1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>. 27 * All rights reserved. Use is subject to license terms. 28 * Copyright (c) 2018, Joyent, Inc. 29 */ 30 31 /* 32 * Kernel's linker/loader 33 */ 34 35 #include <sys/types.h> 36 #include <sys/param.h> 37 #include <sys/sysmacros.h> 38 #include <sys/systm.h> 39 #include <sys/user.h> 40 #include <sys/kmem.h> 41 #include <sys/reboot.h> 42 #include <sys/bootconf.h> 43 #include <sys/debug.h> 44 #include <sys/uio.h> 45 #include <sys/file.h> 46 #include <sys/vnode.h> 47 #include <sys/user.h> 48 #include <sys/mman.h> 49 #include <vm/as.h> 50 #include <vm/seg_kp.h> 51 #include <vm/seg_kmem.h> 52 #include <sys/elf.h> 53 #include <sys/elf_notes.h> 54 #include <sys/vmsystm.h> 55 #include <sys/kdi.h> 56 #include <sys/atomic.h> 57 #include <sys/kmdb.h> 58 59 #include <sys/link.h> 60 #include <sys/kobj.h> 61 #include <sys/ksyms.h> 62 #include <sys/disp.h> 63 #include <sys/modctl.h> 64 #include <sys/varargs.h> 65 #include <sys/kstat.h> 66 #include <sys/kobj_impl.h> 67 #include <sys/fs/decomp.h> 68 #include <sys/callb.h> 69 #include <sys/cmn_err.h> 70 #include <sys/tnf_probe.h> 71 #include <sys/zmod.h> 72 73 #include <krtld/reloc.h> 74 #include <krtld/kobj_kdi.h> 75 #include <sys/sha1.h> 76 #include <sys/crypto/elfsign.h> 77 78 #if !defined(_OBP) 79 #include <sys/bootvfs.h> 80 #endif 81 82 /* 83 * do_symbols() error codes 84 */ 85 #define DOSYM_UNDEF -1 /* undefined symbol */ 86 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */ 87 88 #if !defined(_OBP) 89 static void synthetic_bootaux(char *, val_t *); 90 #endif 91 92 static struct module *load_exec(val_t *, char *); 93 static void load_linker(val_t *); 94 static struct modctl *add_primary(const char *filename, int); 95 static int bind_primary(val_t *, int); 96 static int load_primary(struct module *, int); 97 static int load_kmdb(val_t *); 98 static int get_progbits(struct module *, struct _buf *); 99 static int get_syms(struct module *, struct _buf *); 100 static int get_ctf(struct module *, struct _buf *); 101 static void get_signature(struct module *, struct _buf *); 102 static int do_common(struct module *); 103 static void add_dependent(struct module *, struct module *); 104 static int do_dependents(struct modctl *, char *, size_t); 105 static int do_symbols(struct module *, Elf64_Addr); 106 static void module_assign(struct modctl *, struct module *); 107 static void free_module_data(struct module *); 108 static char *depends_on(struct module *); 109 static char *getmodpath(const char *); 110 static char *basename(char *); 111 static void attr_val(val_t *); 112 static char *find_libmacro(char *); 113 static char *expand_libmacro(char *, char *, char *); 114 static int read_bootflags(void); 115 static int kobj_comp_setup(struct _buf *, struct compinfo *); 116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t); 117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t); 118 static int kobj_boot_open(char *, int); 119 static int kobj_boot_close(int); 120 static int kobj_boot_seek(int, off_t, off_t); 121 static int kobj_boot_read(int, caddr_t, size_t); 122 static int kobj_boot_fstat(int, struct bootstat *); 123 static int kobj_boot_compinfo(int, struct compinfo *); 124 125 static Sym *lookup_one(struct module *, const char *); 126 static void sym_insert(struct module *, char *, symid_t); 127 static Sym *sym_lookup(struct module *, Sym *); 128 129 static struct kobjopen_tctl *kobjopen_alloc(char *filename); 130 static void kobjopen_free(struct kobjopen_tctl *ltp); 131 static void kobjopen_thread(struct kobjopen_tctl *ltp); 132 static int kobj_is_compressed(intptr_t); 133 134 extern int kcopy(const void *, void *, size_t); 135 extern int elf_mach_ok(Ehdr *); 136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *); 137 138 #if !defined(_OBP) 139 extern int kobj_boot_mountroot(void); 140 #endif 141 142 static void tnf_unsplice_probes(uint_t, struct modctl *); 143 extern tnf_probe_control_t *__tnf_probe_list_head; 144 extern tnf_tag_data_t *__tnf_tag_list_head; 145 146 extern int modrootloaded; 147 extern int swaploaded; 148 extern int bop_io_quiesced; 149 extern int last_module_id; 150 151 extern char stubs_base[]; 152 extern char stubs_end[]; 153 154 #ifdef KOBJ_DEBUG 155 /* 156 * Values that can be or'd in to kobj_debug and their effects: 157 * 158 * D_DEBUG - misc. debugging information. 159 * D_SYMBOLS - list symbols and their values as they are entered 160 * into the hash table 161 * D_RELOCATIONS - display relocation processing information 162 * D_LOADING - display information about each module as it 163 * is loaded. 164 */ 165 int kobj_debug = 0; 166 167 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \ 168 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s)) 169 #else 170 #define KOBJ_MARK(s) /* discard */ 171 #endif 172 173 #define MODPATH_PROPNAME "module-path" 174 175 #ifdef MODDIR_SUFFIX 176 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/"; 177 #else 178 #define slash_moddir_suffix_slash "" 179 #endif 180 181 #define _moddebug get_weakish_int(&moddebug) 182 #define _modrootloaded get_weakish_int(&modrootloaded) 183 #define _swaploaded get_weakish_int(&swaploaded) 184 #define _ioquiesced get_weakish_int(&bop_io_quiesced) 185 186 #define mod(X) (struct module *)((X)->modl_modp->mod_mp) 187 188 void *romp; /* rom vector (opaque to us) */ 189 struct bootops *ops; /* bootops vector */ 190 void *dbvec; /* debug vector */ 191 192 /* 193 * kobjopen thread control structure 194 */ 195 struct kobjopen_tctl { 196 ksema_t sema; 197 char *name; /* name of file */ 198 struct vnode *vp; /* vnode return from vn_open() */ 199 int Errno; /* error return from vnopen */ 200 }; 201 202 /* 203 * Structure for defining dynamically expandable library macros 204 */ 205 206 struct lib_macro_info { 207 char *lmi_list; /* ptr to list of possible choices */ 208 char *lmi_macroname; /* pointer to macro name */ 209 ushort_t lmi_ba_index; /* index into bootaux vector */ 210 ushort_t lmi_macrolen; /* macro length */ 211 } libmacros[] = { 212 { NULL, "CPU", BA_CPU, 0 }, 213 { NULL, "MMU", BA_MMU, 0 } 214 }; 215 216 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info) 217 218 char *boot_cpu_compatible_list; /* make $CPU available */ 219 220 char *kobj_module_path; /* module search path */ 221 vmem_t *text_arena; /* module text arena */ 222 static vmem_t *data_arena; /* module data & bss arena */ 223 static vmem_t *ctf_arena; /* CTF debug data arena */ 224 static struct modctl *kobj_modules = NULL; /* modules loaded */ 225 int kobj_mmu_pagesize; /* system pagesize */ 226 static int lg_pagesize; /* "large" pagesize */ 227 static int kobj_last_module_id = 0; /* id assignment */ 228 static kmutex_t kobj_lock; /* protects mach memory list */ 229 230 /* 231 * The following functions have been implemented by the kernel. 232 * However, many 3rd party drivers provide their own implementations 233 * of these functions. When such drivers are loaded, messages 234 * indicating that these symbols have been multiply defined will be 235 * emitted to the console. To avoid alarming customers for no good 236 * reason, we simply suppress such warnings for the following set of 237 * functions. 238 */ 239 static char *suppress_sym_list[] = 240 { 241 "strstr", 242 "strncat", 243 "strlcat", 244 "strlcpy", 245 "strspn", 246 "memcpy", 247 "memset", 248 "memmove", 249 "memcmp", 250 "memchr", 251 "__udivdi3", 252 "__divdi3", 253 "__umoddi3", 254 "__moddi3", 255 NULL /* This entry must exist */ 256 }; 257 258 /* indexed by KOBJ_NOTIFY_* */ 259 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1]; 260 261 /* 262 * TNF probe management globals 263 */ 264 tnf_probe_control_t *__tnf_probe_list_head = NULL; 265 tnf_tag_data_t *__tnf_tag_list_head = NULL; 266 int tnf_changed_probe_list = 0; 267 268 /* 269 * Prefix for statically defined tracing (SDT) DTrace probes. 270 */ 271 const char *sdt_prefix = "__dtrace_probe_"; 272 273 /* 274 * Beginning and end of the kernel's dynamic text/data segments. 275 */ 276 static caddr_t _text; 277 static caddr_t _etext; 278 static caddr_t _data; 279 280 /* 281 * The sparc linker doesn't create a memory location 282 * for a variable named _edata, so _edata can only be 283 * referred to, not modified. krtld needs a static 284 * variable to modify it - within krtld, of course - 285 * outside of krtld, e_data is used in all kernels. 286 */ 287 #if defined(__sparc) 288 static caddr_t _edata; 289 #else 290 extern caddr_t _edata; 291 #endif 292 293 Addr dynseg = 0; /* load address of "dynamic" segment */ 294 size_t dynsize; /* "dynamic" segment size */ 295 296 297 int standalone = 1; /* an unwholey kernel? */ 298 int use_iflush; /* iflush after relocations */ 299 300 /* 301 * _kobj_printf() and _vkobj_printf() 302 * 303 * Common printf function pointer. Can handle only one conversion 304 * specification in the format string. Some of the functions invoked 305 * through this function pointer cannot handle more that one conversion 306 * specification in the format string. 307 */ 308 void (*_kobj_printf)(void *, const char *, ...); /* printf routine */ 309 void (*_vkobj_printf)(void *, const char *, va_list); /* vprintf routine */ 310 311 /* 312 * Standalone function pointers for use within krtld. 313 * Many platforms implement optimized platmod versions of 314 * utilities such as bcopy and any such are not yet available 315 * until the kernel is more completely stitched together. 316 * See kobj_impl.h 317 */ 318 void (*kobj_bcopy)(const void *, void *, size_t); 319 void (*kobj_bzero)(void *, size_t); 320 size_t (*kobj_strlcat)(char *, const char *, size_t); 321 322 static kobj_stat_t kobj_stat; 323 324 #define MINALIGN 8 /* at least a double-word */ 325 326 int 327 get_weakish_int(int *ip) 328 { 329 if (standalone) 330 return (0); 331 return (ip == NULL ? 0 : *ip); 332 } 333 334 static void * 335 get_weakish_pointer(void **ptrp) 336 { 337 if (standalone) 338 return (0); 339 return (ptrp == NULL ? 0 : *ptrp); 340 } 341 342 /* 343 * XXX fix dependencies on "kernel"; this should work 344 * for other standalone binaries as well. 345 * 346 * XXX Fix hashing code to use one pointer to 347 * hash entries. 348 * |----------| 349 * | nbuckets | 350 * |----------| 351 * | nchains | 352 * |----------| 353 * | bucket[] | 354 * |----------| 355 * | chain[] | 356 * |----------| 357 */ 358 359 /* 360 * Load, bind and relocate all modules that 361 * form the primary kernel. At this point, our 362 * externals have not been relocated. 363 */ 364 void 365 kobj_init( 366 void *romvec, 367 void *dvec, 368 struct bootops *bootvec, 369 val_t *bootaux) 370 { 371 struct module *mp; 372 struct modctl *modp; 373 Addr entry; 374 char filename[MAXPATHLEN]; 375 376 /* 377 * Save these to pass on to 378 * the booted standalone. 379 */ 380 romp = romvec; 381 dbvec = dvec; 382 383 ops = bootvec; 384 kobj_setup_standalone_vectors(); 385 386 KOBJ_MARK("Entered kobj_init()"); 387 388 (void) BOP_GETPROP(ops, "whoami", filename); 389 390 /* 391 * We don't support standalone debuggers anymore. The use of kadb 392 * will interfere with the later use of kmdb. Let the user mend 393 * their ways now. Users will reach this message if they still 394 * have the kadb binary on their system (perhaps they used an old 395 * bfu, or maybe they intentionally copied it there) and have 396 * specified its use in a way that eluded our checking in the boot 397 * program. 398 */ 399 if (dvec != NULL) { 400 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as " 401 "kadb are no longer supported\n\n"); 402 goto fail; 403 } 404 405 #if defined(_OBP) 406 /* 407 * OBP allows us to read both the ramdisk and 408 * the underlying root fs when root is a disk. 409 * This can lower incidences of unbootable systems 410 * when the archive is out-of-date with the /etc 411 * state files. 412 */ 413 if (BOP_MOUNTROOT() != BOOT_SVC_OK) { 414 _kobj_printf(ops, "can't mount boot fs\n"); 415 goto fail; 416 } 417 #else 418 { 419 /* on x86, we always boot with a ramdisk */ 420 (void) kobj_boot_mountroot(); 421 422 /* 423 * Now that the ramdisk is mounted, finish boot property 424 * initialization. 425 */ 426 boot_prop_finish(); 427 } 428 429 #if !defined(_UNIX_KRTLD) 430 /* 431 * 'unix' is linked together with 'krtld' into one executable and 432 * the early boot code does -not- hand us any of the dynamic metadata 433 * about the executable. In particular, it does not read in, map or 434 * otherwise look at the program headers. We fake all that up now. 435 * 436 * We do this early as DTrace static probes and tnf probes both call 437 * undefined references. We have to process those relocations before 438 * calling any of them. 439 * 440 * OBP tells kobj_start() where the ELF image is in memory, so it 441 * synthesized bootaux before kobj_init() was called 442 */ 443 if (bootaux[BA_PHDR].ba_ptr == NULL) 444 synthetic_bootaux(filename, bootaux); 445 446 #endif /* !_UNIX_KRTLD */ 447 #endif /* _OBP */ 448 449 /* 450 * Save the interesting attribute-values 451 * (scanned by kobj_boot). 452 */ 453 attr_val(bootaux); 454 455 /* 456 * Set the module search path. 457 */ 458 kobj_module_path = getmodpath(filename); 459 460 boot_cpu_compatible_list = find_libmacro("CPU"); 461 462 /* 463 * These two modules have actually been 464 * loaded by boot, but we finish the job 465 * by introducing them into the world of 466 * loadable modules. 467 */ 468 469 mp = load_exec(bootaux, filename); 470 load_linker(bootaux); 471 472 /* 473 * Load all the primary dependent modules. 474 */ 475 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1) 476 goto fail; 477 478 /* 479 * Glue it together. 480 */ 481 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1) 482 goto fail; 483 484 entry = bootaux[BA_ENTRY].ba_val; 485 486 /* 487 * Get the boot flags 488 */ 489 bootflags(ops); 490 491 if (boothowto & RB_VERBOSE) 492 kobj_lm_dump(KOBJ_LM_PRIMARY); 493 494 kobj_kdi_init(); 495 496 if (boothowto & RB_KMDB) { 497 if (load_kmdb(bootaux) < 0) 498 goto fail; 499 } 500 501 /* 502 * Post setup. 503 */ 504 s_text = _text; 505 e_text = _etext; 506 s_data = _data; 507 e_data = _edata; 508 509 kobj_sync_instruction_memory(s_text, e_text - s_text); 510 511 #ifdef KOBJ_DEBUG 512 if (kobj_debug & D_DEBUG) 513 _kobj_printf(ops, 514 "krtld: transferring control to: 0x%p\n", entry); 515 #endif 516 517 /* 518 * Make sure the mod system knows about the modules already loaded. 519 */ 520 last_module_id = kobj_last_module_id; 521 bcopy(kobj_modules, &modules, sizeof (modules)); 522 modp = &modules; 523 do { 524 if (modp->mod_next == kobj_modules) 525 modp->mod_next = &modules; 526 if (modp->mod_prev == kobj_modules) 527 modp->mod_prev = &modules; 528 } while ((modp = modp->mod_next) != &modules); 529 530 standalone = 0; 531 532 #ifdef KOBJ_DEBUG 533 if (kobj_debug & D_DEBUG) 534 _kobj_printf(ops, 535 "krtld: really transferring control to: 0x%p\n", entry); 536 #endif 537 538 /* restore printf/bcopy/bzero vectors before returning */ 539 kobj_restore_vectors(); 540 541 #if defined(_DBOOT) 542 /* 543 * krtld was called from a dboot ELF section, the embedded 544 * dboot code contains the real entry via bootaux 545 */ 546 exitto((caddr_t)entry); 547 #else 548 /* 549 * krtld was directly called from startup 550 */ 551 return; 552 #endif 553 554 fail: 555 556 _kobj_printf(ops, "krtld: error during initial load/link phase\n"); 557 558 #if !defined(_UNIX_KRTLD) 559 _kobj_printf(ops, "\n"); 560 _kobj_printf(ops, "krtld could neither locate nor resolve symbols" 561 " for:\n"); 562 _kobj_printf(ops, " %s\n", filename); 563 _kobj_printf(ops, "in the boot archive. Please verify that this" 564 " file\n"); 565 _kobj_printf(ops, "matches what is found in the boot archive.