1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright (c) 2019 Joyent, Inc. All rights reserved. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/suntpi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/taskq.h> 52 53 #include <sys/systm.h> 54 #include <sys/param.h> 55 #include <sys/kmem.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/vtrace.h> 59 #include <sys/isa_defs.h> 60 #include <sys/mac.h> 61 #include <net/if.h> 62 #include <net/if_arp.h> 63 #include <net/route.h> 64 #include <sys/sockio.h> 65 #include <netinet/in.h> 66 #include <net/if_dl.h> 67 68 #include <inet/common.h> 69 #include <inet/mi.h> 70 #include <inet/mib2.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/snmpcom.h> 74 #include <inet/optcom.h> 75 #include <inet/kstatcom.h> 76 77 #include <netinet/igmp_var.h> 78 #include <netinet/ip6.h> 79 #include <netinet/icmp6.h> 80 #include <netinet/sctp.h> 81 82 #include <inet/ip.h> 83 #include <inet/ip_impl.h> 84 #include <inet/ip6.h> 85 #include <inet/ip6_asp.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/ip_multi.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_rts.h> 93 #include <inet/ip_ndp.h> 94 #include <inet/ip_listutils.h> 95 #include <netinet/igmp.h> 96 #include <netinet/ip_mroute.h> 97 #include <inet/ipp_common.h> 98 99 #include <net/pfkeyv2.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <inet/iptun/iptun_impl.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 #include <inet/ilb_ip.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/pattr.h> 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <sys/squeue_impl.h> 127 #include <inet/ip_arp.h> 128 129 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 134 * IP_SQUEUE_ENTER: SQ_PROCESS 135 * IP_SQUEUE_FILL: SQ_FILL 136 */ 137 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 138 139 int ip_squeue_flag; 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 uint_t ird_flags; /* see below */ 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* Include ire_testhidden and IRE_IF_CLONE routes */ 181 #define IRD_REPORT_ALL 0x01 182 183 /* 184 * Cluster specific hooks. These should be NULL when booted as a non-cluster 185 */ 186 187 /* 188 * Hook functions to enable cluster networking 189 * On non-clustered systems these vectors must always be NULL. 190 * 191 * Hook function to Check ip specified ip address is a shared ip address 192 * in the cluster 193 * 194 */ 195 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 196 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 197 198 /* 199 * Hook function to generate cluster wide ip fragment identifier 200 */ 201 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 202 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 203 void *args) = NULL; 204 205 /* 206 * Hook function to generate cluster wide SPI. 207 */ 208 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 209 void *) = NULL; 210 211 /* 212 * Hook function to verify if the SPI is already utlized. 213 */ 214 215 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 216 217 /* 218 * Hook function to delete the SPI from the cluster wide repository. 219 */ 220 221 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 222 223 /* 224 * Hook function to inform the cluster when packet received on an IDLE SA 225 */ 226 227 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 228 in6_addr_t, in6_addr_t, void *) = NULL; 229 230 /* 231 * Synchronization notes: 232 * 233 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 234 * MT level protection given by STREAMS. IP uses a combination of its own 235 * internal serialization mechanism and standard Solaris locking techniques. 236 * The internal serialization is per phyint. This is used to serialize 237 * plumbing operations, IPMP operations, most set ioctls, etc. 238 * 239 * Plumbing is a long sequence of operations involving message 240 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 241 * involved in plumbing operations. A natural model is to serialize these 242 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 243 * parallel without any interference. But various set ioctls on hme0 are best 244 * serialized, along with IPMP operations and processing of DLPI control 245 * messages received from drivers on a per phyint basis. This serialization is 246 * provided by the ipsq_t and primitives operating on this. Details can 247 * be found in ip_if.c above the core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 253 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 254 * address of an ipif has to go through the ipsq_t. This ensures that only 255 * one such exclusive operation proceeds at any time on the ipif. It then 256 * waits for all refcnts 257 * associated with this ipif to come down to zero. The address is changed 258 * only after the ipif has been quiesced. Then the ipif is brought up again. 259 * More details are described above the comment in ip_sioctl_flags. 260 * 261 * Packet processing is based mostly on IREs and are fully multi-threaded 262 * using standard Solaris MT techniques. 263 * 264 * There are explicit locks in IP to handle: 265 * - The ip_g_head list maintained by mi_open_link() and friends. 266 * 267 * - The reassembly data structures (one lock per hash bucket) 268 * 269 * - conn_lock is meant to protect conn_t fields. The fields actually 270 * protected by conn_lock are documented in the conn_t definition. 271 * 272 * - ire_lock to protect some of the fields of the ire, IRE tables 273 * (one lock per hash bucket). Refer to ip_ire.c for details. 274 * 275 * - ndp_g_lock and ncec_lock for protecting NCEs. 276 * 277 * - ill_lock protects fields of the ill and ipif. Details in ip.h 278 * 279 * - ill_g_lock: This is a global reader/writer lock. Protects the following 280 * * The AVL tree based global multi list of all ills. 281 * * The linked list of all ipifs of an ill 282 * * The <ipsq-xop> mapping 283 * * <ill-phyint> association 284 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 285 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 286 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 287 * writer for the actual duration of the insertion/deletion/change. 288 * 289 * - ill_lock: This is a per ill mutex. 290 * It protects some members of the ill_t struct; see ip.h for details. 291 * It also protects the <ill-phyint> assoc. 292 * It also protects the list of ipifs hanging off the ill. 293 * 294 * - ipsq_lock: This is a per ipsq_t mutex lock. 295 * This protects some members of the ipsq_t struct; see ip.h for details. 296 * It also protects the <ipsq-ipxop> mapping 297 * 298 * - ipx_lock: This is a per ipxop_t mutex lock. 299 * This protects some members of the ipxop_t struct; see ip.h for details. 300 * 301 * - phyint_lock: This is a per phyint mutex lock. Protects just the 302 * phyint_flags 303 * 304 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 305 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 306 * uniqueness check also done atomically. 307 * 308 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 309 * group list linked by ill_usesrc_grp_next. It also protects the 310 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 311 * group is being added or deleted. This lock is taken as a reader when 312 * walking the list/group(eg: to get the number of members in a usesrc group). 313 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 314 * field is changing state i.e from NULL to non-NULL or vice-versa. For 315 * example, it is not necessary to take this lock in the initial portion 316 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 317 * operations are executed exclusively and that ensures that the "usesrc 318 * group state" cannot change. The "usesrc group state" change can happen 319 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 320 * 321 * Changing <ill-phyint>, <ipsq-xop> assocications: 322 * 323 * To change the <ill-phyint> association, the ill_g_lock must be held 324 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 325 * must be held. 326 * 327 * To change the <ipsq-xop> association, the ill_g_lock must be held as 328 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 329 * This is only done when ills are added or removed from IPMP groups. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 352 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 353 * arl_lock -> ill_lock 354 * ips_ire_dep_lock -> irb_lock 355 * 356 * When more than 1 ill lock is needed to be held, all ill lock addresses 357 * are sorted on address and locked starting from highest addressed lock 358 * downward. 359 * 360 * Multicast scenarios 361 * ips_ill_g_lock -> ill_mcast_lock 362 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 372 * 373 * Trusted Solaris scenarios 374 * 375 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 376 * igsa_lock -> gcdb_lock 377 * gcgrp_rwlock -> ire_lock 378 * gcgrp_rwlock -> gcdb_lock 379 * 380 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 381 * 382 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 383 * sq_lock -> conn_lock -> QLOCK(q) 384 * ill_lock -> ft_lock -> fe_lock 385 * 386 * Routing/forwarding table locking notes: 387 * 388 * Lock acquisition order: Radix tree lock, irb_lock. 389 * Requirements: 390 * i. Walker must not hold any locks during the walker callback. 391 * ii Walker must not see a truncated tree during the walk because of any node 392 * deletion. 393 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 394 * in many places in the code to walk the irb list. Thus even if all the 395 * ires in a bucket have been deleted, we still can't free the radix node 396 * until the ires have actually been inactive'd (freed). 397 * 398 * Tree traversal - Need to hold the global tree lock in read mode. 399 * Before dropping the global tree lock, need to either increment the ire_refcnt 400 * to ensure that the radix node can't be deleted. 401 * 402 * Tree add - Need to hold the global tree lock in write mode to add a 403 * radix node. To prevent the node from being deleted, increment the 404 * irb_refcnt, after the node is added to the tree. The ire itself is 405 * added later while holding the irb_lock, but not the tree lock. 406 * 407 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 408 * All associated ires must be inactive (i.e. freed), and irb_refcnt 409 * must be zero. 410 * 411 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 412 * global tree lock (read mode) for traversal. 413 * 414 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 415 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 416 * 417 * IPsec notes : 418 * 419 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 420 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 421 * ip_xmit_attr_t has the 422 * information used by the IPsec code for applying the right level of 423 * protection. The information initialized by IP in the ip_xmit_attr_t 424 * is determined by the per-socket policy or global policy in the system. 425 * For inbound datagrams, the ip_recv_attr_t 426 * starts out with nothing in it. It gets filled 427 * with the right information if it goes through the AH/ESP code, which 428 * happens if the incoming packet is secure. The information initialized 429 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 430 * the policy requirements needed by per-socket policy or global policy 431 * is met or not. 432 * 433 * For fully connected sockets i.e dst, src [addr, port] is known, 434 * conn_policy_cached is set indicating that policy has been cached. 435 * conn_in_enforce_policy may or may not be set depending on whether 436 * there is a global policy match or per-socket policy match. 437 * Policy inheriting happpens in ip_policy_set once the destination is known. 438 * Once the right policy is set on the conn_t, policy cannot change for 439 * this socket. This makes life simpler for TCP (UDP ?) where 440 * re-transmissions go out with the same policy. For symmetry, policy 441 * is cached for fully connected UDP sockets also. Thus if policy is cached, 442 * it also implies that policy is latched i.e policy cannot change 443 * on these sockets. As we have the right policy on the conn, we don't 444 * have to lookup global policy for every outbound and inbound datagram 445 * and thus serving as an optimization. Note that a global policy change 446 * does not affect fully connected sockets if they have policy. If fully 447 * connected sockets did not have any policy associated with it, global 448 * policy change may affect them. 449 * 450 * IP Flow control notes: 451 * --------------------- 452 * Non-TCP streams are flow controlled by IP. The way this is accomplished 453 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 454 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 455 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 456 * functions. 457 * 458 * Per Tx ring udp flow control: 459 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 460 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 461 * 462 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 463 * To achieve best performance, outgoing traffic need to be fanned out among 464 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 465 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 466 * the address of connp as fanout hint to mac_tx(). Under flow controlled 467 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 468 * cookie points to a specific Tx ring that is blocked. The cookie is used to 469 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 470 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 471 * connp's. The drain list is not a single list but a configurable number of 472 * lists. 473 * 474 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 475 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 476 * which is equal to 128. This array in turn contains a pointer to idl_t[], 477 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 478 * list will point to the list of connp's that are flow controlled. 479 * 480 * --------------- ------- ------- ------- 481 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 482 * | --------------- ------- ------- ------- 483 * | --------------- ------- ------- ------- 484 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 485 * ---------------- | --------------- ------- ------- ------- 486 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 487 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 488 * | --------------- ------- ------- ------- 489 * . . . . . 490 * | --------------- ------- ------- ------- 491 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 492 * --------------- ------- ------- ------- 493 * --------------- ------- ------- ------- 494 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 495 * | --------------- ------- ------- ------- 496 * | --------------- ------- ------- ------- 497 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 498 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 499 * ---------------- | . . . . 500 * | --------------- ------- ------- ------- 501 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 502 * --------------- ------- ------- ------- 503 * ..... 504 * ---------------- 505 * |idl_tx_list[n]|-> ... 506 * ---------------- 507 * 508 * When mac_tx() returns a cookie, the cookie is hashed into an index into 509 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 510 * to insert the conn onto. conn_drain_insert() asserts flow control for the 511 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 512 * Further, conn_blocked is set to indicate that the conn is blocked. 513 * 514 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 515 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 516 * is again hashed to locate the appropriate idl_tx_list, which is then 517 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 518 * the drain list and calls conn_drain_remove() to clear flow control (via 519 * calling su_txq_full() or clearing QFULL), and remove the conn from the 520 * drain list. 521 * 522 * Note that the drain list is not a single list but a (configurable) array of 523 * lists (8 elements by default). Synchronization between drain insertion and 524 * flow control wakeup is handled by using idl_txl->txl_lock, and only 525 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 526 * 527 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 528 * On the send side, if the packet cannot be sent down to the driver by IP 529 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 530 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 531 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 532 * control has been relieved, the blocked conns in the 0'th drain list are 533 * drained as in the non-STREAMS case. 534 * 535 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 536 * is done when the conn is inserted into the drain list (conn_drain_insert()) 537 * and cleared when the conn is removed from the it (conn_drain_remove()). 538 * 539 * IPQOS notes: 540 * 541 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 542 * and IPQoS modules. IPPF includes hooks in IP at different control points 543 * (callout positions) which direct packets to IPQoS modules for policy 544 * processing. Policies, if present, are global. 545 * 546 * The callout positions are located in the following paths: 547 * o local_in (packets destined for this host) 548 * o local_out (packets orginating from this host ) 549 * o fwd_in (packets forwarded by this m/c - inbound) 550 * o fwd_out (packets forwarded by this m/c - outbound) 551 * Hooks at these callout points can be enabled/disabled using the ndd variable 552 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 553 * By default all the callout positions are enabled. 554 * 555 * Outbound (local_out) 556 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 557 * 558 * Inbound (local_in) 559 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 560 * 561 * Forwarding (in and out) 562 * Hooks are placed in ire_recv_forward_v4/v6. 563 * 564 * IP Policy Framework processing (IPPF processing) 565 * Policy processing for a packet is initiated by ip_process, which ascertains 566 * that the classifier (ipgpc) is loaded and configured, failing which the 567 * packet resumes normal processing in IP. If the clasifier is present, the 568 * packet is acted upon by one or more IPQoS modules (action instances), per 569 * filters configured in ipgpc and resumes normal IP processing thereafter. 570 * An action instance can drop a packet in course of its processing. 571 * 572 * Zones notes: 573 * 574 * The partitioning rules for networking are as follows: 575 * 1) Packets coming from a zone must have a source address belonging to that 576 * zone. 577 * 2) Packets coming from a zone can only be sent on a physical interface on 578 * which the zone has an IP address. 579 * 3) Between two zones on the same machine, packet delivery is only allowed if 580 * there's a matching route for the destination and zone in the forwarding 581 * table. 582 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 583 * different zones can bind to the same port with the wildcard address 584 * (INADDR_ANY). 585 * 586 * The granularity of interface partitioning is at the logical interface level. 587 * Therefore, every zone has its own IP addresses, and incoming packets can be 588 * attributed to a zone unambiguously. A logical interface is placed into a zone 589 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 590 * structure. Rule (1) is implemented by modifying the source address selection 591 * algorithm so that the list of eligible addresses is filtered based on the 592 * sending process zone. 593 * 594 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 595 * across all zones, depending on their type. Here is the break-up: 596 * 597 * IRE type Shared/exclusive 598 * -------- ---------------- 599 * IRE_BROADCAST Exclusive 600 * IRE_DEFAULT (default routes) Shared (*) 601 * IRE_LOCAL Exclusive (x) 602 * IRE_LOOPBACK Exclusive 603 * IRE_PREFIX (net routes) Shared (*) 604 * IRE_IF_NORESOLVER (interface routes) Exclusive 605 * IRE_IF_RESOLVER (interface routes) Exclusive 606 * IRE_IF_CLONE (interface routes) Exclusive 607 * IRE_HOST (host routes) Shared (*) 608 * 609 * (*) A zone can only use a default or off-subnet route if the gateway is 610 * directly reachable from the zone, that is, if the gateway's address matches 611 * one of the zone's logical interfaces. 612 * 613 * (x) IRE_LOCAL are handled a bit differently. 