Print this page
10908 Simplify SMAP relocations with krtld
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/i86pc/os/machdep.c
+++ new/usr/src/uts/i86pc/os/machdep.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2017, Joyent, Inc.
25 25 */
26 26 /*
27 27 * Copyright (c) 2010, Intel Corporation.
28 28 * All rights reserved.
29 29 */
30 30
31 31 #include <sys/types.h>
32 32 #include <sys/t_lock.h>
33 33 #include <sys/param.h>
34 34 #include <sys/segments.h>
35 35 #include <sys/sysmacros.h>
36 36 #include <sys/signal.h>
37 37 #include <sys/systm.h>
38 38 #include <sys/user.h>
39 39 #include <sys/mman.h>
40 40 #include <sys/vm.h>
41 41
42 42 #include <sys/disp.h>
43 43 #include <sys/class.h>
44 44
45 45 #include <sys/proc.h>
46 46 #include <sys/buf.h>
47 47 #include <sys/kmem.h>
48 48
49 49 #include <sys/reboot.h>
50 50 #include <sys/uadmin.h>
51 51 #include <sys/callb.h>
52 52
53 53 #include <sys/cred.h>
54 54 #include <sys/vnode.h>
55 55 #include <sys/file.h>
56 56
57 57 #include <sys/procfs.h>
58 58 #include <sys/acct.h>
59 59
60 60 #include <sys/vfs.h>
61 61 #include <sys/dnlc.h>
62 62 #include <sys/var.h>
63 63 #include <sys/cmn_err.h>
64 64 #include <sys/utsname.h>
65 65 #include <sys/debug.h>
66 66
67 67 #include <sys/dumphdr.h>
68 68 #include <sys/bootconf.h>
69 69 #include <sys/varargs.h>
70 70 #include <sys/promif.h>
71 71 #include <sys/modctl.h>
72 72
73 73 #include <sys/consdev.h>
74 74 #include <sys/frame.h>
75 75
76 76 #include <sys/sunddi.h>
77 77 #include <sys/ddidmareq.h>
78 78 #include <sys/psw.h>
79 79 #include <sys/regset.h>
80 80 #include <sys/privregs.h>
81 81 #include <sys/clock.h>
82 82 #include <sys/tss.h>
83 83 #include <sys/cpu.h>
84 84 #include <sys/stack.h>
85 85 #include <sys/trap.h>
86 86 #include <sys/pic.h>
87 87 #include <vm/hat.h>
88 88 #include <vm/anon.h>
89 89 #include <vm/as.h>
90 90 #include <vm/page.h>
91 91 #include <vm/seg.h>
92 92 #include <vm/seg_kmem.h>
93 93 #include <vm/seg_map.h>
94 94 #include <vm/seg_vn.h>
95 95 #include <vm/seg_kp.h>
96 96 #include <vm/hat_i86.h>
97 97 #include <sys/swap.h>
98 98 #include <sys/thread.h>
99 99 #include <sys/sysconf.h>
100 100 #include <sys/vm_machparam.h>
101 101 #include <sys/archsystm.h>
102 102 #include <sys/machsystm.h>
103 103 #include <sys/machlock.h>
104 104 #include <sys/x_call.h>
105 105 #include <sys/instance.h>
106 106
107 107 #include <sys/time.h>
108 108 #include <sys/smp_impldefs.h>
109 109 #include <sys/psm_types.h>
110 110 #include <sys/atomic.h>
111 111 #include <sys/panic.h>
112 112 #include <sys/cpuvar.h>
113 113 #include <sys/dtrace.h>
114 114 #include <sys/bl.h>
115 115 #include <sys/nvpair.h>
116 116 #include <sys/x86_archext.h>
117 117 #include <sys/pool_pset.h>
118 118 #include <sys/autoconf.h>
119 119 #include <sys/mem.h>
120 120 #include <sys/dumphdr.h>
121 121 #include <sys/compress.h>
122 122 #include <sys/cpu_module.h>
123 123 #if defined(__xpv)
124 124 #include <sys/hypervisor.h>
125 125 #include <sys/xpv_panic.h>
126 126 #endif
127 127
128 128 #include <sys/fastboot.h>
129 129 #include <sys/machelf.h>
130 130 #include <sys/kobj.h>
131 131 #include <sys/multiboot.h>
132 132
133 133 #ifdef TRAPTRACE
134 134 #include <sys/traptrace.h>
135 135 #endif /* TRAPTRACE */
136 136
137 137 #include <c2/audit.h>
138 138 #include <sys/clock_impl.h>
139 139
140 140 extern void audit_enterprom(int);
141 141 extern void audit_exitprom(int);
142 142
143 143 /*
144 144 * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
145 145 */
146 146 int apix_enable = 1;
147 147
148 148 int apic_nvidia_io_max = 0; /* no. of NVIDIA i/o apics */
149 149
150 150 /*
151 151 * Occassionally the kernel knows better whether to power-off or reboot.
152 152 */
153 153 int force_shutdown_method = AD_UNKNOWN;
154 154
155 155 /*
156 156 * The panicbuf array is used to record messages and state:
157 157 */
158 158 char panicbuf[PANICBUFSIZE];
159 159
160 160 /*
161 161 * Flags to control Dynamic Reconfiguration features.
162 162 */
163 163 uint64_t plat_dr_options;
164 164
165 165 /*
166 166 * Maximum physical address for memory DR operations.
167 167 */
168 168 uint64_t plat_dr_physmax;
169 169
170 170 /*
171 171 * maxphys - used during physio
172 172 * klustsize - used for klustering by swapfs and specfs
173 173 */
174 174 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */
175 175 int klustsize = 56 * 1024;
176 176
177 177 caddr_t p0_va; /* Virtual address for accessing physical page 0 */
178 178
179 179 /*
180 180 * defined here, though unused on x86,
181 181 * to make kstat_fr.c happy.
182 182 */
↓ open down ↓ |
182 lines elided |
↑ open up ↑ |
183 183 int vac;
184 184
185 185 void debug_enter(char *);
186 186
187 187 extern void pm_cfb_check_and_powerup(void);
188 188 extern void pm_cfb_rele(void);
189 189
190 190 extern fastboot_info_t newkernel;
191 191
192 192 /*
193 + * Instructions to enable or disable SMAP, respectively.
194 + */
195 +static const uint8_t clac_instr[3] = { 0x0f, 0x01, 0xca };
196 +static const uint8_t stac_instr[3] = { 0x0f, 0x01, 0xcb };
197 +
198 +/*
193 199 * Machine dependent code to reboot.
194 200 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
195 201 * to a string to be used as the argument string when rebooting.
196 202 *
197 203 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
198 204 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
199 205 * we are in a normal shutdown sequence (interrupts are not blocked, the
200 206 * system is not panic'ing or being suspended).
201 207 */
202 208 /*ARGSUSED*/
203 209 void
204 210 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
205 211 {
206 212 processorid_t bootcpuid = 0;
207 213 static int is_first_quiesce = 1;
208 214 static int is_first_reset = 1;
209 215 int reset_status = 0;
210 216 static char fallback_str[] = "Falling back to regular reboot.\n";
211 217
212 218 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
213 219 fcn = AD_BOOT;
214 220
215 221 if (!panicstr) {
216 222 kpreempt_disable();
217 223 if (fcn == AD_FASTREBOOT) {
218 224 mutex_enter(&cpu_lock);
219 225 if (CPU_ACTIVE(cpu_get(bootcpuid))) {
220 226 affinity_set(bootcpuid);
221 227 }
222 228 mutex_exit(&cpu_lock);
223 229 } else {
224 230 affinity_set(CPU_CURRENT);
225 231 }
226 232 }
227 233
228 234 if (force_shutdown_method != AD_UNKNOWN)
229 235 fcn = force_shutdown_method;
230 236
231 237 /*
232 238 * XXX - rconsvp is set to NULL to ensure that output messages
233 239 * are sent to the underlying "hardware" device using the
234 240 * monitor's printf routine since we are in the process of
235 241 * either rebooting or halting the machine.
236 242 */
237 243 rconsvp = NULL;
238 244
239 245 /*
240 246 * Print the reboot message now, before pausing other cpus.
241 247 * There is a race condition in the printing support that
242 248 * can deadlock multiprocessor machines.
243 249 */
244 250 if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
245 251 prom_printf("rebooting...\n");
246 252
247 253 if (IN_XPV_PANIC())
248 254 reset();
249 255
250 256 /*
251 257 * We can't bring up the console from above lock level, so do it now
252 258 */
253 259 pm_cfb_check_and_powerup();
254 260
255 261 /* make sure there are no more changes to the device tree */
256 262 devtree_freeze();
257 263
258 264 if (invoke_cb)
259 265 (void) callb_execute_class(CB_CL_MDBOOT, 0);
260 266
261 267 /*
262 268 * Clear any unresolved UEs from memory.
263 269 */
264 270 page_retire_mdboot();
265 271
266 272 #if defined(__xpv)
267 273 /*
268 274 * XXPV Should probably think some more about how we deal
269 275 * with panicing before it's really safe to panic.
270 276 * On hypervisors, we reboot very quickly.. Perhaps panic
271 277 * should only attempt to recover by rebooting if,
272 278 * say, we were able to mount the root filesystem,
273 279 * or if we successfully launched init(1m).
274 280 */
275 281 if (panicstr && proc_init == NULL)
276 282 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
277 283 #endif
278 284 /*
279 285 * stop other cpus and raise our priority. since there is only
280 286 * one active cpu after this, and our priority will be too high
281 287 * for us to be preempted, we're essentially single threaded
282 288 * from here on out.
283 289 */
284 290 (void) spl6();
285 291 if (!panicstr) {
286 292 mutex_enter(&cpu_lock);
287 293 pause_cpus(NULL, NULL);
288 294 mutex_exit(&cpu_lock);
289 295 }
290 296
291 297 /*
292 298 * If the system is panicking, the preloaded kernel is valid, and
293 299 * fastreboot_onpanic has been set, and the system has been up for
294 300 * longer than fastreboot_onpanic_uptime (default to 10 minutes),
295 301 * choose Fast Reboot.
296 302 */
297 303 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
298 304 fastreboot_onpanic &&
299 305 (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
300 306 fcn = AD_FASTREBOOT;
301 307 }
302 308
303 309 /*
304 310 * Try to quiesce devices.
305 311 */
306 312 if (is_first_quiesce) {
307 313 /*
308 314 * Clear is_first_quiesce before calling quiesce_devices()
309 315 * so that if quiesce_devices() causes panics, it will not
310 316 * be invoked again.
311 317 */
312 318 is_first_quiesce = 0;
313 319
314 320 quiesce_active = 1;
315 321 quiesce_devices(ddi_root_node(), &reset_status);
316 322 if (reset_status == -1) {
317 323 if (fcn == AD_FASTREBOOT && !force_fastreboot) {
318 324 prom_printf("Driver(s) not capable of fast "
319 325 "reboot.\n");
320 326 prom_printf(fallback_str);
321 327 fastreboot_capable = 0;
322 328 fcn = AD_BOOT;
323 329 } else if (fcn != AD_FASTREBOOT)
324 330 fastreboot_capable = 0;
325 331 }
326 332 quiesce_active = 0;
327 333 }
328 334
329 335 /*
330 336 * Try to reset devices. reset_leaves() should only be called
331 337 * a) when there are no other threads that could be accessing devices,
332 338 * and
333 339 * b) on a system that's not capable of fast reboot (fastreboot_capable
334 340 * being 0), or on a system where quiesce_devices() failed to
335 341 * complete (quiesce_active being 1).
336 342 */
337 343 if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
338 344 /*
339 345 * Clear is_first_reset before calling reset_devices()
340 346 * so that if reset_devices() causes panics, it will not
341 347 * be invoked again.
342 348 */
343 349 is_first_reset = 0;
344 350 reset_leaves();
345 351 }
346 352
347 353 /* Verify newkernel checksum */
348 354 if (fastreboot_capable && fcn == AD_FASTREBOOT &&
349 355 fastboot_cksum_verify(&newkernel) != 0) {
350 356 fastreboot_capable = 0;
351 357 prom_printf("Fast reboot: checksum failed for the new "
352 358 "kernel.\n");
353 359 prom_printf(fallback_str);
354 360 }
355 361
356 362 (void) spl8();
357 363
358 364 if (fastreboot_capable && fcn == AD_FASTREBOOT) {
359 365 /*
360 366 * psm_shutdown is called within fast_reboot()
361 367 */
362 368 fast_reboot();
363 369 } else {
364 370 (*psm_shutdownf)(cmd, fcn);
365 371
366 372 if (fcn == AD_HALT || fcn == AD_POWEROFF)
367 373 halt((char *)NULL);
368 374 else
369 375 prom_reboot("");
370 376 }
371 377 /*NOTREACHED*/
372 378 }
373 379
374 380 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
375 381 /*ARGSUSED*/
376 382 void
377 383 mdpreboot(int cmd, int fcn, char *mdep)
378 384 {
379 385 if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
380 386 fcn = AD_BOOT;
381 387 #ifdef __xpv
382 388 cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
383 389 #else
384 390 cmn_err(CE_WARN,
385 391 "Fast reboot is not supported on this platform%s",
386 392 fastreboot_nosup_message());
387 393 #endif
388 394 }
389 395
390 396 if (fcn == AD_FASTREBOOT) {
391 397 fastboot_load_kernel(mdep);
392 398 if (!newkernel.fi_valid)
393 399 fcn = AD_BOOT;
394 400 }
395 401
396 402 (*psm_preshutdownf)(cmd, fcn);
397 403 }
398 404
399 405 static void
400 406 stop_other_cpus(void)
401 407 {
402 408 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
403 409 cpuset_t xcset;
404 410
405 411 CPUSET_ALL_BUT(xcset, CPU->cpu_id);
406 412 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
407 413 restore_int_flag(s);
408 414 }
409 415
410 416 /*
411 417 * Machine dependent abort sequence handling
412 418 */
413 419 void
414 420 abort_sequence_enter(char *msg)
415 421 {
416 422 if (abort_enable == 0) {
417 423 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
418 424 audit_enterprom(0);
419 425 return;
420 426 }
421 427 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
422 428 audit_enterprom(1);
423 429 debug_enter(msg);
424 430 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
425 431 audit_exitprom(1);
426 432 }
427 433
428 434 /*
429 435 * Enter debugger. Called when the user types ctrl-alt-d or whenever
430 436 * code wants to enter the debugger and possibly resume later.
431 437 *
432 438 * msg: message to print, possibly NULL.
433 439 */
434 440 void
435 441 debug_enter(char *msg)
436 442 {
437 443 if (dtrace_debugger_init != NULL)
438 444 (*dtrace_debugger_init)();
439 445
440 446 if (msg != NULL || (boothowto & RB_DEBUG))
441 447 prom_printf("\n");
442 448
443 449 if (msg != NULL)
444 450 prom_printf("%s\n", msg);
445 451
446 452 if (boothowto & RB_DEBUG)
447 453 kmdb_enter();
448 454
449 455 if (dtrace_debugger_fini != NULL)
450 456 (*dtrace_debugger_fini)();
451 457 }
452 458
453 459 void
454 460 reset(void)
455 461 {
456 462 extern void acpi_reset_system();
457 463 #if !defined(__xpv)
458 464 ushort_t *bios_memchk;
459 465
460 466 /*
461 467 * Can't use psm_map_phys or acpi_reset_system before the hat is
462 468 * initialized.
463 469 */
464 470 if (khat_running) {
465 471 bios_memchk = (ushort_t *)psm_map_phys(0x472,
466 472 sizeof (ushort_t), PROT_READ | PROT_WRITE);
467 473 if (bios_memchk)
468 474 *bios_memchk = 0x1234; /* bios memory check disable */
469 475
470 476 if (options_dip != NULL &&
471 477 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
472 478 "efi-systab")) {
473 479 if (bootops == NULL)
474 480 acpi_reset_system();
475 481 efi_reset();
476 482 }
477 483
478 484 /*
479 485 * The problem with using stubs is that we can call
480 486 * acpi_reset_system only after the kernel is up and running.
481 487 *
482 488 * We should create a global state to keep track of how far
483 489 * up the kernel is but for the time being we will depend on
484 490 * bootops. bootops cleared in startup_end().
485 491 */
486 492 if (bootops == NULL)
487 493 acpi_reset_system();
488 494 }
489 495
490 496 pc_reset();
491 497 #else
492 498 if (IN_XPV_PANIC()) {
493 499 if (khat_running && bootops == NULL) {
494 500 acpi_reset_system();
495 501 }
496 502
497 503 pc_reset();
498 504 }
499 505
500 506 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
501 507 panic("HYPERVISOR_shutdown() failed");
502 508 #endif
503 509 /*NOTREACHED*/
504 510 }
505 511
506 512 /*
507 513 * Halt the machine and return to the monitor
508 514 */
509 515 void
510 516 halt(char *s)
511 517 {
512 518 stop_other_cpus(); /* send stop signal to other CPUs */
513 519 if (s)
514 520 prom_printf("(%s) \n", s);
515 521 prom_exit_to_mon();
516 522 /*NOTREACHED*/
517 523 }
518 524
519 525 /*
520 526 * Initiate interrupt redistribution.
521 527 */
522 528 void
523 529 i_ddi_intr_redist_all_cpus()
524 530 {
525 531 }
526 532
527 533 /*
528 534 * XXX These probably ought to live somewhere else
529 535 * XXX They are called from mem.c
530 536 */
531 537
532 538 /*
533 539 * Convert page frame number to an OBMEM page frame number
534 540 * (i.e. put in the type bits -- zero for this implementation)
535 541 */
536 542 pfn_t
537 543 impl_obmem_pfnum(pfn_t pf)
538 544 {
539 545 return (pf);
540 546 }
541 547
542 548 #ifdef NM_DEBUG
543 549 int nmi_test = 0; /* checked in intentry.s during clock int */
544 550 int nmtest = -1;
545 551 nmfunc1(int arg, struct regs *rp)
546 552 {
547 553 printf("nmi called with arg = %x, regs = %x\n", arg, rp);
548 554 nmtest += 50;
549 555 if (arg == nmtest) {
550 556 printf("ip = %x\n", rp->r_pc);
551 557 return (1);
552 558 }
553 559 return (0);
554 560 }
555 561
556 562 #endif
557 563
558 564 #include <sys/bootsvcs.h>
559 565
560 566 /* Hacked up initialization for initial kernel check out is HERE. */
561 567 /* The basic steps are: */
562 568 /* kernel bootfuncs definition/initialization for KADB */
563 569 /* kadb bootfuncs pointer initialization */
564 570 /* putchar/getchar (interrupts disabled) */
565 571
566 572 /* kadb bootfuncs pointer initialization */
567 573
568 574 int
569 575 sysp_getchar()
570 576 {
571 577 int i;
572 578 ulong_t s;
573 579
574 580 if (cons_polledio == NULL) {
575 581 /* Uh oh */
576 582 prom_printf("getchar called with no console\n");
577 583 for (;;)
578 584 /* LOOP FOREVER */;
579 585 }
580 586
581 587 s = clear_int_flag();
582 588 i = cons_polledio->cons_polledio_getchar(
583 589 cons_polledio->cons_polledio_argument);
584 590 restore_int_flag(s);
585 591 return (i);
586 592 }
587 593
588 594 void
589 595 sysp_putchar(int c)
590 596 {
591 597 ulong_t s;
592 598
593 599 /*
594 600 * We have no alternative but to drop the output on the floor.
595 601 */
596 602 if (cons_polledio == NULL ||
597 603 cons_polledio->cons_polledio_putchar == NULL)
598 604 return;
599 605
600 606 s = clear_int_flag();
601 607 cons_polledio->cons_polledio_putchar(
602 608 cons_polledio->cons_polledio_argument, c);
603 609 restore_int_flag(s);
604 610 }
605 611
606 612 int
607 613 sysp_ischar()
608 614 {
609 615 int i;
610 616 ulong_t s;
611 617
612 618 if (cons_polledio == NULL ||
613 619 cons_polledio->cons_polledio_ischar == NULL)
614 620 return (0);
615 621
616 622 s = clear_int_flag();
617 623 i = cons_polledio->cons_polledio_ischar(
618 624 cons_polledio->cons_polledio_argument);
619 625 restore_int_flag(s);
620 626 return (i);
621 627 }
622 628
623 629 int
624 630 goany(void)
625 631 {
626 632 prom_printf("Type any key to continue ");
627 633 (void) prom_getchar();
628 634 prom_printf("\n");
629 635 return (1);
630 636 }
631 637
632 638 static struct boot_syscalls kern_sysp = {
633 639 sysp_getchar, /* unchar (*getchar)(); 7 */
634 640 sysp_putchar, /* int (*putchar)(); 8 */
635 641 sysp_ischar, /* int (*ischar)(); 9 */
636 642 };
637 643
638 644 #if defined(__xpv)
639 645 int using_kern_polledio;
640 646 #endif
641 647
642 648 void
643 649 kadb_uses_kernel()
644 650 {
645 651 /*
646 652 * This routine is now totally misnamed, since it does not in fact
647 653 * control kadb's I/O; it only controls the kernel's prom_* I/O.
648 654 */
649 655 sysp = &kern_sysp;
650 656 #if defined(__xpv)
651 657 using_kern_polledio = 1;
652 658 #endif
653 659 }
654 660
655 661 /*
656 662 * the interface to the outside world
657 663 */
658 664
659 665 /*
660 666 * poll_port -- wait for a register to achieve a
661 667 * specific state. Arguments are a mask of bits we care about,
662 668 * and two sub-masks. To return normally, all the bits in the
663 669 * first sub-mask must be ON, all the bits in the second sub-
664 670 * mask must be OFF. If about seconds pass without the register
665 671 * achieving the desired bit configuration, we return 1, else
666 672 * 0.
667 673 */
668 674 int
669 675 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
670 676 {
671 677 int i;
672 678 ushort_t maskval;
673 679
674 680 for (i = 500000; i; i--) {
675 681 maskval = inb(port) & mask;
676 682 if (((maskval & onbits) == onbits) &&
677 683 ((maskval & offbits) == 0))
678 684 return (0);
679 685 drv_usecwait(10);
680 686 }
681 687 return (1);
682 688 }
683 689
684 690 /*
685 691 * set_idle_cpu is called from idle() when a CPU becomes idle.
686 692 */
687 693 /*LINTED: static unused */
688 694 static uint_t last_idle_cpu;
689 695
690 696 /*ARGSUSED*/
691 697 void
692 698 set_idle_cpu(int cpun)
693 699 {
694 700 last_idle_cpu = cpun;
695 701 (*psm_set_idle_cpuf)(cpun);
696 702 }
697 703
698 704 /*
699 705 * unset_idle_cpu is called from idle() when a CPU is no longer idle.
700 706 */
701 707 /*ARGSUSED*/
702 708 void
703 709 unset_idle_cpu(int cpun)
704 710 {
705 711 (*psm_unset_idle_cpuf)(cpun);
706 712 }
707 713
708 714 /*
709 715 * This routine is almost correct now, but not quite. It still needs the
710 716 * equivalent concept of "hres_last_tick", just like on the sparc side.
711 717 * The idea is to take a snapshot of the hi-res timer while doing the
712 718 * hrestime_adj updates under hres_lock in locore, so that the small
713 719 * interval between interrupt assertion and interrupt processing is
714 720 * accounted for correctly. Once we have this, the code below should
715 721 * be modified to subtract off hres_last_tick rather than hrtime_base.
716 722 *
717 723 * I'd have done this myself, but I don't have source to all of the
718 724 * vendor-specific hi-res timer routines (grrr...). The generic hook I
719 725 * need is something like "gethrtime_unlocked()", which would be just like
720 726 * gethrtime() but would assume that you're already holding CLOCK_LOCK().
721 727 * This is what the GET_HRTIME() macro is for on sparc (although it also
722 728 * serves the function of making time available without a function call
723 729 * so you don't take a register window overflow while traps are disabled).
724 730 */
725 731 void
726 732 pc_gethrestime(timestruc_t *tp)
727 733 {
728 734 int lock_prev;
729 735 timestruc_t now;
730 736 int nslt; /* nsec since last tick */
731 737 int adj; /* amount of adjustment to apply */
732 738
733 739 loop:
734 740 lock_prev = hres_lock;
735 741 now = hrestime;
736 742 nslt = (int)(gethrtime() - hres_last_tick);
737 743 if (nslt < 0) {
738 744 /*
739 745 * nslt < 0 means a tick came between sampling
740 746 * gethrtime() and hres_last_tick; restart the loop
741 747 */
742 748
743 749 goto loop;
744 750 }
745 751 now.tv_nsec += nslt;
746 752 if (hrestime_adj != 0) {
747 753 if (hrestime_adj > 0) {
748 754 adj = (nslt >> ADJ_SHIFT);
749 755 if (adj > hrestime_adj)
750 756 adj = (int)hrestime_adj;
751 757 } else {
752 758 adj = -(nslt >> ADJ_SHIFT);
753 759 if (adj < hrestime_adj)
754 760 adj = (int)hrestime_adj;
755 761 }
756 762 now.tv_nsec += adj;
757 763 }
758 764 while ((unsigned long)now.tv_nsec >= NANOSEC) {
759 765
760 766 /*
761 767 * We might have a large adjustment or have been in the
762 768 * debugger for a long time; take care of (at most) four
763 769 * of those missed seconds (tv_nsec is 32 bits, so
764 770 * anything >4s will be wrapping around). However,
765 771 * anything more than 2 seconds out of sync will trigger
766 772 * timedelta from clock() to go correct the time anyway,
767 773 * so do what we can, and let the big crowbar do the
768 774 * rest. A similar correction while loop exists inside
769 775 * hres_tick(); in all cases we'd like tv_nsec to
770 776 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
771 777 * user processes, but if tv_sec's a little behind for a
772 778 * little while, that's OK; time still monotonically
773 779 * increases.
774 780 */
775 781
776 782 now.tv_nsec -= NANOSEC;
777 783 now.tv_sec++;
778 784 }
779 785 if ((hres_lock & ~1) != lock_prev)
780 786 goto loop;
781 787
782 788 *tp = now;
783 789 }
784 790
785 791 void
786 792 gethrestime_lasttick(timespec_t *tp)
787 793 {
788 794 int s;
789 795
790 796 s = hr_clock_lock();
791 797 *tp = hrestime;
792 798 hr_clock_unlock(s);
793 799 }
794 800
795 801 time_t
796 802 gethrestime_sec(void)
797 803 {
798 804 timestruc_t now;
799 805
800 806 gethrestime(&now);
801 807 return (now.tv_sec);
802 808 }
803 809
804 810 /*
805 811 * Initialize a kernel thread's stack
806 812 */
807 813
808 814 caddr_t
809 815 thread_stk_init(caddr_t stk)
810 816 {
811 817 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
812 818 return (stk - SA(MINFRAME));
813 819 }
814 820
815 821 /*
816 822 * Initialize lwp's kernel stack.
817 823 */
818 824
819 825 #ifdef TRAPTRACE
820 826 /*
821 827 * There's a tricky interdependency here between use of sysenter and
822 828 * TRAPTRACE which needs recording to avoid future confusion (this is
823 829 * about the third time I've re-figured this out ..)
824 830 *
825 831 * Here's how debugging lcall works with TRAPTRACE.
826 832 *
827 833 * 1 We're in userland with a breakpoint on the lcall instruction.
828 834 * 2 We execute the instruction - the instruction pushes the userland
829 835 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
830 836 * via the call gate.
831 837 * 3 The hardware raises a debug trap in kernel mode, the hardware
832 838 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
833 839 * 4 dbgtrap pushes the error code and trapno and calls cmntrap
834 840 * 5 cmntrap finishes building a trap frame
835 841 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
836 842 * off the stack into the traptrace buffer.
837 843 *
838 844 * This means that the traptrace buffer contains the wrong values in
839 845 * %esp and %ss, but everything else in there is correct.
840 846 *
841 847 * Here's how debugging sysenter works with TRAPTRACE.
842 848 *
843 849 * a We're in userland with a breakpoint on the sysenter instruction.
844 850 * b We execute the instruction - the instruction pushes -nothing-
845 851 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged
846 852 * values to take us to sys_sysenter, at the top of the lwp's
847 853 * stack.
848 854 * c goto 3
849 855 *
850 856 * At this point, because we got into the kernel without the requisite
851 857 * five pushes on the stack, if we didn't make extra room, we'd
852 858 * end up with the TRACE_REGS macro fetching the saved %ss and %esp
853 859 * values from negative (unmapped) stack addresses -- which really bites.
854 860 * That's why we do the '-= 8' below.
855 861 *
856 862 * XXX Note that reading "up" lwp0's stack works because t0 is declared
857 863 * right next to t0stack in locore.s
858 864 */
859 865 #endif
860 866
861 867 caddr_t
862 868 lwp_stk_init(klwp_t *lwp, caddr_t stk)
863 869 {
864 870 caddr_t oldstk;
865 871 struct pcb *pcb = &lwp->lwp_pcb;
866 872
867 873 oldstk = stk;
868 874 stk -= SA(sizeof (struct regs) + SA(MINFRAME));
869 875 #ifdef TRAPTRACE
870 876 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
871 877 #endif
872 878 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
873 879 bzero(stk, oldstk - stk);
874 880 lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
875 881
876 882 /*
877 883 * Arrange that the virtualized %fs and %gs GDT descriptors
878 884 * have a well-defined initial state (present, ring 3
879 885 * and of type data).
880 886 */
881 887 #if defined(__amd64)
882 888 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
883 889 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
884 890 else
885 891 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
886 892 #elif defined(__i386)
887 893 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
888 894 #endif /* __i386 */
889 895 lwp_installctx(lwp);
890 896 return (stk);
891 897 }
892 898
893 899 /*
894 900 * Use this opportunity to free any dynamically allocated fp storage.
895 901 */
896 902 void
897 903 lwp_stk_fini(klwp_t *lwp)
898 904 {
899 905 fp_lwp_cleanup(lwp);
900 906 }
901 907
902 908 void
903 909 lwp_fp_init(klwp_t *lwp)
904 910 {
905 911 fp_lwp_init(lwp);
906 912 }
907 913
908 914 /*
909 915 * If we're not the panic CPU, we wait in panic_idle for reboot.
910 916 */
911 917 void
912 918 panic_idle(void)
913 919 {
914 920 splx(ipltospl(CLOCK_LEVEL));
915 921 (void) setjmp(&curthread->t_pcb);
916 922
917 923 dumpsys_helper();
918 924
919 925 #ifndef __xpv
920 926 for (;;)
921 927 i86_halt();
922 928 #else
923 929 for (;;)
924 930 ;
925 931 #endif
926 932 }
927 933
928 934 /*
929 935 * Stop the other CPUs by cross-calling them and forcing them to enter
930 936 * the panic_idle() loop above.
931 937 */
932 938 /*ARGSUSED*/
933 939 void
934 940 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
935 941 {
936 942 processorid_t i;
937 943 cpuset_t xcset;
938 944
939 945 /*
940 946 * In the case of a Xen panic, the hypervisor has already stopped
941 947 * all of the CPUs.
942 948 */
943 949 if (!IN_XPV_PANIC()) {
944 950 (void) splzs();
945 951
946 952 CPUSET_ALL_BUT(xcset, cp->cpu_id);
947 953 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
948 954 }
949 955
950 956 for (i = 0; i < NCPU; i++) {
951 957 if (i != cp->cpu_id && cpu[i] != NULL &&
952 958 (cpu[i]->cpu_flags & CPU_EXISTS))
953 959 cpu[i]->cpu_flags |= CPU_QUIESCED;
954 960 }
955 961 }
956 962
957 963 /*
958 964 * Platform callback following each entry to panicsys().
959 965 */
960 966 /*ARGSUSED*/
961 967 void
962 968 panic_enter_hw(int spl)
963 969 {
964 970 /* Nothing to do here */
965 971 }
966 972
967 973 /*
968 974 * Platform-specific code to execute after panicstr is set: we invoke
969 975 * the PSM entry point to indicate that a panic has occurred.
970 976 */
971 977 /*ARGSUSED*/
972 978 void
973 979 panic_quiesce_hw(panic_data_t *pdp)
974 980 {
975 981 psm_notifyf(PSM_PANIC_ENTER);
976 982
977 983 cmi_panic_callback();
978 984
979 985 #ifdef TRAPTRACE
980 986 /*
981 987 * Turn off TRAPTRACE
982 988 */
983 989 TRAPTRACE_FREEZE;
984 990 #endif /* TRAPTRACE */
985 991 }
986 992
987 993 /*
988 994 * Platform callback prior to writing crash dump.
989 995 */
990 996 /*ARGSUSED*/
991 997 void
992 998 panic_dump_hw(int spl)
993 999 {
994 1000 /* Nothing to do here */
995 1001 }
996 1002
997 1003 void *
998 1004 plat_traceback(void *fpreg)
999 1005 {
1000 1006 #ifdef __xpv
1001 1007 if (IN_XPV_PANIC())
1002 1008 return (xpv_traceback(fpreg));
1003 1009 #endif
1004 1010 return (fpreg);
1005 1011 }
1006 1012
1007 1013 /*ARGSUSED*/
1008 1014 void
1009 1015 plat_tod_fault(enum tod_fault_type tod_bad)
1010 1016 {}
1011 1017
1012 1018 /*ARGSUSED*/
1013 1019 int
1014 1020 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1015 1021 {
1016 1022 return (ENOTSUP);
1017 1023 }
1018 1024
1019 1025 /*
1020 1026 * The underlying console output routines are protected by raising IPL in case
1021 1027 * we are still calling into the early boot services. Once we start calling
1022 1028 * the kernel console emulator, it will disable interrupts completely during
1023 1029 * character rendering (see sysp_putchar, for example). Refer to the comments
1024 1030 * and code in common/os/console.c for more information on these callbacks.
1025 1031 */
1026 1032 /*ARGSUSED*/
1027 1033 int
1028 1034 console_enter(int busy)
1029 1035 {
1030 1036 return (splzs());
1031 1037 }
1032 1038
1033 1039 /*ARGSUSED*/
1034 1040 void
1035 1041 console_exit(int busy, int spl)
1036 1042 {
1037 1043 splx(spl);
1038 1044 }
1039 1045
1040 1046 /*
1041 1047 * Allocate a region of virtual address space, unmapped.
1042 1048 * Stubbed out except on sparc, at least for now.
1043 1049 */
1044 1050 /*ARGSUSED*/
1045 1051 void *
1046 1052 boot_virt_alloc(void *addr, size_t size)
1047 1053 {
1048 1054 return (addr);
1049 1055 }
1050 1056
1051 1057 volatile unsigned long tenmicrodata;
1052 1058
1053 1059 void
1054 1060 tenmicrosec(void)
1055 1061 {
1056 1062 extern int gethrtime_hires;
1057 1063
1058 1064 if (gethrtime_hires) {
1059 1065 hrtime_t start, end;
1060 1066 start = end = gethrtime();
1061 1067 while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1062 1068 SMT_PAUSE();
1063 1069 end = gethrtime();
1064 1070 }
1065 1071 } else {
1066 1072 #if defined(__xpv)
1067 1073 hrtime_t newtime;
1068 1074
1069 1075 newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1070 1076 while (xpv_gethrtime() < newtime)
1071 1077 SMT_PAUSE();
1072 1078 #else /* __xpv */
1073 1079 int i;
1074 1080
1075 1081 /*
1076 1082 * Artificial loop to induce delay.
1077 1083 */
1078 1084 for (i = 0; i < microdata; i++)
1079 1085 tenmicrodata = microdata;
1080 1086 #endif /* __xpv */
1081 1087 }
1082 1088 }
1083 1089
1084 1090 /*
1085 1091 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1086 1092 * long, and it fills in the array with the time spent on cpu in
1087 1093 * each of the mstates, where time is returned in nsec.
1088 1094 *
1089 1095 * No guarantee is made that the returned values in times[] will
1090 1096 * monotonically increase on sequential calls, although this will
1091 1097 * be true in the long run. Any such guarantee must be handled by
1092 1098 * the caller, if needed. This can happen if we fail to account
1093 1099 * for elapsed time due to a generation counter conflict, yet we
1094 1100 * did account for it on a prior call (see below).
1095 1101 *
1096 1102 * The complication is that the cpu in question may be updating
1097 1103 * its microstate at the same time that we are reading it.
1098 1104 * Because the microstate is only updated when the CPU's state
1099 1105 * changes, the values in cpu_intracct[] can be indefinitely out
1100 1106 * of date. To determine true current values, it is necessary to
1101 1107 * compare the current time with cpu_mstate_start, and add the
1102 1108 * difference to times[cpu_mstate].
1103 1109 *
1104 1110 * This can be a problem if those values are changing out from
1105 1111 * under us. Because the code path in new_cpu_mstate() is
1106 1112 * performance critical, we have not added a lock to it. Instead,
1107 1113 * we have added a generation counter. Before beginning
1108 1114 * modifications, the counter is set to 0. After modifications,
1109 1115 * it is set to the old value plus one.
1110 1116 *
1111 1117 * get_cpu_mstate() will not consider the values of cpu_mstate
1112 1118 * and cpu_mstate_start to be usable unless the value of
1113 1119 * cpu_mstate_gen is both non-zero and unchanged, both before and
1114 1120 * after reading the mstate information. Note that we must
1115 1121 * protect against out-of-order loads around accesses to the
1116 1122 * generation counter. Also, this is a best effort approach in
1117 1123 * that we do not retry should the counter be found to have
1118 1124 * changed.
1119 1125 *
1120 1126 * cpu_intracct[] is used to identify time spent in each CPU
1121 1127 * mstate while handling interrupts. Such time should be reported
1122 1128 * against system time, and so is subtracted out from its
1123 1129 * corresponding cpu_acct[] time and added to
1124 1130 * cpu_acct[CMS_SYSTEM].
1125 1131 */
1126 1132
1127 1133 void
1128 1134 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1129 1135 {
1130 1136 int i;
1131 1137 hrtime_t now, start;
1132 1138 uint16_t gen;
1133 1139 uint16_t state;
1134 1140 hrtime_t intracct[NCMSTATES];
1135 1141
1136 1142 /*
1137 1143 * Load all volatile state under the protection of membar.
1138 1144 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1139 1145 * of (now - cpu_mstate_start) by a change in CPU mstate that
1140 1146 * arrives after we make our last check of cpu_mstate_gen.
1141 1147 */
1142 1148
1143 1149 now = gethrtime_unscaled();
1144 1150 gen = cpu->cpu_mstate_gen;
1145 1151
1146 1152 membar_consumer(); /* guarantee load ordering */
1147 1153 start = cpu->cpu_mstate_start;
1148 1154 state = cpu->cpu_mstate;
1149 1155 for (i = 0; i < NCMSTATES; i++) {
1150 1156 intracct[i] = cpu->cpu_intracct[i];
1151 1157 times[i] = cpu->cpu_acct[i];
1152 1158 }
1153 1159 membar_consumer(); /* guarantee load ordering */
1154 1160
1155 1161 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1156 1162 times[state] += now - start;
1157 1163
1158 1164 for (i = 0; i < NCMSTATES; i++) {
1159 1165 if (i == CMS_SYSTEM)
1160 1166 continue;
1161 1167 times[i] -= intracct[i];
1162 1168 if (times[i] < 0) {
1163 1169 intracct[i] += times[i];
1164 1170 times[i] = 0;
1165 1171 }
1166 1172 times[CMS_SYSTEM] += intracct[i];
1167 1173 scalehrtime(×[i]);
1168 1174 }
1169 1175 scalehrtime(×[CMS_SYSTEM]);
1170 1176 }
1171 1177
1172 1178 /*
1173 1179 * This is a version of the rdmsr instruction that allows
1174 1180 * an error code to be returned in the case of failure.
1175 1181 */
1176 1182 int
1177 1183 checked_rdmsr(uint_t msr, uint64_t *value)
1178 1184 {
1179 1185 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1180 1186 return (ENOTSUP);
1181 1187 *value = rdmsr(msr);
1182 1188 return (0);
1183 1189 }
1184 1190
1185 1191 /*
1186 1192 * This is a version of the wrmsr instruction that allows
1187 1193 * an error code to be returned in the case of failure.
1188 1194 */
1189 1195 int
1190 1196 checked_wrmsr(uint_t msr, uint64_t value)
1191 1197 {
1192 1198 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1193 1199 return (ENOTSUP);
1194 1200 wrmsr(msr, value);
1195 1201 return (0);
1196 1202 }
1197 1203
1198 1204 /*
1199 1205 * The mem driver's usual method of using hat_devload() to establish a
1200 1206 * temporary mapping will not work for foreign pages mapped into this
1201 1207 * domain or for the special hypervisor-provided pages. For the foreign
1202 1208 * pages, we often don't know which domain owns them, so we can't ask the
1203 1209 * hypervisor to set up a new mapping. For the other pages, we don't have
1204 1210 * a pfn, so we can't create a new PTE. For these special cases, we do a
1205 1211 * direct uiomove() from the existing kernel virtual address.
1206 1212 */
1207 1213 /*ARGSUSED*/
1208 1214 int
1209 1215 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1210 1216 {
1211 1217 #if defined(__xpv)
1212 1218 void *va = (void *)(uintptr_t)uio->uio_loffset;
1213 1219 off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1214 1220 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1215 1221 (size_t)uio->uio_iov->iov_len);
1216 1222
1217 1223 if ((rw == UIO_READ &&
1218 1224 (va == HYPERVISOR_shared_info || va == xen_info)) ||
1219 1225 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1220 1226 return (uiomove(va, nbytes, rw, uio));
1221 1227 #endif
1222 1228 return (ENOTSUP);
1223 1229 }
1224 1230
1225 1231 pgcnt_t
1226 1232 num_phys_pages()
1227 1233 {
1228 1234 pgcnt_t npages = 0;
1229 1235 struct memlist *mp;
1230 1236
1231 1237 #if defined(__xpv)
1232 1238 if (DOMAIN_IS_INITDOMAIN(xen_info))
1233 1239 return (xpv_nr_phys_pages());
1234 1240 #endif /* __xpv */
1235 1241
1236 1242 for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1237 1243 npages += mp->ml_size >> PAGESHIFT;
1238 1244
1239 1245 return (npages);
1240 1246 }
1241 1247
1242 1248 /* cpu threshold for compressed dumps */
1243 1249 #ifdef _LP64
1244 1250 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU;
1245 1251 #else
1246 1252 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU;
1247 1253 #endif
1248 1254
1249 1255 int
1250 1256 dump_plat_addr()
1251 1257 {
1252 1258 #ifdef __xpv
1253 1259 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1254 1260 mem_vtop_t mem_vtop;
1255 1261 int cnt;
1256 1262
1257 1263 /*
1258 1264 * On the hypervisor, we want to dump the page with shared_info on it.
1259 1265 */
1260 1266 if (!IN_XPV_PANIC()) {
1261 1267 mem_vtop.m_as = &kas;
1262 1268 mem_vtop.m_va = HYPERVISOR_shared_info;
1263 1269 mem_vtop.m_pfn = pfn;
1264 1270 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1265 1271 cnt = 1;
1266 1272 } else {
1267 1273 cnt = dump_xpv_addr();
1268 1274 }
1269 1275 return (cnt);
1270 1276 #else
1271 1277 return (0);
1272 1278 #endif
1273 1279 }
1274 1280
1275 1281 void
1276 1282 dump_plat_pfn()
1277 1283 {
1278 1284 #ifdef __xpv
1279 1285 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1280 1286
1281 1287 if (!IN_XPV_PANIC())
1282 1288 dumpvp_write(&pfn, sizeof (pfn));
1283 1289 else
1284 1290 dump_xpv_pfn();
1285 1291 #endif
1286 1292 }
1287 1293
1288 1294 /*ARGSUSED*/
1289 1295 int
1290 1296 dump_plat_data(void *dump_cbuf)
1291 1297 {
1292 1298 #ifdef __xpv
1293 1299 uint32_t csize;
1294 1300 int cnt;
1295 1301
1296 1302 if (!IN_XPV_PANIC()) {
1297 1303 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1298 1304 PAGESIZE);
1299 1305 dumpvp_write(&csize, sizeof (uint32_t));
1300 1306 dumpvp_write(dump_cbuf, csize);
1301 1307 cnt = 1;
1302 1308 } else {
1303 1309 cnt = dump_xpv_data(dump_cbuf);
1304 1310 }
1305 1311 return (cnt);
1306 1312 #else
1307 1313 return (0);
1308 1314 #endif
1309 1315 }
1310 1316
1311 1317 /*
1312 1318 * Calculates a linear address, given the CS selector and PC values
1313 1319 * by looking up the %cs selector process's LDT or the CPU's GDT.
1314 1320 * proc->p_ldtlock must be held across this call.
1315 1321 */
1316 1322 int
1317 1323 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1318 1324 {
1319 1325 user_desc_t *descrp;
1320 1326 caddr_t baseaddr;
1321 1327 uint16_t idx = SELTOIDX(rp->r_cs);
1322 1328
1323 1329 ASSERT(rp->r_cs <= 0xFFFF);
1324 1330 ASSERT(MUTEX_HELD(&p->p_ldtlock));
1325 1331
1326 1332 if (SELISLDT(rp->r_cs)) {
1327 1333 /*
1328 1334 * Currently 64 bit processes cannot have private LDTs.
1329 1335 */
1330 1336 ASSERT(p->p_model != DATAMODEL_LP64);
1331 1337
1332 1338 if (p->p_ldt == NULL)
1333 1339 return (-1);
1334 1340
1335 1341 descrp = &p->p_ldt[idx];
1336 1342 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1337 1343
1338 1344 /*
1339 1345 * Calculate the linear address (wraparound is not only ok,
1340 1346 * it's expected behavior). The cast to uint32_t is because
1341 1347 * LDT selectors are only allowed in 32-bit processes.
1342 1348 */
1343 1349 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1344 1350 rp->r_pc);
1345 1351 } else {
1346 1352 #ifdef DEBUG
1347 1353 descrp = &CPU->cpu_gdt[idx];
1348 1354 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1349 1355 /* GDT-based descriptors' base addresses should always be 0 */
1350 1356 ASSERT(baseaddr == 0);
1351 1357 #endif
1352 1358 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1353 1359 }
1354 1360
1355 1361 return (0);
1356 1362 }
1357 1363
1358 1364 /*
1359 1365 * The implementation of dtrace_linear_pc is similar to the that of
1360 1366 * linear_pc, above, but here we acquire p_ldtlock before accessing
1361 1367 * p_ldt. This implementation is used by the pid provider; we prefix
1362 1368 * it with "dtrace_" to avoid inducing spurious tracing events.
1363 1369 */
1364 1370 int
1365 1371 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1366 1372 {
1367 1373 user_desc_t *descrp;
1368 1374 caddr_t baseaddr;
1369 1375 uint16_t idx = SELTOIDX(rp->r_cs);
1370 1376
1371 1377 ASSERT(rp->r_cs <= 0xFFFF);
1372 1378
1373 1379 if (SELISLDT(rp->r_cs)) {
1374 1380 /*
1375 1381 * Currently 64 bit processes cannot have private LDTs.
1376 1382 */
1377 1383 ASSERT(p->p_model != DATAMODEL_LP64);
1378 1384
1379 1385 mutex_enter(&p->p_ldtlock);
1380 1386 if (p->p_ldt == NULL) {
1381 1387 mutex_exit(&p->p_ldtlock);
1382 1388 return (-1);
1383 1389 }
1384 1390 descrp = &p->p_ldt[idx];
1385 1391 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1386 1392 mutex_exit(&p->p_ldtlock);
1387 1393
1388 1394 /*
1389 1395 * Calculate the linear address (wraparound is not only ok,
1390 1396 * it's expected behavior). The cast to uint32_t is because
1391 1397 * LDT selectors are only allowed in 32-bit processes.
1392 1398 */
1393 1399 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1394 1400 rp->r_pc);
1395 1401 } else {
1396 1402 #ifdef DEBUG
1397 1403 descrp = &CPU->cpu_gdt[idx];
1398 1404 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1399 1405 /* GDT-based descriptors' base addresses should always be 0 */
1400 1406 ASSERT(baseaddr == 0);
1401 1407 #endif
1402 1408 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1403 1409 }
1404 1410
1405 1411 return (0);
1406 1412 }
1407 1413
1408 1414 /*
1409 1415 * We need to post a soft interrupt to reprogram the lbolt cyclic when
1410 1416 * switching from event to cyclic driven lbolt. The following code adds
1411 1417 * and posts the softint for x86.
1412 1418 */
1413 1419 static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1414 1420 {0, 0, NULL, NULL, 0, NULL, NULL, NULL};
1415 1421
1416 1422 void
1417 1423 lbolt_softint_add(void)
1418 1424 {
1419 1425 (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1420 1426 (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1421 1427 }
1422 1428
1423 1429 void
1424 1430 lbolt_softint_post(void)
1425 1431 {
1426 1432 (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1427 1433 }
1428 1434
1429 1435 boolean_t
1430 1436 plat_dr_check_capability(uint64_t features)
1431 1437 {
1432 1438 return ((plat_dr_options & features) == features);
1433 1439 }
1434 1440
1435 1441 boolean_t
1436 1442 plat_dr_support_cpu(void)
1437 1443 {
1438 1444 return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1439 1445 }
1440 1446
1441 1447 boolean_t
1442 1448 plat_dr_support_memory(void)
1443 1449 {
1444 1450 return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1445 1451 }
1446 1452
↓ open down ↓ |
1244 lines elided |
↑ open up ↑ |
1447 1453 void
1448 1454 plat_dr_enable_capability(uint64_t features)
1449 1455 {
1450 1456 atomic_or_64(&plat_dr_options, features);
1451 1457 }
1452 1458
1453 1459 void
1454 1460 plat_dr_disable_capability(uint64_t features)
1455 1461 {
1456 1462 atomic_and_64(&plat_dr_options, ~features);
1463 +}
1464 +
1465 +/*
1466 + * If SMAP is supported, look through hi_calls and inline
1467 + * calls to smap_enable() to clac and smap_disable() to stac.
1468 + */
1469 +void
1470 +hotinline_smap(hotinline_desc_t *hid)
1471 +{
1472 + if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE)
1473 + return;
1474 +
1475 + if (strcmp(hid->hid_symname, "smap_enable") == 0) {
1476 + bcopy(clac_instr, (void *)hid->hid_instr_offset,
1477 + sizeof (clac_instr));
1478 + } else if (strcmp(hid->hid_symname, "smap_disable") == 0) {
1479 + bcopy(stac_instr, (void *)hid->hid_instr_offset,
1480 + sizeof (stac_instr));
1481 + }
1482 +}
1483 +
1484 +/*
1485 + * Loop through hi_calls and hand off the inlining to
1486 + * the appropriate calls.
1487 + */
1488 +void
1489 +do_hotinlines(struct module *mp)
1490 +{
1491 + for (hotinline_desc_t *hid = mp->hi_calls; hid != NULL;
1492 + hid = hid->hid_next) {
1493 +#if !defined(__xpv)
1494 + hotinline_smap(hid);
1495 +#endif /* __xpv */
1496 + }
1457 1497 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX