1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
  27  * All rights reserved. Use is subject to license terms.
  28  * Copyright (c) 2018, Joyent, Inc.
  29  */
  30 
  31 /*
  32  * Kernel's linker/loader
  33  */
  34 
  35 #include <sys/types.h>
  36 #include <sys/param.h>
  37 #include <sys/sysmacros.h>
  38 #include <sys/systm.h>
  39 #include <sys/user.h>
  40 #include <sys/kmem.h>
  41 #include <sys/reboot.h>
  42 #include <sys/bootconf.h>
  43 #include <sys/debug.h>
  44 #include <sys/uio.h>
  45 #include <sys/file.h>
  46 #include <sys/vnode.h>
  47 #include <sys/user.h>
  48 #include <sys/mman.h>
  49 #include <vm/as.h>
  50 #include <vm/seg_kp.h>
  51 #include <vm/seg_kmem.h>
  52 #include <sys/elf.h>
  53 #include <sys/elf_notes.h>
  54 #include <sys/vmsystm.h>
  55 #include <sys/kdi.h>
  56 #include <sys/atomic.h>
  57 #include <sys/kmdb.h>
  58 
  59 #include <sys/link.h>
  60 #include <sys/kobj.h>
  61 #include <sys/ksyms.h>
  62 #include <sys/disp.h>
  63 #include <sys/modctl.h>
  64 #include <sys/varargs.h>
  65 #include <sys/kstat.h>
  66 #include <sys/kobj_impl.h>
  67 #include <sys/fs/decomp.h>
  68 #include <sys/callb.h>
  69 #include <sys/cmn_err.h>
  70 #include <sys/tnf_probe.h>
  71 #include <sys/zmod.h>
  72 
  73 #include <krtld/reloc.h>
  74 #include <krtld/kobj_kdi.h>
  75 #include <sys/sha1.h>
  76 #include <sys/crypto/elfsign.h>
  77 
  78 #if !defined(_OBP)
  79 #include <sys/bootvfs.h>
  80 #endif
  81 
  82 /*
  83  * do_symbols() error codes
  84  */
  85 #define DOSYM_UNDEF             -1      /* undefined symbol */
  86 #define DOSYM_UNSAFE            -2      /* MT-unsafe driver symbol */
  87 
  88 #if !defined(_OBP)
  89 static void synthetic_bootaux(char *, val_t *);
  90 #endif
  91 
  92 static struct module *load_exec(val_t *, char *);
  93 static void load_linker(val_t *);
  94 static struct modctl *add_primary(const char *filename, int);
  95 static int bind_primary(val_t *, int);
  96 static int load_primary(struct module *, int);
  97 static int load_kmdb(val_t *);
  98 static int get_progbits(struct module *, struct _buf *);
  99 static int get_syms(struct module *, struct _buf *);
 100 static int get_ctf(struct module *, struct _buf *);
 101 static void get_signature(struct module *, struct _buf *);
 102 static int do_common(struct module *);
 103 static void add_dependent(struct module *, struct module *);
 104 static int do_dependents(struct modctl *, char *, size_t);
 105 static int do_symbols(struct module *, Elf64_Addr);
 106 static void module_assign(struct modctl *, struct module *);
 107 static void free_module_data(struct module *);
 108 static char *depends_on(struct module *);
 109 static char *getmodpath(const char *);
 110 static char *basename(char *);
 111 static void attr_val(val_t *);
 112 static char *find_libmacro(char *);
 113 static char *expand_libmacro(char *, char *, char *);
 114 static int read_bootflags(void);
 115 static int kobj_comp_setup(struct _buf *, struct compinfo *);
 116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
 117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
 118 static int kobj_boot_open(char *, int);
 119 static int kobj_boot_close(int);
 120 static int kobj_boot_seek(int, off_t, off_t);
 121 static int kobj_boot_read(int, caddr_t, size_t);
 122 static int kobj_boot_fstat(int, struct bootstat *);
 123 static int kobj_boot_compinfo(int, struct compinfo *);
 124 
 125 static Sym *lookup_one(struct module *, const char *);
 126 static void sym_insert(struct module *, char *, symid_t);
 127 static Sym *sym_lookup(struct module *, Sym *);
 128 
 129 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
 130 static void kobjopen_free(struct kobjopen_tctl *ltp);
 131 static void kobjopen_thread(struct kobjopen_tctl *ltp);
 132 static int kobj_is_compressed(intptr_t);
 133 
 134 extern int kcopy(const void *, void *, size_t);
 135 extern int elf_mach_ok(Ehdr *);
 136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
 137 
 138 #if !defined(_OBP)
 139 extern int kobj_boot_mountroot(void);
 140 #endif
 141 
 142 static void tnf_unsplice_probes(uint_t, struct modctl *);
 143 extern tnf_probe_control_t *__tnf_probe_list_head;
 144 extern tnf_tag_data_t *__tnf_tag_list_head;
 145 
 146 extern int modrootloaded;
 147 extern int swaploaded;
 148 extern int bop_io_quiesced;
 149 extern int last_module_id;
 150 
 151 extern char stubs_base[];
 152 extern char stubs_end[];
 153 
 154 #ifdef KOBJ_DEBUG
 155 /*
 156  * Values that can be or'd in to kobj_debug and their effects:
 157  *
 158  *      D_DEBUG         - misc. debugging information.
 159  *      D_SYMBOLS       - list symbols and their values as they are entered
 160  *                        into the hash table
 161  *      D_RELOCATIONS   - display relocation processing information
 162  *      D_LOADING       - display information about each module as it
 163  *                        is loaded.
 164  */
 165 int kobj_debug = 0;
 166 
 167 #define KOBJ_MARK(s)    if (kobj_debug & D_DEBUG)   \
 168         (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
 169 #else
 170 #define KOBJ_MARK(s)    /* discard */
 171 #endif
 172 
 173 #define MODPATH_PROPNAME        "module-path"
 174 
 175 #ifdef MODDIR_SUFFIX
 176 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
 177 #else
 178 #define slash_moddir_suffix_slash       ""
 179 #endif
 180 
 181 #define _moddebug       get_weakish_int(&moddebug)
 182 #define _modrootloaded  get_weakish_int(&modrootloaded)
 183 #define _swaploaded     get_weakish_int(&swaploaded)
 184 #define _ioquiesced     get_weakish_int(&bop_io_quiesced)
 185 
 186 #define mod(X)          (struct module *)((X)->modl_modp->mod_mp)
 187 
 188 void    *romp;          /* rom vector (opaque to us) */
 189 struct bootops *ops;    /* bootops vector */
 190 void *dbvec;            /* debug vector */
 191 
 192 /*
 193  * kobjopen thread control structure
 194  */
 195 struct kobjopen_tctl {
 196         ksema_t         sema;
 197         char            *name;          /* name of file */
 198         struct vnode    *vp;            /* vnode return from vn_open() */
 199         int             Errno;          /* error return from vnopen    */
 200 };
 201 
 202 /*
 203  * Structure for defining dynamically expandable library macros
 204  */
 205 
 206 struct lib_macro_info {
 207         char    *lmi_list;              /* ptr to list of possible choices */
 208         char    *lmi_macroname;         /* pointer to macro name */
 209         ushort_t lmi_ba_index;          /* index into bootaux vector */
 210         ushort_t lmi_macrolen;          /* macro length */
 211 } libmacros[] = {
 212         { NULL, "CPU", BA_CPU, 0 },
 213         { NULL, "MMU", BA_MMU, 0 }
 214 };
 215 
 216 #define NLIBMACROS      sizeof (libmacros) / sizeof (struct lib_macro_info)
 217 
 218 char *boot_cpu_compatible_list;                 /* make $CPU available */
 219 
 220 char *kobj_module_path;                         /* module search path */
 221 vmem_t  *text_arena;                            /* module text arena */
 222 static vmem_t *data_arena;                      /* module data & bss arena */
 223 static vmem_t *ctf_arena;                       /* CTF debug data arena */
 224 static struct modctl *kobj_modules = NULL;      /* modules loaded */
 225 int kobj_mmu_pagesize;                          /* system pagesize */
 226 static int lg_pagesize;                         /* "large" pagesize */
 227 static int kobj_last_module_id = 0;             /* id assignment */
 228 static kmutex_t kobj_lock;                      /* protects mach memory list */
 229 
 230 /*
 231  * The following functions have been implemented by the kernel.
 232  * However, many 3rd party drivers provide their own implementations
 233  * of these functions.  When such drivers are loaded, messages
 234  * indicating that these symbols have been multiply defined will be
 235  * emitted to the console.  To avoid alarming customers for no good
 236  * reason, we simply suppress such warnings for the following set of
 237  * functions.
 238  */
 239 static char *suppress_sym_list[] =
 240 {
 241         "strstr",
 242         "strncat",
 243         "strlcat",
 244         "strlcpy",
 245         "strspn",
 246         "memcpy",
 247         "memset",
 248         "memmove",
 249         "memcmp",
 250         "memchr",
 251         "__udivdi3",
 252         "__divdi3",
 253         "__umoddi3",
 254         "__moddi3",
 255         NULL            /* This entry must exist */
 256 };
 257 
 258 /* indexed by KOBJ_NOTIFY_* */
 259 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
 260 
 261 /*
 262  * TNF probe management globals
 263  */
 264 tnf_probe_control_t     *__tnf_probe_list_head = NULL;
 265 tnf_tag_data_t          *__tnf_tag_list_head = NULL;
 266 int                     tnf_changed_probe_list = 0;
 267 
 268 /*
 269  * Prefix for statically defined tracing (SDT) DTrace probes.
 270  */
 271 const char              *sdt_prefix = "__dtrace_probe_";
 272 
 273 /*
 274  * Beginning and end of the kernel's dynamic text/data segments.
 275  */
 276 static caddr_t _text;
 277 static caddr_t _etext;
 278 static caddr_t _data;
 279 
 280 /*
 281  * The sparc linker doesn't create a memory location
 282  * for a variable named _edata, so _edata can only be
 283  * referred to, not modified.  krtld needs a static
 284  * variable to modify it - within krtld, of course -
 285  * outside of krtld, e_data is used in all kernels.
 286  */
 287 #if defined(__sparc)
 288 static caddr_t _edata;
 289 #else
 290 extern caddr_t _edata;
 291 #endif
 292 
 293 Addr dynseg = 0;        /* load address of "dynamic" segment */
 294 size_t dynsize;         /* "dynamic" segment size */
 295 
 296 
 297 int standalone = 1;                     /* an unwholey kernel? */
 298 int use_iflush;                         /* iflush after relocations */
 299 
 300 /*
 301  * _kobj_printf() and _vkobj_printf()
 302  *
 303  * Common printf function pointer. Can handle only one conversion
 304  * specification in the format string. Some of the functions invoked
 305  * through this function pointer cannot handle more that one conversion
 306  * specification in the format string.
 307  */
 308 void (*_kobj_printf)(void *, const char *, ...);        /* printf routine */
 309 void (*_vkobj_printf)(void *, const char *, va_list);   /* vprintf routine */
 310 
 311 /*
 312  * Standalone function pointers for use within krtld.
 313  * Many platforms implement optimized platmod versions of
 314  * utilities such as bcopy and any such are not yet available
 315  * until the kernel is more completely stitched together.
 316  * See kobj_impl.h
 317  */
 318 void (*kobj_bcopy)(const void *, void *, size_t);
 319 void (*kobj_bzero)(void *, size_t);
 320 size_t (*kobj_strlcat)(char *, const char *, size_t);
 321 
 322 static kobj_stat_t kobj_stat;
 323 
 324 #define MINALIGN        8       /* at least a double-word */
 325 
 326 int
 327 get_weakish_int(int *ip)
 328 {
 329         if (standalone)
 330                 return (0);
 331         return (ip == NULL ? 0 : *ip);
 332 }
 333 
 334 static void *
 335 get_weakish_pointer(void **ptrp)
 336 {
 337         if (standalone)
 338                 return (0);
 339         return (ptrp == NULL ? 0 : *ptrp);
 340 }
 341 
 342 /*
 343  * XXX fix dependencies on "kernel"; this should work
 344  * for other standalone binaries as well.
 345  *
 346  * XXX Fix hashing code to use one pointer to
 347  * hash entries.
 348  *      |----------|
 349  *      | nbuckets |
 350  *      |----------|
 351  *      | nchains  |
 352  *      |----------|
 353  *      | bucket[] |
 354  *      |----------|
 355  *      | chain[]  |
 356  *      |----------|
 357  */
 358 
 359 /*
 360  * Load, bind and relocate all modules that
 361  * form the primary kernel. At this point, our
 362  * externals have not been relocated.
 363  */
 364 void
 365 kobj_init(
 366         void *romvec,
 367         void *dvec,
 368         struct bootops *bootvec,
 369         val_t *bootaux)
 370 {
 371         struct module *mp;
 372         struct modctl *modp;
 373         Addr entry;
 374         char filename[MAXPATHLEN];
 375 
 376         /*
 377          * Save these to pass on to
 378          * the booted standalone.
 379          */
 380         romp = romvec;
 381         dbvec = dvec;
 382 
 383         ops = bootvec;
 384         kobj_setup_standalone_vectors();
 385 
 386         KOBJ_MARK("Entered kobj_init()");
 387 
 388         (void) BOP_GETPROP(ops, "whoami", filename);
 389 
 390         /*
 391          * We don't support standalone debuggers anymore.  The use of kadb
 392          * will interfere with the later use of kmdb.  Let the user mend
 393          * their ways now.  Users will reach this message if they still
 394          * have the kadb binary on their system (perhaps they used an old
 395          * bfu, or maybe they intentionally copied it there) and have
 396          * specified its use in a way that eluded our checking in the boot
 397          * program.
 398          */
 399         if (dvec != NULL) {
 400                 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
 401                     "kadb are no longer supported\n\n");
 402                 goto fail;
 403         }
 404 
 405 #if defined(_OBP)
 406         /*
 407          * OBP allows us to read both the ramdisk and
 408          * the underlying root fs when root is a disk.
 409          * This can lower incidences of unbootable systems
 410          * when the archive is out-of-date with the /etc
 411          * state files.
 412          */
 413         if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
 414                 _kobj_printf(ops, "can't mount boot fs\n");
 415                 goto fail;
 416         }
 417 #else
 418         {
 419                 /* on x86, we always boot with a ramdisk */
 420                 (void) kobj_boot_mountroot();
 421 
 422                 /*
 423                  * Now that the ramdisk is mounted, finish boot property
 424                  * initialization.
 425                  */
 426                 boot_prop_finish();
 427         }
 428 
 429 #if !defined(_UNIX_KRTLD)
 430         /*
 431          * 'unix' is linked together with 'krtld' into one executable and
 432          * the early boot code does -not- hand us any of the dynamic metadata
 433          * about the executable. In particular, it does not read in, map or
 434          * otherwise look at the program headers. We fake all that up now.
 435          *
 436          * We do this early as DTrace static probes and tnf probes both call
 437          * undefined references.  We have to process those relocations before
 438          * calling any of them.
 439          *
 440          * OBP tells kobj_start() where the ELF image is in memory, so it
 441          * synthesized bootaux before kobj_init() was called
 442          */
 443         if (bootaux[BA_PHDR].ba_ptr == NULL)
 444                 synthetic_bootaux(filename, bootaux);
 445 
 446 #endif  /* !_UNIX_KRTLD */
 447 #endif  /* _OBP */
 448 
 449         /*
 450          * Save the interesting attribute-values
 451          * (scanned by kobj_boot).
 452          */
 453         attr_val(bootaux);
 454 
 455         /*
 456          * Set the module search path.
 457          */
 458         kobj_module_path = getmodpath(filename);
 459 
 460         boot_cpu_compatible_list = find_libmacro("CPU");
 461 
 462         /*
 463          * These two modules have actually been
 464          * loaded by boot, but we finish the job
 465          * by introducing them into the world of
 466          * loadable modules.
 467          */
 468 
 469         mp = load_exec(bootaux, filename);
 470         load_linker(bootaux);
 471 
 472         /*
 473          * Load all the primary dependent modules.
 474          */
 475         if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
 476                 goto fail;
 477 
 478         /*
 479          * Glue it together.
 480          */
 481         if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
 482                 goto fail;
 483 
 484         entry = bootaux[BA_ENTRY].ba_val;
 485 
 486         /*
 487          * Get the boot flags
 488          */
 489         bootflags(ops);
 490 
 491         if (boothowto & RB_VERBOSE)
 492                 kobj_lm_dump(KOBJ_LM_PRIMARY);
 493 
 494         kobj_kdi_init();
 495 
 496         if (boothowto & RB_KMDB) {
 497                 if (load_kmdb(bootaux) < 0)
 498                         goto fail;
 499         }
 500 
 501         /*
 502          * Post setup.
 503          */
 504         s_text = _text;
 505         e_text = _etext;
 506         s_data = _data;
 507         e_data = _edata;
 508 
 509         kobj_sync_instruction_memory(s_text, e_text - s_text);
 510 
 511 #ifdef  KOBJ_DEBUG
 512         if (kobj_debug & D_DEBUG)
 513                 _kobj_printf(ops,
 514                     "krtld: transferring control to: 0x%p\n", entry);
 515 #endif
 516 
 517         /*
 518          * Make sure the mod system knows about the modules already loaded.
 519          */
 520         last_module_id = kobj_last_module_id;
 521         bcopy(kobj_modules, &modules, sizeof (modules));
 522         modp = &modules;
 523         do {
 524                 if (modp->mod_next == kobj_modules)
 525                         modp->mod_next = &modules;
 526                 if (modp->mod_prev == kobj_modules)
 527                         modp->mod_prev = &modules;
 528         } while ((modp = modp->mod_next) != &modules);
 529 
 530         standalone = 0;
 531 
 532 #ifdef  KOBJ_DEBUG
 533         if (kobj_debug & D_DEBUG)
 534                 _kobj_printf(ops,
 535                     "krtld: really transferring control to: 0x%p\n", entry);
 536 #endif
 537 
 538         /* restore printf/bcopy/bzero vectors before returning */
 539         kobj_restore_vectors();
 540 
 541 #if defined(_DBOOT)
 542         /*
 543          * krtld was called from a dboot ELF section, the embedded
 544          * dboot code contains the real entry via bootaux
 545          */
 546         exitto((caddr_t)entry);
 547 #else
 548         /*
 549          * krtld was directly called from startup
 550          */
 551         return;
 552 #endif
 553 
 554 fail:
 555 
 556         _kobj_printf(ops, "krtld: error during initial load/link phase\n");
 557 
 558 #if !defined(_UNIX_KRTLD)
 559         _kobj_printf(ops, "\n");
 560         _kobj_printf(ops, "krtld could neither locate nor resolve symbols"
 561             " for:\n");
 562         _kobj_printf(ops, "    %s\n", filename);
 563         _kobj_printf(ops, "in the boot archive. Please verify that this"
 564             " file\n");
 565         _kobj_printf(ops, "matches what is found in the boot archive.\n");
 566         _kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
 567             " fix this.\n");
 568         bop_panic("Unable to boot");
 569 #endif
 570 }
 571 
 572 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
 573 /*
 574  * Synthesize additional metadata that describes the executable if
 575  * krtld's caller didn't do it.
