1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 Jason King. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 /*
31 * Copyright 2019, Joyent, Inc.
32 */
33
34 /*
35 * CTF DWARF conversion theory.
36 *
37 * DWARF data contains a series of compilation units. Each compilation unit
38 * generally refers to an object file or what once was, in the case of linked
39 * binaries and shared objects. Each compilation unit has a series of what DWARF
40 * calls a DIE (Debugging Information Entry). The set of entries that we care
41 * about have type information stored in a series of attributes. Each DIE also
42 * has a tag that identifies the kind of attributes that it has.
43 *
44 * A given DIE may itself have children. For example, a DIE that represents a
45 * structure has children which represent members. Whenever we encounter a DIE
46 * that has children or other values or types associated with it, we recursively
47 * process those children first so that way we can then refer to the generated
48 * CTF type id while processing its parent. This reduces the amount of unknowns
49 * and fixups that we need. It also ensures that we don't accidentally add types
50 * that an overzealous compiler might add to the DWARF data but aren't used by
51 * anything in the system.
52 *
53 * Once we do a conversion, we store a mapping in an AVL tree that goes from the
54 * DWARF's die offset, which is relative to the given compilation unit, to a
55 * ctf_id_t.
56 *
57 * Unfortunately, some compilers actually will emit duplicate entries for a
58 * given type that look similar, but aren't quite. To that end, we go through
59 * and do a variant on a merge once we're done processing a single compilation
60 * unit which deduplicates all of the types that are in the unit.
61 *
62 * Finally, if we encounter an object that has multiple compilation units, then
63 * we'll convert all of the compilation units separately and then do a merge, so
64 * that way we can result in one single ctf_file_t that represents everything
65 * for the object.
66 *
67 * Conversion Steps
68 * ----------------
69 *
70 * Because a given object we've been given to convert may have multiple
71 * compilation units, we break the work into two halves. The first half
72 * processes each compilation unit (potentially in parallel) and then the second
73 * half optionally merges all of the dies in the first half. First, we'll cover
74 * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers
75 * the work done in ctf_dwarf_convert_one().
76 *
77 * An individual ctf_cu_t, which represents a compilation unit, is converted to
78 * CTF in a series of multiple passes.
79 *
80 * Pass 1: During the first pass we walk all of the top-level dies and if we
81 * find a function, variable, struct, union, enum or typedef, we recursively
82 * transform all of its types. We don't recurse or process everything, because
83 * we don't want to add some of the types that compilers may add which are
84 * effectively unused.
85 *
86 * During pass 1, if we encounter any structures or unions we mark them for
87 * fixing up later. This is necessary because we may not be able to determine
88 * the full size of a structure at the beginning of time. This will happen if
89 * the DWARF attribute DW_AT_byte_size is not present for a member. Because of
90 * this possibility we defer adding members to structures or even converting
91 * them during pass 1 and save that for pass 2. Adding all of the base
92 * structures without any of their members helps deal with any circular
93 * dependencies that we might encounter.
94 *
95 * Pass 2: This pass is used to do the first half of fixing up structures and
96 * unions. Rather than walk the entire type space again, we actually walk the
97 * list of structures and unions that we marked for later fixing up. Here, we
98 * iterate over every structure and add members to the underlying ctf_file_t,
99 * but not to the structs themselves. One might wonder why we don't, and the
100 * main reason is that libctf requires a ctf_update() be done before adding the
101 * members to structures or unions.
102 *
103 * Pass 3: This pass is used to do the second half of fixing up structures and
104 * unions. During this part we always go through and add members to structures
105 * and unions that we added to the container in the previous pass. In addition,
106 * we set the structure and union's actual size, which may have additional
107 * padding added by the compiler, it isn't simply the last offset. DWARF always
108 * guarantees an attribute exists for this. Importantly no ctf_id_t's change
109 * during pass 2.
110 *
111 * Pass 4: The next phase is to add CTF entries for all of the symbols and
112 * variables that are present in this die. During pass 1 we added entries to a
113 * map for each variable and function. During this pass, we iterate over the
114 * symbol table and when we encounter a symbol that we have in our lists of
115 * translated information which matches, we then add it to the ctf_file_t.
116 *
117 * Pass 5: Here we go and look for any weak symbols and functions and see if
118 * they match anything that we recognize. If so, then we add type information
119 * for them at this point based on the matching type.
120 *
121 * Pass 6: This pass is actually a variant on a merge. The traditional merge
122 * process expects there to be no duplicate types. As such, at the end of
123 * conversion, we do a dedup on all of the types in the system. The
124 * deduplication process is described in lib/libctf/common/ctf_merge.c.
125 *
126 * Once pass 6 is done, we've finished processing the individual compilation
127 * unit.
128 *
129 * The following steps reflect the general process of doing a conversion.
130 *
131 * 1) Walk the dwarf section and determine the number of compilation units
132 * 2) Create a ctf_cu_t for each compilation unit
133 * 3) Add all ctf_cu_t's to a workq
134 * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself
135 * is comprised of several steps, which were already enumerated.
136 * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics
137 * of the merge are discussed in lib/libctf/common/ctf_merge.c.
138 * 6) Free everything up and return a ctf_file_t to the user. If we only had a
139 * single compilation unit, then we give that to the user. Otherwise, we
140 * return the merged ctf_file_t.
141 *
142 * Threading
143 * ---------
144 *
145 * The process has been designed to be amenable to threading. Each compilation
146 * unit has its own type stream, therefore the logical place to divide and
147 * conquer is at the compilation unit. Each ctf_cu_t has been built to be able
148 * to be processed independently of the others. It has its own libdwarf handle,
149 * as a given libdwarf handle may only be used by a single thread at a time.
150 * This allows the various ctf_cu_t's to be processed in parallel by different
151 * threads.
152 *
153 * All of the ctf_cu_t's are loaded into a workq which allows for a number of
154 * threads to be specified and used as a thread pool to process all of the
155 * queued work. We set the number of threads to use in the workq equal to the
156 * number of threads that the user has specified.
157 *
158 * After all of the compilation units have been drained, we use the same number
159 * of threads when performing a merge of multiple compilation units, if they
160 * exist.
161 *
162 * While all of these different parts do support and allow for multiple threads,
163 * it's important that when only a single thread is specified, that it be the
164 * calling thread. This allows the conversion routines to be used in a context
165 * that doesn't allow additional threads, such as rtld.
166 *
167 * Common DWARF Mechanics and Notes
168 * --------------------------------
169 *
170 * At this time, we really only support DWARFv2, though support for DWARFv4 is
171 * mostly there. There is no intent to support DWARFv3.
172 *
173 * Generally types for something are stored in the DW_AT_type attribute. For
174 * example, a function's return type will be stored in the local DW_AT_type
175 * attribute while the arguments will be in child DIEs. There are also various
176 * times when we don't have any DW_AT_type. In that case, the lack of a type
177 * implies, at least for C, that its C type is void. Because DWARF doesn't emit
178 * one, we have a synthetic void type that we create and manipulate instead and
179 * pass it off to consumers on an as-needed basis. If nothing has a void type,
180 * it will not be emitted.
181 *
182 * Architecture Specific Parts
183 * ---------------------------
184 *
185 * The CTF tooling encodes various information about the various architectures
186 * in the system. Importantly, the tool assumes that every architecture has a
187 * data model where long and pointer are the same size. This is currently the
188 * case, as the two data models illumos supports are ILP32 and LP64.
189 *
190 * In addition, we encode the mapping of various floating point sizes to various
191 * types for each architecture. If a new architecture is being added, it should
192 * be added to the list. The general design of the ctf conversion tools is to be
193 * architecture independent. eg. any of the tools here should be able to convert
194 * any architecture's DWARF into ctf; however, this has not been rigorously
195 * tested and more importantly, the ctf routines don't currently write out the
196 * data in an endian-aware form, they only use that of the currently running
197 * library.
198 */
199
200 #include <libctf_impl.h>
201 #include <sys/avl.h>
202 #include <sys/debug.h>
203 #include <gelf.h>
204 #include <libdwarf.h>
205 #include <dwarf.h>
206 #include <libgen.h>
207 #include <workq.h>
208 #include <errno.h>
209
210 #define DWARF_VERSION_TWO 2
211 #define DWARF_VARARGS_NAME "..."
212
213 /*
214 * Dwarf may refer recursively to other types that we've already processed. To
215 * see if we've already converted them, we look them up in an AVL tree that's
216 * sorted by the DWARF id.
217 */
218 typedef struct ctf_dwmap {
219 avl_node_t cdm_avl;
220 Dwarf_Off cdm_off;
221 Dwarf_Die cdm_die;
222 ctf_id_t cdm_id;
223 boolean_t cdm_fix;
224 } ctf_dwmap_t;
225
226 typedef struct ctf_dwvar {
227 ctf_list_t cdv_list;
228 char *cdv_name;
229 ctf_id_t cdv_type;
230 boolean_t cdv_global;
231 } ctf_dwvar_t;
232
233 typedef struct ctf_dwfunc {
234 ctf_list_t cdf_list;
235 char *cdf_name;
236 ctf_funcinfo_t cdf_fip;
237 ctf_id_t *cdf_argv;
238 boolean_t cdf_global;
239 } ctf_dwfunc_t;
240
241 typedef struct ctf_dwbitf {
242 ctf_list_t cdb_list;
243 ctf_id_t cdb_base;
244 uint_t cdb_nbits;
245 ctf_id_t cdb_id;
246 } ctf_dwbitf_t;
247
248 /*
249 * The ctf_cu_t represents a single top-level DWARF die unit. While generally,
250 * the typical object file has only a single die, if we're asked to convert
251 * something that's been linked from multiple sources, multiple dies will exist.
252 */
253 typedef struct ctf_die {
254 Elf *cu_elf; /* shared libelf handle */
255 char *cu_name; /* basename of the DIE */
256 ctf_merge_t *cu_cmh; /* merge handle */
257 ctf_list_t cu_vars; /* List of variables */
258 ctf_list_t cu_funcs; /* List of functions */
259 ctf_list_t cu_bitfields; /* Bit field members */
260 Dwarf_Debug cu_dwarf; /* libdwarf handle */
261 Dwarf_Die cu_cu; /* libdwarf compilation unit */
262 Dwarf_Off cu_cuoff; /* cu's offset */
263 Dwarf_Off cu_maxoff; /* maximum offset */
264 ctf_file_t *cu_ctfp; /* output CTF file */
265 avl_tree_t cu_map; /* map die offsets to CTF types */
266 char *cu_errbuf; /* error message buffer */
267 size_t cu_errlen; /* error message buffer length */
268 size_t cu_ptrsz; /* object's pointer size */
269 boolean_t cu_bigend; /* is it big endian */
270 boolean_t cu_doweaks; /* should we convert weak symbols? */
271 uint_t cu_mach; /* machine type */
272 ctf_id_t cu_voidtid; /* void pointer */
273 ctf_id_t cu_longtid; /* id for a 'long' */
274 } ctf_cu_t;
275
276 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *);
277 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die);
278 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int);
279
280 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
281 boolean_t);
282 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
283 ctf_id_t *);
284
285 /*
286 * This is a generic way to set a CTF Conversion backend error depending on what
287 * we were doing. Unless it was one of a specific set of errors that don't
288 * indicate a programming / translation bug, eg. ENOMEM, then we transform it
289 * into a CTF backend error and fill in the error buffer.
290 */
291 static int
292 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...)
293 {
294 va_list ap;
295 int ret;
296 size_t off = 0;
297 ssize_t rem = cup->cu_errlen;
298 if (cfp != NULL)
299 err = ctf_errno(cfp);
300
301 if (err == ENOMEM)
302 return (err);
303
304 ret = snprintf(cup->cu_errbuf, rem, "die %s: ", cup->cu_name);
305 if (ret < 0)
306 goto err;
307 off += ret;
308 rem = MAX(rem - ret, 0);
309
310 va_start(ap, fmt);
311 ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap);
312 va_end(ap);
313 if (ret < 0)
314 goto err;
315
316 off += ret;
317 rem = MAX(rem - ret, 0);
318 if (fmt[strlen(fmt) - 1] != '\n') {
319 (void) snprintf(cup->cu_errbuf + off, rem,
320 ": %s\n", ctf_errmsg(err));
321 }
322 va_end(ap);
323 return (ECTF_CONVBKERR);
324
325 err:
326 cup->cu_errbuf[0] = '\0';
327 return (ECTF_CONVBKERR);
328 }
329
330 /*
331 * DWARF often opts to put no explicit type to describe a void type. eg. if we
332 * have a reference type whose DW_AT_type member doesn't exist, then we should
333 * instead assume it points to void. Because this isn't represented, we
334 * instead cause it to come into existence.
335 */
336 static ctf_id_t
337 ctf_dwarf_void(ctf_cu_t *cup)
338 {
339 if (cup->cu_voidtid == CTF_ERR) {
340 ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 };
341 cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT,
342 "void", &enc);
343 if (cup->cu_voidtid == CTF_ERR) {
344 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
345 "failed to create void type: %s\n",
346 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
347 }
348 }
349
350 return (cup->cu_voidtid);
351 }
352
353 /*
354 * There are many different forms that an array index may take. However, we just
355 * always force it to be of a type long no matter what. Therefore we use this to
356 * have a single instance of long across everything.
357 */
358 static ctf_id_t
359 ctf_dwarf_long(ctf_cu_t *cup)
360 {
361 if (cup->cu_longtid == CTF_ERR) {
362 ctf_encoding_t enc;
363
364 enc.cte_format = CTF_INT_SIGNED;
365 enc.cte_offset = 0;
366 /* All illumos systems are LP */
367 enc.cte_bits = cup->cu_ptrsz * 8;
368 cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
369 "long", &enc);
370 if (cup->cu_longtid == CTF_ERR) {
371 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
372 "failed to create long type: %s\n",
373 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
374 }
375
376 }
377
378 return (cup->cu_longtid);
379 }
380
381 static int
382 ctf_dwmap_comp(const void *a, const void *b)
383 {
384 const ctf_dwmap_t *ca = a;
385 const ctf_dwmap_t *cb = b;
386
387 if (ca->cdm_off > cb->cdm_off)
388 return (1);
389 if (ca->cdm_off < cb->cdm_off)
390 return (-1);
391 return (0);
392 }
393
394 static int
395 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix)
396 {
397 int ret;
398 avl_index_t index;
399 ctf_dwmap_t *dwmap;
400 Dwarf_Off off;
401
402 VERIFY(id > 0 && id < CTF_MAX_TYPE);
403
404 if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0)
405 return (ret);
406
407 if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL)
408 return (ENOMEM);
409
410 dwmap->cdm_die = die;
411 dwmap->cdm_off = off;
412 dwmap->cdm_id = id;
413 dwmap->cdm_fix = fix;
414
415 ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id);
416 VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL);
417 avl_insert(&cup->cu_map, dwmap, index);
418 return (0);
419 }
420
421 static int
422 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
423 Dwarf_Attribute *attrp)
424 {
425 int ret;
426 Dwarf_Error derr;
427
428 if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK)
429 return (0);
430 if (ret == DW_DLV_NO_ENTRY) {
431 *attrp = NULL;
432 return (ENOENT);
433 }
434 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
435 "failed to get attribute for type: %s\n",
436 dwarf_errmsg(derr));
437 return (ECTF_CONVBKERR);
438 }
439
440 static int
441 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp)
442 {
443 int ret;
444 Dwarf_Attribute attr;
445 Dwarf_Error derr;
446
447 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
448 return (ret);
449
450 if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) {
451 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
452 return (0);
453 }
454
455 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
456 "failed to get unsigned attribute for type: %s\n",
457 dwarf_errmsg(derr));
458 return (ECTF_CONVBKERR);
459 }
460
461 static int
462 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
463 Dwarf_Die *diep)
464 {
465 int ret;
466 Dwarf_Off off;
467 Dwarf_Error derr;
468
469 if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0)
470 return (ret);
471
472 off += cup->cu_cuoff;
473 if ((ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr)) !=
474 DW_DLV_OK) {
475 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
476 "failed to get die from offset %" DW_PR_DUu ": %s\n",
477 off, dwarf_errmsg(derr));
478 return (ECTF_CONVBKERR);
479 }
480
481 return (0);
482 }
483
484 static int
485 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
486 Dwarf_Signed *valp)
487 {
488 int ret;
489 Dwarf_Attribute attr;
490 Dwarf_Error derr;
491
492 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
493 return (ret);
494
495 if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) {
496 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
497 return (0);
498 }
499
500 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
501 "failed to get unsigned attribute for type: %s\n",
502 dwarf_errmsg(derr));
503 return (ECTF_CONVBKERR);
504 }
505
506 static int
507 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
508 Dwarf_Unsigned *valp)
509 {
510 int ret;
511 Dwarf_Attribute attr;
512 Dwarf_Error derr;
513
514 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
515 return (ret);
516
517 if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) {
518 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
519 return (0);
520 }
521
522 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
523 "failed to get unsigned attribute for type: %s\n",
524 dwarf_errmsg(derr));
525 return (ECTF_CONVBKERR);
526 }
527
528 static int
529 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
530 Dwarf_Bool *val)
531 {
532 int ret;
533 Dwarf_Attribute attr;
534 Dwarf_Error derr;
535
536 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
537 return (ret);
538
539 if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) {
540 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
541 return (0);
542 }
543
544 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
545 "failed to get boolean attribute for type: %s\n",
546 dwarf_errmsg(derr));
547
548 return (ECTF_CONVBKERR);
549 }
550
551 static int
552 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp)
553 {
554 int ret;
555 char *s;
556 Dwarf_Attribute attr;
557 Dwarf_Error derr;
558
559 *strp = NULL;
560 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
561 return (ret);
562
563 if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) {
564 if ((*strp = ctf_strdup(s)) == NULL)
565 ret = ENOMEM;
566 else
567 ret = 0;
568 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
569 return (ret);
570 }
571
572 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
573 "failed to get string attribute for type: %s\n",
574 dwarf_errmsg(derr));
575 return (ECTF_CONVBKERR);
576 }
577
578 static int
579 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp)
580 {
581 int ret;
582 Dwarf_Error derr;
583 Dwarf_Attribute attr;
584 Dwarf_Locdesc *loc;
585 Dwarf_Signed locnum;
586
587 if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location,
588 &attr)) != 0)
589 return (ret);
590
591 if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) {
592 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
593 "failed to obtain location list for member offset: %s",
594 dwarf_errmsg(derr));
595 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
596 return (ECTF_CONVBKERR);
597 }
598 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
599
600 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
601 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
602 "failed to parse location structure for member");
603 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
604 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
605 return (ECTF_CONVBKERR);
606 }
607
608 *valp = loc->ld_s->lr_number;
609
610 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
611 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
612 return (0);
613 }
614
615
616 static int
617 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp)
618 {
619 Dwarf_Error derr;
620
621 if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK)
622 return (0);
623
624 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
625 "failed to get die offset: %s\n",
626 dwarf_errmsg(derr));
627 return (ECTF_CONVBKERR);
628 }
629
630 /* simpler variant for debugging output */
631 static Dwarf_Off
632 ctf_die_offset(Dwarf_Die die)
633 {
634 Dwarf_Off off = -1;
635 Dwarf_Error derr;
636
637 (void) dwarf_dieoffset(die, &off, &derr);
638 return (off);
639 }
640
641 static int
642 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp)
643 {
644 Dwarf_Error derr;
645
646 if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK)
647 return (0);
648
649 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
650 "failed to get tag type: %s\n",
651 dwarf_errmsg(derr));
652 return (ECTF_CONVBKERR);
653 }
654
655 static int
656 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp)
657 {
658 Dwarf_Error derr;
659 int ret;
660
661 *sibp = NULL;
662 ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr);
663 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
664 return (0);
665
666 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
667 "failed to sibling from die: %s\n",
668 dwarf_errmsg(derr));
669 return (ECTF_CONVBKERR);
670 }
671
672 static int
673 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp)
674 {
675 Dwarf_Error derr;
676 int ret;
677
678 *childp = NULL;
679 ret = dwarf_child(base, childp, &derr);
680 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
681 return (0);
682
683 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
684 "failed to child from die: %s\n",
685 dwarf_errmsg(derr));
686 return (ECTF_CONVBKERR);
687 }
688
689 /*
690 * Compilers disagree on what to do to determine if something has global
691 * visiblity. Traditionally gcc has used DW_AT_external to indicate this while
692 * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then
693 * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not.
694 */
695 static int
696 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp)
697 {
698 int ret;
699 Dwarf_Signed vis;
700 Dwarf_Bool ext;
701
702 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) {
703 *igp = vis == DW_VIS_exported;
704 return (0);
705 } else if (ret != ENOENT) {
706 return (ret);
707 }
708
709 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) {
710 if (ret == ENOENT) {
711 *igp = B_FALSE;
712 return (0);
713 }
714 return (ret);
715 }
716 *igp = ext != 0 ? B_TRUE : B_FALSE;
717 return (0);
718 }
719
720 static int
721 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen)
722 {
723 GElf_Ehdr ehdr;
724
725 if (gelf_getehdr(elf, &ehdr) == NULL) {
726 (void) snprintf(errbuf, errlen,
727 "failed to get ELF header: %s\n",
728 elf_errmsg(elf_errno()));
729 return (ECTF_CONVBKERR);
730 }
731
732 cup->cu_mach = ehdr.e_machine;
733
734 if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
735 cup->cu_ptrsz = 4;
736 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0);
737 } else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) {
738 cup->cu_ptrsz = 8;
739 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0);
740 } else {
741 (void) snprintf(errbuf, errlen,
742 "unknown ELF class %d", ehdr.e_ident[EI_CLASS]);
743 return (ECTF_CONVBKERR);
744 }
745
746 if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) {
747 cup->cu_bigend = B_FALSE;
748 } else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
749 cup->cu_bigend = B_TRUE;
750 } else {
751 (void) snprintf(errbuf, errlen,
752 "unknown ELF data encoding: %hhu", ehdr.e_ident[EI_DATA]);
753 return (ECTF_CONVBKERR);
754 }
755
756 return (0);
757 }
758
759 typedef struct ctf_dwarf_fpent {
760 size_t cdfe_size;
761 uint_t cdfe_enc[3];
762 } ctf_dwarf_fpent_t;
763
764 typedef struct ctf_dwarf_fpmap {
765 uint_t cdf_mach;
766 ctf_dwarf_fpent_t cdf_ents[4];
767 } ctf_dwarf_fpmap_t;
768
769 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = {
770 { EM_SPARC, {
771 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
772 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
773 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
774 { 0, { 0 } }
775 } },
776 { EM_SPARC32PLUS, {
777 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
778 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
779 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
780 { 0, { 0 } }
781 } },
782 { EM_SPARCV9, {
783 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
784 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
785 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
786 { 0, { 0 } }
787 } },
788 { EM_386, {
789 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
790 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
791 { 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
792 { 0, { 0 } }
793 } },
794 { EM_X86_64, {
795 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
796 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
797 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
798 { 0, { 0 } }
799 } },
800 { EM_NONE }
801 };
802
803 static int
804 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc)
805 {
806 const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0];
807 const ctf_dwarf_fpent_t *ent;
808 uint_t col = 0, mult = 1;
809
810 for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) {
811 if (map->cdf_mach == cup->cu_mach)
812 break;
813 }
814
815 if (map->cdf_mach == EM_NONE) {
816 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
817 "Unsupported machine type: %d\n", cup->cu_mach);
818 return (ENOTSUP);
819 }
820
821 if (type == DW_ATE_complex_float) {
822 mult = 2;
823 col = 1;
824 } else if (type == DW_ATE_imaginary_float ||
825 type == DW_ATE_SUN_imaginary_float) {
826 col = 2;
827 }
828
829 ent = &map->cdf_ents[0];
830 for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) {
831 if (ent->cdfe_size * mult * 8 == enc->cte_bits) {
832 enc->cte_format = ent->cdfe_enc[col];
833 return (0);
834 }
835 }
836
837 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
838 "failed to find valid fp mapping for encoding %d, size %d bits\n",
839 type, enc->cte_bits);
840 return (EINVAL);
841 }
842
843 static int
844 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp,
845 ctf_encoding_t *enc)
846 {
847 int ret;
848 Dwarf_Signed type;
849
850 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0)
851 return (ret);
852
853 switch (type) {
854 case DW_ATE_unsigned:
855 case DW_ATE_address:
856 *kindp = CTF_K_INTEGER;
857 enc->cte_format = 0;
858 break;
859 case DW_ATE_unsigned_char:
860 *kindp = CTF_K_INTEGER;
861 enc->cte_format = CTF_INT_CHAR;
862 break;
863 case DW_ATE_signed:
864 *kindp = CTF_K_INTEGER;
865 enc->cte_format = CTF_INT_SIGNED;
866 break;
867 case DW_ATE_signed_char:
868 *kindp = CTF_K_INTEGER;
869 enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR;
870 break;
871 case DW_ATE_boolean:
872 *kindp = CTF_K_INTEGER;
873 enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL;
874 break;
875 case DW_ATE_float:
876 case DW_ATE_complex_float:
877 case DW_ATE_imaginary_float:
878 case DW_ATE_SUN_imaginary_float:
879 case DW_ATE_SUN_interval_float:
880 *kindp = CTF_K_FLOAT;
881 if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0)
882 return (ret);
883 break;
884 default:
885 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
886 "encountered unknown DWARF encoding: %d", type);
887 return (ECTF_CONVBKERR);
888 }
889
890 return (0);
891 }
892
893 /*
894 * Different compilers (at least GCC and Studio) use different names for types.
895 * This parses the types and attempts to unify them. If this fails, we just fall
896 * back to using the DWARF itself.
897 */
898 static int
899 ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc,
900 char **newnamep)
901 {
902 char buf[256];
903 char *base, *c, *last;
904 int nlong = 0, nshort = 0, nchar = 0, nint = 0;
905 int sign = 1;
906
907 if (strlen(name) + 1 > sizeof (buf))
908 return (EINVAL);
909
910 (void) strlcpy(buf, name, sizeof (buf));
911 for (c = strtok_r(buf, " ", &last); c != NULL;
912 c = strtok_r(NULL, " ", &last)) {
913 if (strcmp(c, "signed") == 0) {
914 sign = 1;
915 } else if (strcmp(c, "unsigned") == 0) {
916 sign = 0;
917 } else if (strcmp(c, "long") == 0) {
918 nlong++;
919 } else if (strcmp(c, "char") == 0) {
920 nchar++;
921 } else if (strcmp(c, "short") == 0) {
922 nshort++;
923 } else if (strcmp(c, "int") == 0) {
924 nint++;
925 } else {
926 /*
927 * If we don't recognize any of the tokens, we'll tell
928 * the caller to fall back to the dwarf-provided
929 * encoding information.
930 */
931 return (EINVAL);
932 }
933 }
934
935 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
936 return (EINVAL);
937
938 if (nchar > 0) {
939 if (nlong > 0 || nshort > 0 || nint > 0)
940 return (EINVAL);
941 base = "char";
942 } else if (nshort > 0) {
943 if (nlong > 0)
944 return (EINVAL);
945 base = "short";
946 } else if (nlong > 0) {
947 base = "long";
948 } else {
949 base = "int";
950 }
951
952 if (nchar > 0)
953 enc->cte_format = CTF_INT_CHAR;
954 else
955 enc->cte_format = 0;
956
957 if (sign > 0)
958 enc->cte_format |= CTF_INT_SIGNED;
959
960 (void) snprintf(buf, sizeof (buf), "%s%s%s",
961 (sign ? "" : "unsigned "),
962 (nlong > 1 ? "long " : ""),
963 base);
964
965 *newnamep = ctf_strdup(buf);
966 if (*newnamep == NULL)
967 return (ENOMEM);
968 *kindp = CTF_K_INTEGER;
969 return (0);
970 }
971
972 static int
973 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot,
974 Dwarf_Off off)
975 {
976 int ret;
977 char *name, *nname;
978 Dwarf_Unsigned sz;
979 int kind;
980 ctf_encoding_t enc;
981 ctf_id_t id;
982
983 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0)
984 return (ret);
985 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) {
986 goto out;
987 }
988 ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name,
989 off, sz);
990
991 bzero(&enc, sizeof (ctf_encoding_t));
992 enc.cte_bits = sz * 8;
993 if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) {
994 ctf_free(name, strlen(name) + 1);
995 name = nname;
996 } else {
997 if (ret != EINVAL)
998 return (ret);
999 ctf_dprintf("falling back to dwarf for base type %s\n", name);
1000 if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0)
1001 return (ret);
1002 }
1003
1004 id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind);
1005 if (id == CTF_ERR) {
1006 ret = ctf_errno(cup->cu_ctfp);
1007 } else {
1008 *idp = id;
1009 ret = ctf_dwmap_add(cup, id, die, B_FALSE);
1010 }
1011 out:
1012 ctf_free(name, strlen(name) + 1);
1013 return (ret);
1014 }
1015
1016 /*
1017 * Getting a member's offset is a surprisingly intricate dance. It works as
1018 * follows:
1019 *
1020 * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we
1021 * have a DW_AT_data_member_location. We won't have both. Thus we check first
1022 * for DW_AT_data_bit_offset, and if it exists, we're set.
1023 *
1024 * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then
1025 * we have to grab the data location and use the following dance:
1026 *
1027 * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size.
1028 * Of course, the DW_AT_byte_size may be omitted, even though it isn't always.
1029 * When it's been omitted, we then have to say that the size is that of the
1030 * underlying type, which forces that to be after a ctf_update(). Here, we have
1031 * to do different things based on whether or not we're using big endian or
1032 * little endian to obtain the proper offset.
1033 */
1034 static int
1035 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid,
1036 ulong_t *offp)
1037 {
1038 int ret;
1039 Dwarf_Unsigned loc, bitsz, bytesz;
1040 Dwarf_Signed bitoff;
1041 size_t off;
1042 ssize_t tsz;
1043
1044 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset,
1045 &loc)) == 0) {
1046 *offp = loc;
1047 return (0);
1048 } else if (ret != ENOENT) {
1049 return (ret);
1050 }
1051
1052 if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0)
1053 return (ret);
1054 off = loc * 8;
1055
1056 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset,
1057 &bitoff)) != 0) {
1058 if (ret != ENOENT)
1059 return (ret);
1060 *offp = off;
1061 return (0);
1062 }
1063
1064 /* At this point we have to have DW_AT_bit_size */
1065 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0)
1066 return (ret);
1067
1068 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size,
1069 &bytesz)) != 0) {
1070 if (ret != ENOENT)
1071 return (ret);
1072 if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) {
1073 int e = ctf_errno(cup->cu_ctfp);
1074 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1075 "failed to get type size: %s", ctf_errmsg(e));
1076 return (ECTF_CONVBKERR);
1077 }
1078 } else {
1079 tsz = bytesz;
1080 }
1081 tsz *= 8;
1082 if (cup->cu_bigend == B_TRUE) {
1083 *offp = off + bitoff;
1084 } else {
1085 *offp = off + tsz - bitoff - bitsz;
1086 }
1087
1088 return (0);
1089 }
1090
1091 /*
1092 * We need to determine if the member in question is a bitfield. If it is, then
1093 * we need to go through and create a new type that's based on the actual base
1094 * type, but has a different size. We also rename the type as a result to help
1095 * deal with future collisions.
1096 *
1097 * Here we need to look and see if we have a DW_AT_bit_size value. If we have a
1098 * bit size member and it does not equal the byte size member, then we need to
1099 * create a bitfield type based on this.
1100 *
1101 * Note: When we support DWARFv4, there may be a chance that we need to also
1102 * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member.
1103 */
1104 static int
1105 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp)
1106 {
1107 int ret;
1108 Dwarf_Unsigned bitsz;
1109 ctf_encoding_t e;
1110 ctf_dwbitf_t *cdb;
1111 ctf_dtdef_t *dtd;
1112 ctf_id_t base = *idp;
1113 int kind;
1114
1115 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) {
1116 if (ret == ENOENT)
1117 return (0);
1118 return (ret);
1119 }
1120
1121 ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz);
1122 /*
1123 * Given that we now have a bitsize, time to go do something about it.
1124 * We're going to create a new type based on the current one, but first
1125 * we need to find the base type. This means we need to traverse any
1126 * typedef's, consts, and volatiles until we get to what should be
1127 * something of type integer or enumeration.
1128 */
1129 VERIFY(bitsz < UINT32_MAX);
1130 dtd = ctf_dtd_lookup(cup->cu_ctfp, base);
1131 VERIFY(dtd != NULL);
1132 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1133 while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST ||
1134 kind == CTF_K_VOLATILE) {
1135 dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type);
1136 VERIFY(dtd != NULL);
1137 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1138 }
1139 ctf_dprintf("got kind %d\n", kind);
1140 VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
1141
1142 /*
1143 * As surprising as it may be, it is strictly possible to create a
1144 * bitfield that is based on an enum. Of course, the C standard leaves
1145 * enums sizing as an ABI concern more or less. To that effect, today on
1146 * all illumos platforms the size of an enum is generally that of an
1147 * int as our supported data models and ABIs all agree on that. So what
1148 * we'll do is fake up a CTF encoding here to use. In this case, we'll
1149 * treat it as an unsigned value of whatever size the underlying enum
1150 * currently has (which is in the ctt_size member of its dynamic type
1151 * data).
1152 */
1153 if (kind == CTF_K_INTEGER) {
1154 e = dtd->dtd_u.dtu_enc;
1155 } else {
1156 bzero(&e, sizeof (ctf_encoding_t));
1157 e.cte_bits = dtd->dtd_data.ctt_size * NBBY;
1158 }
1159
1160 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL;
1161 cdb = ctf_list_next(cdb)) {
1162 if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz)
1163 break;
1164 }
1165
1166 /*
1167 * Create a new type if none exists. We name all types in a way that is
1168 * guaranteed not to conflict with the corresponding C type. We do this
1169 * by using the ':' operator.
1170 */
1171 if (cdb == NULL) {
1172 size_t namesz;
1173 char *name;
1174
1175 e.cte_bits = bitsz;
1176 namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name,
1177 (uint32_t)bitsz);
1178 name = ctf_alloc(namesz + 1);
1179 if (name == NULL)
1180 return (ENOMEM);
1181 cdb = ctf_alloc(sizeof (ctf_dwbitf_t));
1182 if (cdb == NULL) {
1183 ctf_free(name, namesz + 1);
1184 return (ENOMEM);
1185 }
1186 (void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name,
1187 (uint32_t)bitsz);
1188
1189 cdb->cdb_base = base;
1190 cdb->cdb_nbits = bitsz;
1191 cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
1192 name, &e);
1193 if (cdb->cdb_id == CTF_ERR) {
1194 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1195 "failed to get add bitfield type %s: %s", name,
1196 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1197 ctf_free(name, namesz + 1);
1198 ctf_free(cdb, sizeof (ctf_dwbitf_t));
1199 return (ECTF_CONVBKERR);
1200 }
1201 ctf_free(name, namesz + 1);
1202 ctf_list_append(&cup->cu_bitfields, cdb);
1203 }
1204
1205 *idp = cdb->cdb_id;
1206
1207 return (0);
1208 }
1209
1210 static int
1211 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add)
1212 {
1213 int ret, kind;
1214 Dwarf_Die child, memb;
1215 Dwarf_Unsigned size;
1216 ulong_t nsz;
1217
1218 kind = ctf_type_kind(cup->cu_ctfp, base);
1219 VERIFY(kind != CTF_ERR);
1220 VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION);
1221
1222 /*
1223 * Members are in children. However, gcc also allows empty ones.
