1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright 2019 Joyent, Inc. 26 * 27 * The "bscbus" driver provides access to the LOMlite2 virtual registers, 28 * so that its clients (children) need not be concerned with the details 29 * of the access mechanism, which in this case is implemented via a 30 * packet-based protocol over a Xbus (similar to ebus) parallel link to the 31 * H8 host interface registers. 32 * 33 * On the other hand, this driver doesn't generally know what the virtual 34 * registers signify - only the clients need this information. 35 */ 36 37 38 #include <sys/note.h> 39 #include <sys/types.h> 40 #include <sys/conf.h> 41 #include <sys/debug.h> 42 #include <sys/errno.h> 43 #include <sys/file.h> 44 45 #if defined(__sparc) 46 #include <sys/intr.h> 47 #include <sys/membar.h> 48 #endif 49 50 #include <sys/kmem.h> 51 #include <sys/modctl.h> 52 #include <sys/note.h> 53 #include <sys/open.h> 54 #include <sys/poll.h> 55 #include <sys/spl.h> 56 #include <sys/stat.h> 57 #include <sys/strlog.h> 58 #include <sys/atomic.h> 59 60 #include <sys/ddi.h> 61 #include <sys/sunddi.h> 62 #include <sys/sunndi.h> 63 64 #include <sys/bscbus.h> 65 66 #if defined(NDI_ACC_HDL_V2) 67 68 /* 69 * Compiling for Solaris 10+ with access handle enhancements 70 */ 71 #define HANDLE_TYPE ndi_acc_handle_t 72 #define HANDLE_ADDR(hdlp) (hdlp->ah_addr) 73 #define HANDLE_FAULT(hdlp) (hdlp->ah_fault) 74 #define HANDLE_MAPLEN(hdlp) (hdlp->ah_len) 75 #define HANDLE_PRIVATE(hdlp) (hdlp->ah_bus_private) 76 77 #else 78 79 /* 80 * Compatibility definitions for backport to Solaris 8/9 81 */ 82 #define HANDLE_TYPE ddi_acc_impl_t 83 #define HANDLE_ADDR(hdlp) (hdlp->ahi_common.ah_addr) 84 #define HANDLE_FAULT(hdlp) (hdlp->ahi_fault) 85 #define HANDLE_MAPLEN(hdlp) (hdlp->ahi_common.ah_len) 86 #define HANDLE_PRIVATE(hdlp) (hdlp->ahi_common.ah_bus_private) 87 88 #define ddi_driver_major(dip) ddi_name_to_major(ddi_binding_name(dip)) 89 90 #endif /* NDI_ACC_HDL_V2 */ 91 92 93 /* 94 * Local definitions 95 */ 96 #define MYNAME "bscbus" 97 #define NOMAJOR (~(major_t)0) 98 #define DUMMY_VALUE (~(int8_t)0) 99 100 #define BSCBUS_INST_TO_MINOR(i) (i) 101 #define BSCBUS_MINOR_TO_INST(m) (m) 102 103 #define BSCBUS_MAX_CHANNELS (4) 104 105 #define BSCBUS_DUMMY_ADDRESS ((caddr_t)0x0CADD1ED) 106 #define ADDR_TO_OFFSET(a, hdlp) ((caddr_t)(a) - HANDLE_ADDR(hdlp)) 107 #define ADDR_TO_VREG(a) ((caddr_t)(a) - BSCBUS_DUMMY_ADDRESS) 108 #define VREG_TO_ADDR(v) (BSCBUS_DUMMY_ADDRESS + (v)) 109 110 #ifdef DEBUG 111 #define BSCBUS_LOGSTATUS 112 #endif /* DEBUG */ 113 114 #ifdef BSCBUS_LOGSTATUS 115 /* 116 * BSC command logging routines. 117 * Record the data passing to and from the BSC 118 */ 119 120 typedef enum { 121 BSC_CMD_BUSY = 1, /* bsc reports busy */ 122 BSC_CMD_CLEARING = 2, /* clearing bsc busy */ 123 BSC_CMD_CLEARED = 3, /* cleared bsc busy */ 124 BSC_CMD_SENDING = 4, /* sending next byte */ 125 BSC_CMD_SENT = 5, /* sending last byte */ 126 BSC_CMD_PENDING = 6, /* got sent byte ack */ 127 BSC_CMD_REPLY = 7, /* got reply byte */ 128 BSC_CMD_COMPLETE = 8, /* command complete */ 129 BSC_CMD_ERROR_SEQ = 9, /* error status */ 130 BSC_CMD_ERROR_STATUS = 10, /* error status */ 131 BSC_CMD_ERROR_OFLOW = 11, /* error status */ 132 BSC_CMD_ERROR_TOUT = 12, /* error status */ 133 134 BSC_CMD_PROCESS = 13, /* async intr */ 135 BSC_CMD_V1INTR = 14, /* v1 intr */ 136 BSC_CMD_V1INTRUNCL = 15, /* v1 intr unclaim */ 137 BSC_CMD_DOGPAT = 17 /* watchdog pat */ 138 } bsc_cmd_stamp_t; 139 140 typedef struct { 141 hrtime_t bcl_now; 142 int bcl_seq; 143 bsc_cmd_stamp_t bcl_cat; 144 uint8_t bcl_chno; 145 uint8_t bcl_cmdstate; 146 uint8_t bcl_status; 147 uint8_t bcl_data; 148 } bsc_cmd_log_t; 149 150 uint32_t bscbus_cmd_log_size = 1024; 151 152 uint32_t bscbus_cmd_log_flags = 0xffffffff; 153 154 #endif /* BSCBUS_LOGSTATUS */ 155 156 /* 157 * The following definitions are taken from the Hardware Manual for 158 * the Hitachi H8S/2148 in conjunction with the hardware specification 159 * for the Stiletto blade. 160 * 161 * Each instance of the host interface has 3 registers on the H8: 162 * IDRn - Input Data Register - write-only for Solaris. 163 * writes to this can be done via two 164 * addresses - control and data. 165 * The H8 can determine which address was 166 * written by examining the C/D bit in 167 * the status register. 168 * ODRn - Output Data Register - read-only for Solaris. 169 * A read has the side effect of acknowledging 170 * interrupts. 171 * STRn - Status Register - read-only for Solaris. 172 * 173 * 174 * 175 * In terms of host access to this the Input and Output data registers are 176 * mapped at the same address. 177 */ 178 #define H8_IDRD 0 179 #define H8_IDRC 1 180 #define H8_ODR 0 181 #define H8_STR 1 182 183 #define H8_STR_OBF 0x01 /* data available in ODR */ 184 #define H8_STR_IBF 0x02 /* data for H8 in IDR */ 185 #define H8_STR_IDRC 0x08 /* last write to IDR was to IDRC */ 186 /* 0=data, 1=command */ 187 #define H8_STR_BUSY 0x04 /* H8 busy processing command */ 188 #define H8_STR_TOKENPROTOCOL 0x80 /* token-passing protocol */ 189 190 /* 191 * Packet format ... 192 */ 193 #define BSCBUS_MASK 0xc0 /* Byte-type bits */ 194 #define BSCBUS_PARAM 0x00 /* Parameter byte: 0b0xxxxxxx */ 195 #define BSCBUS_LAST 0x80 /* Last byte of packet */ 196 #define BSCBUS_CMD 0x80 /* Command byte: 0b10###XWV */ 197 #define BSCBUS_STATUS 0xc0 /* Status byte: 0b11###AEV */ 198 199 #define BSCBUS_SEQ 0x38 /* Sequence number bits */ 200 #define BSCBUS_SEQ_LSB 0x08 /* Sequence number LSB */ 201 #define BSCBUS_CMD_XADDR 0x04 /* Extended (2-byte) addressing */ 202 #define BSCBUS_CMD_WRITE 0x02 /* Write command */ 203 #define BSCBUS_CMD_WMSB 0x01 /* Set MSB on Write */ 204 #define BSCBUS_CMD_READ 0x01 /* Read command */ 205 #define BSCBUS_CMD_NOP 0x00 /* NOP command */ 206 207 #define BSCBUS_STATUS_ASYNC 0x04 /* Asynchronous event pending */ 208 #define BSCBUS_STATUS_ERR 0x02 /* Error in command processing */ 209 #define BSCBUS_STATUS_MSB 0x01 /* MSB of Value read */ 210 211 #define BSCBUS_VREG_LO(x) ((x) & ((1 << 7) - 1)) 212 #define BSCBUS_VREG_HI(x) ((x) >> 7) 213 214 #define BSCBUS_BUFSIZE 8 215 216 #define BSCBUS_CHANNEL_TO_OFFSET(chno) ((chno) * 2) /* Register offset */ 217 218 /* 219 * Time periods, in nanoseconds 220 * 221 * Note that LOMBUS_ONE_SEC and some other time 222 * periods are defined in <sys/lombus.h> 223 */ 224 #define BSCBUS_CMD_POLL (LOMBUS_ONE_SEC) 225 #define BSCBUS_CMD_POLLNOINTS (LOMBUS_ONE_SEC/20) 226 #define BSCBUS_HWRESET_POLL (LOMBUS_ONE_SEC/20) 227 #define BSCBUS_HWRESET_TIMEOUT (LOMBUS_ONE_SEC*2) 228 229 #define BSCBUS_DOG_PAT_POLL_LIMIT (1000) 230 #define BSCBUS_DOG_PAT_POLL (1) 231 #define BSCBUS_PAT_RETRY_LIMIT 5 232 233 /* 234 * Local datatypes 235 */ 236 enum bscbus_cmdstate { 237 BSCBUS_CMDSTATE_IDLE, /* No transaction in progress */ 238 BSCBUS_CMDSTATE_BUSY, /* Setting up command */ 239 BSCBUS_CMDSTATE_CLEARING, /* Clearing firmware busy status */ 240 BSCBUS_CMDSTATE_SENDING, /* Waiting to send data to f/w */ 241 BSCBUS_CMDSTATE_PENDING, /* Waiting for ack from f/w */ 242 BSCBUS_CMDSTATE_WAITING, /* Waiting for status from f/w */ 243 BSCBUS_CMDSTATE_READY, /* Status received/command done */ 244 BSCBUS_CMDSTATE_ERROR /* Command failed with error */ 245 }; 246 247 struct bscbus_channel_state { 248 /* Changes to these are protected by the instance ch_mutex mutex */ 249 struct bscbus_state *ssp; 250 uint8_t *ch_regs; 251 ddi_acc_handle_t ch_handle; /* per channel access handle */ 252 unsigned int chno; 253 unsigned int map_count; /* Number of mappings to channel */ 254 boolean_t map_dog; /* channel is mapped for watchdog */ 255 256 /* 257 * Flag to indicate that we've incurred a hardware fault on 258 * accesses to the H8; once this is set, we fake all further 259 * accesses in order not to provoke additional bus errors. 260 */ 261 boolean_t xio_fault; 262 263 /* 264 * Data protected by the dog_mutex: the watchdog-patting 265 * protocol data (since the dog can be patted from a high-level 266 * cyclic), and the interrupt-enabled flag. 267 */ 268 kmutex_t dog_mutex[1]; 269 unsigned int pat_retry_count; 270 unsigned int pat_fail_count; 271 272 /* 273 * Serial protocol state data, protected by lo_mutex 274 * (which is initialised using <lo_iblk>) 275 */ 276 kmutex_t lo_mutex[1]; 277 ddi_iblock_cookie_t lo_iblk; 278 kcondvar_t lo_cv[1]; 279 int unclaimed_count; 280 281 volatile enum bscbus_cmdstate cmdstate; 282 clock_t deadline; 283 clock_t poll_hz; 284 boolean_t interrupt_failed; 285 uint8_t cmdbuf[BSCBUS_BUFSIZE]; 286 uint8_t *cmdp; /* Points to last tx'd in cmdbuf */ 287 uint8_t reply[BSCBUS_BUFSIZE]; 288 uint8_t async; 289 uint8_t index; 290 uint8_t result; 291 uint8_t sequence; 292 uint32_t error; 293 }; 294 295 #define BSCBUS_TX_PENDING(csp) ((csp)->cmdp > (csp)->cmdbuf) 296 297 /* 298 * This driver's soft-state structure 299 */ 300 301 struct bscbus_state { 302 /* 303 * Configuration data, set during attach 304 */ 305 dev_info_t *dip; 306 major_t majornum; 307 int instance; 308 309 ddi_acc_handle_t h8_handle; 310 uint8_t *h8_regs; 311 312 /* 313 * Parameters derived from .conf properties 314 */ 315 uint32_t debug; 316 317 /* 318 * Flag to indicate that we are using per channel 319 * mapping of the register sets and interrupts. 320 * reg set 0 is chan 0 321 * reg set 1 is chan 1 ... 322 * 323 * Interrupts are specified in that order but later 324 * channels may not have interrupts. 325 */ 326 boolean_t per_channel_regs; 327 328 /* 329 * channel state data, protected by ch_mutex 330 * channel claim/release requests are protected by this mutex. 331 */ 332 kmutex_t ch_mutex[1]; 333 struct bscbus_channel_state channel[BSCBUS_MAX_CHANNELS]; 334 335 #ifdef BSCBUS_LOGSTATUS 336 /* 337 * Command logging buffer for recording transactions with the 338 * BSC. This is useful for debugging failed transactions and other 339 * such funnies. 340 */ 341 bsc_cmd_log_t *cmd_log; 342 uint32_t cmd_log_idx; 343 uint32_t cmd_log_size; 344 uint32_t cmd_log_flags; 345 #endif /* BSCBUS_LOGSTATUS */ 346 }; 347 348 /* 349 * The auxiliary structure attached to each child 350 * (the child's parent-private-data points to this). 351 */ 352 struct bscbus_child_info { 353 lombus_regspec_t *rsp; 354 int nregs; 355 }; 356 357 #ifdef BSCBUS_LOGSTATUS 358 void bscbus_cmd_log(struct bscbus_channel_state *, bsc_cmd_stamp_t, 359 uint8_t, uint8_t); 360 #else /* BSCBUS_LOGSTATUS */ 361 #define bscbus_cmd_log(state, stamp, status, data) 362 #endif /* BSCBUS_LOGSTATUS */ 363 364 365 /* 366 * Local data 367 */ 368 369 static void *bscbus_statep; 370 371 static major_t bscbus_major = NOMAJOR; 372 373 static ddi_device_acc_attr_t bscbus_dev_acc_attr[1] = { 374 DDI_DEVICE_ATTR_V0, 375 DDI_STRUCTURE_LE_ACC, 376 DDI_STRICTORDER_ACC 377 }; 378 379 380 /* 381 * General utility routines ... 382 */ 383 384 #ifdef DEBUG 385 static void 386 bscbus_trace(struct bscbus_channel_state *csp, char code, const char *caller, 387 const char *fmt, ...) 388 { 389 char buf[256]; 390 char *p; 391 va_list va; 392 393 if (csp->ssp->debug & (1 << (code-'@'))) { 394 p = buf; 395 (void) snprintf(p, sizeof (buf) - (p - buf), 396 "%s/%s: ", MYNAME, caller); 397 p += strlen(p); 398 399 va_start(va, fmt); 400 (void) vsnprintf(p, sizeof (buf) - (p - buf), fmt, va); 401 va_end(va); 402 403 buf[sizeof (buf) - 1] = '\0'; 404 (void) strlog(csp->ssp->majornum, csp->ssp->instance, 405 code, SL_TRACE, buf); 406 } 407 } 408 #else /* DEBUG */ 409 #define bscbus_trace(...) (void)(0) 410 #endif /* DEBUG */ 411 412 static struct bscbus_state * 413 bscbus_getstate(dev_info_t *dip, int instance, const char *caller) 414 { 415 struct bscbus_state *ssp = NULL; 416 dev_info_t *sdip = NULL; 417 major_t dmaj = NOMAJOR; 418 419 if (dip != NULL) { 420 /* 421 * Use the instance number from the <dip>; also, 422 * check that it really corresponds to this driver 423 */ 424 instance = ddi_get_instance(dip); 425 dmaj = ddi_driver_major(dip); 426 if (bscbus_major == NOMAJOR && dmaj != NOMAJOR) 427 bscbus_major = dmaj; 428 else if (dmaj != bscbus_major) { 429 cmn_err(CE_WARN, 430 "%s: major number mismatch (%d vs. %d) in %s()," 431 "probably due to child misconfiguration", 432 MYNAME, bscbus_major, dmaj, caller); 433 instance = -1; 434 } 435 } 436 437 if (instance >= 0) 438 ssp = ddi_get_soft_state(bscbus_statep, instance); 439 if (ssp != NULL) { 440 sdip = ssp->dip; 441 if (dip == NULL && sdip == NULL) 442 ssp = NULL; 443 else if (dip != NULL && sdip != NULL && sdip != dip) { 444 cmn_err(CE_WARN, 445 "%s: devinfo mismatch (%p vs. %p) in %s(), " 446 "probably due to child misconfiguration", 447 MYNAME, (void *)dip, (void *)sdip, caller); 448 ssp = NULL; 449 } 450 } 451 452 return (ssp); 453 } 454 455 /* 456 * Lowest-level I/O register read/write 457 */ 458 459 static void 460 bscbus_put_reg(struct bscbus_channel_state *csp, uint_t reg, uint8_t val) 461 { 462 if (csp->ch_handle != NULL && !csp->xio_fault) { 463 ddi_put8(csp->ch_handle, 464 csp->ch_regs + reg, val); 465 } 466 } 467 468 static uint8_t 469 bscbus_get_reg(struct bscbus_channel_state *csp, uint_t reg) 470 { 471 uint8_t val; 472 473 if (csp->ch_handle != NULL && !csp->xio_fault) 474 val = ddi_get8(csp->ch_handle, 475 csp->ch_regs + reg); 476 else 477 val = DUMMY_VALUE; 478 479 return (val); 480 } 481 482 static void 483 bscbus_check_fault_status(struct bscbus_channel_state *csp) 484 { 485 csp->xio_fault = 486 ddi_check_acc_handle(csp->ch_handle) != DDI_SUCCESS; 487 } 488 489 static boolean_t 490 bscbus_faulty(struct bscbus_channel_state *csp) 491 { 492 if (!csp->xio_fault) 493 bscbus_check_fault_status(csp); 494 return (csp->xio_fault); 495 } 496 497 /* 498 * Write data into h8 registers 499 */ 500 static void 501 bscbus_pat_dog(struct bscbus_channel_state *csp, uint8_t val) 502 { 503 uint8_t status; 504 uint32_t doglimit = BSCBUS_DOG_PAT_POLL_LIMIT; 505 506 bscbus_trace(csp, 'W', "bscbus_pat_dog:", ""); 507 508 bscbus_cmd_log(csp, BSC_CMD_DOGPAT, 0, val); 509 status = bscbus_get_reg(csp, H8_STR); 510 while (status & H8_STR_IBF) { 511 if (csp->pat_retry_count > BSCBUS_PAT_RETRY_LIMIT) { 512 /* 513 * Previous attempts to contact BSC have failed. 514 * Do not bother waiting for it to eat previous 515 * data. 516 * Pat anyway just in case the BSC is really alive 517 * and the IBF bit is lying. 518 */ 519 bscbus_put_reg(csp, H8_IDRC, val); 520 bscbus_trace(csp, 'W', "bscbus_pat_dog:", 521 "retry count exceeded"); 522 return; 523 } 524 if (--doglimit == 0) { 525 /* The BSC is not responding - give up */ 526 csp->pat_fail_count++; 527 csp->pat_retry_count++; 528 /* Pat anyway just in case the BSC is really alive */ 529 bscbus_put_reg(csp, H8_IDRC, val); 530 bscbus_trace(csp, 'W', "bscbus_pat_dog:", 531 "poll limit exceeded"); 532 return; 533 } 534 drv_usecwait(BSCBUS_DOG_PAT_POLL); 535 status = bscbus_get_reg(csp, H8_STR); 536 } 537 bscbus_put_reg(csp, H8_IDRC, val); 538 csp->pat_retry_count = 0; 539 } 540 541 /* 542 * State diagrams for how bscbus_process works. 543 * BSCBUS_CMDSTATE_IDLE No transaction in progress 544 * BSCBUS_CMDSTATE_BUSY Setting up command 545 * BSCBUS_CMDSTATE_CLEARING Clearing firmware busy status 546 * BSCBUS_CMDSTATE_SENDING Waiting to send data to f/w 547 * BSCBUS_CMDSTATE_PENDING Waiting for ack from f/w 548 * BSCBUS_CMDSTATE_WAITING Waiting for status from f/w 549 * BSCBUS_CMDSTATE_READY Status received/command done 550 * BSCBUS_CMDSTATE_ERROR Command failed with error 551 * 552 * +----------+ 553 * | | 554 * | IDLE/BUSY| 555 * | (0/1) | abnormal 556 * +----------+ state 557 * | \ detected 558 * | \------>------+ +----<---+ 559 * bsc | | | | 560 * is | V V | 561 * ready| +----------+ | 562 * | | | ^ 563 * | | CLEARING | | 564 * | | (2) | | 565 * | +----------+ | 566 * | cleared / | \ | more to clear 567 * | / | \-->--+ 568 * | +-------<-------/ V 569 * | | | 570 * V V |timeout 571 * +----------+ timeout | 572 * | |------>---------+--------+ 573 * | SENDING | | 574 * | (3) |------<-------+ | 575 * +----------+ | V 576 * sent| \ send ^ack | 577 * last| \ next |received | 578 * | \ +----------+ | 579 * | \ | | | 580 * | \------>| PENDING |-->-+ 581 * | | (4) | | 582 * | +----------+ |timeout 583 * | +---<----+ | 584 * | | | | 585 * V V | | 586 * +----------+ | | 587 * | | | | 588 * | WAITING | ^ | 589 * | (5) | | | 590 * +----------+ | | 591 * | | |more | | 592 * | V |required| | 593 * done| | +--->----+ | 594 * | +--->--------------+ +---<---+ 595 * | error/timeout | | 596 * V V V 597 * +----------+ +----------+ 598 * | | | | 599 * | READY | | ERROR | 600 * | (7) | | (6) | 601 * +----------+ +----------+ 602 * | | 603 * V V 604 * | | 605 * +------>---+---<------+ 606 * | 607 * | 608 * Back to 609 * Idle 610 */ 611 612 static void 613 bscbus_process_sending(struct bscbus_channel_state *csp, uint8_t status) 614 { 615 /* 616 * When we get here we actually expect H8_STR_IBF to 617 * be clear but we check just in case of problems. 618 */ 619 ASSERT(BSCBUS_TX_PENDING(csp)); 620 if (!(status & H8_STR_IBF)) { 621 bscbus_put_reg(csp, H8_IDRD, *--csp->cmdp); 622 bscbus_trace(csp, 'P', "bscbus_process_sending", 623 "state %d; val $%x", 624 csp->cmdstate, *csp->cmdp); 625 if (!BSCBUS_TX_PENDING(csp)) { 626 bscbus_cmd_log(csp, BSC_CMD_SENT, 627 status, *csp->cmdp); 628 /* No more pending - move to waiting state */ 629 bscbus_trace(csp, 'P', "bscbus_process_sending", 630 "moving to waiting"); 631 csp->cmdstate = BSCBUS_CMDSTATE_WAITING; 632 /* Extend deadline because time has moved on */ 633 csp->deadline = ddi_get_lbolt() + 634 drv_usectohz(LOMBUS_CMD_TIMEOUT/1000); 635 } else { 636 /* Wait for ack of this byte */ 637 bscbus_cmd_log(csp, BSC_CMD_SENDING, 638 status, *csp->cmdp); 639 csp->cmdstate = BSCBUS_CMDSTATE_PENDING; 640 bscbus_trace(csp, 'P', "bscbus_process_sending", 641 "moving to pending"); 642 } 643 } 644 } 645 646 static void 647 bscbus_process_clearing(struct bscbus_channel_state *csp, 648 uint8_t status, uint8_t data) 649 { 650 /* 651 * We only enter this state if H8_STR_BUSY was set when 652 * we started the transaction. We just ignore all received 653 * data until we see OBF set AND BUSY cleared. 654 * It is not good enough to see BUSY clear on its own 655 */ 656 if ((status & H8_STR_OBF) && !(status & H8_STR_BUSY)) { 657 bscbus_cmd_log(csp, BSC_CMD_CLEARED, status, data); 658 csp->cmdstate = BSCBUS_CMDSTATE_SENDING; 659 /* Throw away any data received up until now */ 660 bscbus_trace(csp, 'P', "bscbus_process_clearing", 661 "busy cleared"); 662 /* 663 * Send the next byte immediately. 664 * At this stage we should clear the OBF flag because that 665 * data has been used. IBF is still valid so do not clear that. 666 */ 667 status &= ~(H8_STR_OBF); 668 bscbus_process_sending(csp, status); 669 } else { 670 if (status & H8_STR_OBF) { 671 bscbus_cmd_log(csp, BSC_CMD_CLEARING, status, data); 672 } 673 } 674 } 675 676 static void 677 bscbus_process_pending(struct bscbus_channel_state *csp, uint8_t status) 678 { 679 /* We are waiting for an acknowledgement of a byte */ 680 if (status & H8_STR_OBF) { 681 bscbus_cmd_log(csp, BSC_CMD_PENDING, 682 status, *csp->cmdp); 683 bscbus_trace(csp, 'P', "bscbus_process_pending", 684 "moving to sending"); 685 csp->cmdstate = BSCBUS_CMDSTATE_SENDING; 686 /* 687 * Send the next byte immediately. 688 * At this stage we should clear the OBF flag because that 689 * data has been used. IBF is still valid so do not clear that. 690 */ 691 status &= ~(H8_STR_OBF); 692 bscbus_process_sending(csp, status); 693 } 694 } 695 696 static boolean_t 697 bscbus_process_waiting(struct bscbus_channel_state *csp, 698 uint8_t status, uint8_t data) 699 { 700 uint8_t rcvd = 0; 701 boolean_t ready = B_FALSE; 702 uint8_t tmp; 703 704 if (status & H8_STR_OBF) { 705 csp->reply[rcvd = csp->index] = data; 706 if (++rcvd < BSCBUS_BUFSIZE) 707 csp->index = rcvd; 708 709 bscbus_trace(csp, 'D', "bscbus_process_waiting", 710 "rcvd %d: $%02x $%02x $%02x $%02x $%02x $%02x $%02x $%02x", 711 rcvd, 712 csp->reply[0], csp->reply[1], 713 csp->reply[2], csp->reply[3], 714 csp->reply[4], csp->reply[5], 715 csp->reply[6], csp->reply[7]); 716 } 717 718 if (rcvd == 0) { 719 /* 720 * No bytes received this time through (though there 721 * might be a partial packet sitting in the buffer). 722 */ 723 /* EMPTY */ 724 ; 725 } else if (rcvd >= BSCBUS_BUFSIZE) { 726 /* 727 * Buffer overflow; discard the data & treat as an error 728 * (even if the last byte read did claim to terminate a 729 * packet, it can't be a valid one 'cos it's too long!) 730 */ 731 bscbus_cmd_log(csp, BSC_CMD_ERROR_OFLOW, status, data); 732 csp->index = 0; 733 csp->cmdstate = BSCBUS_CMDSTATE_ERROR; 734 csp->error = LOMBUS_ERR_OFLOW; 735 ready = B_TRUE; 736 } else if ((data & BSCBUS_LAST) == 0) { 737 /* 738 * Packet not yet complete; leave the partial packet in 739 * the buffer for later ... 740 */ 741 bscbus_cmd_log(csp, BSC_CMD_REPLY, status, data); 742 } else if ((data & BSCBUS_MASK) != BSCBUS_STATUS) { 743 /* Invalid "status" byte - maybe an echo of the command? */ 744 bscbus_cmd_log(csp, BSC_CMD_ERROR_STATUS, status, data); 745 746 csp->cmdstate = BSCBUS_CMDSTATE_ERROR; 747 csp->error = LOMBUS_ERR_BADSTATUS; 748 ready = B_TRUE; 749 } else if ((data & BSCBUS_SEQ) != csp->sequence) { 750 /* Wrong sequence number! Flag this as an error */ 751 bscbus_cmd_log(csp, BSC_CMD_ERROR_SEQ, status, data); 752 753 csp->cmdstate = BSCBUS_CMDSTATE_ERROR; 754 csp->error = LOMBUS_ERR_SEQUENCE; 755 ready = B_TRUE; 756 } else { 757 /* 758 * Finally, we know that's it's a valid reply to our 759 * last command. Update the ASYNC status, derive the 760 * reply parameter (if any), and check the ERROR bit 761 * to find out what the parameter means. 762 * 763 * Note that not all the values read/assigned here 764 * are meaningful, but it doesn't matter; the waiting 765 * thread will know which one(s) it should check. 766 */ 767 bscbus_cmd_log(csp, BSC_CMD_COMPLETE, status, data); 768 csp->async = (data & BSCBUS_STATUS_ASYNC) ? 1 : 0; 769 770 tmp = ((data & BSCBUS_STATUS_MSB) ? 0x80 : 0) | csp->reply[0]; 771 if (data & BSCBUS_STATUS_ERR) { 772 csp->cmdstate = BSCBUS_CMDSTATE_ERROR; 773 csp->error = tmp; 774 } else { 775 csp->cmdstate = BSCBUS_CMDSTATE_READY; 776 csp->result = tmp; 777 } 778 ready = B_TRUE; 779 } 780 return (ready); 781 } 782 783 /* 784 * Packet receive handler 785 * 786 * This routine should be called from the low-level softint, 787 * or bscbus_cmd() (for polled operation), with the 788 * low-level mutex already held. 789 */ 790 static void 791 bscbus_process(struct bscbus_channel_state *csp, 792 uint8_t status, uint8_t data) 793 { 794 boolean_t ready = B_FALSE; 795 796 ASSERT(mutex_owned(csp->lo_mutex)); 797 798 if ((status & H8_STR_OBF) || (status & H8_STR_IBF)) { 799 bscbus_trace(csp, 'D', "bscbus_process", 800 "state %d; error $%x", 801 csp->cmdstate, csp->error); 802 } 803 804 switch (csp->cmdstate) { 805 case BSCBUS_CMDSTATE_CLEARING: 806 bscbus_process_clearing(csp, status, data); 807 break; 808 case BSCBUS_CMDSTATE_SENDING: 809 bscbus_process_sending(csp, status); 810 break; 811 case BSCBUS_CMDSTATE_PENDING: 812 bscbus_process_pending(csp, status); 813 break; 814 case BSCBUS_CMDSTATE_WAITING: 815 ready = bscbus_process_waiting(csp, status, data); 816 break; 817 default: 818 /* Nothing to do */ 819 break; 820 } 821 822 /* 823 * Check for timeouts - but only if the command has not yet 824 * completed (ready is true when command completes in this 825 * call to bscbus_process OR cmdstate is READY or ERROR if 826 * this is a spurious call to bscbus_process i.e. a spurious 827 * interrupt) 828 */ 829 if (!ready && 830 ((ddi_get_lbolt() - csp->deadline) > 0) && 831 csp->cmdstate != BSCBUS_CMDSTATE_READY && 832 csp->cmdstate != BSCBUS_CMDSTATE_ERROR) { 833 bscbus_trace(csp, 'P', "bscbus_process", 834 "timeout previous state %d; error $%x", 835 csp->cmdstate, csp->error); 836 bscbus_cmd_log(csp, BSC_CMD_ERROR_TOUT, status, data); 837 if (csp->cmdstate == BSCBUS_CMDSTATE_CLEARING) { 838 /* Move onto sending because busy might be stuck */ 839 csp->cmdstate = BSCBUS_CMDSTATE_SENDING; 840 /* Extend timeout relative to original start time */ 841 csp->deadline += drv_usectohz(LOMBUS_CMD_TIMEOUT/1000); 842 } else if (csp->cmdstate != BSCBUS_CMDSTATE_IDLE) { 843 csp->cmdstate = BSCBUS_CMDSTATE_ERROR; 844 csp->error = LOMBUS_ERR_TIMEOUT; 845 } 846 ready = B_TRUE; 847 } 848 849 if ((status & H8_STR_OBF) || (status & H8_STR_IBF) || ready) { 850 bscbus_trace(csp, 'D', "bscbus_process", 851 "last $%02x; state %d; error $%x; ready %d", 852 data, csp->cmdstate, csp->error, ready); 853 } 854 if (ready) 855 cv_broadcast(csp->lo_cv); 856 } 857 858 static uint_t 859 bscbus_hwintr(caddr_t arg) 860 { 861 struct bscbus_channel_state *csp = (void *)arg; 862 863 uint8_t status; 864 uint8_t data = 0xb0 /* Dummy value */; 865 866 mutex_enter(csp->lo_mutex); 867 /* 868 * Read the registers to ensure that the interrupt is cleared. 869 * Status must be read first because reading data changes the 870 * status. 871 * We always read the data because that clears the interrupt down. 872 * This is horrible hardware semantics but we have to do it! 873 */ 874 status = bscbus_get_reg(csp, H8_STR); 875 data = bscbus_get_reg(csp, H8_ODR); 876 if (!(status & H8_STR_OBF)) { 877 bscbus_cmd_log(csp, BSC_CMD_V1INTRUNCL, status, data); 878 csp->unclaimed_count++; 879 } else { 880 bscbus_cmd_log(csp, BSC_CMD_V1INTR, status, data); 881 } 882 if (status & H8_STR_TOKENPROTOCOL) { 883 bscbus_process(csp, status, data); 884 if (csp->interrupt_failed) { 885 bscbus_trace(csp, 'I', "bscbus_hwintr:", 886 "interrupt fault cleared channel %d", csp->chno); 887 csp->interrupt_failed = B_FALSE; 888 csp->poll_hz = drv_usectohz(BSCBUS_CMD_POLL / 1000); 889 } 890 } 891 892 mutex_exit(csp->lo_mutex); 893 return (DDI_INTR_CLAIMED); 894 } 895 896 void 897 bscbus_poll(struct bscbus_channel_state *csp) 898 { 899 /* 900 * This routine is only called if we timeout in userland 901 * waiting for an interrupt. This generally means that we have 902 * lost interrupt capabilities or that something has gone 903 * wrong. In this case we are allowed to access the hardware 904 * and read the data register if necessary. 905 * If interrupts return then recovery actions should mend us! 906 */ 907 uint8_t status; 908 uint8_t data = 0xfa; /* Dummy value */ 909 910 ASSERT(mutex_owned(csp->lo_mutex)); 911 912 /* Should look for data to receive */ 913 status = bscbus_get_reg(csp, H8_STR); 914 if (status & H8_STR_OBF) { 915 /* There is data available */ 916 data = bscbus_get_reg(csp, H8_ODR); 917 bscbus_cmd_log(csp, BSC_CMD_PROCESS, status, data); 918 } 919 bscbus_process(csp, status, data); 920 } 921 922 /* 923 * Serial protocol 924 * 925 * This routine builds a command and sets it in progress. 926 */ 927 static uint8_t 928 bscbus_cmd(HANDLE_TYPE *hdlp, ptrdiff_t vreg, uint_t val, uint_t cmd) 929 { 930 struct bscbus_channel_state *csp; 931 clock_t start; 932 uint8_t status; 933 934 /* 935 * First of all, wait for the interface to be available. 936 * 937 * NOTE: we blow through all the mutex/cv/state checking and 938 * preempt any command in progress if the system is panicking! 939 */ 940 csp = HANDLE_PRIVATE(hdlp); 941 mutex_enter(csp->lo_mutex); 942 while (csp->cmdstate != BSCBUS_CMDSTATE_IDLE && !ddi_in_panic()) 943 cv_wait(csp->lo_cv, csp->lo_mutex); 944 945 csp->cmdstate = BSCBUS_CMDSTATE_BUSY; 946 csp->sequence = (csp->sequence + BSCBUS_SEQ_LSB) & BSCBUS_SEQ; 947 948 /* 949 * We have exclusive ownership, so assemble the command (backwards): 950 * 951 * [byte 0] Command: modified by XADDR and/or WMSB bits 952 * [Optional] Parameter: Value to write (low 7 bits) 953 * [Optional] Parameter: Register number (high 7 bits) 954 * [Optional] Parameter: Register number (low 7 bits) 955 */ 956 csp->cmdp = &csp->cmdbuf[0]; 957 *csp->cmdp++ = BSCBUS_CMD | csp->sequence | cmd; 958 switch (cmd) { 959 case BSCBUS_CMD_WRITE: 960 *csp->cmdp++ = val & 0x7f; 961 if (val >= 0x80) 962 csp->cmdbuf[0] |= BSCBUS_CMD_WMSB; 963 /*FALLTHRU*/ 964 case BSCBUS_CMD_READ: 965 if (BSCBUS_VREG_HI(vreg) != 0) { 966 *csp->cmdp++ = BSCBUS_VREG_HI(vreg); 967 csp->cmdbuf[0] |= BSCBUS_CMD_XADDR; 968 } 969 *csp->cmdp++ = BSCBUS_VREG_LO(vreg); 970 /*FALLTHRU*/ 971 case BSCBUS_CMD_NOP: 972 break; 973 } 974 975 /* 976 * Check and update the H8 h/w fault status before accessing 977 * the chip registers. If there's a (new or previous) fault, 978 * we'll run through the protocol but won't really touch the 979 * hardware and all commands will timeout. If a previously 980 * discovered fault has now gone away (!), then we can (try to) 981 * proceed with the new command (probably a probe). 982 */ 983 bscbus_check_fault_status(csp); 984 985 /* 986 * Prepare for the command (to be processed by the interrupt 987 * handler and/or polling loop below), and wait for a response 988 * or timeout. 989 */ 990 start = ddi_get_lbolt(); 991 csp->deadline = start + drv_usectohz(LOMBUS_CMD_TIMEOUT/1000); 992 csp->error = 0; 993 csp->index = 0; 994 csp->result = DUMMY_VALUE; 995 996 status = bscbus_get_reg(csp, H8_STR); 997 if (status & H8_STR_BUSY) { 998 bscbus_cmd_log(csp, BSC_CMD_BUSY, status, 0xfd); 999 /* 1000 * Must ensure that the busy state has cleared before 1001 * sending the command 1002 */ 1003 csp->cmdstate = BSCBUS_CMDSTATE_CLEARING; 1004 bscbus_trace(csp, 'P', "bscbus_cmd", 1005 "h8 reporting status (%x) busy - clearing", status); 1006 } else { 1007 /* It is clear to send the command immediately */ 1008 csp->cmdstate = BSCBUS_CMDSTATE_SENDING; 1009 bscbus_trace(csp, 'P', "bscbus_cmd", 1010 "sending first byte of command, status %x", status); 1011 bscbus_poll(csp); 1012 } 1013 1014 csp->poll_hz = drv_usectohz( 1015 (csp->interrupt_failed ? 1016 BSCBUS_CMD_POLLNOINTS : BSCBUS_CMD_POLL) / 1000); 1017 1018 while ((csp->cmdstate != BSCBUS_CMDSTATE_READY) && 1019 (csp->cmdstate != BSCBUS_CMDSTATE_ERROR)) { 1020 ASSERT(csp->cmdstate != BSCBUS_CMDSTATE_IDLE); 1021 1022 if ((cv_reltimedwait(csp->lo_cv, csp->lo_mutex, 1023 csp->poll_hz, TR_CLOCK_TICK) == -1) && 1024 csp->cmdstate != BSCBUS_CMDSTATE_READY && 1025 csp->cmdstate != BSCBUS_CMDSTATE_ERROR) { 1026 if (!csp->interrupt_failed) { 1027 bscbus_trace(csp, 'I', "bscbus_cmd:", 1028 "interrupt_failed channel %d", csp->chno); 1029 csp->interrupt_failed = B_TRUE; 1030 csp->poll_hz = drv_usectohz( 1031 BSCBUS_CMD_POLLNOINTS / 1000); 1032 } 1033 bscbus_poll(csp); 1034 } 1035 } 1036 1037 /* 1038 * The return value may not be meaningful but retrieve it anyway 1039 */ 1040 val = csp->result; 1041 if (bscbus_faulty(csp)) { 1042 val = DUMMY_VALUE; 1043 HANDLE_FAULT(hdlp) = LOMBUS_ERR_SIOHW; 1044 } else if (csp->cmdstate != BSCBUS_CMDSTATE_READY) { 1045 /* 1046 * Some problem here ... transfer the error code from 1047 * the per-instance state to the per-handle fault flag. 1048 * The error code shouldn't be zero! 1049 */ 1050 if (csp->error != 0) 1051 HANDLE_FAULT(hdlp) = csp->error; 1052 else 1053 HANDLE_FAULT(hdlp) = LOMBUS_ERR_BADERRCODE; 1054 } 1055 1056 /* 1057 * All done now! 1058 */ 1059 csp->index = 0; 1060 csp->cmdstate = BSCBUS_CMDSTATE_IDLE; 1061 cv_broadcast(csp->lo_cv); 1062 mutex_exit(csp->lo_mutex); 1063 1064 return (val); 1065 } 1066 1067 /* 1068 * Space 0 - LOM virtual register access 1069 * Only 8-bit accesses are supported. 1070 */ 1071 static uint8_t 1072 bscbus_vreg_get8(HANDLE_TYPE *hdlp, uint8_t *addr) 1073 { 1074 ptrdiff_t offset; 1075 1076 /* 1077 * Check the offset that the caller has added to the base address 1078 * against the length of the mapping originally requested. 1079 */ 1080 offset = ADDR_TO_OFFSET(addr, hdlp); 1081 if (offset < 0 || offset >= HANDLE_MAPLEN(hdlp)) { 1082 /* 1083 * Invalid access - flag a fault and return a dummy value 1084 */ 1085 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM; 1086 return (DUMMY_VALUE); 1087 } 1088 1089 /* 1090 * Derive the virtual register number and run the command 1091 */ 1092 return (bscbus_cmd(hdlp, ADDR_TO_VREG(addr), 0, BSCBUS_CMD_READ)); 1093 } 1094 1095 static void 1096 bscbus_vreg_put8(HANDLE_TYPE *hdlp, uint8_t *addr, uint8_t val) 1097 { 1098 ptrdiff_t offset; 1099 1100 /* 1101 * Check the offset that the caller has added to the base address 1102 * against the length of the mapping originally requested. 1103 */ 1104 offset = ADDR_TO_OFFSET(addr, hdlp); 1105 if (offset < 0 || offset >= HANDLE_MAPLEN(hdlp)) { 1106 /* 1107 * Invalid access - flag a fault and return 1108 */ 1109 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM; 1110 return; 1111 } 1112 1113 /* 1114 * Derive the virtual register number and run the command 1115 */ 1116 (void) bscbus_cmd(hdlp, ADDR_TO_VREG(addr), val, BSCBUS_CMD_WRITE); 1117 } 1118 1119 static void 1120 bscbus_vreg_rep_get8(HANDLE_TYPE *hdlp, uint8_t *host_addr, 1121 uint8_t *dev_addr, size_t repcount, uint_t flags) 1122 { 1123 size_t inc; 1124 1125 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0; 1126 for (; repcount--; dev_addr += inc) 1127 *host_addr++ = bscbus_vreg_get8(hdlp, dev_addr); 1128 } 1129 1130 static void 1131 bscbus_vreg_rep_put8(HANDLE_TYPE *hdlp, uint8_t *host_addr, 1132 uint8_t *dev_addr, size_t repcount, uint_t flags) 1133 { 1134 size_t inc; 1135 1136 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0; 1137 for (; repcount--; dev_addr += inc) 1138 bscbus_vreg_put8(hdlp, dev_addr, *host_addr++); 1139 } 1140 1141 1142 /* 1143 * Space 1 - LOM watchdog pat register access 1144 * Only 8-bit accesses are supported. 1145 * 1146 * Reads have no effect and return 0. 1147 * 1148 * Multi-byte reads (using ddi_rep_get8(9F)) are a fairly inefficient 1149 * way of zeroing the destination area ;-) and still won't pat the dog. 1150 * 1151 * Multi-byte writes (using ddi_rep_put8(9F)) will almost certainly 1152 * only count as a single pat, no matter how many bytes the caller 1153 * says to write, as the inter-pat time is VERY long compared with 1154 * the time it will take to read the memory source area. 1155 */ 1156 1157 static uint8_t 1158 bscbus_pat_get8(HANDLE_TYPE *hdlp, uint8_t *addr) 1159 { 1160 ptrdiff_t offset; 1161 1162 /* 1163 * Check the offset that the caller has added to the base address 1164 * against the length of the mapping originally requested. 1165 */ 1166 offset = ADDR_TO_OFFSET(addr, hdlp); 1167 if (offset < 0 || offset >= HANDLE_MAPLEN(hdlp)) { 1168 /* 1169 * Invalid access - flag a fault and return a dummy value 1170 */ 1171 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM; 1172 return (DUMMY_VALUE); 1173 } 1174 1175 return (0); 1176 } 1177 1178 static void 1179 bscbus_pat_put8(HANDLE_TYPE *hdlp, uint8_t *addr, uint8_t val) 1180 { 1181 struct bscbus_channel_state *csp; 1182 ptrdiff_t offset; 1183 1184 /* 1185 * Check the offset that the caller has added to the base address 1186 * against the length of the mapping originally requested. 1187 */ 1188 offset = ADDR_TO_OFFSET(addr, hdlp); 1189 if (offset < 0 || offset >= HANDLE_MAPLEN(hdlp)) { 1190 /* 1191 * Invalid access - flag a fault and return 1192 */ 1193 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM; 1194 return; 1195 } 1196 1197 csp = HANDLE_PRIVATE(hdlp); 1198 mutex_enter(csp->dog_mutex); 1199 bscbus_pat_dog(csp, val); 1200 mutex_exit(csp->dog_mutex); 1201 } 1202 1203 static void 1204 bscbus_pat_rep_get8(HANDLE_TYPE *hdlp, uint8_t *host_addr, 1205 uint8_t *dev_addr, size_t repcount, uint_t flags) 1206 { 1207 size_t inc; 1208 1209 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0; 1210 for (; repcount--; dev_addr += inc) 1211 *host_addr++ = bscbus_pat_get8(hdlp, dev_addr); 1212 } 1213 1214 static void 1215 bscbus_pat_rep_put8(HANDLE_TYPE *hdlp, uint8_t *host_addr, 1216 uint8_t *dev_addr, size_t repcount, uint_t flags) 1217 { 1218 size_t inc; 1219 1220 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0; 1221 for (; repcount--; dev_addr += inc) 1222 bscbus_pat_put8(hdlp, dev_addr, *host_addr++); 1223 } 1224 1225 1226 /* 1227 * Space 2 - LOM async event flag register access 1228 * Only 16-bit accesses are supported. 1229 */ 1230 static uint16_t 1231 bscbus_event_get16(HANDLE_TYPE *hdlp, uint16_t *addr) 1232 { 1233 struct bscbus_channel_state *csp; 1234 ptrdiff_t offset; 1235 1236 /* 1237 * Check the offset that the caller has added to the base address 1238 * against the length of the mapping orignally requested. 1239 */ 1240 offset = ADDR_TO_OFFSET(addr, hdlp); 1241 if (offset < 0 || (offset%2) != 0 || offset >= HANDLE_MAPLEN(hdlp)) { 1242 /* 1243 * Invalid access - flag a fault and return a dummy value 1244 */ 1245 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM; 1246 return (DUMMY_VALUE); 1247 } 1248 1249 /* 1250 * Return the value of the asynchronous-event-pending flag 1251 * as passed back by the LOM at the end of the last command. 1252 */ 1253 csp = HANDLE_PRIVATE(hdlp); 1254 return (csp->async); 1255 } 1256 1257 static void 1258 bscbus_event_put16(HANDLE_TYPE *hdlp, uint16_t *addr, uint16_t val) 1259 { 1260 ptrdiff_t offset; 1261 1262 _NOTE(ARGUNUSED(val)) 1263 1264 /* 1265 * Check the offset that the caller has added to the base address 1266 * against the length of the mapping originally requested. 1267 */ 1268 offset = ADDR_TO_OFFSET(addr, hdlp); 1269 if (offset < 0 || (offset%2) != 0 || offset >= HANDLE_MAPLEN(hdlp)) { 1270 /* 1271 * Invalid access - flag a fault and return 1272 */ 1273 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM; 1274 return; 1275 } 1276 1277 /* 1278 * The user can't overwrite the asynchronous-event-pending flag! 1279 */ 1280 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_RO; 1281 } 1282 1283 static void 1284 bscbus_event_rep_get16(HANDLE_TYPE *hdlp, uint16_t *host_addr, 1285 uint16_t *dev_addr, size_t repcount, uint_t flags) 1286 { 1287 size_t inc; 1288 1289 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0; 1290 for (; repcount--; dev_addr += inc) 1291 *host_addr++ = bscbus_event_get16(hdlp, dev_addr); 1292 } 1293 1294 static void 1295 bscbus_event_rep_put16(HANDLE_TYPE *hdlp, uint16_t *host_addr, 1296 uint16_t *dev_addr, size_t repcount, uint_t flags) 1297 { 1298 size_t inc; 1299 1300 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0; 1301 for (; repcount--; dev_addr += inc) 1302 bscbus_event_put16(hdlp, dev_addr, *host_addr++); 1303 } 1304 1305 1306 /* 1307 * All spaces - access handle fault information 1308 * Only 32-bit accesses are supported. 1309 */ 1310 static uint32_t 1311 bscbus_meta_get32(HANDLE_TYPE *hdlp, uint32_t *addr) 1312 { 1313 struct bscbus_channel_state *csp; 1314 ptrdiff_t offset; 1315 1316 /* 1317 * Derive the offset that the caller has added to the base 1318 * address originally returned, and use it to determine 1319 * which meta-register is to be accessed ... 1320 */ 1321 offset = ADDR_TO_OFFSET(addr, hdlp); 1322 switch (offset) { 1323 case LOMBUS_FAULT_REG: 1324 /* 1325 * This meta-register provides a code for the most 1326 * recent virtual register access fault, if any. 1327 */ 1328 return (HANDLE_FAULT(hdlp)); 1329 1330 case LOMBUS_PROBE_REG: 1331 /* 1332 * Reading this meta-register clears any existing fault 1333 * (at the virtual, not the hardware access layer), then 1334 * runs a NOP command and returns the fault code from that. 1335 */ 1336 HANDLE_FAULT(hdlp) = 0; 1337 (void) bscbus_cmd(hdlp, 0, 0, BSCBUS_CMD_NOP); 1338 return (HANDLE_FAULT(hdlp)); 1339 1340 case LOMBUS_ASYNC_REG: 1341 /* 1342 * Obsolescent - but still supported for backwards 1343 * compatibility. This is an alias for the newer 1344 * LOMBUS_EVENT_REG, but doesn't require a separate 1345 * "reg" entry and ddi_regs_map_setup() call. 1346 * 1347 * It returns the value of the asynchronous-event-pending 1348 * flag as passed back by the BSC at the end of the last 1349 * completed command. 1350 */ 1351 csp = HANDLE_PRIVATE(hdlp); 1352 return (csp->async); 1353 1354 default: 1355 /* 1356 * Invalid access - flag a fault and return a dummy value 1357 */ 1358 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1359 return (DUMMY_VALUE); 1360 } 1361 } 1362 1363 static void 1364 bscbus_meta_put32(HANDLE_TYPE *hdlp, uint32_t *addr, uint32_t val) 1365 { 1366 ptrdiff_t offset; 1367 1368 /* 1369 * Derive the offset that the caller has added to the base 1370 * address originally returned, and use it to determine 1371 * which meta-register is to be accessed ... 1372 */ 1373 offset = ADDR_TO_OFFSET(addr, hdlp); 1374 switch (offset) { 1375 case LOMBUS_FAULT_REG: 1376 /* 1377 * This meta-register contains a code for the most 1378 * recent virtual register access fault, if any. 1379 * It can be cleared simply by writing 0 to it. 1380 */ 1381 HANDLE_FAULT(hdlp) = val; 1382 return; 1383 1384 case LOMBUS_PROBE_REG: 1385 /* 1386 * Writing this meta-register clears any existing fault 1387 * (at the virtual, not the hardware acess layer), then 1388 * runs a NOP command. The caller can check the fault 1389 * code later if required. 1390 */ 1391 HANDLE_FAULT(hdlp) = 0; 1392 (void) bscbus_cmd(hdlp, 0, 0, BSCBUS_CMD_NOP); 1393 return; 1394 1395 default: 1396 /* 1397 * Invalid access - flag a fault 1398 */ 1399 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1400 return; 1401 } 1402 } 1403 1404 static void 1405 bscbus_meta_rep_get32(HANDLE_TYPE *hdlp, uint32_t *host_addr, 1406 uint32_t *dev_addr, size_t repcount, uint_t flags) 1407 { 1408 size_t inc; 1409 1410 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0; 1411 for (; repcount--; dev_addr += inc) 1412 *host_addr++ = bscbus_meta_get32(hdlp, dev_addr); 1413 } 1414 1415 static void 1416 bscbus_meta_rep_put32(HANDLE_TYPE *hdlp, uint32_t *host_addr, 1417 uint32_t *dev_addr, size_t repcount, uint_t flags) 1418 { 1419 size_t inc; 1420 1421 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0; 1422 for (; repcount--; dev_addr += inc) 1423 bscbus_meta_put32(hdlp, dev_addr, *host_addr++); 1424 } 1425 1426 1427 /* 1428 * Finally, some dummy functions for all unsupported access 1429 * space/size/mode combinations ... 1430 */ 1431 static uint8_t 1432 bscbus_no_get8(HANDLE_TYPE *hdlp, uint8_t *addr) 1433 { 1434 _NOTE(ARGUNUSED(addr)) 1435 1436 /* 1437 * Invalid access - flag a fault and return a dummy value 1438 */ 1439 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1440 return (DUMMY_VALUE); 1441 } 1442 1443 static void 1444 bscbus_no_put8(HANDLE_TYPE *hdlp, uint8_t *addr, uint8_t val) 1445 { 1446 _NOTE(ARGUNUSED(addr, val)) 1447 1448 /* 1449 * Invalid access - flag a fault 1450 */ 1451 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1452 } 1453 1454 static void 1455 bscbus_no_rep_get8(HANDLE_TYPE *hdlp, uint8_t *host_addr, 1456 uint8_t *dev_addr, size_t repcount, uint_t flags) 1457 { 1458 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags)) 1459 1460 /* 1461 * Invalid access - flag a fault 1462 */ 1463 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1464 } 1465 1466 static void 1467 bscbus_no_rep_put8(HANDLE_TYPE *hdlp, uint8_t *host_addr, 1468 uint8_t *dev_addr, size_t repcount, uint_t flags) 1469 { 1470 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags)) 1471 1472 /* 1473 * Invalid access - flag a fault 1474 */ 1475 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1476 } 1477 1478 static uint16_t 1479 bscbus_no_get16(HANDLE_TYPE *hdlp, uint16_t *addr) 1480 { 1481 _NOTE(ARGUNUSED(addr)) 1482 1483 /* 1484 * Invalid access - flag a fault and return a dummy value 1485 */ 1486 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1487 return (DUMMY_VALUE); 1488 } 1489 1490 static void 1491 bscbus_no_put16(HANDLE_TYPE *hdlp, uint16_t *addr, uint16_t val) 1492 { 1493 _NOTE(ARGUNUSED(addr, val)) 1494 1495 /* 1496 * Invalid access - flag a fault 1497 */ 1498 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1499 } 1500 1501 static void 1502 bscbus_no_rep_get16(HANDLE_TYPE *hdlp, uint16_t *host_addr, 1503 uint16_t *dev_addr, size_t repcount, uint_t flags) 1504 { 1505 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags)) 1506 1507 /* 1508 * Invalid access - flag a fault 1509 */ 1510 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1511 } 1512 1513 static void 1514 bscbus_no_rep_put16(HANDLE_TYPE *hdlp, uint16_t *host_addr, 1515 uint16_t *dev_addr, size_t repcount, uint_t flags) 1516 { 1517 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags)) 1518 1519 /* 1520 * Invalid access - flag a fault 1521 */ 1522 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1523 } 1524 1525 static uint64_t 1526 bscbus_no_get64(HANDLE_TYPE *hdlp, uint64_t *addr) 1527 { 1528 _NOTE(ARGUNUSED(addr)) 1529 1530 /* 1531 * Invalid access - flag a fault and return a dummy value 1532 */ 1533 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1534 return (DUMMY_VALUE); 1535 } 1536 1537 static void 1538 bscbus_no_put64(HANDLE_TYPE *hdlp, uint64_t *addr, uint64_t val) 1539 { 1540 _NOTE(ARGUNUSED(addr, val)) 1541 1542 /* 1543 * Invalid access - flag a fault 1544 */ 1545 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1546 } 1547 1548 static void 1549 bscbus_no_rep_get64(HANDLE_TYPE *hdlp, uint64_t *host_addr, 1550 uint64_t *dev_addr, size_t repcount, uint_t flags) 1551 { 1552 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags)) 1553 1554 /* 1555 * Invalid access - flag a fault 1556 */ 1557 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1558 } 1559 1560 static void 1561 bscbus_no_rep_put64(HANDLE_TYPE *hdlp, uint64_t *host_addr, 1562 uint64_t *dev_addr, size_t repcount, uint_t flags) 1563 { 1564 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags)) 1565 1566 /* 1567 * Invalid access - flag a fault 1568 */ 1569 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE; 1570 } 1571 1572 static int 1573 bscbus_acc_fault_check(HANDLE_TYPE *hdlp) 1574 { 1575 return (HANDLE_FAULT(hdlp) != 0); 1576 } 1577 1578 /* 1579 * Hardware setup - ensure that there are no pending transactions and 1580 * hence no pending interrupts. We do this be ensuring that the BSC is 1581 * not reporting a busy condition and that it does not have any data 1582 * pending in its output buffer. 1583 * This is important because if we have pending interrupts at attach 1584 * time Solaris will hang due to bugs in ddi_get_iblock_cookie. 1585 */ 1586 static void 1587 bscbus_hw_reset(struct bscbus_channel_state *csp) 1588 { 1589 int64_t timeout; 1590 uint8_t status; 1591 1592 if (csp->map_count == 0) { 1593 /* No-one using this instance - no need to reset hardware */ 1594 return; 1595 } 1596 1597 bscbus_trace(csp, 'R', "bscbus_hw_reset", 1598 "resetting channel %d", csp->chno); 1599 1600 status = bscbus_get_reg(csp, H8_STR); 1601 if (status & H8_STR_BUSY) { 1602 /* 1603 * Give the h8 time to complete a reply. 1604 * In practice we should never worry about this 1605 * because whenever we get here it will have been 1606 * long enough for the h8 to complete a reply 1607 */ 1608 bscbus_cmd_log(csp, BSC_CMD_BUSY, status, 0); 1609 bscbus_trace(csp, 'R', "bscbus_hw_reset", 1610 "h8 reporting status (%x) busy - waiting", status); 1611 if (ddi_in_panic()) { 1612 drv_usecwait(BSCBUS_HWRESET_POLL/1000); 1613 } else { 1614 delay(drv_usectohz(BSCBUS_HWRESET_POLL/1000)); 1615 } 1616 } 1617 /* Reply should be completed by now. Try to clear busy status */ 1618 status = bscbus_get_reg(csp, H8_STR); 1619 if (status & (H8_STR_BUSY | H8_STR_OBF)) { 1620 bscbus_trace(csp, 'R', "bscbus_hw_reset", 1621 "clearing busy status for channel %d", csp->chno); 1622 1623 for (timeout = BSCBUS_HWRESET_TIMEOUT; 1624 (timeout > 0); 1625 timeout -= BSCBUS_HWRESET_POLL) { 1626 if (status & H8_STR_OBF) { 1627 (void) bscbus_get_reg(csp, H8_ODR); 1628 if (!(status & H8_STR_BUSY)) { 1629 /* We are done */ 1630 break; 1631 } 1632 } 1633 if (ddi_in_panic()) { 1634 drv_usecwait(BSCBUS_HWRESET_POLL/1000); 1635 } else { 1636 delay(drv_usectohz(BSCBUS_HWRESET_POLL/1000)); 1637 } 1638 status = bscbus_get_reg(csp, H8_STR); 1639 } 1640 if (timeout <= 0) { 1641 cmn_err(CE_WARN, "bscbus_hw_reset: timed out " 1642 "clearing busy status"); 1643 } 1644 } 1645 /* 1646 * We read ODR just in case there is a pending interrupt with 1647 * no data. This is potentially dangerous because we could get 1648 * out of sync due to race conditions BUT at this point the 1649 * channel should be idle so it is safe. 1650 */ 1651 (void) bscbus_get_reg(csp, H8_ODR); 1652 } 1653 1654 /* 1655 * Higher-level setup & teardown 1656 */ 1657 1658 static void 1659 bscbus_offline(struct bscbus_state *ssp) 1660 { 1661 if (ssp->h8_handle != NULL) 1662 ddi_regs_map_free(&ssp->h8_handle); 1663 ssp->h8_handle = NULL; 1664 ssp->h8_regs = NULL; 1665 } 1666 1667 static int 1668 bscbus_online(struct bscbus_state *ssp) 1669 { 1670 ddi_acc_handle_t h; 1671 caddr_t p; 1672 int nregs; 1673 int err; 1674 1675 ssp->h8_handle = NULL; 1676 ssp->h8_regs = (void *)NULL; 1677 ssp->per_channel_regs = B_FALSE; 1678 1679 if (ddi_dev_nregs(ssp->dip, &nregs) != DDI_SUCCESS) 1680 nregs = 0; 1681 1682 switch (nregs) { 1683 case 1: 1684 /* 1685 * regset 0 represents the H8 interface registers 1686 */ 1687 err = ddi_regs_map_setup(ssp->dip, 0, &p, 0, 0, 1688 bscbus_dev_acc_attr, &h); 1689 if (err != DDI_SUCCESS) 1690 return (EIO); 1691 1692 ssp->h8_handle = h; 1693 ssp->h8_regs = (void *)p; 1694 break; 1695 1696 case 0: 1697 /* 1698 * If no registers are defined, succeed vacuously; 1699 * commands will be accepted, but we fake the accesses. 1700 */ 1701 break; 1702 1703 default: 1704 /* 1705 * Remember that we are using the new register scheme. 1706 * reg set 0 is chan 0 1707 * reg set 1 is chan 1 ... 1708 * Interrupts are specified in that order but later 1709 * channels may not have interrupts. 1710 * We map the regs later on a per channel basis. 1711 */ 1712 ssp->per_channel_regs = B_TRUE; 1713 break; 1714 } 1715 return (0); 1716 } 1717 1718 static int 1719 bscbus_claim_channel(struct bscbus_channel_state *csp, boolean_t map_dog) 1720 { 1721 int err; 1722 1723 mutex_enter(csp->ssp->ch_mutex); 1724 csp->map_count++; 1725 bscbus_trace(csp, 'C', "bscbus_claim_channel", 1726 "claim channel for channel %d, count %d", 1727 csp->chno, csp->map_count); 1728 1729 if (csp->map_count == 1) { 1730 /* No-one is using this channel - initialise it */ 1731 bscbus_trace(csp, 'C', "bscbus_claim_channel", 1732 "initialise channel %d, count %d", 1733 csp->chno, csp->map_count); 1734 1735 mutex_init(csp->dog_mutex, NULL, MUTEX_DRIVER, 1736 (void *)(uintptr_t)__ipltospl(SPL7 - 1)); 1737 csp->map_dog = map_dog; 1738 csp->interrupt_failed = B_FALSE; 1739 csp->cmdstate = BSCBUS_CMDSTATE_IDLE; 1740 csp->pat_retry_count = 0; 1741 csp->pat_fail_count = 0; 1742 1743 /* Map appropriate register set for this channel */ 1744 if (csp->ssp->per_channel_regs == B_TRUE) { 1745 ddi_acc_handle_t h; 1746 caddr_t p; 1747 1748 err = ddi_regs_map_setup(csp->ssp->dip, csp->chno, 1749 &p, 0, 0, bscbus_dev_acc_attr, &h); 1750 1751 if (err != DDI_SUCCESS) { 1752 goto failed1; 1753 } 1754 1755 csp->ch_handle = h; 1756 csp->ch_regs = (void *)p; 1757 1758 bscbus_trace(csp, 'C', "bscbus_claim_channel", 1759 "mapped chno=%d ch_handle=%d ch_regs=%p", 1760 csp->chno, h, p); 1761 } else { 1762 /* 1763 * if using the old reg property scheme use the 1764 * common mapping. 1765 */ 1766 csp->ch_handle = csp->ssp->h8_handle; 1767 csp->ch_regs = 1768 csp->ssp->h8_regs + 1769 BSCBUS_CHANNEL_TO_OFFSET(csp->chno); 1770 } 1771 1772 /* Ensure no interrupts pending prior to getting iblk cookie */ 1773 bscbus_hw_reset(csp); 1774 1775 if (csp->map_dog == 1) { 1776 /* 1777 * we don't want lo_mutex to be initialised 1778 * with an iblock cookie if we are the wdog, 1779 * because we don't use interrupts. 1780 */ 1781 mutex_init(csp->lo_mutex, NULL, 1782 MUTEX_DRIVER, NULL); 1783 cv_init(csp->lo_cv, NULL, 1784 CV_DRIVER, NULL); 1785 csp->unclaimed_count = 0; 1786 } else { 1787 int ninterrupts; 1788 1789 /* 1790 * check that there is an interrupt for this 1791 * this channel. If we fail to setup interrupts we 1792 * must unmap the registers and fail. 1793 */ 1794 err = ddi_dev_nintrs(csp->ssp->dip, &ninterrupts); 1795 1796 if (err != DDI_SUCCESS) { 1797 ninterrupts = 0; 1798 } 1799 1800 if (ninterrupts <= csp->chno) { 1801 cmn_err(CE_WARN, 1802 "no interrupt available for " 1803 "bscbus channel %d", csp->chno); 1804 goto failed2; 1805 } 1806 1807 if (ddi_intr_hilevel(csp->ssp->dip, csp->chno) != 0) { 1808 cmn_err(CE_WARN, 1809 "bscbus interrupts are high " 1810 "level - channel not usable."); 1811 goto failed2; 1812 } else { 1813 err = ddi_get_iblock_cookie(csp->ssp->dip, 1814 csp->chno, &csp->lo_iblk); 1815 if (err != DDI_SUCCESS) { 1816 goto failed2; 1817 } 1818 1819 mutex_init(csp->lo_mutex, NULL, 1820 MUTEX_DRIVER, csp->lo_iblk); 1821 cv_init(csp->lo_cv, NULL, 1822 CV_DRIVER, NULL); 1823 csp->unclaimed_count = 0; 1824 1825 err = ddi_add_intr(csp->ssp->dip, csp->chno, 1826 &csp->lo_iblk, NULL, 1827 bscbus_hwintr, (caddr_t)csp); 1828 if (err != DDI_SUCCESS) { 1829 cv_destroy(csp->lo_cv); 1830 mutex_destroy(csp->lo_mutex); 1831 goto failed2; 1832 } 1833 } 1834 } 1835 /* 1836 * The channel is now live and may 1837 * receive interrupts 1838 */ 1839 } else if (csp->map_dog != map_dog) { 1840 bscbus_trace(csp, 'C', "bscbus_claim_channel", 1841 "request conflicts with previous mapping. old %x, new %x.", 1842 csp->map_dog, map_dog); 1843 goto failed1; 1844 } 1845 mutex_exit(csp->ssp->ch_mutex); 1846 return (1); 1847 1848 failed2: 1849 /* unmap regs for failed channel */ 1850 if (csp->ssp->per_channel_regs == B_TRUE) { 1851 ddi_regs_map_free(&csp->ch_handle); 1852 } 1853 csp->ch_handle = NULL; 1854 csp->ch_regs = (void *)NULL; 1855 failed1: 1856 csp->map_count--; 1857 mutex_exit(csp->ssp->ch_mutex); 1858 return (0); 1859 } 1860 1861 static void 1862 bscbus_release_channel(struct bscbus_channel_state *csp) 1863 { 1864 mutex_enter(csp->ssp->ch_mutex); 1865 if (csp->map_count == 1) { 1866 /* No-one is now using this channel - shutdown channel */ 1867 bscbus_trace(csp, 'C', "bscbus_release_channel", 1868 "shutdown channel %d, count %d", 1869 csp->chno, csp->map_count); 1870 1871 if (csp->map_dog == 0) { 1872 ASSERT(!ddi_intr_hilevel(csp->ssp->dip, csp->chno)); 1873 ddi_remove_intr(csp->ssp->dip, csp->chno, csp->lo_iblk); 1874 } 1875 cv_destroy(csp->lo_cv); 1876 mutex_destroy(csp->lo_mutex); 1877 mutex_destroy(csp->dog_mutex); 1878 bscbus_hw_reset(csp); 1879 1880 /* unmap registers if using the new register scheme */ 1881 if (csp->ssp->per_channel_regs == B_TRUE) { 1882 ddi_regs_map_free(&csp->ch_handle); 1883 } 1884 csp->ch_handle = NULL; 1885 csp->ch_regs = (void *)NULL; 1886 } 1887 csp->map_count--; 1888 bscbus_trace(csp, 'C', "bscbus_release_channel", 1889 "release channel %d, count %d", 1890 csp->chno, csp->map_count); 1891 mutex_exit(csp->ssp->ch_mutex); 1892 } 1893 1894 1895 /* 1896 * Nexus routines 1897 */ 1898 1899 #if defined(NDI_ACC_HDL_V2) 1900 1901 static const ndi_acc_fns_t bscbus_vreg_acc_fns = { 1902 NDI_ACC_FNS_CURRENT, 1903 NDI_ACC_FNS_V1, 1904 1905 bscbus_vreg_get8, 1906 bscbus_vreg_put8, 1907 bscbus_vreg_rep_get8, 1908 bscbus_vreg_rep_put8, 1909 1910 bscbus_no_get16, 1911 bscbus_no_put16, 1912 bscbus_no_rep_get16, 1913 bscbus_no_rep_put16, 1914 1915 bscbus_meta_get32, 1916 bscbus_meta_put32, 1917 bscbus_meta_rep_get32, 1918 bscbus_meta_rep_put32, 1919 1920 bscbus_no_get64, 1921 bscbus_no_put64, 1922 bscbus_no_rep_get64, 1923 bscbus_no_rep_put64, 1924 1925 bscbus_acc_fault_check 1926 }; 1927 1928 static const ndi_acc_fns_t bscbus_pat_acc_fns = { 1929 NDI_ACC_FNS_CURRENT, 1930 NDI_ACC_FNS_V1, 1931 1932 bscbus_pat_get8, 1933 bscbus_pat_put8, 1934 bscbus_pat_rep_get8, 1935 bscbus_pat_rep_put8, 1936 1937 bscbus_no_get16, 1938 bscbus_no_put16, 1939 bscbus_no_rep_get16, 1940 bscbus_no_rep_put16, 1941 1942 bscbus_meta_get32, 1943 bscbus_meta_put32, 1944 bscbus_meta_rep_get32, 1945 bscbus_meta_rep_put32, 1946 1947 bscbus_no_get64, 1948 bscbus_no_put64, 1949 bscbus_no_rep_get64, 1950 bscbus_no_rep_put64, 1951 1952 bscbus_acc_fault_check 1953 }; 1954 1955 static const ndi_acc_fns_t bscbus_event_acc_fns = { 1956 NDI_ACC_FNS_CURRENT, 1957 NDI_ACC_FNS_V1, 1958 1959 bscbus_no_get8, 1960 bscbus_no_put8, 1961 bscbus_no_rep_get8, 1962 bscbus_no_rep_put8, 1963 1964 bscbus_event_get16, 1965 bscbus_event_put16, 1966 bscbus_event_rep_get16, 1967 bscbus_event_rep_put16, 1968 1969 bscbus_meta_get32, 1970 bscbus_meta_put32, 1971 bscbus_meta_rep_get32, 1972 bscbus_meta_rep_put32, 1973 1974 bscbus_no_get64, 1975 bscbus_no_put64, 1976 bscbus_no_rep_get64, 1977 bscbus_no_rep_put64, 1978 1979 bscbus_acc_fault_check 1980 }; 1981 1982 static int 1983 bscbus_map_handle(struct bscbus_channel_state *csp, ddi_map_op_t op, 1984 int space, caddr_t vaddr, off_t len, 1985 ndi_acc_handle_t *hdlp, caddr_t *addrp) 1986 { 1987 switch (op) { 1988 default: 1989 return (DDI_ME_UNIMPLEMENTED); 1990 1991 case DDI_MO_MAP_LOCKED: 1992 if (bscbus_claim_channel(csp, 1993 (space == LOMBUS_PAT_SPACE)) == 0) { 1994 return (DDI_ME_GENERIC); 1995 } 1996 1997 switch (space) { 1998 default: 1999 return (DDI_ME_REGSPEC_RANGE); 2000 2001 case LOMBUS_VREG_SPACE: 2002 ndi_set_acc_fns(hdlp, &bscbus_vreg_acc_fns); 2003 break; 2004 2005 case LOMBUS_PAT_SPACE: 2006 ndi_set_acc_fns(hdlp, &bscbus_pat_acc_fns); 2007 break; 2008 2009 case LOMBUS_EVENT_SPACE: 2010 ndi_set_acc_fns(hdlp, &bscbus_event_acc_fns); 2011 break; 2012 } 2013 hdlp->ah_addr = *addrp = vaddr; 2014 hdlp->ah_len = len; 2015 hdlp->ah_bus_private = csp; 2016 return (DDI_SUCCESS); 2017 2018 case DDI_MO_UNMAP: 2019 *addrp = NULL; 2020 hdlp->ah_bus_private = NULL; 2021 bscbus_release_channel(csp); 2022 return (DDI_SUCCESS); 2023 } 2024 } 2025 2026 #else 2027 2028 static int 2029 bscbus_map_handle(struct bscbus_channel_state *csp, ddi_map_op_t op, 2030 int space, caddr_t vaddr, off_t len, 2031 ddi_acc_hdl_t *hdlp, caddr_t *addrp) 2032 { 2033 ddi_acc_impl_t *aip = hdlp->ah_platform_private; 2034 2035 switch (op) { 2036 default: 2037 return (DDI_ME_UNIMPLEMENTED); 2038 2039 case DDI_MO_MAP_LOCKED: 2040 if (bscbus_claim_channel(csp, 2041 (space == LOMBUS_PAT_SPACE)) == 0) { 2042 return (DDI_ME_GENERIC); 2043 } 2044 2045 switch (space) { 2046 default: 2047 return (DDI_ME_REGSPEC_RANGE); 2048 2049 case LOMBUS_VREG_SPACE: 2050 aip->ahi_get8 = bscbus_vreg_get8; 2051 aip->ahi_put8 = bscbus_vreg_put8; 2052 aip->ahi_rep_get8 = bscbus_vreg_rep_get8; 2053 aip->ahi_rep_put8 = bscbus_vreg_rep_put8; 2054 2055 aip->ahi_get16 = bscbus_no_get16; 2056 aip->ahi_put16 = bscbus_no_put16; 2057 aip->ahi_rep_get16 = bscbus_no_rep_get16; 2058 aip->ahi_rep_put16 = bscbus_no_rep_put16; 2059 2060 aip->ahi_get32 = bscbus_meta_get32; 2061 aip->ahi_put32 = bscbus_meta_put32; 2062 aip->ahi_rep_get32 = bscbus_meta_rep_get32; 2063 aip->ahi_rep_put32 = bscbus_meta_rep_put32; 2064 2065 aip->ahi_get64 = bscbus_no_get64; 2066 aip->ahi_put64 = bscbus_no_put64; 2067 aip->ahi_rep_get64 = bscbus_no_rep_get64; 2068 aip->ahi_rep_put64 = bscbus_no_rep_put64; 2069 2070 aip->ahi_fault_check = bscbus_acc_fault_check; 2071 break; 2072 2073 case LOMBUS_PAT_SPACE: 2074 aip->ahi_get8 = bscbus_pat_get8; 2075 aip->ahi_put8 = bscbus_pat_put8; 2076 aip->ahi_rep_get8 = bscbus_pat_rep_get8; 2077 aip->ahi_rep_put8 = bscbus_pat_rep_put8; 2078 2079 aip->ahi_get16 = bscbus_no_get16; 2080 aip->ahi_put16 = bscbus_no_put16; 2081 aip->ahi_rep_get16 = bscbus_no_rep_get16; 2082 aip->ahi_rep_put16 = bscbus_no_rep_put16; 2083 2084 aip->ahi_get32 = bscbus_meta_get32; 2085 aip->ahi_put32 = bscbus_meta_put32; 2086 aip->ahi_rep_get32 = bscbus_meta_rep_get32; 2087 aip->ahi_rep_put32 = bscbus_meta_rep_put32; 2088 2089 aip->ahi_get64 = bscbus_no_get64; 2090 aip->ahi_put64 = bscbus_no_put64; 2091 aip->ahi_rep_get64 = bscbus_no_rep_get64; 2092 aip->ahi_rep_put64 = bscbus_no_rep_put64; 2093 2094 aip->ahi_fault_check = bscbus_acc_fault_check; 2095 break; 2096 2097 case LOMBUS_EVENT_SPACE: 2098 aip->ahi_get8 = bscbus_no_get8; 2099 aip->ahi_put8 = bscbus_no_put8; 2100 aip->ahi_rep_get8 = bscbus_no_rep_get8; 2101 aip->ahi_rep_put8 = bscbus_no_rep_put8; 2102 2103 aip->ahi_get16 = bscbus_event_get16; 2104 aip->ahi_put16 = bscbus_event_put16; 2105 aip->ahi_rep_get16 = bscbus_event_rep_get16; 2106 aip->ahi_rep_put16 = bscbus_event_rep_put16; 2107 2108 aip->ahi_get32 = bscbus_meta_get32; 2109 aip->ahi_put32 = bscbus_meta_put32; 2110 aip->ahi_rep_get32 = bscbus_meta_rep_get32; 2111 aip->ahi_rep_put32 = bscbus_meta_rep_put32; 2112 2113 aip->ahi_get64 = bscbus_no_get64; 2114 aip->ahi_put64 = bscbus_no_put64; 2115 aip->ahi_rep_get64 = bscbus_no_rep_get64; 2116 aip->ahi_rep_put64 = bscbus_no_rep_put64; 2117 2118 aip->ahi_fault_check = bscbus_acc_fault_check; 2119 break; 2120 } 2121 hdlp->ah_addr = *addrp = vaddr; 2122 hdlp->ah_len = len; 2123 hdlp->ah_bus_private = csp; 2124 return (DDI_SUCCESS); 2125 2126 case DDI_MO_UNMAP: 2127 *addrp = NULL; 2128 hdlp->ah_bus_private = NULL; 2129 bscbus_release_channel(csp); 2130 return (DDI_SUCCESS); 2131 } 2132 } 2133 2134 #endif /* NDI_ACC_HDL_V2 */ 2135 2136 static int 2137 bscbus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 2138 off_t off, off_t len, caddr_t *addrp) 2139 { 2140 struct bscbus_child_info *lcip; 2141 struct bscbus_state *ssp; 2142 lombus_regspec_t *rsp; 2143 2144 if ((ssp = bscbus_getstate(dip, -1, "bscbus_map")) == NULL) 2145 return (DDI_FAILURE); /* this "can't happen" */ 2146 2147 /* 2148 * Validate mapping request ... 2149 */ 2150 2151 if (mp->map_flags != DDI_MF_KERNEL_MAPPING) 2152 return (DDI_ME_UNSUPPORTED); 2153 if (mp->map_handlep == NULL) 2154 return (DDI_ME_UNSUPPORTED); 2155 if (mp->map_type != DDI_MT_RNUMBER) 2156 return (DDI_ME_UNIMPLEMENTED); 2157 if ((lcip = ddi_get_parent_data(rdip)) == NULL) 2158 return (DDI_ME_INVAL); 2159 if ((rsp = lcip->rsp) == NULL) 2160 return (DDI_ME_INVAL); 2161 if (mp->map_obj.rnumber >= lcip->nregs) 2162 return (DDI_ME_RNUMBER_RANGE); 2163 rsp += mp->map_obj.rnumber; 2164 if (off < 0 || off >= rsp->lombus_size) 2165 return (DDI_ME_INVAL); 2166 if (len == 0) 2167 len = rsp->lombus_size-off; 2168 if (len < 0) 2169 return (DDI_ME_INVAL); 2170 if (off+len < 0 || off+len > rsp->lombus_size) 2171 return (DDI_ME_INVAL); 2172 2173 return (bscbus_map_handle( 2174 &ssp->channel[LOMBUS_SPACE_TO_CHANNEL(rsp->lombus_space)], 2175 mp->map_op, LOMBUS_SPACE_TO_REGSET(rsp->lombus_space), 2176 VREG_TO_ADDR(rsp->lombus_base+off), len, mp->map_handlep, addrp)); 2177 } 2178 2179 2180 static int 2181 bscbus_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t op, 2182 void *arg, void *result) 2183 { 2184 struct bscbus_child_info *lcip; 2185 lombus_regspec_t *rsp; 2186 dev_info_t *cdip; 2187 char addr[32]; 2188 uint_t nregs; 2189 uint_t rnum; 2190 int *regs; 2191 int limit; 2192 int err; 2193 int i; 2194 2195 if (bscbus_getstate(dip, -1, "bscbus_ctlops") == NULL) 2196 return (DDI_FAILURE); /* this "can't happen" */ 2197 2198 switch (op) { 2199 default: 2200 break; 2201 2202 case DDI_CTLOPS_INITCHILD: 2203 /* 2204 * First, look up and validate the "reg" property. 2205 * 2206 * It must be a non-empty integer array containing a set 2207 * of triples. Once we've verified that, we can treat it 2208 * as an array of type lombus_regspec_t[], which defines 2209 * the meaning of the elements of each triple: 2210 * + the first element of each triple must be a valid space 2211 * + the second and third elements (base, size) of each 2212 * triple must define a valid subrange of that space 2213 * If it passes all the tests, we save it away for future 2214 * reference in the child's parent-private-data field. 2215 */ 2216 cdip = arg; 2217 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, cdip, 2218 DDI_PROP_DONTPASS, "reg", ®s, &nregs); 2219 if (err != DDI_PROP_SUCCESS) 2220 return (DDI_FAILURE); 2221 2222 err = (nregs <= 0 || (nregs % LOMBUS_REGSPEC_SIZE) != 0); 2223 nregs /= LOMBUS_REGSPEC_SIZE; 2224 rsp = (lombus_regspec_t *)regs; 2225 for (i = 0; i < nregs && !err; ++i) { 2226 switch (LOMBUS_SPACE_TO_REGSET(rsp[i].lombus_space)) { 2227 default: 2228 limit = 0; 2229 err = 1; 2230 cmn_err(CE_WARN, 2231 "child(%p): unknown reg space %d", 2232 (void *)cdip, rsp[i].lombus_space); 2233 break; 2234 2235 case LOMBUS_VREG_SPACE: 2236 limit = LOMBUS_MAX_REG+1; 2237 break; 2238 2239 case LOMBUS_PAT_SPACE: 2240 limit = LOMBUS_PAT_REG+1; 2241 break; 2242 2243 case LOMBUS_EVENT_SPACE: 2244 limit = LOMBUS_EVENT_REG+1; 2245 break; 2246 } 2247 2248 err |= (rsp[i].lombus_base < 0); 2249 err |= (rsp[i].lombus_base >= limit); 2250 2251 if (rsp[i].lombus_size == 0) 2252 rsp[i].lombus_size = limit-rsp[i].lombus_base; 2253 2254 err |= (rsp[i].lombus_size < 0); 2255 err |= (rsp[i].lombus_base+rsp[i].lombus_size < 0); 2256 err |= (rsp[i].lombus_base+rsp[i].lombus_size > limit); 2257 2258 err |= (rsp[i].lombus_base+rsp[i].lombus_size > limit); 2259 2260 } 2261 2262 if (err) { 2263 ddi_prop_free(regs); 2264 return (DDI_FAILURE); 2265 } 2266 2267 lcip = kmem_zalloc(sizeof (*lcip), KM_SLEEP); 2268 lcip->nregs = nregs; 2269 lcip->rsp = rsp; 2270 ddi_set_parent_data(cdip, lcip); 2271 2272 (void) snprintf(addr, sizeof (addr), 2273 "%x,%x", rsp[0].lombus_space, rsp[0].lombus_base); 2274 ddi_set_name_addr(cdip, addr); 2275 2276 return (DDI_SUCCESS); 2277 2278 case DDI_CTLOPS_UNINITCHILD: 2279 cdip = arg; 2280 ddi_set_name_addr(cdip, NULL); 2281 lcip = ddi_get_parent_data(cdip); 2282 ddi_set_parent_data(cdip, NULL); 2283 ddi_prop_free(lcip->rsp); 2284 kmem_free(lcip, sizeof (*lcip)); 2285 return (DDI_SUCCESS); 2286 2287 case DDI_CTLOPS_REPORTDEV: 2288 if (rdip == NULL) 2289 return (DDI_FAILURE); 2290 2291 cmn_err(CE_CONT, "?BSC device: %s@%s, %s#%d\n", 2292 ddi_node_name(rdip), ddi_get_name_addr(rdip), 2293 ddi_driver_name(dip), ddi_get_instance(dip)); 2294 2295 return (DDI_SUCCESS); 2296 2297 case DDI_CTLOPS_REGSIZE: 2298 if ((lcip = ddi_get_parent_data(rdip)) == NULL) 2299 return (DDI_FAILURE); 2300 if ((rnum = *(uint_t *)arg) >= lcip->nregs) 2301 return (DDI_FAILURE); 2302 *(off_t *)result = lcip->rsp[rnum].lombus_size; 2303 return (DDI_SUCCESS); 2304 2305 case DDI_CTLOPS_NREGS: 2306 if ((lcip = ddi_get_parent_data(rdip)) == NULL) 2307 return (DDI_FAILURE); 2308 *(int *)result = lcip->nregs; 2309 return (DDI_SUCCESS); 2310 } 2311 2312 return (ddi_ctlops(dip, rdip, op, arg, result)); 2313 } 2314 2315 2316 /* 2317 * This nexus does not support passing interrupts to leaf drivers, so 2318 * all the intrspec-related operations just fail as cleanly as possible. 2319 */ 2320 2321 /*ARGSUSED*/ 2322 static int 2323 bscbus_intr_op(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 2324 ddi_intr_handle_impl_t *hdlp, void *result) 2325 { 2326 #if defined(__sparc) 2327 return (i_ddi_intr_ops(dip, rdip, op, hdlp, result)); 2328 #else 2329 _NOTE(ARGUNUSED(dip, rdip, op, hdlp, result)) 2330 return (DDI_FAILURE); 2331 #endif 2332 } 2333 2334 /* 2335 * Clean up on detach or failure of attach 2336 */ 2337 static int 2338 bscbus_unattach(struct bscbus_state *ssp, int instance) 2339 { 2340 int chno; 2341 2342 if (ssp != NULL) { 2343 for (chno = 0; chno < BSCBUS_MAX_CHANNELS; chno++) { 2344 ASSERT(ssp->channel[chno].map_count == 0); 2345 } 2346 bscbus_offline(ssp); 2347 ddi_set_driver_private(ssp->dip, NULL); 2348 mutex_destroy(ssp->ch_mutex); 2349 } 2350 #ifdef BSCBUS_LOGSTATUS 2351 if (ssp->cmd_log_size != 0) { 2352 kmem_free(ssp->cmd_log, 2353 ssp->cmd_log_size * sizeof (bsc_cmd_log_t)); 2354 } 2355 #endif /* BSCBUS_LOGSTATUS */ 2356 2357 2358 ddi_soft_state_free(bscbus_statep, instance); 2359 return (DDI_FAILURE); 2360 } 2361 2362 /* 2363 * Autoconfiguration routines 2364 */ 2365 2366 static int 2367 bscbus_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 2368 { 2369 struct bscbus_state *ssp = NULL; 2370 int chno; 2371 int instance; 2372 int err; 2373 2374 switch (cmd) { 2375 default: 2376 return (DDI_FAILURE); 2377 2378 case DDI_ATTACH: 2379 break; 2380 } 2381 2382 /* 2383 * Allocate the soft-state structure 2384 */ 2385 instance = ddi_get_instance(dip); 2386 if (ddi_soft_state_zalloc(bscbus_statep, instance) != DDI_SUCCESS) 2387 return (DDI_FAILURE); 2388 if ((ssp = bscbus_getstate(dip, instance, "bscbus_attach")) == NULL) 2389 return (bscbus_unattach(ssp, instance)); 2390 ddi_set_driver_private(dip, ssp); 2391 2392 /* 2393 * Initialise devinfo-related fields 2394 */ 2395 ssp->dip = dip; 2396 ssp->majornum = ddi_driver_major(dip); 2397 ssp->instance = instance; 2398 2399 /* 2400 * Set various options from .conf properties 2401 */ 2402 ssp->debug = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2403 DDI_PROP_DONTPASS, "debug", 0); 2404 2405 mutex_init(ssp->ch_mutex, NULL, MUTEX_DRIVER, NULL); 2406 2407 #ifdef BSCBUS_LOGSTATUS 2408 ssp->cmd_log_size = bscbus_cmd_log_size; 2409 if (ssp->cmd_log_size != 0) { 2410 ssp->cmd_log_idx = 0; 2411 ssp->cmd_log = kmem_zalloc(ssp->cmd_log_size * 2412 sizeof (bsc_cmd_log_t), KM_SLEEP); 2413 } 2414 #endif /* BSCBUS_LOGSTATUS */ 2415 2416 /* 2417 * Online the hardware ... 2418 */ 2419 err = bscbus_online(ssp); 2420 if (err != 0) 2421 return (bscbus_unattach(ssp, instance)); 2422 2423 for (chno = 0; chno < BSCBUS_MAX_CHANNELS; chno++) { 2424 struct bscbus_channel_state *csp = &ssp->channel[chno]; 2425 2426 /* 2427 * Initialise state 2428 * The hardware/interrupts are setup at map time to 2429 * avoid claiming hardware that OBP is using 2430 */ 2431 csp->ssp = ssp; 2432 csp->chno = chno; 2433 csp->map_count = 0; 2434 csp->map_dog = B_FALSE; 2435 } 2436 2437 /* 2438 * All done, report success 2439 */ 2440 ddi_report_dev(dip); 2441 return (DDI_SUCCESS); 2442 } 2443 2444 static int 2445 bscbus_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2446 { 2447 struct bscbus_state *ssp; 2448 int instance; 2449 2450 switch (cmd) { 2451 default: 2452 return (DDI_FAILURE); 2453 2454 case DDI_DETACH: 2455 break; 2456 } 2457 2458 instance = ddi_get_instance(dip); 2459 if ((ssp = bscbus_getstate(dip, instance, "bscbus_detach")) == NULL) 2460 return (DDI_FAILURE); /* this "can't happen" */ 2461 2462 (void) bscbus_unattach(ssp, instance); 2463 return (DDI_SUCCESS); 2464 } 2465 2466 static int 2467 bscbus_reset(dev_info_t *dip, ddi_reset_cmd_t cmd) 2468 { 2469 struct bscbus_state *ssp; 2470 int chno; 2471 2472 _NOTE(ARGUNUSED(cmd)) 2473 2474 if ((ssp = bscbus_getstate(dip, -1, "bscbus_reset")) == NULL) 2475 return (DDI_FAILURE); 2476 2477 for (chno = 0; chno < BSCBUS_MAX_CHANNELS; chno++) { 2478 bscbus_hw_reset(&ssp->channel[chno]); 2479 } 2480 return (DDI_SUCCESS); 2481 } 2482 2483 2484 /* 2485 * System interface structures 2486 */ 2487 2488 static struct cb_ops bscbus_cb_ops = 2489 { 2490 nodev, /* b/c open */ 2491 nodev, /* b/c close */ 2492 nodev, /* b strategy */ 2493 nodev, /* b print */ 2494 nodev, /* b dump */ 2495 nodev, /* c read */ 2496 nodev, /* c write */ 2497 nodev, /* c ioctl */ 2498 nodev, /* c devmap */ 2499 nodev, /* c mmap */ 2500 nodev, /* c segmap */ 2501 nochpoll, /* c poll */ 2502 ddi_prop_op, /* b/c prop_op */ 2503 NULL, /* c streamtab */ 2504 D_MP | D_NEW /* b/c flags */ 2505 }; 2506 2507 static struct bus_ops bscbus_bus_ops = 2508 { 2509 BUSO_REV, /* revision */ 2510 bscbus_map, /* bus_map */ 2511 0, /* get_intrspec */ 2512 0, /* add_intrspec */ 2513 0, /* remove_intrspec */ 2514 i_ddi_map_fault, /* map_fault */ 2515 ddi_no_dma_map, /* dma_map */ 2516 ddi_no_dma_allochdl, /* allocate DMA handle */ 2517 ddi_no_dma_freehdl, /* free DMA handle */ 2518 ddi_no_dma_bindhdl, /* bind DMA handle */ 2519 ddi_no_dma_unbindhdl, /* unbind DMA handle */ 2520 ddi_no_dma_flush, /* flush DMA */ 2521 ddi_no_dma_win, /* move DMA window */ 2522 ddi_no_dma_mctl, /* generic DMA control */ 2523 bscbus_ctlops, /* generic control */ 2524 ddi_bus_prop_op, /* prop_op */ 2525 ndi_busop_get_eventcookie, /* get_eventcookie */ 2526 ndi_busop_add_eventcall, /* add_eventcall */ 2527 ndi_busop_remove_eventcall, /* remove_eventcall */ 2528 ndi_post_event, /* post_event */ 2529 0, /* interrupt control */ 2530 0, /* bus_config */ 2531 0, /* bus_unconfig */ 2532 0, /* bus_fm_init */ 2533 0, /* bus_fm_fini */ 2534 0, /* bus_fm_access_enter */ 2535 0, /* bus_fm_access_exit */ 2536 0, /* bus_power */ 2537 bscbus_intr_op /* bus_intr_op */ 2538 }; 2539 2540 static struct dev_ops bscbus_dev_ops = 2541 { 2542 DEVO_REV, 2543 0, /* refcount */ 2544 ddi_no_info, /* getinfo */ 2545 nulldev, /* identify */ 2546 nulldev, /* probe */ 2547 bscbus_attach, /* attach */ 2548 bscbus_detach, /* detach */ 2549 bscbus_reset, /* reset */ 2550 &bscbus_cb_ops, /* driver operations */ 2551 &bscbus_bus_ops, /* bus operations */ 2552 NULL, /* power */ 2553 ddi_quiesce_not_needed, /* quiesce */ 2554 }; 2555 2556 static struct modldrv modldrv = 2557 { 2558 &mod_driverops, 2559 "bscbus driver", 2560 &bscbus_dev_ops 2561 }; 2562 2563 static struct modlinkage modlinkage = 2564 { 2565 MODREV_1, 2566 { 2567 &modldrv, 2568 NULL 2569 } 2570 }; 2571 2572 2573 /* 2574 * Dynamic loader interface code 2575 */ 2576 2577 int 2578 _init(void) 2579 { 2580 int err; 2581 2582 err = ddi_soft_state_init(&bscbus_statep, 2583 sizeof (struct bscbus_state), 0); 2584 if (err == DDI_SUCCESS) 2585 if ((err = mod_install(&modlinkage)) != DDI_SUCCESS) { 2586 ddi_soft_state_fini(&bscbus_statep); 2587 } 2588 2589 return (err); 2590 } 2591 2592 int 2593 _info(struct modinfo *mip) 2594 { 2595 return (mod_info(&modlinkage, mip)); 2596 } 2597 2598 int 2599 _fini(void) 2600 { 2601 int err; 2602 2603 if ((err = mod_remove(&modlinkage)) == DDI_SUCCESS) { 2604 ddi_soft_state_fini(&bscbus_statep); 2605 bscbus_major = NOMAJOR; 2606 } 2607 2608 return (err); 2609 } 2610 2611 #ifdef BSCBUS_LOGSTATUS 2612 void bscbus_cmd_log(struct bscbus_channel_state *csp, bsc_cmd_stamp_t cat, 2613 uint8_t status, uint8_t data) 2614 { 2615 int idx; 2616 bsc_cmd_log_t *logp; 2617 struct bscbus_state *ssp; 2618 2619 if ((csp) == NULL) 2620 return; 2621 if ((ssp = (csp)->ssp) == NULL) 2622 return; 2623 if (ssp->cmd_log_size == 0) 2624 return; 2625 if ((bscbus_cmd_log_flags & (1 << cat)) == 0) 2626 return; 2627 idx = atomic_inc_32_nv(&ssp->cmd_log_idx); 2628 logp = &ssp->cmd_log[idx % ssp->cmd_log_size]; 2629 logp->bcl_seq = idx; 2630 logp->bcl_cat = cat; 2631 logp->bcl_now = gethrtime(); 2632 logp->bcl_chno = csp->chno; 2633 logp->bcl_cmdstate = csp->cmdstate; 2634 logp->bcl_status = status; 2635 logp->bcl_data = data; 2636 } 2637 #endif /* BSCBUS_LOGSTATUS */