 576  *
 577  * (When the dynamic executable has an interpreter, the boot program
 578  * does all this for us.  Where we don't have an interpreter, (or a
 579  * even a boot program, perhaps) we have to do this for ourselves.)
 580  */
 581 static void
 582 synthetic_bootaux(char *filename, val_t *bootaux)
 583 {
 584         Ehdr ehdr;
 585         caddr_t phdrbase;
 586         struct _buf *file;
 587         int i, n;
 588 
 589         /*
 590          * Elf header
 591          */
 592         KOBJ_MARK("synthetic_bootaux()");
 593         KOBJ_MARK(filename);
 594         file = kobj_open_file(filename);
 595         if (file == (struct _buf *)-1) {
 596                 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
 597                 return;
 598         }
 599         KOBJ_MARK("reading program headers");
 600         if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
 601                 _kobj_printf(ops, "krtld: %s: failed to read ehder\n",
 602                     filename);
 603                 return;
 604         }
 605 
 606         /*
 607          * Program headers
 608          */
 609         bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
 610         bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
 611         n = ehdr.e_phentsize * ehdr.e_phnum;
 612 
 613         phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
 614 
 615         if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
 616                 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
 617                     filename);
 618                 return;
 619         }
 620         bootaux[BA_PHDR].ba_ptr = phdrbase;
 621         kobj_close_file(file);
 622         KOBJ_MARK("closed file");
 623 
 624         /*
 625          * Find the dynamic section address
 626          */
 627         for (i = 0; i < ehdr.e_phnum; i++) {
 628                 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
 629 
 630                 if (phdr->p_type == PT_DYNAMIC) {
 631                         bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
 632                         break;
 633                 }
 634         }
 635         KOBJ_MARK("synthetic_bootaux() done");
 636 }
 637 #endif  /* !_UNIX_KRTLD && !_OBP */
 638 
 639 /*
 640  * Set up any global information derived
 641  * from attribute/values in the boot or
 642  * aux vector.
 643  */
 644 static void
 645 attr_val(val_t *bootaux)
 646 {
 647         Phdr *phdr;
 648         int phnum, phsize;
 649         int i;
 650 
 651         KOBJ_MARK("attr_val()");
 652         kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
 653         lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
 654         use_iflush = bootaux[BA_IFLUSH].ba_val;
 655 
 656         phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
 657         phnum = bootaux[BA_PHNUM].ba_val;
 658         phsize = bootaux[BA_PHENT].ba_val;
 659         for (i = 0; i < phnum; i++) {
 660                 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
 661 
 662                 if (phdr->p_type != PT_LOAD) {
 663                         continue;
 664                 }
 665                 /*
 666                  * Bounds of the various segments.
 667                  */
 668                 if (!(phdr->p_flags & PF_X)) {
 669 #if defined(_RELSEG)
 670                         /*
 671                          * sparc kernel puts the dynamic info
 672                          * into a separate segment, which is
 673                          * free'd in bop_fini()
 674                          */
 675                         ASSERT(phdr->p_vaddr != 0);
 676                         dynseg = phdr->p_vaddr;
 677                         dynsize = phdr->p_memsz;
 678 #else
 679                         ASSERT(phdr->p_vaddr == 0);
 680 #endif
 681                 } else {
 682                         if (phdr->p_flags & PF_W) {
 683                                 _data = (caddr_t)phdr->p_vaddr;
 684                                 _edata = _data + phdr->p_memsz;
 685                         } else {
 686                                 _text = (caddr_t)phdr->p_vaddr;
 687                                 _etext = _text + phdr->p_memsz;
 688                         }
 689                 }
 690         }
 691 
 692         /* To do the kobj_alloc, _edata needs to be set. */
 693         for (i = 0; i < NLIBMACROS; i++) {
 694                 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
 695                         libmacros[i].lmi_list = kobj_alloc(
 696                             strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
 697                             1, KM_WAIT);
 698                         (void) strcpy(libmacros[i].lmi_list,
 699                             bootaux[libmacros[i].lmi_ba_index].ba_ptr);
 700                 }
 701                 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
 702         }
 703 }
 704 
 705 /*
 706  * Set up the booted executable.
 707  */
 708 static struct module *
 709 load_exec(val_t *bootaux, char *filename)
 710 {
 711         struct modctl *cp;
 712         struct module *mp;
 713         Dyn *dyn;
 714         Sym *sp;
 715         int i, lsize, osize, nsize, allocsize;
 716         char *libname, *tmp;
 717         char path[MAXPATHLEN];
 718 
 719 #ifdef KOBJ_DEBUG
 720         if (kobj_debug & D_DEBUG)
 721                 _kobj_printf(ops, "module path '%s'\n", kobj_module_path);
 722 #endif
 723 
 724         KOBJ_MARK("add_primary");
 725         cp = add_primary(filename, KOBJ_LM_PRIMARY);
 726 
 727         KOBJ_MARK("struct module");
 728         mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
 729         cp->mod_mp = mp;
 730 
 731         /*
 732          * We don't have the following information
 733          * since this module is an executable and not
 734          * a relocatable .o.
 735          */
 736         mp->symtbl_section = 0;
 737         mp->shdrs = NULL;
 738         mp->strhdr = NULL;
 739 
 740         /*
 741          * Since this module is the only exception,
 742          * we cons up some section headers.
 743          */
 744         KOBJ_MARK("symhdr");
 745         mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
 746 
 747         KOBJ_MARK("strhdr");
 748         mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
 749 
 750         mp->symhdr->sh_type = SHT_SYMTAB;
 751         mp->strhdr->sh_type = SHT_STRTAB;
 752         /*
 753          * Scan the dynamic structure.
 754          */
 755         for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
 756             dyn->d_tag != DT_NULL; dyn++) {
 757                 switch (dyn->d_tag) {
 758                 case DT_SYMTAB:
 759                         mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
 760                         mp->symhdr->sh_addr = dyn->d_un.d_ptr;
 761                         break;
 762                 case DT_HASH:
 763                         mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
 764                         mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
 765                         break;
 766                 case DT_STRTAB:
 767                         mp->strings = (char *)dyn->d_un.d_ptr;
 768                         mp->strhdr->sh_addr = dyn->d_un.d_ptr;
 769                         break;
 770                 case DT_STRSZ:
 771                         mp->strhdr->sh_size = dyn->d_un.d_val;
 772                         break;
 773                 case DT_SYMENT:
 774                         mp->symhdr->sh_entsize = dyn->d_un.d_val;
 775                         break;
 776                 }
 777         }
 778 
 779         /*
 780          * Collapse any DT_NEEDED entries into one string.
 781          */
 782         nsize = osize = 0;
 783         allocsize = MAXPATHLEN;
 784 
 785         KOBJ_MARK("depends_on");
 786         mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
 787 
 788         for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
 789             dyn->d_tag != DT_NULL; dyn++)
 790                 if (dyn->d_tag == DT_NEEDED) {
 791                         char *_lib;
 792 
 793                         libname = mp->strings + dyn->d_un.d_val;
 794                         if (strchr(libname, '$') != NULL) {
 795                                 if ((_lib = expand_libmacro(libname,
 796                                     path, path)) != NULL)
 797                                         libname = _lib;
 798                                 else
 799                                         _kobj_printf(ops, "krtld: "
 800                                             "load_exec: fail to "
 801                                             "expand %s\n", libname);
 802                         }
 803                         lsize = strlen(libname);
 804                         nsize += lsize;
 805                         if (nsize + 1 > allocsize) {
 806                                 KOBJ_MARK("grow depends_on");
 807                                 tmp = kobj_alloc(allocsize + MAXPATHLEN,
 808                                     KM_WAIT);
 809                                 bcopy(mp->depends_on, tmp, osize);
 810                                 kobj_free(mp->depends_on, allocsize);
 811                                 mp->depends_on = tmp;
 812                                 allocsize += MAXPATHLEN;
 813                         }
 814                         bcopy(libname, mp->depends_on + osize, lsize);
 815                         *(mp->depends_on + nsize) = ' '; /* separate */
 816                         nsize++;
 817                         osize = nsize;
 818                 }
 819         if (nsize) {
 820                 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
 821                 /*
 822                  * alloc with exact size and copy whatever it got over
 823                  */
 824                 KOBJ_MARK("realloc depends_on");
 825                 tmp = kobj_alloc(nsize, KM_WAIT);
 826                 bcopy(mp->depends_on, tmp, nsize);
 827                 kobj_free(mp->depends_on, allocsize);
 828                 mp->depends_on = tmp;
 829         } else {
 830                 kobj_free(mp->depends_on, allocsize);
 831                 mp->depends_on = NULL;
 832         }
 833 
 834         mp->flags = KOBJ_EXEC|KOBJ_PRIM;     /* NOT a relocatable .o */
 835         mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
 836         /*
 837          * We allocate our own table since we don't
 838          * hash undefined references.
 839          */
 840         KOBJ_MARK("chains");
 841         mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
 842         KOBJ_MARK("buckets");
 843         mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
 844 
 845         mp->text = _text;
 846         mp->data = _data;
 847 
 848         mp->text_size = _etext - _text;
 849         mp->data_size = _edata - _data;
 850 
 851         cp->mod_text = mp->text;
 852         cp->mod_text_size = mp->text_size;
 853 
 854         mp->filename = cp->mod_filename;
 855 
 856 #ifdef  KOBJ_DEBUG
 857         if (kobj_debug & D_LOADING) {
 858                 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
 859                 _kobj_printf(ops, "\ttext: 0x%p", mp->text);
 860                 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
 861                 _kobj_printf(ops, "\tdata: 0x%p", mp->data);
 862                 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
 863         }
 864 #endif /* KOBJ_DEBUG */
 865 
 866         /*
 867          * Insert symbols into the hash table.
 868          */
 869         for (i = 0; i < mp->nsyms; i++) {
 870                 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
 871 
 872                 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
 873                         continue;
 874 #if defined(__sparc)
 875                 /*
 876                  * Register symbols are ignored in the kernel
 877                  */
 878                 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
 879                         continue;
 880 #endif  /* __sparc */
 881 
 882                 sym_insert(mp, mp->strings + sp->st_name, i);
 883         }
 884 
 885         KOBJ_MARK("load_exec done");
 886         return (mp);
 887 }
 888 
 889 /*
 890  * Set up the linker module (if it's compiled in, LDNAME is NULL)
 891  */
 892 static void
 893 load_linker(val_t *bootaux)
 894 {
 895         struct module *kmp = (struct module *)kobj_modules->mod_mp;
 896         struct module *mp;
 897         struct modctl *cp;
 898         int i;
 899         Shdr *shp;
 900         Sym *sp;
 901         int shsize;
 902         char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
 903 
 904         /*
 905          * On some architectures, krtld is compiled into the kernel.
 906          */
 907         if (dlname == NULL)
 908                 return;
 909 
 910         cp = add_primary(dlname, KOBJ_LM_PRIMARY);
 911 
 912         mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
 913 
 914         cp->mod_mp = mp;
 915         mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
 916         shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
 917         mp->shdrs = kobj_alloc(shsize, KM_WAIT);
 918         bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
 919 
 920         for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
 921                 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
 922 
 923                 if (shp->sh_flags & SHF_ALLOC) {
 924                         if (shp->sh_flags & SHF_WRITE) {
 925                                 if (mp->data == NULL)
 926                                         mp->data = (char *)shp->sh_addr;
 927                         } else if (mp->text == NULL) {
 928                                 mp->text = (char *)shp->sh_addr;
 929                         }
 930                 }
 931                 if (shp->sh_type == SHT_SYMTAB) {
 932                         mp->symtbl_section = i;
 933                         mp->symhdr = shp;
 934                         mp->symspace = mp->symtbl = (char *)shp->sh_addr;
 935                 }
 936         }
 937         mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
 938         mp->flags = KOBJ_INTERP|KOBJ_PRIM;
 939         mp->strhdr = (Shdr *)
 940             (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
 941         mp->strings = (char *)mp->strhdr->sh_addr;
 942         mp->hashsize = kobj_gethashsize(mp->nsyms);
 943 
 944         mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
 945             (mp->hashsize + mp->nsyms) * sizeof (symid_t);
 946 
 947         mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
 948         mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
 949 
 950         mp->bss = bootaux[BA_BSS].ba_val;
 951         mp->bss_align = 0;   /* pre-aligned during allocation */
 952         mp->bss_size = (uintptr_t)_edata - mp->bss;
 953         mp->text_size = _etext - mp->text;
 954         mp->data_size = _edata - mp->data;
 955         mp->filename = cp->mod_filename;
 956         cp->mod_text = mp->text;
 957         cp->mod_text_size = mp->text_size;
 958 
 959         /*
 960          * Now that we've figured out where the linker is,
 961          * set the limits for the booted object.
 962          */
 963         kmp->text_size = (size_t)(mp->text - kmp->text);
 964         kmp->data_size = (size_t)(mp->data - kmp->data);
 965         kobj_modules->mod_text_size = kmp->text_size;
 966 
 967 #ifdef  KOBJ_DEBUG
 968         if (kobj_debug & D_LOADING) {
 969                 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
 970                 _kobj_printf(ops, "\ttext:0x%p", mp->text);
 971                 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
 972                 _kobj_printf(ops, "\tdata:0x%p", mp->data);
 973                 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
 974         }
 975 #endif /* KOBJ_DEBUG */
 976 
 977         /*
 978          * Insert the symbols into the hash table.
 979          */
 980         for (i = 0; i < mp->nsyms; i++) {
 981                 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
 982 
 983                 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
 984                         continue;
 985                 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
 986                         if (sp->st_shndx == SHN_COMMON)
 987                                 sp->st_shndx = SHN_ABS;
 988                 }
 989                 sym_insert(mp, mp->strings + sp->st_name, i);
 990         }
 991 
 992 }
 993 
 994 static kobj_notify_list_t **
 995 kobj_notify_lookup(uint_t type)
 996 {
 997         ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
 998             sizeof (kobj_notify_list_t *));
 999 
1000         return (&kobj_notifiers[type]);
1001 }
1002 
1003 int
1004 kobj_notify_add(kobj_notify_list_t *knp)
1005 {
1006         kobj_notify_list_t **knl;
1007 
1008         knl = kobj_notify_lookup(knp->kn_type);
1009 
1010         knp->kn_next = NULL;
1011         knp->kn_prev = NULL;
1012 
1013         mutex_enter(&kobj_lock);
1014 
1015         if (*knl != NULL) {
1016                 (*knl)->kn_prev = knp;
1017                 knp->kn_next = *knl;
1018         }
1019         (*knl) = knp;
1020 
1021         mutex_exit(&kobj_lock);
1022         return (0);
1023 }
1024 
1025 int
1026 kobj_notify_remove(kobj_notify_list_t *knp)
1027 {
1028         kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1029         kobj_notify_list_t *tknp;
1030 
1031         mutex_enter(&kobj_lock);
1032 
1033         /* LINTED */
1034         if (tknp = knp->kn_next)
1035                 tknp->kn_prev = knp->kn_prev;
1036 
1037         /* LINTED */
1038         if (tknp = knp->kn_prev)
1039                 tknp->kn_next = knp->kn_next;
1040         else
1041                 *knl = knp->kn_next;
1042 
1043         mutex_exit(&kobj_lock);
1044 
1045         return (0);
1046 }
1047 
1048 /*
1049  * Notify all interested callbacks of a specified change in module state.
1050  */
1051 static void
1052 kobj_notify(int type, struct modctl *modp)
1053 {
1054         kobj_notify_list_t *knp;
1055 
1056         if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1057                 return;
1058 
1059         mutex_enter(&kobj_lock);
1060 
1061         for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1062                 knp->kn_func(type, modp);
1063 
1064         /*
1065          * KDI notification must be last (it has to allow for work done by the
1066          * other notification callbacks), so we call it manually.
1067          */
1068         kobj_kdi_mod_notify(type, modp);
1069 
1070         mutex_exit(&kobj_lock);
1071 }
1072 
1073 /*
1074  * Create the module path.
1075  */
1076 static char *
1077 getmodpath(const char *filename)
1078 {
1079         char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1080 
1081         /*
1082          * Platform code gets first crack, then add
1083          * the default components
1084          */
1085         mach_modpath(path, filename);
1086         if (*path != '\0')
1087                 (void) strcat(path, " ");
1088         return (strcat(path, MOD_DEFPATH));
1089 }
1090 
1091 static struct modctl *
1092 add_primary(const char *filename, int lmid)
1093 {
1094         struct modctl *cp;
1095 
1096         cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1097 
1098         cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1099 
1100         /*
1101          * For symbol lookup, we assemble our own
1102          * modctl list of the primary modules.
1103          */
1104 
1105         (void) strcpy(cp->mod_filename, filename);
1106         cp->mod_modname = basename(cp->mod_filename);
1107 
1108         /* set values for modinfo assuming that the load will work */
1109         cp->mod_prim = 1;
1110         cp->mod_loaded = 1;
1111         cp->mod_installed = 1;
1112         cp->mod_loadcnt = 1;
1113         cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1114 
1115         cp->mod_id = kobj_last_module_id++;
1116 
1117         /*
1118          * Link the module in. We'll pass this info on
1119          * to the mod squad later.
1120          */
1121         if (kobj_modules == NULL) {
1122                 kobj_modules = cp;
1123                 cp->mod_prev = cp->mod_next = cp;
1124         } else {
1125                 cp->mod_prev = kobj_modules->mod_prev;
1126                 cp->mod_next = kobj_modules;
1127                 kobj_modules->mod_prev->mod_next = cp;
1128                 kobj_modules->mod_prev = cp;
1129         }
1130 
1131         kobj_lm_append(lmid, cp);
1132 
1133         return (cp);
1134 }
1135 
1136 static int
1137 bind_primary(val_t *bootaux, int lmid)
1138 {
1139         struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1140         struct modctl_list *lp;
1141         struct module *mp;
1142 
1143         /*
1144          * Do common symbols.
1145          */
1146         for (lp = linkmap; lp; lp = lp->modl_next) {
1147                 mp = mod(lp);
1148 
1149                 /*
1150                  * Don't do common section relocations for modules that
1151                  * don't need it.
1152                  */
1153                 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1154                         continue;
1155 
1156                 if (do_common(mp) < 0)
1157                         return (-1);
1158         }
1159 
1160         /*
1161          * Resolve symbols.
1162          */
1163         for (lp = linkmap; lp; lp = lp->modl_next) {
1164                 mp = mod(lp);
1165 
1166                 if (do_symbols(mp, 0) < 0)
1167                         return (-1);
1168         }
1169 
1170         /*
1171          * Do relocations.
1172          */
1173         for (lp = linkmap; lp; lp = lp->modl_next) {
1174                 mp = mod(lp);
1175 
1176                 if (mp->flags & KOBJ_EXEC) {
1177                         Dyn *dyn;
1178                         Word relasz = 0, relaent = 0;
1179                         Word shtype;
1180                         char *rela = NULL;
1181 
1182                         for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1183                             dyn->d_tag != DT_NULL; dyn++) {
1184                                 switch (dyn->d_tag) {
1185                                 case DT_RELASZ:
1186                                 case DT_RELSZ:
1187                                         relasz = dyn->d_un.d_val;
1188                                         break;
1189                                 case DT_RELAENT:
1190                                 case DT_RELENT:
1191                                         relaent = dyn->d_un.d_val;
1192                                         break;
1193                                 case DT_RELA:
1194                                         shtype = SHT_RELA;
1195                                         rela = (char *)dyn->d_un.d_ptr;
1196                                         break;
1197                                 case DT_REL:
1198                                         shtype = SHT_REL;
1199                                         rela = (char *)dyn->d_un.d_ptr;
1200                                         break;
1201                                 }
1202                         }
1203                         if (relasz == 0 ||
1204                             relaent == 0 || rela == NULL) {
1205                                 _kobj_printf(ops, "krtld: bind_primary(): "
1206                                     "no relocation information found for "
1207                                     "module %s\n", mp->filename);
1208                                 return (-1);
1209                         }
1210 #ifdef  KOBJ_DEBUG
1211                         if (kobj_debug & D_RELOCATIONS)
1212                                 _kobj_printf(ops, "krtld: relocating: file=%s "
1213                                     "KOBJ_EXEC\n", mp->filename);
1214 #endif
1215                         if (do_relocate(mp, rela, shtype, relasz/relaent,
1216                             relaent, (Addr)mp->text) < 0)
1217                                 return (-1);
1218                 } else {
1219                         if (do_relocations(mp) < 0)
1220                                 return (-1);
1221                 }
1222 
1223                 kobj_sync_instruction_memory(mp->text, mp->text_size);
1224         }
1225 
1226         for (lp = linkmap; lp; lp = lp->modl_next) {
1227                 mp = mod(lp);
1228 
1229                 /*
1230                  * We need to re-read the full symbol table for the boot file,
1231                  * since we couldn't use the full one before.  We also need to
1232                  * load the CTF sections of both the boot file and the
1233                  * interpreter (us).
1234                  */
1235                 if (mp->flags & KOBJ_EXEC) {
1236                         struct _buf *file;
1237                         int n;
1238 
1239                         file = kobj_open_file(mp->filename);
1240                         if (file == (struct _buf *)-1)
1241                                 return (-1);
1242                         if (kobj_read_file(file, (char *)&mp->hdr,
1243                             sizeof (mp->hdr), 0) < 0)
1244                                 return (-1);
1245                         n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1246                         mp->shdrs = kobj_alloc(n, KM_WAIT);
1247                         if (kobj_read_file(file, mp->shdrs, n,
1248                             mp->hdr.e_shoff) < 0)
1249                                 return (-1);
1250                         if (get_syms(mp, file) < 0)
1251                                 return (-1);
1252                         if (get_ctf(mp, file) < 0)
1253                                 return (-1);
1254                         kobj_close_file(file);
1255                         mp->flags |= KOBJ_RELOCATED;
1256 
1257                 } else if (mp->flags & KOBJ_INTERP) {
1258                         struct _buf *file;
1259 
1260                         /*
1261                          * The interpreter path fragment in mp->filename
1262                          * will already have the module directory suffix
1263                          * in it (if appropriate).
1264                          */
1265                         file = kobj_open_path(mp->filename, 1, 0);
1266                         if (file == (struct _buf *)-1)
1267                                 return (-1);
1268                         if (get_ctf(mp, file) < 0)
1269                                 return (-1);
1270                         kobj_close_file(file);
1271                         mp->flags |= KOBJ_RELOCATED;
1272                 }
1273         }
1274 
1275         return (0);
1276 }
1277 
1278 static struct modctl *
1279 mod_already_loaded(char *modname)
1280 {
1281         struct modctl *mctl = kobj_modules;
1282 
1283         do {
1284                 if (strcmp(modname, mctl->mod_filename) == 0)
1285                         return (mctl);
1286                 mctl = mctl->mod_next;
1287 
1288         } while (mctl != kobj_modules);
1289 
1290         return (NULL);
1291 }
1292 
1293 /*
1294  * Load all the primary dependent modules.
1295  */
1296 static int
1297 load_primary(struct module *mp, int lmid)
1298 {
1299         struct modctl *cp;
1300         struct module *dmp;
1301         char *p, *q;
1302         char modname[MODMAXNAMELEN];
1303 
1304         if ((p = mp->depends_on) == NULL)
1305                 return (0);
1306 
1307         /* CONSTANTCONDITION */
1308         while (1) {
1309                 /*
1310                  * Skip space.
1311                  */
1312                 while (*p && (*p == ' ' || *p == '\t'))
1313                         p++;
1314                 /*
1315                  * Get module name.
1316                  */
1317                 q = modname;
1318                 while (*p && *p != ' ' && *p != '\t')
1319                         *q++ = *p++;
1320 
1321                 if (q == modname)
1322                         break;
1323 
1324                 *q = '\0';
1325                 /*
1326                  * Check for dup dependencies.
1327                  */
1328                 if (strcmp(modname, "dtracestubs") == 0 ||
1329                     mod_already_loaded(modname) != NULL)
1330                         continue;
1331 
1332                 cp = add_primary(modname, lmid);
1333                 cp->mod_busy = 1;
1334                 /*
1335                  * Load it.
1336                  */
1337                 (void) kobj_load_module(cp, 1);
1338                 cp->mod_busy = 0;
1339 
1340                 if ((dmp = cp->mod_mp) == NULL) {
1341                         cp->mod_loaded = 0;
1342                         cp->mod_installed = 0;
1343                         cp->mod_loadcnt = 0;
1344                         return (-1);
1345                 }
1346 
1347                 add_dependent(mp, dmp);
1348                 dmp->flags |= KOBJ_PRIM;
1349 
1350                 /*
1351                  * Recurse.
1352                  */
1353                 if (load_primary(dmp, lmid) == -1) {
1354                         cp->mod_loaded = 0;
1355                         cp->mod_installed = 0;
1356                         cp->mod_loadcnt = 0;
1357                         return (-1);
1358                 }
1359         }
1360         return (0);
1361 }
1362 
1363 static int
1364 console_is_usb_serial(void)
1365 {
1366         char *console;
1367         int len, ret;
1368 
1369         if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1370                 return (0);
1371 
1372         console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1373         (void) BOP_GETPROP(ops, "console", console);
1374         ret = (strcmp(console, "usb-serial") == 0);
1375         kobj_free(console, len);
1376 
1377         return (ret);
1378 }
1379 
1380 static int
1381 load_kmdb(val_t *bootaux)
1382 {
1383         struct modctl *mctl;
1384         struct module *mp;
1385         Sym *sym;
1386 
1387         if (console_is_usb_serial()) {
1388                 _kobj_printf(ops, "kmdb not loaded "
1389                     "(unsupported on usb serial console)\n");
1390                 return (0);
1391         }
1392 
1393         _kobj_printf(ops, "Loading kmdb...\n");
1394 
1395         if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1396                 return (-1);
1397 
1398         mctl->mod_busy = 1;
1399         (void) kobj_load_module(mctl, 1);
1400         mctl->mod_busy = 0;
1401 
1402         if ((mp = mctl->mod_mp) == NULL)
1403                 return (-1);
1404 
1405         mp->flags |= KOBJ_PRIM;
1406 
1407         if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1408                 return (-1);
1409 
1410         if (boothowto & RB_VERBOSE)
1411                 kobj_lm_dump(KOBJ_LM_DEBUGGER);
1412 
1413         if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1414                 return (-1);
1415 
1416         if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1417                 return (-1);
1418 
1419 #ifdef  KOBJ_DEBUG
1420         if (kobj_debug & D_DEBUG) {
1421                 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1422                     sym->st_value);
1423                 _kobj_printf(ops, "\tops 0x%p\n", ops);
1424                 _kobj_printf(ops, "\tromp 0x%p\n", romp);
1425         }
1426 #endif
1427 
1428         if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1429             (const char **)kobj_kmdb_argv) < 0)
1430                 return (-1);
1431 
1432         return (0);
1433 }
1434 
1435 /*
1436  * Return a string listing module dependencies.
1437  */
1438 static char *
1439 depends_on(struct module *mp)
1440 {
1441         Sym *sp;
1442         char *depstr, *q;
1443 
1444         /*
1445          * The module doesn't have a depends_on value, so let's try it the
1446          * old-fashioned way - via "_depends_on"
1447          */
1448         if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1449                 return (NULL);
1450 
1451         q = (char *)sp->st_value;
1452 
1453 #ifdef KOBJ_DEBUG
1454         /*
1455          * _depends_on is a deprecated interface, so we warn about its use
1456          * irrespective of subsequent processing errors. How else are we going
1457          * to be able to deco this interface completely?
1458          * Changes initially limited to DEBUG because third-party modules
1459          * should be flagged to developers before general use base.
1460          */
1461         _kobj_printf(ops,
1462             "Warning: %s uses deprecated _depends_on interface.\n",
1463             mp->filename);
1464         _kobj_printf(ops, "Please notify module developer or vendor.\n");
1465 #endif
1466 
1467         /*
1468          * Idiot checks. Make sure it's
1469          * in-bounds and NULL terminated.
1470          */
1471         if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1472                 _kobj_printf(ops, "Error processing dependency for %s\n",
1473                     mp->filename);
1474                 return (NULL);
1475         }
1476 
1477         depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1478         (void) strcpy(depstr, q);
1479 
1480         return (depstr);
1481 }
1482 
1483 void
1484 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1485 {
1486         struct module *mp;
1487         mp = (struct module *)xmp;
1488 
1489         modinfo->mi_base = mp->text;
1490         modinfo->mi_size = mp->text_size + mp->data_size;
1491 }
1492 
1493 /*
1494  * kobj_export_ksyms() performs the following services:
1495  *
1496  * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1497  * (2) Removes unneeded symbols to save space.
1498  * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1499  * (4) Makes the symbol table visible to /dev/ksyms.
1500  */
1501 static void
1502 kobj_export_ksyms(struct module *mp)
1503 {
1504         Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1505         Sym *sp, *osp;
1506         char *name;
1507         size_t namelen;
1508         struct module *omp;
1509         uint_t nsyms;
1510         size_t symsize = mp->symhdr->sh_entsize;
1511         size_t locals = 1;
1512         size_t strsize;
1513 
1514         /*
1515          * Make a copy of the original module structure.
1516          */
1517         omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1518         bcopy(mp, omp, sizeof (struct module));
1519 
1520         /*
1521          * Compute the sizes of the new symbol table sections.
1522          */
1523         for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1524                 if (osp->st_value == 0)
1525                         continue;
1526                 if (sym_lookup(omp, osp) == NULL)
1527                         continue;
1528                 name = omp->strings + osp->st_name;
1529                 namelen = strlen(name);
1530                 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1531                         locals++;
1532                 nsyms++;
1533                 strsize += namelen + 1;
1534         }
1535 
1536         mp->nsyms = nsyms;
1537         mp->hashsize = kobj_gethashsize(mp->nsyms);
1538 
1539         /*
1540          * ksyms_lock must be held as writer during any operation that
1541          * modifies ksyms_arena, including allocation from same, and
1542          * must not be dropped until the arena is vmem_walk()able.
1543          */
1544         rw_enter(&ksyms_lock, RW_WRITER);
1545 
1546         /*
1547          * Allocate space for the new section headers (symtab and strtab),
1548          * symbol table, buckets, chains, and strings.
1549          */
1550         mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1551             (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1552 
1553         if (mp->flags & KOBJ_NOKSYMS) {
1554                 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1555         } else {
1556                 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1557                     VM_BESTFIT | VM_SLEEP);
1558         }
1559         bzero(mp->symspace, mp->symsize);
1560 
1561         /*
1562          * Divvy up symspace.
1563          */
1564         mp->shdrs = mp->symspace;
1565         mp->symhdr = (Shdr *)mp->shdrs;
1566         mp->strhdr = (Shdr *)(mp->symhdr + 1);
1567         mp->symtbl = (char *)(mp->strhdr + 1);
1568         mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1569         mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1570         mp->strings = (char *)(mp->chains + nsyms);
1571 
1572         /*
1573          * Fill in the new section headers (symtab and strtab).
1574          */
1575         mp->hdr.e_shnum = 2;
1576         mp->symtbl_section = 0;
1577 
1578         mp->symhdr->sh_type = SHT_SYMTAB;
1579         mp->symhdr->sh_addr = (Addr)mp->symtbl;
1580         mp->symhdr->sh_size = nsyms * symsize;
1581         mp->symhdr->sh_link = 1;
1582         mp->symhdr->sh_info = locals;
1583         mp->symhdr->sh_addralign = sizeof (Addr);
1584         mp->symhdr->sh_entsize = symsize;
1585 
1586         mp->strhdr->sh_type = SHT_STRTAB;
1587         mp->strhdr->sh_addr = (Addr)mp->strings;
1588         mp->strhdr->sh_size = strsize;
1589         mp->strhdr->sh_addralign = 1;
1590 
1591         /*
1592          * Construct the new symbol table.
1593          */
1594         for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1595                 if (osp->st_value == 0)
1596                         continue;
1597                 if (sym_lookup(omp, osp) == NULL)
1598                         continue;
1599                 name = omp->strings + osp->st_name;
1600                 namelen = strlen(name);
1601                 sp = (Sym *)(mp->symtbl + symsize * nsyms);
1602                 bcopy(osp, sp, symsize);
1603                 bcopy(name, mp->strings + strsize, namelen);
1604                 sp->st_name = strsize;
1605                 sym_insert(mp, name, nsyms);
1606                 nsyms++;
1607                 strsize += namelen + 1;
1608         }
1609 
1610         rw_exit(&ksyms_lock);
1611 
1612         /*
1613          * Free the old section headers -- we'll never need them again.
1614          */
1615         if (!(mp->flags & KOBJ_PRIM)) {
1616                 uint_t  shn;
1617                 Shdr    *shp;
1618 
1619                 for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1620                         shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1621                         switch (shp->sh_type) {
1622                         case SHT_RELA:
1623                         case SHT_REL:
1624                                 if (shp->sh_addr != 0) {
1625                                         kobj_free((void *)shp->sh_addr,
1626                                             shp->sh_size);
1627                                 }
1628                                 break;
1629                         }
1630                 }
1631                 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1632         }
1633         /*
1634          * Discard the old symbol table and our copy of the module strucure.
1635          */
1636         if (!(mp->flags & KOBJ_PRIM))
1637                 kobj_free(omp->symspace, omp->symsize);
1638         kobj_free(omp, sizeof (struct module));
1639 }
1640 
1641 static void
1642 kobj_export_ctf(struct module *mp)
1643 {
1644         char *data = mp->ctfdata;
1645         size_t size = mp->ctfsize;
1646 
1647         if (data != NULL) {
1648                 if (_moddebug & MODDEBUG_NOCTF) {
1649                         mp->ctfdata = NULL;
1650                         mp->ctfsize = 0;
1651                 } else {
1652                         mp->ctfdata = vmem_alloc(ctf_arena, size,
1653                             VM_BESTFIT | VM_SLEEP);
1654                         bcopy(data, mp->ctfdata, size);
1655                 }
1656 
1657                 if (!(mp->flags & KOBJ_PRIM))
1658                         kobj_free(data, size);
1659         }
1660 }
1661 
1662 void
1663 kobj_export_module(struct module *mp)
1664 {
1665         kobj_export_ksyms(mp);
1666         kobj_export_ctf(mp);
1667 
1668         mp->flags |= KOBJ_EXPORTED;
1669 }
1670 
1671 static int
1672 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1673 {
1674         char *path = NULL, *depstr = NULL;
1675         int allocsize = 0, osize = 0, nsize = 0;
1676         char *libname, *tmp;
1677         int lsize;
1678         Dyn *dynp;
1679 
1680         for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1681                 switch (dynp->d_tag) {
1682                 case DT_NEEDED:
1683                         /*
1684                          * Read the DT_NEEDED entries, expanding the macros they
1685                          * contain (if any), and concatenating them into a
1686                          * single space-separated dependency list.
1687                          */
1688                         libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1689 
1690                         if (strchr(libname, '$') != NULL) {
1691                                 char *_lib;
1692 
1693                                 if (path == NULL)
1694                                         path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1695                                 if ((_lib = expand_libmacro(libname, path,
1696                                     path)) != NULL)
1697                                         libname = _lib;
1698                                 else {
1699                                         _kobj_printf(ops, "krtld: "
1700                                             "process_dynamic: failed to expand "
1701                                             "%s\n", libname);
1702                                 }
1703                         }
1704 
1705                         lsize = strlen(libname);
1706                         nsize += lsize;
1707                         if (nsize + 1 > allocsize) {
1708                                 tmp = kobj_alloc(allocsize + MAXPATHLEN,
1709                                     KM_WAIT);
1710                                 if (depstr != NULL) {
1711                                         bcopy(depstr, tmp, osize);
1712                                         kobj_free(depstr, allocsize);
1713                                 }
1714                                 depstr = tmp;
1715                                 allocsize += MAXPATHLEN;
1716                         }
1717                         bcopy(libname, depstr + osize, lsize);
1718                         *(depstr + nsize) = ' '; /* separator */
1719                         nsize++;
1720                         osize = nsize;
1721                         break;
1722 
1723                 case DT_FLAGS_1:
1724                         if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1725                                 mp->flags |= KOBJ_IGNMULDEF;
1726                         if (dynp->d_un.d_val & DF_1_NOKSYMS)
1727                                 mp->flags |= KOBJ_NOKSYMS;
1728 
1729                         break;
1730                 }
1731         }
1732 
1733         /*
1734          * finish up the depends string (if any)
1735          */
1736         if (depstr != NULL) {
1737                 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1738                 if (path != NULL)
1739                         kobj_free(path, MAXPATHLEN);
1740 
1741                 tmp = kobj_alloc(nsize, KM_WAIT);
1742                 bcopy(depstr, tmp, nsize);
1743                 kobj_free(depstr, allocsize);
1744                 depstr = tmp;
1745 
1746                 mp->depends_on = depstr;
1747         }
1748 
1749         return (0);
1750 }
1751 
1752 static int
1753 do_dynamic(struct module *mp, struct _buf *file)
1754 {
1755         Shdr *dshp, *dstrp, *shp;
1756         char *dyndata, *dstrdata;
1757         int dshn, shn, rc;
1758 
1759         /* find and validate the dynamic section (if any) */
1760 
1761         for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1762                 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1763                 switch (shp->sh_type) {
1764                 case SHT_DYNAMIC:
1765                         if (dshp != NULL) {
1766                                 _kobj_printf(ops, "krtld: get_dynamic: %s, ",
1767                                     mp->filename);
1768                                 _kobj_printf(ops,
1769                                     "multiple dynamic sections\n");
1770                                 return (-1);
1771                         } else {
1772                                 dshp = shp;
1773                                 dshn = shn;
1774                         }
1775                         break;
1776                 }
1777         }
1778 
1779         if (dshp == NULL)
1780                 return (0);
1781 
1782         if (dshp->sh_link > mp->hdr.e_shnum) {
1783                 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1784                 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1785                 return (-1);
1786         }
1787         dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1788 
1789         if (dstrp->sh_type != SHT_STRTAB) {
1790                 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1791                 _kobj_printf(ops, "sh_link not a string table for section %d\n",
1792                     dshn);
1793                 return (-1);
1794         }
1795 
1796         /* read it from disk */
1797 
1798         dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1799         if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1800                 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1801                 _kobj_printf(ops, "error reading section %d\n", dshn);
1802 
1803                 kobj_free(dyndata, dshp->sh_size);
1804                 return (-1);
1805         }
1806 
1807         dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1808         if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1809             dstrp->sh_offset) < 0) {
1810                 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1811                 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1812 
1813                 kobj_free(dyndata, dshp->sh_size);
1814                 kobj_free(dstrdata, dstrp->sh_size);
1815                 return (-1);
1816         }
1817 
1818         /* pull the interesting pieces out */
1819 
1820         rc = process_dynamic(mp, dyndata, dstrdata);
1821 
1822         kobj_free(dyndata, dshp->sh_size);
1823         kobj_free(dstrdata, dstrp->sh_size);
1824 
1825         return (rc);
1826 }
1827 
1828 void
1829 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1830 {
1831         if (!standalone) {
1832                 if (mp->ctfdata != NULL) {
1833                         if (vmem_contains(ctf_arena, mp->ctfdata,
1834                             mp->ctfsize)) {
1835                                 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1836                         } else {
1837                                 kobj_free(mp->ctfdata, mp->ctfsize);
1838                         }
1839                 }
1840         }
1841 
1842         /*
1843          * The order is very important here.  We need to make sure that
1844          * consumers, at any given instant, see a consistent state.  We'd
1845          * rather they see no CTF data than the address of one buffer and the
1846          * size of another.
1847          */
1848         mp->ctfdata = NULL;
1849         membar_producer();
1850         mp->ctfsize = size;
1851         mp->ctfdata = data;
1852         membar_producer();
1853 }
1854 
1855 int
1856 kobj_load_module(struct modctl *modp, int use_path)
1857 {
1858         char *filename = modp->mod_filename;
1859         char *modname = modp->mod_modname;
1860         int i;
1861         int n;
1862         struct _buf *file;
1863         struct module *mp = NULL;
1864 #ifdef MODDIR_SUFFIX
1865         int no_suffixdir_drv = 0;
1866 #endif
1867 
1868         mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1869 
1870         /*
1871          * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1872          * kmdb contains a bunch of symbols with well-known names, symbols
1873          * which will mask the real versions, thus causing no end of trouble
1874          * for mdb.
1875          */
1876         if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1877                 mp->flags |= KOBJ_NOKSYMS;
1878 
1879         file = kobj_open_path(filename, use_path, 1);
1880         if (file == (struct _buf *)-1) {
1881 #ifdef MODDIR_SUFFIX
1882                 file = kobj_open_path(filename, use_path, 0);
1883 #endif
1884                 if (file == (struct _buf *)-1) {
1885                         kobj_free(mp, sizeof (*mp));
1886                         goto bad;
1887                 }
1888 #ifdef MODDIR_SUFFIX
1889                 /*
1890                  * There is no driver module in the ISA specific (suffix)
1891                  * subdirectory but there is a module in the parent directory.
1892                  */
1893                 if (strncmp(filename, "drv/", 4) == 0) {
1894                         no_suffixdir_drv = 1;
1895                 }
1896 #endif
1897         }
1898 
1899         mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1900         (void) strcpy(mp->filename, file->_name);
1901 
1902         if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1903                 _kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1904                     modname);
1905                 kobj_free(mp->filename, strlen(file->_name) + 1);
1906                 kobj_free(mp, sizeof (*mp));
1907                 goto bad;
1908         }
1909         for (i = 0; i < SELFMAG; i++) {
1910                 if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1911                         if (_moddebug & MODDEBUG_ERRMSG)
1912                                 _kobj_printf(ops, "%s not an elf module\n",
1913                                     modname);
1914                         kobj_free(mp->filename, strlen(file->_name) + 1);
1915                         kobj_free(mp, sizeof (*mp));
1916                         goto bad;
1917                 }
1918         }
1919         /*
1920          * It's ELF, but is it our ISA?  Interpreting the header
1921          * from a file for a byte-swapped ISA could cause a huge
1922          * and unsatisfiable value to be passed to kobj_alloc below
1923          * and therefore hang booting.
1924          */
1925         if (!elf_mach_ok(&mp->hdr)) {
1926                 if (_moddebug & MODDEBUG_ERRMSG)
1927                         _kobj_printf(ops, "%s not an elf module for this ISA\n",
1928                             modname);
1929                 kobj_free(mp->filename, strlen(file->_name) + 1);
1930                 kobj_free(mp, sizeof (*mp));
1931 #ifdef MODDIR_SUFFIX
1932                 /*
1933                  * The driver mod is not in the ISA specific subdirectory
1934                  * and the module in the parent directory is not our ISA.
1935                  * If it is our ISA, for now we will silently succeed.
1936                  */
1937                 if (no_suffixdir_drv == 1) {
1938                         cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1939                             " not found\n", modname);
1940                 }
1941 #endif
1942                 goto bad;
1943         }
1944 
1945         /*
1946          * All modules, save for unix, should be relocatable (as opposed to
1947          * dynamic).  Dynamic modules come with PLTs and GOTs, which can't
1948          * currently be processed by krtld.
1949          */
1950         if (mp->hdr.e_type != ET_REL) {
1951                 if (_moddebug & MODDEBUG_ERRMSG)
1952                         _kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1953                             "module\n", modname);
1954                 kobj_free(mp->filename, strlen(file->_name) + 1);
1955                 kobj_free(mp, sizeof (*mp));
1956                 goto bad;
1957         }
1958 
1959         n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1960         mp->shdrs = kobj_alloc(n, KM_WAIT);
1961 
1962         if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1963                 _kobj_printf(ops, "kobj_load_module: %s error reading "
1964                     "section headers\n", modname);
1965                 kobj_free(mp->shdrs, n);
1966                 kobj_free(mp->filename, strlen(file->_name) + 1);
1967                 kobj_free(mp, sizeof (*mp));
1968                 goto bad;
1969         }
1970 
1971         kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1972         module_assign(modp, mp);
1973 
1974         /* read in sections */
1975         if (get_progbits(mp, file) < 0) {
1976                 _kobj_printf(ops, "%s error reading sections\n", modname);
1977                 goto bad;
1978         }
1979 
1980         if (do_dynamic(mp, file) < 0) {
1981                 _kobj_printf(ops, "%s error reading dynamic section\n",
1982                     modname);
1983                 goto bad;
1984         }
1985 
1986         modp->mod_text = mp->text;
1987         modp->mod_text_size = mp->text_size;
1988 
1989         /* read in symbols; adjust values for each section's real address */
1990         if (get_syms(mp, file) < 0) {
1991                 _kobj_printf(ops, "%s error reading symbols\n",
1992                     modname);
1993                 goto bad;
1994         }
1995 
1996         /*
1997          * If we didn't dependency information from the dynamic section, look
1998          * for it the old-fashioned way.
1999          */
2000         if (mp->depends_on == NULL)
2001                 mp->depends_on = depends_on(mp);
2002 
2003         if (get_ctf(mp, file) < 0) {
2004                 _kobj_printf(ops, "%s debug information will not "
2005                     "be available\n", modname);
2006         }
2007 
2008         /* primary kernel modules do not have a signature section */
2009         if (!(mp->flags & KOBJ_PRIM))
2010                 get_signature(mp, file);
2011 
2012 #ifdef  KOBJ_DEBUG
2013         if (kobj_debug & D_LOADING) {
2014                 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
2015                 _kobj_printf(ops, "\ttext:0x%p", mp->text);
2016                 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
2017                 _kobj_printf(ops, "\tdata:0x%p", mp->data);
2018                 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
2019         }
2020 #endif /* KOBJ_DEBUG */
2021 
2022         /*
2023          * For primary kernel modules, we defer
2024          * symbol resolution and relocation until
2025          * all primary objects have been loaded.
2026          */
2027         if (!standalone) {
2028                 int ddrval, dcrval;
2029                 char *dependent_modname;
2030                 /* load all dependents */
2031                 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2032                 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2033 
2034                 /*
2035                  * resolve undefined and common symbols,
2036                  * also allocates common space
2037                  */
2038                 if ((dcrval = do_common(mp)) < 0) {
2039                         switch (dcrval) {
2040                         case DOSYM_UNSAFE:
2041                                 _kobj_printf(ops, "WARNING: mod_load: "
2042                                     "MT-unsafe module '%s' rejected\n",
2043                                     modname);
2044                                 break;
2045                         case DOSYM_UNDEF:
2046                                 _kobj_printf(ops, "WARNING: mod_load: "
2047                                     "cannot load module '%s'\n",
2048                                     modname);
2049                                 if (ddrval == -1) {
2050                                         _kobj_printf(ops, "WARNING: %s: ",
2051                                             modname);
2052                                         _kobj_printf(ops,
2053                                             "unable to resolve dependency, "
2054                                             "module '%s' not found\n",
2055                                             dependent_modname);
2056                                 }
2057                                 break;
2058                         }
2059                 }
2060                 kobj_free(dependent_modname, MODMAXNAMELEN);
2061                 if (dcrval < 0)
2062                         goto bad;
2063 
2064                 /* process relocation tables */
2065                 if (do_relocations(mp) < 0) {
2066                         _kobj_printf(ops, "%s error doing relocations\n",
2067                             modname);
2068                         goto bad;
2069                 }
2070 
2071                 if (mp->destination) {
2072                         off_t   off = (uintptr_t)mp->destination & PAGEOFFSET;
2073                         caddr_t base = (caddr_t)mp->destination - off;
2074                         size_t  size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2075 
2076                         hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2077                         vmem_free(heap_arena, base, size);
2078                 }
2079 
2080                 /* sync_instruction_memory */
2081                 kobj_sync_instruction_memory(mp->text, mp->text_size);
2082                 kobj_export_module(mp);
2083                 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2084         }
2085         kobj_close_file(file);
2086         return (0);
2087 bad:
2088         if (file != (struct _buf *)-1)
2089                 kobj_close_file(file);
2090         if (modp->mod_mp != NULL)
2091                 free_module_data(modp->mod_mp);
2092 
2093         module_assign(modp, NULL);
2094         return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2095 }
2096 
2097 int
2098 kobj_load_primary_module(struct modctl *modp)
2099 {
2100         struct modctl *dep;
2101         struct module *mp;
2102 
2103         if (kobj_load_module(modp, 0) != 0)
2104                 return (-1);
2105 
2106         mp = modp->mod_mp;
2107         mp->flags |= KOBJ_PRIM;
2108 
2109         /* Bind new module to its dependents */
2110         if (mp->depends_on != NULL && (dep =
2111             mod_already_loaded(mp->depends_on)) == NULL) {
2112 #ifdef  KOBJ_DEBUG
2113                 if (kobj_debug & D_DEBUG) {
2114                         _kobj_printf(ops, "krtld: failed to resolve deps "
2115                             "for primary %s\n", modp->mod_modname);
2116                 }
2117 #endif
2118                 return (-1);
2119         }
2120 
2121         add_dependent(mp, dep->mod_mp);
2122 
2123         /*
2124          * Relocate it.  This module may not be part of a link map, so we
2125          * can't use bind_primary.
2126          */
2127         if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2128             do_relocations(mp) < 0) {
2129 #ifdef  KOBJ_DEBUG
2130                 if (kobj_debug & D_DEBUG) {
2131                         _kobj_printf(ops, "krtld: failed to relocate "
2132                             "primary %s\n", modp->mod_modname);
2133                 }
2134 #endif
2135                 return (-1);
2136         }
2137 
2138         return (0);
2139 }
2140 
2141 static void
2142 module_assign(struct modctl *cp, struct module *mp)
2143 {
2144         if (standalone) {
2145                 cp->mod_mp = mp;
2146                 return;
2147         }
2148         mutex_enter(&mod_lock);
2149         cp->mod_mp = mp;
2150         cp->mod_gencount++;
2151         mutex_exit(&mod_lock);
2152 }
2153 
2154 void
2155 kobj_unload_module(struct modctl *modp)
2156 {
2157         struct module *mp = modp->mod_mp;
2158 
2159         if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2160                 _kobj_printf(ops, "text for %s ", mp->filename);
2161                 _kobj_printf(ops, "was at %p\n", mp->text);
2162                 mp->text = NULL;     /* don't actually free it */
2163         }
2164 
2165         kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2166 
2167         /*
2168          * Null out mod_mp first, so consumers (debuggers) know not to look
2169          * at the module structure any more.
2170          */
2171         mutex_enter(&mod_lock);
2172         modp->mod_mp = NULL;
2173         mutex_exit(&mod_lock);
2174 
2175         kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2176         free_module_data(mp);
2177 }
2178 
2179 static void
2180 free_module_data(struct module *mp)
2181 {
2182         struct module_list *lp, *tmp;
2183         hotinline_desc_t *hid, *next;
2184         int ksyms_exported = 0;
2185 
2186         lp = mp->head;
2187         while (lp) {
2188                 tmp = lp;
2189                 lp = lp->next;
2190                 kobj_free((char *)tmp, sizeof (*tmp));
2191         }
2192 
2193         /* release hotinlines */
2194         hid = mp->hi_calls;
2195         while (hid != NULL) {
2196                 next = hid->hid_next;
2197                 kobj_free(hid->hid_symname, strlen(hid->hid_symname) + 1);
2198                 kobj_free(hid, sizeof (hotinline_desc_t));
2199                 hid = next;
2200         }
2201 
2202         rw_enter(&ksyms_lock, RW_WRITER);
2203         if (mp->symspace) {
2204                 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2205                         vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2206                         ksyms_exported = 1;
2207                 } else {
2208                         if (mp->flags & KOBJ_NOKSYMS)
2209                                 ksyms_exported = 1;
2210                         kobj_free(mp->symspace, mp->symsize);
2211                 }
2212         }
2213         rw_exit(&ksyms_lock);
2214 
2215         if (mp->ctfdata) {
2216                 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2217                         vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2218                 else
2219                         kobj_free(mp->ctfdata, mp->ctfsize);
2220         }
2221 
2222         if (mp->sigdata)
2223                 kobj_free(mp->sigdata, mp->sigsize);
2224 
2225         /*
2226          * We did not get far enough into kobj_export_ksyms() to free allocated
2227          * buffers because we encounted error conditions. Free the buffers.
2228          */
2229         if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2230                 uint_t shn;
2231                 Shdr *shp;
2232 
2233                 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2234                         shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2235                         switch (shp->sh_type) {
2236                         case SHT_RELA:
2237                         case SHT_REL:
2238                                 if (shp->sh_addr != 0)
2239                                         kobj_free((void *)shp->sh_addr,
2240                                             shp->sh_size);
2241                                 break;
2242                         }
2243                 }
2244 err_free_done:
2245                 if (!(mp->flags & KOBJ_PRIM)) {
2246                         kobj_free(mp->shdrs,
2247                             mp->hdr.e_shentsize * mp->hdr.e_shnum);
2248                 }
2249         }
2250 
2251         if (mp->bss)
2252                 vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2253 
2254         if (mp->fbt_tab)
2255                 kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2256 
2257         if (mp->textwin_base)
2258                 kobj_textwin_free(mp);
2259 
2260         if (mp->sdt_probes != NULL) {
2261                 sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2262 
2263                 while (sdp != NULL) {
2264                         next = sdp->sdpd_next;
2265                         kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2266                         kobj_free(sdp, sizeof (sdt_probedesc_t));
2267                         sdp = next;
2268                 }
2269         }
2270 
2271         if (mp->sdt_tab)
2272                 kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2273         if (mp->text)
2274                 vmem_free(text_arena, mp->text, mp->text_size);
2275         if (mp->data)
2276                 vmem_free(data_arena, mp->data, mp->data_size);
2277         if (mp->depends_on)
2278                 kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2279         if (mp->filename)
2280                 kobj_free(mp->filename, strlen(mp->filename)+1);
2281 
2282         kobj_free((char *)mp, sizeof (*mp));
2283 }
2284 
2285 static int
2286 get_progbits(struct module *mp, struct _buf *file)
2287 {
2288         struct proginfo *tp, *dp, *sdp;
2289         Shdr *shp;
2290         reloc_dest_t dest = NULL;
2291         uintptr_t bits_ptr;
2292         uintptr_t text = 0, data, textptr;
2293         uint_t shn;
2294         int err = -1;
2295 
2296         tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2297         dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2298         sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2299         /*
2300          * loop through sections to find out how much space we need
2301          * for text, data, (also bss that is already assigned)
2302          */
2303         if (get_progbits_size(mp, tp, dp, sdp) < 0)
2304                 goto done;
2305 
2306         mp->text_size = tp->size;
2307         mp->data_size = dp->size;
2308 
2309         if (standalone) {
2310                 caddr_t limit = _data;
2311 
2312                 if (lg_pagesize && _text + lg_pagesize < limit)
2313                         limit = _text + lg_pagesize;
2314 
2315                 mp->text = kobj_segbrk(&_etext, mp->text_size,
2316                     tp->align, limit);
2317                 /*
2318                  * If we can't grow the text segment, try the
2319                  * data segment before failing.
2320                  */
2321                 if (mp->text == NULL) {
2322                         mp->text = kobj_segbrk(&_edata, mp->text_size,
2323                             tp->align, 0);
2324                 }
2325 
2326                 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2327 
2328                 if (mp->text == NULL || mp->data == NULL)
2329                         goto done;
2330 
2331         } else {
2332                 if (text_arena == NULL)
2333                         kobj_vmem_init(&text_arena, &data_arena);
2334 
2335                 /*
2336                  * some architectures may want to load the module on a
2337                  * page that is currently read only. It may not be
2338                  * possible for those architectures to remap their page
2339                  * on the fly. So we provide a facility for them to hang
2340                  * a private hook where the memory they assign the module
2341                  * is not the actual place where the module loads.
2342                  *
2343                  * In this case there are two addresses that deal with the
2344                  * modload.
2345                  * 1) the final destination of the module
2346                  * 2) the address that is used to view the newly
2347                  * loaded module until all the relocations relative to 1
2348                  * above are completed.
2349                  *
2350                  * That is what dest is used for below.
2351                  */
2352                 mp->text_size += tp->align;
2353                 mp->data_size += dp->align;
2354 
2355                 mp->text = kobj_text_alloc(text_arena, mp->text_size);
2356 
2357                 /*
2358                  * a remap is taking place. Align the text ptr relative
2359                  * to the secondary mapping. That is where the bits will
2360                  * be read in.
2361                  */
2362                 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2363                     mp->text, mp->text_size)) {
2364                         off_t   off = (uintptr_t)mp->text & PAGEOFFSET;
2365                         size_t  size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2366                         caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP);
2367                         caddr_t orig = mp->text - off;
2368                         pgcnt_t pages = size / PAGESIZE;
2369 
2370                         dest = (reloc_dest_t)(map + off);
2371                         text = ALIGN((uintptr_t)dest, tp->align);
2372 
2373                         while (pages--) {
2374                                 hat_devload(kas.a_hat, map, PAGESIZE,
2375                                     hat_getpfnum(kas.a_hat, orig),
2376                                     PROT_READ | PROT_WRITE | PROT_EXEC,
2377                                     HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2378                                 map += PAGESIZE;
2379                                 orig += PAGESIZE;
2380                         }
2381                         /*
2382                          * Since we set up a non-cacheable mapping, we need
2383                          * to flush any old entries in the cache that might
2384                          * be left around from the read-only mapping.
2385                          */
2386                         dcache_flushall();
2387                 }
2388                 if (mp->data_size)
2389                         mp->data = vmem_alloc(data_arena, mp->data_size,
2390                             VM_SLEEP | VM_BESTFIT);
2391         }
2392         textptr = (uintptr_t)mp->text;
2393         textptr = ALIGN(textptr, tp->align);
2394         mp->destination = dest;
2395 
2396         /*
2397          * This is the case where a remap is not being done.
2398          */
2399         if (text == 0)
2400                 text = ALIGN((uintptr_t)mp->text, tp->align);
2401         data = ALIGN((uintptr_t)mp->data, dp->align);
2402 
2403         /* now loop though sections assigning addresses and loading the data */
2404         for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2405                 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2406                 if (!(shp->sh_flags & SHF_ALLOC))
2407                         continue;
2408 
2409                 if ((shp->sh_flags & SHF_WRITE) == 0)
2410                         bits_ptr = text;
2411                 else
2412                         bits_ptr = data;
2413 
2414                 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2415 
2416                 if (shp->sh_type == SHT_NOBITS) {
2417                         /*
2418                          * Zero bss.
2419                          */
2420                         bzero((caddr_t)bits_ptr, shp->sh_size);
2421                         shp->sh_type = SHT_PROGBITS;
2422                 } else {
2423                         if (kobj_read_file(file, (char *)bits_ptr,
2424                             shp->sh_size, shp->sh_offset) < 0)
2425                                 goto done;
2426                 }
2427 
2428                 if (shp->sh_flags & SHF_WRITE) {
2429                         shp->sh_addr = bits_ptr;
2430                 } else {
2431                         textptr = ALIGN(textptr, shp->sh_addralign);
2432                         shp->sh_addr = textptr;
2433                         textptr += shp->sh_size;
2434                 }
2435 
2436                 bits_ptr += shp->sh_size;
2437                 if ((shp->sh_flags & SHF_WRITE) == 0)
2438                         text = bits_ptr;
2439                 else
2440                         data = bits_ptr;
2441         }
2442 
2443         err = 0;
2444 done:
2445         /*
2446          * Free and mark as freed the section headers here so that
2447          * free_module_data() does not have to worry about this buffer.
2448          *
2449          * This buffer is freed here because one of the possible reasons
2450          * for error is a section with non-zero sh_addr and in that case
2451          * free_module_data() would have no way of recognizing that this
2452          * buffer was unallocated.
2453          */
2454         if (err != 0) {
2455                 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2456                 mp->shdrs = NULL;
2457         }
2458 
2459         (void) kobj_free(tp, sizeof (struct proginfo));
2460         (void) kobj_free(dp, sizeof (struct proginfo));
2461         (void) kobj_free(sdp, sizeof (struct proginfo));
2462 
2463         return (err);
2464 }
2465 
2466 /*
2467  * Go through suppress_sym_list to see if "multiply defined"
2468  * warning of this symbol should be suppressed.  Return 1 if
2469  * warning should be suppressed, 0 otherwise.
2470  */
2471 static int
2472 kobj_suppress_warning(char *symname)
2473 {
2474         int     i;
2475 
2476         for (i = 0; suppress_sym_list[i] != NULL; i++) {
2477                 if (strcmp(suppress_sym_list[i], symname) == 0)
2478                         return (1);
2479         }
2480 
2481         return (0);
2482 }
2483 
2484 static int
2485 get_syms(struct module *mp, struct _buf *file)
2486 {
2487         uint_t          shn;
2488         Shdr    *shp;
2489         uint_t          i;
2490         Sym     *sp, *ksp;
2491         char            *symname;
2492         int             dosymtab = 0;
2493 
2494         /*
2495          * Find the interesting sections.
2496          */
2497         for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2498                 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2499                 switch (shp->sh_type) {
2500                 case SHT_SYMTAB:
2501                         mp->symtbl_section = shn;
2502                         mp->symhdr = shp;
2503                         dosymtab++;
2504                         break;
2505 
2506                 case SHT_RELA:
2507                 case SHT_REL:
2508                         /*
2509                          * Already loaded.
2510                          */
2511                         if (shp->sh_addr)
2512                                 continue;
2513 
2514                         /* KM_TMP since kobj_free'd in do_relocations */
2515                         shp->sh_addr = (Addr)
2516                             kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2517 
2518                         if (kobj_read_file(file, (char *)shp->sh_addr,
2519                             shp->sh_size, shp->sh_offset) < 0) {
2520                                 _kobj_printf(ops, "krtld: get_syms: %s, ",
2521                                     mp->filename);
2522                                 _kobj_printf(ops, "error reading section %d\n",
2523                                     shn);
2524                                 return (-1);
2525                         }
2526                         break;
2527                 }
2528         }
2529 
2530         /*
2531          * This is true for a stripped executable.  In the case of
2532          * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2533          * and since that symbol information is still present everything
2534          * is just fine.
2535          */
2536         if (!dosymtab) {
2537                 if (mp->flags & KOBJ_EXEC)
2538                         return (0);
2539                 _kobj_printf(ops, "krtld: get_syms: %s ",
2540                     mp->filename);
2541                 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2542                 return (-1);
2543         }
2544 
2545         /*
2546          * get the associated string table header
2547          */
2548         if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2549                 return (-1);
2550         mp->strhdr = (Shdr *)
2551             (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2552 
2553         mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2554         mp->hashsize = kobj_gethashsize(mp->nsyms);
2555 
2556         /*
2557          * Allocate space for the symbol table, buckets, chains, and strings.
2558          */
2559         mp->symsize = mp->symhdr->sh_size +
2560             (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2561         mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2562 
2563         mp->symtbl = mp->symspace;
2564         mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2565         mp->chains = mp->buckets + mp->hashsize;
2566         mp->strings = (char *)(mp->chains + mp->nsyms);
2567 
2568         if (kobj_read_file(file, mp->symtbl,
2569             mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2570             kobj_read_file(file, mp->strings,
2571             mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2572                 return (-1);
2573 
2574         /*
2575          * loop through the symbol table adjusting values to account
2576          * for where each section got loaded into memory.  Also
2577          * fill in the hash table.
2578          */
2579         for (i = 1; i < mp->nsyms; i++) {
2580                 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2581                 if (sp->st_shndx < SHN_LORESERVE) {
2582                         if (sp->st_shndx >= mp->hdr.e_shnum) {
2583                                 _kobj_printf(ops, "%s bad shndx ",
2584                                     file->_name);
2585                                 _kobj_printf(ops, "in symbol %d\n", i);
2586                                 return (-1);
2587                         }
2588                         shp = (Shdr *)
2589                             (mp->shdrs +
2590                             sp->st_shndx * mp->hdr.e_shentsize);
2591                         if (!(mp->flags & KOBJ_EXEC))
2592                                 sp->st_value += shp->sh_addr;
2593                 }
2594 
2595                 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2596                         continue;
2597                 if (sp->st_name >= mp->strhdr->sh_size)
2598                         return (-1);
2599 
2600                 symname = mp->strings + sp->st_name;
2601 
2602                 if (!(mp->flags & KOBJ_EXEC) &&
2603                     ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2604                         ksp = kobj_lookup_all(mp, symname, 0);
2605 
2606                         if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2607                             !kobj_suppress_warning(symname) &&
2608                             sp->st_shndx != SHN_UNDEF &&
2609                             sp->st_shndx != SHN_COMMON &&
2610                             ksp->st_shndx != SHN_UNDEF &&
2611                             ksp->st_shndx != SHN_COMMON) {
2612                                 /*
2613                                  * Unless this symbol is a stub, it's multiply
2614                                  * defined.  Multiply-defined symbols are
2615                                  * usually bad, but some objects (kmdb) have
2616                                  * a legitimate need to have their own
2617                                  * copies of common functions.
2618                                  */
2619                                 if ((standalone ||
2620                                     ksp->st_value < (uintptr_t)stubs_base ||
2621                                     ksp->st_value >= (uintptr_t)stubs_end) &&
2622                                     !(mp->flags & KOBJ_IGNMULDEF)) {
2623                                         _kobj_printf(ops,
2624                                             "%s symbol ", file->_name);
2625                                         _kobj_printf(ops,
2626                                             "%s multiply defined\n", symname);
2627                                 }
2628                         }
2629                 }
2630 
2631                 sym_insert(mp, symname, i);
2632         }
2633 
2634         return (0);
2635 }
2636 
2637 static int
2638 get_ctf(struct module *mp, struct _buf *file)
2639 {
2640         char *shstrtab, *ctfdata;
2641         size_t shstrlen;
2642         Shdr *shp;
2643         uint_t i;
2644 
2645         if (_moddebug & MODDEBUG_NOCTF)
2646                 return (0); /* do not attempt to even load CTF data */
2647 
2648         if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2649                 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2650                     mp->filename);
2651                 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2652                     mp->hdr.e_shstrndx);
2653                 return (-1);
2654         }
2655 
2656         shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2657         shstrlen = shp->sh_size;
2658         shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2659 
2660         if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2661                 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2662                     mp->filename);
2663                 _kobj_printf(ops, "error reading section %u\n",
2664                     mp->hdr.e_shstrndx);
2665                 kobj_free(shstrtab, shstrlen);
2666                 return (-1);
2667         }
2668 
2669         for (i = 0; i < mp->hdr.e_shnum; i++) {
2670                 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2671 
2672                 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2673                     strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2674                         ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2675 
2676                         if (kobj_read_file(file, ctfdata, shp->sh_size,
2677                             shp->sh_offset) < 0) {
2678                                 _kobj_printf(ops, "krtld: get_ctf: %s, error "
2679                                     "reading .SUNW_ctf data\n", mp->filename);
2680                                 kobj_free(ctfdata, shp->sh_size);
2681                                 kobj_free(shstrtab, shstrlen);
2682                                 return (-1);
2683                         }
2684 
2685                         mp->ctfdata = ctfdata;
2686                         mp->ctfsize = shp->sh_size;
2687                         break;
2688                 }
2689         }
2690 
2691         kobj_free(shstrtab, shstrlen);
2692         return (0);
2693 }
2694 
2695 #define SHA1_DIGEST_LENGTH      20      /* SHA1 digest length in bytes */
2696 
2697 /*
2698  * Return the hash of the ELF sections that are memory resident.
2699  * i.e. text and data.  We skip a SHT_NOBITS section since it occupies
2700  * no space in the file. We use SHA1 here since libelfsign uses
2701  * it and both places need to use the same algorithm.
2702  */
2703 static void
2704 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2705 {
2706         uint_t shn;
2707         Shdr *shp;
2708         SHA1_CTX ctx;
2709 
2710         SHA1Init(&ctx);
2711 
2712         for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2713                 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2714                 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2715                         continue;
2716 
2717                 /*
2718                  * The check should ideally be shp->sh_type == SHT_NOBITS.
2719                  * However, we can't do that check here as get_progbits()
2720                  * resets the type.
2721                  */
2722                 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2723                         continue;
2724 #ifdef  KOBJ_DEBUG
2725                 if (kobj_debug & D_DEBUG)
2726                         _kobj_printf(ops,
2727                             "krtld: crypto_es_hash: updating hash with"
2728                             " %s data size=%d\n", shstrtab + shp->sh_name,
2729                             shp->sh_size);
2730 #endif
2731                 ASSERT(shp->sh_addr != NULL);
2732                 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2733         }
2734 
2735         SHA1Final((uchar_t *)hash, &ctx);
2736 }
2737 
2738 /*
2739  * Get the .SUNW_signature section for the module, it it exists.
2740  *
2741  * This section exists only for crypto modules. None of the
2742  * primary modules have this section currently.
2743  */
2744 static void
2745 get_signature(struct module *mp, struct _buf *file)
2746 {
2747         char *shstrtab, *sigdata = NULL;
2748         size_t shstrlen;
2749         Shdr *shp;
2750         uint_t i;
2751 
2752         if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2753                 _kobj_printf(ops, "krtld: get_signature: %s, ",
2754                     mp->filename);
2755                 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2756                     mp->hdr.e_shstrndx);
2757                 return;
2758         }
2759 
2760         shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2761         shstrlen = shp->sh_size;
2762         shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2763 
2764         if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2765                 _kobj_printf(ops, "krtld: get_signature: %s, ",
2766                     mp->filename);
2767                 _kobj_printf(ops, "error reading section %u\n",
2768                     mp->hdr.e_shstrndx);
2769                 kobj_free(shstrtab, shstrlen);
2770                 return;
2771         }
2772 
2773         for (i = 0; i < mp->hdr.e_shnum; i++) {
2774                 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2775                 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2776                     strcmp(shstrtab + shp->sh_name,
2777                     ELF_SIGNATURE_SECTION) == 0) {
2778                         filesig_vers_t filesig_version;
2779                         size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2780                         sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2781 
2782                         if (kobj_read_file(file, sigdata, shp->sh_size,
2783                             shp->sh_offset) < 0) {
2784                                 _kobj_printf(ops, "krtld: get_signature: %s,"
2785                                     " error reading .SUNW_signature data\n",
2786                                     mp->filename);
2787                                 kobj_free(sigdata, sigsize);
2788                                 kobj_free(shstrtab, shstrlen);
2789                                 return;
2790                         }
2791                         filesig_version = ((struct filesignatures *)sigdata)->
2792                             filesig_sig.filesig_version;
2793                         if (!(filesig_version == FILESIG_VERSION1 ||
2794                             filesig_version == FILESIG_VERSION3)) {
2795                                 /* skip versions we don't understand */
2796                                 kobj_free(sigdata, sigsize);
2797                                 kobj_free(shstrtab, shstrlen);
2798                                 return;
2799                         }
2800 
2801                         mp->sigdata = sigdata;
2802                         mp->sigsize = sigsize;
2803                         break;
2804                 }
2805         }
2806 
2807         if (sigdata != NULL) {
2808                 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2809         }
2810 
2811         kobj_free(shstrtab, shstrlen);
2812 }
2813 
2814 static void
2815 add_dependent(struct module *mp, struct module *dep)
2816 {
2817         struct module_list *lp;
2818 
2819         for (lp = mp->head; lp; lp = lp->next) {
2820                 if (lp->mp == dep)
2821                         return; /* already on the list */
2822         }
2823 
2824         if (lp == NULL) {
2825                 lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2826 
2827                 lp->mp = dep;
2828                 lp->next = NULL;
2829                 if (mp->tail)
2830                         mp->tail->next = lp;
2831                 else
2832                         mp->head = lp;
2833                 mp->tail = lp;
2834         }
2835 }
2836 
2837 static int
2838 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2839 {
2840         struct module *mp;
2841         struct modctl *req;
2842         char *d, *p, *q;
2843         int c;
2844         char *err_modname = NULL;
2845 
2846         mp = modp->mod_mp;
2847 
2848         if ((p = mp->depends_on) == NULL)
2849                 return (0);
2850 
2851         for (;;) {
2852                 /*
2853                  * Skip space.
2854                  */
2855                 while (*p && (*p == ' ' || *p == '\t'))
2856                         p++;
2857                 /*
2858                  * Get module name.
2859                  */
2860                 d = p;
2861                 q = modname;
2862                 c = 0;
2863                 while (*p && *p != ' ' && *p != '\t') {
2864                         if (c < modnamelen - 1) {
2865                                 *q++ = *p;
2866                                 c++;
2867                         }
2868                         p++;
2869                 }
2870 
2871                 if (q == modname)
2872                         break;
2873 
2874                 if (c == modnamelen - 1) {
2875                         char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2876 
2877                         (void) strncpy(dep, d,  p - d + 1);
2878                         dep[p - d] = '\0';
2879 
2880                         _kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2881                         _kobj_printf(ops, "'%s' too long ", dep);
2882                         _kobj_printf(ops, "(max %d chars)\n", modnamelen);
2883 
2884                         kobj_free(dep, p - d + 1);
2885 
2886                         return (-1);
2887                 }
2888 
2889                 *q = '\0';
2890                 if ((req = mod_load_requisite(modp, modname)) == NULL) {
2891 #ifndef KOBJ_DEBUG
2892                         if (_moddebug & MODDEBUG_LOADMSG) {
2893 #endif  /* KOBJ_DEBUG */
2894                                 _kobj_printf(ops,
2895                                     "%s: unable to resolve dependency, ",
2896                                     modp->mod_modname);
2897                                 _kobj_printf(ops, "cannot load module '%s'\n",
2898                                     modname);
2899 #ifndef KOBJ_DEBUG
2900                         }
2901 #endif  /* KOBJ_DEBUG */
2902                         if (err_modname == NULL) {
2903                                 /*
2904                                  * This must be the same size as the modname
2905                                  * one.
2906                                  */
2907                                 err_modname = kobj_zalloc(MODMAXNAMELEN,
2908                                     KM_WAIT);
2909 
2910                                 /*
2911                                  * We can use strcpy() here without fearing
2912                                  * the NULL terminator because the size of
2913                                  * err_modname is the same as one of modname,
2914                                  * and it's filled with zeros.
2915                                  */
2916                                 (void) strcpy(err_modname, modname);
2917                         }
2918                         continue;
2919                 }
2920 
2921                 add_dependent(mp, req->mod_mp);
2922                 mod_release_mod(req);
2923 
2924         }
2925 
2926         if (err_modname != NULL) {
2927                 /*
2928                  * Copy the first module name where you detect an error to keep
2929                  * its behavior the same as before.
2930                  * This way keeps minimizing the memory use for error
2931                  * modules, and this might be important at boot time because
2932                  * the memory usage is a crucial factor for booting in most
2933                  * cases. You can expect more verbose messages when using
2934                  * a debug kernel or setting a bit in moddebug.
2935                  */
2936                 bzero(modname, MODMAXNAMELEN);
2937                 (void) strcpy(modname, err_modname);
2938                 kobj_free(err_modname, MODMAXNAMELEN);
2939                 return (-1);
2940         }
2941 
2942         return (0);
2943 }
2944 
2945 static int
2946 do_common(struct module *mp)
2947 {
2948         int err;
2949 
2950         /*
2951          * first time through, assign all symbols defined in other
2952          * modules, and count up how much common space will be needed
2953          * (bss_size and bss_align)
2954          */
2955         if ((err = do_symbols(mp, 0)) < 0)
2956                 return (err);
2957         /*
2958          * increase bss_size by the maximum delta that could be
2959          * computed by the ALIGN below
2960          */
2961         mp->bss_size += mp->bss_align;
2962         if (mp->bss_size) {
2963                 if (standalone)
2964                         mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2965                             MINALIGN, 0);
2966                 else
2967                         mp->bss = (uintptr_t)vmem_alloc(data_arena,
2968                             mp->bss_size, VM_SLEEP | VM_BESTFIT);
2969                 bzero((void *)mp->bss, mp->bss_size);
2970                 /* now assign addresses to all common symbols */
2971                 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2972                         return (err);
2973         }
2974         return (0);
2975 }
2976 
2977 static int
2978 do_symbols(struct module *mp, Elf64_Addr bss_base)
2979 {
2980         int bss_align;
2981         uintptr_t bss_ptr;
2982         int err;
2983         int i;
2984         Sym *sp, *sp1;
2985         char *name;
2986         int assign;
2987         int resolved = 1;
2988 
2989         /*
2990          * Nothing left to do (optimization).
2991          */
2992         if (mp->flags & KOBJ_RESOLVED)
2993                 return (0);
2994 
2995         assign = (bss_base) ? 1 : 0;
2996         bss_ptr = bss_base;
2997         bss_align = 0;
2998         err = 0;
2999 
3000         for (i = 1; i < mp->nsyms; i++) {
3001                 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
3002                 /*
3003                  * we know that st_name is in bounds, since get_sections
3004                  * has already checked all of the symbols
3005                  */
3006                 name = mp->strings + sp->st_name;
3007                 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
3008                         continue;
3009 #if defined(__sparc)
3010                 /*
3011                  * Register symbols are ignored in the kernel
3012                  */
3013                 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
3014                         if (*name != '\0') {
3015                                 _kobj_printf(ops, "%s: named REGISTER symbol ",
3016                                     mp->filename);
3017                                 _kobj_printf(ops, "not supported '%s'\n",
3018                                     name);
3019                                 err = DOSYM_UNDEF;
3020                         }
3021                         continue;
3022                 }
3023 #endif  /* __sparc */
3024                 /*
3025                  * TLS symbols are ignored in the kernel
3026                  */
3027                 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3028                         _kobj_printf(ops, "%s: TLS symbol ",
3029                             mp->filename);
3030                         _kobj_printf(ops, "not supported '%s'\n",
3031                             name);
3032                         err = DOSYM_UNDEF;
3033                         continue;
3034                 }
3035 
3036                 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3037                         if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3038                                 sp->st_shndx = SHN_ABS;
3039                                 sp->st_value = sp1->st_value;
3040                                 continue;
3041                         }
3042                 }
3043 
3044                 if (sp->st_shndx == SHN_UNDEF) {
3045                         resolved = 0;
3046 
3047                         /*
3048                          * Skip over sdt probes and smap calls,
3049                          * they're relocated later.
3050                          */
3051                         if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3052                                 continue;
3053 #if defined(__x86)
3054                         if (strcmp(name, "smap_enable") == 0 ||
3055                             strcmp(name, "smap_disable") == 0)
3056                                 continue;
3057 #endif /* defined(__x86) */
3058 
3059 
3060                         /*
3061                          * If it's not a weak reference and it's
3062                          * not a primary object, it's an error.
3063                          * (Primary objects may take more than
3064                          * one pass to resolve)
3065                          */
3066                         if (!(mp->flags & KOBJ_PRIM) &&
3067                             ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3068                                 _kobj_printf(ops, "%s: undefined symbol",
3069                                     mp->filename);
3070                                 _kobj_printf(ops, " '%s'\n", name);
3071                                 /*
3072                                  * Try to determine whether this symbol
3073                                  * represents a dependency on obsolete
3074                                  * unsafe driver support.  This is just
3075                                  * to make the warning more informative.
3076                                  */
3077                                 if (strcmp(name, "sleep") == 0 ||
3078                                     strcmp(name, "unsleep") == 0 ||
3079                                     strcmp(name, "wakeup") == 0 ||
3080                                     strcmp(name, "bsd_compat_ioctl") == 0 ||
3081                                     strcmp(name, "unsafe_driver") == 0 ||
3082                                     strncmp(name, "spl", 3) == 0 ||
3083                                     strncmp(name, "i_ddi_spl", 9) == 0)
3084                                         err = DOSYM_UNSAFE;
3085                                 if (err == 0)
3086                                         err = DOSYM_UNDEF;
3087                         }
3088                         continue;
3089                 }
3090                 /*
3091                  * It's a common symbol - st_value is the
3092                  * required alignment.
3093                  */
3094                 if (sp->st_value > bss_align)
3095                         bss_align = sp->st_value;
3096                 bss_ptr = ALIGN(bss_ptr, sp->st_value);
3097                 if (assign) {
3098                         sp->st_shndx = SHN_ABS;
3099                         sp->st_value = bss_ptr;
3100                 }
3101                 bss_ptr += sp->st_size;
3102         }
3103         if (err)
3104                 return (err);
3105         if (assign == 0 && mp->bss == 0) {
3106                 mp->bss_align = bss_align;
3107                 mp->bss_size = bss_ptr;
3108         } else if (resolved) {
3109                 mp->flags |= KOBJ_RESOLVED;
3110         }
3111 
3112         return (0);
3113 }
3114 
3115 uint_t
3116 kobj_hash_name(const char *p)
3117 {
3118         uint_t g;
3119         uint_t hval;
3120 
3121         hval = 0;
3122         while (*p) {
3123                 hval = (hval << 4) + *p++;
3124                 if ((g = (hval & 0xf0000000)) != 0)
3125                         hval ^= g >> 24;
3126                 hval &= ~g;
3127         }
3128         return (hval);
3129 }
3130 
3131 /* look for name in all modules */
3132 uintptr_t
3133 kobj_getsymvalue(char *name, int kernelonly)
3134 {
3135         Sym             *sp;
3136         struct modctl   *modp;
3137         struct module   *mp;
3138         uintptr_t       value = 0;
3139 
3140         if ((sp = kobj_lookup_kernel(name)) != NULL)
3141                 return ((uintptr_t)sp->st_value);
3142 
3143         if (kernelonly)
3144                 return (0);     /* didn't find it in the kernel so give up */
3145 
3146         mutex_enter(&mod_lock);
3147         modp = &modules;
3148         do {
3149                 mp = (struct module *)modp->mod_mp;
3150                 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3151                     (sp = lookup_one(mp, name))) {
3152                         value = (uintptr_t)sp->st_value;
3153                         break;
3154                 }
3155         } while ((modp = modp->mod_next) != &modules);
3156         mutex_exit(&mod_lock);
3157         return (value);
3158 }
3159 
3160 /* look for a symbol near value. */
3161 char *
3162 kobj_getsymname(uintptr_t value, ulong_t *offset)
3163 {
3164         char *name = NULL;
3165         struct modctl *modp;
3166 
3167         struct modctl_list *lp;
3168         struct module *mp;
3169 
3170         /*
3171          * Loop through the primary kernel modules.
3172          */
3173         for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3174                 mp = mod(lp);
3175 
3176                 if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3177                         return (name);
3178         }
3179 
3180         mutex_enter(&mod_lock);
3181         modp = &modules;
3182         do {
3183                 mp = (struct module *)modp->mod_mp;
3184                 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3185                     (name = kobj_searchsym(mp, value, offset)))
3186                         break;
3187         } while ((modp = modp->mod_next) != &modules);
3188         mutex_exit(&mod_lock);
3189         return (name);
3190 }
3191 
3192 /* return address of symbol and size */
3193 
3194 uintptr_t
3195 kobj_getelfsym(char *name, void *mp, int *size)
3196 {
3197         Sym *sp;
3198 
3199         if (mp == NULL)
3200                 sp = kobj_lookup_kernel(name);
3201         else
3202                 sp = lookup_one(mp, name);
3203 
3204         if (sp == NULL)
3205                 return (0);
3206 
3207         *size = (int)sp->st_size;
3208         return ((uintptr_t)sp->st_value);
3209 }
3210 
3211 uintptr_t
3212 kobj_lookup(struct module *mod, const char *name)
3213 {
3214         Sym *sp;
3215 
3216         sp = lookup_one(mod, name);
3217 
3218         if (sp == NULL)
3219                 return (0);
3220 
3221         return ((uintptr_t)sp->st_value);
3222 }
3223 
3224 char *
3225 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3226 {
3227         Sym *symtabptr;
3228         char *strtabptr;
3229         int symnum;
3230         Sym *sym;
3231         Sym *cursym;
3232         uintptr_t curval;
3233 
3234         *offset = (ulong_t)-1l;         /* assume not found */
3235         cursym  = NULL;
3236 
3237         if (kobj_addrcheck(mp, (void *)value) != 0)
3238                 return (NULL);          /* not in this module */
3239 
3240         strtabptr  = mp->strings;
3241         symtabptr  = (Sym *)mp->symtbl;
3242 
3243         /*
3244          * Scan the module's symbol table for a symbol <= value
3245          */
3246         for (symnum = 1, sym = symtabptr + 1;
3247             symnum < mp->nsyms; symnum++, sym = (Sym *)
3248             ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3249                 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3250                         if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3251                                 continue;
3252                         if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3253                             ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3254                                 continue;
3255                 }
3256 
3257                 curval = (uintptr_t)sym->st_value;
3258 
3259                 if (curval > value)
3260                         continue;
3261 
3262                 /*
3263                  * If one or both are functions...
3264                  */
3265                 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3266                     ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3267                         /* Ignore if the address is out of the bounds */
3268                         if (value - sym->st_value >= sym->st_size)
3269                                 continue;
3270 
3271                         if (cursym != NULL &&
3272                             ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3273                                 /* Prefer the function to the non-function */
3274                                 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3275                                         continue;
3276 
3277                                 /* Prefer the larger of the two functions */
3278                                 if (sym->st_size <= cursym->st_size)
3279                                         continue;
3280                         }
3281                 } else if (value - curval >= *offset) {
3282                         continue;
3283                 }
3284 
3285                 *offset = (ulong_t)(value - curval);
3286                 cursym = sym;
3287         }
3288         if (cursym == NULL)
3289                 return (NULL);
3290 
3291         return (strtabptr + cursym->st_name);
3292 }
3293 
3294 Sym *
3295 kobj_lookup_all(struct module *mp, char *name, int include_self)
3296 {
3297         Sym *sp;
3298         struct module_list *mlp;
3299         struct modctl_list *clp;
3300         struct module *mmp;
3301 
3302         if (include_self && (sp = lookup_one(mp, name)) != NULL)
3303                 return (sp);
3304 
3305         for (mlp = mp->head; mlp; mlp = mlp->next) {
3306                 if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3307                     ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3308                         return (sp);
3309         }
3310 
3311         /*
3312          * Loop through the primary kernel modules.
3313          */
3314         for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3315                 mmp = mod(clp);
3316 
3317                 if (mmp == NULL || mp == mmp)
3318                         continue;
3319 
3320                 if ((sp = lookup_one(mmp, name)) != NULL &&
3321                     ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3322                         return (sp);
3323         }
3324         return (NULL);
3325 }
3326 
3327 Sym *
3328 kobj_lookup_kernel(const char *name)
3329 {
3330         struct modctl_list *lp;
3331         struct module *mp;
3332         Sym *sp;
3333 
3334         /*
3335          * Loop through the primary kernel modules.
3336          */
3337         for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3338                 mp = mod(lp);
3339 
3340                 if (mp == NULL)
3341                         continue;
3342 
3343                 if ((sp = lookup_one(mp, name)) != NULL)
3344                         return (sp);
3345         }
3346         return (NULL);
3347 }
3348 
3349 static Sym *
3350 lookup_one(struct module *mp, const char *name)
3351 {
3352         symid_t *ip;
3353         char *name1;
3354         Sym *sp;
3355 
3356         for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3357             ip = &mp->chains[*ip]) {
3358                 sp = (Sym *)(mp->symtbl +
3359                     mp->symhdr->sh_entsize * *ip);
3360                 name1 = mp->strings + sp->st_name;
3361                 if (strcmp(name, name1) == 0 &&
3362                     ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3363                     sp->st_shndx != SHN_UNDEF &&
3364                     sp->st_shndx != SHN_COMMON)
3365                         return (sp);
3366         }
3367         return (NULL);
3368 }
3369 
3370 /*
3371  * Lookup a given symbol pointer in the module's symbol hash.  If the symbol
3372  * is hashed, return the symbol pointer; otherwise return NULL.
3373  */
3374 static Sym *
3375 sym_lookup(struct module *mp, Sym *ksp)
3376 {
3377         char *name = mp->strings + ksp->st_name;
3378         symid_t *ip;
3379         Sym *sp;
3380 
3381         for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3382             ip = &mp->chains[*ip]) {
3383                 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3384                 if (sp == ksp)
3385                         return (ksp);
3386         }
3387         return (NULL);
3388 }
3389 
3390 static void
3391 sym_insert(struct module *mp, char *name, symid_t index)
3392 {
3393         symid_t *ip;
3394 
3395 #ifdef KOBJ_DEBUG
3396         if (kobj_debug & D_SYMBOLS) {
3397                 static struct module *lastmp = NULL;
3398                 Sym *sp;
3399                 if (lastmp != mp) {
3400                         _kobj_printf(ops,
3401                             "krtld: symbol entry: file=%s\n",
3402                             mp->filename);
3403                         _kobj_printf(ops,
3404                             "krtld:\tsymndx\tvalue\t\t"
3405                             "symbol name\n");
3406                         lastmp = mp;
3407                 }
3408                 sp = (Sym *)(mp->symtbl +
3409                     index * mp->symhdr->sh_entsize);
3410                 _kobj_printf(ops, "krtld:\t[%3d]", index);
3411                 _kobj_printf(ops, "\t0x%lx", sp->st_value);
3412                 _kobj_printf(ops, "\t%s\n", name);
3413         }
3414 #endif
3415 
3416         for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3417             ip = &mp->chains[*ip]) {
3418                 ;
3419         }
3420         *ip = index;
3421 }
3422 
3423 struct modctl *
3424 kobj_boot_mod_lookup(const char *modname)
3425 {
3426         struct modctl *mctl = kobj_modules;
3427 
3428         do {
3429                 if (strcmp(modname, mctl->mod_modname) == 0)
3430                         return (mctl);
3431         } while ((mctl = mctl->mod_next) != kobj_modules);
3432 
3433         return (NULL);
3434 }
3435 
3436 /*
3437  * Determine if the module exists.
3438  */
3439 int
3440 kobj_path_exists(char *name, int use_path)
3441 {
3442         struct _buf *file;
3443 
3444         file = kobj_open_path(name, use_path, 1);
3445 #ifdef  MODDIR_SUFFIX
3446         if (file == (struct _buf *)-1)
3447                 file = kobj_open_path(name, use_path, 0);
3448 #endif  /* MODDIR_SUFFIX */
3449         if (file == (struct _buf *)-1)
3450                 return (0);
3451         kobj_close_file(file);
3452         return (1);
3453 }
3454 
3455 /*
3456  * fullname is dynamically allocated to be able to hold the
3457  * maximum size string that can be constructed from name.
3458  * path is exactly like the shell PATH variable.
3459  */
3460 struct _buf *
3461 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3462 {
3463         char *p, *q;
3464         char *pathp;
3465         char *pathpsave;
3466         char *fullname;
3467         int maxpathlen;
3468         struct _buf *file;
3469 
3470 #if !defined(MODDIR_SUFFIX)
3471         use_moddir_suffix = B_FALSE;
3472 #endif
3473 
3474         if (!use_path)
3475                 pathp = "";             /* use name as specified */
3476         else
3477                 pathp = kobj_module_path;
3478                                         /* use configured default path */
3479 
3480         pathpsave = pathp;              /* keep this for error reporting */
3481 
3482         /*
3483          * Allocate enough space for the largest possible fullname.
3484          * since path is of the form <directory> : <directory> : ...
3485          * we're potentially allocating a little more than we need to
3486          * but we'll allocate the exact amount when we find the right directory.
3487          * (The + 3 below is one for NULL terminator and one for the '/'
3488          * we might have to add at the beginning of path and one for
3489          * the '/' between path and name.)
3490          */
3491         maxpathlen = strlen(pathp) + strlen(name) + 3;
3492         /* sizeof includes null */
3493         maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3494         fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3495 
3496         for (;;) {
3497                 p = fullname;
3498                 if (*pathp != '\0' && *pathp != '/')
3499                         *p++ = '/';     /* path must start with '/' */
3500                 while (*pathp && *pathp != ':' && *pathp != ' ')
3501                         *p++ = *pathp++;
3502                 if (p != fullname && p[-1] != '/')
3503                         *p++ = '/';
3504                 if (use_moddir_suffix) {
3505                         char *b = basename(name);
3506                         char *s;
3507 
3508                         /* copy everything up to the base name */
3509                         q = name;
3510                         while (q != b && *q)
3511                                 *p++ = *q++;
3512                         s = slash_moddir_suffix_slash;
3513                         while (*s)
3514                                 *p++ = *s++;
3515                         /* copy the rest */
3516                         while (*b)
3517                                 *p++ = *b++;
3518                 } else {
3519                         q = name;
3520                         while (*q)
3521                                 *p++ = *q++;
3522                 }
3523                 *p = 0;
3524                 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3525                         kobj_free(fullname, maxpathlen);
3526                         return (file);
3527                 }
3528                 while (*pathp == ' ' || *pathp == ':')
3529                         pathp++;
3530                 if (*pathp == 0)
3531                         break;
3532 
3533         }
3534         kobj_free(fullname, maxpathlen);
3535         if (_moddebug & MODDEBUG_ERRMSG) {
3536                 _kobj_printf(ops, "can't open %s,", name);
3537                 _kobj_printf(ops, " path is %s\n", pathpsave);
3538         }
3539         return ((struct _buf *)-1);
3540 }
3541 
3542 intptr_t
3543 kobj_open(char *filename)
3544 {
3545         struct vnode *vp;
3546         int fd;
3547 
3548         if (_modrootloaded) {
3549                 struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3550                 int Errno;
3551 
3552                 /*
3553                  * Hand off the open to a thread who has a
3554                  * stack size capable handling the request.
3555                  */
3556                 if (curthread != &t0) {
3557                         (void) thread_create(NULL, DEFAULTSTKSZ * 2,
3558                             kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3559                         sema_p(&ltp->sema);
3560                         Errno = ltp->Errno;
3561                         vp = ltp->vp;
3562                 } else {
3563                         /*
3564                          * 1098067: module creds should not be those of the
3565                          * caller
3566                          */
3567                         cred_t *saved_cred = curthread->t_cred;
3568                         curthread->t_cred = kcred;
3569                         Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3570                             0, 0, rootdir, -1);
3571                         curthread->t_cred = saved_cred;
3572                 }
3573                 kobjopen_free(ltp);
3574 
3575                 if (Errno) {
3576                         if (_moddebug & MODDEBUG_ERRMSG) {
3577                                 _kobj_printf(ops,
3578                                     "kobj_open: vn_open of %s fails, ",
3579                                     filename);
3580                                 _kobj_printf(ops, "Errno = %d\n", Errno);
3581                         }
3582                         return (-1);
3583                 } else {
3584                         if (_moddebug & MODDEBUG_ERRMSG) {
3585                                 _kobj_printf(ops, "kobj_open: '%s'", filename);
3586                                 _kobj_printf(ops, " vp = %p\n", vp);
3587                         }
3588                         return ((intptr_t)vp);
3589                 }
3590         } else {
3591                 fd = kobj_boot_open(filename, 0);
3592 
3593                 if (_moddebug & MODDEBUG_ERRMSG) {
3594                         if (fd < 0)
3595                                 _kobj_printf(ops,
3596                                     "kobj_open: can't open %s\n", filename);
3597                         else {
3598                                 _kobj_printf(ops, "kobj_open: '%s'", filename);
3599                                 _kobj_printf(ops, " descr = 0x%x\n", fd);
3600                         }
3601                 }
3602                 return ((intptr_t)fd);
3603         }
3604 }
3605 
3606 /*
3607  * Calls to kobj_open() are handled off to this routine as a separate thread.
3608  */
3609 static void
3610 kobjopen_thread(struct kobjopen_tctl *ltp)
3611 {
3612         kmutex_t        cpr_lk;
3613         callb_cpr_t     cpr_i;
3614 
3615         mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3616         CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3617         ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3618             0, 0);
3619         sema_v(&ltp->sema);
3620         mutex_enter(&cpr_lk);
3621         CALLB_CPR_EXIT(&cpr_i);
3622         mutex_destroy(&cpr_lk);
3623         thread_exit();
3624 }
3625 
3626 /*
3627  * allocate and initialize a kobjopen thread structure
3628  */
3629 static struct kobjopen_tctl *
3630 kobjopen_alloc(char *filename)
3631 {
3632         struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3633 
3634         ASSERT(filename != NULL);
3635 
3636         ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3637         bcopy(filename, ltp->name, strlen(filename) + 1);
3638         sema_init(&ltp->sema, 0, NULL, SEMA_DEFAULT, NULL);
3639         return (ltp);
3640 }
3641 
3642 /*
3643  * free a kobjopen thread control structure
3644  */
3645 static void
3646 kobjopen_free(struct kobjopen_tctl *ltp)
3647 {
3648         sema_destroy(&ltp->sema);
3649         kmem_free(ltp->name, strlen(ltp->name) + 1);
3650         kmem_free(ltp, sizeof (*ltp));
3651 }
3652 
3653 int
3654 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3655 {
3656         int stat;
3657         ssize_t resid;
3658 
3659         if (_modrootloaded) {
3660                 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3661                     (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3662                     &resid)) != 0) {
3663                         _kobj_printf(ops,
3664                             "vn_rdwr failed with error 0x%x\n", stat);
3665                         return (-1);
3666                 }
3667                 return (size - resid);
3668         } else {
3669                 int count = 0;
3670 
3671                 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3672                         _kobj_printf(ops,
3673                             "kobj_read: seek 0x%x failed\n", offset);
3674                         return (-1);
3675                 }
3676 
3677                 count = kobj_boot_read((int)descr, buf, size);
3678                 if (count < size) {
3679                         if (_moddebug & MODDEBUG_ERRMSG) {
3680                                 _kobj_printf(ops,
3681                                     "kobj_read: req %d bytes, ", size);
3682                                 _kobj_printf(ops, "got %d\n", count);
3683                         }
3684                 }
3685                 return (count);
3686         }
3687 }
3688 
3689 void
3690 kobj_close(intptr_t descr)
3691 {
3692         if (_moddebug & MODDEBUG_ERRMSG)
3693                 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3694 
3695         if (_modrootloaded) {
3696                 struct vnode *vp = (struct vnode *)descr;
3697                 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3698                 VN_RELE(vp);
3699         } else
3700                 (void) kobj_boot_close((int)descr);
3701 }
3702 
3703 int
3704 kobj_fstat(intptr_t descr, struct bootstat *buf)
3705 {
3706         if (buf == NULL)
3707                 return (-1);
3708 
3709         if (_modrootloaded) {
3710                 vattr_t vattr;
3711                 struct vnode *vp = (struct vnode *)descr;
3712                 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3713                         return (-1);
3714 
3715                 /*
3716                  * The vattr and bootstat structures are similar, but not
3717                  * identical.  We do our best to fill in the bootstat structure
3718                  * from the contents of vattr (transfering only the ones that
3719                  * are obvious.
3720                  */
3721 
3722                 buf->st_mode = (uint32_t)vattr.va_mode;
3723                 buf->st_nlink = (uint32_t)vattr.va_nlink;
3724                 buf->st_uid = (int32_t)vattr.va_uid;
3725                 buf->st_gid = (int32_t)vattr.va_gid;
3726                 buf->st_rdev = (uint64_t)vattr.va_rdev;
3727                 buf->st_size = (uint64_t)vattr.va_size;
3728                 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3729                 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3730                 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3731                 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3732                 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3733                 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3734                 buf->st_blksize = (int32_t)vattr.va_blksize;
3735                 buf->st_blocks = (int64_t)vattr.va_nblocks;
3736 
3737                 return (0);
3738         }
3739 
3740         return (kobj_boot_fstat((int)descr, buf));
3741 }
3742 
3743 
3744 struct _buf *
3745 kobj_open_file(char *name)
3746 {
3747         struct _buf *file;
3748         struct compinfo cbuf;
3749         intptr_t fd;
3750 
3751         if ((fd = kobj_open(name)) == -1) {
3752                 return ((struct _buf *)-1);
3753         }
3754 
3755         file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3756         file->_fd = fd;
3757         file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3758         file->_cnt = file->_size = file->_off = 0;
3759         file->_ln = 1;
3760         file->_ptr = file->_base;
3761         (void) strcpy(file->_name, name);
3762 
3763         /*
3764          * Before root is mounted, we must check
3765          * for a compressed file and do our own
3766          * buffering.
3767          */
3768         if (_modrootloaded) {
3769                 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3770                 file->_bsize = MAXBSIZE;
3771 
3772                 /* Check if the file is compressed */
3773                 file->_iscmp = kobj_is_compressed(fd);
3774         } else {
3775                 if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3776                         kobj_close_file(file);
3777                         return ((struct _buf *)-1);
3778                 }
3779                 file->_iscmp = cbuf.iscmp;
3780                 if (file->_iscmp) {
3781                         if (kobj_comp_setup(file, &cbuf) != 0) {
3782                                 kobj_close_file(file);
3783                                 return ((struct _buf *)-1);
3784                         }
3785                 } else {
3786                         file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3787                         file->_bsize = cbuf.blksize;
3788                 }
3789         }
3790         return (file);
3791 }
3792 
3793 static int
3794 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3795 {
3796         struct comphdr *hdr;
3797 
3798         /*
3799          * read the compressed image into memory,
3800          * so we can deompress from there
3801          */
3802         file->_dsize = cip->fsize;
3803         file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3804         if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3805                 kobj_free(file->_dbuf, cip->fsize);
3806                 return (-1);
3807         }
3808 
3809         hdr = kobj_comphdr(file);
3810         if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3811             hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3812             !ISP2(hdr->ch_blksize)) {
3813                 kobj_free(file->_dbuf, cip->fsize);
3814                 return (-1);
3815         }
3816         file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3817         file->_bsize = hdr->ch_blksize;
3818         return (0);
3819 }
3820 
3821 void
3822 kobj_close_file(struct _buf *file)
3823 {
3824         kobj_close(file->_fd);
3825         if (file->_base != NULL)
3826                 kobj_free(file->_base, file->_bsize);
3827         if (file->_dbuf != NULL)
3828                 kobj_free(file->_dbuf, file->_dsize);
3829         kobj_free(file->_name, strlen(file->_name)+1);
3830         kobj_free(file, sizeof (struct _buf));
3831 }
3832 
3833 int
3834 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3835 {
3836         int b_size, c_size;
3837         int b_off;      /* Offset into buffer for start of bcopy */
3838         int count = 0;
3839         int page_addr;
3840 
3841         if (_moddebug & MODDEBUG_ERRMSG) {
3842                 _kobj_printf(ops, "kobj_read_file: size=%x,", size);
3843                 _kobj_printf(ops, " offset=%x at", off);
3844                 _kobj_printf(ops, " buf=%x\n", buf);
3845         }
3846 
3847         /*
3848          * Handle compressed (gzip for now) file here. First get the
3849          * compressed size, then read the image into memory and finally
3850          * call zlib to decompress the image at the supplied memory buffer.
3851          */
3852         if (file->_iscmp == CH_MAGIC_GZIP) {
3853                 ulong_t dlen;
3854                 vattr_t vattr;
3855                 struct vnode *vp = (struct vnode *)file->_fd;
3856                 ssize_t resid;
3857                 int err = 0;
3858 
3859                 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3860                         return (-1);
3861 
3862                 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3863                 file->_dsize = vattr.va_size;
3864 
3865                 /* Read the compressed file into memory */
3866                 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3867                     (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3868                     &resid)) != 0) {
3869 
3870                         _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3871                             "error code 0x%x\n", err);
3872                         return (-1);
3873                 }
3874 
3875                 dlen = size;
3876 
3877                 /* Decompress the image at the supplied memory buffer */
3878                 if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3879                     vattr.va_size)) != Z_OK) {
3880                         _kobj_printf(ops, "kobj_read_file: z_uncompress "
3881                             "failed, error code : 0x%x\n", err);
3882                         return (-1);
3883                 }
3884 
3885                 if (dlen != size) {
3886                         _kobj_printf(ops, "kobj_read_file: z_uncompress "
3887                             "failed to uncompress (size returned 0x%x , "
3888                             "expected size: 0x%x)\n", dlen, size);
3889                         return (-1);
3890                 }
3891 
3892                 return (0);
3893         }
3894 
3895         while (size) {
3896                 page_addr = F_PAGE(file, off);
3897                 b_size = file->_size;
3898                 /*
3899                  * If we have the filesystem page the caller's referring to
3900                  * and we have something in the buffer,
3901                  * satisfy as much of the request from the buffer as we can.
3902                  */
3903                 if (page_addr == file->_off && b_size > 0) {
3904                         b_off = B_OFFSET(file, off);
3905                         c_size = b_size - b_off;
3906                         /*
3907                          * If there's nothing to copy, we're at EOF.
3908                          */
3909                         if (c_size <= 0)
3910                                 break;
3911                         if (c_size > size)
3912                                 c_size = size;
3913                         if (buf) {
3914                                 if (_moddebug & MODDEBUG_ERRMSG)
3915                                         _kobj_printf(ops, "copying %x bytes\n",
3916                                             c_size);
3917                                 bcopy(file->_base+b_off, buf, c_size);
3918                                 size -= c_size;
3919                                 off += c_size;
3920                                 buf += c_size;
3921                                 count += c_size;
3922                         } else {
3923                                 _kobj_printf(ops, "kobj_read: system error");
3924                                 count = -1;
3925                                 break;
3926                         }
3927                 } else {
3928                         /*
3929                          * If the caller's offset is page aligned and
3930                          * the caller want's at least a filesystem page and
3931                          * the caller provided a buffer,
3932                          * read directly into the caller's buffer.
3933                          */
3934                         if (page_addr == off &&
3935                             (c_size = F_BLKS(file, size)) && buf) {
3936                                 c_size = kobj_read_blks(file, buf, c_size,
3937                                     page_addr);
3938                                 if (c_size < 0) {
3939                                         count = -1;
3940                                         break;
3941                                 }
3942                                 count += c_size;
3943                                 if (c_size != F_BLKS(file, size))
3944                                         break;
3945                                 size -= c_size;
3946                                 off += c_size;
3947                                 buf += c_size;
3948                         /*
3949                          * Otherwise, read into our buffer and copy next time
3950                          * around the loop.
3951                          */
3952                         } else {
3953                                 file->_off = page_addr;
3954                                 c_size = kobj_read_blks(file, file->_base,
3955                                     file->_bsize, page_addr);
3956                                 file->_ptr = file->_base;
3957                                 file->_cnt = c_size;
3958                                 file->_size = c_size;
3959                                 /*
3960                                  * If a _filbuf call or nothing read, break.
3961                                  */
3962                                 if (buf == NULL || c_size <= 0) {
3963                                         count = c_size;
3964                                         break;
3965                                 }
3966                         }
3967                         if (_moddebug & MODDEBUG_ERRMSG)
3968                                 _kobj_printf(ops, "read %x bytes\n", c_size);
3969                 }
3970         }
3971         if (_moddebug & MODDEBUG_ERRMSG)
3972                 _kobj_printf(ops, "count = %x\n", count);
3973 
3974         return (count);
3975 }
3976 
3977 static int
3978 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3979 {
3980         int ret;
3981 
3982         ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3983         if (file->_iscmp) {
3984                 uint_t blks;
3985                 int nret;
3986 
3987                 ret = 0;
3988                 for (blks = size / file->_bsize; blks != 0; blks--) {
3989                         nret = kobj_uncomp_blk(file, buf, off);
3990                         if (nret == -1)
3991                                 return (-1);
3992                         buf += nret;
3993                         off += nret;
3994                         ret += nret;
3995                         if (nret < file->_bsize)
3996                                 break;
3997                 }
3998         } else
3999                 ret = kobj_read(file->_fd, buf, size, off);
4000         return (ret);
4001 }
4002 
4003 static int
4004 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
4005 {
4006         struct comphdr *hdr = kobj_comphdr(file);
4007         ulong_t dlen, slen;
4008         caddr_t src;
4009         int i;
4010 
4011         dlen = file->_bsize;
4012         i = off / file->_bsize;
4013         src = file->_dbuf + hdr->ch_blkmap[i];
4014         if (i == hdr->ch_fsize / file->_bsize)
4015                 slen = file->_dsize - hdr->ch_blkmap[i];
4016         else
4017                 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
4018         if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
4019                 return (-1);
4020         return (dlen);
4021 }
4022 
4023 int
4024 kobj_filbuf(struct _buf *f)
4025 {
4026         if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4027                 return (kobj_getc(f));
4028         return (-1);
4029 }
4030 
4031 void
4032 kobj_free(void *address, size_t size)
4033 {
4034         if (standalone)
4035                 return;
4036 
4037         kmem_free(address, size);
4038         kobj_stat.nfree_calls++;
4039         kobj_stat.nfree += size;
4040 }
4041 
4042 void *
4043 kobj_zalloc(size_t size, int flag)
4044 {
4045         void *v;
4046 
4047         if ((v = kobj_alloc(size, flag)) != 0) {
4048                 bzero(v, size);
4049         }
4050 
4051         return (v);
4052 }
4053 
4054 void *
4055 kobj_alloc(size_t size, int flag)
4056 {
4057         /*
4058          * If we are running standalone in the
4059          * linker, we ask boot for memory.
4060          * Either it's temporary memory that we lose
4061          * once boot is mapped out or we allocate it
4062          * permanently using the dynamic data segment.
4063          */
4064         if (standalone) {
4065 #if defined(_OBP)
4066                 if (flag & (KM_TMP | KM_SCRATCH))
4067                         return (bop_temp_alloc(size, MINALIGN));
4068 #else
4069                 if (flag & (KM_TMP | KM_SCRATCH))
4070                         return (BOP_ALLOC(ops, 0, size, MINALIGN));
4071 #endif
4072                 return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4073         }
4074 
4075         kobj_stat.nalloc_calls++;
4076         kobj_stat.nalloc += size;
4077 
4078         return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4079 }
4080 
4081 /*
4082  * Allow the "mod" system to sync up with the work
4083  * already done by kobj during the initial loading
4084  * of the kernel.  This also gives us a chance
4085  * to reallocate memory that belongs to boot.
4086  */
4087 void
4088 kobj_sync(void)
4089 {
4090         struct modctl_list *lp, **lpp;
4091 
4092         /*
4093          * The module path can be set in /etc/system via 'moddir' commands
4094          */
4095         if (default_path != NULL)
4096                 kobj_module_path = default_path;
4097         else
4098                 default_path = kobj_module_path;
4099 
4100         ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4101             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4102 
4103         ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4104             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4105 
4106         /*
4107          * Move symbol tables from boot memory to ksyms_arena.
4108          */
4109         for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4110                 for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4111                         kobj_export_module(mod(lp));
4112         }
4113 }
4114 
4115 caddr_t
4116 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4117 {
4118         uintptr_t va, pva;
4119         size_t alloc_pgsz = kobj_mmu_pagesize;
4120         size_t alloc_align = BO_NO_ALIGN;
4121         size_t alloc_size;
4122 
4123         /*
4124          * If we are using "large" mappings for the kernel,
4125          * request aligned memory from boot using the
4126          * "large" pagesize.
4127          */
4128         if (lg_pagesize) {
4129                 alloc_align = lg_pagesize;
4130                 alloc_pgsz = lg_pagesize;
4131         }
4132 
4133 #if defined(__sparc)
4134         /* account for redzone */
4135         if (limit)
4136                 limit -= alloc_pgsz;
4137 #endif  /* __sparc */
4138 
4139         va = ALIGN((uintptr_t)*spp, align);
4140         pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4141         /*
4142          * Need more pages?
4143          */
4144         if (va + size > pva) {
4145                 uintptr_t npva;
4146 
4147                 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4148                 /*
4149                  * Check for overlapping segments.
4150                  */
4151                 if (limit && limit <= *spp + alloc_size) {
4152                         return ((caddr_t)0);
4153                 }
4154 
4155                 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4156                     alloc_size, alloc_align);
4157 
4158                 if (npva == 0) {
4159                         _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4160                             alloc_size);
4161                         _kobj_printf(ops, " aligned %lx", alloc_align);
4162                         _kobj_printf(ops, " at 0x%lx\n", pva);
4163                         return (NULL);
4164                 }
4165         }
4166         *spp = (caddr_t)(va + size);
4167 
4168         return ((caddr_t)va);
4169 }
4170 
4171 /*
4172  * Calculate the number of output hash buckets.
4173  * We use the next prime larger than n / 4,
4174  * so the average hash chain is about 4 entries.
4175  * More buckets would just be a waste of memory.
4176  */
4177 uint_t
4178 kobj_gethashsize(uint_t n)
4179 {
4180         int f;
4181         int hsize = MAX(n / 4, 2);
4182 
4183         for (f = 2; f * f <= hsize; f++)
4184                 if (hsize % f == 0)
4185                         hsize += f = 1;
4186 
4187         return (hsize);
4188 }
4189 
4190 /*
4191  * Get the file size.
4192  *
4193  * Before root is mounted, files are compressed in the boot_archive ramdisk
4194  * (in the memory). kobj_fstat would return the compressed file size.
4195  * In order to get the uncompressed file size, read the file to the end and
4196  * count its size.
4197  */
4198 int
4199 kobj_get_filesize(struct _buf *file, uint64_t *size)
4200 {
4201         int err = 0;
4202         ssize_t resid;
4203         uint32_t buf;
4204 
4205         if (_modrootloaded) {
4206                 struct bootstat bst;
4207 
4208                 if (kobj_fstat(file->_fd, &bst) != 0)
4209                         return (EIO);
4210                 *size = bst.st_size;
4211 
4212                 if (file->_iscmp == CH_MAGIC_GZIP) {
4213                         /*
4214                          * Read the last 4 bytes of the compressed (gzip)
4215                          * image to get the size of its uncompressed
4216                          * version.
4217                          */
4218                         if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4219                             (char *)(&buf), 4, (offset_t)(*size - 4),
4220                             UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4221                             != 0) {
4222                                 _kobj_printf(ops, "kobj_get_filesize: "
4223                                     "vn_rdwr() failed with error 0x%x\n", err);
4224                                 return (-1);
4225                         }
4226 
4227                         *size =  (uint64_t)buf;
4228                 }
4229         } else {
4230 
4231 #if defined(_OBP)
4232                 struct bootstat bsb;
4233 
4234                 if (file->_iscmp) {
4235                         struct comphdr *hdr = kobj_comphdr(file);
4236 
4237                         *size = hdr->ch_fsize;
4238                 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4239                         return (EIO);
4240                 else
4241                         *size = bsb.st_size;
4242 #else
4243                 char *buf;
4244                 int count;
4245                 uint64_t offset = 0;
4246 
4247                 buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4248                 do {
4249                         count = kobj_read_file(file, buf, MAXBSIZE, offset);
4250                         if (count < 0) {
4251                                 kmem_free(buf, MAXBSIZE);
4252                                 return (EIO);
4253                         }
4254                         offset += count;
4255                 } while (count == MAXBSIZE);
4256                 kmem_free(buf, MAXBSIZE);
4257 
4258                 *size = offset;
4259 #endif
4260         }
4261 
4262         return (0);
4263 }
4264 
4265 static char *
4266 basename(char *s)
4267 {
4268         char *p, *q;
4269 
4270         q = NULL;
4271         p = s;
4272         do {
4273                 if (*p == '/')
4274                         q = p;
4275         } while (*p++);
4276         return (q ? q + 1 : s);
4277 }
4278 
4279 void
4280 kobj_stat_get(kobj_stat_t *kp)
4281 {
4282         *kp = kobj_stat;
4283 }
4284 
4285 int
4286 kobj_getpagesize()
4287 {
4288         return (lg_pagesize);
4289 }
4290 
4291 void
4292 kobj_textwin_alloc(struct module *mp)
4293 {
4294         ASSERT(MUTEX_HELD(&mod_lock));
4295 
4296         if (mp->textwin != NULL)
4297                 return;
4298 
4299         /*
4300          * If the text is not contained in the heap, then it is not contained
4301          * by a writable mapping.  (Specifically, it's on the nucleus page.)
4302          * We allocate a read/write mapping for this module's text to allow
4303          * the text to be patched without calling hot_patch_kernel_text()
4304          * (which is quite slow).
4305          */
4306         if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4307                 uintptr_t text = (uintptr_t)mp->text;
4308                 uintptr_t size = (uintptr_t)mp->text_size;
4309                 uintptr_t i;
4310                 caddr_t va;
4311                 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4312                     (text & PAGEMASK);
4313 
4314                 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4315 
4316                 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4317                         hat_devload(kas.a_hat, va, PAGESIZE,
4318                             hat_getpfnum(kas.a_hat, (caddr_t)i),
4319                             PROT_READ | PROT_WRITE,
4320                             HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4321                         va += PAGESIZE;
4322                 }
4323 
4324                 mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4325         } else {
4326                 mp->textwin = mp->text;
4327         }
4328 }
4329 
4330 void
4331 kobj_textwin_free(struct module *mp)
4332 {
4333         uintptr_t text = (uintptr_t)mp->text;
4334         uintptr_t tsize = (uintptr_t)mp->text_size;
4335         size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4336             (text & PAGEMASK));
4337 
4338         mp->textwin = NULL;
4339 
4340         if (mp->textwin_base == NULL)
4341                 return;
4342 
4343         hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4344         vmem_free(heap_arena, mp->textwin_base, size);
4345         mp->textwin_base = NULL;
4346 }
4347 
4348 static char *
4349 find_libmacro(char *name)
4350 {
4351         int lmi;
4352 
4353         for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4354                 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4355                         return (libmacros[lmi].lmi_list);
4356         }
4357         return (NULL);
4358 }
4359 
4360 /*
4361  * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4362  * returns path if successful, else NULL
4363  * Support multiple $MACROs expansion and the first valid path will be returned
4364  * Caller's responsibility to provide enough space in path to expand
4365  */
4366 char *
4367 expand_libmacro(char *tail, char *path, char *pathend)
4368 {
4369         char c, *p, *p1, *p2, *path2, *endp;
4370         int diff, lmi, macrolen, valid_macro, more_macro;
4371         struct _buf *file;
4372 
4373         /*
4374          * check for $MACROS between nulls or slashes
4375          */
4376         p = strchr(tail, '$');
4377         if (p == NULL)
4378                 return (NULL);
4379         for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4380                 macrolen = libmacros[lmi].lmi_macrolen;
4381                 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4382                         break;
4383         }
4384 
4385         valid_macro = 0;
4386         if (lmi < NLIBMACROS) {
4387                 /*
4388                  * The following checks are used to restrict expansion of
4389                  * macros to those that form a full directory/file name
4390                  * and to keep the behavior same as before.  If this
4391                  * restriction is removed or no longer valid in the future,
4392                  * the checks below can be deleted.
4393                  */
4394                 if ((p == tail) || (*(p - 1) == '/')) {
4395                         c = *(p + macrolen + 1);
4396                         if (c == '/' || c == '\0')
4397                                 valid_macro = 1;
4398                 }
4399         }
4400 
4401         if (!valid_macro) {
4402                 p2 = strchr(p, '/');
4403                 /*
4404                  * if no more macro to expand, then just copy whatever left
4405                  * and check whether it exists
4406                  */
4407                 if (p2 == NULL || strchr(p2, '$') == NULL) {
4408                         (void) strcpy(pathend, tail);
4409                         if ((file = kobj_open_path(path, 1, 1)) !=
4410                             (struct _buf *)-1) {
4411                                 kobj_close_file(file);
4412                                 return (path);
4413                         } else
4414                                 return (NULL);
4415                 } else {
4416                         /*
4417                          * copy all chars before '/' and call expand_libmacro()
4418                          * again
4419                          */
4420                         diff = p2 - tail;
4421                         bcopy(tail, pathend, diff);
4422                         pathend += diff;
4423                         *(pathend) = '\0';
4424                         return (expand_libmacro(p2, path, pathend));
4425                 }
4426         }
4427 
4428         more_macro = 0;
4429         if (c != '\0') {
4430                 endp = p + macrolen + 1;
4431                 if (strchr(endp, '$') != NULL)
4432                         more_macro = 1;
4433         } else
4434                 endp = NULL;
4435 
4436         /*
4437          * copy lmi_list and split it into components.
4438          * then put the part of tail before $MACRO into path
4439          * at pathend
4440          */
4441         diff = p - tail;
4442         if (diff > 0)
4443                 bcopy(tail, pathend, diff);
4444         path2 = pathend + diff;
4445         p1 = libmacros[lmi].lmi_list;
4446         while (p1 && (*p1 != '\0')) {
4447                 p2 = strchr(p1, ':');
4448                 if (p2) {
4449                         diff = p2 - p1;
4450                         bcopy(p1, path2, diff);
4451                         *(path2 + diff) = '\0';
4452                 } else {
4453                         diff = strlen(p1);
4454                         bcopy(p1, path2, diff + 1);
4455                 }
4456                 /* copy endp only if there isn't any more macro to expand */
4457                 if (!more_macro && (endp != NULL))
4458                         (void) strcat(path2, endp);
4459                 file = kobj_open_path(path, 1, 1);
4460                 if (file != (struct _buf *)-1) {
4461                         kobj_close_file(file);
4462                         /*
4463                          * if more macros to expand then call expand_libmacro(),
4464                          * else return path which has the whole path
4465                          */
4466                         if (!more_macro || (expand_libmacro(endp, path,
4467                             path2 + diff) != NULL)) {
4468                                 return (path);
4469                         }
4470                 }
4471                 if (p2)
4472                         p1 = ++p2;
4473                 else
4474                         return (NULL);
4475         }
4476         return (NULL);
4477 }
4478 
4479 static void
4480 tnf_add_notifyunload(kobj_notify_f *fp)
4481 {
4482         kobj_notify_list_t *entry;
4483 
4484         entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4485         entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4486         entry->kn_func = fp;
4487         (void) kobj_notify_add(entry);
4488 }
4489 
4490 /* ARGSUSED */
4491 static void
4492 tnf_unsplice_probes(uint_t what, struct modctl *mod)
4493 {
4494         tnf_probe_control_t **p;
4495         tnf_tag_data_t **q;
4496         struct module *mp = mod->mod_mp;
4497 
4498         if (!(mp->flags & KOBJ_TNF_PROBE))
4499                 return;
4500 
4501         for (p = &__tnf_probe_list_head; *p; )
4502                 if (kobj_addrcheck(mp, (char *)*p) == 0)
4503                         *p = (*p)->next;
4504                 else
4505                         p = &(*p)->next;
4506 
4507         for (q = &__tnf_tag_list_head; *q; )
4508                 if (kobj_addrcheck(mp, (char *)*q) == 0)
4509                         *q = (tnf_tag_data_t *)(*q)->tag_version;
4510                 else
4511                         q = (tnf_tag_data_t **)&(*q)->tag_version;
4512 
4513         tnf_changed_probe_list = 1;
4514 }
4515 
4516 int
4517 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4518     tnf_tag_data_t *tlist)
4519 {
4520         int result = 0;
4521         static int add_notify = 1;
4522 
4523         if (plist) {
4524                 tnf_probe_control_t *pl;
4525 
4526                 for (pl = plist; pl->next; )
4527                         pl = pl->next;
4528 
4529                 if (!boot_load)
4530                         mutex_enter(&mod_lock);
4531                 tnf_changed_probe_list = 1;
4532                 pl->next = __tnf_probe_list_head;
4533                 __tnf_probe_list_head = plist;
4534                 if (!boot_load)
4535                         mutex_exit(&mod_lock);
4536                 result = 1;
4537         }
4538 
4539         if (tlist) {
4540                 tnf_tag_data_t *tl;
4541 
4542                 for (tl = tlist; tl->tag_version; )
4543                         tl = (tnf_tag_data_t *)tl->tag_version;
4544 
4545                 if (!boot_load)
4546                         mutex_enter(&mod_lock);
4547                 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4548                 __tnf_tag_list_head = tlist;
4549                 if (!boot_load)
4550                         mutex_exit(&mod_lock);
4551                 result = 1;
4552         }
4553         if (!boot_load && result && add_notify) {
4554                 tnf_add_notifyunload(tnf_unsplice_probes);
4555                 add_notify = 0;
4556         }
4557         return (result);
4558 }
4559 
4560 char *kobj_file_buf;
4561 int kobj_file_bufsize;
4562 
4563 /*
4564  * This code is for the purpose of manually recording which files
4565  * needs to go into the boot archive on any given system.
4566  *
4567  * To enable the code, set kobj_file_bufsize in /etc/system
4568  * and reboot the system, then use mdb to look at kobj_file_buf.
4569  */
4570 static void
4571 kobj_record_file(char *filename)
4572 {
4573         static char *buf;
4574         static int size = 0;
4575         int n;
4576 
4577         if (kobj_file_bufsize == 0)     /* don't bother */
4578                 return;
4579 
4580         if (kobj_file_buf == NULL) {    /* allocate buffer */
4581                 size = kobj_file_bufsize;
4582                 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4583         }
4584 
4585         n = snprintf(buf, size, "%s\n", filename);
4586         if (n > size)
4587                 n = size;
4588         size -= n;
4589         buf += n;
4590 }
4591 
4592 static int
4593 kobj_boot_fstat(int fd, struct bootstat *stp)
4594 {
4595 #if defined(_OBP)
4596         if (!standalone && _ioquiesced)
4597                 return (-1);
4598         return (BOP_FSTAT(ops, fd, stp));
4599 #else
4600         return (BRD_FSTAT(bfs_ops, fd, stp));
4601 #endif
4602 }
4603 
4604 static int
4605 kobj_boot_open(char *filename, int flags)
4606 {
4607 #if defined(_OBP)
4608 
4609         /*
4610          * If io via bootops is quiesced, it means boot is no longer
4611          * available to us.  We make it look as if we can't open the
4612          * named file - which is reasonably accurate.
4613          */
4614         if (!standalone && _ioquiesced)
4615                 return (-1);
4616 
4617         kobj_record_file(filename);
4618         return (BOP_OPEN(filename, flags));
4619 #else /* x86 */
4620         kobj_record_file(filename);
4621         return (BRD_OPEN(bfs_ops, filename, flags));
4622 #endif
4623 }
4624 
4625 static int
4626 kobj_boot_close(int fd)
4627 {
4628 #if defined(_OBP)
4629         if (!standalone && _ioquiesced)
4630                 return (-1);
4631 
4632         return (BOP_CLOSE(fd));
4633 #else /* x86 */
4634         return (BRD_CLOSE(bfs_ops, fd));
4635 #endif
4636 }
4637 
4638 /*ARGSUSED*/
4639 static int
4640 kobj_boot_seek(int fd, off_t hi, off_t lo)
4641 {
4642 #if defined(_OBP)
4643         return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4644 #else
4645         return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4646 #endif
4647 }
4648 
4649 static int
4650 kobj_boot_read(int fd, caddr_t buf, size_t size)
4651 {
4652 #if defined(_OBP)
4653         return (BOP_READ(fd, buf, size));
4654 #else
4655         return (BRD_READ(bfs_ops, fd, buf, size));
4656 #endif
4657 }
4658 
4659 static int
4660 kobj_boot_compinfo(int fd, struct compinfo *cb)
4661 {
4662         return (boot_compinfo(fd, cb));
4663 }
4664 
4665 /*
4666  * Check if the file is compressed (for now we handle only gzip).
4667  * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4668  */
4669 static int
4670 kobj_is_compressed(intptr_t fd)
4671 {
4672         struct vnode *vp = (struct vnode *)fd;
4673         ssize_t resid;
4674         uint16_t magic_buf;
4675         int err = 0;
4676 
4677         if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4678             sizeof (magic_buf), (offset_t)(0),
4679             UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4680 
4681                 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4682                     "error code 0x%x\n", err);
4683                 return (0);
4684         }
4685 
4686         if (magic_buf == CH_MAGIC_GZIP)
4687                 return (CH_MAGIC_GZIP);
4688 
4689         return (0);
4690 }