Print this page
10816 ctf_dwarf_convert_type() relies on un-initialized id
10817 ctfconvert -i option is mis-handled
10818 Improve ctfconvert error messages
10819 ctfconvert should handle empty dies
10820 ctfconvert -i never converts
10821 bad free in ctf_dwarf_init_die
10815 shouldn't build gcore.c as part of kmdb
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libctf/common/ctf_dwarf.c
+++ new/usr/src/lib/libctf/common/ctf_dwarf.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 23 * Use is subject to license terms.
24 24 */
25 25 /*
26 26 * Copyright 2012 Jason King. All rights reserved.
27 27 * Use is subject to license terms.
28 28 */
29 29
30 30 /*
31 31 * Copyright 2019 Joyent, Inc.
32 32 */
33 33
34 34 /*
35 35 * CTF DWARF conversion theory.
36 36 *
37 37 * DWARF data contains a series of compilation units. Each compilation unit
38 38 * generally refers to an object file or what once was, in the case of linked
39 39 * binaries and shared objects. Each compilation unit has a series of what DWARF
40 40 * calls a DIE (Debugging Information Entry). The set of entries that we care
41 41 * about have type information stored in a series of attributes. Each DIE also
42 42 * has a tag that identifies the kind of attributes that it has.
43 43 *
44 44 * A given DIE may itself have children. For example, a DIE that represents a
45 45 * structure has children which represent members. Whenever we encounter a DIE
46 46 * that has children or other values or types associated with it, we recursively
47 47 * process those children first so that way we can then refer to the generated
48 48 * CTF type id while processing its parent. This reduces the amount of unknowns
49 49 * and fixups that we need. It also ensures that we don't accidentally add types
50 50 * that an overzealous compiler might add to the DWARF data but aren't used by
51 51 * anything in the system.
52 52 *
53 53 * Once we do a conversion, we store a mapping in an AVL tree that goes from the
54 54 * DWARF's die offset, which is relative to the given compilation unit, to a
55 55 * ctf_id_t.
56 56 *
57 57 * Unfortunately, some compilers actually will emit duplicate entries for a
58 58 * given type that look similar, but aren't quite. To that end, we go through
59 59 * and do a variant on a merge once we're done processing a single compilation
60 60 * unit which deduplicates all of the types that are in the unit.
61 61 *
62 62 * Finally, if we encounter an object that has multiple compilation units, then
63 63 * we'll convert all of the compilation units separately and then do a merge, so
64 64 * that way we can result in one single ctf_file_t that represents everything
65 65 * for the object.
66 66 *
67 67 * Conversion Steps
68 68 * ----------------
69 69 *
70 70 * Because a given object we've been given to convert may have multiple
71 71 * compilation units, we break the work into two halves. The first half
72 72 * processes each compilation unit (potentially in parallel) and then the second
73 73 * half optionally merges all of the dies in the first half. First, we'll cover
74 74 * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers
75 75 * the work done in ctf_dwarf_convert_one().
76 76 *
77 77 * An individual ctf_cu_t, which represents a compilation unit, is converted to
78 78 * CTF in a series of multiple passes.
79 79 *
80 80 * Pass 1: During the first pass we walk all of the top-level dies and if we
81 81 * find a function, variable, struct, union, enum or typedef, we recursively
82 82 * transform all of its types. We don't recurse or process everything, because
83 83 * we don't want to add some of the types that compilers may add which are
84 84 * effectively unused.
85 85 *
86 86 * During pass 1, if we encounter any structures or unions we mark them for
87 87 * fixing up later. This is necessary because we may not be able to determine
88 88 * the full size of a structure at the beginning of time. This will happen if
89 89 * the DWARF attribute DW_AT_byte_size is not present for a member. Because of
90 90 * this possibility we defer adding members to structures or even converting
91 91 * them during pass 1 and save that for pass 2. Adding all of the base
92 92 * structures without any of their members helps deal with any circular
93 93 * dependencies that we might encounter.
94 94 *
95 95 * Pass 2: This pass is used to do the first half of fixing up structures and
96 96 * unions. Rather than walk the entire type space again, we actually walk the
97 97 * list of structures and unions that we marked for later fixing up. Here, we
98 98 * iterate over every structure and add members to the underlying ctf_file_t,
99 99 * but not to the structs themselves. One might wonder why we don't, and the
100 100 * main reason is that libctf requires a ctf_update() be done before adding the
101 101 * members to structures or unions.
102 102 *
103 103 * Pass 3: This pass is used to do the second half of fixing up structures and
104 104 * unions. During this part we always go through and add members to structures
105 105 * and unions that we added to the container in the previous pass. In addition,
106 106 * we set the structure and union's actual size, which may have additional
107 107 * padding added by the compiler, it isn't simply the last offset. DWARF always
108 108 * guarantees an attribute exists for this. Importantly no ctf_id_t's change
109 109 * during pass 2.
110 110 *
111 111 * Pass 4: The next phase is to add CTF entries for all of the symbols and
112 112 * variables that are present in this die. During pass 1 we added entries to a
113 113 * map for each variable and function. During this pass, we iterate over the
114 114 * symbol table and when we encounter a symbol that we have in our lists of
115 115 * translated information which matches, we then add it to the ctf_file_t.
116 116 *
117 117 * Pass 5: Here we go and look for any weak symbols and functions and see if
118 118 * they match anything that we recognize. If so, then we add type information
119 119 * for them at this point based on the matching type.
120 120 *
121 121 * Pass 6: This pass is actually a variant on a merge. The traditional merge
122 122 * process expects there to be no duplicate types. As such, at the end of
123 123 * conversion, we do a dedup on all of the types in the system. The
124 124 * deduplication process is described in lib/libctf/common/ctf_merge.c.
125 125 *
126 126 * Once pass 6 is done, we've finished processing the individual compilation
127 127 * unit.
128 128 *
129 129 * The following steps reflect the general process of doing a conversion.
130 130 *
131 131 * 1) Walk the dwarf section and determine the number of compilation units
132 132 * 2) Create a ctf_cu_t for each compilation unit
133 133 * 3) Add all ctf_cu_t's to a workq
134 134 * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself
135 135 * is comprised of several steps, which were already enumerated.
136 136 * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics
137 137 * of the merge are discussed in lib/libctf/common/ctf_merge.c.
138 138 * 6) Free everything up and return a ctf_file_t to the user. If we only had a
139 139 * single compilation unit, then we give that to the user. Otherwise, we
140 140 * return the merged ctf_file_t.
141 141 *
142 142 * Threading
143 143 * ---------
144 144 *
145 145 * The process has been designed to be amenable to threading. Each compilation
146 146 * unit has its own type stream, therefore the logical place to divide and
147 147 * conquer is at the compilation unit. Each ctf_cu_t has been built to be able
148 148 * to be processed independently of the others. It has its own libdwarf handle,
149 149 * as a given libdwarf handle may only be used by a single thread at a time.
150 150 * This allows the various ctf_cu_t's to be processed in parallel by different
151 151 * threads.
152 152 *
153 153 * All of the ctf_cu_t's are loaded into a workq which allows for a number of
154 154 * threads to be specified and used as a thread pool to process all of the
155 155 * queued work. We set the number of threads to use in the workq equal to the
156 156 * number of threads that the user has specified.
157 157 *
158 158 * After all of the compilation units have been drained, we use the same number
159 159 * of threads when performing a merge of multiple compilation units, if they
160 160 * exist.
161 161 *
162 162 * While all of these different parts do support and allow for multiple threads,
163 163 * it's important that when only a single thread is specified, that it be the
164 164 * calling thread. This allows the conversion routines to be used in a context
165 165 * that doesn't allow additional threads, such as rtld.
166 166 *
167 167 * Common DWARF Mechanics and Notes
168 168 * --------------------------------
169 169 *
170 170 * At this time, we really only support DWARFv2, though support for DWARFv4 is
171 171 * mostly there. There is no intent to support DWARFv3.
172 172 *
173 173 * Generally types for something are stored in the DW_AT_type attribute. For
174 174 * example, a function's return type will be stored in the local DW_AT_type
175 175 * attribute while the arguments will be in child DIEs. There are also various
176 176 * times when we don't have any DW_AT_type. In that case, the lack of a type
177 177 * implies, at least for C, that its C type is void. Because DWARF doesn't emit
178 178 * one, we have a synthetic void type that we create and manipulate instead and
179 179 * pass it off to consumers on an as-needed basis. If nothing has a void type,
180 180 * it will not be emitted.
181 181 *
182 182 * Architecture Specific Parts
183 183 * ---------------------------
184 184 *
185 185 * The CTF tooling encodes various information about the various architectures
186 186 * in the system. Importantly, the tool assumes that every architecture has a
187 187 * data model where long and pointer are the same size. This is currently the
188 188 * case, as the two data models illumos supports are ILP32 and LP64.
189 189 *
190 190 * In addition, we encode the mapping of various floating point sizes to various
191 191 * types for each architecture. If a new architecture is being added, it should
192 192 * be added to the list. The general design of the ctf conversion tools is to be
193 193 * architecture independent. eg. any of the tools here should be able to convert
194 194 * any architecture's DWARF into ctf; however, this has not been rigorously
195 195 * tested and more importantly, the ctf routines don't currently write out the
196 196 * data in an endian-aware form, they only use that of the currently running
197 197 * library.
198 198 */
199 199
200 200 #include <libctf_impl.h>
201 201 #include <sys/avl.h>
202 202 #include <sys/debug.h>
203 203 #include <gelf.h>
204 204 #include <libdwarf.h>
205 205 #include <dwarf.h>
206 206 #include <libgen.h>
207 207 #include <workq.h>
208 208 #include <errno.h>
209 209
210 210 #define DWARF_VERSION_TWO 2
211 211 #define DWARF_VARARGS_NAME "..."
212 212
213 213 /*
214 214 * Dwarf may refer recursively to other types that we've already processed. To
215 215 * see if we've already converted them, we look them up in an AVL tree that's
216 216 * sorted by the DWARF id.
217 217 */
218 218 typedef struct ctf_dwmap {
219 219 avl_node_t cdm_avl;
220 220 Dwarf_Off cdm_off;
221 221 Dwarf_Die cdm_die;
222 222 ctf_id_t cdm_id;
223 223 boolean_t cdm_fix;
224 224 } ctf_dwmap_t;
225 225
226 226 typedef struct ctf_dwvar {
227 227 ctf_list_t cdv_list;
228 228 char *cdv_name;
229 229 ctf_id_t cdv_type;
230 230 boolean_t cdv_global;
231 231 } ctf_dwvar_t;
232 232
233 233 typedef struct ctf_dwfunc {
234 234 ctf_list_t cdf_list;
235 235 char *cdf_name;
236 236 ctf_funcinfo_t cdf_fip;
237 237 ctf_id_t *cdf_argv;
238 238 boolean_t cdf_global;
239 239 } ctf_dwfunc_t;
240 240
241 241 typedef struct ctf_dwbitf {
242 242 ctf_list_t cdb_list;
243 243 ctf_id_t cdb_base;
244 244 uint_t cdb_nbits;
245 245 ctf_id_t cdb_id;
246 246 } ctf_dwbitf_t;
247 247
248 248 /*
249 249 * The ctf_cu_t represents a single top-level DWARF die unit. While generally,
250 250 * the typical object file has only a single die, if we're asked to convert
251 251 * something that's been linked from multiple sources, multiple dies will exist.
252 252 */
253 253 typedef struct ctf_die {
254 254 Elf *cu_elf; /* shared libelf handle */
255 255 char *cu_name; /* basename of the DIE */
256 256 ctf_merge_t *cu_cmh; /* merge handle */
257 257 ctf_list_t cu_vars; /* List of variables */
258 258 ctf_list_t cu_funcs; /* List of functions */
259 259 ctf_list_t cu_bitfields; /* Bit field members */
260 260 Dwarf_Debug cu_dwarf; /* libdwarf handle */
261 261 Dwarf_Die cu_cu; /* libdwarf compilation unit */
262 262 Dwarf_Off cu_cuoff; /* cu's offset */
263 263 Dwarf_Off cu_maxoff; /* maximum offset */
264 264 ctf_file_t *cu_ctfp; /* output CTF file */
265 265 avl_tree_t cu_map; /* map die offsets to CTF types */
266 266 char *cu_errbuf; /* error message buffer */
267 267 size_t cu_errlen; /* error message buffer length */
268 268 size_t cu_ptrsz; /* object's pointer size */
269 269 boolean_t cu_bigend; /* is it big endian */
270 270 boolean_t cu_doweaks; /* should we convert weak symbols? */
271 271 uint_t cu_mach; /* machine type */
272 272 ctf_id_t cu_voidtid; /* void pointer */
273 273 ctf_id_t cu_longtid; /* id for a 'long' */
274 274 } ctf_cu_t;
275 275
276 276 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *);
277 277 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die);
278 278 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int);
279 279
280 280 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
281 281 boolean_t);
282 282 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
283 283 ctf_id_t *);
284 284
285 285 /*
286 286 * This is a generic way to set a CTF Conversion backend error depending on what
287 287 * we were doing. Unless it was one of a specific set of errors that don't
288 288 * indicate a programming / translation bug, eg. ENOMEM, then we transform it
289 289 * into a CTF backend error and fill in the error buffer.
290 290 */
291 291 static int
292 292 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...)
293 293 {
294 294 va_list ap;
295 295 int ret;
296 296 size_t off = 0;
297 297 ssize_t rem = cup->cu_errlen;
298 298 if (cfp != NULL)
299 299 err = ctf_errno(cfp);
300 300
301 301 if (err == ENOMEM)
302 302 return (err);
303 303
304 304 ret = snprintf(cup->cu_errbuf, rem, "die %s: ", cup->cu_name);
305 305 if (ret < 0)
306 306 goto err;
307 307 off += ret;
308 308 rem = MAX(rem - ret, 0);
309 309
310 310 va_start(ap, fmt);
311 311 ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap);
312 312 va_end(ap);
313 313 if (ret < 0)
314 314 goto err;
315 315
316 316 off += ret;
317 317 rem = MAX(rem - ret, 0);
318 318 if (fmt[strlen(fmt) - 1] != '\n') {
319 319 (void) snprintf(cup->cu_errbuf + off, rem,
320 320 ": %s\n", ctf_errmsg(err));
321 321 }
322 322 va_end(ap);
323 323 return (ECTF_CONVBKERR);
324 324
325 325 err:
326 326 cup->cu_errbuf[0] = '\0';
327 327 return (ECTF_CONVBKERR);
328 328 }
329 329
330 330 /*
331 331 * DWARF often opts to put no explicit type to describe a void type. eg. if we
332 332 * have a reference type whose DW_AT_type member doesn't exist, then we should
333 333 * instead assume it points to void. Because this isn't represented, we
334 334 * instead cause it to come into existence.