1224 */
1225 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1226 return (ret);
1227 if (child == NULL)
1228 return (0);
1229
1230 memb = child;
1231 while (memb != NULL) {
1232 Dwarf_Die sib, tdie;
1233 Dwarf_Half tag;
1234 ctf_id_t mid;
1235 char *mname;
1236 ulong_t memboff = 0;
1237
1238 if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0)
1239 return (ret);
1240
1241 if (tag != DW_TAG_member)
1242 continue;
1243
1244 if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0)
1245 return (ret);
1246
1247 if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid,
1248 CTF_ADD_NONROOT)) != 0)
1249 return (ret);
1250 ctf_dprintf("Got back type id: %d\n", mid);
1251
1252 /*
1253 * If we're not adding a member, just go ahead and return.
1254 */
1255 if (add == B_FALSE) {
1256 if ((ret = ctf_dwarf_member_bitfield(cup, memb,
1257 &mid)) != 0)
1258 return (ret);
1259 goto next;
1260 }
1261
1262 if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name,
1263 &mname)) != 0 && ret != ENOENT)
1264 return (ret);
1265 if (ret == ENOENT)
1266 mname = NULL;
1267
1268 if (kind == CTF_K_UNION) {
1269 memboff = 0;
1270 } else if ((ret = ctf_dwarf_member_offset(cup, memb, mid,
1271 &memboff)) != 0) {
1272 if (mname != NULL)
1273 ctf_free(mname, strlen(mname) + 1);
1274 return (ret);
1275 }
1276
1277 if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0)
1278 return (ret);
1279
1280 ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff);
1281 if (ret == CTF_ERR) {
1282 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1283 "failed to add member %s: %s",
1284 mname, ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1285 if (mname != NULL)
1286 ctf_free(mname, strlen(mname) + 1);
1287 return (ECTF_CONVBKERR);
1288 }
1289
1290 if (mname != NULL)
1291 ctf_free(mname, strlen(mname) + 1);
1292
1293 next:
1294 if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0)
1295 return (ret);
1296 memb = sib;
1297 }
1298
1299 /*
1300 * If we're not adding members, then we don't know the final size of the
1301 * structure, so end here.
1302 */
1303 if (add == B_FALSE)
1304 return (0);
1305
1306 /* Finally set the size of the structure to the actual byte size */
1307 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0)
1308 return (ret);
1309 nsz = size;
1310 if ((ctf_set_size(cup->cu_ctfp, base, nsz)) == CTF_ERR) {
1311 int e = ctf_errno(cup->cu_ctfp);
1312 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1313 "failed to set type size for %d to 0x%x: %s", base,
1314 (uint32_t)size, ctf_errmsg(e));
1315 return (ECTF_CONVBKERR);
1316 }
1317
1318 return (0);
1319 }
1320
1321 static int
1322 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1323 int kind, int isroot)
1324 {
1325 int ret;
1326 char *name;
1327 ctf_id_t base;
1328 Dwarf_Die child;
1329 Dwarf_Bool decl;
1330
1331 /*
1332 * Deal with the terribly annoying case of anonymous structs and unions.
1333 * If they don't have a name, set the name to the empty string.
1334 */
1335 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1336 ret != ENOENT)
1337 return (ret);
1338 if (ret == ENOENT)
1339 name = NULL;
1340
1341 /*
1342 * We need to check if we just have a declaration here. If we do, then
1343 * instead of creating an actual structure or union, we're just going to
1344 * go ahead and create a forward. During a dedup or merge, the forward
1345 * will be replaced with the real thing.
1346 */
1347 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration,
1348 &decl)) != 0) {
1349 if (ret != ENOENT)
1350 return (ret);
1351 decl = 0;
1352 }
1353
1354 if (decl != 0) {
1355 base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind);
1356 } else if (kind == CTF_K_STRUCT) {
1357 base = ctf_add_struct(cup->cu_ctfp, isroot, name);
1358 } else {
1359 base = ctf_add_union(cup->cu_ctfp, isroot, name);
1360 }
1361 ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base);
1362 if (name != NULL)
1363 ctf_free(name, strlen(name) + 1);
1364 if (base == CTF_ERR)
1365 return (ctf_errno(cup->cu_ctfp));
1366 *idp = base;
1367
1368 /*
1369 * If it's just a declaration, we're not going to mark it for fix up or
1370 * do anything else.
1371 */
1372 if (decl == B_TRUE)
1373 return (ctf_dwmap_add(cup, base, die, B_FALSE));
1374 if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0)
1375 return (ret);
1376
1377 /*
1378 * Members are in children. However, gcc also allows empty ones.
1379 */
1380 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1381 return (ret);
1382 if (child == NULL)
1383 return (0);
1384
1385 return (0);
1386 }
1387
1388 static int
1389 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp,
1390 ctf_id_t base, int isroot)
1391 {
1392 int ret;
1393 Dwarf_Die sib;
1394 Dwarf_Unsigned val;
1395 Dwarf_Signed sval;
1396 ctf_arinfo_t ar;
1397
1398 ctf_dprintf("creating array range\n");
1399
1400 if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0)
1401 return (ret);
1402 if (sib != NULL) {
1403 ctf_id_t id;
1404 if ((ret = ctf_dwarf_create_array_range(cup, sib, &id,
1405 base, CTF_ADD_NONROOT)) != 0)
1406 return (ret);
1407 ar.ctr_contents = id;
1408 } else {
1409 ar.ctr_contents = base;
1410 }
1411
1412 if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR)
1413 return (ctf_errno(cup->cu_ctfp));
1414
1415 /*
1416 * Array bounds can be signed or unsigned, but there are several kinds
1417 * of signless forms (data1, data2, etc) that take their sign from the
1418 * routine that is trying to interpret them. That is, data1 can be
1419 * either signed or unsigned, depending on whether you use the signed or
1420 * unsigned accessor function. GCC will use the signless forms to store
1421 * unsigned values which have their high bit set, so we need to try to
1422 * read them first as unsigned to get positive values. We could also
1423 * try signed first, falling back to unsigned if we got a negative
1424 * value.
1425 */
1426 if ((ret = ctf_dwarf_unsigned(cup, range, DW_AT_upper_bound,
1427 &val)) == 0) {
1428 ar.ctr_nelems = val + 1;
1429 } else if (ret != ENOENT) {
1430 return (ret);
1431 } else if ((ret = ctf_dwarf_signed(cup, range, DW_AT_upper_bound,
1432 &sval)) == 0) {
1433 ar.ctr_nelems = sval + 1;
1434 } else if (ret != ENOENT) {
1435 return (ret);
1436 } else {
1437 ar.ctr_nelems = 0;
1438 }
1439
1440 if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR)
1441 return (ctf_errno(cup->cu_ctfp));
1442
1443 return (0);
1444 }
1445
1446 /*
1447 * Try and create an array type. First, the kind of the array is specified in
1448 * the DW_AT_type entry. Next, the number of entries is stored in a more
1449 * complicated form, we should have a child that has the DW_TAG_subrange type.
1450 */
1451 static int
1452 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1453 {
1454 int ret;
1455 Dwarf_Die tdie, rdie;
1456 ctf_id_t tid;
1457 Dwarf_Half rtag;
1458
1459 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1460 return (ret);
1461 if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1462 CTF_ADD_NONROOT)) != 0)
1463 return (ret);
1464
1465 if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0)
1466 return (ret);
1467 if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0)
1468 return (ret);
1469 if (rtag != DW_TAG_subrange_type) {
1470 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1471 "encountered array without DW_TAG_subrange_type child\n");
1472 return (ECTF_CONVBKERR);
1473 }
1474
1475 /*
1476 * The compiler may opt to describe a multi-dimensional array as one
1477 * giant array or it may opt to instead encode it as a series of
1478 * subranges. If it's the latter, then for each subrange we introduce a
1479 * type. We can always use the base type.
1480 */
1481 if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid,
1482 isroot)) != 0)
1483 return (ret);
1484 ctf_dprintf("Got back id %d\n", *idp);
1485 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1486 }
1487
1488 /*
1489 * Given "const int const_array3[11]", GCC7 at least will create a DIE tree of
1490 * DW_TAG_const_type:DW_TAG_array_type:DW_Tag_const_type:<member_type>.
1491 *
1492 * Given C's syntax, this renders out as "const const int const_array3[11]". To
1493 * get closer to round-tripping (and make the unit tests work), we'll peek for
1494 * this case, and avoid adding the extraneous qualifier if we see that the
1495 * underlying array referent already has the same qualifier.
1496 *
1497 * This is unfortunately less trivial than it could be: this issue applies to
1498 * qualifier sets like "const volatile", as well as multi-dimensional arrays, so
1499 * we need to descend down those.
1500 *
1501 * Returns CTF_ERR on error, or a boolean value otherwise.
1502 */
1503 static int
1504 needed_array_qualifier(ctf_cu_t *cup, int kind, ctf_id_t ref_id)
1505 {
1506 const ctf_type_t *t;
1507 ctf_arinfo_t arinfo;
1508 int akind;
1509
1510 if (kind != CTF_K_CONST && kind != CTF_K_VOLATILE &&
1511 kind != CTF_K_RESTRICT)
1512 return (1);
1513
1514 if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, ref_id)) == NULL)
1515 return (CTF_ERR);
1516
1517 if (LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info) != CTF_K_ARRAY)
1518 return (1);
1519
1520 if (ctf_dyn_array_info(cup->cu_ctfp, ref_id, &arinfo) != 0)
1521 return (CTF_ERR);
1522
1523 ctf_id_t id = arinfo.ctr_contents;
1524
1525 for (;;) {
1526 if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, id)) == NULL)
1527 return (CTF_ERR);
1528
1529 akind = LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info);
1530
1531 if (akind == kind)
1532 break;
1533
1534 if (akind == CTF_K_ARRAY) {
1535 if (ctf_dyn_array_info(cup->cu_ctfp,
1536 id, &arinfo) != 0)
1537 return (CTF_ERR);
1538 id = arinfo.ctr_contents;
1539 continue;
1540 }
1541
1542 if (akind != CTF_K_CONST && akind != CTF_K_VOLATILE &&
1543 akind != CTF_K_RESTRICT)
1544 break;
1545
1546 id = t->ctt_type;
1547 }
1548
1549 if (kind == akind) {
1550 ctf_dprintf("ignoring extraneous %s qualifier for array %d\n",
1551 ctf_kind_name(cup->cu_ctfp, kind), ref_id);
1552 }
1553
1554 return (kind != akind);
1555 }
1556
1557 static int
1558 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1559 int kind, int isroot)
1560 {
1561 int ret;
1562 ctf_id_t id;
1563 Dwarf_Die tdie;
1564 char *name;
1565 size_t namelen;
1566
1567 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1568 ret != ENOENT)
1569 return (ret);
1570 if (ret == ENOENT) {
1571 name = NULL;
1572 namelen = 0;
1573 } else {
1574 namelen = strlen(name);
1575 }
1576
1577 ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>");
1578
1579 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
1580 if (ret != ENOENT) {
1581 ctf_free(name, namelen);
1582 return (ret);
1583 }
1584 if ((id = ctf_dwarf_void(cup)) == CTF_ERR) {
1585 ctf_free(name, namelen);
1586 return (ctf_errno(cup->cu_ctfp));
1587 }
1588 } else {
1589 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
1590 CTF_ADD_NONROOT)) != 0) {
1591 ctf_free(name, namelen);
1592 return (ret);
1593 }
1594 }
1595
1596 if ((ret = needed_array_qualifier(cup, kind, id)) <= 0) {
1597 if (ret != 0) {
1598 ret = (ctf_errno(cup->cu_ctfp));
1599 } else {
1600 *idp = id;
1601 }
1602
1603 ctf_free(name, namelen);
1604 return (ret);
1605 }
1606
1607 if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) ==
1608 CTF_ERR) {
1609 ctf_free(name, namelen);
1610 return (ctf_errno(cup->cu_ctfp));
1611 }
1612
1613 ctf_free(name, namelen);
1614 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1615 }
1616
1617 static int
1618 ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1619 {
1620 int ret;
1621 ctf_id_t id;
1622 Dwarf_Die child;
1623 char *name;
1624
1625 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1626 ret != ENOENT)
1627 return (ret);
1628 if (ret == ENOENT)
1629 name = NULL;
1630 id = ctf_add_enum(cup->cu_ctfp, isroot, name);
1631 ctf_dprintf("added enum %s (%d)\n", name, id);
1632 if (name != NULL)
1633 ctf_free(name, strlen(name) + 1);
1634 if (id == CTF_ERR)
1635 return (ctf_errno(cup->cu_ctfp));
1636 *idp = id;
1637 if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0)
1638 return (ret);
1639
1640 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) {
1641 if (ret == ENOENT)
1642 ret = 0;
1643 return (ret);
1644 }
1645
1646 while (child != NULL) {
1647 Dwarf_Half tag;
1648 Dwarf_Signed sval;
1649 Dwarf_Unsigned uval;
1650 Dwarf_Die arg = child;
1651 int eval;
1652
1653 if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0)
1654 return (ret);
1655
1656 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1657 return (ret);
1658
1659 if (tag != DW_TAG_enumerator) {
1660 if ((ret = ctf_dwarf_convert_type(cup, arg, NULL,
1661 CTF_ADD_NONROOT)) != 0)
1662 return (ret);
1663 continue;
1664 }
1665
1666 /*
1667 * DWARF v4 section 5.7 tells us we'll always have names.
1668 */
1669 if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0)
1670 return (ret);
1671
1672 /*
1673 * We have to be careful here: newer GCCs generate DWARF where
1674 * an unsigned value will happily pass ctf_dwarf_signed().
1675 * Since negative values will fail ctf_dwarf_unsigned(), we try
1676 * that first to make sure we get the right value.
1677 */
1678 if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value,
1679 &uval)) == 0) {
1680 eval = (int)uval;
1681 } else if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value,
1682 &sval)) == 0) {
1683 eval = sval;
1684 }
1685
1686 if (ret != 0) {
1687 if (ret != ENOENT)
1688 return (ret);
1689
1690 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1691 "encountered enumeration without constant value\n");
1692 return (ECTF_CONVBKERR);
1693 }
1694
1695 ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval);
1696 if (ret == CTF_ERR) {
1697 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1698 "failed to add enumarator %s (%d) to %d\n",
1699 name, eval, id);
1700 ctf_free(name, strlen(name) + 1);
1701 return (ctf_errno(cup->cu_ctfp));
1702 }
1703 ctf_free(name, strlen(name) + 1);
1704 }
1705
1706 return (0);
1707 }
1708
1709 /*
1710 * For a function pointer, walk over and process all of its children, unless we
1711 * encounter one that's just a declaration. In which case, we error on it.
1712 */
1713 static int
1714 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1715 {
1716 int ret;
1717 Dwarf_Bool b;
1718 ctf_funcinfo_t fi;
1719 Dwarf_Die retdie;
1720 ctf_id_t *argv = NULL;
1721
1722 bzero(&fi, sizeof (ctf_funcinfo_t));
1723
1724 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
1725 if (ret != ENOENT)
1726 return (ret);
1727 } else {
1728 if (b != 0)
1729 return (EPROTOTYPE);
1730 }
1731
1732 /*
1733 * Return type is in DW_AT_type, if none, it returns void.
1734 */
1735 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) {
1736 if (ret != ENOENT)
1737 return (ret);
1738 if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR)
1739 return (ctf_errno(cup->cu_ctfp));
1740 } else {
1741 if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return,
1742 CTF_ADD_NONROOT)) != 0)
1743 return (ret);
1744 }
1745
1746 if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) {
1747 return (ret);
1748 }
1749
1750 if (fi.ctc_argc != 0) {
1751 argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc);
1752 if (argv == NULL)
1753 return (ENOMEM);
1754
1755 if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) {
1756 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1757 return (ret);
1758 }
1759 }
1760
1761 if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) ==
1762 CTF_ERR) {
1763 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1764 return (ctf_errno(cup->cu_ctfp));
1765 }
1766
1767 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1768 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1769 }
1770
1771 static int
1772 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1773 int isroot)
1774 {
1775 int ret;
1776 Dwarf_Off offset;
1777 Dwarf_Half tag;
1778 ctf_dwmap_t lookup, *map;
1779 ctf_id_t id;
1780
1781 if (idp == NULL)
1782 idp = &id;
1783
1784 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
1785 return (ret);
1786
1787 if (offset > cup->cu_maxoff) {
1788 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1789 "die offset %llu beyond maximum for header %llu\n",
1790 offset, cup->cu_maxoff);
1791 return (ECTF_CONVBKERR);
1792 }
1793
1794 /*
1795 * If we've already added an entry for this offset, then we're done.
1796 */
1797 lookup.cdm_off = offset;
1798 if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) {
1799 *idp = map->cdm_id;
1800 return (0);
1801 }
1802
1803 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
1804 return (ret);
1805
1806 ret = ENOTSUP;
1807 switch (tag) {
1808 case DW_TAG_base_type:
1809 ctf_dprintf("base\n");
1810 ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset);
1811 break;
1812 case DW_TAG_array_type:
1813 ctf_dprintf("array\n");
1814 ret = ctf_dwarf_create_array(cup, die, idp, isroot);
1815 break;
1816 case DW_TAG_enumeration_type:
1817 ctf_dprintf("enum\n");
1818 ret = ctf_dwarf_create_enum(cup, die, idp, isroot);
1819 break;
1820 case DW_TAG_pointer_type:
1821 ctf_dprintf("pointer\n");
1822 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER,
1823 isroot);
1824 break;
1825 case DW_TAG_structure_type:
1826 ctf_dprintf("struct\n");
1827 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT,
1828 isroot);
1829 break;
1830 case DW_TAG_subroutine_type:
1831 ctf_dprintf("fptr\n");
1832 ret = ctf_dwarf_create_fptr(cup, die, idp, isroot);
1833 break;
1834 case DW_TAG_typedef:
1835 ctf_dprintf("typedef\n");
1836 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF,
1837 isroot);
1838 break;
1839 case DW_TAG_union_type:
1840 ctf_dprintf("union\n");
1841 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION,
1842 isroot);
1843 break;
1844 case DW_TAG_const_type:
1845 ctf_dprintf("const\n");
1846 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST,
1847 isroot);
1848 break;
1849 case DW_TAG_volatile_type:
1850 ctf_dprintf("volatile\n");
1851 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE,
1852 isroot);
1853 break;
1854 case DW_TAG_restrict_type:
1855 ctf_dprintf("restrict\n");
1856 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT,
1857 isroot);
1858 break;
1859 default:
1860 ctf_dprintf("ignoring tag type %x\n", tag);
1861 *idp = CTF_ERR;
1862 ret = 0;
1863 break;
1864 }
1865 ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n",
1866 ret);
1867
1868 return (ret);
1869 }
1870
1871 static int
1872 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die)
1873 {
1874 int ret;
1875 Dwarf_Die child;
1876
1877 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1878 return (ret);
1879
1880 if (child == NULL)
1881 return (0);
1882
1883 return (ctf_dwarf_convert_die(cup, die));
1884 }
1885
1886 static int
1887 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1888 boolean_t fptr)
1889 {
1890 int ret;
1891 Dwarf_Die child, sib, arg;
1892
1893 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1894 return (ret);
1895
1896 arg = child;
1897 while (arg != NULL) {
1898 Dwarf_Half tag;
1899
1900 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1901 return (ret);
1902
1903 /*
1904 * We have to check for a varargs type declaration. This will
1905 * happen in one of two ways. If we have a function pointer
1906 * type, then it'll be done with a tag of type
1907 * DW_TAG_unspecified_parameters. However, it only means we have
1908 * a variable number of arguments, if we have more than one
1909 * argument found so far. Otherwise, when we have a function
1910 * type, it instead uses a formal parameter whose name is '...'
1911 * to indicate a variable arguments member.
1912 *
1913 * Also, if we have a function pointer, then we have to expect
1914 * that we might not get a name at all.
1915 */
1916 if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) {
1917 char *name;
1918 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name,
1919 &name)) != 0)
1920 return (ret);
1921 if (strcmp(name, DWARF_VARARGS_NAME) == 0)
1922 fip->ctc_flags |= CTF_FUNC_VARARG;
1923 else
1924 fip->ctc_argc++;
1925 ctf_free(name, strlen(name) + 1);
1926 } else if (tag == DW_TAG_formal_parameter) {
1927 fip->ctc_argc++;
1928 } else if (tag == DW_TAG_unspecified_parameters &&
1929 fip->ctc_argc > 0) {
1930 fip->ctc_flags |= CTF_FUNC_VARARG;
1931 }
1932 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1933 return (ret);
1934 arg = sib;
1935 }
1936
1937 return (0);
1938 }
1939
1940 static int
1941 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1942 ctf_id_t *argv)
1943 {
1944 int ret;
1945 int i = 0;
1946 Dwarf_Die child, sib, arg;
1947
1948 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1949 return (ret);
1950
1951 arg = child;
1952 while (arg != NULL) {
1953 Dwarf_Half tag;
1954
1955 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1956 return (ret);
1957 if (tag == DW_TAG_formal_parameter) {
1958 Dwarf_Die tdie;
1959
1960 if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type,
1961 &tdie)) != 0)
1962 return (ret);
1963
1964 if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i],
1965 CTF_ADD_ROOT)) != 0)
1966 return (ret);
1967 i++;
1968
1969 /*
1970 * Once we hit argc entries, we're done. This ensures we
1971 * don't accidentally hit a varargs which should be the
1972 * last entry.
1973 */
1974 if (i == fip->ctc_argc)
1975 break;
1976 }
1977
1978 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1979 return (ret);
1980 arg = sib;
1981 }
1982
1983 return (0);
1984 }
1985
1986 static int
1987 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die)
1988 {
1989 ctf_dwfunc_t *cdf;
1990 Dwarf_Die tdie;
1991 Dwarf_Bool b;
1992 char *name;
1993 int ret;
1994
1995 /*
1996 * Functions that don't have a name are generally functions that have
1997 * been inlined and thus most information about them has been lost. If
1998 * we can't get a name, then instead of returning ENOENT, we silently
1999 * swallow the error.
2000 */
2001 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) {
2002 if (ret == ENOENT)
2003 return (0);
2004 return (ret);
2005 }
2006
2007 ctf_dprintf("beginning work on function %s (die %llx)\n",
2008 name, ctf_die_offset(die));
2009
2010 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
2011 if (ret != ENOENT)
2012 return (ret);
2013 } else if (b != 0) {
2014 /*
2015 * GCC7 at least creates empty DW_AT_declarations for functions
2016 * defined in headers. As they lack details on the function
2017 * prototype, we need to ignore them. If we later actually
2018 * see the relevant function's definition, we will see another
2019 * DW_TAG_subprogram that is more complete.
2020 */
2021 ctf_dprintf("ignoring declaration of function %s (die %llx)\n",
2022 name, ctf_die_offset(die));
2023 return (0);
2024 }
2025
2026 if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) {
2027 ctf_free(name, strlen(name) + 1);
2028 return (ENOMEM);
2029 }
2030 bzero(cdf, sizeof (ctf_dwfunc_t));
2031 cdf->cdf_name = name;
2032
2033 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) {
2034 if ((ret = ctf_dwarf_convert_type(cup, tdie,
2035 &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) {
2036 ctf_free(name, strlen(name) + 1);
2037 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2038 return (ret);
2039 }
2040 } else if (ret != ENOENT) {
2041 ctf_free(name, strlen(name) + 1);
2042 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2043 return (ret);
2044 } else {
2045 if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) ==
2046 CTF_ERR) {
2047 ctf_free(name, strlen(name) + 1);
2048 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2049 return (ctf_errno(cup->cu_ctfp));
2050 }
2051 }
2052
2053 /*
2054 * A function has a number of children, some of which may not be ones we
2055 * care about. Children that we care about have a type of
2056 * DW_TAG_formal_parameter. We're going to do two passes, the first to
2057 * count the arguments, the second to process them. Afterwards, we
2058 * should be good to go ahead and add this function.
2059 *
2060 * Note, we already got the return type by going in and grabbing it out
2061 * of the DW_AT_type.
2062 */
2063 if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip,
2064 B_FALSE)) != 0) {
2065 ctf_free(name, strlen(name) + 1);
2066 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2067 return (ret);
2068 }
2069
2070 ctf_dprintf("beginning to convert function arguments %s\n", name);
2071 if (cdf->cdf_fip.ctc_argc != 0) {
2072 uint_t argc = cdf->cdf_fip.ctc_argc;
2073 cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc);
2074 if (cdf->cdf_argv == NULL) {
2075 ctf_free(name, strlen(name) + 1);
2076 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2077 return (ENOMEM);
2078 }
2079 if ((ret = ctf_dwarf_convert_fargs(cup, die,
2080 &cdf->cdf_fip, cdf->cdf_argv)) != 0) {
2081 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc);
2082 ctf_free(name, strlen(name) + 1);
2083 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2084 return (ret);
2085 }
2086 } else {
2087 cdf->cdf_argv = NULL;
2088 }
2089
2090 if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) {
2091 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) *
2092 cdf->cdf_fip.ctc_argc);
2093 ctf_free(name, strlen(name) + 1);
2094 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2095 return (ret);
2096 }
2097
2098 ctf_list_append(&cup->cu_funcs, cdf);
2099 return (ret);
2100 }
2101
2102 /*
2103 * Convert variables, but only if they're not prototypes and have names.
2104 */
2105 static int
2106 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die)
2107 {
2108 int ret;
2109 char *name;
2110 Dwarf_Bool b;
2111 Dwarf_Die tdie;
2112 ctf_id_t id;
2113 ctf_dwvar_t *cdv;
2114
2115 /* Skip "Non-Defining Declarations" */
2116 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) {
2117 if (b != 0)
2118 return (0);
2119 } else if (ret != ENOENT) {
2120 return (ret);
2121 }
2122
2123 /*
2124 * If we find a DIE of "Declarations Completing Non-Defining
2125 * Declarations", we will use the referenced type's DIE. This isn't
2126 * quite correct, e.g. DW_AT_decl_line will be the forward declaration
2127 * not this site. It's sufficient for what we need, however: in
2128 * particular, we should find DW_AT_external as needed there.
2129 */
2130 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification,
2131 &tdie)) == 0) {
2132 Dwarf_Off offset;
2133 if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0)
2134 return (ret);
2135 ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n",
2136 ctf_die_offset(die), ctf_die_offset(tdie));
2137 die = tdie;
2138 } else if (ret != ENOENT) {
2139 return (ret);
2140 }
2141
2142 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
2143 ret != ENOENT)
2144 return (ret);
2145 if (ret == ENOENT)
2146 return (0);
2147
2148 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
2149 ctf_free(name, strlen(name) + 1);
2150 return (ret);
2151 }
2152
2153 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
2154 CTF_ADD_ROOT)) != 0)
2155 return (ret);
2156
2157 if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) {
2158 ctf_free(name, strlen(name) + 1);
2159 return (ENOMEM);
2160 }
2161
2162 cdv->cdv_name = name;
2163 cdv->cdv_type = id;
2164
2165 if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) {
2166 ctf_free(cdv, sizeof (ctf_dwvar_t));
2167 ctf_free(name, strlen(name) + 1);
2168 return (ret);
2169 }
2170
2171 ctf_list_append(&cup->cu_vars, cdv);
2172 return (0);
2173 }
2174
2175 /*
2176 * Walk through our set of top-level types and process them.
2177 */
2178 static int
2179 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die)
2180 {
2181 int ret;
2182 Dwarf_Off offset;
2183 Dwarf_Half tag;
2184
2185 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2186 return (ret);
2187
2188 if (offset > cup->cu_maxoff) {
2189 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2190 "die offset %llu beyond maximum for header %llu\n",
2191 offset, cup->cu_maxoff);
2192 return (ECTF_CONVBKERR);
2193 }
2194
2195 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2196 return (ret);
2197
2198 ret = 0;
2199 switch (tag) {
2200 case DW_TAG_subprogram:
2201 ctf_dprintf("top level func\n");
2202 ret = ctf_dwarf_convert_function(cup, die);
2203 break;
2204 case DW_TAG_variable:
2205 ctf_dprintf("top level var\n");
2206 ret = ctf_dwarf_convert_variable(cup, die);
2207 break;
2208 case DW_TAG_lexical_block:
2209 ctf_dprintf("top level block\n");
2210 ret = ctf_dwarf_walk_lexical(cup, die);
2211 break;
2212 case DW_TAG_enumeration_type:
2213 case DW_TAG_structure_type:
2214 case DW_TAG_typedef:
2215 case DW_TAG_union_type:
2216 ctf_dprintf("top level type\n");
2217 ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE);
2218 break;
2219 default:
2220 break;
2221 }
2222
2223 return (ret);
2224 }
2225
2226
2227 /*
2228 * We're given a node. At this node we need to convert it and then proceed to
2229 * convert any siblings that are associaed with this die.
2230 */
2231 static int
2232 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die)
2233 {
2234 while (die != NULL) {
2235 int ret;
2236 Dwarf_Die sib;
2237
2238 if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0)
2239 return (ret);
2240
2241 if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0)
2242 return (ret);
2243 die = sib;
2244 }
2245 return (0);
2246 }
2247
2248 static int
2249 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass)
2250 {
2251 ctf_dwmap_t *map;
2252
2253 for (map = avl_first(&cup->cu_map); map != NULL;
2254 map = AVL_NEXT(&cup->cu_map, map)) {
2255 int ret;
2256 if (map->cdm_fix == B_FALSE)
2257 continue;
2258 if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id,
2259 addpass)) != 0)
2260 return (ret);
2261 }
2262
2263 return (0);
2264 }
2265
2266 /*
2267 * The DWARF information about a symbol and the information in the symbol table
2268 * may not be the same due to symbol reduction that is performed by ld due to a
2269 * mapfile or other such directive. We process weak symbols at a later time.
2270 *
2271 * The following are the rules that we employ:
2272 *
2273 * 1. A DWARF function that is considered exported matches STB_GLOBAL entries
2274 * with the same name.
2275 *
2276 * 2. A DWARF function that is considered exported matches STB_LOCAL entries
2277 * with the same name and the same file. This case may happen due to mapfile
2278 * reduction.
2279 *
2280 * 3. A DWARF function that is not considered exported matches STB_LOCAL entries
2281 * with the same name and the same file.
2282 *
2283 * 4. A DWARF function that has the same name as the symbol table entry, but the
2284 * files do not match. This is considered a 'fuzzy' match. This may also happen
2285 * due to a mapfile reduction. Fuzzy matching is only used when we know that the
2286 * file in question refers to the primary object. This is because when a symbol
2287 * is reduced in a mapfile, it's always going to be tagged as a local value in
2288 * the generated output and it is considered as to belong to the primary file
2289 * which is the first STT_FILE symbol we see.
2290 */
2291 static boolean_t
2292 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name,
2293 uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name,
2294 boolean_t dwarf_global, boolean_t *is_fuzzy)
2295 {
2296 *is_fuzzy = B_FALSE;
2297
2298 if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) {
2299 return (B_FALSE);
2300 }
2301
2302 if (strcmp(symtab_name, dwarf_name) != 0) {
2303 return (B_FALSE);
2304 }
2305
2306 if (symtab_bind == STB_GLOBAL) {
2307 return (dwarf_global);
2308 }
2309
2310 if (strcmp(symtab_file, dwarf_file) == 0) {
2311 return (B_TRUE);
2312 }
2313
2314 if (dwarf_global) {
2315 *is_fuzzy = B_TRUE;
2316 return (B_TRUE);
2317 }
2318
2319 return (B_FALSE);
2320 }
2321
2322 static ctf_dwfunc_t *
2323 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name,
2324 uint_t bind, boolean_t primary)
2325 {
2326 ctf_dwfunc_t *cdf, *fuzzy = NULL;
2327
2328 if (bind == STB_WEAK)
2329 return (NULL);
2330
2331 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2332 return (NULL);
2333
2334 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL;
2335 cdf = ctf_list_next(cdf)) {
2336 boolean_t is_fuzzy = B_FALSE;
2337
2338 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2339 cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) {
2340 if (is_fuzzy) {
2341 if (primary) {
2342 fuzzy = cdf;
2343 }
2344 continue;
2345 } else {
2346 return (cdf);
2347 }
2348 }
2349 }
2350
2351 return (fuzzy);
2352 }
2353
2354 static ctf_dwvar_t *
2355 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name,
2356 uint_t bind, boolean_t primary)
2357 {
2358 ctf_dwvar_t *cdv, *fuzzy = NULL;
2359
2360 if (bind == STB_WEAK)
2361 return (NULL);
2362
2363 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2364 return (NULL);
2365
2366 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL;
2367 cdv = ctf_list_next(cdv)) {
2368 boolean_t is_fuzzy = B_FALSE;
2369
2370 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2371 cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) {
2372 if (is_fuzzy) {
2373 if (primary) {
2374 fuzzy = cdv;
2375 }
2376 } else {
2377 return (cdv);
2378 }
2379 }
2380 }
2381
2382 return (fuzzy);
2383 }
2384
2385 static int
2386 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx,
2387 const char *file, const char *name, boolean_t primary, void *arg)
2388 {
2389 int ret;
2390 uint_t bind, type;
2391 ctf_cu_t *cup = arg;
2392
2393 bind = GELF_ST_BIND(symp->st_info);
2394 type = GELF_ST_TYPE(symp->st_info);
2395
2396 /*
2397 * Come back to weak symbols in another pass
2398 */
2399 if (bind == STB_WEAK)
2400 return (0);
2401
2402 if (type == STT_OBJECT) {
2403 ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name,
2404 bind, primary);
2405 if (cdv == NULL)
2406 return (0);
2407 ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type);
2408 ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type);
2409 } else {
2410 ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name,
2411 bind, primary);
2412 if (cdf == NULL)
2413 return (0);
2414 ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip,
2415 cdf->cdf_argv);
2416 ctf_dprintf("added function %s\n", name);
2417 }
2418
2419 if (ret == CTF_ERR) {
2420 return (ctf_errno(cup->cu_ctfp));
2421 }
2422
2423 return (0);
2424 }
2425
2426 static int
2427 ctf_dwarf_conv_funcvars(ctf_cu_t *cup)
2428 {
2429 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup));
2430 }
2431
2432 /*
2433 * If we have a weak symbol, attempt to find the strong symbol it will resolve
2434 * to. Note: the code where this actually happens is in sym_process() in
2435 * cmd/sgs/libld/common/syms.c
2436 *
2437 * Finding the matching symbol is unfortunately not trivial. For a symbol to be
2438 * a candidate, it must:
2439 *
2440 * - have the same type (function, object)
2441 * - have the same value (address)
2442 * - have the same size
2443 * - not be another weak symbol
2444 * - belong to the same section (checked via section index)
2445 *
2446 * To perform this check, we first iterate over the symbol table. For each weak
2447 * symbol that we encounter, we then do a second walk over the symbol table,
2448 * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's
2449 * either a local or global symbol. If we find a global symbol then we go with
2450 * it and stop searching for additional matches.
2451 *
2452 * If instead, we find a local symbol, things are more complicated. The first
2453 * thing we do is to try and see if we have file information about both symbols
2454 * (STT_FILE). If they both have file information and it matches, then we treat
2455 * that as a good match and stop searching for additional matches.
2456 *
2457 * Otherwise, this means we have a non-matching file and a local symbol. We
2458 * treat this as a candidate and if we find a better match (one of the two cases
2459 * above), use that instead. There are two different ways this can happen.
2460 * Either this is a completely different symbol, or it's a once-global symbol
2461 * that was scoped to local via a mapfile. In the former case, curfile is
2462 * likely inaccurate since the linker does not preserve the needed curfile in
2463 * the order of the symbol table (see the comments about locally scoped symbols
2464 * in libld's update_osym()). As we can't tell this case from the former one,
2465 * we use this symbol iff no other matching symbol is found.
2466 *
2467 * What we really need here is a SUNW section containing weak<->strong mappings
2468 * that we can consume.
2469 */
2470 typedef struct ctf_dwarf_weak_arg {
2471 const Elf64_Sym *cweak_symp;
2472 const char *cweak_file;
2473 boolean_t cweak_candidate;
2474 ulong_t cweak_idx;
2475 } ctf_dwarf_weak_arg_t;
2476
2477 static int
2478 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file,
2479 const char *name, boolean_t primary, void *arg)
2480 {
2481 ctf_dwarf_weak_arg_t *cweak = arg;
2482
2483 const Elf64_Sym *wsymp = cweak->cweak_symp;
2484
2485 ctf_dprintf("comparing weak to %s\n", name);
2486
2487 if (GELF_ST_BIND(symp->st_info) == STB_WEAK) {
2488 return (0);
2489 }
2490
2491 if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) {
2492 return (0);
2493 }
2494
2495 if (wsymp->st_value != symp->st_value) {
2496 return (0);
2497 }
2498
2499 if (wsymp->st_size != symp->st_size) {
2500 return (0);
2501 }
2502
2503 if (wsymp->st_shndx != symp->st_shndx) {
2504 return (0);
2505 }
2506
2507 /*
2508 * Check if it's a weak candidate.
2509 */
2510 if (GELF_ST_BIND(symp->st_info) == STB_LOCAL &&
2511 (file == NULL || cweak->cweak_file == NULL ||
2512 strcmp(file, cweak->cweak_file) != 0)) {
2513 cweak->cweak_candidate = B_TRUE;
2514 cweak->cweak_idx = idx;
2515 return (0);
2516 }
2517
2518 /*
2519 * Found a match, break.
2520 */
2521 cweak->cweak_idx = idx;
2522 return (1);
2523 }
2524
2525 static int
2526 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2527 {
2528 ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx);
2529
2530 /*
2531 * If we matched something that for some reason didn't have type data,
2532 * we don't consider that a fatal error and silently swallow it.
2533 */
2534 if (id == CTF_ERR) {
2535 if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT)
2536 return (0);
2537 else
2538 return (ctf_errno(cup->cu_ctfp));
2539 }
2540
2541 if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR)
2542 return (ctf_errno(cup->cu_ctfp));
2543
2544 return (0);
2545 }
2546
2547 static int
2548 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2549 {
2550 int ret;
2551 ctf_funcinfo_t fip;
2552 ctf_id_t *args = NULL;
2553
2554 if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) {
2555 if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT)
2556 return (0);
2557 else
2558 return (ctf_errno(cup->cu_ctfp));
2559 }
2560
2561 if (fip.ctc_argc != 0) {
2562 args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc);
2563 if (args == NULL)
2564 return (ENOMEM);
2565
2566 if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) ==
2567 CTF_ERR) {
2568 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2569 return (ctf_errno(cup->cu_ctfp));
2570 }
2571 }
2572
2573 ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args);
2574 if (args != NULL)
2575 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2576 if (ret == CTF_ERR)
2577 return (ctf_errno(cup->cu_ctfp));
2578
2579 return (0);
2580 }
2581
2582 static int
2583 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file,
2584 const char *name, boolean_t primary, void *arg)
2585 {
2586 int ret, type;
2587 ctf_dwarf_weak_arg_t cweak;
2588 ctf_cu_t *cup = arg;
2589
2590 /*
2591 * We only care about weak symbols.
2592 */
2593 if (GELF_ST_BIND(symp->st_info) != STB_WEAK)
2594 return (0);
2595
2596 type = GELF_ST_TYPE(symp->st_info);
2597 ASSERT(type == STT_OBJECT || type == STT_FUNC);
2598
2599 /*
2600 * For each weak symbol we encounter, we need to do a second iteration
2601 * to try and find a match. We should probably think about other
2602 * techniques to try and save us time in the future.
2603 */
2604 cweak.cweak_symp = symp;
2605 cweak.cweak_file = file;
2606 cweak.cweak_candidate = B_FALSE;
2607 cweak.cweak_idx = 0;
2608
2609 ctf_dprintf("Trying to find weak equiv for %s\n", name);
2610
2611 ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak);
2612 VERIFY(ret == 0 || ret == 1);
2613
2614 /*
2615 * Nothing was ever found, we're not going to add anything for this
2616 * entry.
2617 */
2618 if (ret == 0 && cweak.cweak_candidate == B_FALSE) {
2619 ctf_dprintf("found no weak match for %s\n", name);
2620 return (0);
2621 }
2622
2623 /*
2624 * Now, finally go and add the type based on the match.
2625 */
2626 ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx);
2627 if (type == STT_OBJECT) {
2628 ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx);
2629 } else {
2630 ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx);
2631 }
2632
2633 return (ret);
2634 }
2635
2636 static int
2637 ctf_dwarf_conv_weaks(ctf_cu_t *cup)
2638 {
2639 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup));
2640 }
2641
2642 /* ARGSUSED */
2643 static int
2644 ctf_dwarf_convert_one(void *arg, void *unused)
2645 {
2646 int ret;
2647 ctf_file_t *dedup;
2648 ctf_cu_t *cup = arg;
2649
2650 ctf_dprintf("converting die: %s\n", cup->cu_name);
2651 ctf_dprintf("max offset: %x\n", cup->cu_maxoff);
2652 VERIFY(cup != NULL);
2653
2654 ret = ctf_dwarf_convert_die(cup, cup->cu_cu);
2655 ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cup->cu_name,
2656 ret);
2657 if (ret != 0) {
2658 return (ret);
2659 }
2660 if (ctf_update(cup->cu_ctfp) != 0) {
2661 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2662 "failed to update output ctf container"));
2663 }
2664
2665 ret = ctf_dwarf_fixup_die(cup, B_FALSE);
2666 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2667 ret);
2668 if (ret != 0) {
2669 return (ret);
2670 }
2671 if (ctf_update(cup->cu_ctfp) != 0) {
2672 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2673 "failed to update output ctf container"));
2674 }
2675
2676 ret = ctf_dwarf_fixup_die(cup, B_TRUE);
2677 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2678 ret);
2679 if (ret != 0) {
2680 return (ret);
2681 }
2682 if (ctf_update(cup->cu_ctfp) != 0) {
2683 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2684 "failed to update output ctf container"));
2685 }
2686
2687
2688 if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) {
2689 return (ctf_dwarf_error(cup, NULL, ret,
2690 "failed to convert strong functions and variables"));
2691 }
2692
2693 if (ctf_update(cup->cu_ctfp) != 0) {
2694 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2695 "failed to update output ctf container"));
2696 }
2697
2698 if (cup->cu_doweaks == B_TRUE) {
2699 if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) {
2700 return (ctf_dwarf_error(cup, NULL, ret,
2701 "failed to convert weak functions and variables"));
2702 }
2703
2704 if (ctf_update(cup->cu_ctfp) != 0) {
2705 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2706 "failed to update output ctf container"));
2707 }
2708 }
2709
2710 ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", cup->cu_name);
2711 ctf_dprintf("adding inputs for dedup\n");
2712 if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) {
2713 return (ctf_dwarf_error(cup, NULL, ret,
2714 "failed to add inputs for merge"));
2715 }
2716
2717 ctf_dprintf("starting dedup of %s\n", cup->cu_name);
2718 if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) {
2719 return (ctf_dwarf_error(cup, NULL, ret,
2720 "failed to deduplicate die"));
2721 }
2722 ctf_close(cup->cu_ctfp);
2723 cup->cu_ctfp = dedup;
2724 ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", cup->cu_name);
2725
2726 return (0);
2727 }
2728
2729 /*
2730 * Note, we expect that if we're returning a ctf_file_t from one of the dies,
2731 * say in the single node case, it's been saved and the entry here has been set
2732 * to NULL, which ctf_close happily ignores.
2733 */
2734 static void
2735 ctf_dwarf_free_die(ctf_cu_t *cup)
2736 {
2737 ctf_dwfunc_t *cdf, *ndf;
2738 ctf_dwvar_t *cdv, *ndv;
2739 ctf_dwbitf_t *cdb, *ndb;
2740 ctf_dwmap_t *map;
2741 void *cookie;
2742 Dwarf_Error derr;
2743
2744 ctf_dprintf("Beginning to free die: %p\n", cup);
2745 cup->cu_elf = NULL;
2746 ctf_dprintf("Trying to free name: %p\n", cup->cu_name);
2747 if (cup->cu_name != NULL)
2748 ctf_free(cup->cu_name, strlen(cup->cu_name) + 1);
2749 ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh);
2750 if (cup->cu_cmh != NULL) {
2751 ctf_merge_fini(cup->cu_cmh);
2752 cup->cu_cmh = NULL;
2753 }
2754
2755 ctf_dprintf("Trying to free functions\n");
2756 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) {
2757 ndf = ctf_list_next(cdf);
2758 ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1);
2759 if (cdf->cdf_fip.ctc_argc != 0) {
2760 ctf_free(cdf->cdf_argv,
2761 sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc);
2762 }
2763 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2764 }
2765
2766 ctf_dprintf("Trying to free variables\n");
2767 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) {
2768 ndv = ctf_list_next(cdv);
2769 ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1);
2770 ctf_free(cdv, sizeof (ctf_dwvar_t));
2771 }
2772
2773 ctf_dprintf("Trying to free bitfields\n");
2774 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) {
2775 ndb = ctf_list_next(cdb);
2776 ctf_free(cdb, sizeof (ctf_dwbitf_t));
2777 }
2778
2779 ctf_dprintf("Trying to clean up dwarf_t: %p\n", cup->cu_dwarf);
2780 if (cup->cu_dwarf != NULL)
2781 (void) dwarf_finish(cup->cu_dwarf, &derr);
2782 cup->cu_dwarf = NULL;
2783 ctf_close(cup->cu_ctfp);
2784
2785 cookie = NULL;
2786 while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL) {
2787 ctf_free(map, sizeof (ctf_dwmap_t));
2788 }
2789 avl_destroy(&cup->cu_map);
2790 cup->cu_errbuf = NULL;
2791 }
2792
2793 static void
2794 ctf_dwarf_free_dies(ctf_cu_t *cdies, int ndies)
2795 {
2796 int i;
2797
2798 ctf_dprintf("Beginning to free dies\n");
2799 for (i = 0; i < ndies; i++) {
2800 ctf_dwarf_free_die(&cdies[i]);
2801 }
2802
2803 ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2804 }
2805
2806 static int
2807 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies,
2808 char *errbuf, size_t errlen)
2809 {
2810 int ret;
2811 Dwarf_Half vers;
2812 Dwarf_Unsigned nexthdr;
2813
2814 while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL,
2815 &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
2816 if (ret != DW_DLV_OK) {
2817 (void) snprintf(errbuf, errlen,
2818 "file does not contain valid DWARF data: %s\n",
2819 dwarf_errmsg(*derr));
2820 return (ECTF_CONVBKERR);
2821 }
2822
2823 if (vers != DWARF_VERSION_TWO) {
2824 (void) snprintf(errbuf, errlen,
2825 "unsupported DWARF version: %d\n", vers);
2826 return (ECTF_CONVBKERR);
2827 }
2828 *ndies = *ndies + 1;
2829 }
2830
2831 return (0);
2832 }
2833
2834 static int
2835 ctf_dwarf_init_die(int fd, Elf *elf, ctf_cu_t *cup, int ndie, char *errbuf,
2836 size_t errlen)
2837 {
2838 int ret;
2839 Dwarf_Unsigned hdrlen, abboff, nexthdr;
2840 Dwarf_Half addrsz;
2841 Dwarf_Unsigned offset = 0;
2842 Dwarf_Error derr;
2843
2844 while ((ret = dwarf_next_cu_header(cup->cu_dwarf, &hdrlen, NULL,
2845 &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) {
2846 char *name;
2847 Dwarf_Die cu, child;
2848
2849 /* Based on the counting above, we should be good to go */
2850 VERIFY(ret == DW_DLV_OK);
2851 if (ndie > 0) {
2852 ndie--;
2853 offset = nexthdr;
2854 continue;
2855 }
2856
2857 /*
2858 * Compilers are apparently inconsistent. Some emit no DWARF for
2859 * empty files and others emit empty compilation unit.
2860 */
2861 cup->cu_voidtid = CTF_ERR;
2862 cup->cu_longtid = CTF_ERR;
2863 cup->cu_elf = elf;
2864 cup->cu_maxoff = nexthdr - 1;
2865 cup->cu_ctfp = ctf_fdcreate(fd, &ret);
2866 if (cup->cu_ctfp == NULL)
2867 return (ret);
2868
2869 avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t),
2870 offsetof(ctf_dwmap_t, cdm_avl));
2871 cup->cu_errbuf = errbuf;
2872 cup->cu_errlen = errlen;
2873 bzero(&cup->cu_vars, sizeof (ctf_list_t));
2874 bzero(&cup->cu_funcs, sizeof (ctf_list_t));
2875 bzero(&cup->cu_bitfields, sizeof (ctf_list_t));
2876
2877 if ((ret = ctf_dwarf_die_elfenc(elf, cup, errbuf,
2878 errlen)) != 0)
2879 return (ret);
2880
2881 if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0)
2882 return (ret);
2883
2884 if (cu == NULL) {
2885 (void) snprintf(errbuf, errlen,
2886 "file does not contain DWARF data");
2887 return (ECTF_CONVNODEBUG);
2888 }
2889
2890 if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0)
2891 return (ret);
2892
2893 if (child == NULL) {
2894 (void) snprintf(errbuf, errlen,
2895 "file does not contain DWARF data");
2896 return (ECTF_CONVNODEBUG);
2897 }
2898
2899 cup->cu_cuoff = offset;
2900 cup->cu_cu = child;
2901
2902 if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL)
2903 return (ret);
2904
2905 if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) {
2906 size_t len = strlen(name) + 1;
2907 char *b = basename(name);
2908 cup->cu_name = strdup(b);
2909 ctf_free(name, len);
2910 }
2911 break;
2912 }
2913
2914 return (0);
2915 }
2916
2917 /*
2918 * This is our only recourse to identify a C source file that is missing debug
2919 * info: it will be mentioned as an STT_FILE, but not have a compile unit entry.
2920 * (A traditional ctfmerge works on individual files, so can identify missing
2921 * DWARF more directly, via ctf_has_c_source() on the .o file.)
2922 *
2923 * As we operate on basenames, this can of course miss some cases, but it's
2924 * better than not checking at all.
2925 *
2926 * We explicitly whitelist some CRT components. Failing that, there's always
2927 * the -m option.
2928 */
2929 static boolean_t
2930 c_source_has_debug(const char *file, ctf_cu_t *cus, size_t nr_cus)
2931 {
2932 const char *basename = strrchr(file, '/');
2933
2934 if (basename == NULL)
2935 basename = file;
2936 else
2937 basename++;
2938
2939 if (strcmp(basename, "common-crt.c") == 0 ||
2940 strcmp(basename, "gmon.c") == 0 ||
2941 strcmp(basename, "dlink_init.c") == 0 ||
2942 strcmp(basename, "dlink_common.c") == 0 ||
2943 strncmp(basename, "crt", strlen("crt")) == 0 ||
2944 strncmp(basename, "values-", strlen("values-")) == 0)
2945 return (B_TRUE);
2946
2947 for (size_t i = 0; i < nr_cus; i++) {
2948 if (strcmp(basename, cus[i].cu_name) == 0)
2949 return (B_TRUE);
2950 }
2951
2952 return (B_FALSE);
2953 }
2954
2955 static int
2956 ctf_dwarf_check_missing(ctf_cu_t *cus, size_t nr_cus, Elf *elf,
2957 char *errmsg, size_t errlen)
2958 {
2959 Elf_Scn *scn, *strscn;
2960 Elf_Data *data, *strdata;
2961 GElf_Shdr shdr;
2962 ulong_t i;
2963
2964 scn = NULL;
2965 while ((scn = elf_nextscn(elf, scn)) != NULL) {
2966 if (gelf_getshdr(scn, &shdr) == NULL) {
2967 (void) snprintf(errmsg, errlen,
2968 "failed to get section header: %s\n",
2969 elf_errmsg(elf_errno()));
2970 return (EINVAL);
2971 }
2972
2973 if (shdr.sh_type == SHT_SYMTAB)
2974 break;
2975 }
2976
2977 if (scn == NULL)
2978 return (0);
2979
2980 if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) {
2981 (void) snprintf(errmsg, errlen,
2982 "failed to get str section: %s\n",
2983 elf_errmsg(elf_errno()));
2984 return (EINVAL);
2985 }
2986
2987 if ((data = elf_getdata(scn, NULL)) == NULL) {
2988 (void) snprintf(errmsg, errlen, "failed to read section: %s\n",
2989 elf_errmsg(elf_errno()));
2990 return (EINVAL);
2991 }
2992
2993 if ((strdata = elf_getdata(strscn, NULL)) == NULL) {
2994 (void) snprintf(errmsg, errlen,
2995 "failed to read string table: %s\n",
2996 elf_errmsg(elf_errno()));
2997 return (EINVAL);
2998 }
2999
3000 for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) {
3001 GElf_Sym sym;
3002 const char *file;
3003 size_t len;
3004
3005 if (gelf_getsym(data, i, &sym) == NULL) {
3006 (void) snprintf(errmsg, errlen,
3007 "failed to read sym %lu: %s\n",
3008 i, elf_errmsg(elf_errno()));
3009 return (EINVAL);
3010 }
3011
3012 if (GELF_ST_TYPE(sym.st_info) != STT_FILE)
3013 continue;
3014
3015 file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name);
3016 len = strlen(file);
3017 if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0)
3018 continue;
3019
3020 if (!c_source_has_debug(file, cus, nr_cus)) {
3021 (void) snprintf(errmsg, errlen,
3022 "file %s is missing debug info\n", file);
3023 return (ECTF_CONVNODEBUG);
3024 }
3025 }
3026
3027 return (0);
3028 }
3029
3030 int
3031 ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, uint_t flags,
3032 ctf_file_t **fpp, char *errbuf, size_t errlen)
3033 {
3034 int err, ret, ndies, i;
3035 Dwarf_Debug dw;
3036 Dwarf_Error derr;
3037 ctf_cu_t *cdies = NULL, *cup;
3038 workq_t *wqp = NULL;
3039
3040 *fpp = NULL;
3041
3042 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr);
3043 if (ret != DW_DLV_OK) {
3044 if (ret == DW_DLV_NO_ENTRY ||
3045 dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) {
3046 (void) snprintf(errbuf, errlen,
3047 "file does not contain DWARF data\n");
3048 return (ECTF_CONVNODEBUG);
3049 }
3050
3051 (void) snprintf(errbuf, errlen,
3052 "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr));
3053 return (ECTF_CONVBKERR);
3054 }
3055
3056 /*
3057 * Iterate over all of the compilation units and create a ctf_cu_t for
3058 * each of them. This is used to determine if we have zero, one, or
3059 * multiple dies to convert. If we have zero, that's an error. If
3060 * there's only one die, that's the simple case. No merge needed and
3061 * only a single Dwarf_Debug as well.
3062 */
3063 ndies = 0;
3064 err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen);
3065
3066 ctf_dprintf("found %d DWARF CUs\n", ndies);
3067
3068 if (ndies == 0) {
3069 (void) snprintf(errbuf, errlen,
3070 "file does not contain DWARF data\n");
3071 return (ECTF_CONVNODEBUG);
3072 }
3073
3074 (void) dwarf_finish(dw, &derr);
3075 cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies);
3076 if (cdies == NULL) {
3077 return (ENOMEM);
3078 }
3079
3080 bzero(cdies, sizeof (ctf_cu_t) * ndies);
3081
3082 for (i = 0; i < ndies; i++) {
3083 cup = &cdies[i];
3084 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL,
3085 &cup->cu_dwarf, &derr);
3086 if (ret != 0) {
3087 ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
3088 (void) snprintf(errbuf, errlen,
3089 "failed to initialize DWARF: %s\n",
3090 dwarf_errmsg(derr));
3091 return (ECTF_CONVBKERR);
3092 }
3093
3094 err = ctf_dwarf_init_die(fd, elf, cup, i, errbuf, errlen);
3095 if (err != 0)
3096 goto out;
3097
3098 cup->cu_doweaks = ndies > 1 ? B_FALSE : B_TRUE;
3099 }
3100
3101 if (!(flags & CTF_ALLOW_MISSING_DEBUG) &&
3102 (err = ctf_dwarf_check_missing(cdies, ndies,
3103 elf, errbuf, errlen)) != 0)
3104 goto out;
3105
3106 /*
3107 * If we only have one compilation unit, there's no reason to use
3108 * multiple threads, even if the user requested them. After all, they
3109 * just gave us an upper bound.
3110 */
3111 if (ndies == 1)
3112 nthrs = 1;
3113
3114 if (workq_init(&wqp, nthrs) == -1) {
3115 err = errno;
3116 goto out;
3117 }
3118
3119 for (i = 0; i < ndies; i++) {
3120 cup = &cdies[i];
3121 ctf_dprintf("adding cu %s: %p, %x %x\n", cup->cu_name,
3122 cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff);
3123 if (workq_add(wqp, cup) == -1) {
3124 err = errno;
3125 goto out;
3126 }
3127 }
3128
3129 ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err);
3130 if (ret == WORKQ_ERROR) {
3131 err = errno;
3132 goto out;
3133 } else if (ret == WORKQ_UERROR) {
3134 ctf_dprintf("internal convert failed: %s\n",
3135 ctf_errmsg(err));
3136 goto out;
3137 }
3138
3139 ctf_dprintf("Determining next phase: have %d CUs\n", ndies);
3140 if (ndies != 1) {
3141 ctf_merge_t *cmp;
3142
3143 cmp = ctf_merge_init(fd, &err);
3144 if (cmp == NULL)
3145 goto out;
3146
3147 ctf_dprintf("setting threads\n");
3148 if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
3149 ctf_merge_fini(cmp);
3150 goto out;
3151 }
3152
3153 for (i = 0; i < ndies; i++) {
3154 cup = &cdies[i];
3155 if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
3156 ctf_merge_fini(cmp);
3157 goto out;
3158 }
3159 }
3160
3161 ctf_dprintf("performing merge\n");
3162 err = ctf_merge_merge(cmp, fpp);
3163 if (err != 0) {
3164 ctf_dprintf("failed merge!\n");
3165 *fpp = NULL;
3166 ctf_merge_fini(cmp);
3167 goto out;
3168 }
3169 ctf_merge_fini(cmp);
3170 err = 0;
3171 ctf_dprintf("successfully converted!\n");
3172 } else {
3173 err = 0;
3174 *fpp = cdies->cu_ctfp;
3175 cdies->cu_ctfp = NULL;
3176 ctf_dprintf("successfully converted!\n");
3177 }
3178
3179 out:
3180 workq_fini(wqp);
3181 ctf_dwarf_free_dies(cdies, ndies);
3182 return (err);
3183 }