ASSERT(cpu_pause_info.cp_paused == curthread); 1074 return (1); 1075 } 1076 return (0); 1077 } 1078 1079 static cpu_t * 1080 cpu_get_all(processorid_t cpun) 1081 { 1082 ASSERT(MUTEX_HELD(&cpu_lock)); 1083 1084 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1085 return (NULL); 1086 return (cpu[cpun]); 1087 } 1088 1089 /* 1090 * Check whether cpun is a valid processor id and whether it should be 1091 * visible from the current zone. If it is, return a pointer to the 1092 * associated CPU structure. 1093 */ 1094 cpu_t * 1095 cpu_get(processorid_t cpun) 1096 { 1097 cpu_t *c; 1098 1099 ASSERT(MUTEX_HELD(&cpu_lock)); 1100 c = cpu_get_all(cpun); 1101 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1102 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1103 return (NULL); 1104 return (c); 1105 } 1106 1107 /* 1108 * The following functions should be used to check CPU states in the kernel. 1109 * They should be invoked with cpu_lock held. Kernel subsystems interested 1110 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1111 * states. Those are for user-land (and system call) use only. 1112 */ 1113 1114 /* 1115 * Determine whether the CPU is online and handling interrupts. 1116 */ 1117 int 1118 cpu_is_online(cpu_t *cpu) 1119 { 1120 ASSERT(MUTEX_HELD(&cpu_lock)); 1121 return (cpu_flagged_online(cpu->cpu_flags)); 1122 } 1123 1124 /* 1125 * Determine whether the CPU is offline (this includes spare and faulted). 1126 */ 1127 int 1128 cpu_is_offline(cpu_t *cpu) 1129 { 1130 ASSERT(MUTEX_HELD(&cpu_lock)); 1131 return (cpu_flagged_offline(cpu->cpu_flags)); 1132 } 1133 1134 /* 1135 * Determine whether the CPU is powered off. 1136 */ 1137 int 1138 cpu_is_poweredoff(cpu_t *cpu) 1139 { 1140 ASSERT(MUTEX_HELD(&cpu_lock)); 1141 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1142 } 1143 1144 /* 1145 * Determine whether the CPU is handling interrupts. 1146 */ 1147 int 1148 cpu_is_nointr(cpu_t *cpu) 1149 { 1150 ASSERT(MUTEX_HELD(&cpu_lock)); 1151 return (cpu_flagged_nointr(cpu->cpu_flags)); 1152 } 1153 1154 /* 1155 * Determine whether the CPU is active (scheduling threads). 1156 */ 1157 int 1158 cpu_is_active(cpu_t *cpu) 1159 { 1160 ASSERT(MUTEX_HELD(&cpu_lock)); 1161 return (cpu_flagged_active(cpu->cpu_flags)); 1162 } 1163 1164 /* 1165 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1166 */ 1167 int 1168 cpu_flagged_online(cpu_flag_t cpu_flags) 1169 { 1170 return (cpu_flagged_active(cpu_flags) && 1171 (cpu_flags & CPU_ENABLE)); 1172 } 1173 1174 int 1175 cpu_flagged_offline(cpu_flag_t cpu_flags) 1176 { 1177 return (((cpu_flags & CPU_POWEROFF) == 0) && 1178 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1179 } 1180 1181 int 1182 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1183 { 1184 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1185 } 1186 1187 int 1188 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1189 { 1190 return (cpu_flagged_active(cpu_flags) && 1191 (cpu_flags & CPU_ENABLE) == 0); 1192 } 1193 1194 int 1195 cpu_flagged_active(cpu_flag_t cpu_flags) 1196 { 1197 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1198 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1199 } 1200 1201 /* 1202 * Bring the indicated CPU online. 1203 */ 1204 int 1205 cpu_online(cpu_t *cp) 1206 { 1207 int error = 0; 1208 1209 /* 1210 * Handle on-line request. 1211 * This code must put the new CPU on the active list before 1212 * starting it because it will not be paused, and will start 1213 * using the active list immediately. The real start occurs 1214 * when the CPU_QUIESCED flag is turned off. 1215 */ 1216 1217 ASSERT(MUTEX_HELD(&cpu_lock)); 1218 1219 /* 1220 * Put all the cpus into a known safe place. 1221 * No mutexes can be entered while CPUs are paused. 1222 */ 1223 error = mp_cpu_start(cp); /* arch-dep hook */ 1224 if (error == 0) { 1225 pg_cpupart_in(cp, cp->cpu_part); 1226 pause_cpus(NULL, NULL); 1227 cpu_add_active_internal(cp); 1228 if (cp->cpu_flags & CPU_FAULTED) { 1229 cp->cpu_flags &= ~CPU_FAULTED; 1230 mp_cpu_faulted_exit(cp); 1231 } 1232 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1233 CPU_SPARE); 1234 CPU_NEW_GENERATION(cp); 1235 start_cpus(); 1236 cpu_stats_kstat_create(cp); 1237 cpu_create_intrstat(cp); 1238 lgrp_kstat_create(cp); 1239 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1240 cpu_intr_enable(cp); /* arch-dep hook */ 1241 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1242 cpu_set_state(cp); 1243 cyclic_online(cp); 1244 /* 1245 * This has to be called only after cyclic_online(). This 1246 * function uses cyclics. 1247 */ 1248 callout_cpu_online(cp); 1249 poke_cpu(cp->cpu_id); 1250 } 1251 1252 return (error); 1253 } 1254 1255 /* 1256 * Take the indicated CPU offline. 1257 */ 1258 int 1259 cpu_offline(cpu_t *cp, int flags) 1260 { 1261 cpupart_t *pp; 1262 int error = 0; 1263 cpu_t *ncp; 1264 int intr_enable; 1265 int cyclic_off = 0; 1266 int callout_off = 0; 1267 int loop_count; 1268 int no_quiesce = 0; 1269 int (*bound_func)(struct cpu *, int); 1270 kthread_t *t; 1271 lpl_t *cpu_lpl; 1272 proc_t *p; 1273 int lgrp_diff_lpl; 1274 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0; 1275 1276 ASSERT(MUTEX_HELD(&cpu_lock)); 1277 1278 /* 1279 * If we're going from faulted or spare to offline, just 1280 * clear these flags and update CPU state. 1281 */ 1282 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1283 if (cp->cpu_flags & CPU_FAULTED) { 1284 cp->cpu_flags &= ~CPU_FAULTED; 1285 mp_cpu_faulted_exit(cp); 1286 } 1287 cp->cpu_flags &= ~CPU_SPARE; 1288 cpu_set_state(cp); 1289 return (0); 1290 } 1291 1292 /* 1293 * Handle off-line request. 1294 */ 1295 pp = cp->cpu_part; 1296 /* 1297 * Don't offline last online CPU in partition 1298 */ 1299 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1300 return (EBUSY); 1301 /* 1302 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1303 * if we were asked to. 1304 */ 1305 error = cpu_unbind(cp->cpu_id, unbind_all_threads); 1306 if (error != 0) 1307 return (error); 1308 /* 1309 * We shouldn't be bound to this CPU ourselves. 1310 */ 1311 if (curthread->t_bound_cpu == cp) 1312 return (EBUSY); 1313 1314 /* 1315 * Tell interested parties that this CPU is going offline. 1316 */ 1317 CPU_NEW_GENERATION(cp); 1318 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1319 1320 /* 1321 * Tell the PG subsystem that the CPU is leaving the partition 1322 */ 1323 pg_cpupart_out(cp, pp); 1324 1325 /* 1326 * Take the CPU out of interrupt participation so we won't find 1327 * bound kernel threads. If the architecture cannot completely 1328 * shut off interrupts on the CPU, don't quiesce it, but don't 1329 * run anything but interrupt thread... this is indicated by 1330 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1331 * off. 1332 */ 1333 intr_enable = cp->cpu_flags & CPU_ENABLE; 1334 if (intr_enable) 1335 no_quiesce = cpu_intr_disable(cp); 1336 1337 /* 1338 * Record that we are aiming to offline this cpu. This acts as 1339 * a barrier to further weak binding requests in thread_nomigrate 1340 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1341 * lean away from this cpu. Further strong bindings are already 1342 * avoided since we hold cpu_lock. Since threads that are set 1343 * runnable around now and others coming off the target cpu are 1344 * directed away from the target, existing strong and weak bindings 1345 * (especially the latter) to the target cpu stand maximum chance of 1346 * being able to unbind during the short delay loop below (if other 1347 * unbound threads compete they may not see cpu in time to unbind 1348 * even if they would do so immediately. 1349 */ 1350 cpu_inmotion = cp; 1351 membar_enter(); 1352 1353 /* 1354 * Check for kernel threads (strong or weak) bound to that CPU. 1355 * Strongly bound threads may not unbind, and we'll have to return 1356 * EBUSY. Weakly bound threads should always disappear - we've 1357 * stopped more weak binding with cpu_inmotion and existing 1358 * bindings will drain imminently (they may not block). Nonetheless 1359 * we will wait for a fixed period for all bound threads to disappear. 1360 * Inactive interrupt threads are OK (they'll be in TS_FREE 1361 * state). If test finds some bound threads, wait a few ticks 1362 * to give short-lived threads (such as interrupts) chance to 1363 * complete. Note that if no_quiesce is set, i.e. this cpu 1364 * is required to service interrupts, then we take the route 1365 * that permits interrupt threads to be active (or bypassed). 1366 */ 1367 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1368 1369 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1370 if (loop_count >= 5) { 1371 error = EBUSY; /* some threads still bound */ 1372 break; 1373 } 1374 1375 /* 1376 * If some threads were assigned, give them 1377 * a chance to complete or move. 1378 * 1379 * This assumes that the clock_thread is not bound 1380 * to any CPU, because the clock_thread is needed to 1381 * do the delay(hz/100). 1382 * 1383 * Note: we still hold the cpu_lock while waiting for 1384 * the next clock tick. This is OK since it isn't 1385 * needed for anything else except processor_bind(2), 1386 * and system initialization. If we drop the lock, 1387 * we would risk another p_online disabling the last 1388 * processor. 1389 */ 1390 delay(hz/100); 1391 } 1392 1393 if (error == 0 && callout_off == 0) { 1394 callout_cpu_offline(cp); 1395 callout_off = 1; 1396 } 1397 1398 if (error == 0 && cyclic_off == 0) { 1399 if (!cyclic_offline(cp)) { 1400 /* 1401 * We must have bound cyclics... 1402 */ 1403 error = EBUSY; 1404 goto out; 1405 } 1406 cyclic_off = 1; 1407 } 1408 1409 /* 1410 * Call mp_cpu_stop() to perform any special operations 1411 * needed for this machine architecture to offline a CPU. 1412 */ 1413 if (error == 0) 1414 error = mp_cpu_stop(cp); /* arch-dep hook */ 1415 1416 /* 1417 * If that all worked, take the CPU offline and decrement 1418 * ncpus_online. 1419 */ 1420 if (error == 0) { 1421 /* 1422 * Put all the cpus into a known safe place. 1423 * No mutexes can be entered while CPUs are paused. 1424 */ 1425 pause_cpus(cp, NULL); 1426 /* 1427 * Repeat the operation, if necessary, to make sure that 1428 * all outstanding low-level interrupts run to completion 1429 * before we set the CPU_QUIESCED flag. It's also possible 1430 * that a thread has weak bound to the cpu despite our raising 1431 * cpu_inmotion above since it may have loaded that 1432 * value before the barrier became visible (this would have 1433 * to be the thread that was on the target cpu at the time 1434 * we raised the barrier). 1435 */ 1436 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1437 (*bound_func)(cp, 1)) { 1438 start_cpus(); 1439 (void) mp_cpu_start(cp); 1440 goto again; 1441 } 1442 ncp = cp->cpu_next_part; 1443 cpu_lpl = cp->cpu_lpl; 1444 ASSERT(cpu_lpl != NULL); 1445 1446 /* 1447 * Remove the CPU from the list of active CPUs. 1448 */ 1449 cpu_remove_active(cp); 1450 1451 /* 1452 * Walk the active process list and look for threads 1453 * whose home lgroup needs to be updated, or 1454 * the last CPU they run on is the one being offlined now. 1455 */ 1456 1457 ASSERT(curthread->t_cpu != cp); 1458 for (p = practive; p != NULL; p = p->p_next) { 1459 1460 t = p->p_tlist; 1461 1462 if (t == NULL) 1463 continue; 1464 1465 lgrp_diff_lpl = 0; 1466 1467 do { 1468 ASSERT(t->t_lpl != NULL); 1469 /* 1470 * Taking last CPU in lpl offline 1471 * Rehome thread if it is in this lpl 1472 * Otherwise, update the count of how many 1473 * threads are in this CPU's lgroup but have 1474 * a different lpl. 1475 */ 1476 1477 if (cpu_lpl->lpl_ncpu == 0) { 1478 if (t->t_lpl == cpu_lpl) 1479 lgrp_move_thread(t, 1480 lgrp_choose(t, 1481 t->t_cpupart), 0); 1482 else if (t->t_lpl->lpl_lgrpid == 1483 cpu_lpl->lpl_lgrpid) 1484 lgrp_diff_lpl++; 1485 } 1486 ASSERT(t->t_lpl->lpl_ncpu > 0); 1487 1488 /* 1489 * Update CPU last ran on if it was this CPU 1490 */ 1491 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1492 t->t_cpu = disp_lowpri_cpu(ncp, 1493 t->t_lpl, t->t_pri, NULL); 1494 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1495 t->t_weakbound_cpu == cp); 1496 1497 t = t->t_forw; 1498 } while (t != p->p_tlist); 1499 1500 /* 1501 * Didn't find any threads in the same lgroup as this 1502 * CPU with a different lpl, so remove the lgroup from 1503 * the process lgroup bitmask. 1504 */ 1505 1506 if (lgrp_diff_lpl == 0) 1507 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1508 } 1509 1510 /* 1511 * Walk thread list looking for threads that need to be 1512 * rehomed, since there are some threads that are not in 1513 * their process's p_tlist. 1514 */ 1515 1516 t = curthread; 1517 do { 1518 ASSERT(t != NULL && t->t_lpl != NULL); 1519 1520 /* 1521 * Rehome threads with same lpl as this CPU when this 1522 * is the last CPU in the lpl. 1523 */ 1524 1525 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1526 lgrp_move_thread(t, 1527 lgrp_choose(t, t->t_cpupart), 1); 1528 1529 ASSERT(t->t_lpl->lpl_ncpu > 0); 1530 1531 /* 1532 * Update CPU last ran on if it was this CPU 1533 */ 1534 1535 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1536 t->t_cpu = disp_lowpri_cpu(ncp, 1537 t->t_lpl, t->t_pri, NULL); 1538 } 1539 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1540 t->t_weakbound_cpu == cp); 1541 t = t->t_next; 1542 1543 } while (t != curthread); 1544 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1545 cp->cpu_flags |= CPU_OFFLINE; 1546 disp_cpu_inactive(cp); 1547 if (!no_quiesce) 1548 cp->cpu_flags |= CPU_QUIESCED; 1549 ncpus_online--; 1550 cpu_set_state(cp); 1551 cpu_inmotion = NULL; 1552 start_cpus(); 1553 cpu_stats_kstat_destroy(cp); 1554 cpu_delete_intrstat(cp); 1555 lgrp_kstat_destroy(cp); 1556 } 1557 1558 out: 1559 cpu_inmotion = NULL; 1560 1561 /* 1562 * If we failed, re-enable interrupts. 1563 * Do this even if cpu_intr_disable returned an error, because 1564 * it may have partially disabled interrupts. 1565 */ 1566 if (error && intr_enable) 1567 cpu_intr_enable(cp); 1568 1569 /* 1570 * If we failed, but managed to offline the cyclic subsystem on this 1571 * CPU, bring it back online. 1572 */ 1573 if (error && cyclic_off) 1574 cyclic_online(cp); 1575 1576 /* 1577 * If we failed, but managed to offline callouts on this CPU, 1578 * bring it back online. 1579 */ 1580 if (error && callout_off) 1581 callout_cpu_online(cp); 1582 1583 /* 1584 * If we failed, tell the PG subsystem that the CPU is back 1585 */ 1586 pg_cpupart_in(cp, pp); 1587 1588 /* 1589 * If we failed, we need to notify everyone that this CPU is back on. 1590 */ 1591 if (error != 0) { 1592 CPU_NEW_GENERATION(cp); 1593 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1594 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1595 } 1596 1597 return (error); 1598 } 1599 1600 /* 1601 * Mark the indicated CPU as faulted, taking it offline. 1602 */ 1603 int 1604 cpu_faulted(cpu_t *cp, int flags) 1605 { 1606 int error = 0; 1607 1608 ASSERT(MUTEX_HELD(&cpu_lock)); 1609 ASSERT(!cpu_is_poweredoff(cp)); 1610 1611 if (cpu_is_offline(cp)) { 1612 cp->cpu_flags &= ~CPU_SPARE; 1613 cp->cpu_flags |= CPU_FAULTED; 1614 mp_cpu_faulted_enter(cp); 1615 cpu_set_state(cp); 1616 return (0); 1617 } 1618 1619 if ((error = cpu_offline(cp, flags)) == 0) { 1620 cp->cpu_flags |= CPU_FAULTED; 1621 mp_cpu_faulted_enter(cp); 1622 cpu_set_state(cp); 1623 } 1624 1625 return (error); 1626 } 1627 1628 /* 1629 * Mark the indicated CPU as a spare, taking it offline. 1630 */ 1631 int 1632 cpu_spare(cpu_t *cp, int flags) 1633 { 1634 int error = 0; 1635 1636 ASSERT(MUTEX_HELD(&cpu_lock)); 1637 ASSERT(!cpu_is_poweredoff(cp)); 1638 1639 if (cpu_is_offline(cp)) { 1640 if (cp->cpu_flags & CPU_FAULTED) { 1641 cp->cpu_flags &= ~CPU_FAULTED; 1642 mp_cpu_faulted_exit(cp); 1643 } 1644 cp->cpu_flags |= CPU_SPARE; 1645 cpu_set_state(cp); 1646 return (0); 1647 } 1648 1649 if ((error = cpu_offline(cp, flags)) == 0) { 1650 cp->cpu_flags |= CPU_SPARE; 1651 cpu_set_state(cp); 1652 } 1653 1654 return (error); 1655 } 1656 1657 /* 1658 * Take the indicated CPU from poweroff to offline. 1659 */ 1660 int 1661 cpu_poweron(cpu_t *cp) 1662 { 1663 int error = ENOTSUP; 1664 1665 ASSERT(MUTEX_HELD(&cpu_lock)); 1666 ASSERT(cpu_is_poweredoff(cp)); 1667 1668 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1669 if (error == 0) 1670 cpu_set_state(cp); 1671 1672 return (error); 1673 } 1674 1675 /* 1676 * Take the indicated CPU from any inactive state to powered off. 1677 */ 1678 int 1679 cpu_poweroff(cpu_t *cp) 1680 { 1681 int error = ENOTSUP; 1682 1683 ASSERT(MUTEX_HELD(&cpu_lock)); 1684 ASSERT(cpu_is_offline(cp)); 1685 1686 if (!(cp->cpu_flags & CPU_QUIESCED)) 1687 return (EBUSY); /* not completely idle */ 1688 1689 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1690 if (error == 0) 1691 cpu_set_state(cp); 1692 1693 return (error); 1694 } 1695 1696 /* 1697 * Initialize the Sequential CPU id lookup table 1698 */ 1699 void 1700 cpu_seq_tbl_init() 1701 { 1702 cpu_t **tbl; 1703 1704 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP); 1705 tbl[0] = CPU; 1706 1707 cpu_seq = tbl; 1708 } 1709 1710 /* 1711 * Initialize the CPU lists for the first CPU. 1712 */ 1713 void 1714 cpu_list_init(cpu_t *cp) 1715 { 1716 cp->cpu_next = cp; 1717 cp->cpu_prev = cp; 1718 cpu_list = cp; 1719 clock_cpu_list = cp; 1720 1721 cp->cpu_next_onln = cp; 1722 cp->cpu_prev_onln = cp; 1723 cpu_active = cp; 1724 1725 cp->cpu_seqid = 0; 1726 CPUSET_ADD(cpu_seqid_inuse, 0); 1727 1728 /* 1729 * Bootstrap cpu_seq using cpu_list 1730 * The cpu_seq[] table will be dynamically allocated 1731 * when kmem later becomes available (but before going MP) 1732 */ 1733 cpu_seq = &cpu_list; 1734 1735 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1736 cp_default.cp_cpulist = cp; 1737 cp_default.cp_ncpus = 1; 1738 cp->cpu_next_part = cp; 1739 cp->cpu_prev_part = cp; 1740 cp->cpu_part = &cp_default; 1741 1742 CPUSET_ADD(cpu_available, cp->cpu_id); 1743 } 1744 1745 /* 1746 * Insert a CPU into the list of available CPUs. 1747 */ 1748 void 1749 cpu_add_unit(cpu_t *cp) 1750 { 1751 int seqid; 1752 1753 ASSERT(MUTEX_HELD(&cpu_lock)); 1754 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1755 1756 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1757 1758 /* 1759 * Note: most users of the cpu_list will grab the 1760 * cpu_lock to insure that it isn't modified. However, 1761 * certain users can't or won't do that. To allow this 1762 * we pause the other cpus. Users who walk the list 1763 * without cpu_lock, must disable kernel preemption 1764 * to insure that the list isn't modified underneath 1765 * them. Also, any cached pointers to cpu structures 1766 * must be revalidated by checking to see if the 1767 * cpu_next pointer points to itself. This check must 1768 * be done with the cpu_lock held or kernel preemption 1769 * disabled. This check relies upon the fact that 1770 * old cpu structures are not free'ed or cleared after 1771 * then are removed from the cpu_list. 1772 * 1773 * Note that the clock code walks the cpu list dereferencing 1774 * the cpu_part pointer, so we need to initialize it before 1775 * adding the cpu to the list. 1776 */ 1777 cp->cpu_part = &cp_default; 1778 pause_cpus(NULL, NULL); 1779 cp->cpu_next = cpu_list; 1780 cp->cpu_prev = cpu_list->cpu_prev; 1781 cpu_list->cpu_prev->cpu_next = cp; 1782 cpu_list->cpu_prev = cp; 1783 start_cpus(); 1784 1785 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1786 continue; 1787 CPUSET_ADD(cpu_seqid_inuse, seqid); 1788 cp->cpu_seqid = seqid; 1789 1790 if (seqid > max_cpu_seqid_ever) 1791 max_cpu_seqid_ever = seqid; 1792 1793 ASSERT(ncpus < max_ncpus); 1794 ncpus++; 1795 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1796 cpu[cp->cpu_id] = cp; 1797 CPUSET_ADD(cpu_available, cp->cpu_id); 1798 cpu_seq[cp->cpu_seqid] = cp; 1799 1800 /* 1801 * allocate a pause thread for this CPU. 1802 */ 1803 cpu_pause_alloc(cp); 1804 1805 /* 1806 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1807 * link them into a list of just that CPU. 1808 * This is so that disp_lowpri_cpu will work for thread_create in 1809 * pause_cpus() when called from the startup thread in a new CPU. 1810 */ 1811 cp->cpu_next_onln = cp; 1812 cp->cpu_prev_onln = cp; 1813 cpu_info_kstat_create(cp); 1814 cp->cpu_next_part = cp; 1815 cp->cpu_prev_part = cp; 1816 1817 init_cpu_mstate(cp, CMS_SYSTEM); 1818 1819 pool_pset_mod = gethrtime(); 1820 } 1821 1822 /* 1823 * Do the opposite of cpu_add_unit(). 1824 */ 1825 void 1826 cpu_del_unit(int cpuid) 1827 { 1828 struct cpu *cp, *cpnext; 1829 1830 ASSERT(MUTEX_HELD(&cpu_lock)); 1831 cp = cpu[cpuid]; 1832 ASSERT(cp != NULL); 1833 1834 ASSERT(cp->cpu_next_onln == cp); 1835 ASSERT(cp->cpu_prev_onln == cp); 1836 ASSERT(cp->cpu_next_part == cp); 1837 ASSERT(cp->cpu_prev_part == cp); 1838 1839 /* 1840 * Tear down the CPU's physical ID cache, and update any 1841 * processor groups 1842 */ 1843 pg_cpu_fini(cp, NULL); 1844 pghw_physid_destroy(cp); 1845 1846 /* 1847 * Destroy kstat stuff. 1848 */ 1849 cpu_info_kstat_destroy(cp); 1850 term_cpu_mstate(cp); 1851 /* 1852 * Free up pause thread. 1853 */ 1854 cpu_pause_free(cp); 1855 CPUSET_DEL(cpu_available, cp->cpu_id); 1856 cpu[cp->cpu_id] = NULL; 1857 cpu_seq[cp->cpu_seqid] = NULL; 1858 1859 /* 1860 * The clock thread and mutex_vector_enter cannot hold the 1861 * cpu_lock while traversing the cpu list, therefore we pause 1862 * all other threads by pausing the other cpus. These, and any 1863 * other routines holding cpu pointers while possibly sleeping 1864 * must be sure to call kpreempt_disable before processing the 1865 * list and be sure to check that the cpu has not been deleted 1866 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1867 * to keep the deleted cpu structure around. 1868 * 1869 * Note that this MUST be done AFTER cpu_available 1870 * has been updated so that we don't waste time 1871 * trying to pause the cpu we're trying to delete. 1872 */ 1873 pause_cpus(NULL, NULL); 1874 1875 cpnext = cp->cpu_next; 1876 cp->cpu_prev->cpu_next = cp->cpu_next; 1877 cp->cpu_next->cpu_prev = cp->cpu_prev; 1878 if (cp == cpu_list) 1879 cpu_list = cpnext; 1880 1881 /* 1882 * Signals that the cpu has been deleted (see above). 1883 */ 1884 cp->cpu_next = NULL; 1885 cp->cpu_prev = NULL; 1886 1887 start_cpus(); 1888 1889 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1890 ncpus--; 1891 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1892 1893 pool_pset_mod = gethrtime(); 1894 } 1895 1896 /* 1897 * Add a CPU to the list of active CPUs. 1898 * This routine must not get any locks, because other CPUs are paused. 1899 */ 1900 static void 1901 cpu_add_active_internal(cpu_t *cp) 1902 { 1903 cpupart_t *pp = cp->cpu_part; 1904 1905 ASSERT(MUTEX_HELD(&cpu_lock)); 1906 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1907 1908 ncpus_online++; 1909 cpu_set_state(cp); 1910 cp->cpu_next_onln = cpu_active; 1911 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1912 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1913 cpu_active->cpu_prev_onln = cp; 1914 1915 if (pp->cp_cpulist) { 1916 cp->cpu_next_part = pp->cp_cpulist; 1917 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1918 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1919 pp->cp_cpulist->cpu_prev_part = cp; 1920 } else { 1921 ASSERT(pp->cp_ncpus == 0); 1922 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1923 } 1924 pp->cp_ncpus++; 1925 if (pp->cp_ncpus == 1) { 1926 cp_numparts_nonempty++; 1927 ASSERT(cp_numparts_nonempty != 0); 1928 } 1929 1930 pg_cpu_active(cp); 1931 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1932 1933 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1934 } 1935 1936 /* 1937 * Add a CPU to the list of active CPUs. 1938 * This is called from machine-dependent layers when a new CPU is started. 1939 */ 1940 void 1941 cpu_add_active(cpu_t *cp) 1942 { 1943 pg_cpupart_in(cp, cp->cpu_part); 1944 1945 pause_cpus(NULL, NULL); 1946 cpu_add_active_internal(cp); 1947 start_cpus(); 1948 1949 cpu_stats_kstat_create(cp); 1950 cpu_create_intrstat(cp); 1951 lgrp_kstat_create(cp); 1952 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1953 } 1954 1955 1956 /* 1957 * Remove a CPU from the list of active CPUs. 1958 * This routine must not get any locks, because other CPUs are paused. 1959 */ 1960 /* ARGSUSED */ 1961 static void 1962 cpu_remove_active(cpu_t *cp) 1963 { 1964 cpupart_t *pp = cp->cpu_part; 1965 1966 ASSERT(MUTEX_HELD(&cpu_lock)); 1967 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1968 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1969 1970 pg_cpu_inactive(cp); 1971 1972 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1973 1974 if (cp == clock_cpu_list) 1975 clock_cpu_list = cp->cpu_next_onln; 1976 1977 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1978 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1979 if (cpu_active == cp) { 1980 cpu_active = cp->cpu_next_onln; 1981 } 1982 cp->cpu_next_onln = cp; 1983 cp->cpu_prev_onln = cp; 1984 1985 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1986 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1987 if (pp->cp_cpulist == cp) { 1988 pp->cp_cpulist = cp->cpu_next_part; 1989 ASSERT(pp->cp_cpulist != cp); 1990 } 1991 cp->cpu_next_part = cp; 1992 cp->cpu_prev_part = cp; 1993 pp->cp_ncpus--; 1994 if (pp->cp_ncpus == 0) { 1995 cp_numparts_nonempty--; 1996 ASSERT(cp_numparts_nonempty != 0); 1997 } 1998 } 1999 2000 /* 2001 * Routine used to setup a newly inserted CPU in preparation for starting 2002 * it running code. 2003 */ 2004 int 2005 cpu_configure(int cpuid) 2006 { 2007 int retval = 0; 2008 2009 ASSERT(MUTEX_HELD(&cpu_lock)); 2010 2011 /* 2012 * Some structures are statically allocated based upon 2013 * the maximum number of cpus the system supports. Do not 2014 * try to add anything beyond this limit. 2015 */ 2016 if (cpuid < 0 || cpuid >= NCPU) { 2017 return (EINVAL); 2018 } 2019 2020 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 2021 return (EALREADY); 2022 } 2023 2024 if ((retval = mp_cpu_configure(cpuid)) != 0) { 2025 return (retval); 2026 } 2027 2028 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 2029 cpu_set_state(cpu[cpuid]); 2030 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 2031 if (retval != 0) 2032 (void) mp_cpu_unconfigure(cpuid); 2033 2034 return (retval); 2035 } 2036 2037 /* 2038 * Routine used to cleanup a CPU that has been powered off. This will 2039 * destroy all per-cpu information related to this cpu. 2040 */ 2041 int 2042 cpu_unconfigure(int cpuid) 2043 { 2044 int error; 2045 2046 ASSERT(MUTEX_HELD(&cpu_lock)); 2047 2048 if (cpu[cpuid] == NULL) { 2049 return (ENODEV); 2050 } 2051 2052 if (cpu[cpuid]->cpu_flags == 0) { 2053 return (EALREADY); 2054 } 2055 2056 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 2057 return (EBUSY); 2058 } 2059 2060 if (cpu[cpuid]->cpu_props != NULL) { 2061 (void) nvlist_free(cpu[cpuid]->cpu_props); 2062 cpu[cpuid]->cpu_props = NULL; 2063 } 2064 2065 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 2066 2067 if (error != 0) 2068 return (error); 2069 2070 return (mp_cpu_unconfigure(cpuid)); 2071 } 2072 2073 /* 2074 * Routines for registering and de-registering cpu_setup callback functions. 2075 * 2076 * Caller's context 2077 * These routines must not be called from a driver's attach(9E) or 2078 * detach(9E) entry point. 2079 * 2080 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 2081 */ 2082 2083 /* 2084 * Ideally, these would be dynamically allocated and put into a linked 2085 * list; however that is not feasible because the registration routine 2086 * has to be available before the kmem allocator is working (in fact, 2087 * it is called by the kmem allocator init code). In any case, there 2088 * are quite a few extra entries for future users. 2089 */ 2090 #define NCPU_SETUPS 20 2091 2092 struct cpu_setup { 2093 cpu_setup_func_t *func; 2094 void *arg; 2095 } cpu_setups[NCPU_SETUPS]; 2096 2097 void 2098 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2099 { 2100 int i; 2101 2102 ASSERT(MUTEX_HELD(&cpu_lock)); 2103 2104 for (i = 0; i < NCPU_SETUPS; i++) 2105 if (cpu_setups[i].func == NULL) 2106 break; 2107 if (i >= NCPU_SETUPS) 2108 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2109 2110 cpu_setups[i].func = func; 2111 cpu_setups[i].arg = arg; 2112 } 2113 2114 void 2115 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2116 { 2117 int i; 2118 2119 ASSERT(MUTEX_HELD(&cpu_lock)); 2120 2121 for (i = 0; i < NCPU_SETUPS; i++) 2122 if ((cpu_setups[i].func == func) && 2123 (cpu_setups[i].arg == arg)) 2124 break; 2125 if (i >= NCPU_SETUPS) 2126 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2127 "deregister"); 2128 2129 cpu_setups[i].func = NULL; 2130 cpu_setups[i].arg = 0; 2131 } 2132 2133 /* 2134 * Call any state change hooks for this CPU, ignore any errors. 2135 */ 2136 void 2137 cpu_state_change_notify(int id, cpu_setup_t what) 2138 { 2139 int i; 2140 2141 ASSERT(MUTEX_HELD(&cpu_lock)); 2142 2143 for (i = 0; i < NCPU_SETUPS; i++) { 2144 if (cpu_setups[i].func != NULL) { 2145 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2146 } 2147 } 2148 } 2149 2150 /* 2151 * Call any state change hooks for this CPU, undo it if error found. 2152 */ 2153 static int 2154 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2155 { 2156 int i; 2157 int retval = 0; 2158 2159 ASSERT(MUTEX_HELD(&cpu_lock)); 2160 2161 for (i = 0; i < NCPU_SETUPS; i++) { 2162 if (cpu_setups[i].func != NULL) { 2163 retval = cpu_setups[i].func(what, id, 2164 cpu_setups[i].arg); 2165 if (retval) { 2166 for (i--; i >= 0; i--) { 2167 if (cpu_setups[i].func != NULL) 2168 cpu_setups[i].func(undo, 2169 id, cpu_setups[i].arg); 2170 } 2171 break; 2172 } 2173 } 2174 } 2175 return (retval); 2176 } 2177 2178 /* 2179 * Export information about this CPU via the kstat mechanism. 2180 */ 2181 static struct { 2182 kstat_named_t ci_state; 2183 kstat_named_t ci_state_begin; 2184 kstat_named_t ci_cpu_type; 2185 kstat_named_t ci_fpu_type; 2186 kstat_named_t ci_clock_MHz; 2187 kstat_named_t ci_chip_id; 2188 kstat_named_t ci_implementation; 2189 kstat_named_t ci_brandstr; 2190 kstat_named_t ci_core_id; 2191 kstat_named_t ci_curr_clock_Hz; 2192 kstat_named_t ci_supp_freq_Hz; 2193 kstat_named_t ci_pg_id; 2194 #if defined(__sparcv9) 2195 kstat_named_t ci_device_ID; 2196 kstat_named_t ci_cpu_fru; 2197 #endif 2198 #if defined(__x86) 2199 kstat_named_t ci_vendorstr; 2200 kstat_named_t ci_family; 2201 kstat_named_t ci_model; 2202 kstat_named_t ci_step; 2203 kstat_named_t ci_clogid; 2204 kstat_named_t ci_pkg_core_id; 2205 kstat_named_t ci_ncpuperchip; 2206 kstat_named_t ci_ncoreperchip; 2207 kstat_named_t ci_max_cstates; 2208 kstat_named_t ci_curr_cstate; 2209 kstat_named_t ci_cacheid; 2210 kstat_named_t ci_sktstr; 2211 #endif 2212 } cpu_info_template = { 2213 { "state", KSTAT_DATA_CHAR }, 2214 { "state_begin", KSTAT_DATA_LONG }, 2215 { "cpu_type", KSTAT_DATA_CHAR }, 2216 { "fpu_type", KSTAT_DATA_CHAR }, 2217 { "clock_MHz", KSTAT_DATA_LONG }, 2218 { "chip_id", KSTAT_DATA_LONG }, 2219 { "implementation", KSTAT_DATA_STRING }, 2220 { "brand", KSTAT_DATA_STRING }, 2221 { "core_id", KSTAT_DATA_LONG }, 2222 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2223 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2224 { "pg_id", KSTAT_DATA_LONG }, 2225 #if defined(__sparcv9) 2226 { "device_ID", KSTAT_DATA_UINT64 }, 2227 { "cpu_fru", KSTAT_DATA_STRING }, 2228 #endif 2229 #if defined(__x86) 2230 { "vendor_id", KSTAT_DATA_STRING }, 2231 { "family", KSTAT_DATA_INT32 }, 2232 { "model", KSTAT_DATA_INT32 }, 2233 { "stepping", KSTAT_DATA_INT32 }, 2234 { "clog_id", KSTAT_DATA_INT32 }, 2235 { "pkg_core_id", KSTAT_DATA_LONG }, 2236 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2237 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2238 { "supported_max_cstates", KSTAT_DATA_INT32 }, 2239 { "current_cstate", KSTAT_DATA_INT32 }, 2240 { "cache_id", KSTAT_DATA_INT32 }, 2241 { "socket_type", KSTAT_DATA_STRING }, 2242 #endif 2243 }; 2244 2245 static kmutex_t cpu_info_template_lock; 2246 2247 static int 2248 cpu_info_kstat_update(kstat_t *ksp, int rw) 2249 { 2250 cpu_t *cp = ksp->ks_private; 2251 const char *pi_state; 2252 2253 if (rw == KSTAT_WRITE) 2254 return (EACCES); 2255 2256 #if defined(__x86) 2257 /* Is the cpu still initialising itself? */ 2258 if (cpuid_checkpass(cp, 1) == 0) 2259 return (ENXIO); 2260 #endif 2261 switch (cp->cpu_type_info.pi_state) { 2262 case P_ONLINE: 2263 pi_state = PS_ONLINE; 2264 break; 2265 case P_POWEROFF: 2266 pi_state = PS_POWEROFF; 2267 break; 2268 case P_NOINTR: 2269 pi_state = PS_NOINTR; 2270 break; 2271 case P_FAULTED: 2272 pi_state = PS_FAULTED; 2273 break; 2274 case P_SPARE: 2275 pi_state = PS_SPARE; 2276 break; 2277 case P_OFFLINE: 2278 pi_state = PS_OFFLINE; 2279 break; 2280 default: 2281 pi_state = "unknown"; 2282 } 2283 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2284 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2285 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2286 cp->cpu_type_info.pi_processor_type, 15); 2287 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2288 cp->cpu_type_info.pi_fputypes, 15); 2289 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2290 cpu_info_template.ci_chip_id.value.l = 2291 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2292 kstat_named_setstr(&cpu_info_template.ci_implementation, 2293 cp->cpu_idstr); 2294 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2295 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2296 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2297 cp->cpu_curr_clock; 2298 cpu_info_template.ci_pg_id.value.l = 2299 cp->cpu_pg && cp->cpu_pg->cmt_lineage ? 2300 cp->cpu_pg->cmt_lineage->pg_id : -1; 2301 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2302 cp->cpu_supp_freqs); 2303 #if defined(__sparcv9) 2304 cpu_info_template.ci_device_ID.value.ui64 = 2305 cpunodes[cp->cpu_id].device_id; 2306 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2307 #endif 2308 #if defined(__x86) 2309 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2310 cpuid_getvendorstr(cp)); 2311 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2312 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2313 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2314 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2315 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2316 cpu_info_template.ci_ncoreperchip.value.l = 2317 cpuid_get_ncore_per_chip(cp); 2318 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2319 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates; 2320 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp); 2321 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp); 2322 kstat_named_setstr(&cpu_info_template.ci_sktstr, 2323 cpuid_getsocketstr(cp)); 2324 #endif 2325 2326 return (0); 2327 } 2328 2329 static void 2330 cpu_info_kstat_create(cpu_t *cp) 2331 { 2332 zoneid_t zoneid; 2333 2334 ASSERT(MUTEX_HELD(&cpu_lock)); 2335 2336 if (pool_pset_enabled()) 2337 zoneid = GLOBAL_ZONEID; 2338 else 2339 zoneid = ALL_ZONES; 2340 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2341 NULL, "misc", KSTAT_TYPE_NAMED, 2342 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2343 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) { 2344 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2345 #if defined(__sparcv9) 2346 cp->cpu_info_kstat->ks_data_size += 2347 strlen(cpu_fru_fmri(cp)) + 1; 2348 #endif 2349 #if defined(__x86) 2350 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2351 #endif 2352 if (cp->cpu_supp_freqs != NULL) 2353 cp->cpu_info_kstat->ks_data_size += 2354 strlen(cp->cpu_supp_freqs) + 1; 2355 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2356 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2357 cp->cpu_info_kstat->ks_private = cp; 2358 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2359 kstat_install(cp->cpu_info_kstat); 2360 } 2361 } 2362 2363 static void 2364 cpu_info_kstat_destroy(cpu_t *cp) 2365 { 2366 ASSERT(MUTEX_HELD(&cpu_lock)); 2367 2368 kstat_delete(cp->cpu_info_kstat); 2369 cp->cpu_info_kstat = NULL; 2370 } 2371 2372 /* 2373 * Create and install kstats for the boot CPU. 2374 */ 2375 void 2376 cpu_kstat_init(cpu_t *cp) 2377 { 2378 mutex_enter(&cpu_lock); 2379 cpu_info_kstat_create(cp); 2380 cpu_stats_kstat_create(cp); 2381 cpu_create_intrstat(cp); 2382 cpu_set_state(cp); 2383 mutex_exit(&cpu_lock); 2384 } 2385 2386 /* 2387 * Make visible to the zone that subset of the cpu information that would be 2388 * initialized when a cpu is configured (but still offline). 2389 */ 2390 void 2391 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2392 { 2393 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2394 2395 ASSERT(MUTEX_HELD(&cpu_lock)); 2396 ASSERT(pool_pset_enabled()); 2397 ASSERT(cp != NULL); 2398 2399 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2400 zone->zone_ncpus++; 2401 ASSERT(zone->zone_ncpus <= ncpus); 2402 } 2403 if (cp->cpu_info_kstat != NULL) 2404 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2405 } 2406 2407 /* 2408 * Make visible to the zone that subset of the cpu information that would be 2409 * initialized when a previously configured cpu is onlined. 2410 */ 2411 void 2412 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2413 { 2414 kstat_t *ksp; 2415 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2416 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2417 processorid_t cpun; 2418 2419 ASSERT(MUTEX_HELD(&cpu_lock)); 2420 ASSERT(pool_pset_enabled()); 2421 ASSERT(cp != NULL); 2422 ASSERT(cpu_is_active(cp)); 2423 2424 cpun = cp->cpu_id; 2425 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2426 zone->zone_ncpus_online++; 2427 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2428 } 2429 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2430 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2431 != NULL) { 2432 kstat_zone_add(ksp, zoneid); 2433 kstat_rele(ksp); 2434 } 2435 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2436 kstat_zone_add(ksp, zoneid); 2437 kstat_rele(ksp); 2438 } 2439 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2440 kstat_zone_add(ksp, zoneid); 2441 kstat_rele(ksp); 2442 } 2443 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2444 NULL) { 2445 kstat_zone_add(ksp, zoneid); 2446 kstat_rele(ksp); 2447 } 2448 } 2449 2450 /* 2451 * Update relevant kstats such that cpu is now visible to processes 2452 * executing in specified zone. 2453 */ 2454 void 2455 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2456 { 2457 cpu_visibility_configure(cp, zone); 2458 if (cpu_is_active(cp)) 2459 cpu_visibility_online(cp, zone); 2460 } 2461 2462 /* 2463 * Make invisible to the zone that subset of the cpu information that would be 2464 * torn down when a previously offlined cpu is unconfigured. 2465 */ 2466 void 2467 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2468 { 2469 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2470 2471 ASSERT(MUTEX_HELD(&cpu_lock)); 2472 ASSERT(pool_pset_enabled()); 2473 ASSERT(cp != NULL); 2474 2475 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2476 ASSERT(zone->zone_ncpus != 0); 2477 zone->zone_ncpus--; 2478 } 2479 if (cp->cpu_info_kstat) 2480 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2481 } 2482 2483 /* 2484 * Make invisible to the zone that subset of the cpu information that would be 2485 * torn down when a cpu is offlined (but still configured). 2486 */ 2487 void 2488 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2489 { 2490 kstat_t *ksp; 2491 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2492 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2493 processorid_t cpun; 2494 2495 ASSERT(MUTEX_HELD(&cpu_lock)); 2496 ASSERT(pool_pset_enabled()); 2497 ASSERT(cp != NULL); 2498 ASSERT(cpu_is_active(cp)); 2499 2500 cpun = cp->cpu_id; 2501 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2502 ASSERT(zone->zone_ncpus_online != 0); 2503 zone->zone_ncpus_online--; 2504 } 2505 2506 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2507 NULL) { 2508 kstat_zone_remove(ksp, zoneid); 2509 kstat_rele(ksp); 2510 } 2511 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2512 kstat_zone_remove(ksp, zoneid); 2513 kstat_rele(ksp); 2514 } 2515 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2516 kstat_zone_remove(ksp, zoneid); 2517 kstat_rele(ksp); 2518 } 2519 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2520 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2521 != NULL) { 2522 kstat_zone_remove(ksp, zoneid); 2523 kstat_rele(ksp); 2524 } 2525 } 2526 2527 /* 2528 * Update relevant kstats such that cpu is no longer visible to processes 2529 * executing in specified zone. 2530 */ 2531 void 2532 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2533 { 2534 if (cpu_is_active(cp)) 2535 cpu_visibility_offline(cp, zone); 2536 cpu_visibility_unconfigure(cp, zone); 2537 } 2538 2539 /* 2540 * Bind a thread to a CPU as requested. 2541 */ 2542 int 2543 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2544 int *error) 2545 { 2546 processorid_t binding; 2547 cpu_t *cp = NULL; 2548 2549 ASSERT(MUTEX_HELD(&cpu_lock)); 2550 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2551 2552 thread_lock(tp); 2553 2554 /* 2555 * Record old binding, but change the obind, which was initialized 2556 * to PBIND_NONE, only if this thread has a binding. This avoids 2557 * reporting PBIND_NONE for a process when some LWPs are bound. 2558 */ 2559 binding = tp->t_bind_cpu; 2560 if (binding != PBIND_NONE) 2561 *obind = binding; /* record old binding */ 2562 2563 switch (bind) { 2564 case PBIND_QUERY: 2565 /* Just return the old binding */ 2566 thread_unlock(tp); 2567 return (0); 2568 2569 case PBIND_QUERY_TYPE: 2570 /* Return the binding type */ 2571 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2572 thread_unlock(tp); 2573 return (0); 2574 2575 case PBIND_SOFT: 2576 /* 2577 * Set soft binding for this thread and return the actual 2578 * binding 2579 */ 2580 TB_CPU_SOFT_SET(tp); 2581 thread_unlock(tp); 2582 return (0); 2583 2584 case PBIND_HARD: 2585 /* 2586 * Set hard binding for this thread and return the actual 2587 * binding 2588 */ 2589 TB_CPU_HARD_SET(tp); 2590 thread_unlock(tp); 2591 return (0); 2592 2593 default: 2594 break; 2595 } 2596 2597 /* 2598 * If this thread/LWP cannot be bound because of permission 2599 * problems, just note that and return success so that the 2600 * other threads/LWPs will be bound. This is the way 2601 * processor_bind() is defined to work. 2602 * 2603 * Binding will get EPERM if the thread is of system class 2604 * or hasprocperm() fails. 2605 */ 2606 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2607 *error = EPERM; 2608 thread_unlock(tp); 2609 return (0); 2610 } 2611 2612 binding = bind; 2613 if (binding != PBIND_NONE) { 2614 cp = cpu_get((processorid_t)binding); 2615 /* 2616 * Make sure binding is valid and is in right partition. 2617 */ 2618 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2619 *error = EINVAL; 2620 thread_unlock(tp); 2621 return (0); 2622 } 2623 } 2624 tp->t_bind_cpu = binding; /* set new binding */ 2625 2626 /* 2627 * If there is no system-set reason for affinity, set 2628 * the t_bound_cpu field to reflect the binding. 2629 */ 2630 if (tp->t_affinitycnt == 0) { 2631 if (binding == PBIND_NONE) { 2632 /* 2633 * We may need to adjust disp_max_unbound_pri 2634 * since we're becoming unbound. 2635 */ 2636 disp_adjust_unbound_pri(tp); 2637 2638 tp->t_bound_cpu = NULL; /* set new binding */ 2639 2640 /* 2641 * Move thread to lgroup with strongest affinity 2642 * after unbinding 2643 */ 2644 if (tp->t_lgrp_affinity) 2645 lgrp_move_thread(tp, 2646 lgrp_choose(tp, tp->t_cpupart), 1); 2647 2648 if (tp->t_state == TS_ONPROC && 2649 tp->t_cpu->cpu_part != tp->t_cpupart) 2650 cpu_surrender(tp); 2651 } else { 2652 lpl_t *lpl; 2653 2654 tp->t_bound_cpu = cp; 2655 ASSERT(cp->cpu_lpl != NULL); 2656 2657 /* 2658 * Set home to lgroup with most affinity containing CPU 2659 * that thread is being bound or minimum bounding 2660 * lgroup if no affinities set 2661 */ 2662 if (tp->t_lgrp_affinity) 2663 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2664 LGRP_NONE, B_FALSE); 2665 else 2666 lpl = cp->cpu_lpl; 2667 2668 if (tp->t_lpl != lpl) { 2669 /* can't grab cpu_lock */ 2670 lgrp_move_thread(tp, lpl, 1); 2671 } 2672 2673 /* 2674 * Make the thread switch to the bound CPU. 2675 * If the thread is runnable, we need to 2676 * requeue it even if t_cpu is already set 2677 * to the right CPU, since it may be on a 2678 * kpreempt queue and need to move to a local 2679 * queue. We could check t_disp_queue to 2680 * avoid unnecessary overhead if it's already 2681 * on the right queue, but since this isn't 2682 * a performance-critical operation it doesn't 2683 * seem worth the extra code and complexity. 2684 * 2685 * If the thread is weakbound to the cpu then it will 2686 * resist the new binding request until the weak 2687 * binding drops. The cpu_surrender or requeueing 2688 * below could be skipped in such cases (since it 2689 * will have no effect), but that would require 2690 * thread_allowmigrate to acquire thread_lock so 2691 * we'll take the very occasional hit here instead. 2692 */ 2693 if (tp->t_state == TS_ONPROC) { 2694 cpu_surrender(tp); 2695 } else if (tp->t_state == TS_RUN) { 2696 cpu_t *ocp = tp->t_cpu; 2697 2698 (void) dispdeq(tp); 2699 setbackdq(tp); 2700 /* 2701 * Either on the bound CPU's disp queue now, 2702 * or swapped out or on the swap queue. 2703 */ 2704 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2705 tp->t_weakbound_cpu == ocp || 2706 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2707 != TS_LOAD); 2708 } 2709 } 2710 } 2711 2712 /* 2713 * Our binding has changed; set TP_CHANGEBIND. 2714 */ 2715 tp->t_proc_flag |= TP_CHANGEBIND; 2716 aston(tp); 2717 2718 thread_unlock(tp); 2719 2720 return (0); 2721 } 2722 2723 #if CPUSET_WORDS > 1 2724 2725 /* 2726 * Functions for implementing cpuset operations when a cpuset is more 2727 * than one word. On platforms where a cpuset is a single word these 2728 * are implemented as macros in cpuvar.h. 2729 */ 2730 2731 void 2732 cpuset_all(cpuset_t *s) 2733 { 2734 int i; 2735 2736 for (i = 0; i < CPUSET_WORDS; i++) 2737 s->cpub[i] = ~0UL; 2738 } 2739 2740 void 2741 cpuset_all_but(cpuset_t *s, uint_t cpu) 2742 { 2743 cpuset_all(s); 2744 CPUSET_DEL(*s, cpu); 2745 } 2746 2747 void 2748 cpuset_only(cpuset_t *s, uint_t cpu) 2749 { 2750 CPUSET_ZERO(*s); 2751 CPUSET_ADD(*s, cpu); 2752 } 2753 2754 int 2755 cpuset_isnull(cpuset_t *s) 2756 { 2757 int i; 2758 2759 for (i = 0; i < CPUSET_WORDS; i++) 2760 if (s->cpub[i] != 0) 2761 return (0); 2762 return (1); 2763 } 2764 2765 int 2766 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2767 { 2768 int i; 2769 2770 for (i = 0; i < CPUSET_WORDS; i++) 2771 if (s1->cpub[i] != s2->cpub[i]) 2772 return (0); 2773 return (1); 2774 } 2775 2776 uint_t 2777 cpuset_find(cpuset_t *s) 2778 { 2779 2780 uint_t i; 2781 uint_t cpu = (uint_t)-1; 2782 2783 /* 2784 * Find a cpu in the cpuset 2785 */ 2786 for (i = 0; i < CPUSET_WORDS; i++) { 2787 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2788 if (cpu != (uint_t)-1) { 2789 cpu += i * BT_NBIPUL; 2790 break; 2791 } 2792 } 2793 return (cpu); 2794 } 2795 2796 void 2797 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2798 { 2799 int i, j; 2800 uint_t bit; 2801 2802 /* 2803 * First, find the smallest cpu id in the set. 2804 */ 2805 for (i = 0; i < CPUSET_WORDS; i++) { 2806 if (s->cpub[i] != 0) { 2807 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2808 ASSERT(bit != (uint_t)-1); 2809 *smallestid = bit + (i * BT_NBIPUL); 2810 2811 /* 2812 * Now find the largest cpu id in 2813 * the set and return immediately. 2814 * Done in an inner loop to avoid 2815 * having to break out of the first 2816 * loop. 2817 */ 2818 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2819 if (s->cpub[j] != 0) { 2820 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2821 ASSERT(bit != (uint_t)-1); 2822 *largestid = bit + (j * BT_NBIPUL); 2823 ASSERT(*largestid >= *smallestid); 2824 return; 2825 } 2826 } 2827 2828 /* 2829 * If this code is reached, a 2830 * smallestid was found, but not a 2831 * largestid. The cpuset must have 2832 * been changed during the course 2833 * of this function call. 2834 */ 2835 ASSERT(0); 2836 } 2837 } 2838 *smallestid = *largestid = CPUSET_NOTINSET; 2839 } 2840 2841 #endif /* CPUSET_WORDS */ 2842 2843 /* 2844 * Unbind threads bound to specified CPU. 2845 * 2846 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2847 * CPU. Otherwise unbind all soft-bound user threads. 2848 */ 2849 int 2850 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2851 { 2852 processorid_t obind; 2853 kthread_t *tp; 2854 int ret = 0; 2855 proc_t *pp; 2856 int err, berr = 0; 2857 2858 ASSERT(MUTEX_HELD(&cpu_lock)); 2859 2860 mutex_enter(&pidlock); 2861 for (pp = practive; pp != NULL; pp = pp->p_next) { 2862 mutex_enter(&pp->p_lock); 2863 tp = pp->p_tlist; 2864 /* 2865 * Skip zombies, kernel processes, and processes in 2866 * other zones, if called from a non-global zone. 2867 */ 2868 if (tp == NULL || (pp->p_flag & SSYS) || 2869 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2870 mutex_exit(&pp->p_lock); 2871 continue; 2872 } 2873 do { 2874 if (tp->t_bind_cpu != cpu) 2875 continue; 2876 /* 2877 * Skip threads with hard binding when 2878 * `unbind_all_threads' is not specified. 2879 */ 2880 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2881 continue; 2882 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2883 if (ret == 0) 2884 ret = err; 2885 } while ((tp = tp->t_forw) != pp->p_tlist); 2886 mutex_exit(&pp->p_lock); 2887 } 2888 mutex_exit(&pidlock); 2889 if (ret == 0) 2890 ret = berr; 2891 return (ret); 2892 } 2893 2894 2895 /* 2896 * Destroy all remaining bound threads on a cpu. 2897 */ 2898 void 2899 cpu_destroy_bound_threads(cpu_t *cp) 2900 { 2901 extern id_t syscid; 2902 register kthread_id_t t, tlist, tnext; 2903 2904 /* 2905 * Destroy all remaining bound threads on the cpu. This 2906 * should include both the interrupt threads and the idle thread. 2907 * This requires some care, since we need to traverse the 2908 * thread list with the pidlock mutex locked, but thread_free 2909 * also locks the pidlock mutex. So, we collect the threads 2910 * we're going to reap in a list headed by "tlist", then we 2911 * unlock the pidlock mutex and traverse the tlist list, 2912 * doing thread_free's on the thread's. Simple, n'est pas? 2913 * Also, this depends on thread_free not mucking with the 2914 * t_next and t_prev links of the thread. 2915 */ 2916 2917 if ((t = curthread) != NULL) { 2918 2919 tlist = NULL; 2920 mutex_enter(&pidlock); 2921 do { 2922 tnext = t->t_next; 2923 if (t->t_bound_cpu == cp) { 2924 2925 /* 2926 * We've found a bound thread, carefully unlink 2927 * it out of the thread list, and add it to 2928 * our "tlist". We "know" we don't have to 2929 * worry about unlinking curthread (the thread 2930 * that is executing this code). 2931 */ 2932 t->t_next->t_prev = t->t_prev; 2933 t->t_prev->t_next = t->t_next; 2934 t->t_next = tlist; 2935 tlist = t; 2936 ASSERT(t->t_cid == syscid); 2937 /* wake up anyone blocked in thread_join */ 2938 cv_broadcast(&t->t_joincv); 2939 /* 2940 * t_lwp set by interrupt threads and not 2941 * cleared. 2942 */ 2943 t->t_lwp = NULL; 2944 /* 2945 * Pause and idle threads always have 2946 * t_state set to TS_ONPROC. 2947 */ 2948 t->t_state = TS_FREE; 2949 t->t_prev = NULL; /* Just in case */ 2950 } 2951 2952 } while ((t = tnext) != curthread); 2953 2954 mutex_exit(&pidlock); 2955 2956 mutex_sync(); 2957 for (t = tlist; t != NULL; t = tnext) { 2958 tnext = t->t_next; 2959 thread_free(t); 2960 } 2961 } 2962 } 2963 2964 /* 2965 * Update the cpu_supp_freqs of this cpu. This information is returned 2966 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2967 * maintain the kstat data size. 2968 */ 2969 void 2970 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2971 { 2972 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2973 const char *lfreqs = clkstr; 2974 boolean_t kstat_exists = B_FALSE; 2975 kstat_t *ksp; 2976 size_t len; 2977 2978 /* 2979 * A NULL pointer means we only support one speed. 2980 */ 2981 if (freqs == NULL) 2982 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2983 cp->cpu_curr_clock); 2984 else 2985 lfreqs = freqs; 2986 2987 /* 2988 * Make sure the frequency doesn't change while a snapshot is 2989 * going on. Of course, we only need to worry about this if 2990 * the kstat exists. 2991 */ 2992 if ((ksp = cp->cpu_info_kstat) != NULL) { 2993 mutex_enter(ksp->ks_lock); 2994 kstat_exists = B_TRUE; 2995 } 2996 2997 /* 2998 * Free any previously allocated string and if the kstat 2999 * already exists, then update its data size. 3000 */ 3001 if (cp->cpu_supp_freqs != NULL) { 3002 len = strlen(cp->cpu_supp_freqs) + 1; 3003 kmem_free(cp->cpu_supp_freqs, len); 3004 if (kstat_exists) 3005 ksp->ks_data_size -= len; 3006 } 3007 3008 /* 3009 * Allocate the new string and set the pointer. 3010 */ 3011 len = strlen(lfreqs) + 1; 3012 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 3013 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 3014 3015 /* 3016 * If the kstat already exists then update the data size and 3017 * free the lock. 3018 */ 3019 if (kstat_exists) { 3020 ksp->ks_data_size += len; 3021 mutex_exit(ksp->ks_lock); 3022 } 3023 } 3024 3025 /* 3026 * Indicate the current CPU's clock freqency (in Hz). 3027 * The calling context must be such that CPU references are safe. 3028 */ 3029 void 3030 cpu_set_curr_clock(uint64_t new_clk) 3031 { 3032 uint64_t old_clk; 3033 3034 old_clk = CPU->cpu_curr_clock; 3035 CPU->cpu_curr_clock = new_clk; 3036 3037 /* 3038 * The cpu-change-speed DTrace probe exports the frequency in Hz 3039 */ 3040 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id, 3041 uint64_t, old_clk, uint64_t, new_clk); 3042 } 3043 3044 /* 3045 * processor_info(2) and p_online(2) status support functions 3046 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 3047 * for use in communicating processor state information to userland. Kernel 3048 * subsystems should only be using the cpu_flags value directly. Subsystems 3049 * modifying cpu_flags should record the state change via a call to the 3050 * cpu_set_state(). 3051 */ 3052 3053 /* 3054 * Update the pi_state of this CPU. This function provides the CPU status for 3055 * the information returned by processor_info(2). 3056 */ 3057 void 3058 cpu_set_state(cpu_t *cpu) 3059 { 3060 ASSERT(MUTEX_HELD(&cpu_lock)); 3061 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 3062 cpu->cpu_state_begin = gethrestime_sec(); 3063 pool_cpu_mod = gethrtime(); 3064 } 3065 3066 /* 3067 * Return offline/online/other status for the indicated CPU. Use only for 3068 * communication with user applications; cpu_flags provides the in-kernel 3069 * interface. 3070 */ 3071 int 3072 cpu_get_state(cpu_t *cpu) 3073 { 3074 ASSERT(MUTEX_HELD(&cpu_lock)); 3075 if (cpu->cpu_flags & CPU_POWEROFF) 3076 return (P_POWEROFF); 3077 else if (cpu->cpu_flags & CPU_FAULTED) 3078 return (P_FAULTED); 3079 else if (cpu->cpu_flags & CPU_SPARE) 3080 return (P_SPARE); 3081 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 3082 return (P_OFFLINE); 3083 else if (cpu->cpu_flags & CPU_ENABLE) 3084 return (P_ONLINE); 3085 else 3086 return (P_NOINTR); 3087 } 3088 3089 /* 3090 * Return processor_info(2) state as a string. 3091 */ 3092 const char * 3093 cpu_get_state_str(cpu_t *cpu) 3094 { 3095 const char *string; 3096 3097 switch (cpu_get_state(cpu)) { 3098 case P_ONLINE: 3099 string = PS_ONLINE; 3100 break; 3101 case P_POWEROFF: 3102 string = PS_POWEROFF; 3103 break; 3104 case P_NOINTR: 3105 string = PS_NOINTR; 3106 break; 3107 case P_SPARE: 3108 string = PS_SPARE; 3109 break; 3110 case P_FAULTED: 3111 string = PS_FAULTED; 3112 break; 3113 case P_OFFLINE: 3114 string = PS_OFFLINE; 3115 break; 3116 default: 3117 string = "unknown"; 3118 break; 3119 } 3120 return (string); 3121 } 3122 3123 /* 3124 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3125 * kstats, respectively. This is done when a CPU is initialized or placed 3126 * online via p_online(2). 3127 */ 3128 static void 3129 cpu_stats_kstat_create(cpu_t *cp) 3130 { 3131 int instance = cp->cpu_id; 3132 char *module = "cpu"; 3133 char *class = "misc"; 3134 kstat_t *ksp; 3135 zoneid_t zoneid; 3136 3137 ASSERT(MUTEX_HELD(&cpu_lock)); 3138 3139 if (pool_pset_enabled()) 3140 zoneid = GLOBAL_ZONEID; 3141 else 3142 zoneid = ALL_ZONES; 3143 /* 3144 * Create named kstats 3145 */ 3146 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3147 ksp = kstat_create_zone(module, instance, (name), class, \ 3148 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3149 zoneid); \ 3150 if (ksp != NULL) { \ 3151 ksp->ks_private = cp; \ 3152 ksp->ks_update = (update_func); \ 3153 kstat_install(ksp); \ 3154 } else \ 3155 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3156 module, instance, (name)); 3157 3158 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3159 cpu_sys_stats_ks_update); 3160 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3161 cpu_vm_stats_ks_update); 3162 3163 /* 3164 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3165 */ 3166 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3167 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3168 if (ksp != NULL) { 3169 ksp->ks_update = cpu_stat_ks_update; 3170 ksp->ks_private = cp; 3171 kstat_install(ksp); 3172 } 3173 } 3174 3175 static void 3176 cpu_stats_kstat_destroy(cpu_t *cp) 3177 { 3178 char ks_name[KSTAT_STRLEN]; 3179 3180 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3181 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3182 3183 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3184 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3185 } 3186 3187 static int 3188 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3189 { 3190 cpu_t *cp = (cpu_t *)ksp->ks_private; 3191 struct cpu_sys_stats_ks_data *csskd; 3192 cpu_sys_stats_t *css; 3193 hrtime_t msnsecs[NCMSTATES]; 3194 int i; 3195 3196 if (rw == KSTAT_WRITE) 3197 return (EACCES); 3198 3199 csskd = ksp->ks_data; 3200 css = &cp->cpu_stats.sys; 3201 3202 /* 3203 * Read CPU mstate, but compare with the last values we 3204 * received to make sure that the returned kstats never 3205 * decrease. 3206 */ 3207 3208 get_cpu_mstate(cp, msnsecs); 3209 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3210 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3211 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3212 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3213 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3214 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3215 3216 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3217 sizeof (cpu_sys_stats_ks_data_template)); 3218 3219 csskd->cpu_ticks_wait.value.ui64 = 0; 3220 csskd->wait_ticks_io.value.ui64 = 0; 3221 3222 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3223 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3224 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3225 csskd->cpu_ticks_idle.value.ui64 = 3226 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3227 csskd->cpu_ticks_user.value.ui64 = 3228 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3229 csskd->cpu_ticks_kernel.value.ui64 = 3230 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3231 csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec; 3232 csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes; 3233 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3234 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3235 csskd->bread.value.ui64 = css->bread; 3236 csskd->bwrite.value.ui64 = css->bwrite; 3237 csskd->lread.value.ui64 = css->lread; 3238 csskd->lwrite.value.ui64 = css->lwrite; 3239 csskd->phread.value.ui64 = css->phread; 3240 csskd->phwrite.value.ui64 = css->phwrite; 3241 csskd->pswitch.value.ui64 = css->pswitch; 3242 csskd->trap.value.ui64 = css->trap; 3243 csskd->intr.value.ui64 = 0; 3244 for (i = 0; i < PIL_MAX; i++) 3245 csskd->intr.value.ui64 += css->intr[i]; 3246 csskd->syscall.value.ui64 = css->syscall; 3247 csskd->sysread.value.ui64 = css->sysread; 3248 csskd->syswrite.value.ui64 = css->syswrite; 3249 csskd->sysfork.value.ui64 = css->sysfork; 3250 csskd->sysvfork.value.ui64 = css->sysvfork; 3251 csskd->sysexec.value.ui64 = css->sysexec; 3252 csskd->readch.value.ui64 = css->readch; 3253 csskd->writech.value.ui64 = css->writech; 3254 csskd->rcvint.value.ui64 = css->rcvint; 3255 csskd->xmtint.value.ui64 = css->xmtint; 3256 csskd->mdmint.value.ui64 = css->mdmint; 3257 csskd->rawch.value.ui64 = css->rawch; 3258 csskd->canch.value.ui64 = css->canch; 3259 csskd->outch.value.ui64 = css->outch; 3260 csskd->msg.value.ui64 = css->msg; 3261 csskd->sema.value.ui64 = css->sema; 3262 csskd->namei.value.ui64 = css->namei; 3263 csskd->ufsiget.value.ui64 = css->ufsiget; 3264 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3265 csskd->ufsipage.value.ui64 = css->ufsipage; 3266 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3267 csskd->procovf.value.ui64 = css->procovf; 3268 csskd->intrthread.value.ui64 = 0; 3269 for (i = 0; i < LOCK_LEVEL - 1; i++) 3270 csskd->intrthread.value.ui64 += css->intr[i]; 3271 csskd->intrblk.value.ui64 = css->intrblk; 3272 csskd->intrunpin.value.ui64 = css->intrunpin; 3273 csskd->idlethread.value.ui64 = css->idlethread; 3274 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3275 csskd->nthreads.value.ui64 = css->nthreads; 3276 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3277 csskd->xcalls.value.ui64 = css->xcalls; 3278 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3279 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3280 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3281 csskd->modload.value.ui64 = css->modload; 3282 csskd->modunload.value.ui64 = css->modunload; 3283 csskd->bawrite.value.ui64 = css->bawrite; 3284 csskd->iowait.value.ui64 = css->iowait; 3285 3286 return (0); 3287 } 3288 3289 static int 3290 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3291 { 3292 cpu_t *cp = (cpu_t *)ksp->ks_private; 3293 struct cpu_vm_stats_ks_data *cvskd; 3294 cpu_vm_stats_t *cvs; 3295 3296 if (rw == KSTAT_WRITE) 3297 return (EACCES); 3298 3299 cvs = &cp->cpu_stats.vm; 3300 cvskd = ksp->ks_data; 3301 3302 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3303 sizeof (cpu_vm_stats_ks_data_template)); 3304 cvskd->pgrec.value.ui64 = cvs->pgrec; 3305 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3306 cvskd->pgin.value.ui64 = cvs->pgin; 3307 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3308 cvskd->pgout.value.ui64 = cvs->pgout; 3309 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3310 cvskd->swapin.value.ui64 = cvs->swapin; 3311 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3312 cvskd->swapout.value.ui64 = cvs->swapout; 3313 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3314 cvskd->zfod.value.ui64 = cvs->zfod; 3315 cvskd->dfree.value.ui64 = cvs->dfree; 3316 cvskd->scan.value.ui64 = cvs->scan; 3317 cvskd->rev.value.ui64 = cvs->rev; 3318 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3319 cvskd->as_fault.value.ui64 = cvs->as_fault; 3320 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3321 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3322 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3323 cvskd->softlock.value.ui64 = cvs->softlock; 3324 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3325 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3326 cvskd->execpgin.value.ui64 = cvs->execpgin; 3327 cvskd->execpgout.value.ui64 = cvs->execpgout; 3328 cvskd->execfree.value.ui64 = cvs->execfree; 3329 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3330 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3331 cvskd->anonfree.value.ui64 = cvs->anonfree; 3332 cvskd->fspgin.value.ui64 = cvs->fspgin; 3333 cvskd->fspgout.value.ui64 = cvs->fspgout; 3334 cvskd->fsfree.value.ui64 = cvs->fsfree; 3335 3336 return (0); 3337 } 3338 3339 static int 3340 cpu_stat_ks_update(kstat_t *ksp, int rw) 3341 { 3342 cpu_stat_t *cso; 3343 cpu_t *cp; 3344 int i; 3345 hrtime_t msnsecs[NCMSTATES]; 3346 3347 cso = (cpu_stat_t *)ksp->ks_data; 3348 cp = (cpu_t *)ksp->ks_private; 3349 3350 if (rw == KSTAT_WRITE) 3351 return (EACCES); 3352 3353 /* 3354 * Read CPU mstate, but compare with the last values we 3355 * received to make sure that the returned kstats never 3356 * decrease. 3357 */ 3358 3359 get_cpu_mstate(cp, msnsecs); 3360 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3361 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3362 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3363 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3364 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3365 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3366 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3367 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3368 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3369 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3370 cso->cpu_sysinfo.wait[W_IO] = 0; 3371 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3372 cso->cpu_sysinfo.wait[W_PIO] = 0; 3373 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3374 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3375 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3376 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3377 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3378 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3379 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3380 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3381 cso->cpu_sysinfo.intr = 0; 3382 for (i = 0; i < PIL_MAX; i++) 3383 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3384 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3385 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3386 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3387 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3388 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3389 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3390 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3391 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3392 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3393 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3394 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3395 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3396 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3397 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3398 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3399 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3400 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3401 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3402 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3403 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3404 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3405 cso->cpu_sysinfo.inodeovf = 0; 3406 cso->cpu_sysinfo.fileovf = 0; 3407 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3408 cso->cpu_sysinfo.intrthread = 0; 3409 for (i = 0; i < LOCK_LEVEL - 1; i++) 3410 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3411 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3412 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3413 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3414 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3415 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3416 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3417 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3418 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3419 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3420 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3421 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3422 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3423 cso->cpu_sysinfo.rw_enters = 0; 3424 cso->cpu_sysinfo.win_uo_cnt = 0; 3425 cso->cpu_sysinfo.win_uu_cnt = 0; 3426 cso->cpu_sysinfo.win_so_cnt = 0; 3427 cso->cpu_sysinfo.win_su_cnt = 0; 3428 cso->cpu_sysinfo.win_suo_cnt = 0; 3429 3430 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3431 cso->cpu_syswait.swap = 0; 3432 cso->cpu_syswait.physio = 0; 3433 3434 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3435 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3436 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3437 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3438 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3439 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3440 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3441 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3442 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3443 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3444 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3445 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3446 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3447 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3448 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3449 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3450 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3451 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3452 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3453 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3454 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3455 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3456 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3457 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3458 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3459 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3460 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3461 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3462 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3463 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3464 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3465 3466 return (0); 3467 }