335 335 */
336 336 static ctf_id_t
337 337 ctf_dwarf_void(ctf_cu_t *cup)
338 338 {
339 339 if (cup->cu_voidtid == CTF_ERR) {
340 340 ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 };
341 341 cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT,
342 342 "void", &enc);
343 343 if (cup->cu_voidtid == CTF_ERR) {
344 344 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
345 345 "failed to create void type: %s\n",
346 346 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
347 347 }
348 348 }
349 349
350 350 return (cup->cu_voidtid);
351 351 }
352 352
353 353 /*
354 354 * There are many different forms that an array index may take. However, we just
355 355 * always force it to be of a type long no matter what. Therefore we use this to
356 356 * have a single instance of long across everything.
357 357 */
358 358 static ctf_id_t
359 359 ctf_dwarf_long(ctf_cu_t *cup)
360 360 {
361 361 if (cup->cu_longtid == CTF_ERR) {
362 362 ctf_encoding_t enc;
363 363
364 364 enc.cte_format = CTF_INT_SIGNED;
365 365 enc.cte_offset = 0;
366 366 /* All illumos systems are LP */
367 367 enc.cte_bits = cup->cu_ptrsz * 8;
368 368 cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
369 369 "long", &enc);
370 370 if (cup->cu_longtid == CTF_ERR) {
371 371 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
372 372 "failed to create long type: %s\n",
373 373 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
374 374 }
375 375
376 376 }
377 377
378 378 return (cup->cu_longtid);
379 379 }
380 380
381 381 static int
382 382 ctf_dwmap_comp(const void *a, const void *b)
383 383 {
384 384 const ctf_dwmap_t *ca = a;
385 385 const ctf_dwmap_t *cb = b;
386 386
387 387 if (ca->cdm_off > cb->cdm_off)
388 388 return (1);
389 389 if (ca->cdm_off < cb->cdm_off)
390 390 return (-1);
391 391 return (0);
392 392 }
393 393
394 394 static int
395 395 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix)
396 396 {
397 397 int ret;
398 398 avl_index_t index;
399 399 ctf_dwmap_t *dwmap;
400 400 Dwarf_Off off;
401 401
402 402 VERIFY(id > 0 && id < CTF_MAX_TYPE);
403 403
404 404 if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0)
405 405 return (ret);
406 406
407 407 if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL)
408 408 return (ENOMEM);
409 409
410 410 dwmap->cdm_die = die;
411 411 dwmap->cdm_off = off;
412 412 dwmap->cdm_id = id;
413 413 dwmap->cdm_fix = fix;
414 414
415 415 ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id);
416 416 VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL);
417 417 avl_insert(&cup->cu_map, dwmap, index);
418 418 return (0);
419 419 }
420 420
421 421 static int
422 422 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
423 423 Dwarf_Attribute *attrp)
424 424 {
425 425 int ret;
426 426 Dwarf_Error derr;
427 427
428 428 if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK)
429 429 return (0);
430 430 if (ret == DW_DLV_NO_ENTRY) {
431 431 *attrp = NULL;
432 432 return (ENOENT);
433 433 }
434 434 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
435 435 "failed to get attribute for type: %s\n",
436 436 dwarf_errmsg(derr));
437 437 return (ECTF_CONVBKERR);
438 438 }
439 439
440 440 static int
441 441 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp)
442 442 {
443 443 int ret;
444 444 Dwarf_Attribute attr;
445 445 Dwarf_Error derr;
446 446
447 447 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
448 448 return (ret);
449 449
450 450 if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) {
451 451 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
452 452 return (0);
453 453 }
454 454
455 455 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
456 456 "failed to get unsigned attribute for type: %s\n",
457 457 dwarf_errmsg(derr));
458 458 return (ECTF_CONVBKERR);
459 459 }
460 460
461 461 static int
462 462 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
463 463 Dwarf_Die *diep)
464 464 {
465 465 int ret;
466 466 Dwarf_Off off;
467 467 Dwarf_Error derr;
468 468
469 469 if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0)
470 470 return (ret);
471 471
472 472 off += cup->cu_cuoff;
473 473 if ((ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr)) !=
474 474 DW_DLV_OK) {
475 475 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
476 476 "failed to get die from offset %" DW_PR_DUu ": %s\n",
477 477 off, dwarf_errmsg(derr));
478 478 return (ECTF_CONVBKERR);
479 479 }
480 480
481 481 return (0);
482 482 }
483 483
484 484 static int
485 485 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
486 486 Dwarf_Signed *valp)
487 487 {
488 488 int ret;
489 489 Dwarf_Attribute attr;
490 490 Dwarf_Error derr;
491 491
492 492 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
493 493 return (ret);
494 494
495 495 if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) {
496 496 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
497 497 return (0);
498 498 }
499 499
500 500 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
501 501 "failed to get unsigned attribute for type: %s\n",
502 502 dwarf_errmsg(derr));
503 503 return (ECTF_CONVBKERR);
504 504 }
505 505
506 506 static int
507 507 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
508 508 Dwarf_Unsigned *valp)
509 509 {
510 510 int ret;
511 511 Dwarf_Attribute attr;
512 512 Dwarf_Error derr;
513 513
514 514 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
515 515 return (ret);
516 516
517 517 if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) {
518 518 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
519 519 return (0);
520 520 }
521 521
522 522 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
523 523 "failed to get unsigned attribute for type: %s\n",
524 524 dwarf_errmsg(derr));
525 525 return (ECTF_CONVBKERR);
526 526 }
527 527
528 528 static int
529 529 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
530 530 Dwarf_Bool *val)
531 531 {
532 532 int ret;
533 533 Dwarf_Attribute attr;
534 534 Dwarf_Error derr;
535 535
536 536 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
537 537 return (ret);
538 538
539 539 if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) {
540 540 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
541 541 return (0);
542 542 }
543 543
544 544 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
545 545 "failed to get boolean attribute for type: %s\n",
546 546 dwarf_errmsg(derr));
547 547
548 548 return (ECTF_CONVBKERR);
549 549 }
550 550
551 551 static int
552 552 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp)
553 553 {
554 554 int ret;
555 555 char *s;
556 556 Dwarf_Attribute attr;
557 557 Dwarf_Error derr;
558 558
559 559 *strp = NULL;
560 560 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
561 561 return (ret);
562 562
563 563 if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) {
564 564 if ((*strp = ctf_strdup(s)) == NULL)
565 565 ret = ENOMEM;
566 566 else
567 567 ret = 0;
568 568 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
569 569 return (ret);
570 570 }
571 571
572 572 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
573 573 "failed to get string attribute for type: %s\n",
574 574 dwarf_errmsg(derr));
575 575 return (ECTF_CONVBKERR);
576 576 }
577 577
578 578 static int
579 579 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp)
580 580 {
581 581 int ret;
582 582 Dwarf_Error derr;
583 583 Dwarf_Attribute attr;
584 584 Dwarf_Locdesc *loc;
585 585 Dwarf_Signed locnum;
586 586
587 587 if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location,
588 588 &attr)) != 0)
589 589 return (ret);
590 590
591 591 if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) {
592 592 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
593 593 "failed to obtain location list for member offset: %s",
594 594 dwarf_errmsg(derr));
595 595 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
596 596 return (ECTF_CONVBKERR);
597 597 }
598 598 dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
599 599
600 600 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
601 601 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
602 602 "failed to parse location structure for member");
603 603 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
604 604 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
605 605 return (ECTF_CONVBKERR);
606 606 }
607 607
608 608 *valp = loc->ld_s->lr_number;
609 609
610 610 dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
611 611 dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
612 612 return (0);
613 613 }
614 614
615 615
616 616 static int
617 617 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp)
618 618 {
619 619 Dwarf_Error derr;
620 620
621 621 if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK)
622 622 return (0);
623 623
624 624 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
625 625 "failed to get die offset: %s\n",
626 626 dwarf_errmsg(derr));
627 627 return (ECTF_CONVBKERR);
628 628 }
629 629
630 630 /* simpler variant for debugging output */
631 631 static Dwarf_Off
632 632 ctf_die_offset(Dwarf_Die die)
633 633 {
634 634 Dwarf_Off off = -1;
635 635 Dwarf_Error derr;
636 636
637 637 (void) dwarf_dieoffset(die, &off, &derr);
638 638 return (off);
639 639 }
640 640
641 641 static int
642 642 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp)
643 643 {
644 644 Dwarf_Error derr;
645 645
646 646 if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK)
647 647 return (0);
648 648
649 649 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
650 650 "failed to get tag type: %s\n",
651 651 dwarf_errmsg(derr));
652 652 return (ECTF_CONVBKERR);
653 653 }
654 654
655 655 static int
656 656 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp)
657 657 {
658 658 Dwarf_Error derr;
659 659 int ret;
660 660
661 661 *sibp = NULL;
662 662 ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr);
663 663 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
664 664 return (0);
665 665
666 666 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
667 667 "failed to sibling from die: %s\n",
668 668 dwarf_errmsg(derr));
669 669 return (ECTF_CONVBKERR);
670 670 }
671 671
672 672 static int
673 673 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp)
674 674 {
675 675 Dwarf_Error derr;
676 676 int ret;
677 677
678 678 *childp = NULL;
679 679 ret = dwarf_child(base, childp, &derr);
680 680 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
681 681 return (0);
682 682
683 683 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
684 684 "failed to child from die: %s\n",
685 685 dwarf_errmsg(derr));
686 686 return (ECTF_CONVBKERR);
687 687 }
688 688
689 689 /*
690 690 * Compilers disagree on what to do to determine if something has global
691 691 * visiblity. Traditionally gcc has used DW_AT_external to indicate this while
692 692 * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then
693 693 * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not.
694 694 */
695 695 static int
696 696 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp)
697 697 {
698 698 int ret;
699 699 Dwarf_Signed vis;
700 700 Dwarf_Bool ext;
701 701
702 702 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) {
703 703 *igp = vis == DW_VIS_exported;
704 704 return (0);
705 705 } else if (ret != ENOENT) {
706 706 return (ret);
707 707 }
708 708
709 709 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) {
710 710 if (ret == ENOENT) {
711 711 *igp = B_FALSE;
712 712 return (0);
713 713 }
714 714 return (ret);
715 715 }
716 716 *igp = ext != 0 ? B_TRUE : B_FALSE;
717 717 return (0);
718 718 }
719 719
720 720 static int
721 721 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen)
722 722 {
723 723 GElf_Ehdr ehdr;
724 724
725 725 if (gelf_getehdr(elf, &ehdr) == NULL) {
726 726 (void) snprintf(errbuf, errlen,
727 727 "failed to get ELF header: %s\n",
728 728 elf_errmsg(elf_errno()));
729 729 return (ECTF_CONVBKERR);
730 730 }
731 731
732 732 cup->cu_mach = ehdr.e_machine;
733 733
734 734 if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
735 735 cup->cu_ptrsz = 4;
736 736 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0);
737 737 } else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) {
738 738 cup->cu_ptrsz = 8;
739 739 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0);
740 740 } else {
741 741 (void) snprintf(errbuf, errlen,
742 742 "unknown ELF class %d", ehdr.e_ident[EI_CLASS]);
743 743 return (ECTF_CONVBKERR);
744 744 }
745 745
746 746 if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) {
747 747 cup->cu_bigend = B_FALSE;
748 748 } else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
749 749 cup->cu_bigend = B_TRUE;
750 750 } else {
751 751 (void) snprintf(errbuf, errlen,
752 752 "unknown ELF data encoding: %hhu", ehdr.e_ident[EI_DATA]);
753 753 return (ECTF_CONVBKERR);
754 754 }
755 755
756 756 return (0);
757 757 }
758 758
759 759 typedef struct ctf_dwarf_fpent {
760 760 size_t cdfe_size;
761 761 uint_t cdfe_enc[3];
762 762 } ctf_dwarf_fpent_t;
763 763
764 764 typedef struct ctf_dwarf_fpmap {
765 765 uint_t cdf_mach;
766 766 ctf_dwarf_fpent_t cdf_ents[4];
767 767 } ctf_dwarf_fpmap_t;
768 768
769 769 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = {
770 770 { EM_SPARC, {
771 771 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
772 772 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
773 773 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
774 774 { 0, { 0 } }
775 775 } },
776 776 { EM_SPARC32PLUS, {
777 777 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
778 778 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
779 779 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
780 780 { 0, { 0 } }
781 781 } },
782 782 { EM_SPARCV9, {
783 783 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
784 784 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
785 785 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
786 786 { 0, { 0 } }
787 787 } },
788 788 { EM_386, {
789 789 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
790 790 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
791 791 { 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
792 792 { 0, { 0 } }
793 793 } },
794 794 { EM_X86_64, {
795 795 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
796 796 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
797 797 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
798 798 { 0, { 0 } }
799 799 } },
800 800 { EM_NONE }
801 801 };
802 802
803 803 static int
804 804 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc)
805 805 {
806 806 const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0];
807 807 const ctf_dwarf_fpent_t *ent;
808 808 uint_t col = 0, mult = 1;
809 809
810 810 for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) {
811 811 if (map->cdf_mach == cup->cu_mach)
812 812 break;
813 813 }
814 814
815 815 if (map->cdf_mach == EM_NONE) {
816 816 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
817 817 "Unsupported machine type: %d\n", cup->cu_mach);
818 818 return (ENOTSUP);
819 819 }
820 820
821 821 if (type == DW_ATE_complex_float) {
822 822 mult = 2;
823 823 col = 1;
824 824 } else if (type == DW_ATE_imaginary_float ||
825 825 type == DW_ATE_SUN_imaginary_float) {
826 826 col = 2;
827 827 }
828 828
829 829 ent = &map->cdf_ents[0];
830 830 for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) {
831 831 if (ent->cdfe_size * mult * 8 == enc->cte_bits) {
832 832 enc->cte_format = ent->cdfe_enc[col];
833 833 return (0);
834 834 }
835 835 }
836 836
837 837 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
838 838 "failed to find valid fp mapping for encoding %d, size %d bits\n",
839 839 type, enc->cte_bits);
840 840 return (EINVAL);
841 841 }
842 842
843 843 static int
844 844 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp,
845 845 ctf_encoding_t *enc)
846 846 {
847 847 int ret;
848 848 Dwarf_Signed type;
849 849
850 850 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0)
851 851 return (ret);
852 852
853 853 switch (type) {
854 854 case DW_ATE_unsigned:
855 855 case DW_ATE_address:
856 856 *kindp = CTF_K_INTEGER;
857 857 enc->cte_format = 0;
858 858 break;
859 859 case DW_ATE_unsigned_char:
860 860 *kindp = CTF_K_INTEGER;
861 861 enc->cte_format = CTF_INT_CHAR;
862 862 break;
863 863 case DW_ATE_signed:
864 864 *kindp = CTF_K_INTEGER;
865 865 enc->cte_format = CTF_INT_SIGNED;
866 866 break;
867 867 case DW_ATE_signed_char:
868 868 *kindp = CTF_K_INTEGER;
869 869 enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR;
870 870 break;
871 871 case DW_ATE_boolean:
872 872 *kindp = CTF_K_INTEGER;
873 873 enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL;
874 874 break;
875 875 case DW_ATE_float:
↓ open down ↓ |
875 lines elided |
↑ open up ↑ |
876 876 case DW_ATE_complex_float:
877 877 case DW_ATE_imaginary_float:
878 878 case DW_ATE_SUN_imaginary_float:
879 879 case DW_ATE_SUN_interval_float:
880 880 *kindp = CTF_K_FLOAT;
881 881 if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0)
882 882 return (ret);
883 883 break;
884 884 default:
885 885 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
886 - "encountered unkown DWARF encoding: %d", type);
886 + "encountered unknown DWARF encoding: %d", type);
887 887 return (ECTF_CONVBKERR);
888 888 }
889 889
890 890 return (0);
891 891 }
892 892
893 893 /*
894 894 * Different compilers (at least GCC and Studio) use different names for types.
895 895 * This parses the types and attempts to unify them. If this fails, we just fall
896 896 * back to using the DWARF itself.
897 897 */
898 898 static int
899 899 ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc,
900 900 char **newnamep)
901 901 {
902 902 char buf[256];
903 903 char *base, *c, *last;
904 904 int nlong = 0, nshort = 0, nchar = 0, nint = 0;
905 905 int sign = 1;
906 906
907 907 if (strlen(name) + 1 > sizeof (buf))
908 908 return (EINVAL);
909 909
910 910 (void) strlcpy(buf, name, sizeof (buf));
911 911 for (c = strtok_r(buf, " ", &last); c != NULL;
912 912 c = strtok_r(NULL, " ", &last)) {
913 913 if (strcmp(c, "signed") == 0) {
914 914 sign = 1;
915 915 } else if (strcmp(c, "unsigned") == 0) {
916 916 sign = 0;
917 917 } else if (strcmp(c, "long") == 0) {
918 918 nlong++;
919 919 } else if (strcmp(c, "char") == 0) {
920 920 nchar++;
921 921 } else if (strcmp(c, "short") == 0) {
922 922 nshort++;
923 923 } else if (strcmp(c, "int") == 0) {
924 924 nint++;
925 925 } else {
926 926 /*
927 927 * If we don't recognize any of the tokens, we'll tell
928 928 * the caller to fall back to the dwarf-provided
929 929 * encoding information.
930 930 */
931 931 return (EINVAL);
932 932 }
933 933 }
934 934
935 935 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
936 936 return (EINVAL);
937 937
938 938 if (nchar > 0) {
939 939 if (nlong > 0 || nshort > 0 || nint > 0)
940 940 return (EINVAL);
941 941 base = "char";
942 942 } else if (nshort > 0) {
943 943 if (nlong > 0)
944 944 return (EINVAL);
945 945 base = "short";
946 946 } else if (nlong > 0) {
947 947 base = "long";
948 948 } else {
949 949 base = "int";
950 950 }
951 951
952 952 if (nchar > 0)
953 953 enc->cte_format = CTF_INT_CHAR;
954 954 else
955 955 enc->cte_format = 0;
956 956
957 957 if (sign > 0)
958 958 enc->cte_format |= CTF_INT_SIGNED;
959 959
960 960 (void) snprintf(buf, sizeof (buf), "%s%s%s",
961 961 (sign ? "" : "unsigned "),
962 962 (nlong > 1 ? "long " : ""),
963 963 base);
964 964
965 965 *newnamep = ctf_strdup(buf);
966 966 if (*newnamep == NULL)
967 967 return (ENOMEM);
968 968 *kindp = CTF_K_INTEGER;
969 969 return (0);
970 970 }
971 971
972 972 static int
973 973 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot,
974 974 Dwarf_Off off)
975 975 {
976 976 int ret;
977 977 char *name, *nname;
978 978 Dwarf_Unsigned sz;
979 979 int kind;
980 980 ctf_encoding_t enc;
981 981 ctf_id_t id;
982 982
983 983 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0)
984 984 return (ret);
985 985 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) {
986 986 goto out;
987 987 }
988 988 ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name,
989 989 off, sz);
990 990
991 991 bzero(&enc, sizeof (ctf_encoding_t));
992 992 enc.cte_bits = sz * 8;
993 993 if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) {
994 994 ctf_free(name, strlen(name) + 1);
995 995 name = nname;
996 996 } else {
997 997 if (ret != EINVAL)
998 998 return (ret);
999 999 ctf_dprintf("falling back to dwarf for base type %s\n", name);
1000 1000 if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0)
1001 1001 return (ret);
1002 1002 }
1003 1003
1004 1004 id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind);
1005 1005 if (id == CTF_ERR) {
1006 1006 ret = ctf_errno(cup->cu_ctfp);
1007 1007 } else {
1008 1008 *idp = id;
1009 1009 ret = ctf_dwmap_add(cup, id, die, B_FALSE);
1010 1010 }
1011 1011 out:
1012 1012 ctf_free(name, strlen(name) + 1);
1013 1013 return (ret);
1014 1014 }
1015 1015
1016 1016 /*
1017 1017 * Getting a member's offset is a surprisingly intricate dance. It works as
1018 1018 * follows:
1019 1019 *
1020 1020 * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we
1021 1021 * have a DW_AT_data_member_location. We won't have both. Thus we check first
1022 1022 * for DW_AT_data_bit_offset, and if it exists, we're set.
1023 1023 *
1024 1024 * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then
1025 1025 * we have to grab the data location and use the following dance:
1026 1026 *
1027 1027 * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size.
1028 1028 * Of course, the DW_AT_byte_size may be omitted, even though it isn't always.
1029 1029 * When it's been omitted, we then have to say that the size is that of the
1030 1030 * underlying type, which forces that to be after a ctf_update(). Here, we have
1031 1031 * to do different things based on whether or not we're using big endian or
1032 1032 * little endian to obtain the proper offset.
1033 1033 */
1034 1034 static int
1035 1035 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid,
1036 1036 ulong_t *offp)
1037 1037 {
1038 1038 int ret;
1039 1039 Dwarf_Unsigned loc, bitsz, bytesz;
1040 1040 Dwarf_Signed bitoff;
1041 1041 size_t off;
1042 1042 ssize_t tsz;
1043 1043
1044 1044 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset,
1045 1045 &loc)) == 0) {
1046 1046 *offp = loc;
1047 1047 return (0);
1048 1048 } else if (ret != ENOENT) {
1049 1049 return (ret);
1050 1050 }
1051 1051
1052 1052 if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0)
1053 1053 return (ret);
1054 1054 off = loc * 8;
1055 1055
1056 1056 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset,
1057 1057 &bitoff)) != 0) {
1058 1058 if (ret != ENOENT)
1059 1059 return (ret);
1060 1060 *offp = off;
1061 1061 return (0);
1062 1062 }
1063 1063
1064 1064 /* At this point we have to have DW_AT_bit_size */
1065 1065 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0)
1066 1066 return (ret);
1067 1067
1068 1068 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size,
1069 1069 &bytesz)) != 0) {
1070 1070 if (ret != ENOENT)
1071 1071 return (ret);
1072 1072 if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) {
1073 1073 int e = ctf_errno(cup->cu_ctfp);
1074 1074 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1075 1075 "failed to get type size: %s", ctf_errmsg(e));
1076 1076 return (ECTF_CONVBKERR);
1077 1077 }
1078 1078 } else {
1079 1079 tsz = bytesz;
1080 1080 }
1081 1081 tsz *= 8;
1082 1082 if (cup->cu_bigend == B_TRUE) {
1083 1083 *offp = off + bitoff;
1084 1084 } else {
1085 1085 *offp = off + tsz - bitoff - bitsz;
1086 1086 }
1087 1087
1088 1088 return (0);
1089 1089 }
1090 1090
1091 1091 /*
1092 1092 * We need to determine if the member in question is a bitfield. If it is, then
1093 1093 * we need to go through and create a new type that's based on the actual base
1094 1094 * type, but has a different size. We also rename the type as a result to help
1095 1095 * deal with future collisions.
1096 1096 *
1097 1097 * Here we need to look and see if we have a DW_AT_bit_size value. If we have a
1098 1098 * bit size member and it does not equal the byte size member, then we need to
1099 1099 * create a bitfield type based on this.
1100 1100 *
1101 1101 * Note: When we support DWARFv4, there may be a chance that we need to also
1102 1102 * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member.
1103 1103 */
1104 1104 static int
1105 1105 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp)
1106 1106 {
1107 1107 int ret;
1108 1108 Dwarf_Unsigned bitsz;
1109 1109 ctf_encoding_t e;
1110 1110 ctf_dwbitf_t *cdb;
1111 1111 ctf_dtdef_t *dtd;
1112 1112 ctf_id_t base = *idp;
1113 1113 int kind;
1114 1114
1115 1115 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) {
1116 1116 if (ret == ENOENT)
1117 1117 return (0);
1118 1118 return (ret);
1119 1119 }
1120 1120
1121 1121 ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz);
1122 1122 /*
1123 1123 * Given that we now have a bitsize, time to go do something about it.
1124 1124 * We're going to create a new type based on the current one, but first
1125 1125 * we need to find the base type. This means we need to traverse any
1126 1126 * typedef's, consts, and volatiles until we get to what should be
1127 1127 * something of type integer or enumeration.
1128 1128 */
1129 1129 VERIFY(bitsz < UINT32_MAX);
1130 1130 dtd = ctf_dtd_lookup(cup->cu_ctfp, base);
1131 1131 VERIFY(dtd != NULL);
1132 1132 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1133 1133 while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST ||
1134 1134 kind == CTF_K_VOLATILE) {
1135 1135 dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type);
1136 1136 VERIFY(dtd != NULL);
1137 1137 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1138 1138 }
1139 1139 ctf_dprintf("got kind %d\n", kind);
1140 1140 VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
1141 1141
1142 1142 /*
1143 1143 * As surprising as it may be, it is strictly possible to create a
1144 1144 * bitfield that is based on an enum. Of course, the C standard leaves
1145 1145 * enums sizing as an ABI concern more or less. To that effect, today on
1146 1146 * all illumos platforms the size of an enum is generally that of an
1147 1147 * int as our supported data models and ABIs all agree on that. So what
1148 1148 * we'll do is fake up a CTF encoding here to use. In this case, we'll
1149 1149 * treat it as an unsigned value of whatever size the underlying enum
1150 1150 * currently has (which is in the ctt_size member of its dynamic type
1151 1151 * data).
1152 1152 */
1153 1153 if (kind == CTF_K_INTEGER) {
1154 1154 e = dtd->dtd_u.dtu_enc;
1155 1155 } else {
1156 1156 bzero(&e, sizeof (ctf_encoding_t));
1157 1157 e.cte_bits = dtd->dtd_data.ctt_size * NBBY;
1158 1158 }
1159 1159
1160 1160 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL;
1161 1161 cdb = ctf_list_next(cdb)) {
1162 1162 if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz)
1163 1163 break;
1164 1164 }
1165 1165
1166 1166 /*
1167 1167 * Create a new type if none exists. We name all types in a way that is
1168 1168 * guaranteed not to conflict with the corresponding C type. We do this
1169 1169 * by using the ':' operator.
1170 1170 */
1171 1171 if (cdb == NULL) {
1172 1172 size_t namesz;
1173 1173 char *name;
1174 1174
1175 1175 e.cte_bits = bitsz;
1176 1176 namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name,
1177 1177 (uint32_t)bitsz);
1178 1178 name = ctf_alloc(namesz + 1);
1179 1179 if (name == NULL)
1180 1180 return (ENOMEM);
1181 1181 cdb = ctf_alloc(sizeof (ctf_dwbitf_t));
1182 1182 if (cdb == NULL) {
1183 1183 ctf_free(name, namesz + 1);
1184 1184 return (ENOMEM);
1185 1185 }
1186 1186 (void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name,
1187 1187 (uint32_t)bitsz);
1188 1188
1189 1189 cdb->cdb_base = base;
1190 1190 cdb->cdb_nbits = bitsz;
1191 1191 cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
1192 1192 name, &e);
1193 1193 if (cdb->cdb_id == CTF_ERR) {
1194 1194 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1195 1195 "failed to get add bitfield type %s: %s", name,
1196 1196 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1197 1197 ctf_free(name, namesz + 1);
1198 1198 ctf_free(cdb, sizeof (ctf_dwbitf_t));
1199 1199 return (ECTF_CONVBKERR);
1200 1200 }
1201 1201 ctf_free(name, namesz + 1);
1202 1202 ctf_list_append(&cup->cu_bitfields, cdb);
1203 1203 }
1204 1204
1205 1205 *idp = cdb->cdb_id;
1206 1206
1207 1207 return (0);
1208 1208 }
1209 1209
1210 1210 static int
1211 1211 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add)
1212 1212 {
1213 1213 int ret, kind;
1214 1214 Dwarf_Die child, memb;
1215 1215 Dwarf_Unsigned size;
1216 1216 ulong_t nsz;
1217 1217
1218 1218 kind = ctf_type_kind(cup->cu_ctfp, base);
1219 1219 VERIFY(kind != CTF_ERR);
1220 1220 VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION);
1221 1221
1222 1222 /*
1223 1223 * Members are in children. However, gcc also allows empty ones.
1224 1224 */
1225 1225 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1226 1226 return (ret);
1227 1227 if (child == NULL)
1228 1228 return (0);
1229 1229
1230 1230 memb = child;
1231 1231 while (memb != NULL) {
1232 1232 Dwarf_Die sib, tdie;
1233 1233 Dwarf_Half tag;
1234 1234 ctf_id_t mid;
1235 1235 char *mname;
1236 1236 ulong_t memboff = 0;
1237 1237
1238 1238 if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0)
1239 1239 return (ret);
1240 1240
1241 1241 if (tag != DW_TAG_member)
1242 1242 continue;
1243 1243
1244 1244 if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0)
1245 1245 return (ret);
1246 1246
1247 1247 if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid,
1248 1248 CTF_ADD_NONROOT)) != 0)
1249 1249 return (ret);
1250 1250 ctf_dprintf("Got back type id: %d\n", mid);
1251 1251
1252 1252 /*
1253 1253 * If we're not adding a member, just go ahead and return.
1254 1254 */
1255 1255 if (add == B_FALSE) {
1256 1256 if ((ret = ctf_dwarf_member_bitfield(cup, memb,
1257 1257 &mid)) != 0)
1258 1258 return (ret);
1259 1259 goto next;
1260 1260 }
1261 1261
1262 1262 if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name,
1263 1263 &mname)) != 0 && ret != ENOENT)
1264 1264 return (ret);
1265 1265 if (ret == ENOENT)
1266 1266 mname = NULL;
1267 1267
1268 1268 if (kind == CTF_K_UNION) {
1269 1269 memboff = 0;
1270 1270 } else if ((ret = ctf_dwarf_member_offset(cup, memb, mid,
1271 1271 &memboff)) != 0) {
1272 1272 if (mname != NULL)
1273 1273 ctf_free(mname, strlen(mname) + 1);
1274 1274 return (ret);
1275 1275 }
1276 1276
1277 1277 if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0)
1278 1278 return (ret);
1279 1279
1280 1280 ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff);
1281 1281 if (ret == CTF_ERR) {
1282 1282 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1283 1283 "failed to add member %s: %s",
1284 1284 mname, ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1285 1285 if (mname != NULL)
1286 1286 ctf_free(mname, strlen(mname) + 1);
1287 1287 return (ECTF_CONVBKERR);
1288 1288 }
1289 1289
1290 1290 if (mname != NULL)
1291 1291 ctf_free(mname, strlen(mname) + 1);
1292 1292
1293 1293 next:
1294 1294 if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0)
1295 1295 return (ret);
1296 1296 memb = sib;
1297 1297 }
1298 1298
1299 1299 /*
1300 1300 * If we're not adding members, then we don't know the final size of the
1301 1301 * structure, so end here.
1302 1302 */
1303 1303 if (add == B_FALSE)
1304 1304 return (0);
1305 1305
1306 1306 /* Finally set the size of the structure to the actual byte size */
1307 1307 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0)
1308 1308 return (ret);
1309 1309 nsz = size;
1310 1310 if ((ctf_set_size(cup->cu_ctfp, base, nsz)) == CTF_ERR) {
1311 1311 int e = ctf_errno(cup->cu_ctfp);
1312 1312 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1313 1313 "failed to set type size for %d to 0x%x: %s", base,
1314 1314 (uint32_t)size, ctf_errmsg(e));
1315 1315 return (ECTF_CONVBKERR);
1316 1316 }
1317 1317
1318 1318 return (0);
1319 1319 }
1320 1320
1321 1321 static int
1322 1322 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1323 1323 int kind, int isroot)
1324 1324 {
1325 1325 int ret;
1326 1326 char *name;
1327 1327 ctf_id_t base;
1328 1328 Dwarf_Die child;
1329 1329 Dwarf_Bool decl;
1330 1330
1331 1331 /*
1332 1332 * Deal with the terribly annoying case of anonymous structs and unions.
1333 1333 * If they don't have a name, set the name to the empty string.
1334 1334 */
1335 1335 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1336 1336 ret != ENOENT)
1337 1337 return (ret);
1338 1338 if (ret == ENOENT)
1339 1339 name = NULL;
1340 1340
1341 1341 /*
1342 1342 * We need to check if we just have a declaration here. If we do, then
1343 1343 * instead of creating an actual structure or union, we're just going to
1344 1344 * go ahead and create a forward. During a dedup or merge, the forward
1345 1345 * will be replaced with the real thing.
1346 1346 */
1347 1347 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration,
1348 1348 &decl)) != 0) {
1349 1349 if (ret != ENOENT)
1350 1350 return (ret);
1351 1351 decl = 0;
1352 1352 }
1353 1353
1354 1354 if (decl != 0) {
1355 1355 base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind);
1356 1356 } else if (kind == CTF_K_STRUCT) {
1357 1357 base = ctf_add_struct(cup->cu_ctfp, isroot, name);
1358 1358 } else {
1359 1359 base = ctf_add_union(cup->cu_ctfp, isroot, name);
1360 1360 }
1361 1361 ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base);
1362 1362 if (name != NULL)
1363 1363 ctf_free(name, strlen(name) + 1);
1364 1364 if (base == CTF_ERR)
1365 1365 return (ctf_errno(cup->cu_ctfp));
1366 1366 *idp = base;
1367 1367
1368 1368 /*
1369 1369 * If it's just a declaration, we're not going to mark it for fix up or
1370 1370 * do anything else.
1371 1371 */
1372 1372 if (decl == B_TRUE)
1373 1373 return (ctf_dwmap_add(cup, base, die, B_FALSE));
1374 1374 if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0)
1375 1375 return (ret);
1376 1376
1377 1377 /*
1378 1378 * Members are in children. However, gcc also allows empty ones.
1379 1379 */
1380 1380 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1381 1381 return (ret);
1382 1382 if (child == NULL)
1383 1383 return (0);
1384 1384
1385 1385 return (0);
1386 1386 }
1387 1387
1388 1388 static int
1389 1389 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp,
1390 1390 ctf_id_t base, int isroot)
1391 1391 {
1392 1392 int ret;
1393 1393 Dwarf_Die sib;
1394 1394 Dwarf_Unsigned val;
1395 1395 Dwarf_Signed sval;
1396 1396 ctf_arinfo_t ar;
1397 1397
1398 1398 ctf_dprintf("creating array range\n");
1399 1399
1400 1400 if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0)
1401 1401 return (ret);
1402 1402 if (sib != NULL) {
1403 1403 ctf_id_t id;
1404 1404 if ((ret = ctf_dwarf_create_array_range(cup, sib, &id,
1405 1405 base, CTF_ADD_NONROOT)) != 0)
1406 1406 return (ret);
1407 1407 ar.ctr_contents = id;
1408 1408 } else {
1409 1409 ar.ctr_contents = base;
1410 1410 }
1411 1411
1412 1412 if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR)
1413 1413 return (ctf_errno(cup->cu_ctfp));
1414 1414
1415 1415 /*
1416 1416 * Array bounds can be signed or unsigned, but there are several kinds
1417 1417 * of signless forms (data1, data2, etc) that take their sign from the
1418 1418 * routine that is trying to interpret them. That is, data1 can be
1419 1419 * either signed or unsigned, depending on whether you use the signed or
1420 1420 * unsigned accessor function. GCC will use the signless forms to store
1421 1421 * unsigned values which have their high bit set, so we need to try to
1422 1422 * read them first as unsigned to get positive values. We could also
1423 1423 * try signed first, falling back to unsigned if we got a negative
1424 1424 * value.
1425 1425 */
1426 1426 if ((ret = ctf_dwarf_unsigned(cup, range, DW_AT_upper_bound,
1427 1427 &val)) == 0) {
1428 1428 ar.ctr_nelems = val + 1;
1429 1429 } else if (ret != ENOENT) {
1430 1430 return (ret);
1431 1431 } else if ((ret = ctf_dwarf_signed(cup, range, DW_AT_upper_bound,
1432 1432 &sval)) == 0) {
1433 1433 ar.ctr_nelems = sval + 1;
1434 1434 } else if (ret != ENOENT) {
1435 1435 return (ret);
1436 1436 } else {
1437 1437 ar.ctr_nelems = 0;
1438 1438 }
1439 1439
1440 1440 if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR)
1441 1441 return (ctf_errno(cup->cu_ctfp));
1442 1442
1443 1443 return (0);
1444 1444 }
1445 1445
1446 1446 /*
1447 1447 * Try and create an array type. First, the kind of the array is specified in
1448 1448 * the DW_AT_type entry. Next, the number of entries is stored in a more
1449 1449 * complicated form, we should have a child that has the DW_TAG_subrange type.
1450 1450 */
1451 1451 static int
1452 1452 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1453 1453 {
1454 1454 int ret;
1455 1455 Dwarf_Die tdie, rdie;
1456 1456 ctf_id_t tid;
1457 1457 Dwarf_Half rtag;
1458 1458
1459 1459 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1460 1460 return (ret);
1461 1461 if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1462 1462 CTF_ADD_NONROOT)) != 0)
1463 1463 return (ret);
1464 1464
1465 1465 if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0)
1466 1466 return (ret);
1467 1467 if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0)
1468 1468 return (ret);
1469 1469 if (rtag != DW_TAG_subrange_type) {
1470 1470 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1471 1471 "encountered array without DW_TAG_subrange_type child\n");
1472 1472 return (ECTF_CONVBKERR);
1473 1473 }
1474 1474
1475 1475 /*
1476 1476 * The compiler may opt to describe a multi-dimensional array as one
1477 1477 * giant array or it may opt to instead encode it as a series of
1478 1478 * subranges. If it's the latter, then for each subrange we introduce a
1479 1479 * type. We can always use the base type.
1480 1480 */
1481 1481 if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid,
1482 1482 isroot)) != 0)
1483 1483 return (ret);
1484 1484 ctf_dprintf("Got back id %d\n", *idp);
1485 1485 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1486 1486 }
1487 1487
1488 1488 static int
1489 1489 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1490 1490 int kind, int isroot)
1491 1491 {
1492 1492 int ret;
1493 1493 ctf_id_t id;
1494 1494 Dwarf_Die tdie;
1495 1495 char *name;
1496 1496 size_t namelen;
1497 1497
1498 1498 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1499 1499 ret != ENOENT)
1500 1500 return (ret);
1501 1501 if (ret == ENOENT) {
1502 1502 name = NULL;
1503 1503 namelen = 0;
1504 1504 } else {
1505 1505 namelen = strlen(name);
1506 1506 }
1507 1507
1508 1508 ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>");
1509 1509
1510 1510 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
1511 1511 if (ret != ENOENT) {
1512 1512 ctf_free(name, namelen);
1513 1513 return (ret);
1514 1514 }
1515 1515 if ((id = ctf_dwarf_void(cup)) == CTF_ERR) {
1516 1516 ctf_free(name, namelen);
1517 1517 return (ctf_errno(cup->cu_ctfp));
1518 1518 }
1519 1519 } else {
1520 1520 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
1521 1521 CTF_ADD_NONROOT)) != 0) {
1522 1522 ctf_free(name, namelen);
1523 1523 return (ret);
1524 1524 }
1525 1525 }
1526 1526
1527 1527 if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) ==
1528 1528 CTF_ERR) {
1529 1529 ctf_free(name, namelen);
1530 1530 return (ctf_errno(cup->cu_ctfp));
1531 1531 }
1532 1532
1533 1533 ctf_free(name, namelen);
1534 1534 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1535 1535 }
1536 1536
1537 1537 static int
1538 1538 ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1539 1539 {
1540 1540 int ret;
1541 1541 ctf_id_t id;
1542 1542 Dwarf_Die child;
1543 1543 char *name;
1544 1544
1545 1545 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1546 1546 ret != ENOENT)
1547 1547 return (ret);
1548 1548 if (ret == ENOENT)
1549 1549 name = NULL;
1550 1550 id = ctf_add_enum(cup->cu_ctfp, isroot, name);
1551 1551 ctf_dprintf("added enum %s (%d)\n", name, id);
1552 1552 if (name != NULL)
1553 1553 ctf_free(name, strlen(name) + 1);
1554 1554 if (id == CTF_ERR)
1555 1555 return (ctf_errno(cup->cu_ctfp));
1556 1556 *idp = id;
1557 1557 if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0)
1558 1558 return (ret);
1559 1559
1560 1560 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) {
1561 1561 if (ret == ENOENT)
1562 1562 ret = 0;
1563 1563 return (ret);
1564 1564 }
1565 1565
1566 1566 while (child != NULL) {
1567 1567 Dwarf_Half tag;
1568 1568 Dwarf_Signed sval;
1569 1569 Dwarf_Unsigned uval;
1570 1570 Dwarf_Die arg = child;
1571 1571 int eval;
1572 1572
1573 1573 if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0)
1574 1574 return (ret);
1575 1575
1576 1576 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1577 1577 return (ret);
1578 1578
1579 1579 if (tag != DW_TAG_enumerator) {
1580 1580 if ((ret = ctf_dwarf_convert_type(cup, arg, NULL,
1581 1581 CTF_ADD_NONROOT)) != 0)
1582 1582 return (ret);
1583 1583 continue;
1584 1584 }
1585 1585
1586 1586 /*
1587 1587 * DWARF v4 section 5.7 tells us we'll always have names.
1588 1588 */
1589 1589 if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0)
1590 1590 return (ret);
1591 1591
1592 1592 /*
1593 1593 * We have to be careful here: newer GCCs generate DWARF where
1594 1594 * an unsigned value will happily pass ctf_dwarf_signed().
1595 1595 * Since negative values will fail ctf_dwarf_unsigned(), we try
1596 1596 * that first to make sure we get the right value.
1597 1597 */
1598 1598 if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value,
1599 1599 &uval)) == 0) {
1600 1600 eval = (int)uval;
1601 1601 } else if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value,
1602 1602 &sval)) == 0) {
1603 1603 eval = sval;
1604 1604 }
1605 1605
1606 1606 if (ret != 0) {
1607 1607 if (ret != ENOENT)
1608 1608 return (ret);
1609 1609
1610 1610 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1611 1611 "encountered enumeration without constant value\n");
1612 1612 return (ECTF_CONVBKERR);
1613 1613 }
1614 1614
1615 1615 ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval);
1616 1616 if (ret == CTF_ERR) {
1617 1617 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1618 1618 "failed to add enumarator %s (%d) to %d\n",
1619 1619 name, eval, id);
1620 1620 ctf_free(name, strlen(name) + 1);
1621 1621 return (ctf_errno(cup->cu_ctfp));
1622 1622 }
1623 1623 ctf_free(name, strlen(name) + 1);
1624 1624 }
1625 1625
1626 1626 return (0);
1627 1627 }
1628 1628
1629 1629 /*
1630 1630 * For a function pointer, walk over and process all of its children, unless we
1631 1631 * encounter one that's just a declaration. In which case, we error on it.
1632 1632 */
1633 1633 static int
1634 1634 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1635 1635 {
1636 1636 int ret;
1637 1637 Dwarf_Bool b;
1638 1638 ctf_funcinfo_t fi;
1639 1639 Dwarf_Die retdie;
1640 1640 ctf_id_t *argv = NULL;
1641 1641
1642 1642 bzero(&fi, sizeof (ctf_funcinfo_t));
1643 1643
1644 1644 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
1645 1645 if (ret != ENOENT)
1646 1646 return (ret);
1647 1647 } else {
1648 1648 if (b != 0)
1649 1649 return (EPROTOTYPE);
1650 1650 }
1651 1651
1652 1652 /*
1653 1653 * Return type is in DW_AT_type, if none, it returns void.
1654 1654 */
1655 1655 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) {
1656 1656 if (ret != ENOENT)
1657 1657 return (ret);
1658 1658 if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR)
1659 1659 return (ctf_errno(cup->cu_ctfp));
1660 1660 } else {
1661 1661 if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return,
1662 1662 CTF_ADD_NONROOT)) != 0)
1663 1663 return (ret);
1664 1664 }
1665 1665
1666 1666 if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) {
1667 1667 return (ret);
1668 1668 }
1669 1669
1670 1670 if (fi.ctc_argc != 0) {
1671 1671 argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc);
1672 1672 if (argv == NULL)
1673 1673 return (ENOMEM);
1674 1674
1675 1675 if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) {
1676 1676 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1677 1677 return (ret);
1678 1678 }
1679 1679 }
1680 1680
1681 1681 if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) ==
1682 1682 CTF_ERR) {
1683 1683 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1684 1684 return (ctf_errno(cup->cu_ctfp));
1685 1685 }
1686 1686
1687 1687 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1688 1688 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1689 1689 }
1690 1690
1691 1691 static int
1692 1692 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1693 1693 int isroot)
1694 1694 {
1695 1695 int ret;
1696 1696 Dwarf_Off offset;
1697 1697 Dwarf_Half tag;
1698 1698 ctf_dwmap_t lookup, *map;
1699 1699 ctf_id_t id;
1700 1700
1701 1701 if (idp == NULL)
1702 1702 idp = &id;
1703 1703
1704 1704 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
1705 1705 return (ret);
1706 1706
1707 1707 if (offset > cup->cu_maxoff) {
1708 1708 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1709 1709 "die offset %llu beyond maximum for header %llu\n",
1710 1710 offset, cup->cu_maxoff);
1711 1711 return (ECTF_CONVBKERR);
1712 1712 }
1713 1713
1714 1714 /*
1715 1715 * If we've already added an entry for this offset, then we're done.
1716 1716 */
1717 1717 lookup.cdm_off = offset;
1718 1718 if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) {
1719 1719 *idp = map->cdm_id;
1720 1720 return (0);
1721 1721 }
1722 1722
1723 1723 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
1724 1724 return (ret);
1725 1725
1726 1726 ret = ENOTSUP;
1727 1727 switch (tag) {
1728 1728 case DW_TAG_base_type:
1729 1729 ctf_dprintf("base\n");
1730 1730 ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset);
1731 1731 break;
1732 1732 case DW_TAG_array_type:
1733 1733 ctf_dprintf("array\n");
1734 1734 ret = ctf_dwarf_create_array(cup, die, idp, isroot);
1735 1735 break;
1736 1736 case DW_TAG_enumeration_type:
1737 1737 ctf_dprintf("enum\n");
1738 1738 ret = ctf_dwarf_create_enum(cup, die, idp, isroot);
1739 1739 break;
1740 1740 case DW_TAG_pointer_type:
1741 1741 ctf_dprintf("pointer\n");
1742 1742 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER,
1743 1743 isroot);
1744 1744 break;
1745 1745 case DW_TAG_structure_type:
1746 1746 ctf_dprintf("struct\n");
1747 1747 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT,
1748 1748 isroot);
1749 1749 break;
1750 1750 case DW_TAG_subroutine_type:
1751 1751 ctf_dprintf("fptr\n");
1752 1752 ret = ctf_dwarf_create_fptr(cup, die, idp, isroot);
1753 1753 break;
1754 1754 case DW_TAG_typedef:
1755 1755 ctf_dprintf("typedef\n");
1756 1756 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF,
1757 1757 isroot);
1758 1758 break;
1759 1759 case DW_TAG_union_type:
1760 1760 ctf_dprintf("union\n");
1761 1761 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION,
1762 1762 isroot);
1763 1763 break;
1764 1764 case DW_TAG_const_type:
1765 1765 ctf_dprintf("const\n");
1766 1766 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST,
1767 1767 isroot);
1768 1768 break;
1769 1769 case DW_TAG_volatile_type:
1770 1770 ctf_dprintf("volatile\n");
↓ open down ↓ |
874 lines elided |
↑ open up ↑ |
1771 1771 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE,
1772 1772 isroot);
1773 1773 break;
1774 1774 case DW_TAG_restrict_type:
1775 1775 ctf_dprintf("restrict\n");
1776 1776 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT,
1777 1777 isroot);
1778 1778 break;
1779 1779 default:
1780 1780 ctf_dprintf("ignoring tag type %x\n", tag);
1781 + *idp = CTF_ERR;
1781 1782 ret = 0;
1782 1783 break;
1783 1784 }
1784 1785 ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n",
1785 1786 ret);
1786 1787
1787 1788 return (ret);
1788 1789 }
1789 1790
1790 1791 static int
1791 1792 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die)
1792 1793 {
1793 1794 int ret;
1794 1795 Dwarf_Die child;
1795 1796
1796 1797 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1797 1798 return (ret);
1798 1799
1799 1800 if (child == NULL)
1800 1801 return (0);
1801 1802
1802 1803 return (ctf_dwarf_convert_die(cup, die));
1803 1804 }
1804 1805
1805 1806 static int
1806 1807 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1807 1808 boolean_t fptr)
1808 1809 {
1809 1810 int ret;
1810 1811 Dwarf_Die child, sib, arg;
1811 1812
1812 1813 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1813 1814 return (ret);
1814 1815
1815 1816 arg = child;
1816 1817 while (arg != NULL) {
1817 1818 Dwarf_Half tag;
1818 1819
1819 1820 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1820 1821 return (ret);
1821 1822
1822 1823 /*
1823 1824 * We have to check for a varargs type decleration. This will
1824 1825 * happen in one of two ways. If we have a function pointer
1825 1826 * type, then it'll be done with a tag of type
1826 1827 * DW_TAG_unspecified_parameters. However, it only means we have
1827 1828 * a variable number of arguments, if we have more than one
1828 1829 * argument found so far. Otherwise, when we have a function
1829 1830 * type, it instead uses a formal parameter whose name is '...'
1830 1831 * to indicate a variable arguments member.
1831 1832 *
1832 1833 * Also, if we have a function pointer, then we have to expect
1833 1834 * that we might not get a name at all.
1834 1835 */
1835 1836 if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) {
1836 1837 char *name;
1837 1838 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name,
1838 1839 &name)) != 0)
1839 1840 return (ret);
1840 1841 if (strcmp(name, DWARF_VARARGS_NAME) == 0)
1841 1842 fip->ctc_flags |= CTF_FUNC_VARARG;
1842 1843 else
1843 1844 fip->ctc_argc++;
1844 1845 ctf_free(name, strlen(name) + 1);
1845 1846 } else if (tag == DW_TAG_formal_parameter) {
1846 1847 fip->ctc_argc++;
1847 1848 } else if (tag == DW_TAG_unspecified_parameters &&
1848 1849 fip->ctc_argc > 0) {
1849 1850 fip->ctc_flags |= CTF_FUNC_VARARG;
1850 1851 }
1851 1852 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1852 1853 return (ret);
1853 1854 arg = sib;
1854 1855 }
1855 1856
1856 1857 return (0);
1857 1858 }
1858 1859
1859 1860 static int
1860 1861 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1861 1862 ctf_id_t *argv)
1862 1863 {
1863 1864 int ret;
1864 1865 int i = 0;
1865 1866 Dwarf_Die child, sib, arg;
1866 1867
1867 1868 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1868 1869 return (ret);
1869 1870
1870 1871 arg = child;
1871 1872 while (arg != NULL) {
1872 1873 Dwarf_Half tag;
1873 1874
1874 1875 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1875 1876 return (ret);
1876 1877 if (tag == DW_TAG_formal_parameter) {
1877 1878 Dwarf_Die tdie;
1878 1879
1879 1880 if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type,
1880 1881 &tdie)) != 0)
1881 1882 return (ret);
1882 1883
1883 1884 if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i],
1884 1885 CTF_ADD_ROOT)) != 0)
1885 1886 return (ret);
1886 1887 i++;
1887 1888
1888 1889 /*
1889 1890 * Once we hit argc entries, we're done. This ensures we
1890 1891 * don't accidentally hit a varargs which should be the
1891 1892 * last entry.
1892 1893 */
1893 1894 if (i == fip->ctc_argc)
1894 1895 break;
1895 1896 }
1896 1897
1897 1898 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1898 1899 return (ret);
1899 1900 arg = sib;
1900 1901 }
1901 1902
1902 1903 return (0);
1903 1904 }
1904 1905
1905 1906 static int
1906 1907 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die)
1907 1908 {
1908 1909 int ret;
1909 1910 char *name;
1910 1911 ctf_dwfunc_t *cdf;
1911 1912 Dwarf_Die tdie;
1912 1913
1913 1914 /*
1914 1915 * Functions that don't have a name are generally functions that have
1915 1916 * been inlined and thus most information about them has been lost. If
1916 1917 * we can't get a name, then instead of returning ENOENT, we silently
1917 1918 * swallow the error.
1918 1919 */
1919 1920 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) {
1920 1921 if (ret == ENOENT)
1921 1922 return (0);
1922 1923 return (ret);
1923 1924 }
1924 1925
1925 1926 ctf_dprintf("beginning work on function %s\n", name);
1926 1927 if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) {
1927 1928 ctf_free(name, strlen(name) + 1);
1928 1929 return (ENOMEM);
1929 1930 }
1930 1931 bzero(cdf, sizeof (ctf_dwfunc_t));
1931 1932 cdf->cdf_name = name;
1932 1933
1933 1934 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) {
1934 1935 if ((ret = ctf_dwarf_convert_type(cup, tdie,
1935 1936 &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) {
1936 1937 ctf_free(name, strlen(name) + 1);
1937 1938 ctf_free(cdf, sizeof (ctf_dwfunc_t));
1938 1939 return (ret);
1939 1940 }
1940 1941 } else if (ret != ENOENT) {
1941 1942 ctf_free(name, strlen(name) + 1);
1942 1943 ctf_free(cdf, sizeof (ctf_dwfunc_t));
1943 1944 return (ret);
1944 1945 } else {
1945 1946 if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) ==
1946 1947 CTF_ERR) {
1947 1948 ctf_free(name, strlen(name) + 1);
1948 1949 ctf_free(cdf, sizeof (ctf_dwfunc_t));
1949 1950 return (ctf_errno(cup->cu_ctfp));
1950 1951 }
1951 1952 }
1952 1953
1953 1954 /*
1954 1955 * A function has a number of children, some of which may not be ones we
1955 1956 * care about. Children that we care about have a type of
1956 1957 * DW_TAG_formal_parameter. We're going to do two passes, the first to
1957 1958 * count the arguments, the second to process them. Afterwards, we
1958 1959 * should be good to go ahead and add this function.
1959 1960 *
1960 1961 * Note, we already got the return type by going in and grabbing it out
1961 1962 * of the DW_AT_type.
1962 1963 */
1963 1964 if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip,
1964 1965 B_FALSE)) != 0) {
1965 1966 ctf_free(name, strlen(name) + 1);
1966 1967 ctf_free(cdf, sizeof (ctf_dwfunc_t));
1967 1968 return (ret);
1968 1969 }
1969 1970
1970 1971 ctf_dprintf("beginning to convert function arguments %s\n", name);
1971 1972 if (cdf->cdf_fip.ctc_argc != 0) {
1972 1973 uint_t argc = cdf->cdf_fip.ctc_argc;
1973 1974 cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc);
1974 1975 if (cdf->cdf_argv == NULL) {
1975 1976 ctf_free(name, strlen(name) + 1);
1976 1977 ctf_free(cdf, sizeof (ctf_dwfunc_t));
1977 1978 return (ENOMEM);
1978 1979 }
1979 1980 if ((ret = ctf_dwarf_convert_fargs(cup, die,
1980 1981 &cdf->cdf_fip, cdf->cdf_argv)) != 0) {
1981 1982 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc);
1982 1983 ctf_free(name, strlen(name) + 1);
1983 1984 ctf_free(cdf, sizeof (ctf_dwfunc_t));
1984 1985 return (ret);
1985 1986 }
1986 1987 } else {
1987 1988 cdf->cdf_argv = NULL;
1988 1989 }
1989 1990
1990 1991 if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) {
1991 1992 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) *
1992 1993 cdf->cdf_fip.ctc_argc);
1993 1994 ctf_free(name, strlen(name) + 1);
1994 1995 ctf_free(cdf, sizeof (ctf_dwfunc_t));
1995 1996 return (ret);
1996 1997 }
1997 1998
1998 1999 ctf_list_append(&cup->cu_funcs, cdf);
1999 2000 return (ret);
2000 2001 }
2001 2002
2002 2003 /*
2003 2004 * Convert variables, but only if they're not prototypes and have names.
2004 2005 */
2005 2006 static int
2006 2007 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die)
2007 2008 {
2008 2009 int ret;
2009 2010 char *name;
2010 2011 Dwarf_Bool b;
2011 2012 Dwarf_Die tdie;
2012 2013 ctf_id_t id;
2013 2014 ctf_dwvar_t *cdv;
2014 2015
2015 2016 /* Skip "Non-Defining Declarations" */
2016 2017 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) {
2017 2018 if (b != 0)
2018 2019 return (0);
2019 2020 } else if (ret != ENOENT) {
2020 2021 return (ret);
2021 2022 }
2022 2023
2023 2024 /*
2024 2025 * If we find a DIE of "Declarations Completing Non-Defining
2025 2026 * Declarations", we will use the referenced type's DIE. This isn't
2026 2027 * quite correct, e.g. DW_AT_decl_line will be the forward declaration
2027 2028 * not this site. It's sufficient for what we need, however: in
2028 2029 * particular, we should find DW_AT_external as needed there.
2029 2030 */
2030 2031 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification,
2031 2032 &tdie)) == 0) {
2032 2033 Dwarf_Off offset;
2033 2034 if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0)
2034 2035 return (ret);
2035 2036 ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n",
2036 2037 ctf_die_offset(die), ctf_die_offset(tdie));
2037 2038 die = tdie;
2038 2039 } else if (ret != ENOENT) {
2039 2040 return (ret);
2040 2041 }
2041 2042
2042 2043 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
2043 2044 ret != ENOENT)
2044 2045 return (ret);
2045 2046 if (ret == ENOENT)
2046 2047 return (0);
2047 2048
2048 2049 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
2049 2050 ctf_free(name, strlen(name) + 1);
2050 2051 return (ret);
2051 2052 }
2052 2053
2053 2054 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
2054 2055 CTF_ADD_ROOT)) != 0)
2055 2056 return (ret);
2056 2057
2057 2058 if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) {
2058 2059 ctf_free(name, strlen(name) + 1);
2059 2060 return (ENOMEM);
2060 2061 }
2061 2062
2062 2063 cdv->cdv_name = name;
2063 2064 cdv->cdv_type = id;
2064 2065
2065 2066 if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) {
2066 2067 ctf_free(cdv, sizeof (ctf_dwvar_t));
2067 2068 ctf_free(name, strlen(name) + 1);
2068 2069 return (ret);
2069 2070 }
2070 2071
2071 2072 ctf_list_append(&cup->cu_vars, cdv);
2072 2073 return (0);
2073 2074 }
2074 2075
2075 2076 /*
2076 2077 * Walk through our set of top-level types and process them.
2077 2078 */
2078 2079 static int
2079 2080 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die)
2080 2081 {
2081 2082 int ret;
2082 2083 Dwarf_Off offset;
2083 2084 Dwarf_Half tag;
2084 2085
2085 2086 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2086 2087 return (ret);
2087 2088
2088 2089 if (offset > cup->cu_maxoff) {
2089 2090 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2090 2091 "die offset %llu beyond maximum for header %llu\n",
2091 2092 offset, cup->cu_maxoff);
2092 2093 return (ECTF_CONVBKERR);
2093 2094 }
2094 2095
2095 2096 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2096 2097 return (ret);
2097 2098
2098 2099 ret = 0;
2099 2100 switch (tag) {
2100 2101 case DW_TAG_subprogram:
2101 2102 ctf_dprintf("top level func\n");
2102 2103 ret = ctf_dwarf_convert_function(cup, die);
2103 2104 break;
2104 2105 case DW_TAG_variable:
2105 2106 ctf_dprintf("top level var\n");
2106 2107 ret = ctf_dwarf_convert_variable(cup, die);
2107 2108 break;
2108 2109 case DW_TAG_lexical_block:
2109 2110 ctf_dprintf("top level block\n");
2110 2111 ret = ctf_dwarf_walk_lexical(cup, die);
2111 2112 break;
2112 2113 case DW_TAG_enumeration_type:
2113 2114 case DW_TAG_structure_type:
2114 2115 case DW_TAG_typedef:
2115 2116 case DW_TAG_union_type:
2116 2117 ctf_dprintf("top level type\n");
2117 2118 ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE);
2118 2119 break;
2119 2120 default:
2120 2121 break;
2121 2122 }
2122 2123
2123 2124 return (ret);
2124 2125 }
2125 2126
2126 2127
2127 2128 /*
2128 2129 * We're given a node. At this node we need to convert it and then proceed to
2129 2130 * convert any siblings that are associaed with this die.
2130 2131 */
2131 2132 static int
2132 2133 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die)
2133 2134 {
2134 2135 while (die != NULL) {
2135 2136 int ret;
2136 2137 Dwarf_Die sib;
2137 2138
2138 2139 if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0)
2139 2140 return (ret);
2140 2141
2141 2142 if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0)
2142 2143 return (ret);
2143 2144 die = sib;
2144 2145 }
2145 2146 return (0);
2146 2147 }
2147 2148
2148 2149 static int
2149 2150 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass)
2150 2151 {
2151 2152 ctf_dwmap_t *map;
2152 2153
2153 2154 for (map = avl_first(&cup->cu_map); map != NULL;
2154 2155 map = AVL_NEXT(&cup->cu_map, map)) {
2155 2156 int ret;
2156 2157 if (map->cdm_fix == B_FALSE)
2157 2158 continue;
2158 2159 if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id,
2159 2160 addpass)) != 0)
2160 2161 return (ret);
2161 2162 }
2162 2163
2163 2164 return (0);
2164 2165 }
2165 2166
2166 2167 /*
2167 2168 * The DWARF information about a symbol and the information in the symbol table
2168 2169 * may not be the same due to symbol reduction that is performed by ld due to a
2169 2170 * mapfile or other such directive. We process weak symbols at a later time.
2170 2171 *
2171 2172 * The following are the rules that we employ:
2172 2173 *
2173 2174 * 1. A DWARF function that is considered exported matches STB_GLOBAL entries
2174 2175 * with the same name.
2175 2176 *
2176 2177 * 2. A DWARF function that is considered exported matches STB_LOCAL entries
2177 2178 * with the same name and the same file. This case may happen due to mapfile
2178 2179 * reduction.
2179 2180 *
2180 2181 * 3. A DWARF function that is not considered exported matches STB_LOCAL entries
2181 2182 * with the same name and the same file.
2182 2183 *
2183 2184 * 4. A DWARF function that has the same name as the symbol table entry, but the
2184 2185 * files do not match. This is considered a 'fuzzy' match. This may also happen
2185 2186 * due to a mapfile reduction. Fuzzy matching is only used when we know that the
2186 2187 * file in question refers to the primary object. This is because when a symbol
2187 2188 * is reduced in a mapfile, it's always going to be tagged as a local value in
2188 2189 * the generated output and it is considered as to belong to the primary file
2189 2190 * which is the first STT_FILE symbol we see.
2190 2191 */
2191 2192 static boolean_t
2192 2193 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name,
2193 2194 uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name,
2194 2195 boolean_t dwarf_global, boolean_t *is_fuzzy)
2195 2196 {
2196 2197 *is_fuzzy = B_FALSE;
2197 2198
2198 2199 if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) {
2199 2200 return (B_FALSE);
2200 2201 }
2201 2202
2202 2203 if (strcmp(symtab_name, dwarf_name) != 0) {
2203 2204 return (B_FALSE);
2204 2205 }
2205 2206
2206 2207 if (symtab_bind == STB_GLOBAL) {
2207 2208 return (dwarf_global);
2208 2209 }
2209 2210
2210 2211 if (strcmp(symtab_file, dwarf_file) == 0) {
2211 2212 return (B_TRUE);
2212 2213 }
2213 2214
2214 2215 if (dwarf_global) {
2215 2216 *is_fuzzy = B_TRUE;
2216 2217 return (B_TRUE);
2217 2218 }
2218 2219
2219 2220 return (B_FALSE);
2220 2221 }
2221 2222
2222 2223 static ctf_dwfunc_t *
2223 2224 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name,
2224 2225 uint_t bind, boolean_t primary)
2225 2226 {
2226 2227 ctf_dwfunc_t *cdf, *fuzzy = NULL;
2227 2228
2228 2229 if (bind == STB_WEAK)
2229 2230 return (NULL);
2230 2231
2231 2232 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2232 2233 return (NULL);
2233 2234
2234 2235 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL;
2235 2236 cdf = ctf_list_next(cdf)) {
2236 2237 boolean_t is_fuzzy = B_FALSE;
2237 2238
2238 2239 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2239 2240 cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) {
2240 2241 if (is_fuzzy) {
2241 2242 if (primary) {
2242 2243 fuzzy = cdf;
2243 2244 }
2244 2245 continue;
2245 2246 } else {
2246 2247 return (cdf);
2247 2248 }
2248 2249 }
2249 2250 }
2250 2251
2251 2252 return (fuzzy);
2252 2253 }
2253 2254
2254 2255 static ctf_dwvar_t *
2255 2256 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name,
2256 2257 uint_t bind, boolean_t primary)
2257 2258 {
2258 2259 ctf_dwvar_t *cdv, *fuzzy = NULL;
2259 2260
2260 2261 if (bind == STB_WEAK)
2261 2262 return (NULL);
2262 2263
2263 2264 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2264 2265 return (NULL);
2265 2266
2266 2267 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL;
2267 2268 cdv = ctf_list_next(cdv)) {
2268 2269 boolean_t is_fuzzy = B_FALSE;
2269 2270
2270 2271 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2271 2272 cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) {
2272 2273 if (is_fuzzy) {
2273 2274 if (primary) {
2274 2275 fuzzy = cdv;
2275 2276 }
2276 2277 } else {
2277 2278 return (cdv);
2278 2279 }
2279 2280 }
2280 2281 }
2281 2282
2282 2283 return (fuzzy);
2283 2284 }
2284 2285
2285 2286 static int
2286 2287 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx,
2287 2288 const char *file, const char *name, boolean_t primary, void *arg)
2288 2289 {
2289 2290 int ret;
2290 2291 uint_t bind, type;
2291 2292 ctf_cu_t *cup = arg;
2292 2293
2293 2294 bind = GELF_ST_BIND(symp->st_info);
2294 2295 type = GELF_ST_TYPE(symp->st_info);
2295 2296
2296 2297 /*
2297 2298 * Come back to weak symbols in another pass
2298 2299 */
2299 2300 if (bind == STB_WEAK)
2300 2301 return (0);
2301 2302
2302 2303 if (type == STT_OBJECT) {
2303 2304 ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name,
2304 2305 bind, primary);
2305 2306 if (cdv == NULL)
2306 2307 return (0);
2307 2308 ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type);
2308 2309 ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type);
2309 2310 } else {
2310 2311 ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name,
2311 2312 bind, primary);
2312 2313 if (cdf == NULL)
2313 2314 return (0);
2314 2315 ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip,
2315 2316 cdf->cdf_argv);
2316 2317 ctf_dprintf("added function %s\n", name);
2317 2318 }
2318 2319
2319 2320 if (ret == CTF_ERR) {
2320 2321 return (ctf_errno(cup->cu_ctfp));
2321 2322 }
2322 2323
2323 2324 return (0);
2324 2325 }
2325 2326
2326 2327 static int
2327 2328 ctf_dwarf_conv_funcvars(ctf_cu_t *cup)
2328 2329 {
2329 2330 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup));
2330 2331 }
2331 2332
2332 2333 /*
2333 2334 * If we have a weak symbol, attempt to find the strong symbol it will resolve
2334 2335 * to. Note: the code where this actually happens is in sym_process() in
2335 2336 * cmd/sgs/libld/common/syms.c
2336 2337 *
2337 2338 * Finding the matching symbol is unfortunately not trivial. For a symbol to be
2338 2339 * a candidate, it must:
2339 2340 *
2340 2341 * - have the same type (function, object)
2341 2342 * - have the same value (address)
2342 2343 * - have the same size
2343 2344 * - not be another weak symbol
2344 2345 * - belong to the same section (checked via section index)
2345 2346 *
2346 2347 * To perform this check, we first iterate over the symbol table. For each weak
2347 2348 * symbol that we encounter, we then do a second walk over the symbol table,
2348 2349 * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's
2349 2350 * either a local or global symbol. If we find a global symbol then we go with
2350 2351 * it and stop searching for additional matches.
2351 2352 *
2352 2353 * If instead, we find a local symbol, things are more complicated. The first
2353 2354 * thing we do is to try and see if we have file information about both symbols
2354 2355 * (STT_FILE). If they both have file information and it matches, then we treat
2355 2356 * that as a good match and stop searching for additional matches.
2356 2357 *
2357 2358 * Otherwise, this means we have a non-matching file and a local symbol. We
2358 2359 * treat this as a candidate and if we find a better match (one of the two cases
2359 2360 * above), use that instead. There are two different ways this can happen.
2360 2361 * Either this is a completely different symbol, or it's a once-global symbol
2361 2362 * that was scoped to local via a mapfile. In the former case, curfile is
2362 2363 * likely inaccurate since the linker does not preserve the needed curfile in
2363 2364 * the order of the symbol table (see the comments about locally scoped symbols
2364 2365 * in libld's update_osym()). As we can't tell this case from the former one,
2365 2366 * we use this symbol iff no other matching symbol is found.
2366 2367 *
2367 2368 * What we really need here is a SUNW section containing weak<->strong mappings
2368 2369 * that we can consume.
2369 2370 */
2370 2371 typedef struct ctf_dwarf_weak_arg {
2371 2372 const Elf64_Sym *cweak_symp;
2372 2373 const char *cweak_file;
2373 2374 boolean_t cweak_candidate;
2374 2375 ulong_t cweak_idx;
2375 2376 } ctf_dwarf_weak_arg_t;
2376 2377
2377 2378 static int
2378 2379 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file,
2379 2380 const char *name, boolean_t primary, void *arg)
2380 2381 {
2381 2382 ctf_dwarf_weak_arg_t *cweak = arg;
2382 2383
2383 2384 const Elf64_Sym *wsymp = cweak->cweak_symp;
2384 2385
2385 2386 ctf_dprintf("comparing weak to %s\n", name);
2386 2387
2387 2388 if (GELF_ST_BIND(symp->st_info) == STB_WEAK) {
2388 2389 return (0);
2389 2390 }
2390 2391
2391 2392 if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) {
2392 2393 return (0);
2393 2394 }
2394 2395
2395 2396 if (wsymp->st_value != symp->st_value) {
2396 2397 return (0);
2397 2398 }
2398 2399
2399 2400 if (wsymp->st_size != symp->st_size) {
2400 2401 return (0);
2401 2402 }
2402 2403
2403 2404 if (wsymp->st_shndx != symp->st_shndx) {
2404 2405 return (0);
2405 2406 }
2406 2407
2407 2408 /*
2408 2409 * Check if it's a weak candidate.
2409 2410 */
2410 2411 if (GELF_ST_BIND(symp->st_info) == STB_LOCAL &&
2411 2412 (file == NULL || cweak->cweak_file == NULL ||
2412 2413 strcmp(file, cweak->cweak_file) != 0)) {
2413 2414 cweak->cweak_candidate = B_TRUE;
2414 2415 cweak->cweak_idx = idx;
2415 2416 return (0);
2416 2417 }
2417 2418
2418 2419 /*
2419 2420 * Found a match, break.
2420 2421 */
2421 2422 cweak->cweak_idx = idx;
2422 2423 return (1);
2423 2424 }
2424 2425
2425 2426 static int
2426 2427 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2427 2428 {
2428 2429 ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx);
2429 2430
2430 2431 /*
2431 2432 * If we matched something that for some reason didn't have type data,
2432 2433 * we don't consider that a fatal error and silently swallow it.
2433 2434 */
2434 2435 if (id == CTF_ERR) {
2435 2436 if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT)
2436 2437 return (0);
2437 2438 else
2438 2439 return (ctf_errno(cup->cu_ctfp));
2439 2440 }
2440 2441
2441 2442 if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR)
2442 2443 return (ctf_errno(cup->cu_ctfp));
2443 2444
2444 2445 return (0);
2445 2446 }
2446 2447
2447 2448 static int
2448 2449 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2449 2450 {
2450 2451 int ret;
2451 2452 ctf_funcinfo_t fip;
2452 2453 ctf_id_t *args = NULL;
2453 2454
2454 2455 if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) {
2455 2456 if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT)
2456 2457 return (0);
2457 2458 else
2458 2459 return (ctf_errno(cup->cu_ctfp));
2459 2460 }
2460 2461
2461 2462 if (fip.ctc_argc != 0) {
2462 2463 args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc);
2463 2464 if (args == NULL)
2464 2465 return (ENOMEM);
2465 2466
2466 2467 if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) ==
2467 2468 CTF_ERR) {
2468 2469 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2469 2470 return (ctf_errno(cup->cu_ctfp));
2470 2471 }
2471 2472 }
2472 2473
2473 2474 ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args);
2474 2475 if (args != NULL)
2475 2476 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2476 2477 if (ret == CTF_ERR)
2477 2478 return (ctf_errno(cup->cu_ctfp));
2478 2479
2479 2480 return (0);
2480 2481 }
2481 2482
2482 2483 static int
2483 2484 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file,
2484 2485 const char *name, boolean_t primary, void *arg)
2485 2486 {
2486 2487 int ret, type;
2487 2488 ctf_dwarf_weak_arg_t cweak;
2488 2489 ctf_cu_t *cup = arg;
2489 2490
2490 2491 /*
2491 2492 * We only care about weak symbols.
2492 2493 */
2493 2494 if (GELF_ST_BIND(symp->st_info) != STB_WEAK)
2494 2495 return (0);
2495 2496
2496 2497 type = GELF_ST_TYPE(symp->st_info);
2497 2498 ASSERT(type == STT_OBJECT || type == STT_FUNC);
2498 2499
2499 2500 /*
2500 2501 * For each weak symbol we encounter, we need to do a second iteration
2501 2502 * to try and find a match. We should probably think about other
2502 2503 * techniques to try and save us time in the future.
2503 2504 */
2504 2505 cweak.cweak_symp = symp;
2505 2506 cweak.cweak_file = file;
2506 2507 cweak.cweak_candidate = B_FALSE;
2507 2508 cweak.cweak_idx = 0;
2508 2509
2509 2510 ctf_dprintf("Trying to find weak equiv for %s\n", name);
2510 2511
2511 2512 ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak);
2512 2513 VERIFY(ret == 0 || ret == 1);
2513 2514
2514 2515 /*
2515 2516 * Nothing was ever found, we're not going to add anything for this
2516 2517 * entry.
2517 2518 */
2518 2519 if (ret == 0 && cweak.cweak_candidate == B_FALSE) {
2519 2520 ctf_dprintf("found no weak match for %s\n", name);
2520 2521 return (0);
2521 2522 }
2522 2523
2523 2524 /*
2524 2525 * Now, finally go and add the type based on the match.
2525 2526 */
2526 2527 ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx);
2527 2528 if (type == STT_OBJECT) {
2528 2529 ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx);
2529 2530 } else {
2530 2531 ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx);
2531 2532 }
2532 2533
2533 2534 return (ret);
2534 2535 }
2535 2536
2536 2537 static int
2537 2538 ctf_dwarf_conv_weaks(ctf_cu_t *cup)
2538 2539 {
2539 2540 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup));
2540 2541 }
2541 2542
2542 2543 /* ARGSUSED */
2543 2544 static int
2544 2545 ctf_dwarf_convert_one(void *arg, void *unused)
2545 2546 {
2546 2547 int ret;
2547 2548 ctf_file_t *dedup;
2548 2549 ctf_cu_t *cup = arg;
2549 2550
2550 2551 ctf_dprintf("converting die: %s\n", cup->cu_name);
2551 2552 ctf_dprintf("max offset: %x\n", cup->cu_maxoff);
2552 2553 VERIFY(cup != NULL);
2553 2554
2554 2555 ret = ctf_dwarf_convert_die(cup, cup->cu_cu);
2555 2556 ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cup->cu_name,
2556 2557 ret);
2557 2558 if (ret != 0) {
2558 2559 return (ret);
2559 2560 }
2560 2561 if (ctf_update(cup->cu_ctfp) != 0) {
2561 2562 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2562 2563 "failed to update output ctf container"));
2563 2564 }
2564 2565
2565 2566 ret = ctf_dwarf_fixup_die(cup, B_FALSE);
2566 2567 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2567 2568 ret);
2568 2569 if (ret != 0) {
2569 2570 return (ret);
2570 2571 }
2571 2572 if (ctf_update(cup->cu_ctfp) != 0) {
2572 2573 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2573 2574 "failed to update output ctf container"));
2574 2575 }
2575 2576
2576 2577 ret = ctf_dwarf_fixup_die(cup, B_TRUE);
2577 2578 ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2578 2579 ret);
2579 2580 if (ret != 0) {
2580 2581 return (ret);
2581 2582 }
2582 2583 if (ctf_update(cup->cu_ctfp) != 0) {
2583 2584 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2584 2585 "failed to update output ctf container"));
2585 2586 }
2586 2587
2587 2588
2588 2589 if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) {
2589 2590 return (ctf_dwarf_error(cup, NULL, ret,
2590 2591 "failed to convert strong functions and variables"));
2591 2592 }
2592 2593
2593 2594 if (ctf_update(cup->cu_ctfp) != 0) {
2594 2595 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2595 2596 "failed to update output ctf container"));
2596 2597 }
2597 2598
2598 2599 if (cup->cu_doweaks == B_TRUE) {
2599 2600 if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) {
2600 2601 return (ctf_dwarf_error(cup, NULL, ret,
2601 2602 "failed to convert weak functions and variables"));
2602 2603 }
2603 2604
2604 2605 if (ctf_update(cup->cu_ctfp) != 0) {
2605 2606 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2606 2607 "failed to update output ctf container"));
2607 2608 }
2608 2609 }
2609 2610
2610 2611 ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", cup->cu_name);
2611 2612 ctf_dprintf("adding inputs for dedup\n");
2612 2613 if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) {
2613 2614 return (ctf_dwarf_error(cup, NULL, ret,
2614 2615 "failed to add inputs for merge"));
2615 2616 }
2616 2617
2617 2618 ctf_dprintf("starting dedup of %s\n", cup->cu_name);
2618 2619 if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) {
2619 2620 return (ctf_dwarf_error(cup, NULL, ret,
2620 2621 "failed to deduplicate die"));
2621 2622 }
2622 2623 ctf_close(cup->cu_ctfp);
2623 2624 cup->cu_ctfp = dedup;
2624 2625 ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", cup->cu_name);
2625 2626
2626 2627 return (0);
2627 2628 }
2628 2629
2629 2630 /*
2630 2631 * Note, we expect that if we're returning a ctf_file_t from one of the dies,
2631 2632 * say in the single node case, it's been saved and the entry here has been set
2632 2633 * to NULL, which ctf_close happily ignores.
2633 2634 */
2634 2635 static void
2635 2636 ctf_dwarf_free_die(ctf_cu_t *cup)
2636 2637 {
2637 2638 ctf_dwfunc_t *cdf, *ndf;
2638 2639 ctf_dwvar_t *cdv, *ndv;
2639 2640 ctf_dwbitf_t *cdb, *ndb;
2640 2641 ctf_dwmap_t *map;
2641 2642 void *cookie;
2642 2643 Dwarf_Error derr;
2643 2644
2644 2645 ctf_dprintf("Beginning to free die: %p\n", cup);
2645 2646 cup->cu_elf = NULL;
2646 2647 ctf_dprintf("Trying to free name: %p\n", cup->cu_name);
2647 2648 if (cup->cu_name != NULL)
2648 2649 ctf_free(cup->cu_name, strlen(cup->cu_name) + 1);
2649 2650 ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh);
2650 2651 if (cup->cu_cmh != NULL) {
2651 2652 ctf_merge_fini(cup->cu_cmh);
2652 2653 cup->cu_cmh = NULL;
2653 2654 }
2654 2655
2655 2656 ctf_dprintf("Trying to free functions\n");
2656 2657 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) {
2657 2658 ndf = ctf_list_next(cdf);
2658 2659 ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1);
2659 2660 if (cdf->cdf_fip.ctc_argc != 0) {
2660 2661 ctf_free(cdf->cdf_argv,
2661 2662 sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc);
2662 2663 }
2663 2664 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2664 2665 }
2665 2666
2666 2667 ctf_dprintf("Trying to free variables\n");
2667 2668 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) {
2668 2669 ndv = ctf_list_next(cdv);
2669 2670 ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1);
↓ open down ↓ |
879 lines elided |
↑ open up ↑ |
2670 2671 ctf_free(cdv, sizeof (ctf_dwvar_t));
2671 2672 }
2672 2673
2673 2674 ctf_dprintf("Trying to free bitfields\n");
2674 2675 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) {
2675 2676 ndb = ctf_list_next(cdb);
2676 2677 ctf_free(cdb, sizeof (ctf_dwbitf_t));
2677 2678 }
2678 2679
2679 2680 ctf_dprintf("Trying to clean up dwarf_t: %p\n", cup->cu_dwarf);
2680 - (void) dwarf_finish(cup->cu_dwarf, &derr);
2681 + if (cup->cu_dwarf != NULL)
2682 + (void) dwarf_finish(cup->cu_dwarf, &derr);
2681 2683 cup->cu_dwarf = NULL;
2682 2684 ctf_close(cup->cu_ctfp);
2683 2685
2684 2686 cookie = NULL;
2685 2687 while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL) {
2686 2688 ctf_free(map, sizeof (ctf_dwmap_t));
2687 2689 }
2688 2690 avl_destroy(&cup->cu_map);
2689 2691 cup->cu_errbuf = NULL;
2690 2692 }
2691 2693
2692 2694 static void
2693 2695 ctf_dwarf_free_dies(ctf_cu_t *cdies, int ndies)
2694 2696 {
2695 2697 int i;
2696 2698
2697 2699 ctf_dprintf("Beginning to free dies\n");
2698 2700 for (i = 0; i < ndies; i++) {
2699 2701 ctf_dwarf_free_die(&cdies[i]);
2700 2702 }
2701 2703
2702 2704 ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2703 2705 }
2704 2706
2705 2707 static int
2706 2708 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies,
2707 2709 char *errbuf, size_t errlen)
2708 2710 {
2709 2711 int ret;
2710 2712 Dwarf_Half vers;
2711 2713 Dwarf_Unsigned nexthdr;
2712 2714
2713 2715 while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL,
2714 2716 &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
2715 2717 if (ret != DW_DLV_OK) {
2716 2718 (void) snprintf(errbuf, errlen,
2717 2719 "file does not contain valid DWARF data: %s\n",
2718 2720 dwarf_errmsg(*derr));
2719 2721 return (ECTF_CONVBKERR);
↓ open down ↓ |
29 lines elided |
↑ open up ↑ |
2720 2722 }
2721 2723
2722 2724 if (vers != DWARF_VERSION_TWO) {
2723 2725 (void) snprintf(errbuf, errlen,
2724 2726 "unsupported DWARF version: %d\n", vers);
2725 2727 return (ECTF_CONVBKERR);
2726 2728 }
2727 2729 *ndies = *ndies + 1;
2728 2730 }
2729 2731
2730 - if (*ndies == 0) {
2731 - (void) snprintf(errbuf, errlen,
2732 - "file does not contain valid DWARF data: %s\n",
2733 - dwarf_errmsg(*derr));
2734 - return (ECTF_CONVBKERR);
2735 - }
2736 -
2737 2732 return (0);
2738 2733 }
2739 2734
2740 2735 static int
2741 2736 ctf_dwarf_init_die(int fd, Elf *elf, ctf_cu_t *cup, int ndie, char *errbuf,
2742 2737 size_t errlen)
2743 2738 {
2744 2739 int ret;
2745 2740 Dwarf_Unsigned hdrlen, abboff, nexthdr;
2746 2741 Dwarf_Half addrsz;
2747 2742 Dwarf_Unsigned offset = 0;
2748 2743 Dwarf_Error derr;
2749 2744
2750 2745 while ((ret = dwarf_next_cu_header(cup->cu_dwarf, &hdrlen, NULL,
2751 2746 &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) {
2752 2747 char *name;
2753 2748 Dwarf_Die cu, child;
2754 2749
2755 2750 /* Based on the counting above, we should be good to go */
2756 2751 VERIFY(ret == DW_DLV_OK);
2757 2752 if (ndie > 0) {
2758 2753 ndie--;
2759 2754 offset = nexthdr;
2760 2755 continue;
2761 2756 }
↓ open down ↓ |
15 lines elided |
↑ open up ↑ |
2762 2757
2763 2758 /*
2764 2759 * Compilers are apparently inconsistent. Some emit no DWARF for
2765 2760 * empty files and others emit empty compilation unit.
2766 2761 */
2767 2762 cup->cu_voidtid = CTF_ERR;
2768 2763 cup->cu_longtid = CTF_ERR;
2769 2764 cup->cu_elf = elf;
2770 2765 cup->cu_maxoff = nexthdr - 1;
2771 2766 cup->cu_ctfp = ctf_fdcreate(fd, &ret);
2772 - if (cup->cu_ctfp == NULL) {
2773 - ctf_free(cup, sizeof (ctf_cu_t));
2767 + if (cup->cu_ctfp == NULL)
2774 2768 return (ret);
2775 - }
2769 +
2776 2770 avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t),
2777 2771 offsetof(ctf_dwmap_t, cdm_avl));
2778 2772 cup->cu_errbuf = errbuf;
2779 2773 cup->cu_errlen = errlen;
2780 2774 bzero(&cup->cu_vars, sizeof (ctf_list_t));
2781 2775 bzero(&cup->cu_funcs, sizeof (ctf_list_t));
2782 2776 bzero(&cup->cu_bitfields, sizeof (ctf_list_t));
2783 2777
2784 2778 if ((ret = ctf_dwarf_die_elfenc(elf, cup, errbuf,
2785 - errlen)) != 0) {
2786 - avl_destroy(&cup->cu_map);
2787 - ctf_free(cup, sizeof (ctf_cu_t));
2779 + errlen)) != 0)
2788 2780 return (ret);
2789 - }
2790 2781
2791 - if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0) {
2792 - avl_destroy(&cup->cu_map);
2793 - ctf_free(cup, sizeof (ctf_cu_t));
2782 + if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0)
2794 2783 return (ret);
2795 - }
2784 +
2796 2785 if (cu == NULL) {
2797 2786 (void) snprintf(errbuf, errlen,
2798 - "file does not contain DWARF data\n");
2799 - avl_destroy(&cup->cu_map);
2800 - ctf_free(cup, sizeof (ctf_cu_t));
2801 - return (ECTF_CONVBKERR);
2787 + "file does not contain DWARF data");
2788 + return (ECTF_CONVNODEBUG);
2802 2789 }
2803 2790
2804 - if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0) {
2805 - avl_destroy(&cup->cu_map);
2806 - ctf_free(cup, sizeof (ctf_cu_t));
2791 + if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0)
2807 2792 return (ret);
2808 - }
2793 +
2809 2794 if (child == NULL) {
2810 2795 (void) snprintf(errbuf, errlen,
2811 - "file does not contain DWARF data\n");
2812 - avl_destroy(&cup->cu_map);
2813 - ctf_free(cup, sizeof (ctf_cu_t));
2814 - return (ECTF_CONVBKERR);
2796 + "file does not contain DWARF data");
2797 + return (ECTF_CONVNODEBUG);
2815 2798 }
2816 2799
2817 2800 cup->cu_cuoff = offset;
2818 2801 cup->cu_cu = child;
2819 2802
2820 - if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL) {
2821 - avl_destroy(&cup->cu_map);
2822 - ctf_free(cup, sizeof (ctf_cu_t));
2803 + if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL)
2823 2804 return (ret);
2824 - }
2825 2805
2826 2806 if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) {
2827 2807 size_t len = strlen(name) + 1;
2828 2808 char *b = basename(name);
2829 2809 cup->cu_name = strdup(b);
2830 2810 ctf_free(name, len);
2831 2811 }
2832 2812 break;
2833 2813 }
2834 2814
2835 2815 return (0);
2836 2816 }
2837 2817
2818 +/*
2819 + * This is our only recourse to identify a C source file that is missing debug
2820 + * info: it will be mentioned as an STT_FILE, but not have a compile unit entry.
2821 + * (A traditional ctfmerge works on individual files, so can identify missing
2822 + * DWARF more directly, via ctf_has_c_source() on the .o file.)
2823 + *
2824 + * As we operate on basenames, this can of course miss some cases, but it's
2825 + * better than not checking at all.
2826 + *
2827 + * We explicitly whitelist some CRT components. Failing that, there's always
2828 + * the -m option.
2829 + */
2830 +static boolean_t
2831 +c_source_has_debug(const char *file, ctf_cu_t *cus, size_t nr_cus)
2832 +{
2833 + const char *basename = strrchr(file, '/');
2838 2834
2839 -ctf_conv_status_t
2840 -ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, int *errp, ctf_file_t **fpp,
2835 + if (basename == NULL)
2836 + basename = file;
2837 + else
2838 + basename++;
2839 +
2840 + if (strcmp(basename, "common-crt.c") == 0 ||
2841 + strcmp(basename, "gmon.c") == 0 ||
2842 + strcmp(basename, "dlink_init.c") == 0 ||
2843 + strcmp(basename, "dlink_common.c") == 0 ||
2844 + strncmp(basename, "crt", strlen("crt")) == 0 ||
2845 + strncmp(basename, "values-", strlen("values-")) == 0)
2846 + return (B_TRUE);
2847 +
2848 + for (size_t i = 0; i < nr_cus; i++) {
2849 + if (strcmp(basename, cus[i].cu_name) == 0)
2850 + return (B_TRUE);
2851 + }
2852 +
2853 + return (B_FALSE);
2854 +}
2855 +
2856 +static int
2857 +ctf_dwarf_check_missing(ctf_cu_t *cus, size_t nr_cus, Elf *elf,
2841 2858 char *errmsg, size_t errlen)
2842 2859 {
2860 + Elf_Scn *scn, *strscn;
2861 + Elf_Data *data, *strdata;
2862 + GElf_Shdr shdr;
2863 + ulong_t i;
2864 +
2865 + scn = NULL;
2866 + while ((scn = elf_nextscn(elf, scn)) != NULL) {
2867 + if (gelf_getshdr(scn, &shdr) == NULL) {
2868 + (void) snprintf(errmsg, errlen,
2869 + "failed to get section header: %s\n",
2870 + elf_errmsg(elf_errno()));
2871 + return (EINVAL);
2872 + }
2873 +
2874 + if (shdr.sh_type == SHT_SYMTAB)
2875 + break;
2876 + }
2877 +
2878 + if (scn == NULL)
2879 + return (0);
2880 +
2881 + if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) {
2882 + (void) snprintf(errmsg, errlen,
2883 + "failed to get str section: %s\n",
2884 + elf_errmsg(elf_errno()));
2885 + return (EINVAL);
2886 + }
2887 +
2888 + if ((data = elf_getdata(scn, NULL)) == NULL) {
2889 + (void) snprintf(errmsg, errlen, "failed to read section: %s\n",
2890 + elf_errmsg(elf_errno()));
2891 + return (EINVAL);
2892 + }
2893 +
2894 + if ((strdata = elf_getdata(strscn, NULL)) == NULL) {
2895 + (void) snprintf(errmsg, errlen,
2896 + "failed to read string table: %s\n",
2897 + elf_errmsg(elf_errno()));
2898 + return (EINVAL);
2899 + }
2900 +
2901 + for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) {
2902 + GElf_Sym sym;
2903 + const char *file;
2904 + size_t len;
2905 +
2906 + if (gelf_getsym(data, i, &sym) == NULL) {
2907 + (void) snprintf(errmsg, errlen,
2908 + "failed to read sym %lu: %s\n",
2909 + i, elf_errmsg(elf_errno()));
2910 + return (EINVAL);
2911 + }
2912 +
2913 + if (GELF_ST_TYPE(sym.st_info) != STT_FILE)
2914 + continue;
2915 +
2916 + file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name);
2917 + len = strlen(file);
2918 + if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0)
2919 + continue;
2920 +
2921 + if (!c_source_has_debug(file, cus, nr_cus)) {
2922 + (void) snprintf(errmsg, errlen,
2923 + "file %s is missing debug info\n", file);
2924 + return (ECTF_CONVNODEBUG);
2925 + }
2926 + }
2927 +
2928 + return (0);
2929 +}
2930 +
2931 +int
2932 +ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, uint_t flags,
2933 + ctf_file_t **fpp, char *errbuf, size_t errlen)
2934 +{
2843 2935 int err, ret, ndies, i;
2844 2936 Dwarf_Debug dw;
2845 2937 Dwarf_Error derr;
2846 2938 ctf_cu_t *cdies = NULL, *cup;
2847 2939 workq_t *wqp = NULL;
2848 2940
2849 - if (errp == NULL)
2850 - errp = &err;
2851 - *errp = 0;
2852 2941 *fpp = NULL;
2853 2942
2854 2943 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr);
2855 2944 if (ret != DW_DLV_OK) {
2856 - /*
2857 - * We may want to expect DWARF data here and fail conversion if
2858 - * it's missing. In this case, if we actually have some amount
2859 - * of DWARF, but no section, for now, just go ahead and create
2860 - * an empty CTF file.
2861 - */
2862 2945 if (ret == DW_DLV_NO_ENTRY ||
2863 2946 dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) {
2864 - *fpp = ctf_create(errp);
2865 - return (*fpp != NULL ? CTF_CONV_SUCCESS :
2866 - CTF_CONV_ERROR);
2947 + (void) snprintf(errbuf, errlen,
2948 + "file does not contain DWARF data\n");
2949 + return (ECTF_CONVNODEBUG);
2867 2950 }
2868 - (void) snprintf(errmsg, errlen,
2869 - "failed to initialize DWARF: %s\n",
2870 - dwarf_errmsg(derr));
2871 - *errp = ECTF_CONVBKERR;
2872 - return (CTF_CONV_ERROR);
2951 +
2952 + (void) snprintf(errbuf, errlen,
2953 + "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr));
2954 + return (ECTF_CONVBKERR);
2873 2955 }
2874 2956
2875 2957 /*
2876 2958 * Iterate over all of the compilation units and create a ctf_cu_t for
2877 2959 * each of them. This is used to determine if we have zero, one, or
2878 2960 * multiple dies to convert. If we have zero, that's an error. If
2879 2961 * there's only one die, that's the simple case. No merge needed and
2880 2962 * only a single Dwarf_Debug as well.
2881 2963 */
2882 2964 ndies = 0;
2883 - ret = ctf_dwarf_count_dies(dw, &derr, &ndies, errmsg, errlen);
2884 - if (ret != 0) {
2885 - *errp = ret;
2886 - goto out;
2965 + err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen);
2966 +
2967 + ctf_dprintf("found %d DWARF CUs\n", ndies);
2968 +
2969 + if (ndies == 0) {
2970 + (void) snprintf(errbuf, errlen,
2971 + "file does not contain DWARF data\n");
2972 + return (ECTF_CONVNODEBUG);
2887 2973 }
2888 2974
2889 2975 (void) dwarf_finish(dw, &derr);
2890 2976 cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies);
2891 2977 if (cdies == NULL) {
2892 - *errp = ENOMEM;
2893 - return (CTF_CONV_ERROR);
2978 + return (ENOMEM);
2894 2979 }
2895 2980
2981 + bzero(cdies, sizeof (ctf_cu_t) * ndies);
2982 +
2896 2983 for (i = 0; i < ndies; i++) {
2897 2984 cup = &cdies[i];
2898 2985 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL,
2899 2986 &cup->cu_dwarf, &derr);
2900 2987 if (ret != 0) {
2901 2988 ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2902 - (void) snprintf(errmsg, errlen,
2989 + (void) snprintf(errbuf, errlen,
2903 2990 "failed to initialize DWARF: %s\n",
2904 2991 dwarf_errmsg(derr));
2905 - *errp = ECTF_CONVBKERR;
2906 - return (CTF_CONV_ERROR);
2992 + return (ECTF_CONVBKERR);
2907 2993 }
2908 2994
2909 - ret = ctf_dwarf_init_die(fd, elf, &cdies[i], i, errmsg, errlen);
2910 - if (ret != 0) {
2911 - *errp = ret;
2995 + err = ctf_dwarf_init_die(fd, elf, cup, i, errbuf, errlen);
2996 + if (err != 0)
2912 2997 goto out;
2913 - }
2914 2998
2915 2999 cup->cu_doweaks = ndies > 1 ? B_FALSE : B_TRUE;
2916 3000 }
2917 3001
2918 - ctf_dprintf("found %d DWARF CUs\n", ndies);
3002 + if (!(flags & CTF_ALLOW_MISSING_DEBUG) &&
3003 + (err = ctf_dwarf_check_missing(cdies, ndies,
3004 + elf, errbuf, errlen)) != 0)
3005 + goto out;
2919 3006
2920 3007 /*
2921 3008 * If we only have one compilation unit, there's no reason to use
2922 3009 * multiple threads, even if the user requested them. After all, they
2923 3010 * just gave us an upper bound.
2924 3011 */
2925 3012 if (ndies == 1)
2926 3013 nthrs = 1;
2927 3014
2928 3015 if (workq_init(&wqp, nthrs) == -1) {
2929 - *errp = errno;
3016 + err = errno;
2930 3017 goto out;
2931 3018 }
2932 3019
2933 3020 for (i = 0; i < ndies; i++) {
2934 3021 cup = &cdies[i];
2935 3022 ctf_dprintf("adding cu %s: %p, %x %x\n", cup->cu_name,
2936 3023 cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff);
2937 3024 if (workq_add(wqp, cup) == -1) {
2938 - *errp = errno;
3025 + err = errno;
2939 3026 goto out;
2940 3027 }
2941 3028 }
2942 3029
2943 - ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, errp);
3030 + ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err);
2944 3031 if (ret == WORKQ_ERROR) {
2945 - *errp = errno;
3032 + err = errno;
2946 3033 goto out;
2947 3034 } else if (ret == WORKQ_UERROR) {
2948 3035 ctf_dprintf("internal convert failed: %s\n",
2949 - ctf_errmsg(*errp));
3036 + ctf_errmsg(err));
2950 3037 goto out;
2951 3038 }
2952 3039
2953 3040 ctf_dprintf("Determining next phase: have %d CUs\n", ndies);
2954 3041 if (ndies != 1) {
2955 3042 ctf_merge_t *cmp;
2956 3043
2957 - cmp = ctf_merge_init(fd, &ret);
2958 - if (cmp == NULL) {
2959 - *errp = ret;
3044 + cmp = ctf_merge_init(fd, &err);
3045 + if (cmp == NULL)
2960 3046 goto out;
2961 - }
2962 3047
2963 3048 ctf_dprintf("setting threads\n");
2964 - if ((ret = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
3049 + if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
2965 3050 ctf_merge_fini(cmp);
2966 - *errp = ret;
2967 3051 goto out;
2968 3052 }
2969 3053
2970 3054 for (i = 0; i < ndies; i++) {
2971 3055 cup = &cdies[i];
2972 - ctf_dprintf("adding cu %s (%p)\n", cup->cu_name,
2973 - cup->cu_ctfp);
2974 - if ((ret = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
3056 + if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
2975 3057 ctf_merge_fini(cmp);
2976 - *errp = ret;
2977 3058 goto out;
2978 3059 }
2979 3060 }
2980 3061
2981 3062 ctf_dprintf("performing merge\n");
2982 - ret = ctf_merge_merge(cmp, fpp);
2983 - if (ret != 0) {
3063 + err = ctf_merge_merge(cmp, fpp);
3064 + if (err != 0) {
2984 3065 ctf_dprintf("failed merge!\n");
2985 3066 *fpp = NULL;
2986 3067 ctf_merge_fini(cmp);
2987 - *errp = ret;
2988 3068 goto out;
2989 3069 }
2990 3070 ctf_merge_fini(cmp);
2991 - *errp = 0;
3071 + err = 0;
2992 3072 ctf_dprintf("successfully converted!\n");
2993 3073 } else {
2994 - *errp = 0;
3074 + err = 0;
2995 3075 *fpp = cdies->cu_ctfp;
2996 3076 cdies->cu_ctfp = NULL;
2997 3077 ctf_dprintf("successfully converted!\n");
2998 3078 }
2999 3079
3000 3080 out:
3001 3081 workq_fini(wqp);
3002 3082 ctf_dwarf_free_dies(cdies, ndies);
3003 - return (*fpp != NULL ? CTF_CONV_SUCCESS : CTF_CONV_ERROR);
3083 + return (err);
3004 3084 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX