1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2012 Jason King. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * Copyright 2019 Joyent, Inc. 32 */ 33 34 /* 35 * CTF DWARF conversion theory. 36 * 37 * DWARF data contains a series of compilation units. Each compilation unit 38 * generally refers to an object file or what once was, in the case of linked 39 * binaries and shared objects. Each compilation unit has a series of what DWARF 40 * calls a DIE (Debugging Information Entry). The set of entries that we care 41 * about have type information stored in a series of attributes. Each DIE also 42 * has a tag that identifies the kind of attributes that it has. 43 * 44 * A given DIE may itself have children. For example, a DIE that represents a 45 * structure has children which represent members. Whenever we encounter a DIE 46 * that has children or other values or types associated with it, we recursively 47 * process those children first so that way we can then refer to the generated 48 * CTF type id while processing its parent. This reduces the amount of unknowns 49 * and fixups that we need. It also ensures that we don't accidentally add types 50 * that an overzealous compiler might add to the DWARF data but aren't used by 51 * anything in the system. 52 * 53 * Once we do a conversion, we store a mapping in an AVL tree that goes from the 54 * DWARF's die offset, which is relative to the given compilation unit, to a 55 * ctf_id_t. 56 * 57 * Unfortunately, some compilers actually will emit duplicate entries for a 58 * given type that look similar, but aren't quite. To that end, we go through 59 * and do a variant on a merge once we're done processing a single compilation 60 * unit which deduplicates all of the types that are in the unit. 61 * 62 * Finally, if we encounter an object that has multiple compilation units, then 63 * we'll convert all of the compilation units separately and then do a merge, so 64 * that way we can result in one single ctf_file_t that represents everything 65 * for the object. 66 * 67 * Conversion Steps 68 * ---------------- 69 * 70 * Because a given object we've been given to convert may have multiple 71 * compilation units, we break the work into two halves. The first half 72 * processes each compilation unit (potentially in parallel) and then the second 73 * half optionally merges all of the dies in the first half. First, we'll cover 74 * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers 75 * the work done in ctf_dwarf_convert_one(). 76 * 77 * An individual ctf_cu_t, which represents a compilation unit, is converted to 78 * CTF in a series of multiple passes. 79 * 80 * Pass 1: During the first pass we walk all of the top-level dies and if we 81 * find a function, variable, struct, union, enum or typedef, we recursively 82 * transform all of its types. We don't recurse or process everything, because 83 * we don't want to add some of the types that compilers may add which are 84 * effectively unused. 85 * 86 * During pass 1, if we encounter any structures or unions we mark them for 87 * fixing up later. This is necessary because we may not be able to determine 88 * the full size of a structure at the beginning of time. This will happen if 89 * the DWARF attribute DW_AT_byte_size is not present for a member. Because of 90 * this possibility we defer adding members to structures or even converting 91 * them during pass 1 and save that for pass 2. Adding all of the base 92 * structures without any of their members helps deal with any circular 93 * dependencies that we might encounter. 94 * 95 * Pass 2: This pass is used to do the first half of fixing up structures and 96 * unions. Rather than walk the entire type space again, we actually walk the 97 * list of structures and unions that we marked for later fixing up. Here, we 98 * iterate over every structure and add members to the underlying ctf_file_t, 99 * but not to the structs themselves. One might wonder why we don't, and the 100 * main reason is that libctf requires a ctf_update() be done before adding the 101 * members to structures or unions. 102 * 103 * Pass 3: This pass is used to do the second half of fixing up structures and 104 * unions. During this part we always go through and add members to structures 105 * and unions that we added to the container in the previous pass. In addition, 106 * we set the structure and union's actual size, which may have additional 107 * padding added by the compiler, it isn't simply the last offset. DWARF always 108 * guarantees an attribute exists for this. Importantly no ctf_id_t's change 109 * during pass 2. 110 * 111 * Pass 4: The next phase is to add CTF entries for all of the symbols and 112 * variables that are present in this die. During pass 1 we added entries to a 113 * map for each variable and function. During this pass, we iterate over the 114 * symbol table and when we encounter a symbol that we have in our lists of 115 * translated information which matches, we then add it to the ctf_file_t. 116 * 117 * Pass 5: Here we go and look for any weak symbols and functions and see if 118 * they match anything that we recognize. If so, then we add type information 119 * for them at this point based on the matching type. 120 * 121 * Pass 6: This pass is actually a variant on a merge. The traditional merge 122 * process expects there to be no duplicate types. As such, at the end of 123 * conversion, we do a dedup on all of the types in the system. The 124 * deduplication process is described in lib/libctf/common/ctf_merge.c. 125 * 126 * Once pass 6 is done, we've finished processing the individual compilation 127 * unit. 128 * 129 * The following steps reflect the general process of doing a conversion. 130 * 131 * 1) Walk the dwarf section and determine the number of compilation units 132 * 2) Create a ctf_cu_t for each compilation unit 133 * 3) Add all ctf_cu_t's to a workq 134 * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself 135 * is comprised of several steps, which were already enumerated. 136 * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics 137 * of the merge are discussed in lib/libctf/common/ctf_merge.c. 138 * 6) Free everything up and return a ctf_file_t to the user. If we only had a 139 * single compilation unit, then we give that to the user. Otherwise, we 140 * return the merged ctf_file_t. 141 * 142 * Threading 143 * --------- 144 * 145 * The process has been designed to be amenable to threading. Each compilation 146 * unit has its own type stream, therefore the logical place to divide and 147 * conquer is at the compilation unit. Each ctf_cu_t has been built to be able 148 * to be processed independently of the others. It has its own libdwarf handle, 149 * as a given libdwarf handle may only be used by a single thread at a time. 150 * This allows the various ctf_cu_t's to be processed in parallel by different 151 * threads. 152 * 153 * All of the ctf_cu_t's are loaded into a workq which allows for a number of 154 * threads to be specified and used as a thread pool to process all of the 155 * queued work. We set the number of threads to use in the workq equal to the 156 * number of threads that the user has specified. 157 * 158 * After all of the compilation units have been drained, we use the same number 159 * of threads when performing a merge of multiple compilation units, if they 160 * exist. 161 * 162 * While all of these different parts do support and allow for multiple threads, 163 * it's important that when only a single thread is specified, that it be the 164 * calling thread. This allows the conversion routines to be used in a context 165 * that doesn't allow additional threads, such as rtld. 166 * 167 * Common DWARF Mechanics and Notes 168 * -------------------------------- 169 * 170 * At this time, we really only support DWARFv2, though support for DWARFv4 is 171 * mostly there. There is no intent to support DWARFv3. 172 * 173 * Generally types for something are stored in the DW_AT_type attribute. For 174 * example, a function's return type will be stored in the local DW_AT_type 175 * attribute while the arguments will be in child DIEs. There are also various 176 * times when we don't have any DW_AT_type. In that case, the lack of a type 177 * implies, at least for C, that its C type is void. Because DWARF doesn't emit 178 * one, we have a synthetic void type that we create and manipulate instead and 179 * pass it off to consumers on an as-needed basis. If nothing has a void type, 180 * it will not be emitted. 181 * 182 * Architecture Specific Parts 183 * --------------------------- 184 * 185 * The CTF tooling encodes various information about the various architectures 186 * in the system. Importantly, the tool assumes that every architecture has a 187 * data model where long and pointer are the same size. This is currently the 188 * case, as the two data models illumos supports are ILP32 and LP64. 189 * 190 * In addition, we encode the mapping of various floating point sizes to various 191 * types for each architecture. If a new architecture is being added, it should 192 * be added to the list. The general design of the ctf conversion tools is to be 193 * architecture independent. eg. any of the tools here should be able to convert 194 * any architecture's DWARF into ctf; however, this has not been rigorously 195 * tested and more importantly, the ctf routines don't currently write out the 196 * data in an endian-aware form, they only use that of the currently running 197 * library. 198 */ 199 200 #include <libctf_impl.h> 201 #include <sys/avl.h> 202 #include <sys/debug.h> 203 #include <gelf.h> 204 #include <libdwarf.h> 205 #include <dwarf.h> 206 #include <libgen.h> 207 #include <workq.h> 208 #include <errno.h> 209 210 #define DWARF_VERSION_TWO 2 211 #define DWARF_VARARGS_NAME "..." 212 213 /* 214 * Dwarf may refer recursively to other types that we've already processed. To 215 * see if we've already converted them, we look them up in an AVL tree that's 216 * sorted by the DWARF id. 217 */ 218 typedef struct ctf_dwmap { 219 avl_node_t cdm_avl; 220 Dwarf_Off cdm_off; 221 Dwarf_Die cdm_die; 222 ctf_id_t cdm_id; 223 boolean_t cdm_fix; 224 } ctf_dwmap_t; 225 226 typedef struct ctf_dwvar { 227 ctf_list_t cdv_list; 228 char *cdv_name; 229 ctf_id_t cdv_type; 230 boolean_t cdv_global; 231 } ctf_dwvar_t; 232 233 typedef struct ctf_dwfunc { 234 ctf_list_t cdf_list; 235 char *cdf_name; 236 ctf_funcinfo_t cdf_fip; 237 ctf_id_t *cdf_argv; 238 boolean_t cdf_global; 239 } ctf_dwfunc_t; 240 241 typedef struct ctf_dwbitf { 242 ctf_list_t cdb_list; 243 ctf_id_t cdb_base; 244 uint_t cdb_nbits; 245 ctf_id_t cdb_id; 246 } ctf_dwbitf_t; 247 248 /* 249 * The ctf_cu_t represents a single top-level DWARF die unit. While generally, 250 * the typical object file has only a single die, if we're asked to convert 251 * something that's been linked from multiple sources, multiple dies will exist. 252 */ 253 typedef struct ctf_die { 254 Elf *cu_elf; /* shared libelf handle */ 255 char *cu_name; /* basename of the DIE */ 256 ctf_merge_t *cu_cmh; /* merge handle */ 257 ctf_list_t cu_vars; /* List of variables */ 258 ctf_list_t cu_funcs; /* List of functions */ 259 ctf_list_t cu_bitfields; /* Bit field members */ 260 Dwarf_Debug cu_dwarf; /* libdwarf handle */ 261 Dwarf_Die cu_cu; /* libdwarf compilation unit */ 262 Dwarf_Off cu_cuoff; /* cu's offset */ 263 Dwarf_Off cu_maxoff; /* maximum offset */ 264 ctf_file_t *cu_ctfp; /* output CTF file */ 265 avl_tree_t cu_map; /* map die offsets to CTF types */ 266 char *cu_errbuf; /* error message buffer */ 267 size_t cu_errlen; /* error message buffer length */ 268 size_t cu_ptrsz; /* object's pointer size */ 269 boolean_t cu_bigend; /* is it big endian */ 270 boolean_t cu_doweaks; /* should we convert weak symbols? */ 271 uint_t cu_mach; /* machine type */ 272 ctf_id_t cu_voidtid; /* void pointer */ 273 ctf_id_t cu_longtid; /* id for a 'long' */ 274 } ctf_cu_t; 275 276 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *); 277 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die); 278 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int); 279 280 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *, 281 boolean_t); 282 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *, 283 ctf_id_t *); 284 285 /* 286 * This is a generic way to set a CTF Conversion backend error depending on what 287 * we were doing. Unless it was one of a specific set of errors that don't 288 * indicate a programming / translation bug, eg. ENOMEM, then we transform it 289 * into a CTF backend error and fill in the error buffer. 290 */ 291 static int 292 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...) 293 { 294 va_list ap; 295 int ret; 296 size_t off = 0; 297 ssize_t rem = cup->cu_errlen; 298 if (cfp != NULL) 299 err = ctf_errno(cfp); 300 301 if (err == ENOMEM) 302 return (err); 303 304 ret = snprintf(cup->cu_errbuf, rem, "die %s: ", cup->cu_name); 305 if (ret < 0) 306 goto err; 307 off += ret; 308 rem = MAX(rem - ret, 0); 309 310 va_start(ap, fmt); 311 ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap); 312 va_end(ap); 313 if (ret < 0) 314 goto err; 315 316 off += ret; 317 rem = MAX(rem - ret, 0); 318 if (fmt[strlen(fmt) - 1] != '\n') { 319 (void) snprintf(cup->cu_errbuf + off, rem, 320 ": %s\n", ctf_errmsg(err)); 321 } 322 va_end(ap); 323 return (ECTF_CONVBKERR); 324 325 err: 326 cup->cu_errbuf[0] = '\0'; 327 return (ECTF_CONVBKERR); 328 } 329 330 /* 331 * DWARF often opts to put no explicit type to describe a void type. eg. if we 332 * have a reference type whose DW_AT_type member doesn't exist, then we should 333 * instead assume it points to void. Because this isn't represented, we 334 * instead cause it to come into existence. 335 */ 336 static ctf_id_t 337 ctf_dwarf_void(ctf_cu_t *cup) 338 { 339 if (cup->cu_voidtid == CTF_ERR) { 340 ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 }; 341 cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT, 342 "void", &enc); 343 if (cup->cu_voidtid == CTF_ERR) { 344 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 345 "failed to create void type: %s\n", 346 ctf_errmsg(ctf_errno(cup->cu_ctfp))); 347 } 348 } 349 350 return (cup->cu_voidtid); 351 } 352 353 /* 354 * There are many different forms that an array index may take. However, we just 355 * always force it to be of a type long no matter what. Therefore we use this to 356 * have a single instance of long across everything. 357 */ 358 static ctf_id_t 359 ctf_dwarf_long(ctf_cu_t *cup) 360 { 361 if (cup->cu_longtid == CTF_ERR) { 362 ctf_encoding_t enc; 363 364 enc.cte_format = CTF_INT_SIGNED; 365 enc.cte_offset = 0; 366 /* All illumos systems are LP */ 367 enc.cte_bits = cup->cu_ptrsz * 8; 368 cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT, 369 "long", &enc); 370 if (cup->cu_longtid == CTF_ERR) { 371 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 372 "failed to create long type: %s\n", 373 ctf_errmsg(ctf_errno(cup->cu_ctfp))); 374 } 375 376 } 377 378 return (cup->cu_longtid); 379 } 380 381 static int 382 ctf_dwmap_comp(const void *a, const void *b) 383 { 384 const ctf_dwmap_t *ca = a; 385 const ctf_dwmap_t *cb = b; 386 387 if (ca->cdm_off > cb->cdm_off) 388 return (1); 389 if (ca->cdm_off < cb->cdm_off) 390 return (-1); 391 return (0); 392 } 393 394 static int 395 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix) 396 { 397 int ret; 398 avl_index_t index; 399 ctf_dwmap_t *dwmap; 400 Dwarf_Off off; 401 402 VERIFY(id > 0 && id < CTF_MAX_TYPE); 403 404 if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0) 405 return (ret); 406 407 if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL) 408 return (ENOMEM); 409 410 dwmap->cdm_die = die; 411 dwmap->cdm_off = off; 412 dwmap->cdm_id = id; 413 dwmap->cdm_fix = fix; 414 415 ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id); 416 VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL); 417 avl_insert(&cup->cu_map, dwmap, index); 418 return (0); 419 } 420 421 static int 422 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 423 Dwarf_Attribute *attrp) 424 { 425 int ret; 426 Dwarf_Error derr; 427 428 if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK) 429 return (0); 430 if (ret == DW_DLV_NO_ENTRY) { 431 *attrp = NULL; 432 return (ENOENT); 433 } 434 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 435 "failed to get attribute for type: %s\n", 436 dwarf_errmsg(derr)); 437 return (ECTF_CONVBKERR); 438 } 439 440 static int 441 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp) 442 { 443 int ret; 444 Dwarf_Attribute attr; 445 Dwarf_Error derr; 446 447 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 448 return (ret); 449 450 if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) { 451 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 452 return (0); 453 } 454 455 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 456 "failed to get unsigned attribute for type: %s\n", 457 dwarf_errmsg(derr)); 458 return (ECTF_CONVBKERR); 459 } 460 461 static int 462 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 463 Dwarf_Die *diep) 464 { 465 int ret; 466 Dwarf_Off off; 467 Dwarf_Error derr; 468 469 if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0) 470 return (ret); 471 472 off += cup->cu_cuoff; 473 if ((ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr)) != 474 DW_DLV_OK) { 475 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 476 "failed to get die from offset %" DW_PR_DUu ": %s\n", 477 off, dwarf_errmsg(derr)); 478 return (ECTF_CONVBKERR); 479 } 480 481 return (0); 482 } 483 484 static int 485 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 486 Dwarf_Signed *valp) 487 { 488 int ret; 489 Dwarf_Attribute attr; 490 Dwarf_Error derr; 491 492 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 493 return (ret); 494 495 if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) { 496 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 497 return (0); 498 } 499 500 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 501 "failed to get unsigned attribute for type: %s\n", 502 dwarf_errmsg(derr)); 503 return (ECTF_CONVBKERR); 504 } 505 506 static int 507 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 508 Dwarf_Unsigned *valp) 509 { 510 int ret; 511 Dwarf_Attribute attr; 512 Dwarf_Error derr; 513 514 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 515 return (ret); 516 517 if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) { 518 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 519 return (0); 520 } 521 522 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 523 "failed to get unsigned attribute for type: %s\n", 524 dwarf_errmsg(derr)); 525 return (ECTF_CONVBKERR); 526 } 527 528 static int 529 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, 530 Dwarf_Bool *val) 531 { 532 int ret; 533 Dwarf_Attribute attr; 534 Dwarf_Error derr; 535 536 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 537 return (ret); 538 539 if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) { 540 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 541 return (0); 542 } 543 544 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 545 "failed to get boolean attribute for type: %s\n", 546 dwarf_errmsg(derr)); 547 548 return (ECTF_CONVBKERR); 549 } 550 551 static int 552 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp) 553 { 554 int ret; 555 char *s; 556 Dwarf_Attribute attr; 557 Dwarf_Error derr; 558 559 *strp = NULL; 560 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0) 561 return (ret); 562 563 if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) { 564 if ((*strp = ctf_strdup(s)) == NULL) 565 ret = ENOMEM; 566 else 567 ret = 0; 568 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 569 return (ret); 570 } 571 572 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 573 "failed to get string attribute for type: %s\n", 574 dwarf_errmsg(derr)); 575 return (ECTF_CONVBKERR); 576 } 577 578 static int 579 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp) 580 { 581 int ret; 582 Dwarf_Error derr; 583 Dwarf_Attribute attr; 584 Dwarf_Locdesc *loc; 585 Dwarf_Signed locnum; 586 587 if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location, 588 &attr)) != 0) 589 return (ret); 590 591 if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) { 592 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 593 "failed to obtain location list for member offset: %s", 594 dwarf_errmsg(derr)); 595 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 596 return (ECTF_CONVBKERR); 597 } 598 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR); 599 600 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 601 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 602 "failed to parse location structure for member"); 603 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK); 604 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC); 605 return (ECTF_CONVBKERR); 606 } 607 608 *valp = loc->ld_s->lr_number; 609 610 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK); 611 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC); 612 return (0); 613 } 614 615 616 static int 617 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp) 618 { 619 Dwarf_Error derr; 620 621 if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK) 622 return (0); 623 624 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 625 "failed to get die offset: %s\n", 626 dwarf_errmsg(derr)); 627 return (ECTF_CONVBKERR); 628 } 629 630 /* simpler variant for debugging output */ 631 static Dwarf_Off 632 ctf_die_offset(Dwarf_Die die) 633 { 634 Dwarf_Off off = -1; 635 Dwarf_Error derr; 636 637 (void) dwarf_dieoffset(die, &off, &derr); 638 return (off); 639 } 640 641 static int 642 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp) 643 { 644 Dwarf_Error derr; 645 646 if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK) 647 return (0); 648 649 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 650 "failed to get tag type: %s\n", 651 dwarf_errmsg(derr)); 652 return (ECTF_CONVBKERR); 653 } 654 655 static int 656 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp) 657 { 658 Dwarf_Error derr; 659 int ret; 660 661 *sibp = NULL; 662 ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr); 663 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY) 664 return (0); 665 666 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 667 "failed to sibling from die: %s\n", 668 dwarf_errmsg(derr)); 669 return (ECTF_CONVBKERR); 670 } 671 672 static int 673 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp) 674 { 675 Dwarf_Error derr; 676 int ret; 677 678 *childp = NULL; 679 ret = dwarf_child(base, childp, &derr); 680 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY) 681 return (0); 682 683 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 684 "failed to child from die: %s\n", 685 dwarf_errmsg(derr)); 686 return (ECTF_CONVBKERR); 687 } 688 689 /* 690 * Compilers disagree on what to do to determine if something has global 691 * visiblity. Traditionally gcc has used DW_AT_external to indicate this while 692 * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then 693 * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not. 694 */ 695 static int 696 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp) 697 { 698 int ret; 699 Dwarf_Signed vis; 700 Dwarf_Bool ext; 701 702 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) { 703 *igp = vis == DW_VIS_exported; 704 return (0); 705 } else if (ret != ENOENT) { 706 return (ret); 707 } 708 709 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) { 710 if (ret == ENOENT) { 711 *igp = B_FALSE; 712 return (0); 713 } 714 return (ret); 715 } 716 *igp = ext != 0 ? B_TRUE : B_FALSE; 717 return (0); 718 } 719 720 static int 721 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen) 722 { 723 GElf_Ehdr ehdr; 724 725 if (gelf_getehdr(elf, &ehdr) == NULL) { 726 (void) snprintf(errbuf, errlen, 727 "failed to get ELF header: %s\n", 728 elf_errmsg(elf_errno())); 729 return (ECTF_CONVBKERR); 730 } 731 732 cup->cu_mach = ehdr.e_machine; 733 734 if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) { 735 cup->cu_ptrsz = 4; 736 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0); 737 } else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) { 738 cup->cu_ptrsz = 8; 739 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0); 740 } else { 741 (void) snprintf(errbuf, errlen, 742 "unknown ELF class %d", ehdr.e_ident[EI_CLASS]); 743 return (ECTF_CONVBKERR); 744 } 745 746 if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) { 747 cup->cu_bigend = B_FALSE; 748 } else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 749 cup->cu_bigend = B_TRUE; 750 } else { 751 (void) snprintf(errbuf, errlen, 752 "unknown ELF data encoding: %hhu", ehdr.e_ident[EI_DATA]); 753 return (ECTF_CONVBKERR); 754 } 755 756 return (0); 757 } 758 759 typedef struct ctf_dwarf_fpent { 760 size_t cdfe_size; 761 uint_t cdfe_enc[3]; 762 } ctf_dwarf_fpent_t; 763 764 typedef struct ctf_dwarf_fpmap { 765 uint_t cdf_mach; 766 ctf_dwarf_fpent_t cdf_ents[4]; 767 } ctf_dwarf_fpmap_t; 768 769 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = { 770 { EM_SPARC, { 771 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 772 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 773 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 774 { 0, { 0 } } 775 } }, 776 { EM_SPARC32PLUS, { 777 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 778 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 779 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 780 { 0, { 0 } } 781 } }, 782 { EM_SPARCV9, { 783 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 784 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 785 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 786 { 0, { 0 } } 787 } }, 788 { EM_386, { 789 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 790 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 791 { 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 792 { 0, { 0 } } 793 } }, 794 { EM_X86_64, { 795 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 796 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 797 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 798 { 0, { 0 } } 799 } }, 800 { EM_NONE } 801 }; 802 803 static int 804 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc) 805 { 806 const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0]; 807 const ctf_dwarf_fpent_t *ent; 808 uint_t col = 0, mult = 1; 809 810 for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) { 811 if (map->cdf_mach == cup->cu_mach) 812 break; 813 } 814 815 if (map->cdf_mach == EM_NONE) { 816 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 817 "Unsupported machine type: %d\n", cup->cu_mach); 818 return (ENOTSUP); 819 } 820 821 if (type == DW_ATE_complex_float) { 822 mult = 2; 823 col = 1; 824 } else if (type == DW_ATE_imaginary_float || 825 type == DW_ATE_SUN_imaginary_float) { 826 col = 2; 827 } 828 829 ent = &map->cdf_ents[0]; 830 for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) { 831 if (ent->cdfe_size * mult * 8 == enc->cte_bits) { 832 enc->cte_format = ent->cdfe_enc[col]; 833 return (0); 834 } 835 } 836 837 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 838 "failed to find valid fp mapping for encoding %d, size %d bits\n", 839 type, enc->cte_bits); 840 return (EINVAL); 841 } 842 843 static int 844 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp, 845 ctf_encoding_t *enc) 846 { 847 int ret; 848 Dwarf_Signed type; 849 850 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0) 851 return (ret); 852 853 switch (type) { 854 case DW_ATE_unsigned: 855 case DW_ATE_address: 856 *kindp = CTF_K_INTEGER; 857 enc->cte_format = 0; 858 break; 859 case DW_ATE_unsigned_char: 860 *kindp = CTF_K_INTEGER; 861 enc->cte_format = CTF_INT_CHAR; 862 break; 863 case DW_ATE_signed: 864 *kindp = CTF_K_INTEGER; 865 enc->cte_format = CTF_INT_SIGNED; 866 break; 867 case DW_ATE_signed_char: 868 *kindp = CTF_K_INTEGER; 869 enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR; 870 break; 871 case DW_ATE_boolean: 872 *kindp = CTF_K_INTEGER; 873 enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL; 874 break; 875 case DW_ATE_float: 876 case DW_ATE_complex_float: 877 case DW_ATE_imaginary_float: 878 case DW_ATE_SUN_imaginary_float: 879 case DW_ATE_SUN_interval_float: 880 *kindp = CTF_K_FLOAT; 881 if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0) 882 return (ret); 883 break; 884 default: 885 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 886 "encountered unknown DWARF encoding: %d", type); 887 return (ECTF_CONVBKERR); 888 } 889 890 return (0); 891 } 892 893 /* 894 * Different compilers (at least GCC and Studio) use different names for types. 895 * This parses the types and attempts to unify them. If this fails, we just fall 896 * back to using the DWARF itself. 897 */ 898 static int 899 ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc, 900 char **newnamep) 901 { 902 char buf[256]; 903 char *base, *c, *last; 904 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 905 int sign = 1; 906 907 if (strlen(name) + 1 > sizeof (buf)) 908 return (EINVAL); 909 910 (void) strlcpy(buf, name, sizeof (buf)); 911 for (c = strtok_r(buf, " ", &last); c != NULL; 912 c = strtok_r(NULL, " ", &last)) { 913 if (strcmp(c, "signed") == 0) { 914 sign = 1; 915 } else if (strcmp(c, "unsigned") == 0) { 916 sign = 0; 917 } else if (strcmp(c, "long") == 0) { 918 nlong++; 919 } else if (strcmp(c, "char") == 0) { 920 nchar++; 921 } else if (strcmp(c, "short") == 0) { 922 nshort++; 923 } else if (strcmp(c, "int") == 0) { 924 nint++; 925 } else { 926 /* 927 * If we don't recognize any of the tokens, we'll tell 928 * the caller to fall back to the dwarf-provided 929 * encoding information. 930 */ 931 return (EINVAL); 932 } 933 } 934 935 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 936 return (EINVAL); 937 938 if (nchar > 0) { 939 if (nlong > 0 || nshort > 0 || nint > 0) 940 return (EINVAL); 941 base = "char"; 942 } else if (nshort > 0) { 943 if (nlong > 0) 944 return (EINVAL); 945 base = "short"; 946 } else if (nlong > 0) { 947 base = "long"; 948 } else { 949 base = "int"; 950 } 951 952 if (nchar > 0) 953 enc->cte_format = CTF_INT_CHAR; 954 else 955 enc->cte_format = 0; 956 957 if (sign > 0) 958 enc->cte_format |= CTF_INT_SIGNED; 959 960 (void) snprintf(buf, sizeof (buf), "%s%s%s", 961 (sign ? "" : "unsigned "), 962 (nlong > 1 ? "long " : ""), 963 base); 964 965 *newnamep = ctf_strdup(buf); 966 if (*newnamep == NULL) 967 return (ENOMEM); 968 *kindp = CTF_K_INTEGER; 969 return (0); 970 } 971 972 static int 973 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot, 974 Dwarf_Off off) 975 { 976 int ret; 977 char *name, *nname; 978 Dwarf_Unsigned sz; 979 int kind; 980 ctf_encoding_t enc; 981 ctf_id_t id; 982 983 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) 984 return (ret); 985 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) { 986 goto out; 987 } 988 ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name, 989 off, sz); 990 991 bzero(&enc, sizeof (ctf_encoding_t)); 992 enc.cte_bits = sz * 8; 993 if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) { 994 ctf_free(name, strlen(name) + 1); 995 name = nname; 996 } else { 997 if (ret != EINVAL) 998 return (ret); 999 ctf_dprintf("falling back to dwarf for base type %s\n", name); 1000 if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0) 1001 return (ret); 1002 } 1003 1004 id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind); 1005 if (id == CTF_ERR) { 1006 ret = ctf_errno(cup->cu_ctfp); 1007 } else { 1008 *idp = id; 1009 ret = ctf_dwmap_add(cup, id, die, B_FALSE); 1010 } 1011 out: 1012 ctf_free(name, strlen(name) + 1); 1013 return (ret); 1014 } 1015 1016 /* 1017 * Getting a member's offset is a surprisingly intricate dance. It works as 1018 * follows: 1019 * 1020 * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we 1021 * have a DW_AT_data_member_location. We won't have both. Thus we check first 1022 * for DW_AT_data_bit_offset, and if it exists, we're set. 1023 * 1024 * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then 1025 * we have to grab the data location and use the following dance: 1026 * 1027 * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size. 1028 * Of course, the DW_AT_byte_size may be omitted, even though it isn't always. 1029 * When it's been omitted, we then have to say that the size is that of the 1030 * underlying type, which forces that to be after a ctf_update(). Here, we have 1031 * to do different things based on whether or not we're using big endian or 1032 * little endian to obtain the proper offset. 1033 */ 1034 static int 1035 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid, 1036 ulong_t *offp) 1037 { 1038 int ret; 1039 Dwarf_Unsigned loc, bitsz, bytesz; 1040 Dwarf_Signed bitoff; 1041 size_t off; 1042 ssize_t tsz; 1043 1044 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset, 1045 &loc)) == 0) { 1046 *offp = loc; 1047 return (0); 1048 } else if (ret != ENOENT) { 1049 return (ret); 1050 } 1051 1052 if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0) 1053 return (ret); 1054 off = loc * 8; 1055 1056 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset, 1057 &bitoff)) != 0) { 1058 if (ret != ENOENT) 1059 return (ret); 1060 *offp = off; 1061 return (0); 1062 } 1063 1064 /* At this point we have to have DW_AT_bit_size */ 1065 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) 1066 return (ret); 1067 1068 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, 1069 &bytesz)) != 0) { 1070 if (ret != ENOENT) 1071 return (ret); 1072 if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) { 1073 int e = ctf_errno(cup->cu_ctfp); 1074 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1075 "failed to get type size: %s", ctf_errmsg(e)); 1076 return (ECTF_CONVBKERR); 1077 } 1078 } else { 1079 tsz = bytesz; 1080 } 1081 tsz *= 8; 1082 if (cup->cu_bigend == B_TRUE) { 1083 *offp = off + bitoff; 1084 } else { 1085 *offp = off + tsz - bitoff - bitsz; 1086 } 1087 1088 return (0); 1089 } 1090 1091 /* 1092 * We need to determine if the member in question is a bitfield. If it is, then 1093 * we need to go through and create a new type that's based on the actual base 1094 * type, but has a different size. We also rename the type as a result to help 1095 * deal with future collisions. 1096 * 1097 * Here we need to look and see if we have a DW_AT_bit_size value. If we have a 1098 * bit size member and it does not equal the byte size member, then we need to 1099 * create a bitfield type based on this. 1100 * 1101 * Note: When we support DWARFv4, there may be a chance that we need to also 1102 * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member. 1103 */ 1104 static int 1105 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp) 1106 { 1107 int ret; 1108 Dwarf_Unsigned bitsz; 1109 ctf_encoding_t e; 1110 ctf_dwbitf_t *cdb; 1111 ctf_dtdef_t *dtd; 1112 ctf_id_t base = *idp; 1113 int kind; 1114 1115 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) { 1116 if (ret == ENOENT) 1117 return (0); 1118 return (ret); 1119 } 1120 1121 ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz); 1122 /* 1123 * Given that we now have a bitsize, time to go do something about it. 1124 * We're going to create a new type based on the current one, but first 1125 * we need to find the base type. This means we need to traverse any 1126 * typedef's, consts, and volatiles until we get to what should be 1127 * something of type integer or enumeration. 1128 */ 1129 VERIFY(bitsz < UINT32_MAX); 1130 dtd = ctf_dtd_lookup(cup->cu_ctfp, base); 1131 VERIFY(dtd != NULL); 1132 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 1133 while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST || 1134 kind == CTF_K_VOLATILE) { 1135 dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type); 1136 VERIFY(dtd != NULL); 1137 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 1138 } 1139 ctf_dprintf("got kind %d\n", kind); 1140 VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM); 1141 1142 /* 1143 * As surprising as it may be, it is strictly possible to create a 1144 * bitfield that is based on an enum. Of course, the C standard leaves 1145 * enums sizing as an ABI concern more or less. To that effect, today on 1146 * all illumos platforms the size of an enum is generally that of an 1147 * int as our supported data models and ABIs all agree on that. So what 1148 * we'll do is fake up a CTF encoding here to use. In this case, we'll 1149 * treat it as an unsigned value of whatever size the underlying enum 1150 * currently has (which is in the ctt_size member of its dynamic type 1151 * data). 1152 */ 1153 if (kind == CTF_K_INTEGER) { 1154 e = dtd->dtd_u.dtu_enc; 1155 } else { 1156 bzero(&e, sizeof (ctf_encoding_t)); 1157 e.cte_bits = dtd->dtd_data.ctt_size * NBBY; 1158 } 1159 1160 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; 1161 cdb = ctf_list_next(cdb)) { 1162 if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz) 1163 break; 1164 } 1165 1166 /* 1167 * Create a new type if none exists. We name all types in a way that is 1168 * guaranteed not to conflict with the corresponding C type. We do this 1169 * by using the ':' operator. 1170 */ 1171 if (cdb == NULL) { 1172 size_t namesz; 1173 char *name; 1174 1175 e.cte_bits = bitsz; 1176 namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name, 1177 (uint32_t)bitsz); 1178 name = ctf_alloc(namesz + 1); 1179 if (name == NULL) 1180 return (ENOMEM); 1181 cdb = ctf_alloc(sizeof (ctf_dwbitf_t)); 1182 if (cdb == NULL) { 1183 ctf_free(name, namesz + 1); 1184 return (ENOMEM); 1185 } 1186 (void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name, 1187 (uint32_t)bitsz); 1188 1189 cdb->cdb_base = base; 1190 cdb->cdb_nbits = bitsz; 1191 cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT, 1192 name, &e); 1193 if (cdb->cdb_id == CTF_ERR) { 1194 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1195 "failed to get add bitfield type %s: %s", name, 1196 ctf_errmsg(ctf_errno(cup->cu_ctfp))); 1197 ctf_free(name, namesz + 1); 1198 ctf_free(cdb, sizeof (ctf_dwbitf_t)); 1199 return (ECTF_CONVBKERR); 1200 } 1201 ctf_free(name, namesz + 1); 1202 ctf_list_append(&cup->cu_bitfields, cdb); 1203 } 1204 1205 *idp = cdb->cdb_id; 1206 1207 return (0); 1208 } 1209 1210 static int 1211 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add) 1212 { 1213 int ret, kind; 1214 Dwarf_Die child, memb; 1215 Dwarf_Unsigned size; 1216 ulong_t nsz; 1217 1218 kind = ctf_type_kind(cup->cu_ctfp, base); 1219 VERIFY(kind != CTF_ERR); 1220 VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION); 1221 1222 /* 1223 * Members are in children. However, gcc also allows empty ones. 1224 */ 1225 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1226 return (ret); 1227 if (child == NULL) 1228 return (0); 1229 1230 memb = child; 1231 while (memb != NULL) { 1232 Dwarf_Die sib, tdie; 1233 Dwarf_Half tag; 1234 ctf_id_t mid; 1235 char *mname; 1236 ulong_t memboff = 0; 1237 1238 if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0) 1239 return (ret); 1240 1241 if (tag != DW_TAG_member) 1242 continue; 1243 1244 if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0) 1245 return (ret); 1246 1247 if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid, 1248 CTF_ADD_NONROOT)) != 0) 1249 return (ret); 1250 ctf_dprintf("Got back type id: %d\n", mid); 1251 1252 /* 1253 * If we're not adding a member, just go ahead and return. 1254 */ 1255 if (add == B_FALSE) { 1256 if ((ret = ctf_dwarf_member_bitfield(cup, memb, 1257 &mid)) != 0) 1258 return (ret); 1259 goto next; 1260 } 1261 1262 if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name, 1263 &mname)) != 0 && ret != ENOENT) 1264 return (ret); 1265 if (ret == ENOENT) 1266 mname = NULL; 1267 1268 if (kind == CTF_K_UNION) { 1269 memboff = 0; 1270 } else if ((ret = ctf_dwarf_member_offset(cup, memb, mid, 1271 &memboff)) != 0) { 1272 if (mname != NULL) 1273 ctf_free(mname, strlen(mname) + 1); 1274 return (ret); 1275 } 1276 1277 if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0) 1278 return (ret); 1279 1280 ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff); 1281 if (ret == CTF_ERR) { 1282 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1283 "failed to add member %s: %s", 1284 mname, ctf_errmsg(ctf_errno(cup->cu_ctfp))); 1285 if (mname != NULL) 1286 ctf_free(mname, strlen(mname) + 1); 1287 return (ECTF_CONVBKERR); 1288 } 1289 1290 if (mname != NULL) 1291 ctf_free(mname, strlen(mname) + 1); 1292 1293 next: 1294 if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0) 1295 return (ret); 1296 memb = sib; 1297 } 1298 1299 /* 1300 * If we're not adding members, then we don't know the final size of the 1301 * structure, so end here. 1302 */ 1303 if (add == B_FALSE) 1304 return (0); 1305 1306 /* Finally set the size of the structure to the actual byte size */ 1307 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0) 1308 return (ret); 1309 nsz = size; 1310 if ((ctf_set_size(cup->cu_ctfp, base, nsz)) == CTF_ERR) { 1311 int e = ctf_errno(cup->cu_ctfp); 1312 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1313 "failed to set type size for %d to 0x%x: %s", base, 1314 (uint32_t)size, ctf_errmsg(e)); 1315 return (ECTF_CONVBKERR); 1316 } 1317 1318 return (0); 1319 } 1320 1321 static int 1322 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, 1323 int kind, int isroot) 1324 { 1325 int ret; 1326 char *name; 1327 ctf_id_t base; 1328 Dwarf_Die child; 1329 Dwarf_Bool decl; 1330 1331 /* 1332 * Deal with the terribly annoying case of anonymous structs and unions. 1333 * If they don't have a name, set the name to the empty string. 1334 */ 1335 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 && 1336 ret != ENOENT) 1337 return (ret); 1338 if (ret == ENOENT) 1339 name = NULL; 1340 1341 /* 1342 * We need to check if we just have a declaration here. If we do, then 1343 * instead of creating an actual structure or union, we're just going to 1344 * go ahead and create a forward. During a dedup or merge, the forward 1345 * will be replaced with the real thing. 1346 */ 1347 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, 1348 &decl)) != 0) { 1349 if (ret != ENOENT) 1350 return (ret); 1351 decl = 0; 1352 } 1353 1354 if (decl != 0) { 1355 base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind); 1356 } else if (kind == CTF_K_STRUCT) { 1357 base = ctf_add_struct(cup->cu_ctfp, isroot, name); 1358 } else { 1359 base = ctf_add_union(cup->cu_ctfp, isroot, name); 1360 } 1361 ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base); 1362 if (name != NULL) 1363 ctf_free(name, strlen(name) + 1); 1364 if (base == CTF_ERR) 1365 return (ctf_errno(cup->cu_ctfp)); 1366 *idp = base; 1367 1368 /* 1369 * If it's just a declaration, we're not going to mark it for fix up or 1370 * do anything else. 1371 */ 1372 if (decl == B_TRUE) 1373 return (ctf_dwmap_add(cup, base, die, B_FALSE)); 1374 if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0) 1375 return (ret); 1376 1377 /* 1378 * Members are in children. However, gcc also allows empty ones. 1379 */ 1380 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1381 return (ret); 1382 if (child == NULL) 1383 return (0); 1384 1385 return (0); 1386 } 1387 1388 static int 1389 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp, 1390 ctf_id_t base, int isroot) 1391 { 1392 int ret; 1393 Dwarf_Die sib; 1394 Dwarf_Unsigned val; 1395 Dwarf_Signed sval; 1396 ctf_arinfo_t ar; 1397 1398 ctf_dprintf("creating array range\n"); 1399 1400 if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0) 1401 return (ret); 1402 if (sib != NULL) { 1403 ctf_id_t id; 1404 if ((ret = ctf_dwarf_create_array_range(cup, sib, &id, 1405 base, CTF_ADD_NONROOT)) != 0) 1406 return (ret); 1407 ar.ctr_contents = id; 1408 } else { 1409 ar.ctr_contents = base; 1410 } 1411 1412 if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR) 1413 return (ctf_errno(cup->cu_ctfp)); 1414 1415 /* 1416 * Array bounds can be signed or unsigned, but there are several kinds 1417 * of signless forms (data1, data2, etc) that take their sign from the 1418 * routine that is trying to interpret them. That is, data1 can be 1419 * either signed or unsigned, depending on whether you use the signed or 1420 * unsigned accessor function. GCC will use the signless forms to store 1421 * unsigned values which have their high bit set, so we need to try to 1422 * read them first as unsigned to get positive values. We could also 1423 * try signed first, falling back to unsigned if we got a negative 1424 * value. 1425 */ 1426 if ((ret = ctf_dwarf_unsigned(cup, range, DW_AT_upper_bound, 1427 &val)) == 0) { 1428 ar.ctr_nelems = val + 1; 1429 } else if (ret != ENOENT) { 1430 return (ret); 1431 } else if ((ret = ctf_dwarf_signed(cup, range, DW_AT_upper_bound, 1432 &sval)) == 0) { 1433 ar.ctr_nelems = sval + 1; 1434 } else if (ret != ENOENT) { 1435 return (ret); 1436 } else { 1437 ar.ctr_nelems = 0; 1438 } 1439 1440 if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR) 1441 return (ctf_errno(cup->cu_ctfp)); 1442 1443 return (0); 1444 } 1445 1446 /* 1447 * Try and create an array type. First, the kind of the array is specified in 1448 * the DW_AT_type entry. Next, the number of entries is stored in a more 1449 * complicated form, we should have a child that has the DW_TAG_subrange type. 1450 */ 1451 static int 1452 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot) 1453 { 1454 int ret; 1455 Dwarf_Die tdie, rdie; 1456 ctf_id_t tid; 1457 Dwarf_Half rtag; 1458 1459 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) 1460 return (ret); 1461 if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid, 1462 CTF_ADD_NONROOT)) != 0) 1463 return (ret); 1464 1465 if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0) 1466 return (ret); 1467 if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0) 1468 return (ret); 1469 if (rtag != DW_TAG_subrange_type) { 1470 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1471 "encountered array without DW_TAG_subrange_type child\n"); 1472 return (ECTF_CONVBKERR); 1473 } 1474 1475 /* 1476 * The compiler may opt to describe a multi-dimensional array as one 1477 * giant array or it may opt to instead encode it as a series of 1478 * subranges. If it's the latter, then for each subrange we introduce a 1479 * type. We can always use the base type. 1480 */ 1481 if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid, 1482 isroot)) != 0) 1483 return (ret); 1484 ctf_dprintf("Got back id %d\n", *idp); 1485 return (ctf_dwmap_add(cup, *idp, die, B_FALSE)); 1486 } 1487 1488 static int 1489 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, 1490 int kind, int isroot) 1491 { 1492 int ret; 1493 ctf_id_t id; 1494 Dwarf_Die tdie; 1495 char *name; 1496 size_t namelen; 1497 1498 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 && 1499 ret != ENOENT) 1500 return (ret); 1501 if (ret == ENOENT) { 1502 name = NULL; 1503 namelen = 0; 1504 } else { 1505 namelen = strlen(name); 1506 } 1507 1508 ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>"); 1509 1510 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) { 1511 if (ret != ENOENT) { 1512 ctf_free(name, namelen); 1513 return (ret); 1514 } 1515 if ((id = ctf_dwarf_void(cup)) == CTF_ERR) { 1516 ctf_free(name, namelen); 1517 return (ctf_errno(cup->cu_ctfp)); 1518 } 1519 } else { 1520 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id, 1521 CTF_ADD_NONROOT)) != 0) { 1522 ctf_free(name, namelen); 1523 return (ret); 1524 } 1525 } 1526 1527 if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) == 1528 CTF_ERR) { 1529 ctf_free(name, namelen); 1530 return (ctf_errno(cup->cu_ctfp)); 1531 } 1532 1533 ctf_free(name, namelen); 1534 return (ctf_dwmap_add(cup, *idp, die, B_FALSE)); 1535 } 1536 1537 static int 1538 ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot) 1539 { 1540 int ret; 1541 ctf_id_t id; 1542 Dwarf_Die child; 1543 char *name; 1544 1545 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 && 1546 ret != ENOENT) 1547 return (ret); 1548 if (ret == ENOENT) 1549 name = NULL; 1550 id = ctf_add_enum(cup->cu_ctfp, isroot, name); 1551 ctf_dprintf("added enum %s (%d)\n", name, id); 1552 if (name != NULL) 1553 ctf_free(name, strlen(name) + 1); 1554 if (id == CTF_ERR) 1555 return (ctf_errno(cup->cu_ctfp)); 1556 *idp = id; 1557 if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0) 1558 return (ret); 1559 1560 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) { 1561 if (ret == ENOENT) 1562 ret = 0; 1563 return (ret); 1564 } 1565 1566 while (child != NULL) { 1567 Dwarf_Half tag; 1568 Dwarf_Signed sval; 1569 Dwarf_Unsigned uval; 1570 Dwarf_Die arg = child; 1571 int eval; 1572 1573 if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0) 1574 return (ret); 1575 1576 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0) 1577 return (ret); 1578 1579 if (tag != DW_TAG_enumerator) { 1580 if ((ret = ctf_dwarf_convert_type(cup, arg, NULL, 1581 CTF_ADD_NONROOT)) != 0) 1582 return (ret); 1583 continue; 1584 } 1585 1586 /* 1587 * DWARF v4 section 5.7 tells us we'll always have names. 1588 */ 1589 if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0) 1590 return (ret); 1591 1592 /* 1593 * We have to be careful here: newer GCCs generate DWARF where 1594 * an unsigned value will happily pass ctf_dwarf_signed(). 1595 * Since negative values will fail ctf_dwarf_unsigned(), we try 1596 * that first to make sure we get the right value. 1597 */ 1598 if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value, 1599 &uval)) == 0) { 1600 eval = (int)uval; 1601 } else if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value, 1602 &sval)) == 0) { 1603 eval = sval; 1604 } 1605 1606 if (ret != 0) { 1607 if (ret != ENOENT) 1608 return (ret); 1609 1610 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1611 "encountered enumeration without constant value\n"); 1612 return (ECTF_CONVBKERR); 1613 } 1614 1615 ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval); 1616 if (ret == CTF_ERR) { 1617 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1618 "failed to add enumarator %s (%d) to %d\n", 1619 name, eval, id); 1620 ctf_free(name, strlen(name) + 1); 1621 return (ctf_errno(cup->cu_ctfp)); 1622 } 1623 ctf_free(name, strlen(name) + 1); 1624 } 1625 1626 return (0); 1627 } 1628 1629 /* 1630 * For a function pointer, walk over and process all of its children, unless we 1631 * encounter one that's just a declaration. In which case, we error on it. 1632 */ 1633 static int 1634 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot) 1635 { 1636 int ret; 1637 Dwarf_Bool b; 1638 ctf_funcinfo_t fi; 1639 Dwarf_Die retdie; 1640 ctf_id_t *argv = NULL; 1641 1642 bzero(&fi, sizeof (ctf_funcinfo_t)); 1643 1644 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) { 1645 if (ret != ENOENT) 1646 return (ret); 1647 } else { 1648 if (b != 0) 1649 return (EPROTOTYPE); 1650 } 1651 1652 /* 1653 * Return type is in DW_AT_type, if none, it returns void. 1654 */ 1655 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) { 1656 if (ret != ENOENT) 1657 return (ret); 1658 if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR) 1659 return (ctf_errno(cup->cu_ctfp)); 1660 } else { 1661 if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return, 1662 CTF_ADD_NONROOT)) != 0) 1663 return (ret); 1664 } 1665 1666 if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) { 1667 return (ret); 1668 } 1669 1670 if (fi.ctc_argc != 0) { 1671 argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc); 1672 if (argv == NULL) 1673 return (ENOMEM); 1674 1675 if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) { 1676 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc); 1677 return (ret); 1678 } 1679 } 1680 1681 if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) == 1682 CTF_ERR) { 1683 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc); 1684 return (ctf_errno(cup->cu_ctfp)); 1685 } 1686 1687 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc); 1688 return (ctf_dwmap_add(cup, *idp, die, B_FALSE)); 1689 } 1690 1691 static int 1692 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, 1693 int isroot) 1694 { 1695 int ret; 1696 Dwarf_Off offset; 1697 Dwarf_Half tag; 1698 ctf_dwmap_t lookup, *map; 1699 ctf_id_t id; 1700 1701 if (idp == NULL) 1702 idp = &id; 1703 1704 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0) 1705 return (ret); 1706 1707 if (offset > cup->cu_maxoff) { 1708 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 1709 "die offset %llu beyond maximum for header %llu\n", 1710 offset, cup->cu_maxoff); 1711 return (ECTF_CONVBKERR); 1712 } 1713 1714 /* 1715 * If we've already added an entry for this offset, then we're done. 1716 */ 1717 lookup.cdm_off = offset; 1718 if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) { 1719 *idp = map->cdm_id; 1720 return (0); 1721 } 1722 1723 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0) 1724 return (ret); 1725 1726 ret = ENOTSUP; 1727 switch (tag) { 1728 case DW_TAG_base_type: 1729 ctf_dprintf("base\n"); 1730 ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset); 1731 break; 1732 case DW_TAG_array_type: 1733 ctf_dprintf("array\n"); 1734 ret = ctf_dwarf_create_array(cup, die, idp, isroot); 1735 break; 1736 case DW_TAG_enumeration_type: 1737 ctf_dprintf("enum\n"); 1738 ret = ctf_dwarf_create_enum(cup, die, idp, isroot); 1739 break; 1740 case DW_TAG_pointer_type: 1741 ctf_dprintf("pointer\n"); 1742 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER, 1743 isroot); 1744 break; 1745 case DW_TAG_structure_type: 1746 ctf_dprintf("struct\n"); 1747 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT, 1748 isroot); 1749 break; 1750 case DW_TAG_subroutine_type: 1751 ctf_dprintf("fptr\n"); 1752 ret = ctf_dwarf_create_fptr(cup, die, idp, isroot); 1753 break; 1754 case DW_TAG_typedef: 1755 ctf_dprintf("typedef\n"); 1756 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF, 1757 isroot); 1758 break; 1759 case DW_TAG_union_type: 1760 ctf_dprintf("union\n"); 1761 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION, 1762 isroot); 1763 break; 1764 case DW_TAG_const_type: 1765 ctf_dprintf("const\n"); 1766 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST, 1767 isroot); 1768 break; 1769 case DW_TAG_volatile_type: 1770 ctf_dprintf("volatile\n"); 1771 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE, 1772 isroot); 1773 break; 1774 case DW_TAG_restrict_type: 1775 ctf_dprintf("restrict\n"); 1776 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT, 1777 isroot); 1778 break; 1779 default: 1780 ctf_dprintf("ignoring tag type %x\n", tag); 1781 *idp = CTF_ERR; 1782 ret = 0; 1783 break; 1784 } 1785 ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n", 1786 ret); 1787 1788 return (ret); 1789 } 1790 1791 static int 1792 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die) 1793 { 1794 int ret; 1795 Dwarf_Die child; 1796 1797 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1798 return (ret); 1799 1800 if (child == NULL) 1801 return (0); 1802 1803 return (ctf_dwarf_convert_die(cup, die)); 1804 } 1805 1806 static int 1807 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip, 1808 boolean_t fptr) 1809 { 1810 int ret; 1811 Dwarf_Die child, sib, arg; 1812 1813 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1814 return (ret); 1815 1816 arg = child; 1817 while (arg != NULL) { 1818 Dwarf_Half tag; 1819 1820 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0) 1821 return (ret); 1822 1823 /* 1824 * We have to check for a varargs type decleration. This will 1825 * happen in one of two ways. If we have a function pointer 1826 * type, then it'll be done with a tag of type 1827 * DW_TAG_unspecified_parameters. However, it only means we have 1828 * a variable number of arguments, if we have more than one 1829 * argument found so far. Otherwise, when we have a function 1830 * type, it instead uses a formal parameter whose name is '...' 1831 * to indicate a variable arguments member. 1832 * 1833 * Also, if we have a function pointer, then we have to expect 1834 * that we might not get a name at all. 1835 */ 1836 if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) { 1837 char *name; 1838 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, 1839 &name)) != 0) 1840 return (ret); 1841 if (strcmp(name, DWARF_VARARGS_NAME) == 0) 1842 fip->ctc_flags |= CTF_FUNC_VARARG; 1843 else 1844 fip->ctc_argc++; 1845 ctf_free(name, strlen(name) + 1); 1846 } else if (tag == DW_TAG_formal_parameter) { 1847 fip->ctc_argc++; 1848 } else if (tag == DW_TAG_unspecified_parameters && 1849 fip->ctc_argc > 0) { 1850 fip->ctc_flags |= CTF_FUNC_VARARG; 1851 } 1852 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0) 1853 return (ret); 1854 arg = sib; 1855 } 1856 1857 return (0); 1858 } 1859 1860 static int 1861 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip, 1862 ctf_id_t *argv) 1863 { 1864 int ret; 1865 int i = 0; 1866 Dwarf_Die child, sib, arg; 1867 1868 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) 1869 return (ret); 1870 1871 arg = child; 1872 while (arg != NULL) { 1873 Dwarf_Half tag; 1874 1875 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0) 1876 return (ret); 1877 if (tag == DW_TAG_formal_parameter) { 1878 Dwarf_Die tdie; 1879 1880 if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type, 1881 &tdie)) != 0) 1882 return (ret); 1883 1884 if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i], 1885 CTF_ADD_ROOT)) != 0) 1886 return (ret); 1887 i++; 1888 1889 /* 1890 * Once we hit argc entries, we're done. This ensures we 1891 * don't accidentally hit a varargs which should be the 1892 * last entry. 1893 */ 1894 if (i == fip->ctc_argc) 1895 break; 1896 } 1897 1898 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0) 1899 return (ret); 1900 arg = sib; 1901 } 1902 1903 return (0); 1904 } 1905 1906 static int 1907 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die) 1908 { 1909 int ret; 1910 char *name; 1911 ctf_dwfunc_t *cdf; 1912 Dwarf_Die tdie; 1913 1914 /* 1915 * Functions that don't have a name are generally functions that have 1916 * been inlined and thus most information about them has been lost. If 1917 * we can't get a name, then instead of returning ENOENT, we silently 1918 * swallow the error. 1919 */ 1920 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) { 1921 if (ret == ENOENT) 1922 return (0); 1923 return (ret); 1924 } 1925 1926 ctf_dprintf("beginning work on function %s\n", name); 1927 if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) { 1928 ctf_free(name, strlen(name) + 1); 1929 return (ENOMEM); 1930 } 1931 bzero(cdf, sizeof (ctf_dwfunc_t)); 1932 cdf->cdf_name = name; 1933 1934 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) { 1935 if ((ret = ctf_dwarf_convert_type(cup, tdie, 1936 &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) { 1937 ctf_free(name, strlen(name) + 1); 1938 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 1939 return (ret); 1940 } 1941 } else if (ret != ENOENT) { 1942 ctf_free(name, strlen(name) + 1); 1943 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 1944 return (ret); 1945 } else { 1946 if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) == 1947 CTF_ERR) { 1948 ctf_free(name, strlen(name) + 1); 1949 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 1950 return (ctf_errno(cup->cu_ctfp)); 1951 } 1952 } 1953 1954 /* 1955 * A function has a number of children, some of which may not be ones we 1956 * care about. Children that we care about have a type of 1957 * DW_TAG_formal_parameter. We're going to do two passes, the first to 1958 * count the arguments, the second to process them. Afterwards, we 1959 * should be good to go ahead and add this function. 1960 * 1961 * Note, we already got the return type by going in and grabbing it out 1962 * of the DW_AT_type. 1963 */ 1964 if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip, 1965 B_FALSE)) != 0) { 1966 ctf_free(name, strlen(name) + 1); 1967 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 1968 return (ret); 1969 } 1970 1971 ctf_dprintf("beginning to convert function arguments %s\n", name); 1972 if (cdf->cdf_fip.ctc_argc != 0) { 1973 uint_t argc = cdf->cdf_fip.ctc_argc; 1974 cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc); 1975 if (cdf->cdf_argv == NULL) { 1976 ctf_free(name, strlen(name) + 1); 1977 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 1978 return (ENOMEM); 1979 } 1980 if ((ret = ctf_dwarf_convert_fargs(cup, die, 1981 &cdf->cdf_fip, cdf->cdf_argv)) != 0) { 1982 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc); 1983 ctf_free(name, strlen(name) + 1); 1984 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 1985 return (ret); 1986 } 1987 } else { 1988 cdf->cdf_argv = NULL; 1989 } 1990 1991 if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) { 1992 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * 1993 cdf->cdf_fip.ctc_argc); 1994 ctf_free(name, strlen(name) + 1); 1995 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 1996 return (ret); 1997 } 1998 1999 ctf_list_append(&cup->cu_funcs, cdf); 2000 return (ret); 2001 } 2002 2003 /* 2004 * Convert variables, but only if they're not prototypes and have names. 2005 */ 2006 static int 2007 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die) 2008 { 2009 int ret; 2010 char *name; 2011 Dwarf_Bool b; 2012 Dwarf_Die tdie; 2013 ctf_id_t id; 2014 ctf_dwvar_t *cdv; 2015 2016 /* Skip "Non-Defining Declarations" */ 2017 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) { 2018 if (b != 0) 2019 return (0); 2020 } else if (ret != ENOENT) { 2021 return (ret); 2022 } 2023 2024 /* 2025 * If we find a DIE of "Declarations Completing Non-Defining 2026 * Declarations", we will use the referenced type's DIE. This isn't 2027 * quite correct, e.g. DW_AT_decl_line will be the forward declaration 2028 * not this site. It's sufficient for what we need, however: in 2029 * particular, we should find DW_AT_external as needed there. 2030 */ 2031 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification, 2032 &tdie)) == 0) { 2033 Dwarf_Off offset; 2034 if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0) 2035 return (ret); 2036 ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n", 2037 ctf_die_offset(die), ctf_die_offset(tdie)); 2038 die = tdie; 2039 } else if (ret != ENOENT) { 2040 return (ret); 2041 } 2042 2043 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 && 2044 ret != ENOENT) 2045 return (ret); 2046 if (ret == ENOENT) 2047 return (0); 2048 2049 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) { 2050 ctf_free(name, strlen(name) + 1); 2051 return (ret); 2052 } 2053 2054 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id, 2055 CTF_ADD_ROOT)) != 0) 2056 return (ret); 2057 2058 if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) { 2059 ctf_free(name, strlen(name) + 1); 2060 return (ENOMEM); 2061 } 2062 2063 cdv->cdv_name = name; 2064 cdv->cdv_type = id; 2065 2066 if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) { 2067 ctf_free(cdv, sizeof (ctf_dwvar_t)); 2068 ctf_free(name, strlen(name) + 1); 2069 return (ret); 2070 } 2071 2072 ctf_list_append(&cup->cu_vars, cdv); 2073 return (0); 2074 } 2075 2076 /* 2077 * Walk through our set of top-level types and process them. 2078 */ 2079 static int 2080 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die) 2081 { 2082 int ret; 2083 Dwarf_Off offset; 2084 Dwarf_Half tag; 2085 2086 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0) 2087 return (ret); 2088 2089 if (offset > cup->cu_maxoff) { 2090 (void) snprintf(cup->cu_errbuf, cup->cu_errlen, 2091 "die offset %llu beyond maximum for header %llu\n", 2092 offset, cup->cu_maxoff); 2093 return (ECTF_CONVBKERR); 2094 } 2095 2096 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0) 2097 return (ret); 2098 2099 ret = 0; 2100 switch (tag) { 2101 case DW_TAG_subprogram: 2102 ctf_dprintf("top level func\n"); 2103 ret = ctf_dwarf_convert_function(cup, die); 2104 break; 2105 case DW_TAG_variable: 2106 ctf_dprintf("top level var\n"); 2107 ret = ctf_dwarf_convert_variable(cup, die); 2108 break; 2109 case DW_TAG_lexical_block: 2110 ctf_dprintf("top level block\n"); 2111 ret = ctf_dwarf_walk_lexical(cup, die); 2112 break; 2113 case DW_TAG_enumeration_type: 2114 case DW_TAG_structure_type: 2115 case DW_TAG_typedef: 2116 case DW_TAG_union_type: 2117 ctf_dprintf("top level type\n"); 2118 ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE); 2119 break; 2120 default: 2121 break; 2122 } 2123 2124 return (ret); 2125 } 2126 2127 2128 /* 2129 * We're given a node. At this node we need to convert it and then proceed to 2130 * convert any siblings that are associaed with this die. 2131 */ 2132 static int 2133 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die) 2134 { 2135 while (die != NULL) { 2136 int ret; 2137 Dwarf_Die sib; 2138 2139 if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0) 2140 return (ret); 2141 2142 if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0) 2143 return (ret); 2144 die = sib; 2145 } 2146 return (0); 2147 } 2148 2149 static int 2150 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass) 2151 { 2152 ctf_dwmap_t *map; 2153 2154 for (map = avl_first(&cup->cu_map); map != NULL; 2155 map = AVL_NEXT(&cup->cu_map, map)) { 2156 int ret; 2157 if (map->cdm_fix == B_FALSE) 2158 continue; 2159 if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id, 2160 addpass)) != 0) 2161 return (ret); 2162 } 2163 2164 return (0); 2165 } 2166 2167 /* 2168 * The DWARF information about a symbol and the information in the symbol table 2169 * may not be the same due to symbol reduction that is performed by ld due to a 2170 * mapfile or other such directive. We process weak symbols at a later time. 2171 * 2172 * The following are the rules that we employ: 2173 * 2174 * 1. A DWARF function that is considered exported matches STB_GLOBAL entries 2175 * with the same name. 2176 * 2177 * 2. A DWARF function that is considered exported matches STB_LOCAL entries 2178 * with the same name and the same file. This case may happen due to mapfile 2179 * reduction. 2180 * 2181 * 3. A DWARF function that is not considered exported matches STB_LOCAL entries 2182 * with the same name and the same file. 2183 * 2184 * 4. A DWARF function that has the same name as the symbol table entry, but the 2185 * files do not match. This is considered a 'fuzzy' match. This may also happen 2186 * due to a mapfile reduction. Fuzzy matching is only used when we know that the 2187 * file in question refers to the primary object. This is because when a symbol 2188 * is reduced in a mapfile, it's always going to be tagged as a local value in 2189 * the generated output and it is considered as to belong to the primary file 2190 * which is the first STT_FILE symbol we see. 2191 */ 2192 static boolean_t 2193 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name, 2194 uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name, 2195 boolean_t dwarf_global, boolean_t *is_fuzzy) 2196 { 2197 *is_fuzzy = B_FALSE; 2198 2199 if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) { 2200 return (B_FALSE); 2201 } 2202 2203 if (strcmp(symtab_name, dwarf_name) != 0) { 2204 return (B_FALSE); 2205 } 2206 2207 if (symtab_bind == STB_GLOBAL) { 2208 return (dwarf_global); 2209 } 2210 2211 if (strcmp(symtab_file, dwarf_file) == 0) { 2212 return (B_TRUE); 2213 } 2214 2215 if (dwarf_global) { 2216 *is_fuzzy = B_TRUE; 2217 return (B_TRUE); 2218 } 2219 2220 return (B_FALSE); 2221 } 2222 2223 static ctf_dwfunc_t * 2224 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name, 2225 uint_t bind, boolean_t primary) 2226 { 2227 ctf_dwfunc_t *cdf, *fuzzy = NULL; 2228 2229 if (bind == STB_WEAK) 2230 return (NULL); 2231 2232 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL)) 2233 return (NULL); 2234 2235 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; 2236 cdf = ctf_list_next(cdf)) { 2237 boolean_t is_fuzzy = B_FALSE; 2238 2239 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name, 2240 cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) { 2241 if (is_fuzzy) { 2242 if (primary) { 2243 fuzzy = cdf; 2244 } 2245 continue; 2246 } else { 2247 return (cdf); 2248 } 2249 } 2250 } 2251 2252 return (fuzzy); 2253 } 2254 2255 static ctf_dwvar_t * 2256 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name, 2257 uint_t bind, boolean_t primary) 2258 { 2259 ctf_dwvar_t *cdv, *fuzzy = NULL; 2260 2261 if (bind == STB_WEAK) 2262 return (NULL); 2263 2264 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL)) 2265 return (NULL); 2266 2267 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; 2268 cdv = ctf_list_next(cdv)) { 2269 boolean_t is_fuzzy = B_FALSE; 2270 2271 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name, 2272 cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) { 2273 if (is_fuzzy) { 2274 if (primary) { 2275 fuzzy = cdv; 2276 } 2277 } else { 2278 return (cdv); 2279 } 2280 } 2281 } 2282 2283 return (fuzzy); 2284 } 2285 2286 static int 2287 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx, 2288 const char *file, const char *name, boolean_t primary, void *arg) 2289 { 2290 int ret; 2291 uint_t bind, type; 2292 ctf_cu_t *cup = arg; 2293 2294 bind = GELF_ST_BIND(symp->st_info); 2295 type = GELF_ST_TYPE(symp->st_info); 2296 2297 /* 2298 * Come back to weak symbols in another pass 2299 */ 2300 if (bind == STB_WEAK) 2301 return (0); 2302 2303 if (type == STT_OBJECT) { 2304 ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name, 2305 bind, primary); 2306 if (cdv == NULL) 2307 return (0); 2308 ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type); 2309 ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type); 2310 } else { 2311 ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name, 2312 bind, primary); 2313 if (cdf == NULL) 2314 return (0); 2315 ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip, 2316 cdf->cdf_argv); 2317 ctf_dprintf("added function %s\n", name); 2318 } 2319 2320 if (ret == CTF_ERR) { 2321 return (ctf_errno(cup->cu_ctfp)); 2322 } 2323 2324 return (0); 2325 } 2326 2327 static int 2328 ctf_dwarf_conv_funcvars(ctf_cu_t *cup) 2329 { 2330 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup)); 2331 } 2332 2333 /* 2334 * If we have a weak symbol, attempt to find the strong symbol it will resolve 2335 * to. Note: the code where this actually happens is in sym_process() in 2336 * cmd/sgs/libld/common/syms.c 2337 * 2338 * Finding the matching symbol is unfortunately not trivial. For a symbol to be 2339 * a candidate, it must: 2340 * 2341 * - have the same type (function, object) 2342 * - have the same value (address) 2343 * - have the same size 2344 * - not be another weak symbol 2345 * - belong to the same section (checked via section index) 2346 * 2347 * To perform this check, we first iterate over the symbol table. For each weak 2348 * symbol that we encounter, we then do a second walk over the symbol table, 2349 * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's 2350 * either a local or global symbol. If we find a global symbol then we go with 2351 * it and stop searching for additional matches. 2352 * 2353 * If instead, we find a local symbol, things are more complicated. The first 2354 * thing we do is to try and see if we have file information about both symbols 2355 * (STT_FILE). If they both have file information and it matches, then we treat 2356 * that as a good match and stop searching for additional matches. 2357 * 2358 * Otherwise, this means we have a non-matching file and a local symbol. We 2359 * treat this as a candidate and if we find a better match (one of the two cases 2360 * above), use that instead. There are two different ways this can happen. 2361 * Either this is a completely different symbol, or it's a once-global symbol 2362 * that was scoped to local via a mapfile. In the former case, curfile is 2363 * likely inaccurate since the linker does not preserve the needed curfile in 2364 * the order of the symbol table (see the comments about locally scoped symbols 2365 * in libld's update_osym()). As we can't tell this case from the former one, 2366 * we use this symbol iff no other matching symbol is found. 2367 * 2368 * What we really need here is a SUNW section containing weak<->strong mappings 2369 * that we can consume. 2370 */ 2371 typedef struct ctf_dwarf_weak_arg { 2372 const Elf64_Sym *cweak_symp; 2373 const char *cweak_file; 2374 boolean_t cweak_candidate; 2375 ulong_t cweak_idx; 2376 } ctf_dwarf_weak_arg_t; 2377 2378 static int 2379 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file, 2380 const char *name, boolean_t primary, void *arg) 2381 { 2382 ctf_dwarf_weak_arg_t *cweak = arg; 2383 2384 const Elf64_Sym *wsymp = cweak->cweak_symp; 2385 2386 ctf_dprintf("comparing weak to %s\n", name); 2387 2388 if (GELF_ST_BIND(symp->st_info) == STB_WEAK) { 2389 return (0); 2390 } 2391 2392 if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) { 2393 return (0); 2394 } 2395 2396 if (wsymp->st_value != symp->st_value) { 2397 return (0); 2398 } 2399 2400 if (wsymp->st_size != symp->st_size) { 2401 return (0); 2402 } 2403 2404 if (wsymp->st_shndx != symp->st_shndx) { 2405 return (0); 2406 } 2407 2408 /* 2409 * Check if it's a weak candidate. 2410 */ 2411 if (GELF_ST_BIND(symp->st_info) == STB_LOCAL && 2412 (file == NULL || cweak->cweak_file == NULL || 2413 strcmp(file, cweak->cweak_file) != 0)) { 2414 cweak->cweak_candidate = B_TRUE; 2415 cweak->cweak_idx = idx; 2416 return (0); 2417 } 2418 2419 /* 2420 * Found a match, break. 2421 */ 2422 cweak->cweak_idx = idx; 2423 return (1); 2424 } 2425 2426 static int 2427 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx) 2428 { 2429 ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx); 2430 2431 /* 2432 * If we matched something that for some reason didn't have type data, 2433 * we don't consider that a fatal error and silently swallow it. 2434 */ 2435 if (id == CTF_ERR) { 2436 if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT) 2437 return (0); 2438 else 2439 return (ctf_errno(cup->cu_ctfp)); 2440 } 2441 2442 if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR) 2443 return (ctf_errno(cup->cu_ctfp)); 2444 2445 return (0); 2446 } 2447 2448 static int 2449 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx) 2450 { 2451 int ret; 2452 ctf_funcinfo_t fip; 2453 ctf_id_t *args = NULL; 2454 2455 if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) { 2456 if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT) 2457 return (0); 2458 else 2459 return (ctf_errno(cup->cu_ctfp)); 2460 } 2461 2462 if (fip.ctc_argc != 0) { 2463 args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc); 2464 if (args == NULL) 2465 return (ENOMEM); 2466 2467 if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) == 2468 CTF_ERR) { 2469 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc); 2470 return (ctf_errno(cup->cu_ctfp)); 2471 } 2472 } 2473 2474 ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args); 2475 if (args != NULL) 2476 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc); 2477 if (ret == CTF_ERR) 2478 return (ctf_errno(cup->cu_ctfp)); 2479 2480 return (0); 2481 } 2482 2483 static int 2484 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file, 2485 const char *name, boolean_t primary, void *arg) 2486 { 2487 int ret, type; 2488 ctf_dwarf_weak_arg_t cweak; 2489 ctf_cu_t *cup = arg; 2490 2491 /* 2492 * We only care about weak symbols. 2493 */ 2494 if (GELF_ST_BIND(symp->st_info) != STB_WEAK) 2495 return (0); 2496 2497 type = GELF_ST_TYPE(symp->st_info); 2498 ASSERT(type == STT_OBJECT || type == STT_FUNC); 2499 2500 /* 2501 * For each weak symbol we encounter, we need to do a second iteration 2502 * to try and find a match. We should probably think about other 2503 * techniques to try and save us time in the future. 2504 */ 2505 cweak.cweak_symp = symp; 2506 cweak.cweak_file = file; 2507 cweak.cweak_candidate = B_FALSE; 2508 cweak.cweak_idx = 0; 2509 2510 ctf_dprintf("Trying to find weak equiv for %s\n", name); 2511 2512 ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak); 2513 VERIFY(ret == 0 || ret == 1); 2514 2515 /* 2516 * Nothing was ever found, we're not going to add anything for this 2517 * entry. 2518 */ 2519 if (ret == 0 && cweak.cweak_candidate == B_FALSE) { 2520 ctf_dprintf("found no weak match for %s\n", name); 2521 return (0); 2522 } 2523 2524 /* 2525 * Now, finally go and add the type based on the match. 2526 */ 2527 ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx); 2528 if (type == STT_OBJECT) { 2529 ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx); 2530 } else { 2531 ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx); 2532 } 2533 2534 return (ret); 2535 } 2536 2537 static int 2538 ctf_dwarf_conv_weaks(ctf_cu_t *cup) 2539 { 2540 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup)); 2541 } 2542 2543 /* ARGSUSED */ 2544 static int 2545 ctf_dwarf_convert_one(void *arg, void *unused) 2546 { 2547 int ret; 2548 ctf_file_t *dedup; 2549 ctf_cu_t *cup = arg; 2550 2551 ctf_dprintf("converting die: %s\n", cup->cu_name); 2552 ctf_dprintf("max offset: %x\n", cup->cu_maxoff); 2553 VERIFY(cup != NULL); 2554 2555 ret = ctf_dwarf_convert_die(cup, cup->cu_cu); 2556 ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cup->cu_name, 2557 ret); 2558 if (ret != 0) { 2559 return (ret); 2560 } 2561 if (ctf_update(cup->cu_ctfp) != 0) { 2562 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2563 "failed to update output ctf container")); 2564 } 2565 2566 ret = ctf_dwarf_fixup_die(cup, B_FALSE); 2567 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name, 2568 ret); 2569 if (ret != 0) { 2570 return (ret); 2571 } 2572 if (ctf_update(cup->cu_ctfp) != 0) { 2573 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2574 "failed to update output ctf container")); 2575 } 2576 2577 ret = ctf_dwarf_fixup_die(cup, B_TRUE); 2578 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name, 2579 ret); 2580 if (ret != 0) { 2581 return (ret); 2582 } 2583 if (ctf_update(cup->cu_ctfp) != 0) { 2584 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2585 "failed to update output ctf container")); 2586 } 2587 2588 2589 if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) { 2590 return (ctf_dwarf_error(cup, NULL, ret, 2591 "failed to convert strong functions and variables")); 2592 } 2593 2594 if (ctf_update(cup->cu_ctfp) != 0) { 2595 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2596 "failed to update output ctf container")); 2597 } 2598 2599 if (cup->cu_doweaks == B_TRUE) { 2600 if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) { 2601 return (ctf_dwarf_error(cup, NULL, ret, 2602 "failed to convert weak functions and variables")); 2603 } 2604 2605 if (ctf_update(cup->cu_ctfp) != 0) { 2606 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0, 2607 "failed to update output ctf container")); 2608 } 2609 } 2610 2611 ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", cup->cu_name); 2612 ctf_dprintf("adding inputs for dedup\n"); 2613 if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) { 2614 return (ctf_dwarf_error(cup, NULL, ret, 2615 "failed to add inputs for merge")); 2616 } 2617 2618 ctf_dprintf("starting dedup of %s\n", cup->cu_name); 2619 if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) { 2620 return (ctf_dwarf_error(cup, NULL, ret, 2621 "failed to deduplicate die")); 2622 } 2623 ctf_close(cup->cu_ctfp); 2624 cup->cu_ctfp = dedup; 2625 ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", cup->cu_name); 2626 2627 return (0); 2628 } 2629 2630 /* 2631 * Note, we expect that if we're returning a ctf_file_t from one of the dies, 2632 * say in the single node case, it's been saved and the entry here has been set 2633 * to NULL, which ctf_close happily ignores. 2634 */ 2635 static void 2636 ctf_dwarf_free_die(ctf_cu_t *cup) 2637 { 2638 ctf_dwfunc_t *cdf, *ndf; 2639 ctf_dwvar_t *cdv, *ndv; 2640 ctf_dwbitf_t *cdb, *ndb; 2641 ctf_dwmap_t *map; 2642 void *cookie; 2643 Dwarf_Error derr; 2644 2645 ctf_dprintf("Beginning to free die: %p\n", cup); 2646 cup->cu_elf = NULL; 2647 ctf_dprintf("Trying to free name: %p\n", cup->cu_name); 2648 if (cup->cu_name != NULL) 2649 ctf_free(cup->cu_name, strlen(cup->cu_name) + 1); 2650 ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh); 2651 if (cup->cu_cmh != NULL) { 2652 ctf_merge_fini(cup->cu_cmh); 2653 cup->cu_cmh = NULL; 2654 } 2655 2656 ctf_dprintf("Trying to free functions\n"); 2657 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) { 2658 ndf = ctf_list_next(cdf); 2659 ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1); 2660 if (cdf->cdf_fip.ctc_argc != 0) { 2661 ctf_free(cdf->cdf_argv, 2662 sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc); 2663 } 2664 ctf_free(cdf, sizeof (ctf_dwfunc_t)); 2665 } 2666 2667 ctf_dprintf("Trying to free variables\n"); 2668 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) { 2669 ndv = ctf_list_next(cdv); 2670 ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1); 2671 ctf_free(cdv, sizeof (ctf_dwvar_t)); 2672 } 2673 2674 ctf_dprintf("Trying to free bitfields\n"); 2675 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) { 2676 ndb = ctf_list_next(cdb); 2677 ctf_free(cdb, sizeof (ctf_dwbitf_t)); 2678 } 2679 2680 ctf_dprintf("Trying to clean up dwarf_t: %p\n", cup->cu_dwarf); 2681 if (cup->cu_dwarf != NULL) 2682 (void) dwarf_finish(cup->cu_dwarf, &derr); 2683 cup->cu_dwarf = NULL; 2684 ctf_close(cup->cu_ctfp); 2685 2686 cookie = NULL; 2687 while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL) { 2688 ctf_free(map, sizeof (ctf_dwmap_t)); 2689 } 2690 avl_destroy(&cup->cu_map); 2691 cup->cu_errbuf = NULL; 2692 } 2693 2694 static void 2695 ctf_dwarf_free_dies(ctf_cu_t *cdies, int ndies) 2696 { 2697 int i; 2698 2699 ctf_dprintf("Beginning to free dies\n"); 2700 for (i = 0; i < ndies; i++) { 2701 ctf_dwarf_free_die(&cdies[i]); 2702 } 2703 2704 ctf_free(cdies, sizeof (ctf_cu_t) * ndies); 2705 } 2706 2707 static int 2708 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies, 2709 char *errbuf, size_t errlen) 2710 { 2711 int ret; 2712 Dwarf_Half vers; 2713 Dwarf_Unsigned nexthdr; 2714 2715 while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL, 2716 &nexthdr, derr)) != DW_DLV_NO_ENTRY) { 2717 if (ret != DW_DLV_OK) { 2718 (void) snprintf(errbuf, errlen, 2719 "file does not contain valid DWARF data: %s\n", 2720 dwarf_errmsg(*derr)); 2721 return (ECTF_CONVBKERR); 2722 } 2723 2724 if (vers != DWARF_VERSION_TWO) { 2725 (void) snprintf(errbuf, errlen, 2726 "unsupported DWARF version: %d\n", vers); 2727 return (ECTF_CONVBKERR); 2728 } 2729 *ndies = *ndies + 1; 2730 } 2731 2732 return (0); 2733 } 2734 2735 static int 2736 ctf_dwarf_init_die(int fd, Elf *elf, ctf_cu_t *cup, int ndie, char *errbuf, 2737 size_t errlen) 2738 { 2739 int ret; 2740 Dwarf_Unsigned hdrlen, abboff, nexthdr; 2741 Dwarf_Half addrsz; 2742 Dwarf_Unsigned offset = 0; 2743 Dwarf_Error derr; 2744 2745 while ((ret = dwarf_next_cu_header(cup->cu_dwarf, &hdrlen, NULL, 2746 &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) { 2747 char *name; 2748 Dwarf_Die cu, child; 2749 2750 /* Based on the counting above, we should be good to go */ 2751 VERIFY(ret == DW_DLV_OK); 2752 if (ndie > 0) { 2753 ndie--; 2754 offset = nexthdr; 2755 continue; 2756 } 2757 2758 /* 2759 * Compilers are apparently inconsistent. Some emit no DWARF for 2760 * empty files and others emit empty compilation unit. 2761 */ 2762 cup->cu_voidtid = CTF_ERR; 2763 cup->cu_longtid = CTF_ERR; 2764 cup->cu_elf = elf; 2765 cup->cu_maxoff = nexthdr - 1; 2766 cup->cu_ctfp = ctf_fdcreate(fd, &ret); 2767 if (cup->cu_ctfp == NULL) 2768 return (ret); 2769 2770 avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t), 2771 offsetof(ctf_dwmap_t, cdm_avl)); 2772 cup->cu_errbuf = errbuf; 2773 cup->cu_errlen = errlen; 2774 bzero(&cup->cu_vars, sizeof (ctf_list_t)); 2775 bzero(&cup->cu_funcs, sizeof (ctf_list_t)); 2776 bzero(&cup->cu_bitfields, sizeof (ctf_list_t)); 2777 2778 if ((ret = ctf_dwarf_die_elfenc(elf, cup, errbuf, 2779 errlen)) != 0) 2780 return (ret); 2781 2782 if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0) 2783 return (ret); 2784 2785 if (cu == NULL) { 2786 (void) snprintf(errbuf, errlen, 2787 "file does not contain DWARF data"); 2788 return (ECTF_CONVNODEBUG); 2789 } 2790 2791 if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0) 2792 return (ret); 2793 2794 if (child == NULL) { 2795 (void) snprintf(errbuf, errlen, 2796 "file does not contain DWARF data"); 2797 return (ECTF_CONVNODEBUG); 2798 } 2799 2800 cup->cu_cuoff = offset; 2801 cup->cu_cu = child; 2802 2803 if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL) 2804 return (ret); 2805 2806 if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) { 2807 size_t len = strlen(name) + 1; 2808 char *b = basename(name); 2809 cup->cu_name = strdup(b); 2810 ctf_free(name, len); 2811 } 2812 break; 2813 } 2814 2815 return (0); 2816 } 2817 2818 /* 2819 * This is our only recourse to identify a C source file that is missing debug 2820 * info: it will be mentioned as an STT_FILE, but not have a compile unit entry. 2821 * (A traditional ctfmerge works on individual files, so can identify missing 2822 * DWARF more directly, via ctf_has_c_source() on the .o file.) 2823 * 2824 * As we operate on basenames, this can of course miss some cases, but it's 2825 * better than not checking at all. 2826 * 2827 * We explicitly whitelist some CRT components. Failing that, there's always 2828 * the -m option. 2829 */ 2830 static boolean_t 2831 c_source_has_debug(const char *file, ctf_cu_t *cus, size_t nr_cus) 2832 { 2833 const char *basename = strrchr(file, '/'); 2834 2835 if (basename == NULL) 2836 basename = file; 2837 else 2838 basename++; 2839 2840 if (strcmp(basename, "common-crt.c") == 0 || 2841 strcmp(basename, "gmon.c") == 0 || 2842 strcmp(basename, "dlink_init.c") == 0 || 2843 strcmp(basename, "dlink_common.c") == 0 || 2844 strncmp(basename, "crt", strlen("crt")) == 0 || 2845 strncmp(basename, "values-", strlen("values-")) == 0) 2846 return (B_TRUE); 2847 2848 for (size_t i = 0; i < nr_cus; i++) { 2849 if (strcmp(basename, cus[i].cu_name) == 0) 2850 return (B_TRUE); 2851 } 2852 2853 return (B_FALSE); 2854 } 2855 2856 static int 2857 ctf_dwarf_check_missing(ctf_cu_t *cus, size_t nr_cus, Elf *elf, 2858 char *errmsg, size_t errlen) 2859 { 2860 Elf_Scn *scn, *strscn; 2861 Elf_Data *data, *strdata; 2862 GElf_Shdr shdr; 2863 ulong_t i; 2864 2865 scn = NULL; 2866 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2867 if (gelf_getshdr(scn, &shdr) == NULL) { 2868 (void) snprintf(errmsg, errlen, 2869 "failed to get section header: %s\n", 2870 elf_errmsg(elf_errno())); 2871 return (EINVAL); 2872 } 2873 2874 if (shdr.sh_type == SHT_SYMTAB) 2875 break; 2876 } 2877 2878 if (scn == NULL) 2879 return (0); 2880 2881 if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) { 2882 (void) snprintf(errmsg, errlen, 2883 "failed to get str section: %s\n", 2884 elf_errmsg(elf_errno())); 2885 return (EINVAL); 2886 } 2887 2888 if ((data = elf_getdata(scn, NULL)) == NULL) { 2889 (void) snprintf(errmsg, errlen, "failed to read section: %s\n", 2890 elf_errmsg(elf_errno())); 2891 return (EINVAL); 2892 } 2893 2894 if ((strdata = elf_getdata(strscn, NULL)) == NULL) { 2895 (void) snprintf(errmsg, errlen, 2896 "failed to read string table: %s\n", 2897 elf_errmsg(elf_errno())); 2898 return (EINVAL); 2899 } 2900 2901 for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) { 2902 GElf_Sym sym; 2903 const char *file; 2904 size_t len; 2905 2906 if (gelf_getsym(data, i, &sym) == NULL) { 2907 (void) snprintf(errmsg, errlen, 2908 "failed to read sym %lu: %s\n", 2909 i, elf_errmsg(elf_errno())); 2910 return (EINVAL); 2911 } 2912 2913 if (GELF_ST_TYPE(sym.st_info) != STT_FILE) 2914 continue; 2915 2916 file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name); 2917 len = strlen(file); 2918 if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0) 2919 continue; 2920 2921 if (!c_source_has_debug(file, cus, nr_cus)) { 2922 (void) snprintf(errmsg, errlen, 2923 "file %s is missing debug info\n", file); 2924 return (ECTF_CONVNODEBUG); 2925 } 2926 } 2927 2928 return (0); 2929 } 2930 2931 int 2932 ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, uint_t flags, 2933 ctf_file_t **fpp, char *errbuf, size_t errlen) 2934 { 2935 int err, ret, ndies, i; 2936 Dwarf_Debug dw; 2937 Dwarf_Error derr; 2938 ctf_cu_t *cdies = NULL, *cup; 2939 workq_t *wqp = NULL; 2940 2941 *fpp = NULL; 2942 2943 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr); 2944 if (ret != DW_DLV_OK) { 2945 if (ret == DW_DLV_NO_ENTRY || 2946 dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) { 2947 (void) snprintf(errbuf, errlen, 2948 "file does not contain DWARF data\n"); 2949 return (ECTF_CONVNODEBUG); 2950 } 2951 2952 (void) snprintf(errbuf, errlen, 2953 "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr)); 2954 return (ECTF_CONVBKERR); 2955 } 2956 2957 /* 2958 * Iterate over all of the compilation units and create a ctf_cu_t for 2959 * each of them. This is used to determine if we have zero, one, or 2960 * multiple dies to convert. If we have zero, that's an error. If 2961 * there's only one die, that's the simple case. No merge needed and 2962 * only a single Dwarf_Debug as well. 2963 */ 2964 ndies = 0; 2965 err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen); 2966 2967 ctf_dprintf("found %d DWARF CUs\n", ndies); 2968 2969 if (ndies == 0) { 2970 (void) snprintf(errbuf, errlen, 2971 "file does not contain DWARF data\n"); 2972 return (ECTF_CONVNODEBUG); 2973 } 2974 2975 (void) dwarf_finish(dw, &derr); 2976 cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies); 2977 if (cdies == NULL) { 2978 return (ENOMEM); 2979 } 2980 2981 bzero(cdies, sizeof (ctf_cu_t) * ndies); 2982 2983 for (i = 0; i < ndies; i++) { 2984 cup = &cdies[i]; 2985 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, 2986 &cup->cu_dwarf, &derr); 2987 if (ret != 0) { 2988 ctf_free(cdies, sizeof (ctf_cu_t) * ndies); 2989 (void) snprintf(errbuf, errlen, 2990 "failed to initialize DWARF: %s\n", 2991 dwarf_errmsg(derr)); 2992 return (ECTF_CONVBKERR); 2993 } 2994 2995 err = ctf_dwarf_init_die(fd, elf, cup, i, errbuf, errlen); 2996 if (err != 0) 2997 goto out; 2998 2999 cup->cu_doweaks = ndies > 1 ? B_FALSE : B_TRUE; 3000 } 3001 3002 if (!(flags & CTF_ALLOW_MISSING_DEBUG) && 3003 (err = ctf_dwarf_check_missing(cdies, ndies, 3004 elf, errbuf, errlen)) != 0) 3005 goto out; 3006 3007 /* 3008 * If we only have one compilation unit, there's no reason to use 3009 * multiple threads, even if the user requested them. After all, they 3010 * just gave us an upper bound. 3011 */ 3012 if (ndies == 1) 3013 nthrs = 1; 3014 3015 if (workq_init(&wqp, nthrs) == -1) { 3016 err = errno; 3017 goto out; 3018 } 3019 3020 for (i = 0; i < ndies; i++) { 3021 cup = &cdies[i]; 3022 ctf_dprintf("adding cu %s: %p, %x %x\n", cup->cu_name, 3023 cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff); 3024 if (workq_add(wqp, cup) == -1) { 3025 err = errno; 3026 goto out; 3027 } 3028 } 3029 3030 ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err); 3031 if (ret == WORKQ_ERROR) { 3032 err = errno; 3033 goto out; 3034 } else if (ret == WORKQ_UERROR) { 3035 ctf_dprintf("internal convert failed: %s\n", 3036 ctf_errmsg(err)); 3037 goto out; 3038 } 3039 3040 ctf_dprintf("Determining next phase: have %d CUs\n", ndies); 3041 if (ndies != 1) { 3042 ctf_merge_t *cmp; 3043 3044 cmp = ctf_merge_init(fd, &err); 3045 if (cmp == NULL) 3046 goto out; 3047 3048 ctf_dprintf("setting threads\n"); 3049 if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) { 3050 ctf_merge_fini(cmp); 3051 goto out; 3052 } 3053 3054 for (i = 0; i < ndies; i++) { 3055 cup = &cdies[i]; 3056 if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) { 3057 ctf_merge_fini(cmp); 3058 goto out; 3059 } 3060 } 3061 3062 ctf_dprintf("performing merge\n"); 3063 err = ctf_merge_merge(cmp, fpp); 3064 if (err != 0) { 3065 ctf_dprintf("failed merge!\n"); 3066 *fpp = NULL; 3067 ctf_merge_fini(cmp); 3068 goto out; 3069 } 3070 ctf_merge_fini(cmp); 3071 err = 0; 3072 ctf_dprintf("successfully converted!\n"); 3073 } else { 3074 err = 0; 3075 *fpp = cdies->cu_ctfp; 3076 cdies->cu_ctfp = NULL; 3077 ctf_dprintf("successfully converted!\n"); 3078 } 3079 3080 out: 3081 workq_fini(wqp); 3082 ctf_dwarf_free_dies(cdies, ndies); 3083 return (err); 3084 }