\n"); 566 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to" 567 " fix this.\n"); 568 bop_panic("Unable to boot"); 569 #endif 570 } 571 572 #if !defined(_UNIX_KRTLD) && !defined(_OBP) 573 /* 574 * Synthesize additional metadata that describes the executable if 575 * krtld's caller didn't do it. 576 * 577 * (When the dynamic executable has an interpreter, the boot program 578 * does all this for us. Where we don't have an interpreter, (or a 579 * even a boot program, perhaps) we have to do this for ourselves.) 580 */ 581 static void 582 synthetic_bootaux(char *filename, val_t *bootaux) 583 { 584 Ehdr ehdr; 585 caddr_t phdrbase; 586 struct _buf *file; 587 int i, n; 588 589 /* 590 * Elf header 591 */ 592 KOBJ_MARK("synthetic_bootaux()"); 593 KOBJ_MARK(filename); 594 file = kobj_open_file(filename); 595 if (file == (struct _buf *)-1) { 596 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename); 597 return; 598 } 599 KOBJ_MARK("reading program headers"); 600 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) { 601 _kobj_printf(ops, "krtld: %s: failed to read ehder\n", 602 filename); 603 return; 604 } 605 606 /* 607 * Program headers 608 */ 609 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum; 610 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize; 611 n = ehdr.e_phentsize * ehdr.e_phnum; 612 613 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP); 614 615 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) { 616 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n", 617 filename); 618 return; 619 } 620 bootaux[BA_PHDR].ba_ptr = phdrbase; 621 kobj_close_file(file); 622 KOBJ_MARK("closed file"); 623 624 /* 625 * Find the dynamic section address 626 */ 627 for (i = 0; i < ehdr.e_phnum; i++) { 628 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i); 629 630 if (phdr->p_type == PT_DYNAMIC) { 631 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr; 632 break; 633 } 634 } 635 KOBJ_MARK("synthetic_bootaux() done"); 636 } 637 #endif /* !_UNIX_KRTLD && !_OBP */ 638 639 /* 640 * Set up any global information derived 641 * from attribute/values in the boot or 642 * aux vector. 643 */ 644 static void 645 attr_val(val_t *bootaux) 646 { 647 Phdr *phdr; 648 int phnum, phsize; 649 int i; 650 651 KOBJ_MARK("attr_val()"); 652 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val; 653 lg_pagesize = bootaux[BA_LPAGESZ].ba_val; 654 use_iflush = bootaux[BA_IFLUSH].ba_val; 655 656 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr; 657 phnum = bootaux[BA_PHNUM].ba_val; 658 phsize = bootaux[BA_PHENT].ba_val; 659 for (i = 0; i < phnum; i++) { 660 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize); 661 662 if (phdr->p_type != PT_LOAD) { 663 continue; 664 } 665 /* 666 * Bounds of the various segments. 667 */ 668 if (!(phdr->p_flags & PF_X)) { 669 #if defined(_RELSEG) 670 /* 671 * sparc kernel puts the dynamic info 672 * into a separate segment, which is 673 * free'd in bop_fini() 674 */ 675 ASSERT(phdr->p_vaddr != 0); 676 dynseg = phdr->p_vaddr; 677 dynsize = phdr->p_memsz; 678 #else 679 ASSERT(phdr->p_vaddr == 0); 680 #endif 681 } else { 682 if (phdr->p_flags & PF_W) { 683 _data = (caddr_t)phdr->p_vaddr; 684 _edata = _data + phdr->p_memsz; 685 } else { 686 _text = (caddr_t)phdr->p_vaddr; 687 _etext = _text + phdr->p_memsz; 688 } 689 } 690 } 691 692 /* To do the kobj_alloc, _edata needs to be set. */ 693 for (i = 0; i < NLIBMACROS; i++) { 694 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) { 695 libmacros[i].lmi_list = kobj_alloc( 696 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) + 697 1, KM_WAIT); 698 (void) strcpy(libmacros[i].lmi_list, 699 bootaux[libmacros[i].lmi_ba_index].ba_ptr); 700 } 701 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname); 702 } 703 } 704 705 /* 706 * Set up the booted executable. 707 */ 708 static struct module * 709 load_exec(val_t *bootaux, char *filename) 710 { 711 struct modctl *cp; 712 struct module *mp; 713 Dyn *dyn; 714 Sym *sp; 715 int i, lsize, osize, nsize, allocsize; 716 char *libname, *tmp; 717 char path[MAXPATHLEN]; 718 719 #ifdef KOBJ_DEBUG 720 if (kobj_debug & D_DEBUG) 721 _kobj_printf(ops, "module path '%s'\n", kobj_module_path); 722 #endif 723 724 KOBJ_MARK("add_primary"); 725 cp = add_primary(filename, KOBJ_LM_PRIMARY); 726 727 KOBJ_MARK("struct module"); 728 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 729 cp->mod_mp = mp; 730 731 /* 732 * We don't have the following information 733 * since this module is an executable and not 734 * a relocatable .o. 735 */ 736 mp->symtbl_section = 0; 737 mp->shdrs = NULL; 738 mp->strhdr = NULL; 739 740 /* 741 * Since this module is the only exception, 742 * we cons up some section headers. 743 */ 744 KOBJ_MARK("symhdr"); 745 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 746 747 KOBJ_MARK("strhdr"); 748 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 749 750 mp->symhdr->sh_type = SHT_SYMTAB; 751 mp->strhdr->sh_type = SHT_STRTAB; 752 /* 753 * Scan the dynamic structure. 754 */ 755 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 756 dyn->d_tag != DT_NULL; dyn++) { 757 switch (dyn->d_tag) { 758 case DT_SYMTAB: 759 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr; 760 mp->symhdr->sh_addr = dyn->d_un.d_ptr; 761 break; 762 case DT_HASH: 763 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1); 764 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr; 765 break; 766 case DT_STRTAB: 767 mp->strings = (char *)dyn->d_un.d_ptr; 768 mp->strhdr->sh_addr = dyn->d_un.d_ptr; 769 break; 770 case DT_STRSZ: 771 mp->strhdr->sh_size = dyn->d_un.d_val; 772 break; 773 case DT_SYMENT: 774 mp->symhdr->sh_entsize = dyn->d_un.d_val; 775 break; 776 } 777 } 778 779 /* 780 * Collapse any DT_NEEDED entries into one string. 781 */ 782 nsize = osize = 0; 783 allocsize = MAXPATHLEN; 784 785 KOBJ_MARK("depends_on"); 786 mp->depends_on = kobj_alloc(allocsize, KM_WAIT); 787 788 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 789 dyn->d_tag != DT_NULL; dyn++) 790 if (dyn->d_tag == DT_NEEDED) { 791 char *_lib; 792 793 libname = mp->strings + dyn->d_un.d_val; 794 if (strchr(libname, '$') != NULL) { 795 if ((_lib = expand_libmacro(libname, 796 path, path)) != NULL) 797 libname = _lib; 798 else 799 _kobj_printf(ops, "krtld: " 800 "load_exec: fail to " 801 "expand %s\n", libname); 802 } 803 lsize = strlen(libname); 804 nsize += lsize; 805 if (nsize + 1 > allocsize) { 806 KOBJ_MARK("grow depends_on"); 807 tmp = kobj_alloc(allocsize + MAXPATHLEN, 808 KM_WAIT); 809 bcopy(mp->depends_on, tmp, osize); 810 kobj_free(mp->depends_on, allocsize); 811 mp->depends_on = tmp; 812 allocsize += MAXPATHLEN; 813 } 814 bcopy(libname, mp->depends_on + osize, lsize); 815 *(mp->depends_on + nsize) = ' '; /* separate */ 816 nsize++; 817 osize = nsize; 818 } 819 if (nsize) { 820 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */ 821 /* 822 * alloc with exact size and copy whatever it got over 823 */ 824 KOBJ_MARK("realloc depends_on"); 825 tmp = kobj_alloc(nsize, KM_WAIT); 826 bcopy(mp->depends_on, tmp, nsize); 827 kobj_free(mp->depends_on, allocsize); 828 mp->depends_on = tmp; 829 } else { 830 kobj_free(mp->depends_on, allocsize); 831 mp->depends_on = NULL; 832 } 833 834 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */ 835 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize; 836 /* 837 * We allocate our own table since we don't 838 * hash undefined references. 839 */ 840 KOBJ_MARK("chains"); 841 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 842 KOBJ_MARK("buckets"); 843 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 844 845 mp->text = _text; 846 mp->data = _data; 847 848 mp->text_size = _etext - _text; 849 mp->data_size = _edata - _data; 850 851 cp->mod_text = mp->text; 852 cp->mod_text_size = mp->text_size; 853 854 mp->filename = cp->mod_filename; 855 856 #ifdef KOBJ_DEBUG 857 if (kobj_debug & D_LOADING) { 858 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 859 _kobj_printf(ops, "\ttext: 0x%p", mp->text); 860 _kobj_printf(ops, " size: 0x%x\n", mp->text_size); 861 _kobj_printf(ops, "\tdata: 0x%p", mp->data); 862 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); 863 } 864 #endif /* KOBJ_DEBUG */ 865 866 /* 867 * Insert symbols into the hash table. 868 */ 869 for (i = 0; i < mp->nsyms; i++) { 870 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 871 872 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 873 continue; 874 #if defined(__sparc) 875 /* 876 * Register symbols are ignored in the kernel 877 */ 878 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) 879 continue; 880 #endif /* __sparc */ 881 882 sym_insert(mp, mp->strings + sp->st_name, i); 883 } 884 885 KOBJ_MARK("load_exec done"); 886 return (mp); 887 } 888 889 /* 890 * Set up the linker module (if it's compiled in, LDNAME is NULL) 891 */ 892 static void 893 load_linker(val_t *bootaux) 894 { 895 struct module *kmp = (struct module *)kobj_modules->mod_mp; 896 struct module *mp; 897 struct modctl *cp; 898 int i; 899 Shdr *shp; 900 Sym *sp; 901 int shsize; 902 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr; 903 904 /* 905 * On some architectures, krtld is compiled into the kernel. 906 */ 907 if (dlname == NULL) 908 return; 909 910 cp = add_primary(dlname, KOBJ_LM_PRIMARY); 911 912 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 913 914 cp->mod_mp = mp; 915 mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr; 916 shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum; 917 mp->shdrs = kobj_alloc(shsize, KM_WAIT); 918 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize); 919 920 for (i = 1; i < (int)mp->hdr.e_shnum; i++) { 921 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize)); 922 923 if (shp->sh_flags & SHF_ALLOC) { 924 if (shp->sh_flags & SHF_WRITE) { 925 if (mp->data == NULL) 926 mp->data = (char *)shp->sh_addr; 927 } else if (mp->text == NULL) { 928 mp->text = (char *)shp->sh_addr; 929 } 930 } 931 if (shp->sh_type == SHT_SYMTAB) { 932 mp->symtbl_section = i; 933 mp->symhdr = shp; 934 mp->symspace = mp->symtbl = (char *)shp->sh_addr; 935 } 936 } 937 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 938 mp->flags = KOBJ_INTERP|KOBJ_PRIM; 939 mp->strhdr = (Shdr *) 940 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 941 mp->strings = (char *)mp->strhdr->sh_addr; 942 mp->hashsize = kobj_gethashsize(mp->nsyms); 943 944 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) + 945 (mp->hashsize + mp->nsyms) * sizeof (symid_t); 946 947 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 948 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 949 950 mp->bss = bootaux[BA_BSS].ba_val; 951 mp->bss_align = 0; /* pre-aligned during allocation */ 952 mp->bss_size = (uintptr_t)_edata - mp->bss; 953 mp->text_size = _etext - mp->text; 954 mp->data_size = _edata - mp->data; 955 mp->filename = cp->mod_filename; 956 cp->mod_text = mp->text; 957 cp->mod_text_size = mp->text_size; 958 959 /* 960 * Now that we've figured out where the linker is, 961 * set the limits for the booted object. 962 */ 963 kmp->text_size = (size_t)(mp->text - kmp->text); 964 kmp->data_size = (size_t)(mp->data - kmp->data); 965 kobj_modules->mod_text_size = kmp->text_size; 966 967 #ifdef KOBJ_DEBUG 968 if (kobj_debug & D_LOADING) { 969 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 970 _kobj_printf(ops, "\ttext:0x%p", mp->text); 971 _kobj_printf(ops, " size: 0x%x\n", mp->text_size); 972 _kobj_printf(ops, "\tdata:0x%p", mp->data); 973 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); 974 } 975 #endif /* KOBJ_DEBUG */ 976 977 /* 978 * Insert the symbols into the hash table. 979 */ 980 for (i = 0; i < mp->nsyms; i++) { 981 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 982 983 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 984 continue; 985 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 986 if (sp->st_shndx == SHN_COMMON) 987 sp->st_shndx = SHN_ABS; 988 } 989 sym_insert(mp, mp->strings + sp->st_name, i); 990 } 991 992 } 993 994 static kobj_notify_list_t ** 995 kobj_notify_lookup(uint_t type) 996 { 997 ASSERT(type != 0 && type < sizeof (kobj_notifiers) / 998 sizeof (kobj_notify_list_t *)); 999 1000 return (&kobj_notifiers[type]); 1001 } 1002 1003 int 1004 kobj_notify_add(kobj_notify_list_t *knp) 1005 { 1006 kobj_notify_list_t **knl; 1007 1008 knl = kobj_notify_lookup(knp->kn_type); 1009 1010 knp->kn_next = NULL; 1011 knp->kn_prev = NULL; 1012 1013 mutex_enter(&kobj_lock); 1014 1015 if (*knl != NULL) { 1016 (*knl)->kn_prev = knp; 1017 knp->kn_next = *knl; 1018 } 1019 (*knl) = knp; 1020 1021 mutex_exit(&kobj_lock); 1022 return (0); 1023 } 1024 1025 int 1026 kobj_notify_remove(kobj_notify_list_t *knp) 1027 { 1028 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type); 1029 kobj_notify_list_t *tknp; 1030 1031 mutex_enter(&kobj_lock); 1032 1033 /* LINTED */ 1034 if (tknp = knp->kn_next) 1035 tknp->kn_prev = knp->kn_prev; 1036 1037 /* LINTED */ 1038 if (tknp = knp->kn_prev) 1039 tknp->kn_next = knp->kn_next; 1040 else 1041 *knl = knp->kn_next; 1042 1043 mutex_exit(&kobj_lock); 1044 1045 return (0); 1046 } 1047 1048 /* 1049 * Notify all interested callbacks of a specified change in module state. 1050 */ 1051 static void 1052 kobj_notify(int type, struct modctl *modp) 1053 { 1054 kobj_notify_list_t *knp; 1055 1056 if (modp->mod_loadflags & MOD_NONOTIFY || standalone) 1057 return; 1058 1059 mutex_enter(&kobj_lock); 1060 1061 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next) 1062 knp->kn_func(type, modp); 1063 1064 /* 1065 * KDI notification must be last (it has to allow for work done by the 1066 * other notification callbacks), so we call it manually. 1067 */ 1068 kobj_kdi_mod_notify(type, modp); 1069 1070 mutex_exit(&kobj_lock); 1071 } 1072 1073 /* 1074 * Create the module path. 1075 */ 1076 static char * 1077 getmodpath(const char *filename) 1078 { 1079 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT); 1080 1081 /* 1082 * Platform code gets first crack, then add 1083 * the default components 1084 */ 1085 mach_modpath(path, filename); 1086 if (*path != '\0') 1087 (void) strcat(path, " "); 1088 return (strcat(path, MOD_DEFPATH)); 1089 } 1090 1091 static struct modctl * 1092 add_primary(const char *filename, int lmid) 1093 { 1094 struct modctl *cp; 1095 1096 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT); 1097 1098 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT); 1099 1100 /* 1101 * For symbol lookup, we assemble our own 1102 * modctl list of the primary modules. 1103 */ 1104 1105 (void) strcpy(cp->mod_filename, filename); 1106 cp->mod_modname = basename(cp->mod_filename); 1107 1108 /* set values for modinfo assuming that the load will work */ 1109 cp->mod_prim = 1; 1110 cp->mod_loaded = 1; 1111 cp->mod_installed = 1; 1112 cp->mod_loadcnt = 1; 1113 cp->mod_loadflags = MOD_NOAUTOUNLOAD; 1114 1115 cp->mod_id = kobj_last_module_id++; 1116 1117 /* 1118 * Link the module in. We'll pass this info on 1119 * to the mod squad later. 1120 */ 1121 if (kobj_modules == NULL) { 1122 kobj_modules = cp; 1123 cp->mod_prev = cp->mod_next = cp; 1124 } else { 1125 cp->mod_prev = kobj_modules->mod_prev; 1126 cp->mod_next = kobj_modules; 1127 kobj_modules->mod_prev->mod_next = cp; 1128 kobj_modules->mod_prev = cp; 1129 } 1130 1131 kobj_lm_append(lmid, cp); 1132 1133 return (cp); 1134 } 1135 1136 static int 1137 bind_primary(val_t *bootaux, int lmid) 1138 { 1139 struct modctl_list *linkmap = kobj_lm_lookup(lmid); 1140 struct modctl_list *lp; 1141 struct module *mp; 1142 1143 /* 1144 * Do common symbols. 1145 */ 1146 for (lp = linkmap; lp; lp = lp->modl_next) { 1147 mp = mod(lp); 1148 1149 /* 1150 * Don't do common section relocations for modules that 1151 * don't need it. 1152 */ 1153 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP)) 1154 continue; 1155 1156 if (do_common(mp) < 0) 1157 return (-1); 1158 } 1159 1160 /* 1161 * Resolve symbols. 1162 */ 1163 for (lp = linkmap; lp; lp = lp->modl_next) { 1164 mp = mod(lp); 1165 1166 if (do_symbols(mp, 0) < 0) 1167 return (-1); 1168 } 1169 1170 /* 1171 * Do relocations. 1172 */ 1173 for (lp = linkmap; lp; lp = lp->modl_next) { 1174 mp = mod(lp); 1175 1176 if (mp->flags & KOBJ_EXEC) { 1177 Dyn *dyn; 1178 Word relasz = 0, relaent = 0; 1179 Word shtype; 1180 char *rela = NULL; 1181 1182 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr; 1183 dyn->d_tag != DT_NULL; dyn++) { 1184 switch (dyn->d_tag) { 1185 case DT_RELASZ: 1186 case DT_RELSZ: 1187 relasz = dyn->d_un.d_val; 1188 break; 1189 case DT_RELAENT: 1190 case DT_RELENT: 1191 relaent = dyn->d_un.d_val; 1192 break; 1193 case DT_RELA: 1194 shtype = SHT_RELA; 1195 rela = (char *)dyn->d_un.d_ptr; 1196 break; 1197 case DT_REL: 1198 shtype = SHT_REL; 1199 rela = (char *)dyn->d_un.d_ptr; 1200 break; 1201 } 1202 } 1203 if (relasz == 0 || 1204 relaent == 0 || rela == NULL) { 1205 _kobj_printf(ops, "krtld: bind_primary(): " 1206 "no relocation information found for " 1207 "module %s\n", mp->filename); 1208 return (-1); 1209 } 1210 #ifdef KOBJ_DEBUG 1211 if (kobj_debug & D_RELOCATIONS) 1212 _kobj_printf(ops, "krtld: relocating: file=%s " 1213 "KOBJ_EXEC\n", mp->filename); 1214 #endif 1215 if (do_relocate(mp, rela, shtype, relasz/relaent, 1216 relaent, (Addr)mp->text) < 0) 1217 return (-1); 1218 } else { 1219 if (do_relocations(mp) < 0) 1220 return (-1); 1221 } 1222 1223 kobj_sync_instruction_memory(mp->text, mp->text_size); 1224 } 1225 1226 for (lp = linkmap; lp; lp = lp->modl_next) { 1227 mp = mod(lp); 1228 1229 /* 1230 * We need to re-read the full symbol table for the boot file, 1231 * since we couldn't use the full one before. We also need to 1232 * load the CTF sections of both the boot file and the 1233 * interpreter (us). 1234 */ 1235 if (mp->flags & KOBJ_EXEC) { 1236 struct _buf *file; 1237 int n; 1238 1239 file = kobj_open_file(mp->filename); 1240 if (file == (struct _buf *)-1) 1241 return (-1); 1242 if (kobj_read_file(file, (char *)&mp->hdr, 1243 sizeof (mp->hdr), 0) < 0) 1244 return (-1); 1245 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1246 mp->shdrs = kobj_alloc(n, KM_WAIT); 1247 if (kobj_read_file(file, mp->shdrs, n, 1248 mp->hdr.e_shoff) < 0) 1249 return (-1); 1250 if (get_syms(mp, file) < 0) 1251 return (-1); 1252 if (get_ctf(mp, file) < 0) 1253 return (-1); 1254 kobj_close_file(file); 1255 mp->flags |= KOBJ_RELOCATED; 1256 1257 } else if (mp->flags & KOBJ_INTERP) { 1258 struct _buf *file; 1259 1260 /* 1261 * The interpreter path fragment in mp->filename 1262 * will already have the module directory suffix 1263 * in it (if appropriate). 1264 */ 1265 file = kobj_open_path(mp->filename, 1, 0); 1266 if (file == (struct _buf *)-1) 1267 return (-1); 1268 if (get_ctf(mp, file) < 0) 1269 return (-1); 1270 kobj_close_file(file); 1271 mp->flags |= KOBJ_RELOCATED; 1272 } 1273 } 1274 1275 return (0); 1276 } 1277 1278 static struct modctl * 1279 mod_already_loaded(char *modname) 1280 { 1281 struct modctl *mctl = kobj_modules; 1282 1283 do { 1284 if (strcmp(modname, mctl->mod_filename) == 0) 1285 return (mctl); 1286 mctl = mctl->mod_next; 1287 1288 } while (mctl != kobj_modules); 1289 1290 return (NULL); 1291 } 1292 1293 /* 1294 * Load all the primary dependent modules. 1295 */ 1296 static int 1297 load_primary(struct module *mp, int lmid) 1298 { 1299 struct modctl *cp; 1300 struct module *dmp; 1301 char *p, *q; 1302 char modname[MODMAXNAMELEN]; 1303 1304 if ((p = mp->depends_on) == NULL) 1305 return (0); 1306 1307 /* CONSTANTCONDITION */ 1308 while (1) { 1309 /* 1310 * Skip space. 1311 */ 1312 while (*p && (*p == ' ' || *p == '\t')) 1313 p++; 1314 /* 1315 * Get module name. 1316 */ 1317 q = modname; 1318 while (*p && *p != ' ' && *p != '\t') 1319 *q++ = *p++; 1320 1321 if (q == modname) 1322 break; 1323 1324 *q = '\0'; 1325 /* 1326 * Check for dup dependencies. 1327 */ 1328 if (strcmp(modname, "dtracestubs") == 0 || 1329 mod_already_loaded(modname) != NULL) 1330 continue; 1331 1332 cp = add_primary(modname, lmid); 1333 cp->mod_busy = 1; 1334 /* 1335 * Load it. 1336 */ 1337 (void) kobj_load_module(cp, 1); 1338 cp->mod_busy = 0; 1339 1340 if ((dmp = cp->mod_mp) == NULL) { 1341 cp->mod_loaded = 0; 1342 cp->mod_installed = 0; 1343 cp->mod_loadcnt = 0; 1344 return (-1); 1345 } 1346 1347 add_dependent(mp, dmp); 1348 dmp->flags |= KOBJ_PRIM; 1349 1350 /* 1351 * Recurse. 1352 */ 1353 if (load_primary(dmp, lmid) == -1) { 1354 cp->mod_loaded = 0; 1355 cp->mod_installed = 0; 1356 cp->mod_loadcnt = 0; 1357 return (-1); 1358 } 1359 } 1360 return (0); 1361 } 1362 1363 static int 1364 console_is_usb_serial(void) 1365 { 1366 char *console; 1367 int len, ret; 1368 1369 if ((len = BOP_GETPROPLEN(ops, "console")) == -1) 1370 return (0); 1371 1372 console = kobj_zalloc(len, KM_WAIT|KM_TMP); 1373 (void) BOP_GETPROP(ops, "console", console); 1374 ret = (strcmp(console, "usb-serial") == 0); 1375 kobj_free(console, len); 1376 1377 return (ret); 1378 } 1379 1380 static int 1381 load_kmdb(val_t *bootaux) 1382 { 1383 struct modctl *mctl; 1384 struct module *mp; 1385 Sym *sym; 1386 1387 if (console_is_usb_serial()) { 1388 _kobj_printf(ops, "kmdb not loaded " 1389 "(unsupported on usb serial console)\n"); 1390 return (0); 1391 } 1392 1393 _kobj_printf(ops, "Loading kmdb...\n"); 1394 1395 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL) 1396 return (-1); 1397 1398 mctl->mod_busy = 1; 1399 (void) kobj_load_module(mctl, 1); 1400 mctl->mod_busy = 0; 1401 1402 if ((mp = mctl->mod_mp) == NULL) 1403 return (-1); 1404 1405 mp->flags |= KOBJ_PRIM; 1406 1407 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0) 1408 return (-1); 1409 1410 if (boothowto & RB_VERBOSE) 1411 kobj_lm_dump(KOBJ_LM_DEBUGGER); 1412 1413 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0) 1414 return (-1); 1415 1416 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL) 1417 return (-1); 1418 1419 #ifdef KOBJ_DEBUG 1420 if (kobj_debug & D_DEBUG) { 1421 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n", 1422 sym->st_value); 1423 _kobj_printf(ops, "\tops 0x%p\n", ops); 1424 _kobj_printf(ops, "\tromp 0x%p\n", romp); 1425 } 1426 #endif 1427 1428 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0, 1429 (const char **)kobj_kmdb_argv) < 0) 1430 return (-1); 1431 1432 return (0); 1433 } 1434 1435 /* 1436 * Return a string listing module dependencies. 1437 */ 1438 static char * 1439 depends_on(struct module *mp) 1440 { 1441 Sym *sp; 1442 char *depstr, *q; 1443 1444 /* 1445 * The module doesn't have a depends_on value, so let's try it the 1446 * old-fashioned way - via "_depends_on" 1447 */ 1448 if ((sp = lookup_one(mp, "_depends_on")) == NULL) 1449 return (NULL); 1450 1451 q = (char *)sp->st_value; 1452 1453 #ifdef KOBJ_DEBUG 1454 /* 1455 * _depends_on is a deprecated interface, so we warn about its use 1456 * irrespective of subsequent processing errors. How else are we going 1457 * to be able to deco this interface completely? 1458 * Changes initially limited to DEBUG because third-party modules 1459 * should be flagged to developers before general use base. 1460 */ 1461 _kobj_printf(ops, 1462 "Warning: %s uses deprecated _depends_on interface.\n", 1463 mp->filename); 1464 _kobj_printf(ops, "Please notify module developer or vendor.\n"); 1465 #endif 1466 1467 /* 1468 * Idiot checks. Make sure it's 1469 * in-bounds and NULL terminated. 1470 */ 1471 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') { 1472 _kobj_printf(ops, "Error processing dependency for %s\n", 1473 mp->filename); 1474 return (NULL); 1475 } 1476 1477 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT); 1478 (void) strcpy(depstr, q); 1479 1480 return (depstr); 1481 } 1482 1483 void 1484 kobj_getmodinfo(void *xmp, struct modinfo *modinfo) 1485 { 1486 struct module *mp; 1487 mp = (struct module *)xmp; 1488 1489 modinfo->mi_base = mp->text; 1490 modinfo->mi_size = mp->text_size + mp->data_size; 1491 } 1492 1493 /* 1494 * kobj_export_ksyms() performs the following services: 1495 * 1496 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena. 1497 * (2) Removes unneeded symbols to save space. 1498 * (3) Reduces memory footprint by using VM_BESTFIT allocations. 1499 * (4) Makes the symbol table visible to /dev/ksyms. 1500 */ 1501 static void 1502 kobj_export_ksyms(struct module *mp) 1503 { 1504 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size); 1505 Sym *sp, *osp; 1506 char *name; 1507 size_t namelen; 1508 struct module *omp; 1509 uint_t nsyms; 1510 size_t symsize = mp->symhdr->sh_entsize; 1511 size_t locals = 1; 1512 size_t strsize; 1513 1514 /* 1515 * Make a copy of the original module structure. 1516 */ 1517 omp = kobj_alloc(sizeof (struct module), KM_WAIT); 1518 bcopy(mp, omp, sizeof (struct module)); 1519 1520 /* 1521 * Compute the sizes of the new symbol table sections. 1522 */ 1523 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1524 if (osp->st_value == 0) 1525 continue; 1526 if (sym_lookup(omp, osp) == NULL) 1527 continue; 1528 name = omp->strings + osp->st_name; 1529 namelen = strlen(name); 1530 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL) 1531 locals++; 1532 nsyms++; 1533 strsize += namelen + 1; 1534 } 1535 1536 mp->nsyms = nsyms; 1537 mp->hashsize = kobj_gethashsize(mp->nsyms); 1538 1539 /* 1540 * ksyms_lock must be held as writer during any operation that 1541 * modifies ksyms_arena, including allocation from same, and 1542 * must not be dropped until the arena is vmem_walk()able. 1543 */ 1544 rw_enter(&ksyms_lock, RW_WRITER); 1545 1546 /* 1547 * Allocate space for the new section headers (symtab and strtab), 1548 * symbol table, buckets, chains, and strings. 1549 */ 1550 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) + 1551 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize; 1552 1553 if (mp->flags & KOBJ_NOKSYMS) { 1554 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT); 1555 } else { 1556 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize, 1557 VM_BESTFIT | VM_SLEEP); 1558 } 1559 bzero(mp->symspace, mp->symsize); 1560 1561 /* 1562 * Divvy up symspace. 1563 */ 1564 mp->shdrs = mp->symspace; 1565 mp->symhdr = (Shdr *)mp->shdrs; 1566 mp->strhdr = (Shdr *)(mp->symhdr + 1); 1567 mp->symtbl = (char *)(mp->strhdr + 1); 1568 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize)); 1569 mp->chains = (symid_t *)(mp->buckets + mp->hashsize); 1570 mp->strings = (char *)(mp->chains + nsyms); 1571 1572 /* 1573 * Fill in the new section headers (symtab and strtab). 1574 */ 1575 mp->hdr.e_shnum = 2; 1576 mp->symtbl_section = 0; 1577 1578 mp->symhdr->sh_type = SHT_SYMTAB; 1579 mp->symhdr->sh_addr = (Addr)mp->symtbl; 1580 mp->symhdr->sh_size = nsyms * symsize; 1581 mp->symhdr->sh_link = 1; 1582 mp->symhdr->sh_info = locals; 1583 mp->symhdr->sh_addralign = sizeof (Addr); 1584 mp->symhdr->sh_entsize = symsize; 1585 1586 mp->strhdr->sh_type = SHT_STRTAB; 1587 mp->strhdr->sh_addr = (Addr)mp->strings; 1588 mp->strhdr->sh_size = strsize; 1589 mp->strhdr->sh_addralign = 1; 1590 1591 /* 1592 * Construct the new symbol table. 1593 */ 1594 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1595 if (osp->st_value == 0) 1596 continue; 1597 if (sym_lookup(omp, osp) == NULL) 1598 continue; 1599 name = omp->strings + osp->st_name; 1600 namelen = strlen(name); 1601 sp = (Sym *)(mp->symtbl + symsize * nsyms); 1602 bcopy(osp, sp, symsize); 1603 bcopy(name, mp->strings + strsize, namelen); 1604 sp->st_name = strsize; 1605 sym_insert(mp, name, nsyms); 1606 nsyms++; 1607 strsize += namelen + 1; 1608 } 1609 1610 rw_exit(&ksyms_lock); 1611 1612 /* 1613 * Free the old section headers -- we'll never need them again. 1614 */ 1615 if (!(mp->flags & KOBJ_PRIM)) { 1616 uint_t shn; 1617 Shdr *shp; 1618 1619 for (shn = 1; shn < omp->hdr.e_shnum; shn++) { 1620 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize); 1621 switch (shp->sh_type) { 1622 case SHT_RELA: 1623 case SHT_REL: 1624 if (shp->sh_addr != 0) { 1625 kobj_free((void *)shp->sh_addr, 1626 shp->sh_size); 1627 } 1628 break; 1629 } 1630 } 1631 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum); 1632 } 1633 /* 1634 * Discard the old symbol table and our copy of the module strucure. 1635 */ 1636 if (!(mp->flags & KOBJ_PRIM)) 1637 kobj_free(omp->symspace, omp->symsize); 1638 kobj_free(omp, sizeof (struct module)); 1639 } 1640 1641 static void 1642 kobj_export_ctf(struct module *mp) 1643 { 1644 char *data = mp->ctfdata; 1645 size_t size = mp->ctfsize; 1646 1647 if (data != NULL) { 1648 if (_moddebug & MODDEBUG_NOCTF) { 1649 mp->ctfdata = NULL; 1650 mp->ctfsize = 0; 1651 } else { 1652 mp->ctfdata = vmem_alloc(ctf_arena, size, 1653 VM_BESTFIT | VM_SLEEP); 1654 bcopy(data, mp->ctfdata, size); 1655 } 1656 1657 if (!(mp->flags & KOBJ_PRIM)) 1658 kobj_free(data, size); 1659 } 1660 } 1661 1662 void 1663 kobj_export_module(struct module *mp) 1664 { 1665 kobj_export_ksyms(mp); 1666 kobj_export_ctf(mp); 1667 1668 mp->flags |= KOBJ_EXPORTED; 1669 } 1670 1671 static int 1672 process_dynamic(struct module *mp, char *dyndata, char *strdata) 1673 { 1674 char *path = NULL, *depstr = NULL; 1675 int allocsize = 0, osize = 0, nsize = 0; 1676 char *libname, *tmp; 1677 int lsize; 1678 Dyn *dynp; 1679 1680 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) { 1681 switch (dynp->d_tag) { 1682 case DT_NEEDED: 1683 /* 1684 * Read the DT_NEEDED entries, expanding the macros they 1685 * contain (if any), and concatenating them into a 1686 * single space-separated dependency list. 1687 */ 1688 libname = (ulong_t)dynp->d_un.d_ptr + strdata; 1689 1690 if (strchr(libname, '$') != NULL) { 1691 char *_lib; 1692 1693 if (path == NULL) 1694 path = kobj_alloc(MAXPATHLEN, KM_WAIT); 1695 if ((_lib = expand_libmacro(libname, path, 1696 path)) != NULL) 1697 libname = _lib; 1698 else { 1699 _kobj_printf(ops, "krtld: " 1700 "process_dynamic: failed to expand " 1701 "%s\n", libname); 1702 } 1703 } 1704 1705 lsize = strlen(libname); 1706 nsize += lsize; 1707 if (nsize + 1 > allocsize) { 1708 tmp = kobj_alloc(allocsize + MAXPATHLEN, 1709 KM_WAIT); 1710 if (depstr != NULL) { 1711 bcopy(depstr, tmp, osize); 1712 kobj_free(depstr, allocsize); 1713 } 1714 depstr = tmp; 1715 allocsize += MAXPATHLEN; 1716 } 1717 bcopy(libname, depstr + osize, lsize); 1718 *(depstr + nsize) = ' '; /* separator */ 1719 nsize++; 1720 osize = nsize; 1721 break; 1722 1723 case DT_FLAGS_1: 1724 if (dynp->d_un.d_val & DF_1_IGNMULDEF) 1725 mp->flags |= KOBJ_IGNMULDEF; 1726 if (dynp->d_un.d_val & DF_1_NOKSYMS) 1727 mp->flags |= KOBJ_NOKSYMS; 1728 1729 break; 1730 } 1731 } 1732 1733 /* 1734 * finish up the depends string (if any) 1735 */ 1736 if (depstr != NULL) { 1737 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */ 1738 if (path != NULL) 1739 kobj_free(path, MAXPATHLEN); 1740 1741 tmp = kobj_alloc(nsize, KM_WAIT); 1742 bcopy(depstr, tmp, nsize); 1743 kobj_free(depstr, allocsize); 1744 depstr = tmp; 1745 1746 mp->depends_on = depstr; 1747 } 1748 1749 return (0); 1750 } 1751 1752 static int 1753 do_dynamic(struct module *mp, struct _buf *file) 1754 { 1755 Shdr *dshp, *dstrp, *shp; 1756 char *dyndata, *dstrdata; 1757 int dshn, shn, rc; 1758 1759 /* find and validate the dynamic section (if any) */ 1760 1761 for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) { 1762 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 1763 switch (shp->sh_type) { 1764 case SHT_DYNAMIC: 1765 if (dshp != NULL) { 1766 _kobj_printf(ops, "krtld: get_dynamic: %s, ", 1767 mp->filename); 1768 _kobj_printf(ops, 1769 "multiple dynamic sections\n"); 1770 return (-1); 1771 } else { 1772 dshp = shp; 1773 dshn = shn; 1774 } 1775 break; 1776 } 1777 } 1778 1779 if (dshp == NULL) 1780 return (0); 1781 1782 if (dshp->sh_link > mp->hdr.e_shnum) { 1783 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1784 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link); 1785 return (-1); 1786 } 1787 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize); 1788 1789 if (dstrp->sh_type != SHT_STRTAB) { 1790 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1791 _kobj_printf(ops, "sh_link not a string table for section %d\n", 1792 dshn); 1793 return (-1); 1794 } 1795 1796 /* read it from disk */ 1797 1798 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP); 1799 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) { 1800 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1801 _kobj_printf(ops, "error reading section %d\n", dshn); 1802 1803 kobj_free(dyndata, dshp->sh_size); 1804 return (-1); 1805 } 1806 1807 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP); 1808 if (kobj_read_file(file, dstrdata, dstrp->sh_size, 1809 dstrp->sh_offset) < 0) { 1810 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1811 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link); 1812 1813 kobj_free(dyndata, dshp->sh_size); 1814 kobj_free(dstrdata, dstrp->sh_size); 1815 return (-1); 1816 } 1817 1818 /* pull the interesting pieces out */ 1819 1820 rc = process_dynamic(mp, dyndata, dstrdata); 1821 1822 kobj_free(dyndata, dshp->sh_size); 1823 kobj_free(dstrdata, dstrp->sh_size); 1824 1825 return (rc); 1826 } 1827 1828 void 1829 kobj_set_ctf(struct module *mp, caddr_t data, size_t size) 1830 { 1831 if (!standalone) { 1832 if (mp->ctfdata != NULL) { 1833 if (vmem_contains(ctf_arena, mp->ctfdata, 1834 mp->ctfsize)) { 1835 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 1836 } else { 1837 kobj_free(mp->ctfdata, mp->ctfsize); 1838 } 1839 } 1840 } 1841 1842 /* 1843 * The order is very important here. We need to make sure that 1844 * consumers, at any given instant, see a consistent state. We'd 1845 * rather they see no CTF data than the address of one buffer and the 1846 * size of another. 1847 */ 1848 mp->ctfdata = NULL; 1849 membar_producer(); 1850 mp->ctfsize = size; 1851 mp->ctfdata = data; 1852 membar_producer(); 1853 } 1854 1855 int 1856 kobj_load_module(struct modctl *modp, int use_path) 1857 { 1858 char *filename = modp->mod_filename; 1859 char *modname = modp->mod_modname; 1860 int i; 1861 int n; 1862 struct _buf *file; 1863 struct module *mp = NULL; 1864 #ifdef MODDIR_SUFFIX 1865 int no_suffixdir_drv = 0; 1866 #endif 1867 1868 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 1869 1870 /* 1871 * We need to prevent kmdb's symbols from leaking into /dev/ksyms. 1872 * kmdb contains a bunch of symbols with well-known names, symbols 1873 * which will mask the real versions, thus causing no end of trouble 1874 * for mdb. 1875 */ 1876 if (strcmp(modp->mod_modname, "kmdbmod") == 0) 1877 mp->flags |= KOBJ_NOKSYMS; 1878 1879 file = kobj_open_path(filename, use_path, 1); 1880 if (file == (struct _buf *)-1) { 1881 #ifdef MODDIR_SUFFIX 1882 file = kobj_open_path(filename, use_path, 0); 1883 #endif 1884 if (file == (struct _buf *)-1) { 1885 kobj_free(mp, sizeof (*mp)); 1886 goto bad; 1887 } 1888 #ifdef MODDIR_SUFFIX 1889 /* 1890 * There is no driver module in the ISA specific (suffix) 1891 * subdirectory but there is a module in the parent directory. 1892 */ 1893 if (strncmp(filename, "drv/", 4) == 0) { 1894 no_suffixdir_drv = 1; 1895 } 1896 #endif 1897 } 1898 1899 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT); 1900 (void) strcpy(mp->filename, file->_name); 1901 1902 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) { 1903 _kobj_printf(ops, "kobj_load_module: %s read header failed\n", 1904 modname); 1905 kobj_free(mp->filename, strlen(file->_name) + 1); 1906 kobj_free(mp, sizeof (*mp)); 1907 goto bad; 1908 } 1909 for (i = 0; i < SELFMAG; i++) { 1910 if (mp->hdr.e_ident[i] != ELFMAG[i]) { 1911 if (_moddebug & MODDEBUG_ERRMSG) 1912 _kobj_printf(ops, "%s not an elf module\n", 1913 modname); 1914 kobj_free(mp->filename, strlen(file->_name) + 1); 1915 kobj_free(mp, sizeof (*mp)); 1916 goto bad; 1917 } 1918 } 1919 /* 1920 * It's ELF, but is it our ISA? Interpreting the header 1921 * from a file for a byte-swapped ISA could cause a huge 1922 * and unsatisfiable value to be passed to kobj_alloc below 1923 * and therefore hang booting. 1924 */ 1925 if (!elf_mach_ok(&mp->hdr)) { 1926 if (_moddebug & MODDEBUG_ERRMSG) 1927 _kobj_printf(ops, "%s not an elf module for this ISA\n", 1928 modname); 1929 kobj_free(mp->filename, strlen(file->_name) + 1); 1930 kobj_free(mp, sizeof (*mp)); 1931 #ifdef MODDIR_SUFFIX 1932 /* 1933 * The driver mod is not in the ISA specific subdirectory 1934 * and the module in the parent directory is not our ISA. 1935 * If it is our ISA, for now we will silently succeed. 1936 */ 1937 if (no_suffixdir_drv == 1) { 1938 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module" 1939 " not found\n", modname); 1940 } 1941 #endif 1942 goto bad; 1943 } 1944 1945 /* 1946 * All modules, save for unix, should be relocatable (as opposed to 1947 * dynamic). Dynamic modules come with PLTs and GOTs, which can't 1948 * currently be processed by krtld. 1949 */ 1950 if (mp->hdr.e_type != ET_REL) { 1951 if (_moddebug & MODDEBUG_ERRMSG) 1952 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) " 1953 "module\n", modname); 1954 kobj_free(mp->filename, strlen(file->_name) + 1); 1955 kobj_free(mp, sizeof (*mp)); 1956 goto bad; 1957 } 1958 1959 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1960 mp->shdrs = kobj_alloc(n, KM_WAIT); 1961 1962 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) { 1963 _kobj_printf(ops, "kobj_load_module: %s error reading " 1964 "section headers\n", modname); 1965 kobj_free(mp->shdrs, n); 1966 kobj_free(mp->filename, strlen(file->_name) + 1); 1967 kobj_free(mp, sizeof (*mp)); 1968 goto bad; 1969 } 1970 1971 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp); 1972 module_assign(modp, mp); 1973 1974 /* read in sections */ 1975 if (get_progbits(mp, file) < 0) { 1976 _kobj_printf(ops, "%s error reading sections\n", modname); 1977 goto bad; 1978 } 1979 1980 if (do_dynamic(mp, file) < 0) { 1981 _kobj_printf(ops, "%s error reading dynamic section\n", 1982 modname); 1983 goto bad; 1984 } 1985 1986 modp->mod_text = mp->text; 1987 modp->mod_text_size = mp->text_size; 1988 1989 /* read in symbols; adjust values for each section's real address */ 1990 if (get_syms(mp, file) < 0) { 1991 _kobj_printf(ops, "%s error reading symbols\n", 1992 modname); 1993 goto bad; 1994 } 1995 1996 /* 1997 * If we didn't dependency information from the dynamic section, look 1998 * for it the old-fashioned way. 1999 */ 2000 if (mp->depends_on == NULL) 2001 mp->depends_on = depends_on(mp); 2002 2003 if (get_ctf(mp, file) < 0) { 2004 _kobj_printf(ops, "%s debug information will not " 2005 "be available\n", modname); 2006 } 2007 2008 /* primary kernel modules do not have a signature section */ 2009 if (!(mp->flags & KOBJ_PRIM)) 2010 get_signature(mp, file); 2011 2012 #ifdef KOBJ_DEBUG 2013 if (kobj_debug & D_LOADING) { 2014 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 2015 _kobj_printf(ops, "\ttext:0x%p", mp->text); 2016 _kobj_printf(ops, " size: 0x%x\n", mp->text_size); 2017 _kobj_printf(ops, "\tdata:0x%p", mp->data); 2018 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); 2019 } 2020 #endif /* KOBJ_DEBUG */ 2021 2022 /* 2023 * For primary kernel modules, we defer 2024 * symbol resolution and relocation until 2025 * all primary objects have been loaded. 2026 */ 2027 if (!standalone) { 2028 int ddrval, dcrval; 2029 char *dependent_modname; 2030 /* load all dependents */ 2031 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT); 2032 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN); 2033 2034 /* 2035 * resolve undefined and common symbols, 2036 * also allocates common space 2037 */ 2038 if ((dcrval = do_common(mp)) < 0) { 2039 switch (dcrval) { 2040 case DOSYM_UNSAFE: 2041 _kobj_printf(ops, "WARNING: mod_load: " 2042 "MT-unsafe module '%s' rejected\n", 2043 modname); 2044 break; 2045 case DOSYM_UNDEF: 2046 _kobj_printf(ops, "WARNING: mod_load: " 2047 "cannot load module '%s'\n", 2048 modname); 2049 if (ddrval == -1) { 2050 _kobj_printf(ops, "WARNING: %s: ", 2051 modname); 2052 _kobj_printf(ops, 2053 "unable to resolve dependency, " 2054 "module '%s' not found\n", 2055 dependent_modname); 2056 } 2057 break; 2058 } 2059 } 2060 kobj_free(dependent_modname, MODMAXNAMELEN); 2061 if (dcrval < 0) 2062 goto bad; 2063 2064 /* process relocation tables */ 2065 if (do_relocations(mp) < 0) { 2066 _kobj_printf(ops, "%s error doing relocations\n", 2067 modname); 2068 goto bad; 2069 } 2070 2071 if (mp->destination) { 2072 off_t off = (uintptr_t)mp->destination & PAGEOFFSET; 2073 caddr_t base = (caddr_t)mp->destination - off; 2074 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2075 2076 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK); 2077 vmem_free(heap_arena, base, size); 2078 } 2079 2080 /* sync_instruction_memory */ 2081 kobj_sync_instruction_memory(mp->text, mp->text_size); 2082 kobj_export_module(mp); 2083 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp); 2084 } 2085 kobj_close_file(file); 2086 return (0); 2087 bad: 2088 if (file != (struct _buf *)-1) 2089 kobj_close_file(file); 2090 if (modp->mod_mp != NULL) 2091 free_module_data(modp->mod_mp); 2092 2093 module_assign(modp, NULL); 2094 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL); 2095 } 2096 2097 int 2098 kobj_load_primary_module(struct modctl *modp) 2099 { 2100 struct modctl *dep; 2101 struct module *mp; 2102 2103 if (kobj_load_module(modp, 0) != 0) 2104 return (-1); 2105 2106 mp = modp->mod_mp; 2107 mp->flags |= KOBJ_PRIM; 2108 2109 /* Bind new module to its dependents */ 2110 if (mp->depends_on != NULL && (dep = 2111 mod_already_loaded(mp->depends_on)) == NULL) { 2112 #ifdef KOBJ_DEBUG 2113 if (kobj_debug & D_DEBUG) { 2114 _kobj_printf(ops, "krtld: failed to resolve deps " 2115 "for primary %s\n", modp->mod_modname); 2116 } 2117 #endif 2118 return (-1); 2119 } 2120 2121 add_dependent(mp, dep->mod_mp); 2122 2123 /* 2124 * Relocate it. This module may not be part of a link map, so we 2125 * can't use bind_primary. 2126 */ 2127 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 || 2128 do_relocations(mp) < 0) { 2129 #ifdef KOBJ_DEBUG 2130 if (kobj_debug & D_DEBUG) { 2131 _kobj_printf(ops, "krtld: failed to relocate " 2132 "primary %s\n", modp->mod_modname); 2133 } 2134 #endif 2135 return (-1); 2136 } 2137 2138 return (0); 2139 } 2140 2141 static void 2142 module_assign(struct modctl *cp, struct module *mp) 2143 { 2144 if (standalone) { 2145 cp->mod_mp = mp; 2146 return; 2147 } 2148 mutex_enter(&mod_lock); 2149 cp->mod_mp = mp; 2150 cp->mod_gencount++; 2151 mutex_exit(&mod_lock); 2152 } 2153 2154 void 2155 kobj_unload_module(struct modctl *modp) 2156 { 2157 struct module *mp = modp->mod_mp; 2158 2159 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) { 2160 _kobj_printf(ops, "text for %s ", mp->filename); 2161 _kobj_printf(ops, "was at %p\n", mp->text); 2162 mp->text = NULL; /* don't actually free it */ 2163 } 2164 2165 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp); 2166 2167 /* 2168 * Null out mod_mp first, so consumers (debuggers) know not to look 2169 * at the module structure any more. 2170 */ 2171 mutex_enter(&mod_lock); 2172 modp->mod_mp = NULL; 2173 mutex_exit(&mod_lock); 2174 2175 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp); 2176 free_module_data(mp); 2177 } 2178 2179 static void 2180 free_module_data(struct module *mp) 2181 { 2182 struct module_list *lp, *tmp; 2183 hotinline_desc_t *hid, *next; 2184 int ksyms_exported = 0; 2185 2186 lp = mp->head; 2187 while (lp) { 2188 tmp = lp; 2189 lp = lp->next; 2190 kobj_free((char *)tmp, sizeof (*tmp)); 2191 } 2192 2193 /* release hotinlines */ 2194 hid = mp->hi_calls; 2195 while (hid != NULL) { 2196 next = hid->hid_next; 2197 kobj_free(hid->hid_symname, strlen(hid->hid_symname) + 1); 2198 kobj_free(hid, sizeof (hotinline_desc_t)); 2199 hid = next; 2200 } 2201 2202 rw_enter(&ksyms_lock, RW_WRITER); 2203 if (mp->symspace) { 2204 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) { 2205 vmem_free(ksyms_arena, mp->symspace, mp->symsize); 2206 ksyms_exported = 1; 2207 } else { 2208 if (mp->flags & KOBJ_NOKSYMS) 2209 ksyms_exported = 1; 2210 kobj_free(mp->symspace, mp->symsize); 2211 } 2212 } 2213 rw_exit(&ksyms_lock); 2214 2215 if (mp->ctfdata) { 2216 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize)) 2217 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 2218 else 2219 kobj_free(mp->ctfdata, mp->ctfsize); 2220 } 2221 2222 if (mp->sigdata) 2223 kobj_free(mp->sigdata, mp->sigsize); 2224 2225 /* 2226 * We did not get far enough into kobj_export_ksyms() to free allocated 2227 * buffers because we encounted error conditions. Free the buffers. 2228 */ 2229 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) { 2230 uint_t shn; 2231 Shdr *shp; 2232 2233 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2234 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2235 switch (shp->sh_type) { 2236 case SHT_RELA: 2237 case SHT_REL: 2238 if (shp->sh_addr != 0) 2239 kobj_free((void *)shp->sh_addr, 2240 shp->sh_size); 2241 break; 2242 } 2243 } 2244 err_free_done: 2245 if (!(mp->flags & KOBJ_PRIM)) { 2246 kobj_free(mp->shdrs, 2247 mp->hdr.e_shentsize * mp->hdr.e_shnum); 2248 } 2249 } 2250 2251 if (mp->bss) 2252 vmem_free(data_arena, (void *)mp->bss, mp->bss_size); 2253 2254 if (mp->fbt_tab) 2255 kobj_texthole_free(mp->fbt_tab, mp->fbt_size); 2256 2257 if (mp->textwin_base) 2258 kobj_textwin_free(mp); 2259 2260 if (mp->sdt_probes != NULL) { 2261 sdt_probedesc_t *sdp = mp->sdt_probes, *next; 2262 2263 while (sdp != NULL) { 2264 next = sdp->sdpd_next; 2265 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1); 2266 kobj_free(sdp, sizeof (sdt_probedesc_t)); 2267 sdp = next; 2268 } 2269 } 2270 2271 if (mp->sdt_tab) 2272 kobj_texthole_free(mp->sdt_tab, mp->sdt_size); 2273 if (mp->text) 2274 vmem_free(text_arena, mp->text, mp->text_size); 2275 if (mp->data) 2276 vmem_free(data_arena, mp->data, mp->data_size); 2277 if (mp->depends_on) 2278 kobj_free(mp->depends_on, strlen(mp->depends_on)+1); 2279 if (mp->filename) 2280 kobj_free(mp->filename, strlen(mp->filename)+1); 2281 2282 kobj_free((char *)mp, sizeof (*mp)); 2283 } 2284 2285 static int 2286 get_progbits(struct module *mp, struct _buf *file) 2287 { 2288 struct proginfo *tp, *dp, *sdp; 2289 Shdr *shp; 2290 reloc_dest_t dest = NULL; 2291 uintptr_t bits_ptr; 2292 uintptr_t text = 0, data, textptr; 2293 uint_t shn; 2294 int err = -1; 2295 2296 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2297 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2298 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2299 /* 2300 * loop through sections to find out how much space we need 2301 * for text, data, (also bss that is already assigned) 2302 */ 2303 if (get_progbits_size(mp, tp, dp, sdp) < 0) 2304 goto done; 2305 2306 mp->text_size = tp->size; 2307 mp->data_size = dp->size; 2308 2309 if (standalone) { 2310 caddr_t limit = _data; 2311 2312 if (lg_pagesize && _text + lg_pagesize < limit) 2313 limit = _text + lg_pagesize; 2314 2315 mp->text = kobj_segbrk(&_etext, mp->text_size, 2316 tp->align, limit); 2317 /* 2318 * If we can't grow the text segment, try the 2319 * data segment before failing. 2320 */ 2321 if (mp->text == NULL) { 2322 mp->text = kobj_segbrk(&_edata, mp->text_size, 2323 tp->align, 0); 2324 } 2325 2326 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0); 2327 2328 if (mp->text == NULL || mp->data == NULL) 2329 goto done; 2330 2331 } else { 2332 if (text_arena == NULL) 2333 kobj_vmem_init(&text_arena, &data_arena); 2334 2335 /* 2336 * some architectures may want to load the module on a 2337 * page that is currently read only. It may not be 2338 * possible for those architectures to remap their page 2339 * on the fly. So we provide a facility for them to hang 2340 * a private hook where the memory they assign the module 2341 * is not the actual place where the module loads. 2342 * 2343 * In this case there are two addresses that deal with the 2344 * modload. 2345 * 1) the final destination of the module 2346 * 2) the address that is used to view the newly 2347 * loaded module until all the relocations relative to 1 2348 * above are completed. 2349 * 2350 * That is what dest is used for below. 2351 */ 2352 mp->text_size += tp->align; 2353 mp->data_size += dp->align; 2354 2355 mp->text = kobj_text_alloc(text_arena, mp->text_size); 2356 2357 /* 2358 * a remap is taking place. Align the text ptr relative 2359 * to the secondary mapping. That is where the bits will 2360 * be read in. 2361 */ 2362 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena, 2363 mp->text, mp->text_size)) { 2364 off_t off = (uintptr_t)mp->text & PAGEOFFSET; 2365 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2366 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP); 2367 caddr_t orig = mp->text - off; 2368 pgcnt_t pages = size / PAGESIZE; 2369 2370 dest = (reloc_dest_t)(map + off); 2371 text = ALIGN((uintptr_t)dest, tp->align); 2372 2373 while (pages--) { 2374 hat_devload(kas.a_hat, map, PAGESIZE, 2375 hat_getpfnum(kas.a_hat, orig), 2376 PROT_READ | PROT_WRITE | PROT_EXEC, 2377 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 2378 map += PAGESIZE; 2379 orig += PAGESIZE; 2380 } 2381 /* 2382 * Since we set up a non-cacheable mapping, we need 2383 * to flush any old entries in the cache that might 2384 * be left around from the read-only mapping. 2385 */ 2386 dcache_flushall(); 2387 } 2388 if (mp->data_size) 2389 mp->data = vmem_alloc(data_arena, mp->data_size, 2390 VM_SLEEP | VM_BESTFIT); 2391 } 2392 textptr = (uintptr_t)mp->text; 2393 textptr = ALIGN(textptr, tp->align); 2394 mp->destination = dest; 2395 2396 /* 2397 * This is the case where a remap is not being done. 2398 */ 2399 if (text == 0) 2400 text = ALIGN((uintptr_t)mp->text, tp->align); 2401 data = ALIGN((uintptr_t)mp->data, dp->align); 2402 2403 /* now loop though sections assigning addresses and loading the data */ 2404 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2405 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2406 if (!(shp->sh_flags & SHF_ALLOC)) 2407 continue; 2408 2409 if ((shp->sh_flags & SHF_WRITE) == 0) 2410 bits_ptr = text; 2411 else 2412 bits_ptr = data; 2413 2414 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign); 2415 2416 if (shp->sh_type == SHT_NOBITS) { 2417 /* 2418 * Zero bss. 2419 */ 2420 bzero((caddr_t)bits_ptr, shp->sh_size); 2421 shp->sh_type = SHT_PROGBITS; 2422 } else { 2423 if (kobj_read_file(file, (char *)bits_ptr, 2424 shp->sh_size, shp->sh_offset) < 0) 2425 goto done; 2426 } 2427 2428 if (shp->sh_flags & SHF_WRITE) { 2429 shp->sh_addr = bits_ptr; 2430 } else { 2431 textptr = ALIGN(textptr, shp->sh_addralign); 2432 shp->sh_addr = textptr; 2433 textptr += shp->sh_size; 2434 } 2435 2436 bits_ptr += shp->sh_size; 2437 if ((shp->sh_flags & SHF_WRITE) == 0) 2438 text = bits_ptr; 2439 else 2440 data = bits_ptr; 2441 } 2442 2443 err = 0; 2444 done: 2445 /* 2446 * Free and mark as freed the section headers here so that 2447 * free_module_data() does not have to worry about this buffer. 2448 * 2449 * This buffer is freed here because one of the possible reasons 2450 * for error is a section with non-zero sh_addr and in that case 2451 * free_module_data() would have no way of recognizing that this 2452 * buffer was unallocated. 2453 */ 2454 if (err != 0) { 2455 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); 2456 mp->shdrs = NULL; 2457 } 2458 2459 (void) kobj_free(tp, sizeof (struct proginfo)); 2460 (void) kobj_free(dp, sizeof (struct proginfo)); 2461 (void) kobj_free(sdp, sizeof (struct proginfo)); 2462 2463 return (err); 2464 } 2465 2466 /* 2467 * Go through suppress_sym_list to see if "multiply defined" 2468 * warning of this symbol should be suppressed. Return 1 if 2469 * warning should be suppressed, 0 otherwise. 2470 */ 2471 static int 2472 kobj_suppress_warning(char *symname) 2473 { 2474 int i; 2475 2476 for (i = 0; suppress_sym_list[i] != NULL; i++) { 2477 if (strcmp(suppress_sym_list[i], symname) == 0) 2478 return (1); 2479 } 2480 2481 return (0); 2482 } 2483 2484 static int 2485 get_syms(struct module *mp, struct _buf *file) 2486 { 2487 uint_t shn; 2488 Shdr *shp; 2489 uint_t i; 2490 Sym *sp, *ksp; 2491 char *symname; 2492 int dosymtab = 0; 2493 2494 /* 2495 * Find the interesting sections. 2496 */ 2497 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2498 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2499 switch (shp->sh_type) { 2500 case SHT_SYMTAB: 2501 mp->symtbl_section = shn; 2502 mp->symhdr = shp; 2503 dosymtab++; 2504 break; 2505 2506 case SHT_RELA: 2507 case SHT_REL: 2508 /* 2509 * Already loaded. 2510 */ 2511 if (shp->sh_addr) 2512 continue; 2513 2514 /* KM_TMP since kobj_free'd in do_relocations */ 2515 shp->sh_addr = (Addr) 2516 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP); 2517 2518 if (kobj_read_file(file, (char *)shp->sh_addr, 2519 shp->sh_size, shp->sh_offset) < 0) { 2520 _kobj_printf(ops, "krtld: get_syms: %s, ", 2521 mp->filename); 2522 _kobj_printf(ops, "error reading section %d\n", 2523 shn); 2524 return (-1); 2525 } 2526 break; 2527 } 2528 } 2529 2530 /* 2531 * This is true for a stripped executable. In the case of 2532 * 'unix' it can be stripped but it still contains the SHT_DYNSYM, 2533 * and since that symbol information is still present everything 2534 * is just fine. 2535 */ 2536 if (!dosymtab) { 2537 if (mp->flags & KOBJ_EXEC) 2538 return (0); 2539 _kobj_printf(ops, "krtld: get_syms: %s ", 2540 mp->filename); 2541 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n"); 2542 return (-1); 2543 } 2544 2545 /* 2546 * get the associated string table header 2547 */ 2548 if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum)) 2549 return (-1); 2550 mp->strhdr = (Shdr *) 2551 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 2552 2553 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 2554 mp->hashsize = kobj_gethashsize(mp->nsyms); 2555 2556 /* 2557 * Allocate space for the symbol table, buckets, chains, and strings. 2558 */ 2559 mp->symsize = mp->symhdr->sh_size + 2560 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size; 2561 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH); 2562 2563 mp->symtbl = mp->symspace; 2564 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size); 2565 mp->chains = mp->buckets + mp->hashsize; 2566 mp->strings = (char *)(mp->chains + mp->nsyms); 2567 2568 if (kobj_read_file(file, mp->symtbl, 2569 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 || 2570 kobj_read_file(file, mp->strings, 2571 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0) 2572 return (-1); 2573 2574 /* 2575 * loop through the symbol table adjusting values to account 2576 * for where each section got loaded into memory. Also 2577 * fill in the hash table. 2578 */ 2579 for (i = 1; i < mp->nsyms; i++) { 2580 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 2581 if (sp->st_shndx < SHN_LORESERVE) { 2582 if (sp->st_shndx >= mp->hdr.e_shnum) { 2583 _kobj_printf(ops, "%s bad shndx ", 2584 file->_name); 2585 _kobj_printf(ops, "in symbol %d\n", i); 2586 return (-1); 2587 } 2588 shp = (Shdr *) 2589 (mp->shdrs + 2590 sp->st_shndx * mp->hdr.e_shentsize); 2591 if (!(mp->flags & KOBJ_EXEC)) 2592 sp->st_value += shp->sh_addr; 2593 } 2594 2595 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 2596 continue; 2597 if (sp->st_name >= mp->strhdr->sh_size) 2598 return (-1); 2599 2600 symname = mp->strings + sp->st_name; 2601 2602 if (!(mp->flags & KOBJ_EXEC) && 2603 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 2604 ksp = kobj_lookup_all(mp, symname, 0); 2605 2606 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL && 2607 !kobj_suppress_warning(symname) && 2608 sp->st_shndx != SHN_UNDEF && 2609 sp->st_shndx != SHN_COMMON && 2610 ksp->st_shndx != SHN_UNDEF && 2611 ksp->st_shndx != SHN_COMMON) { 2612 /* 2613 * Unless this symbol is a stub, it's multiply 2614 * defined. Multiply-defined symbols are 2615 * usually bad, but some objects (kmdb) have 2616 * a legitimate need to have their own 2617 * copies of common functions. 2618 */ 2619 if ((standalone || 2620 ksp->st_value < (uintptr_t)stubs_base || 2621 ksp->st_value >= (uintptr_t)stubs_end) && 2622 !(mp->flags & KOBJ_IGNMULDEF)) { 2623 _kobj_printf(ops, 2624 "%s symbol ", file->_name); 2625 _kobj_printf(ops, 2626 "%s multiply defined\n", symname); 2627 } 2628 } 2629 } 2630 2631 sym_insert(mp, symname, i); 2632 } 2633 2634 return (0); 2635 } 2636 2637 static int 2638 get_ctf(struct module *mp, struct _buf *file) 2639 { 2640 char *shstrtab, *ctfdata; 2641 size_t shstrlen; 2642 Shdr *shp; 2643 uint_t i; 2644 2645 if (_moddebug & MODDEBUG_NOCTF) 2646 return (0); /* do not attempt to even load CTF data */ 2647 2648 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2649 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2650 mp->filename); 2651 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2652 mp->hdr.e_shstrndx); 2653 return (-1); 2654 } 2655 2656 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2657 shstrlen = shp->sh_size; 2658 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2659 2660 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2661 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2662 mp->filename); 2663 _kobj_printf(ops, "error reading section %u\n", 2664 mp->hdr.e_shstrndx); 2665 kobj_free(shstrtab, shstrlen); 2666 return (-1); 2667 } 2668 2669 for (i = 0; i < mp->hdr.e_shnum; i++) { 2670 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2671 2672 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2673 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) { 2674 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH); 2675 2676 if (kobj_read_file(file, ctfdata, shp->sh_size, 2677 shp->sh_offset) < 0) { 2678 _kobj_printf(ops, "krtld: get_ctf: %s, error " 2679 "reading .SUNW_ctf data\n", mp->filename); 2680 kobj_free(ctfdata, shp->sh_size); 2681 kobj_free(shstrtab, shstrlen); 2682 return (-1); 2683 } 2684 2685 mp->ctfdata = ctfdata; 2686 mp->ctfsize = shp->sh_size; 2687 break; 2688 } 2689 } 2690 2691 kobj_free(shstrtab, shstrlen); 2692 return (0); 2693 } 2694 2695 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */ 2696 2697 /* 2698 * Return the hash of the ELF sections that are memory resident. 2699 * i.e. text and data. We skip a SHT_NOBITS section since it occupies 2700 * no space in the file. We use SHA1 here since libelfsign uses 2701 * it and both places need to use the same algorithm. 2702 */ 2703 static void 2704 crypto_es_hash(struct module *mp, char *hash, char *shstrtab) 2705 { 2706 uint_t shn; 2707 Shdr *shp; 2708 SHA1_CTX ctx; 2709 2710 SHA1Init(&ctx); 2711 2712 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2713 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2714 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0) 2715 continue; 2716 2717 /* 2718 * The check should ideally be shp->sh_type == SHT_NOBITS. 2719 * However, we can't do that check here as get_progbits() 2720 * resets the type. 2721 */ 2722 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0) 2723 continue; 2724 #ifdef KOBJ_DEBUG 2725 if (kobj_debug & D_DEBUG) 2726 _kobj_printf(ops, 2727 "krtld: crypto_es_hash: updating hash with" 2728 " %s data size=%d\n", shstrtab + shp->sh_name, 2729 shp->sh_size); 2730 #endif 2731 ASSERT(shp->sh_addr != NULL); 2732 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size); 2733 } 2734 2735 SHA1Final((uchar_t *)hash, &ctx); 2736 } 2737 2738 /* 2739 * Get the .SUNW_signature section for the module, it it exists. 2740 * 2741 * This section exists only for crypto modules. None of the 2742 * primary modules have this section currently. 2743 */ 2744 static void 2745 get_signature(struct module *mp, struct _buf *file) 2746 { 2747 char *shstrtab, *sigdata = NULL; 2748 size_t shstrlen; 2749 Shdr *shp; 2750 uint_t i; 2751 2752 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2753 _kobj_printf(ops, "krtld: get_signature: %s, ", 2754 mp->filename); 2755 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2756 mp->hdr.e_shstrndx); 2757 return; 2758 } 2759 2760 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2761 shstrlen = shp->sh_size; 2762 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2763 2764 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2765 _kobj_printf(ops, "krtld: get_signature: %s, ", 2766 mp->filename); 2767 _kobj_printf(ops, "error reading section %u\n", 2768 mp->hdr.e_shstrndx); 2769 kobj_free(shstrtab, shstrlen); 2770 return; 2771 } 2772 2773 for (i = 0; i < mp->hdr.e_shnum; i++) { 2774 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2775 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2776 strcmp(shstrtab + shp->sh_name, 2777 ELF_SIGNATURE_SECTION) == 0) { 2778 filesig_vers_t filesig_version; 2779 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH; 2780 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH); 2781 2782 if (kobj_read_file(file, sigdata, shp->sh_size, 2783 shp->sh_offset) < 0) { 2784 _kobj_printf(ops, "krtld: get_signature: %s," 2785 " error reading .SUNW_signature data\n", 2786 mp->filename); 2787 kobj_free(sigdata, sigsize); 2788 kobj_free(shstrtab, shstrlen); 2789 return; 2790 } 2791 filesig_version = ((struct filesignatures *)sigdata)-> 2792 filesig_sig.filesig_version; 2793 if (!(filesig_version == FILESIG_VERSION1 || 2794 filesig_version == FILESIG_VERSION3)) { 2795 /* skip versions we don't understand */ 2796 kobj_free(sigdata, sigsize); 2797 kobj_free(shstrtab, shstrlen); 2798 return; 2799 } 2800 2801 mp->sigdata = sigdata; 2802 mp->sigsize = sigsize; 2803 break; 2804 } 2805 } 2806 2807 if (sigdata != NULL) { 2808 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab); 2809 } 2810 2811 kobj_free(shstrtab, shstrlen); 2812 } 2813 2814 static void 2815 add_dependent(struct module *mp, struct module *dep) 2816 { 2817 struct module_list *lp; 2818 2819 for (lp = mp->head; lp; lp = lp->next) { 2820 if (lp->mp == dep) 2821 return; /* already on the list */ 2822 } 2823 2824 if (lp == NULL) { 2825 lp = kobj_zalloc(sizeof (*lp), KM_WAIT); 2826 2827 lp->mp = dep; 2828 lp->next = NULL; 2829 if (mp->tail) 2830 mp->tail->next = lp; 2831 else 2832 mp->head = lp; 2833 mp->tail = lp; 2834 } 2835 } 2836 2837 static int 2838 do_dependents(struct modctl *modp, char *modname, size_t modnamelen) 2839 { 2840 struct module *mp; 2841 struct modctl *req; 2842 char *d, *p, *q; 2843 int c; 2844 char *err_modname = NULL; 2845 2846 mp = modp->mod_mp; 2847 2848 if ((p = mp->depends_on) == NULL) 2849 return (0); 2850 2851 for (;;) { 2852 /* 2853 * Skip space. 2854 */ 2855 while (*p && (*p == ' ' || *p == '\t')) 2856 p++; 2857 /* 2858 * Get module name. 2859 */ 2860 d = p; 2861 q = modname; 2862 c = 0; 2863 while (*p && *p != ' ' && *p != '\t') { 2864 if (c < modnamelen - 1) { 2865 *q++ = *p; 2866 c++; 2867 } 2868 p++; 2869 } 2870 2871 if (q == modname) 2872 break; 2873 2874 if (c == modnamelen - 1) { 2875 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP); 2876 2877 (void) strncpy(dep, d, p - d + 1); 2878 dep[p - d] = '\0'; 2879 2880 _kobj_printf(ops, "%s: dependency ", modp->mod_modname); 2881 _kobj_printf(ops, "'%s' too long ", dep); 2882 _kobj_printf(ops, "(max %d chars)\n", modnamelen); 2883 2884 kobj_free(dep, p - d + 1); 2885 2886 return (-1); 2887 } 2888 2889 *q = '\0'; 2890 if ((req = mod_load_requisite(modp, modname)) == NULL) { 2891 #ifndef KOBJ_DEBUG 2892 if (_moddebug & MODDEBUG_LOADMSG) { 2893 #endif /* KOBJ_DEBUG */ 2894 _kobj_printf(ops, 2895 "%s: unable to resolve dependency, ", 2896 modp->mod_modname); 2897 _kobj_printf(ops, "cannot load module '%s'\n", 2898 modname); 2899 #ifndef KOBJ_DEBUG 2900 } 2901 #endif /* KOBJ_DEBUG */ 2902 if (err_modname == NULL) { 2903 /* 2904 * This must be the same size as the modname 2905 * one. 2906 */ 2907 err_modname = kobj_zalloc(MODMAXNAMELEN, 2908 KM_WAIT); 2909 2910 /* 2911 * We can use strcpy() here without fearing 2912 * the NULL terminator because the size of 2913 * err_modname is the same as one of modname, 2914 * and it's filled with zeros. 2915 */ 2916 (void) strcpy(err_modname, modname); 2917 } 2918 continue; 2919 } 2920 2921 add_dependent(mp, req->mod_mp); 2922 mod_release_mod(req); 2923 2924 } 2925 2926 if (err_modname != NULL) { 2927 /* 2928 * Copy the first module name where you detect an error to keep 2929 * its behavior the same as before. 2930 * This way keeps minimizing the memory use for error 2931 * modules, and this might be important at boot time because 2932 * the memory usage is a crucial factor for booting in most 2933 * cases. You can expect more verbose messages when using 2934 * a debug kernel or setting a bit in moddebug. 2935 */ 2936 bzero(modname, MODMAXNAMELEN); 2937 (void) strcpy(modname, err_modname); 2938 kobj_free(err_modname, MODMAXNAMELEN); 2939 return (-1); 2940 } 2941 2942 return (0); 2943 } 2944 2945 static int 2946 do_common(struct module *mp) 2947 { 2948 int err; 2949 2950 /* 2951 * first time through, assign all symbols defined in other 2952 * modules, and count up how much common space will be needed 2953 * (bss_size and bss_align) 2954 */ 2955 if ((err = do_symbols(mp, 0)) < 0) 2956 return (err); 2957 /* 2958 * increase bss_size by the maximum delta that could be 2959 * computed by the ALIGN below 2960 */ 2961 mp->bss_size += mp->bss_align; 2962 if (mp->bss_size) { 2963 if (standalone) 2964 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size, 2965 MINALIGN, 0); 2966 else 2967 mp->bss = (uintptr_t)vmem_alloc(data_arena, 2968 mp->bss_size, VM_SLEEP | VM_BESTFIT); 2969 bzero((void *)mp->bss, mp->bss_size); 2970 /* now assign addresses to all common symbols */ 2971 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0) 2972 return (err); 2973 } 2974 return (0); 2975 } 2976 2977 static int 2978 do_symbols(struct module *mp, Elf64_Addr bss_base) 2979 { 2980 int bss_align; 2981 uintptr_t bss_ptr; 2982 int err; 2983 int i; 2984 Sym *sp, *sp1; 2985 char *name; 2986 int assign; 2987 int resolved = 1; 2988 2989 /* 2990 * Nothing left to do (optimization). 2991 */ 2992 if (mp->flags & KOBJ_RESOLVED) 2993 return (0); 2994 2995 assign = (bss_base) ? 1 : 0; 2996 bss_ptr = bss_base; 2997 bss_align = 0; 2998 err = 0; 2999 3000 for (i = 1; i < mp->nsyms; i++) { 3001 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i); 3002 /* 3003 * we know that st_name is in bounds, since get_sections 3004 * has already checked all of the symbols 3005 */ 3006 name = mp->strings + sp->st_name; 3007 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON) 3008 continue; 3009 #if defined(__sparc) 3010 /* 3011 * Register symbols are ignored in the kernel 3012 */ 3013 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) { 3014 if (*name != '\0') { 3015 _kobj_printf(ops, "%s: named REGISTER symbol ", 3016 mp->filename); 3017 _kobj_printf(ops, "not supported '%s'\n", 3018 name); 3019 err = DOSYM_UNDEF; 3020 } 3021 continue; 3022 } 3023 #endif /* __sparc */ 3024 /* 3025 * TLS symbols are ignored in the kernel 3026 */ 3027 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) { 3028 _kobj_printf(ops, "%s: TLS symbol ", 3029 mp->filename); 3030 _kobj_printf(ops, "not supported '%s'\n", 3031 name); 3032 err = DOSYM_UNDEF; 3033 continue; 3034 } 3035 3036 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) { 3037 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) { 3038 sp->st_shndx = SHN_ABS; 3039 sp->st_value = sp1->st_value; 3040 continue; 3041 } 3042 } 3043 3044 if (sp->st_shndx == SHN_UNDEF) { 3045 resolved = 0; 3046 3047 /* 3048 * Skip over sdt probes and smap calls, 3049 * they're relocated later. 3050 */ 3051 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0) 3052 continue; 3053 #if defined(__x86) 3054 if (strcmp(name, "smap_enable") == 0 || 3055 strcmp(name, "smap_disable") == 0) 3056 continue; 3057 #endif /* defined(__x86) */ 3058 3059 3060 /* 3061 * If it's not a weak reference and it's 3062 * not a primary object, it's an error. 3063 * (Primary objects may take more than 3064 * one pass to resolve) 3065 */ 3066 if (!(mp->flags & KOBJ_PRIM) && 3067 ELF_ST_BIND(sp->st_info) != STB_WEAK) { 3068 _kobj_printf(ops, "%s: undefined symbol", 3069 mp->filename); 3070 _kobj_printf(ops, " '%s'\n", name); 3071 /* 3072 * Try to determine whether this symbol 3073 * represents a dependency on obsolete 3074 * unsafe driver support. This is just 3075 * to make the warning more informative. 3076 */ 3077 if (strcmp(name, "sleep") == 0 || 3078 strcmp(name, "unsleep") == 0 || 3079 strcmp(name, "wakeup") == 0 || 3080 strcmp(name, "bsd_compat_ioctl") == 0 || 3081 strcmp(name, "unsafe_driver") == 0 || 3082 strncmp(name, "spl", 3) == 0 || 3083 strncmp(name, "i_ddi_spl", 9) == 0) 3084 err = DOSYM_UNSAFE; 3085 if (err == 0) 3086 err = DOSYM_UNDEF; 3087 } 3088 continue; 3089 } 3090 /* 3091 * It's a common symbol - st_value is the 3092 * required alignment. 3093 */ 3094 if (sp->st_value > bss_align) 3095 bss_align = sp->st_value; 3096 bss_ptr = ALIGN(bss_ptr, sp->st_value); 3097 if (assign) { 3098 sp->st_shndx = SHN_ABS; 3099 sp->st_value = bss_ptr; 3100 } 3101 bss_ptr += sp->st_size; 3102 } 3103 if (err) 3104 return (err); 3105 if (assign == 0 && mp->bss == 0) { 3106 mp->bss_align = bss_align; 3107 mp->bss_size = bss_ptr; 3108 } else if (resolved) { 3109 mp->flags |= KOBJ_RESOLVED; 3110 } 3111 3112 return (0); 3113 } 3114 3115 uint_t 3116 kobj_hash_name(const char *p) 3117 { 3118 uint_t g; 3119 uint_t hval; 3120 3121 hval = 0; 3122 while (*p) { 3123 hval = (hval << 4) + *p++; 3124 if ((g = (hval & 0xf0000000)) != 0) 3125 hval ^= g >> 24; 3126 hval &= ~g; 3127 } 3128 return (hval); 3129 } 3130 3131 /* look for name in all modules */ 3132 uintptr_t 3133 kobj_getsymvalue(char *name, int kernelonly) 3134 { 3135 Sym *sp; 3136 struct modctl *modp; 3137 struct module *mp; 3138 uintptr_t value = 0; 3139 3140 if ((sp = kobj_lookup_kernel(name)) != NULL) 3141 return ((uintptr_t)sp->st_value); 3142 3143 if (kernelonly) 3144 return (0); /* didn't find it in the kernel so give up */ 3145 3146 mutex_enter(&mod_lock); 3147 modp = &modules; 3148 do { 3149 mp = (struct module *)modp->mod_mp; 3150 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3151 (sp = lookup_one(mp, name))) { 3152 value = (uintptr_t)sp->st_value; 3153 break; 3154 } 3155 } while ((modp = modp->mod_next) != &modules); 3156 mutex_exit(&mod_lock); 3157 return (value); 3158 } 3159 3160 /* look for a symbol near value. */ 3161 char * 3162 kobj_getsymname(uintptr_t value, ulong_t *offset) 3163 { 3164 char *name = NULL; 3165 struct modctl *modp; 3166 3167 struct modctl_list *lp; 3168 struct module *mp; 3169 3170 /* 3171 * Loop through the primary kernel modules. 3172 */ 3173 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3174 mp = mod(lp); 3175 3176 if ((name = kobj_searchsym(mp, value, offset)) != NULL) 3177 return (name); 3178 } 3179 3180 mutex_enter(&mod_lock); 3181 modp = &modules; 3182 do { 3183 mp = (struct module *)modp->mod_mp; 3184 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3185 (name = kobj_searchsym(mp, value, offset))) 3186 break; 3187 } while ((modp = modp->mod_next) != &modules); 3188 mutex_exit(&mod_lock); 3189 return (name); 3190 } 3191 3192 /* return address of symbol and size */ 3193 3194 uintptr_t 3195 kobj_getelfsym(char *name, void *mp, int *size) 3196 { 3197 Sym *sp; 3198 3199 if (mp == NULL) 3200 sp = kobj_lookup_kernel(name); 3201 else 3202 sp = lookup_one(mp, name); 3203 3204 if (sp == NULL) 3205 return (0); 3206 3207 *size = (int)sp->st_size; 3208 return ((uintptr_t)sp->st_value); 3209 } 3210 3211 uintptr_t 3212 kobj_lookup(struct module *mod, const char *name) 3213 { 3214 Sym *sp; 3215 3216 sp = lookup_one(mod, name); 3217 3218 if (sp == NULL) 3219 return (0); 3220 3221 return ((uintptr_t)sp->st_value); 3222 } 3223 3224 char * 3225 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset) 3226 { 3227 Sym *symtabptr; 3228 char *strtabptr; 3229 int symnum; 3230 Sym *sym; 3231 Sym *cursym; 3232 uintptr_t curval; 3233 3234 *offset = (ulong_t)-1l; /* assume not found */ 3235 cursym = NULL; 3236 3237 if (kobj_addrcheck(mp, (void *)value) != 0) 3238 return (NULL); /* not in this module */ 3239 3240 strtabptr = mp->strings; 3241 symtabptr = (Sym *)mp->symtbl; 3242 3243 /* 3244 * Scan the module's symbol table for a symbol <= value 3245 */ 3246 for (symnum = 1, sym = symtabptr + 1; 3247 symnum < mp->nsyms; symnum++, sym = (Sym *) 3248 ((uintptr_t)sym + mp->symhdr->sh_entsize)) { 3249 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) { 3250 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL) 3251 continue; 3252 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT && 3253 ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3254 continue; 3255 } 3256 3257 curval = (uintptr_t)sym->st_value; 3258 3259 if (curval > value) 3260 continue; 3261 3262 /* 3263 * If one or both are functions... 3264 */ 3265 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL && 3266 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) { 3267 /* Ignore if the address is out of the bounds */ 3268 if (value - sym->st_value >= sym->st_size) 3269 continue; 3270 3271 if (cursym != NULL && 3272 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) { 3273 /* Prefer the function to the non-function */ 3274 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3275 continue; 3276 3277 /* Prefer the larger of the two functions */ 3278 if (sym->st_size <= cursym->st_size) 3279 continue; 3280 } 3281 } else if (value - curval >= *offset) { 3282 continue; 3283 } 3284 3285 *offset = (ulong_t)(value - curval); 3286 cursym = sym; 3287 } 3288 if (cursym == NULL) 3289 return (NULL); 3290 3291 return (strtabptr + cursym->st_name); 3292 } 3293 3294 Sym * 3295 kobj_lookup_all(struct module *mp, char *name, int include_self) 3296 { 3297 Sym *sp; 3298 struct module_list *mlp; 3299 struct modctl_list *clp; 3300 struct module *mmp; 3301 3302 if (include_self && (sp = lookup_one(mp, name)) != NULL) 3303 return (sp); 3304 3305 for (mlp = mp->head; mlp; mlp = mlp->next) { 3306 if ((sp = lookup_one(mlp->mp, name)) != NULL && 3307 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3308 return (sp); 3309 } 3310 3311 /* 3312 * Loop through the primary kernel modules. 3313 */ 3314 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) { 3315 mmp = mod(clp); 3316 3317 if (mmp == NULL || mp == mmp) 3318 continue; 3319 3320 if ((sp = lookup_one(mmp, name)) != NULL && 3321 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3322 return (sp); 3323 } 3324 return (NULL); 3325 } 3326 3327 Sym * 3328 kobj_lookup_kernel(const char *name) 3329 { 3330 struct modctl_list *lp; 3331 struct module *mp; 3332 Sym *sp; 3333 3334 /* 3335 * Loop through the primary kernel modules. 3336 */ 3337 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3338 mp = mod(lp); 3339 3340 if (mp == NULL) 3341 continue; 3342 3343 if ((sp = lookup_one(mp, name)) != NULL) 3344 return (sp); 3345 } 3346 return (NULL); 3347 } 3348 3349 static Sym * 3350 lookup_one(struct module *mp, const char *name) 3351 { 3352 symid_t *ip; 3353 char *name1; 3354 Sym *sp; 3355 3356 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3357 ip = &mp->chains[*ip]) { 3358 sp = (Sym *)(mp->symtbl + 3359 mp->symhdr->sh_entsize * *ip); 3360 name1 = mp->strings + sp->st_name; 3361 if (strcmp(name, name1) == 0 && 3362 ELF_ST_TYPE(sp->st_info) != STT_FILE && 3363 sp->st_shndx != SHN_UNDEF && 3364 sp->st_shndx != SHN_COMMON) 3365 return (sp); 3366 } 3367 return (NULL); 3368 } 3369 3370 /* 3371 * Lookup a given symbol pointer in the module's symbol hash. If the symbol 3372 * is hashed, return the symbol pointer; otherwise return NULL. 3373 */ 3374 static Sym * 3375 sym_lookup(struct module *mp, Sym *ksp) 3376 { 3377 char *name = mp->strings + ksp->st_name; 3378 symid_t *ip; 3379 Sym *sp; 3380 3381 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3382 ip = &mp->chains[*ip]) { 3383 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip); 3384 if (sp == ksp) 3385 return (ksp); 3386 } 3387 return (NULL); 3388 } 3389 3390 static void 3391 sym_insert(struct module *mp, char *name, symid_t index) 3392 { 3393 symid_t *ip; 3394 3395 #ifdef KOBJ_DEBUG 3396 if (kobj_debug & D_SYMBOLS) { 3397 static struct module *lastmp = NULL; 3398 Sym *sp; 3399 if (lastmp != mp) { 3400 _kobj_printf(ops, 3401 "krtld: symbol entry: file=%s\n", 3402 mp->filename); 3403 _kobj_printf(ops, 3404 "krtld:\tsymndx\tvalue\t\t" 3405 "symbol name\n"); 3406 lastmp = mp; 3407 } 3408 sp = (Sym *)(mp->symtbl + 3409 index * mp->symhdr->sh_entsize); 3410 _kobj_printf(ops, "krtld:\t[%3d]", index); 3411 _kobj_printf(ops, "\t0x%lx", sp->st_value); 3412 _kobj_printf(ops, "\t%s\n", name); 3413 } 3414 #endif 3415 3416 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3417 ip = &mp->chains[*ip]) { 3418 ; 3419 } 3420 *ip = index; 3421 } 3422 3423 struct modctl * 3424 kobj_boot_mod_lookup(const char *modname) 3425 { 3426 struct modctl *mctl = kobj_modules; 3427 3428 do { 3429 if (strcmp(modname, mctl->mod_modname) == 0) 3430 return (mctl); 3431 } while ((mctl = mctl->mod_next) != kobj_modules); 3432 3433 return (NULL); 3434 } 3435 3436 /* 3437 * Determine if the module exists. 3438 */ 3439 int 3440 kobj_path_exists(char *name, int use_path) 3441 { 3442 struct _buf *file; 3443 3444 file = kobj_open_path(name, use_path, 1); 3445 #ifdef MODDIR_SUFFIX 3446 if (file == (struct _buf *)-1) 3447 file = kobj_open_path(name, use_path, 0); 3448 #endif /* MODDIR_SUFFIX */ 3449 if (file == (struct _buf *)-1) 3450 return (0); 3451 kobj_close_file(file); 3452 return (1); 3453 } 3454 3455 /* 3456 * fullname is dynamically allocated to be able to hold the 3457 * maximum size string that can be constructed from name. 3458 * path is exactly like the shell PATH variable. 3459 */ 3460 struct _buf * 3461 kobj_open_path(char *name, int use_path, int use_moddir_suffix) 3462 { 3463 char *p, *q; 3464 char *pathp; 3465 char *pathpsave; 3466 char *fullname; 3467 int maxpathlen; 3468 struct _buf *file; 3469 3470 #if !defined(MODDIR_SUFFIX) 3471 use_moddir_suffix = B_FALSE; 3472 #endif 3473 3474 if (!use_path) 3475 pathp = ""; /* use name as specified */ 3476 else 3477 pathp = kobj_module_path; 3478 /* use configured default path */ 3479 3480 pathpsave = pathp; /* keep this for error reporting */ 3481 3482 /* 3483 * Allocate enough space for the largest possible fullname. 3484 * since path is of the form <directory> : <directory> : ... 3485 * we're potentially allocating a little more than we need to 3486 * but we'll allocate the exact amount when we find the right directory. 3487 * (The + 3 below is one for NULL terminator and one for the '/' 3488 * we might have to add at the beginning of path and one for 3489 * the '/' between path and name.) 3490 */ 3491 maxpathlen = strlen(pathp) + strlen(name) + 3; 3492 /* sizeof includes null */ 3493 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1; 3494 fullname = kobj_zalloc(maxpathlen, KM_WAIT); 3495 3496 for (;;) { 3497 p = fullname; 3498 if (*pathp != '\0' && *pathp != '/') 3499 *p++ = '/'; /* path must start with '/' */ 3500 while (*pathp && *pathp != ':' && *pathp != ' ') 3501 *p++ = *pathp++; 3502 if (p != fullname && p[-1] != '/') 3503 *p++ = '/'; 3504 if (use_moddir_suffix) { 3505 char *b = basename(name); 3506 char *s; 3507 3508 /* copy everything up to the base name */ 3509 q = name; 3510 while (q != b && *q) 3511 *p++ = *q++; 3512 s = slash_moddir_suffix_slash; 3513 while (*s) 3514 *p++ = *s++; 3515 /* copy the rest */ 3516 while (*b) 3517 *p++ = *b++; 3518 } else { 3519 q = name; 3520 while (*q) 3521 *p++ = *q++; 3522 } 3523 *p = 0; 3524 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) { 3525 kobj_free(fullname, maxpathlen); 3526 return (file); 3527 } 3528 while (*pathp == ' ' || *pathp == ':') 3529 pathp++; 3530 if (*pathp == 0) 3531 break; 3532 3533 } 3534 kobj_free(fullname, maxpathlen); 3535 if (_moddebug & MODDEBUG_ERRMSG) { 3536 _kobj_printf(ops, "can't open %s,", name); 3537 _kobj_printf(ops, " path is %s\n", pathpsave); 3538 } 3539 return ((struct _buf *)-1); 3540 } 3541 3542 intptr_t 3543 kobj_open(char *filename) 3544 { 3545 struct vnode *vp; 3546 int fd; 3547 3548 if (_modrootloaded) { 3549 struct kobjopen_tctl *ltp = kobjopen_alloc(filename); 3550 int Errno; 3551 3552 /* 3553 * Hand off the open to a thread who has a 3554 * stack size capable handling the request. 3555 */ 3556 if (curthread != &t0) { 3557 (void) thread_create(NULL, DEFAULTSTKSZ * 2, 3558 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri); 3559 sema_p(<p->sema); 3560 Errno = ltp->Errno; 3561 vp = ltp->vp; 3562 } else { 3563 /* 3564 * 1098067: module creds should not be those of the 3565 * caller 3566 */ 3567 cred_t *saved_cred = curthread->t_cred; 3568 curthread->t_cred = kcred; 3569 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp, 3570 0, 0, rootdir, -1); 3571 curthread->t_cred = saved_cred; 3572 } 3573 kobjopen_free(ltp); 3574 3575 if (Errno) { 3576 if (_moddebug & MODDEBUG_ERRMSG) { 3577 _kobj_printf(ops, 3578 "kobj_open: vn_open of %s fails, ", 3579 filename); 3580 _kobj_printf(ops, "Errno = %d\n", Errno); 3581 } 3582 return (-1); 3583 } else { 3584 if (_moddebug & MODDEBUG_ERRMSG) { 3585 _kobj_printf(ops, "kobj_open: '%s'", filename); 3586 _kobj_printf(ops, " vp = %p\n", vp); 3587 } 3588 return ((intptr_t)vp); 3589 } 3590 } else { 3591 fd = kobj_boot_open(filename, 0); 3592 3593 if (_moddebug & MODDEBUG_ERRMSG) { 3594 if (fd < 0) 3595 _kobj_printf(ops, 3596 "kobj_open: can't open %s\n", filename); 3597 else { 3598 _kobj_printf(ops, "kobj_open: '%s'", filename); 3599 _kobj_printf(ops, " descr = 0x%x\n", fd); 3600 } 3601 } 3602 return ((intptr_t)fd); 3603 } 3604 } 3605 3606 /* 3607 * Calls to kobj_open() are handled off to this routine as a separate thread. 3608 */ 3609 static void 3610 kobjopen_thread(struct kobjopen_tctl *ltp) 3611 { 3612 kmutex_t cpr_lk; 3613 callb_cpr_t cpr_i; 3614 3615 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); 3616 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen"); 3617 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp), 3618 0, 0); 3619 sema_v(<p->sema); 3620 mutex_enter(&cpr_lk); 3621 CALLB_CPR_EXIT(&cpr_i); 3622 mutex_destroy(&cpr_lk); 3623 thread_exit(); 3624 } 3625 3626 /* 3627 * allocate and initialize a kobjopen thread structure 3628 */ 3629 static struct kobjopen_tctl * 3630 kobjopen_alloc(char *filename) 3631 { 3632 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP); 3633 3634 ASSERT(filename != NULL); 3635 3636 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP); 3637 bcopy(filename, ltp->name, strlen(filename) + 1); 3638 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL); 3639 return (ltp); 3640 } 3641 3642 /* 3643 * free a kobjopen thread control structure 3644 */ 3645 static void 3646 kobjopen_free(struct kobjopen_tctl *ltp) 3647 { 3648 sema_destroy(<p->sema); 3649 kmem_free(ltp->name, strlen(ltp->name) + 1); 3650 kmem_free(ltp, sizeof (*ltp)); 3651 } 3652 3653 int 3654 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset) 3655 { 3656 int stat; 3657 ssize_t resid; 3658 3659 if (_modrootloaded) { 3660 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size, 3661 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3662 &resid)) != 0) { 3663 _kobj_printf(ops, 3664 "vn_rdwr failed with error 0x%x\n", stat); 3665 return (-1); 3666 } 3667 return (size - resid); 3668 } else { 3669 int count = 0; 3670 3671 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) { 3672 _kobj_printf(ops, 3673 "kobj_read: seek 0x%x failed\n", offset); 3674 return (-1); 3675 } 3676 3677 count = kobj_boot_read((int)descr, buf, size); 3678 if (count < size) { 3679 if (_moddebug & MODDEBUG_ERRMSG) { 3680 _kobj_printf(ops, 3681 "kobj_read: req %d bytes, ", size); 3682 _kobj_printf(ops, "got %d\n", count); 3683 } 3684 } 3685 return (count); 3686 } 3687 } 3688 3689 void 3690 kobj_close(intptr_t descr) 3691 { 3692 if (_moddebug & MODDEBUG_ERRMSG) 3693 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr); 3694 3695 if (_modrootloaded) { 3696 struct vnode *vp = (struct vnode *)descr; 3697 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 3698 VN_RELE(vp); 3699 } else 3700 (void) kobj_boot_close((int)descr); 3701 } 3702 3703 int 3704 kobj_fstat(intptr_t descr, struct bootstat *buf) 3705 { 3706 if (buf == NULL) 3707 return (-1); 3708 3709 if (_modrootloaded) { 3710 vattr_t vattr; 3711 struct vnode *vp = (struct vnode *)descr; 3712 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3713 return (-1); 3714 3715 /* 3716 * The vattr and bootstat structures are similar, but not 3717 * identical. We do our best to fill in the bootstat structure 3718 * from the contents of vattr (transfering only the ones that 3719 * are obvious. 3720 */ 3721 3722 buf->st_mode = (uint32_t)vattr.va_mode; 3723 buf->st_nlink = (uint32_t)vattr.va_nlink; 3724 buf->st_uid = (int32_t)vattr.va_uid; 3725 buf->st_gid = (int32_t)vattr.va_gid; 3726 buf->st_rdev = (uint64_t)vattr.va_rdev; 3727 buf->st_size = (uint64_t)vattr.va_size; 3728 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec; 3729 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec; 3730 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec; 3731 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec; 3732 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec; 3733 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec; 3734 buf->st_blksize = (int32_t)vattr.va_blksize; 3735 buf->st_blocks = (int64_t)vattr.va_nblocks; 3736 3737 return (0); 3738 } 3739 3740 return (kobj_boot_fstat((int)descr, buf)); 3741 } 3742 3743 3744 struct _buf * 3745 kobj_open_file(char *name) 3746 { 3747 struct _buf *file; 3748 struct compinfo cbuf; 3749 intptr_t fd; 3750 3751 if ((fd = kobj_open(name)) == -1) { 3752 return ((struct _buf *)-1); 3753 } 3754 3755 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP); 3756 file->_fd = fd; 3757 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP); 3758 file->_cnt = file->_size = file->_off = 0; 3759 file->_ln = 1; 3760 file->_ptr = file->_base; 3761 (void) strcpy(file->_name, name); 3762 3763 /* 3764 * Before root is mounted, we must check 3765 * for a compressed file and do our own 3766 * buffering. 3767 */ 3768 if (_modrootloaded) { 3769 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT); 3770 file->_bsize = MAXBSIZE; 3771 3772 /* Check if the file is compressed */ 3773 file->_iscmp = kobj_is_compressed(fd); 3774 } else { 3775 if (kobj_boot_compinfo(fd, &cbuf) != 0) { 3776 kobj_close_file(file); 3777 return ((struct _buf *)-1); 3778 } 3779 file->_iscmp = cbuf.iscmp; 3780 if (file->_iscmp) { 3781 if (kobj_comp_setup(file, &cbuf) != 0) { 3782 kobj_close_file(file); 3783 return ((struct _buf *)-1); 3784 } 3785 } else { 3786 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP); 3787 file->_bsize = cbuf.blksize; 3788 } 3789 } 3790 return (file); 3791 } 3792 3793 static int 3794 kobj_comp_setup(struct _buf *file, struct compinfo *cip) 3795 { 3796 struct comphdr *hdr; 3797 3798 /* 3799 * read the compressed image into memory, 3800 * so we can deompress from there 3801 */ 3802 file->_dsize = cip->fsize; 3803 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP); 3804 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) { 3805 kobj_free(file->_dbuf, cip->fsize); 3806 return (-1); 3807 } 3808 3809 hdr = kobj_comphdr(file); 3810 if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION || 3811 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 || 3812 !ISP2(hdr->ch_blksize)) { 3813 kobj_free(file->_dbuf, cip->fsize); 3814 return (-1); 3815 } 3816 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP); 3817 file->_bsize = hdr->ch_blksize; 3818 return (0); 3819 } 3820 3821 void 3822 kobj_close_file(struct _buf *file) 3823 { 3824 kobj_close(file->_fd); 3825 if (file->_base != NULL) 3826 kobj_free(file->_base, file->_bsize); 3827 if (file->_dbuf != NULL) 3828 kobj_free(file->_dbuf, file->_dsize); 3829 kobj_free(file->_name, strlen(file->_name)+1); 3830 kobj_free(file, sizeof (struct _buf)); 3831 } 3832 3833 int 3834 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off) 3835 { 3836 int b_size, c_size; 3837 int b_off; /* Offset into buffer for start of bcopy */ 3838 int count = 0; 3839 int page_addr; 3840 3841 if (_moddebug & MODDEBUG_ERRMSG) { 3842 _kobj_printf(ops, "kobj_read_file: size=%x,", size); 3843 _kobj_printf(ops, " offset=%x at", off); 3844 _kobj_printf(ops, " buf=%x\n", buf); 3845 } 3846 3847 /* 3848 * Handle compressed (gzip for now) file here. First get the 3849 * compressed size, then read the image into memory and finally 3850 * call zlib to decompress the image at the supplied memory buffer. 3851 */ 3852 if (file->_iscmp == CH_MAGIC_GZIP) { 3853 ulong_t dlen; 3854 vattr_t vattr; 3855 struct vnode *vp = (struct vnode *)file->_fd; 3856 ssize_t resid; 3857 int err = 0; 3858 3859 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3860 return (-1); 3861 3862 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP); 3863 file->_dsize = vattr.va_size; 3864 3865 /* Read the compressed file into memory */ 3866 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size, 3867 (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3868 &resid)) != 0) { 3869 3870 _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, " 3871 "error code 0x%x\n", err); 3872 return (-1); 3873 } 3874 3875 dlen = size; 3876 3877 /* Decompress the image at the supplied memory buffer */ 3878 if ((err = z_uncompress(buf, &dlen, file->_dbuf, 3879 vattr.va_size)) != Z_OK) { 3880 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3881 "failed, error code : 0x%x\n", err); 3882 return (-1); 3883 } 3884 3885 if (dlen != size) { 3886 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3887 "failed to uncompress (size returned 0x%x , " 3888 "expected size: 0x%x)\n", dlen, size); 3889 return (-1); 3890 } 3891 3892 return (0); 3893 } 3894 3895 while (size) { 3896 page_addr = F_PAGE(file, off); 3897 b_size = file->_size; 3898 /* 3899 * If we have the filesystem page the caller's referring to 3900 * and we have something in the buffer, 3901 * satisfy as much of the request from the buffer as we can. 3902 */ 3903 if (page_addr == file->_off && b_size > 0) { 3904 b_off = B_OFFSET(file, off); 3905 c_size = b_size - b_off; 3906 /* 3907 * If there's nothing to copy, we're at EOF. 3908 */ 3909 if (c_size <= 0) 3910 break; 3911 if (c_size > size) 3912 c_size = size; 3913 if (buf) { 3914 if (_moddebug & MODDEBUG_ERRMSG) 3915 _kobj_printf(ops, "copying %x bytes\n", 3916 c_size); 3917 bcopy(file->_base+b_off, buf, c_size); 3918 size -= c_size; 3919 off += c_size; 3920 buf += c_size; 3921 count += c_size; 3922 } else { 3923 _kobj_printf(ops, "kobj_read: system error"); 3924 count = -1; 3925 break; 3926 } 3927 } else { 3928 /* 3929 * If the caller's offset is page aligned and 3930 * the caller want's at least a filesystem page and 3931 * the caller provided a buffer, 3932 * read directly into the caller's buffer. 3933 */ 3934 if (page_addr == off && 3935 (c_size = F_BLKS(file, size)) && buf) { 3936 c_size = kobj_read_blks(file, buf, c_size, 3937 page_addr); 3938 if (c_size < 0) { 3939 count = -1; 3940 break; 3941 } 3942 count += c_size; 3943 if (c_size != F_BLKS(file, size)) 3944 break; 3945 size -= c_size; 3946 off += c_size; 3947 buf += c_size; 3948 /* 3949 * Otherwise, read into our buffer and copy next time 3950 * around the loop. 3951 */ 3952 } else { 3953 file->_off = page_addr; 3954 c_size = kobj_read_blks(file, file->_base, 3955 file->_bsize, page_addr); 3956 file->_ptr = file->_base; 3957 file->_cnt = c_size; 3958 file->_size = c_size; 3959 /* 3960 * If a _filbuf call or nothing read, break. 3961 */ 3962 if (buf == NULL || c_size <= 0) { 3963 count = c_size; 3964 break; 3965 } 3966 } 3967 if (_moddebug & MODDEBUG_ERRMSG) 3968 _kobj_printf(ops, "read %x bytes\n", c_size); 3969 } 3970 } 3971 if (_moddebug & MODDEBUG_ERRMSG) 3972 _kobj_printf(ops, "count = %x\n", count); 3973 3974 return (count); 3975 } 3976 3977 static int 3978 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off) 3979 { 3980 int ret; 3981 3982 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0); 3983 if (file->_iscmp) { 3984 uint_t blks; 3985 int nret; 3986 3987 ret = 0; 3988 for (blks = size / file->_bsize; blks != 0; blks--) { 3989 nret = kobj_uncomp_blk(file, buf, off); 3990 if (nret == -1) 3991 return (-1); 3992 buf += nret; 3993 off += nret; 3994 ret += nret; 3995 if (nret < file->_bsize) 3996 break; 3997 } 3998 } else 3999 ret = kobj_read(file->_fd, buf, size, off); 4000 return (ret); 4001 } 4002 4003 static int 4004 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off) 4005 { 4006 struct comphdr *hdr = kobj_comphdr(file); 4007 ulong_t dlen, slen; 4008 caddr_t src; 4009 int i; 4010 4011 dlen = file->_bsize; 4012 i = off / file->_bsize; 4013 src = file->_dbuf + hdr->ch_blkmap[i]; 4014 if (i == hdr->ch_fsize / file->_bsize) 4015 slen = file->_dsize - hdr->ch_blkmap[i]; 4016 else 4017 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i]; 4018 if (z_uncompress(buf, &dlen, src, slen) != Z_OK) 4019 return (-1); 4020 return (dlen); 4021 } 4022 4023 int 4024 kobj_filbuf(struct _buf *f) 4025 { 4026 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0) 4027 return (kobj_getc(f)); 4028 return (-1); 4029 } 4030 4031 void 4032 kobj_free(void *address, size_t size) 4033 { 4034 if (standalone) 4035 return; 4036 4037 kmem_free(address, size); 4038 kobj_stat.nfree_calls++; 4039 kobj_stat.nfree += size; 4040 } 4041 4042 void * 4043 kobj_zalloc(size_t size, int flag) 4044 { 4045 void *v; 4046 4047 if ((v = kobj_alloc(size, flag)) != 0) { 4048 bzero(v, size); 4049 } 4050 4051 return (v); 4052 } 4053 4054 void * 4055 kobj_alloc(size_t size, int flag) 4056 { 4057 /* 4058 * If we are running standalone in the 4059 * linker, we ask boot for memory. 4060 * Either it's temporary memory that we lose 4061 * once boot is mapped out or we allocate it 4062 * permanently using the dynamic data segment. 4063 */ 4064 if (standalone) { 4065 #if defined(_OBP) 4066 if (flag & (KM_TMP | KM_SCRATCH)) 4067 return (bop_temp_alloc(size, MINALIGN)); 4068 #else 4069 if (flag & (KM_TMP | KM_SCRATCH)) 4070 return (BOP_ALLOC(ops, 0, size, MINALIGN)); 4071 #endif 4072 return (kobj_segbrk(&_edata, size, MINALIGN, 0)); 4073 } 4074 4075 kobj_stat.nalloc_calls++; 4076 kobj_stat.nalloc += size; 4077 4078 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)); 4079 } 4080 4081 /* 4082 * Allow the "mod" system to sync up with the work 4083 * already done by kobj during the initial loading 4084 * of the kernel. This also gives us a chance 4085 * to reallocate memory that belongs to boot. 4086 */ 4087 void 4088 kobj_sync(void) 4089 { 4090 struct modctl_list *lp, **lpp; 4091 4092 /* 4093 * The module path can be set in /etc/system via 'moddir' commands 4094 */ 4095 if (default_path != NULL) 4096 kobj_module_path = default_path; 4097 else 4098 default_path = kobj_module_path; 4099 4100 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t), 4101 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4102 4103 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t), 4104 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4105 4106 /* 4107 * Move symbol tables from boot memory to ksyms_arena. 4108 */ 4109 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) { 4110 for (lp = *lpp; lp != NULL; lp = lp->modl_next) 4111 kobj_export_module(mod(lp)); 4112 } 4113 } 4114 4115 caddr_t 4116 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit) 4117 { 4118 uintptr_t va, pva; 4119 size_t alloc_pgsz = kobj_mmu_pagesize; 4120 size_t alloc_align = BO_NO_ALIGN; 4121 size_t alloc_size; 4122 4123 /* 4124 * If we are using "large" mappings for the kernel, 4125 * request aligned memory from boot using the 4126 * "large" pagesize. 4127 */ 4128 if (lg_pagesize) { 4129 alloc_align = lg_pagesize; 4130 alloc_pgsz = lg_pagesize; 4131 } 4132 4133 #if defined(__sparc) 4134 /* account for redzone */ 4135 if (limit) 4136 limit -= alloc_pgsz; 4137 #endif /* __sparc */ 4138 4139 va = ALIGN((uintptr_t)*spp, align); 4140 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz); 4141 /* 4142 * Need more pages? 4143 */ 4144 if (va + size > pva) { 4145 uintptr_t npva; 4146 4147 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz); 4148 /* 4149 * Check for overlapping segments. 4150 */ 4151 if (limit && limit <= *spp + alloc_size) { 4152 return ((caddr_t)0); 4153 } 4154 4155 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva, 4156 alloc_size, alloc_align); 4157 4158 if (npva == 0) { 4159 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes", 4160 alloc_size); 4161 _kobj_printf(ops, " aligned %lx", alloc_align); 4162 _kobj_printf(ops, " at 0x%lx\n", pva); 4163 return (NULL); 4164 } 4165 } 4166 *spp = (caddr_t)(va + size); 4167 4168 return ((caddr_t)va); 4169 } 4170 4171 /* 4172 * Calculate the number of output hash buckets. 4173 * We use the next prime larger than n / 4, 4174 * so the average hash chain is about 4 entries. 4175 * More buckets would just be a waste of memory. 4176 */ 4177 uint_t 4178 kobj_gethashsize(uint_t n) 4179 { 4180 int f; 4181 int hsize = MAX(n / 4, 2); 4182 4183 for (f = 2; f * f <= hsize; f++) 4184 if (hsize % f == 0) 4185 hsize += f = 1; 4186 4187 return (hsize); 4188 } 4189 4190 /* 4191 * Get the file size. 4192 * 4193 * Before root is mounted, files are compressed in the boot_archive ramdisk 4194 * (in the memory). kobj_fstat would return the compressed file size. 4195 * In order to get the uncompressed file size, read the file to the end and 4196 * count its size. 4197 */ 4198 int 4199 kobj_get_filesize(struct _buf *file, uint64_t *size) 4200 { 4201 int err = 0; 4202 ssize_t resid; 4203 uint32_t buf; 4204 4205 if (_modrootloaded) { 4206 struct bootstat bst; 4207 4208 if (kobj_fstat(file->_fd, &bst) != 0) 4209 return (EIO); 4210 *size = bst.st_size; 4211 4212 if (file->_iscmp == CH_MAGIC_GZIP) { 4213 /* 4214 * Read the last 4 bytes of the compressed (gzip) 4215 * image to get the size of its uncompressed 4216 * version. 4217 */ 4218 if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd, 4219 (char *)(&buf), 4, (offset_t)(*size - 4), 4220 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 4221 != 0) { 4222 _kobj_printf(ops, "kobj_get_filesize: " 4223 "vn_rdwr() failed with error 0x%x\n", err); 4224 return (-1); 4225 } 4226 4227 *size = (uint64_t)buf; 4228 } 4229 } else { 4230 4231 #if defined(_OBP) 4232 struct bootstat bsb; 4233 4234 if (file->_iscmp) { 4235 struct comphdr *hdr = kobj_comphdr(file); 4236 4237 *size = hdr->ch_fsize; 4238 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0) 4239 return (EIO); 4240 else 4241 *size = bsb.st_size; 4242 #else 4243 char *buf; 4244 int count; 4245 uint64_t offset = 0; 4246 4247 buf = kmem_alloc(MAXBSIZE, KM_SLEEP); 4248 do { 4249 count = kobj_read_file(file, buf, MAXBSIZE, offset); 4250 if (count < 0) { 4251 kmem_free(buf, MAXBSIZE); 4252 return (EIO); 4253 } 4254 offset += count; 4255 } while (count == MAXBSIZE); 4256 kmem_free(buf, MAXBSIZE); 4257 4258 *size = offset; 4259 #endif 4260 } 4261 4262 return (0); 4263 } 4264 4265 static char * 4266 basename(char *s) 4267 { 4268 char *p, *q; 4269 4270 q = NULL; 4271 p = s; 4272 do { 4273 if (*p == '/') 4274 q = p; 4275 } while (*p++); 4276 return (q ? q + 1 : s); 4277 } 4278 4279 void 4280 kobj_stat_get(kobj_stat_t *kp) 4281 { 4282 *kp = kobj_stat; 4283 } 4284 4285 int 4286 kobj_getpagesize() 4287 { 4288 return (lg_pagesize); 4289 } 4290 4291 void 4292 kobj_textwin_alloc(struct module *mp) 4293 { 4294 ASSERT(MUTEX_HELD(&mod_lock)); 4295 4296 if (mp->textwin != NULL) 4297 return; 4298 4299 /* 4300 * If the text is not contained in the heap, then it is not contained 4301 * by a writable mapping. (Specifically, it's on the nucleus page.) 4302 * We allocate a read/write mapping for this module's text to allow 4303 * the text to be patched without calling hot_patch_kernel_text() 4304 * (which is quite slow). 4305 */ 4306 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) { 4307 uintptr_t text = (uintptr_t)mp->text; 4308 uintptr_t size = (uintptr_t)mp->text_size; 4309 uintptr_t i; 4310 caddr_t va; 4311 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) - 4312 (text & PAGEMASK); 4313 4314 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP); 4315 4316 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) { 4317 hat_devload(kas.a_hat, va, PAGESIZE, 4318 hat_getpfnum(kas.a_hat, (caddr_t)i), 4319 PROT_READ | PROT_WRITE, 4320 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4321 va += PAGESIZE; 4322 } 4323 4324 mp->textwin = mp->textwin_base + (text & PAGEOFFSET); 4325 } else { 4326 mp->textwin = mp->text; 4327 } 4328 } 4329 4330 void 4331 kobj_textwin_free(struct module *mp) 4332 { 4333 uintptr_t text = (uintptr_t)mp->text; 4334 uintptr_t tsize = (uintptr_t)mp->text_size; 4335 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) - 4336 (text & PAGEMASK)); 4337 4338 mp->textwin = NULL; 4339 4340 if (mp->textwin_base == NULL) 4341 return; 4342 4343 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK); 4344 vmem_free(heap_arena, mp->textwin_base, size); 4345 mp->textwin_base = NULL; 4346 } 4347 4348 static char * 4349 find_libmacro(char *name) 4350 { 4351 int lmi; 4352 4353 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4354 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0) 4355 return (libmacros[lmi].lmi_list); 4356 } 4357 return (NULL); 4358 } 4359 4360 /* 4361 * Check for $MACRO in tail (string to expand) and expand it in path at pathend 4362 * returns path if successful, else NULL 4363 * Support multiple $MACROs expansion and the first valid path will be returned 4364 * Caller's responsibility to provide enough space in path to expand 4365 */ 4366 char * 4367 expand_libmacro(char *tail, char *path, char *pathend) 4368 { 4369 char c, *p, *p1, *p2, *path2, *endp; 4370 int diff, lmi, macrolen, valid_macro, more_macro; 4371 struct _buf *file; 4372 4373 /* 4374 * check for $MACROS between nulls or slashes 4375 */ 4376 p = strchr(tail, '$'); 4377 if (p == NULL) 4378 return (NULL); 4379 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4380 macrolen = libmacros[lmi].lmi_macrolen; 4381 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0) 4382 break; 4383 } 4384 4385 valid_macro = 0; 4386 if (lmi < NLIBMACROS) { 4387 /* 4388 * The following checks are used to restrict expansion of 4389 * macros to those that form a full directory/file name 4390 * and to keep the behavior same as before. If this 4391 * restriction is removed or no longer valid in the future, 4392 * the checks below can be deleted. 4393 */ 4394 if ((p == tail) || (*(p - 1) == '/')) { 4395 c = *(p + macrolen + 1); 4396 if (c == '/' || c == '\0') 4397 valid_macro = 1; 4398 } 4399 } 4400 4401 if (!valid_macro) { 4402 p2 = strchr(p, '/'); 4403 /* 4404 * if no more macro to expand, then just copy whatever left 4405 * and check whether it exists 4406 */ 4407 if (p2 == NULL || strchr(p2, '$') == NULL) { 4408 (void) strcpy(pathend, tail); 4409 if ((file = kobj_open_path(path, 1, 1)) != 4410 (struct _buf *)-1) { 4411 kobj_close_file(file); 4412 return (path); 4413 } else 4414 return (NULL); 4415 } else { 4416 /* 4417 * copy all chars before '/' and call expand_libmacro() 4418 * again 4419 */ 4420 diff = p2 - tail; 4421 bcopy(tail, pathend, diff); 4422 pathend += diff; 4423 *(pathend) = '\0'; 4424 return (expand_libmacro(p2, path, pathend)); 4425 } 4426 } 4427 4428 more_macro = 0; 4429 if (c != '\0') { 4430 endp = p + macrolen + 1; 4431 if (strchr(endp, '$') != NULL) 4432 more_macro = 1; 4433 } else 4434 endp = NULL; 4435 4436 /* 4437 * copy lmi_list and split it into components. 4438 * then put the part of tail before $MACRO into path 4439 * at pathend 4440 */ 4441 diff = p - tail; 4442 if (diff > 0) 4443 bcopy(tail, pathend, diff); 4444 path2 = pathend + diff; 4445 p1 = libmacros[lmi].lmi_list; 4446 while (p1 && (*p1 != '\0')) { 4447 p2 = strchr(p1, ':'); 4448 if (p2) { 4449 diff = p2 - p1; 4450 bcopy(p1, path2, diff); 4451 *(path2 + diff) = '\0'; 4452 } else { 4453 diff = strlen(p1); 4454 bcopy(p1, path2, diff + 1); 4455 } 4456 /* copy endp only if there isn't any more macro to expand */ 4457 if (!more_macro && (endp != NULL)) 4458 (void) strcat(path2, endp); 4459 file = kobj_open_path(path, 1, 1); 4460 if (file != (struct _buf *)-1) { 4461 kobj_close_file(file); 4462 /* 4463 * if more macros to expand then call expand_libmacro(), 4464 * else return path which has the whole path 4465 */ 4466 if (!more_macro || (expand_libmacro(endp, path, 4467 path2 + diff) != NULL)) { 4468 return (path); 4469 } 4470 } 4471 if (p2) 4472 p1 = ++p2; 4473 else 4474 return (NULL); 4475 } 4476 return (NULL); 4477 } 4478 4479 static void 4480 tnf_add_notifyunload(kobj_notify_f *fp) 4481 { 4482 kobj_notify_list_t *entry; 4483 4484 entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT); 4485 entry->kn_type = KOBJ_NOTIFY_MODUNLOADING; 4486 entry->kn_func = fp; 4487 (void) kobj_notify_add(entry); 4488 } 4489 4490 /* ARGSUSED */ 4491 static void 4492 tnf_unsplice_probes(uint_t what, struct modctl *mod) 4493 { 4494 tnf_probe_control_t **p; 4495 tnf_tag_data_t **q; 4496 struct module *mp = mod->mod_mp; 4497 4498 if (!(mp->flags & KOBJ_TNF_PROBE)) 4499 return; 4500 4501 for (p = &__tnf_probe_list_head; *p; ) 4502 if (kobj_addrcheck(mp, (char *)*p) == 0) 4503 *p = (*p)->next; 4504 else 4505 p = &(*p)->next; 4506 4507 for (q = &__tnf_tag_list_head; *q; ) 4508 if (kobj_addrcheck(mp, (char *)*q) == 0) 4509 *q = (tnf_tag_data_t *)(*q)->tag_version; 4510 else 4511 q = (tnf_tag_data_t **)&(*q)->tag_version; 4512 4513 tnf_changed_probe_list = 1; 4514 } 4515 4516 int 4517 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist, 4518 tnf_tag_data_t *tlist) 4519 { 4520 int result = 0; 4521 static int add_notify = 1; 4522 4523 if (plist) { 4524 tnf_probe_control_t *pl; 4525 4526 for (pl = plist; pl->next; ) 4527 pl = pl->next; 4528 4529 if (!boot_load) 4530 mutex_enter(&mod_lock); 4531 tnf_changed_probe_list = 1; 4532 pl->next = __tnf_probe_list_head; 4533 __tnf_probe_list_head = plist; 4534 if (!boot_load) 4535 mutex_exit(&mod_lock); 4536 result = 1; 4537 } 4538 4539 if (tlist) { 4540 tnf_tag_data_t *tl; 4541 4542 for (tl = tlist; tl->tag_version; ) 4543 tl = (tnf_tag_data_t *)tl->tag_version; 4544 4545 if (!boot_load) 4546 mutex_enter(&mod_lock); 4547 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head; 4548 __tnf_tag_list_head = tlist; 4549 if (!boot_load) 4550 mutex_exit(&mod_lock); 4551 result = 1; 4552 } 4553 if (!boot_load && result && add_notify) { 4554 tnf_add_notifyunload(tnf_unsplice_probes); 4555 add_notify = 0; 4556 } 4557 return (result); 4558 } 4559 4560 char *kobj_file_buf; 4561 int kobj_file_bufsize; 4562 4563 /* 4564 * This code is for the purpose of manually recording which files 4565 * needs to go into the boot archive on any given system. 4566 * 4567 * To enable the code, set kobj_file_bufsize in /etc/system 4568 * and reboot the system, then use mdb to look at kobj_file_buf. 4569 */ 4570 static void 4571 kobj_record_file(char *filename) 4572 { 4573 static char *buf; 4574 static int size = 0; 4575 int n; 4576 4577 if (kobj_file_bufsize == 0) /* don't bother */ 4578 return; 4579 4580 if (kobj_file_buf == NULL) { /* allocate buffer */ 4581 size = kobj_file_bufsize; 4582 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP); 4583 } 4584 4585 n = snprintf(buf, size, "%s\n", filename); 4586 if (n > size) 4587 n = size; 4588 size -= n; 4589 buf += n; 4590 } 4591 4592 static int 4593 kobj_boot_fstat(int fd, struct bootstat *stp) 4594 { 4595 #if defined(_OBP) 4596 if (!standalone && _ioquiesced) 4597 return (-1); 4598 return (BOP_FSTAT(ops, fd, stp)); 4599 #else 4600 return (BRD_FSTAT(bfs_ops, fd, stp)); 4601 #endif 4602 } 4603 4604 static int 4605 kobj_boot_open(char *filename, int flags) 4606 { 4607 #if defined(_OBP) 4608 4609 /* 4610 * If io via bootops is quiesced, it means boot is no longer 4611 * available to us. We make it look as if we can't open the 4612 * named file - which is reasonably accurate. 4613 */ 4614 if (!standalone && _ioquiesced) 4615 return (-1); 4616 4617 kobj_record_file(filename); 4618 return (BOP_OPEN(filename, flags)); 4619 #else /* x86 */ 4620 kobj_record_file(filename); 4621 return (BRD_OPEN(bfs_ops, filename, flags)); 4622 #endif 4623 } 4624 4625 static int 4626 kobj_boot_close(int fd) 4627 { 4628 #if defined(_OBP) 4629 if (!standalone && _ioquiesced) 4630 return (-1); 4631 4632 return (BOP_CLOSE(fd)); 4633 #else /* x86 */ 4634 return (BRD_CLOSE(bfs_ops, fd)); 4635 #endif 4636 } 4637 4638 /*ARGSUSED*/ 4639 static int 4640 kobj_boot_seek(int fd, off_t hi, off_t lo) 4641 { 4642 #if defined(_OBP) 4643 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0); 4644 #else 4645 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET)); 4646 #endif 4647 } 4648 4649 static int 4650 kobj_boot_read(int fd, caddr_t buf, size_t size) 4651 { 4652 #if defined(_OBP) 4653 return (BOP_READ(fd, buf, size)); 4654 #else 4655 return (BRD_READ(bfs_ops, fd, buf, size)); 4656 #endif 4657 } 4658 4659 static int 4660 kobj_boot_compinfo(int fd, struct compinfo *cb) 4661 { 4662 return (boot_compinfo(fd, cb)); 4663 } 4664 4665 /* 4666 * Check if the file is compressed (for now we handle only gzip). 4667 * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise. 4668 */ 4669 static int 4670 kobj_is_compressed(intptr_t fd) 4671 { 4672 struct vnode *vp = (struct vnode *)fd; 4673 ssize_t resid; 4674 uint16_t magic_buf; 4675 int err = 0; 4676 4677 if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf), 4678 sizeof (magic_buf), (offset_t)(0), 4679 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 4680 4681 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, " 4682 "error code 0x%x\n", err); 4683 return (0); 4684 } 4685 4686 if (magic_buf == CH_MAGIC_GZIP) 4687 return (CH_MAGIC_GZIP); 4688 4689 return (0); 4690 }