614 * When ip_restrict_interzone_loopback is set (the default), 615 * ire_route_recursive restricts loopback using an IRE_LOCAL 616 * between zone to the case when L2 would have conceptually looped the packet 617 * back, i.e. the loopback which is required since neither Ethernet drivers 618 * nor Ethernet hardware loops them back. This is the case when the normal 619 * routes (ignoring IREs with different zoneids) would send out the packet on 620 * the same ill as the ill with which is IRE_LOCAL is associated. 621 * 622 * Multiple zones can share a common broadcast address; typically all zones 623 * share the 255.255.255.255 address. Incoming as well as locally originated 624 * broadcast packets must be dispatched to all the zones on the broadcast 625 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 626 * since some zones may not be on the 10.16.72/24 network. To handle this, each 627 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 628 * sent to every zone that has an IRE_BROADCAST entry for the destination 629 * address on the input ill, see ip_input_broadcast(). 630 * 631 * Applications in different zones can join the same multicast group address. 632 * The same logic applies for multicast as for broadcast. ip_input_multicast 633 * dispatches packets to all zones that have members on the physical interface. 634 */ 635 636 /* 637 * Squeue Fanout flags: 638 * 0: No fanout. 639 * 1: Fanout across all squeues 640 */ 641 boolean_t ip_squeue_fanout = 0; 642 643 /* 644 * Maximum dups allowed per packet. 645 */ 646 uint_t ip_max_frag_dups = 10; 647 648 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 649 cred_t *credp, boolean_t isv6); 650 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 651 652 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 653 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 654 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 655 ip_recv_attr_t *); 656 static void icmp_options_update(ipha_t *); 657 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 658 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 659 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 660 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 663 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 664 ip_recv_attr_t *); 665 666 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 667 char *ip_dot_addr(ipaddr_t, char *); 668 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 669 static char *ip_dot_saddr(uchar_t *, char *); 670 static int ip_lrput(queue_t *, mblk_t *); 671 ipaddr_t ip_net_mask(ipaddr_t); 672 char *ip_nv_lookup(nv_t *, int); 673 int ip_rput(queue_t *, mblk_t *); 674 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 675 void *dummy_arg); 676 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 677 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 678 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 680 ip_stack_t *, boolean_t); 681 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 682 boolean_t); 683 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 688 ip_stack_t *ipst, boolean_t); 689 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 690 ip_stack_t *ipst, boolean_t); 691 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 706 ip_stack_t *ipst); 707 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 708 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 709 static void ip_snmp_get2_v4_media(ncec_t *, void *); 710 static void ip_snmp_get2_v6_media(ncec_t *, void *); 711 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 712 713 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 714 mblk_t *); 715 716 static void conn_drain_init(ip_stack_t *); 717 static void conn_drain_fini(ip_stack_t *); 718 static void conn_drain(conn_t *connp, boolean_t closing); 719 720 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 721 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 728 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 729 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 730 const in6_addr_t *); 731 732 static int ip_squeue_switch(int); 733 734 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 735 static void ip_kstat_fini(netstackid_t, kstat_t *); 736 static int ip_kstat_update(kstat_t *kp, int rw); 737 static void *icmp_kstat_init(netstackid_t); 738 static void icmp_kstat_fini(netstackid_t, kstat_t *); 739 static int icmp_kstat_update(kstat_t *kp, int rw); 740 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 741 static void ip_kstat2_fini(netstackid_t, kstat_t *); 742 743 static void ipobs_init(ip_stack_t *); 744 static void ipobs_fini(ip_stack_t *); 745 746 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 747 748 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 749 750 static long ip_rput_pullups; 751 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 752 753 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 754 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 755 756 int ip_debug; 757 758 /* 759 * Multirouting/CGTP stuff 760 */ 761 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 762 763 /* 764 * IP tunables related declarations. Definitions are in ip_tunables.c 765 */ 766 extern mod_prop_info_t ip_propinfo_tbl[]; 767 extern int ip_propinfo_count; 768 769 /* 770 * Table of IP ioctls encoding the various properties of the ioctl and 771 * indexed based on the last byte of the ioctl command. Occasionally there 772 * is a clash, and there is more than 1 ioctl with the same last byte. 773 * In such a case 1 ioctl is encoded in the ndx table and the remaining 774 * ioctls are encoded in the misc table. An entry in the ndx table is 775 * retrieved by indexing on the last byte of the ioctl command and comparing 776 * the ioctl command with the value in the ndx table. In the event of a 777 * mismatch the misc table is then searched sequentially for the desired 778 * ioctl command. 779 * 780 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 781 */ 782 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 783 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 794 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 795 MISC_CMD, ip_siocaddrt, NULL }, 796 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 797 MISC_CMD, ip_siocdelrt, NULL }, 798 799 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 800 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 801 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 802 IF_CMD, ip_sioctl_get_addr, NULL }, 803 804 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 805 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 806 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 807 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 808 809 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 810 IPI_PRIV | IPI_WR, 811 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 812 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 813 IPI_MODOK | IPI_GET_CMD, 814 IF_CMD, ip_sioctl_get_flags, NULL }, 815 816 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 817 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 818 819 /* copyin size cannot be coded for SIOCGIFCONF */ 820 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 821 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 822 823 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 824 IF_CMD, ip_sioctl_mtu, NULL }, 825 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 826 IF_CMD, ip_sioctl_get_mtu, NULL }, 827 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 828 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 829 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 830 IF_CMD, ip_sioctl_brdaddr, NULL }, 831 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 832 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 833 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 834 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 835 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 836 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 837 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 838 IF_CMD, ip_sioctl_metric, NULL }, 839 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 840 841 /* See 166-168 below for extended SIOC*XARP ioctls */ 842 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 843 ARP_CMD, ip_sioctl_arp, NULL }, 844 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 847 ARP_CMD, ip_sioctl_arp, NULL }, 848 849 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 871 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 872 MISC_CMD, if_unitsel, if_unitsel_restart }, 873 874 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 893 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 894 IPI_PRIV | IPI_WR | IPI_MODOK, 895 IF_CMD, ip_sioctl_sifname, NULL }, 896 897 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 911 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 912 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 913 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 914 IF_CMD, ip_sioctl_get_muxid, NULL }, 915 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 916 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 917 918 /* Both if and lif variants share same func */ 919 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 920 IF_CMD, ip_sioctl_get_lifindex, NULL }, 921 /* Both if and lif variants share same func */ 922 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 923 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 924 925 /* copyin size cannot be coded for SIOCGIFCONF */ 926 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 927 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 928 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 946 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 947 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 948 ip_sioctl_removeif_restart }, 949 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 950 IPI_GET_CMD | IPI_PRIV | IPI_WR, 951 LIF_CMD, ip_sioctl_addif, NULL }, 952 #define SIOCLIFADDR_NDX 112 953 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 954 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 955 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 956 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 957 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 958 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 959 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 960 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 961 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 962 IPI_PRIV | IPI_WR, 963 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 964 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 965 IPI_GET_CMD | IPI_MODOK, 966 LIF_CMD, ip_sioctl_get_flags, NULL }, 967 968 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 969 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 971 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 972 ip_sioctl_get_lifconf, NULL }, 973 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 974 LIF_CMD, ip_sioctl_mtu, NULL }, 975 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 976 LIF_CMD, ip_sioctl_get_mtu, NULL }, 977 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 978 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 979 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 980 LIF_CMD, ip_sioctl_brdaddr, NULL }, 981 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 982 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 983 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 984 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 985 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 986 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 987 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 988 LIF_CMD, ip_sioctl_metric, NULL }, 989 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 990 IPI_PRIV | IPI_WR | IPI_MODOK, 991 LIF_CMD, ip_sioctl_slifname, 992 ip_sioctl_slifname_restart }, 993 994 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 995 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 996 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 997 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 998 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 999 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1000 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1001 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1002 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1003 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1004 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1005 LIF_CMD, ip_sioctl_token, NULL }, 1006 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1007 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1008 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1009 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1010 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1011 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1012 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1013 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1014 1015 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1016 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1017 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1018 LIF_CMD, ip_siocdelndp_v6, NULL }, 1019 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1020 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1021 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1022 LIF_CMD, ip_siocsetndp_v6, NULL }, 1023 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1024 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1025 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1026 MISC_CMD, ip_sioctl_tonlink, NULL }, 1027 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1028 MISC_CMD, ip_sioctl_tmysite, NULL }, 1029 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 1032 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1033 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 1038 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1041 LIF_CMD, ip_sioctl_get_binding, NULL }, 1042 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1043 IPI_PRIV | IPI_WR, 1044 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1045 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1046 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1047 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1048 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1049 1050 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1051 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 1055 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* These are handled in ip_sioctl_copyin_setup itself */ 1058 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1059 MISC_CMD, NULL, NULL }, 1060 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1061 MISC_CMD, NULL, NULL }, 1062 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1063 1064 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1065 ip_sioctl_get_lifconf, NULL }, 1066 1067 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1068 XARP_CMD, ip_sioctl_arp, NULL }, 1069 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1070 XARP_CMD, ip_sioctl_arp, NULL }, 1071 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1072 XARP_CMD, ip_sioctl_arp, NULL }, 1073 1074 /* SIOCPOPSOCKFS is not handled by IP */ 1075 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1076 1077 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1078 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1079 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1080 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1081 ip_sioctl_slifzone_restart }, 1082 /* 172-174 are SCTP ioctls and not handled by IP */ 1083 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1087 IPI_GET_CMD, LIF_CMD, 1088 ip_sioctl_get_lifusesrc, 0 }, 1089 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1090 IPI_PRIV | IPI_WR, 1091 LIF_CMD, ip_sioctl_slifusesrc, 1092 NULL }, 1093 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1094 ip_sioctl_get_lifsrcof, NULL }, 1095 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1098 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1099 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1100 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1101 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1102 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1103 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* SIOCSENABLESDP is handled by SDP */ 1105 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1106 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1107 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1108 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1109 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1110 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1111 ip_sioctl_ilb_cmd, NULL }, 1112 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1113 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1114 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1115 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1116 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1117 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1118 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1119 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1120 }; 1121 1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1123 1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1125 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1126 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { ND_GET, 0, 0, 0, NULL, NULL }, 1130 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1131 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1132 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1133 MISC_CMD, mrt_ioctl}, 1134 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1135 MISC_CMD, mrt_ioctl}, 1136 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1137 MISC_CMD, mrt_ioctl} 1138 }; 1139 1140 int ip_misc_ioctl_count = 1141 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1142 1143 int conn_drain_nthreads; /* Number of drainers reqd. */ 1144 /* Settable in /etc/system */ 1145 /* Defined in ip_ire.c */ 1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1149 1150 static nv_t ire_nv_arr[] = { 1151 { IRE_BROADCAST, "BROADCAST" }, 1152 { IRE_LOCAL, "LOCAL" }, 1153 { IRE_LOOPBACK, "LOOPBACK" }, 1154 { IRE_DEFAULT, "DEFAULT" }, 1155 { IRE_PREFIX, "PREFIX" }, 1156 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1157 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1158 { IRE_IF_CLONE, "IF_CLONE" }, 1159 { IRE_HOST, "HOST" }, 1160 { IRE_MULTICAST, "MULTICAST" }, 1161 { IRE_NOROUTE, "NOROUTE" }, 1162 { 0 } 1163 }; 1164 1165 nv_t *ire_nv_tbl = ire_nv_arr; 1166 1167 /* Simple ICMP IP Header Template */ 1168 static ipha_t icmp_ipha = { 1169 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1170 }; 1171 1172 struct module_info ip_mod_info = { 1173 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1174 IP_MOD_LOWAT 1175 }; 1176 1177 /* 1178 * Duplicate static symbols within a module confuses mdb; so we avoid the 1179 * problem by making the symbols here distinct from those in udp.c. 1180 */ 1181 1182 /* 1183 * Entry points for IP as a device and as a module. 1184 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1185 */ 1186 static struct qinit iprinitv4 = { 1187 ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1188 }; 1189 1190 struct qinit iprinitv6 = { 1191 ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info 1192 }; 1193 1194 static struct qinit ipwinit = { 1195 ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info 1196 }; 1197 1198 static struct qinit iplrinit = { 1199 ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1200 }; 1201 1202 static struct qinit iplwinit = { 1203 ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info 1204 }; 1205 1206 /* For AF_INET aka /dev/ip */ 1207 struct streamtab ipinfov4 = { 1208 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1209 }; 1210 1211 /* For AF_INET6 aka /dev/ip6 */ 1212 struct streamtab ipinfov6 = { 1213 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1214 }; 1215 1216 #ifdef DEBUG 1217 boolean_t skip_sctp_cksum = B_FALSE; 1218 #endif 1219 1220 /* 1221 * Generate an ICMP fragmentation needed message. 1222 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1223 * constructed by the caller. 1224 */ 1225 void 1226 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1227 { 1228 icmph_t icmph; 1229 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1230 1231 mp = icmp_pkt_err_ok(mp, ira); 1232 if (mp == NULL) 1233 return; 1234 1235 bzero(&icmph, sizeof (icmph_t)); 1236 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1237 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1238 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1239 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1240 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1241 1242 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1243 } 1244 1245 /* 1246 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1247 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1248 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1249 * Likewise, if the ICMP error is misformed (too short, etc), then it 1250 * returns NULL. The caller uses this to determine whether or not to send 1251 * to raw sockets. 1252 * 1253 * All error messages are passed to the matching transport stream. 1254 * 1255 * The following cases are handled by icmp_inbound: 1256 * 1) It needs to send a reply back and possibly delivering it 1257 * to the "interested" upper clients. 1258 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1259 * 3) It needs to change some values in IP only. 1260 * 4) It needs to change some values in IP and upper layers e.g TCP 1261 * by delivering an error to the upper layers. 1262 * 1263 * We handle the above three cases in the context of IPsec in the 1264 * following way : 1265 * 1266 * 1) Send the reply back in the same way as the request came in. 1267 * If it came in encrypted, it goes out encrypted. If it came in 1268 * clear, it goes out in clear. Thus, this will prevent chosen 1269 * plain text attack. 1270 * 2) The client may or may not expect things to come in secure. 1271 * If it comes in secure, the policy constraints are checked 1272 * before delivering it to the upper layers. If it comes in 1273 * clear, ipsec_inbound_accept_clear will decide whether to 1274 * accept this in clear or not. In both the cases, if the returned 1275 * message (IP header + 8 bytes) that caused the icmp message has 1276 * AH/ESP headers, it is sent up to AH/ESP for validation before 1277 * sending up. If there are only 8 bytes of returned message, then 1278 * upper client will not be notified. 1279 * 3) Check with global policy to see whether it matches the constaints. 1280 * But this will be done only if icmp_accept_messages_in_clear is 1281 * zero. 1282 * 4) If we need to change both in IP and ULP, then the decision taken 1283 * while affecting the values in IP and while delivering up to TCP 1284 * should be the same. 1285 * 1286 * There are two cases. 1287 * 1288 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1289 * failed), we will not deliver it to the ULP, even though they 1290 * are *willing* to accept in *clear*. This is fine as our global 1291 * disposition to icmp messages asks us reject the datagram. 1292 * 1293 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1294 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1295 * to deliver it to ULP (policy failed), it can lead to 1296 * consistency problems. The cases known at this time are 1297 * ICMP_DESTINATION_UNREACHABLE messages with following code 1298 * values : 1299 * 1300 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1301 * and Upper layer rejects. Then the communication will 1302 * come to a stop. This is solved by making similar decisions 1303 * at both levels. Currently, when we are unable to deliver 1304 * to the Upper Layer (due to policy failures) while IP has 1305 * adjusted dce_pmtu, the next outbound datagram would 1306 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1307 * will be with the right level of protection. Thus the right 1308 * value will be communicated even if we are not able to 1309 * communicate when we get from the wire initially. But this 1310 * assumes there would be at least one outbound datagram after 1311 * IP has adjusted its dce_pmtu value. To make things 1312 * simpler, we accept in clear after the validation of 1313 * AH/ESP headers. 1314 * 1315 * - Other ICMP ERRORS : We may not be able to deliver it to the 1316 * upper layer depending on the level of protection the upper 1317 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1318 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1319 * should be accepted in clear when the Upper layer expects secure. 1320 * Thus the communication may get aborted by some bad ICMP 1321 * packets. 1322 */ 1323 mblk_t * 1324 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1325 { 1326 icmph_t *icmph; 1327 ipha_t *ipha; /* Outer header */ 1328 int ip_hdr_length; /* Outer header length */ 1329 boolean_t interested; 1330 ipif_t *ipif; 1331 uint32_t ts; 1332 uint32_t *tsp; 1333 timestruc_t now; 1334 ill_t *ill = ira->ira_ill; 1335 ip_stack_t *ipst = ill->ill_ipst; 1336 zoneid_t zoneid = ira->ira_zoneid; 1337 int len_needed; 1338 mblk_t *mp_ret = NULL; 1339 1340 ipha = (ipha_t *)mp->b_rptr; 1341 1342 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1343 1344 ip_hdr_length = ira->ira_ip_hdr_length; 1345 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1346 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1348 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1349 freemsg(mp); 1350 return (NULL); 1351 } 1352 /* Last chance to get real. */ 1353 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1354 if (ipha == NULL) { 1355 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1356 freemsg(mp); 1357 return (NULL); 1358 } 1359 } 1360 1361 /* The IP header will always be a multiple of four bytes */ 1362 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1363 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1364 icmph->icmph_code)); 1365 1366 /* 1367 * We will set "interested" to "true" if we should pass a copy to 1368 * the transport or if we handle the packet locally. 1369 */ 1370 interested = B_FALSE; 1371 switch (icmph->icmph_type) { 1372 case ICMP_ECHO_REPLY: 1373 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1374 break; 1375 case ICMP_DEST_UNREACHABLE: 1376 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1377 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1378 interested = B_TRUE; /* Pass up to transport */ 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1380 break; 1381 case ICMP_SOURCE_QUENCH: 1382 interested = B_TRUE; /* Pass up to transport */ 1383 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1384 break; 1385 case ICMP_REDIRECT: 1386 if (!ipst->ips_ip_ignore_redirect) 1387 interested = B_TRUE; 1388 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1389 break; 1390 case ICMP_ECHO_REQUEST: 1391 /* 1392 * Whether to respond to echo requests that come in as IP 1393 * broadcasts or as IP multicast is subject to debate 1394 * (what isn't?). We aim to please, you pick it. 1395 * Default is do it. 1396 */ 1397 if (ira->ira_flags & IRAF_MULTICAST) { 1398 /* multicast: respond based on tunable */ 1399 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1400 } else if (ira->ira_flags & IRAF_BROADCAST) { 1401 /* broadcast: respond based on tunable */ 1402 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1403 } else { 1404 /* unicast: always respond */ 1405 interested = B_TRUE; 1406 } 1407 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1408 if (!interested) { 1409 /* We never pass these to RAW sockets */ 1410 freemsg(mp); 1411 return (NULL); 1412 } 1413 1414 /* Check db_ref to make sure we can modify the packet. */ 1415 if (mp->b_datap->db_ref > 1) { 1416 mblk_t *mp1; 1417 1418 mp1 = copymsg(mp); 1419 freemsg(mp); 1420 if (!mp1) { 1421 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1422 return (NULL); 1423 } 1424 mp = mp1; 1425 ipha = (ipha_t *)mp->b_rptr; 1426 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1427 } 1428 icmph->icmph_type = ICMP_ECHO_REPLY; 1429 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1430 icmp_send_reply_v4(mp, ipha, icmph, ira); 1431 return (NULL); 1432 1433 case ICMP_ROUTER_ADVERTISEMENT: 1434 case ICMP_ROUTER_SOLICITATION: 1435 break; 1436 case ICMP_TIME_EXCEEDED: 1437 interested = B_TRUE; /* Pass up to transport */ 1438 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1439 break; 1440 case ICMP_PARAM_PROBLEM: 1441 interested = B_TRUE; /* Pass up to transport */ 1442 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1443 break; 1444 case ICMP_TIME_STAMP_REQUEST: 1445 /* Response to Time Stamp Requests is local policy. */ 1446 if (ipst->ips_ip_g_resp_to_timestamp) { 1447 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1448 interested = 1449 ipst->ips_ip_g_resp_to_timestamp_bcast; 1450 else 1451 interested = B_TRUE; 1452 } 1453 if (!interested) { 1454 /* We never pass these to RAW sockets */ 1455 freemsg(mp); 1456 return (NULL); 1457 } 1458 1459 /* Make sure we have enough of the packet */ 1460 len_needed = ip_hdr_length + ICMPH_SIZE + 1461 3 * sizeof (uint32_t); 1462 1463 if (mp->b_wptr - mp->b_rptr < len_needed) { 1464 ipha = ip_pullup(mp, len_needed, ira); 1465 if (ipha == NULL) { 1466 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1467 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1468 mp, ill); 1469 freemsg(mp); 1470 return (NULL); 1471 } 1472 /* Refresh following the pullup. */ 1473 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1474 } 1475 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1476 /* Check db_ref to make sure we can modify the packet. */ 1477 if (mp->b_datap->db_ref > 1) { 1478 mblk_t *mp1; 1479 1480 mp1 = copymsg(mp); 1481 freemsg(mp); 1482 if (!mp1) { 1483 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1484 return (NULL); 1485 } 1486 mp = mp1; 1487 ipha = (ipha_t *)mp->b_rptr; 1488 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1489 } 1490 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1491 tsp = (uint32_t *)&icmph[1]; 1492 tsp++; /* Skip past 'originate time' */ 1493 /* Compute # of milliseconds since midnight */ 1494 gethrestime(&now); 1495 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1496 NSEC2MSEC(now.tv_nsec); 1497 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1498 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1499 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1500 icmp_send_reply_v4(mp, ipha, icmph, ira); 1501 return (NULL); 1502 1503 case ICMP_TIME_STAMP_REPLY: 1504 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1505 break; 1506 case ICMP_INFO_REQUEST: 1507 /* Per RFC 1122 3.2.2.7, ignore this. */ 1508 case ICMP_INFO_REPLY: 1509 break; 1510 case ICMP_ADDRESS_MASK_REQUEST: 1511 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1512 interested = 1513 ipst->ips_ip_respond_to_address_mask_broadcast; 1514 } else { 1515 interested = B_TRUE; 1516 } 1517 if (!interested) { 1518 /* We never pass these to RAW sockets */ 1519 freemsg(mp); 1520 return (NULL); 1521 } 1522 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1523 if (mp->b_wptr - mp->b_rptr < len_needed) { 1524 ipha = ip_pullup(mp, len_needed, ira); 1525 if (ipha == NULL) { 1526 BUMP_MIB(ill->ill_ip_mib, 1527 ipIfStatsInTruncatedPkts); 1528 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1529 ill); 1530 freemsg(mp); 1531 return (NULL); 1532 } 1533 /* Refresh following the pullup. */ 1534 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1535 } 1536 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1537 /* Check db_ref to make sure we can modify the packet. */ 1538 if (mp->b_datap->db_ref > 1) { 1539 mblk_t *mp1; 1540 1541 mp1 = copymsg(mp); 1542 freemsg(mp); 1543 if (!mp1) { 1544 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1545 return (NULL); 1546 } 1547 mp = mp1; 1548 ipha = (ipha_t *)mp->b_rptr; 1549 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1550 } 1551 /* 1552 * Need the ipif with the mask be the same as the source 1553 * address of the mask reply. For unicast we have a specific 1554 * ipif. For multicast/broadcast we only handle onlink 1555 * senders, and use the source address to pick an ipif. 1556 */ 1557 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1558 if (ipif == NULL) { 1559 /* Broadcast or multicast */ 1560 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1561 if (ipif == NULL) { 1562 freemsg(mp); 1563 return (NULL); 1564 } 1565 } 1566 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1567 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1568 ipif_refrele(ipif); 1569 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1570 icmp_send_reply_v4(mp, ipha, icmph, ira); 1571 return (NULL); 1572 1573 case ICMP_ADDRESS_MASK_REPLY: 1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1575 break; 1576 default: 1577 interested = B_TRUE; /* Pass up to transport */ 1578 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1579 break; 1580 } 1581 /* 1582 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1583 * if there isn't one. 1584 */ 1585 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1586 /* If there is an ICMP client and we want one too, copy it. */ 1587 1588 if (!interested) { 1589 /* Caller will deliver to RAW sockets */ 1590 return (mp); 1591 } 1592 mp_ret = copymsg(mp); 1593 if (mp_ret == NULL) { 1594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1595 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1596 } 1597 } else if (!interested) { 1598 /* Neither we nor raw sockets are interested. Drop packet now */ 1599 freemsg(mp); 1600 return (NULL); 1601 } 1602 1603 /* 1604 * ICMP error or redirect packet. Make sure we have enough of 1605 * the header and that db_ref == 1 since we might end up modifying 1606 * the packet. 1607 */ 1608 if (mp->b_cont != NULL) { 1609 if (ip_pullup(mp, -1, ira) == NULL) { 1610 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1611 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1612 mp, ill); 1613 freemsg(mp); 1614 return (mp_ret); 1615 } 1616 } 1617 1618 if (mp->b_datap->db_ref > 1) { 1619 mblk_t *mp1; 1620 1621 mp1 = copymsg(mp); 1622 if (mp1 == NULL) { 1623 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1624 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1625 freemsg(mp); 1626 return (mp_ret); 1627 } 1628 freemsg(mp); 1629 mp = mp1; 1630 } 1631 1632 /* 1633 * In case mp has changed, verify the message before any further 1634 * processes. 1635 */ 1636 ipha = (ipha_t *)mp->b_rptr; 1637 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1638 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1639 freemsg(mp); 1640 return (mp_ret); 1641 } 1642 1643 switch (icmph->icmph_type) { 1644 case ICMP_REDIRECT: 1645 icmp_redirect_v4(mp, ipha, icmph, ira); 1646 break; 1647 case ICMP_DEST_UNREACHABLE: 1648 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1649 /* Update DCE and adjust MTU is icmp header if needed */ 1650 icmp_inbound_too_big_v4(icmph, ira); 1651 } 1652 /* FALLTHROUGH */ 1653 default: 1654 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1655 break; 1656 } 1657 return (mp_ret); 1658 } 1659 1660 /* 1661 * Send an ICMP echo, timestamp or address mask reply. 1662 * The caller has already updated the payload part of the packet. 1663 * We handle the ICMP checksum, IP source address selection and feed 1664 * the packet into ip_output_simple. 1665 */ 1666 static void 1667 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1668 ip_recv_attr_t *ira) 1669 { 1670 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1671 ill_t *ill = ira->ira_ill; 1672 ip_stack_t *ipst = ill->ill_ipst; 1673 ip_xmit_attr_t ixas; 1674 1675 /* Send out an ICMP packet */ 1676 icmph->icmph_checksum = 0; 1677 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1678 /* Reset time to live. */ 1679 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1680 { 1681 /* Swap source and destination addresses */ 1682 ipaddr_t tmp; 1683 1684 tmp = ipha->ipha_src; 1685 ipha->ipha_src = ipha->ipha_dst; 1686 ipha->ipha_dst = tmp; 1687 } 1688 ipha->ipha_ident = 0; 1689 if (!IS_SIMPLE_IPH(ipha)) 1690 icmp_options_update(ipha); 1691 1692 bzero(&ixas, sizeof (ixas)); 1693 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1694 ixas.ixa_zoneid = ira->ira_zoneid; 1695 ixas.ixa_cred = kcred; 1696 ixas.ixa_cpid = NOPID; 1697 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1698 ixas.ixa_ifindex = 0; 1699 ixas.ixa_ipst = ipst; 1700 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1701 1702 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1703 /* 1704 * This packet should go out the same way as it 1705 * came in i.e in clear, independent of the IPsec policy 1706 * for transmitting packets. 1707 */ 1708 ixas.ixa_flags |= IXAF_NO_IPSEC; 1709 } else { 1710 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1712 /* Note: mp already consumed and ip_drop_packet done */ 1713 return; 1714 } 1715 } 1716 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1717 /* 1718 * Not one or our addresses (IRE_LOCALs), thus we let 1719 * ip_output_simple pick the source. 1720 */ 1721 ipha->ipha_src = INADDR_ANY; 1722 ixas.ixa_flags |= IXAF_SET_SOURCE; 1723 } 1724 /* Should we send with DF and use dce_pmtu? */ 1725 if (ipst->ips_ipv4_icmp_return_pmtu) { 1726 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1727 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1728 } 1729 1730 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1731 1732 (void) ip_output_simple(mp, &ixas); 1733 ixa_cleanup(&ixas); 1734 } 1735 1736 /* 1737 * Verify the ICMP messages for either for ICMP error or redirect packet. 1738 * The caller should have fully pulled up the message. If it's a redirect 1739 * packet, only basic checks on IP header will be done; otherwise, verify 1740 * the packet by looking at the included ULP header. 1741 * 1742 * Called before icmp_inbound_error_fanout_v4 is called. 1743 */ 1744 static boolean_t 1745 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1746 { 1747 ill_t *ill = ira->ira_ill; 1748 int hdr_length; 1749 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1750 conn_t *connp; 1751 ipha_t *ipha; /* Inner IP header */ 1752 1753 ipha = (ipha_t *)&icmph[1]; 1754 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1755 goto truncated; 1756 1757 hdr_length = IPH_HDR_LENGTH(ipha); 1758 1759 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1760 goto discard_pkt; 1761 1762 if (hdr_length < sizeof (ipha_t)) 1763 goto truncated; 1764 1765 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1766 goto truncated; 1767 1768 /* 1769 * Stop here for ICMP_REDIRECT. 1770 */ 1771 if (icmph->icmph_type == ICMP_REDIRECT) 1772 return (B_TRUE); 1773 1774 /* 1775 * ICMP errors only. 1776 */ 1777 switch (ipha->ipha_protocol) { 1778 case IPPROTO_UDP: 1779 /* 1780 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1781 * transport header. 1782 */ 1783 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1784 mp->b_wptr) 1785 goto truncated; 1786 break; 1787 case IPPROTO_TCP: { 1788 tcpha_t *tcpha; 1789 1790 /* 1791 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1792 * transport header. 1793 */ 1794 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1795 mp->b_wptr) 1796 goto truncated; 1797 1798 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1799 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1800 ipst); 1801 if (connp == NULL) 1802 goto discard_pkt; 1803 1804 if ((connp->conn_verifyicmp != NULL) && 1805 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1806 CONN_DEC_REF(connp); 1807 goto discard_pkt; 1808 } 1809 CONN_DEC_REF(connp); 1810 break; 1811 } 1812 case IPPROTO_SCTP: 1813 /* 1814 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1815 * transport header. 1816 */ 1817 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1818 mp->b_wptr) 1819 goto truncated; 1820 break; 1821 case IPPROTO_ESP: 1822 case IPPROTO_AH: 1823 break; 1824 case IPPROTO_ENCAP: 1825 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1826 mp->b_wptr) 1827 goto truncated; 1828 break; 1829 default: 1830 break; 1831 } 1832 1833 return (B_TRUE); 1834 1835 discard_pkt: 1836 /* Bogus ICMP error. */ 1837 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1838 return (B_FALSE); 1839 1840 truncated: 1841 /* We pulled up everthing already. Must be truncated */ 1842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1843 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1844 return (B_FALSE); 1845 } 1846 1847 /* Table from RFC 1191 */ 1848 static int icmp_frag_size_table[] = 1849 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1850 1851 /* 1852 * Process received ICMP Packet too big. 1853 * Just handles the DCE create/update, including using the above table of 1854 * PMTU guesses. The caller is responsible for validating the packet before 1855 * passing it in and also to fanout the ICMP error to any matching transport 1856 * conns. Assumes the message has been fully pulled up and verified. 1857 * 1858 * Before getting here, the caller has called icmp_inbound_verify_v4() 1859 * that should have verified with ULP to prevent undoing the changes we're 1860 * going to make to DCE. For example, TCP might have verified that the packet 1861 * which generated error is in the send window. 1862 * 1863 * In some cases modified this MTU in the ICMP header packet; the caller 1864 * should pass to the matching ULP after this returns. 1865 */ 1866 static void 1867 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1868 { 1869 dce_t *dce; 1870 int old_mtu; 1871 int mtu, orig_mtu; 1872 ipaddr_t dst; 1873 boolean_t disable_pmtud; 1874 ill_t *ill = ira->ira_ill; 1875 ip_stack_t *ipst = ill->ill_ipst; 1876 uint_t hdr_length; 1877 ipha_t *ipha; 1878 1879 /* Caller already pulled up everything. */ 1880 ipha = (ipha_t *)&icmph[1]; 1881 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1882 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1883 ASSERT(ill != NULL); 1884 1885 hdr_length = IPH_HDR_LENGTH(ipha); 1886 1887 /* 1888 * We handle path MTU for source routed packets since the DCE 1889 * is looked up using the final destination. 1890 */ 1891 dst = ip_get_dst(ipha); 1892 1893 dce = dce_lookup_and_add_v4(dst, ipst); 1894 if (dce == NULL) { 1895 /* Couldn't add a unique one - ENOMEM */ 1896 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1897 ntohl(dst))); 1898 return; 1899 } 1900 1901 /* Check for MTU discovery advice as described in RFC 1191 */ 1902 mtu = ntohs(icmph->icmph_du_mtu); 1903 orig_mtu = mtu; 1904 disable_pmtud = B_FALSE; 1905 1906 mutex_enter(&dce->dce_lock); 1907 if (dce->dce_flags & DCEF_PMTU) 1908 old_mtu = dce->dce_pmtu; 1909 else 1910 old_mtu = ill->ill_mtu; 1911 1912 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1913 uint32_t length; 1914 int i; 1915 1916 /* 1917 * Use the table from RFC 1191 to figure out 1918 * the next "plateau" based on the length in 1919 * the original IP packet. 1920 */ 1921 length = ntohs(ipha->ipha_length); 1922 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1923 uint32_t, length); 1924 if (old_mtu <= length && 1925 old_mtu >= length - hdr_length) { 1926 /* 1927 * Handle broken BSD 4.2 systems that 1928 * return the wrong ipha_length in ICMP 1929 * errors. 1930 */ 1931 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1932 length, old_mtu)); 1933 length -= hdr_length; 1934 } 1935 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1936 if (length > icmp_frag_size_table[i]) 1937 break; 1938 } 1939 if (i == A_CNT(icmp_frag_size_table)) { 1940 /* Smaller than IP_MIN_MTU! */ 1941 ip1dbg(("Too big for packet size %d\n", 1942 length)); 1943 disable_pmtud = B_TRUE; 1944 mtu = ipst->ips_ip_pmtu_min; 1945 } else { 1946 mtu = icmp_frag_size_table[i]; 1947 ip1dbg(("Calculated mtu %d, packet size %d, " 1948 "before %d\n", mtu, length, old_mtu)); 1949 if (mtu < ipst->ips_ip_pmtu_min) { 1950 mtu = ipst->ips_ip_pmtu_min; 1951 disable_pmtud = B_TRUE; 1952 } 1953 } 1954 } 1955 if (disable_pmtud) 1956 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1957 else 1958 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1959 1960 dce->dce_pmtu = MIN(old_mtu, mtu); 1961 /* Prepare to send the new max frag size for the ULP. */ 1962 icmph->icmph_du_zero = 0; 1963 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1964 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1965 dce, int, orig_mtu, int, mtu); 1966 1967 /* We now have a PMTU for sure */ 1968 dce->dce_flags |= DCEF_PMTU; 1969 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1970 mutex_exit(&dce->dce_lock); 1971 /* 1972 * After dropping the lock the new value is visible to everyone. 1973 * Then we bump the generation number so any cached values reinspect 1974 * the dce_t. 1975 */ 1976 dce_increment_generation(dce); 1977 dce_refrele(dce); 1978 } 1979 1980 /* 1981 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1982 * calls this function. 1983 */ 1984 static mblk_t * 1985 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1986 { 1987 int length; 1988 1989 ASSERT(mp->b_datap->db_type == M_DATA); 1990 1991 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1992 ASSERT(mp->b_cont == NULL); 1993 1994 /* 1995 * The length that we want to overlay is the inner header 1996 * and what follows it. 1997 */ 1998 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 1999 2000 /* 2001 * Overlay the inner header and whatever follows it over the 2002 * outer header. 2003 */ 2004 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2005 2006 /* Adjust for what we removed */ 2007 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2008 return (mp); 2009 } 2010 2011 /* 2012 * Try to pass the ICMP message upstream in case the ULP cares. 2013 * 2014 * If the packet that caused the ICMP error is secure, we send 2015 * it to AH/ESP to make sure that the attached packet has a 2016 * valid association. ipha in the code below points to the 2017 * IP header of the packet that caused the error. 2018 * 2019 * For IPsec cases, we let the next-layer-up (which has access to 2020 * cached policy on the conn_t, or can query the SPD directly) 2021 * subtract out any IPsec overhead if they must. We therefore make no 2022 * adjustments here for IPsec overhead. 2023 * 2024 * IFN could have been generated locally or by some router. 2025 * 2026 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2027 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2028 * This happens because IP adjusted its value of MTU on an 2029 * earlier IFN message and could not tell the upper layer, 2030 * the new adjusted value of MTU e.g. Packet was encrypted 2031 * or there was not enough information to fanout to upper 2032 * layers. Thus on the next outbound datagram, ire_send_wire 2033 * generates the IFN, where IPsec processing has *not* been 2034 * done. 2035 * 2036 * Note that we retain ixa_fragsize across IPsec thus once 2037 * we have picking ixa_fragsize and entered ipsec_out_process we do 2038 * no change the fragsize even if the path MTU changes before 2039 * we reach ip_output_post_ipsec. 2040 * 2041 * In the local case, IRAF_LOOPBACK will be set indicating 2042 * that IFN was generated locally. 2043 * 2044 * ROUTER : IFN could be secure or non-secure. 2045 * 2046 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2047 * packet in error has AH/ESP headers to validate the AH/ESP 2048 * headers. AH/ESP will verify whether there is a valid SA or 2049 * not and send it back. We will fanout again if we have more 2050 * data in the packet. 2051 * 2052 * If the packet in error does not have AH/ESP, we handle it 2053 * like any other case. 2054 * 2055 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2056 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2057 * valid SA or not and send it back. We will fanout again if 2058 * we have more data in the packet. 2059 * 2060 * If the packet in error does not have AH/ESP, we handle it 2061 * like any other case. 2062 * 2063 * The caller must have called icmp_inbound_verify_v4. 2064 */ 2065 static void 2066 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2067 { 2068 uint16_t *up; /* Pointer to ports in ULP header */ 2069 uint32_t ports; /* reversed ports for fanout */ 2070 ipha_t ripha; /* With reversed addresses */ 2071 ipha_t *ipha; /* Inner IP header */ 2072 uint_t hdr_length; /* Inner IP header length */ 2073 tcpha_t *tcpha; 2074 conn_t *connp; 2075 ill_t *ill = ira->ira_ill; 2076 ip_stack_t *ipst = ill->ill_ipst; 2077 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2078 ill_t *rill = ira->ira_rill; 2079 2080 /* Caller already pulled up everything. */ 2081 ipha = (ipha_t *)&icmph[1]; 2082 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2083 ASSERT(mp->b_cont == NULL); 2084 2085 hdr_length = IPH_HDR_LENGTH(ipha); 2086 ira->ira_protocol = ipha->ipha_protocol; 2087 2088 /* 2089 * We need a separate IP header with the source and destination 2090 * addresses reversed to do fanout/classification because the ipha in 2091 * the ICMP error is in the form we sent it out. 2092 */ 2093 ripha.ipha_src = ipha->ipha_dst; 2094 ripha.ipha_dst = ipha->ipha_src; 2095 ripha.ipha_protocol = ipha->ipha_protocol; 2096 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2097 2098 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2099 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2100 ntohl(ipha->ipha_dst), 2101 icmph->icmph_type, icmph->icmph_code)); 2102 2103 switch (ipha->ipha_protocol) { 2104 case IPPROTO_UDP: 2105 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2106 2107 /* Attempt to find a client stream based on port. */ 2108 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2109 ntohs(up[0]), ntohs(up[1]))); 2110 2111 /* Note that we send error to all matches. */ 2112 ira->ira_flags |= IRAF_ICMP_ERROR; 2113 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2114 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2115 return; 2116 2117 case IPPROTO_TCP: 2118 /* 2119 * Find a TCP client stream for this packet. 2120 * Note that we do a reverse lookup since the header is 2121 * in the form we sent it out. 2122 */ 2123 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2124 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2125 ipst); 2126 if (connp == NULL) 2127 goto discard_pkt; 2128 2129 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2130 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2131 mp = ipsec_check_inbound_policy(mp, connp, 2132 ipha, NULL, ira); 2133 if (mp == NULL) { 2134 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2135 /* Note that mp is NULL */ 2136 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2137 CONN_DEC_REF(connp); 2138 return; 2139 } 2140 } 2141 2142 ira->ira_flags |= IRAF_ICMP_ERROR; 2143 ira->ira_ill = ira->ira_rill = NULL; 2144 if (IPCL_IS_TCP(connp)) { 2145 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2146 connp->conn_recvicmp, connp, ira, SQ_FILL, 2147 SQTAG_TCP_INPUT_ICMP_ERR); 2148 } else { 2149 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2150 (connp->conn_recv)(connp, mp, NULL, ira); 2151 CONN_DEC_REF(connp); 2152 } 2153 ira->ira_ill = ill; 2154 ira->ira_rill = rill; 2155 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2156 return; 2157 2158 case IPPROTO_SCTP: 2159 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2160 /* Find a SCTP client stream for this packet. */ 2161 ((uint16_t *)&ports)[0] = up[1]; 2162 ((uint16_t *)&ports)[1] = up[0]; 2163 2164 ira->ira_flags |= IRAF_ICMP_ERROR; 2165 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2166 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2167 return; 2168 2169 case IPPROTO_ESP: 2170 case IPPROTO_AH: 2171 if (!ipsec_loaded(ipss)) { 2172 ip_proto_not_sup(mp, ira); 2173 return; 2174 } 2175 2176 if (ipha->ipha_protocol == IPPROTO_ESP) 2177 mp = ipsecesp_icmp_error(mp, ira); 2178 else 2179 mp = ipsecah_icmp_error(mp, ira); 2180 if (mp == NULL) 2181 return; 2182 2183 /* Just in case ipsec didn't preserve the NULL b_cont */ 2184 if (mp->b_cont != NULL) { 2185 if (!pullupmsg(mp, -1)) 2186 goto discard_pkt; 2187 } 2188 2189 /* 2190 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2191 * correct, but we don't use them any more here. 2192 * 2193 * If succesful, the mp has been modified to not include 2194 * the ESP/AH header so we can fanout to the ULP's icmp 2195 * error handler. 2196 */ 2197 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2198 goto truncated; 2199 2200 /* Verify the modified message before any further processes. */ 2201 ipha = (ipha_t *)mp->b_rptr; 2202 hdr_length = IPH_HDR_LENGTH(ipha); 2203 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2204 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2205 freemsg(mp); 2206 return; 2207 } 2208 2209 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2210 return; 2211 2212 case IPPROTO_ENCAP: { 2213 /* Look for self-encapsulated packets that caused an error */ 2214 ipha_t *in_ipha; 2215 2216 /* 2217 * Caller has verified that length has to be 2218 * at least the size of IP header. 2219 */ 2220 ASSERT(hdr_length >= sizeof (ipha_t)); 2221 /* 2222 * Check the sanity of the inner IP header like 2223 * we did for the outer header. 2224 */ 2225 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2226 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2227 goto discard_pkt; 2228 } 2229 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2230 goto discard_pkt; 2231 } 2232 /* Check for Self-encapsulated tunnels */ 2233 if (in_ipha->ipha_src == ipha->ipha_src && 2234 in_ipha->ipha_dst == ipha->ipha_dst) { 2235 2236 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2237 in_ipha); 2238 if (mp == NULL) 2239 goto discard_pkt; 2240 2241 /* 2242 * Just in case self_encap didn't preserve the NULL 2243 * b_cont 2244 */ 2245 if (mp->b_cont != NULL) { 2246 if (!pullupmsg(mp, -1)) 2247 goto discard_pkt; 2248 } 2249 /* 2250 * Note that ira_pktlen and ira_ip_hdr_length are no 2251 * longer correct, but we don't use them any more here. 2252 */ 2253 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2254 goto truncated; 2255 2256 /* 2257 * Verify the modified message before any further 2258 * processes. 2259 */ 2260 ipha = (ipha_t *)mp->b_rptr; 2261 hdr_length = IPH_HDR_LENGTH(ipha); 2262 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2263 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2264 freemsg(mp); 2265 return; 2266 } 2267 2268 /* 2269 * The packet in error is self-encapsualted. 2270 * And we are finding it further encapsulated 2271 * which we could not have possibly generated. 2272 */ 2273 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2274 goto discard_pkt; 2275 } 2276 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2277 return; 2278 } 2279 /* No self-encapsulated */ 2280 } 2281 /* FALLTHROUGH */ 2282 case IPPROTO_IPV6: 2283 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2284 &ripha.ipha_dst, ipst)) != NULL) { 2285 ira->ira_flags |= IRAF_ICMP_ERROR; 2286 connp->conn_recvicmp(connp, mp, NULL, ira); 2287 CONN_DEC_REF(connp); 2288 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2289 return; 2290 } 2291 /* 2292 * No IP tunnel is interested, fallthrough and see 2293 * if a raw socket will want it. 2294 */ 2295 /* FALLTHROUGH */ 2296 default: 2297 ira->ira_flags |= IRAF_ICMP_ERROR; 2298 ip_fanout_proto_v4(mp, &ripha, ira); 2299 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2300 return; 2301 } 2302 /* NOTREACHED */ 2303 discard_pkt: 2304 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2305 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2306 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2307 freemsg(mp); 2308 return; 2309 2310 truncated: 2311 /* We pulled up everthing already. Must be truncated */ 2312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2313 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2314 freemsg(mp); 2315 } 2316 2317 /* 2318 * Common IP options parser. 2319 * 2320 * Setup routine: fill in *optp with options-parsing state, then 2321 * tail-call ipoptp_next to return the first option. 2322 */ 2323 uint8_t 2324 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2325 { 2326 uint32_t totallen; /* total length of all options */ 2327 2328 totallen = ipha->ipha_version_and_hdr_length - 2329 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2330 totallen <<= 2; 2331 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2332 optp->ipoptp_end = optp->ipoptp_next + totallen; 2333 optp->ipoptp_flags = 0; 2334 return (ipoptp_next(optp)); 2335 } 2336 2337 /* Like above but without an ipha_t */ 2338 uint8_t 2339 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2340 { 2341 optp->ipoptp_next = opt; 2342 optp->ipoptp_end = optp->ipoptp_next + totallen; 2343 optp->ipoptp_flags = 0; 2344 return (ipoptp_next(optp)); 2345 } 2346 2347 /* 2348 * Common IP options parser: extract next option. 2349 */ 2350 uint8_t 2351 ipoptp_next(ipoptp_t *optp) 2352 { 2353 uint8_t *end = optp->ipoptp_end; 2354 uint8_t *cur = optp->ipoptp_next; 2355 uint8_t opt, len, pointer; 2356 2357 /* 2358 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2359 * has been corrupted. 2360 */ 2361 ASSERT(cur <= end); 2362 2363 if (cur == end) 2364 return (IPOPT_EOL); 2365 2366 opt = cur[IPOPT_OPTVAL]; 2367 2368 /* 2369 * Skip any NOP options. 2370 */ 2371 while (opt == IPOPT_NOP) { 2372 cur++; 2373 if (cur == end) 2374 return (IPOPT_EOL); 2375 opt = cur[IPOPT_OPTVAL]; 2376 } 2377 2378 if (opt == IPOPT_EOL) 2379 return (IPOPT_EOL); 2380 2381 /* 2382 * Option requiring a length. 2383 */ 2384 if ((cur + 1) >= end) { 2385 optp->ipoptp_flags |= IPOPTP_ERROR; 2386 return (IPOPT_EOL); 2387 } 2388 len = cur[IPOPT_OLEN]; 2389 if (len < 2) { 2390 optp->ipoptp_flags |= IPOPTP_ERROR; 2391 return (IPOPT_EOL); 2392 } 2393 optp->ipoptp_cur = cur; 2394 optp->ipoptp_len = len; 2395 optp->ipoptp_next = cur + len; 2396 if (cur + len > end) { 2397 optp->ipoptp_flags |= IPOPTP_ERROR; 2398 return (IPOPT_EOL); 2399 } 2400 2401 /* 2402 * For the options which require a pointer field, make sure 2403 * its there, and make sure it points to either something 2404 * inside this option, or the end of the option. 2405 */ 2406 switch (opt) { 2407 case IPOPT_RR: 2408 case IPOPT_TS: 2409 case IPOPT_LSRR: 2410 case IPOPT_SSRR: 2411 if (len <= IPOPT_OFFSET) { 2412 optp->ipoptp_flags |= IPOPTP_ERROR; 2413 return (opt); 2414 } 2415 pointer = cur[IPOPT_OFFSET]; 2416 if (pointer - 1 > len) { 2417 optp->ipoptp_flags |= IPOPTP_ERROR; 2418 return (opt); 2419 } 2420 break; 2421 } 2422 2423 /* 2424 * Sanity check the pointer field based on the type of the 2425 * option. 2426 */ 2427 switch (opt) { 2428 case IPOPT_RR: 2429 case IPOPT_SSRR: 2430 case IPOPT_LSRR: 2431 if (pointer < IPOPT_MINOFF_SR) 2432 optp->ipoptp_flags |= IPOPTP_ERROR; 2433 break; 2434 case IPOPT_TS: 2435 if (pointer < IPOPT_MINOFF_IT) 2436 optp->ipoptp_flags |= IPOPTP_ERROR; 2437 /* 2438 * Note that the Internet Timestamp option also 2439 * contains two four bit fields (the Overflow field, 2440 * and the Flag field), which follow the pointer 2441 * field. We don't need to check that these fields 2442 * fall within the length of the option because this 2443 * was implicitely done above. We've checked that the 2444 * pointer value is at least IPOPT_MINOFF_IT, and that 2445 * it falls within the option. Since IPOPT_MINOFF_IT > 2446 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2447 */ 2448 ASSERT(len > IPOPT_POS_OV_FLG); 2449 break; 2450 } 2451 2452 return (opt); 2453 } 2454 2455 /* 2456 * Use the outgoing IP header to create an IP_OPTIONS option the way 2457 * it was passed down from the application. 2458 * 2459 * This is compatible with BSD in that it returns 2460 * the reverse source route with the final destination 2461 * as the last entry. The first 4 bytes of the option 2462 * will contain the final destination. 2463 */ 2464 int 2465 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2466 { 2467 ipoptp_t opts; 2468 uchar_t *opt; 2469 uint8_t optval; 2470 uint8_t optlen; 2471 uint32_t len = 0; 2472 uchar_t *buf1 = buf; 2473 uint32_t totallen; 2474 ipaddr_t dst; 2475 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2476 2477 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2478 return (0); 2479 2480 totallen = ipp->ipp_ipv4_options_len; 2481 if (totallen & 0x3) 2482 return (0); 2483 2484 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2485 len += IP_ADDR_LEN; 2486 bzero(buf1, IP_ADDR_LEN); 2487 2488 dst = connp->conn_faddr_v4; 2489 2490 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2491 optval != IPOPT_EOL; 2492 optval = ipoptp_next(&opts)) { 2493 int off; 2494 2495 opt = opts.ipoptp_cur; 2496 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2497 break; 2498 } 2499 optlen = opts.ipoptp_len; 2500 2501 switch (optval) { 2502 case IPOPT_SSRR: 2503 case IPOPT_LSRR: 2504 2505 /* 2506 * Insert destination as the first entry in the source 2507 * route and move down the entries on step. 2508 * The last entry gets placed at buf1. 2509 */ 2510 buf[IPOPT_OPTVAL] = optval; 2511 buf[IPOPT_OLEN] = optlen; 2512 buf[IPOPT_OFFSET] = optlen; 2513 2514 off = optlen - IP_ADDR_LEN; 2515 if (off < 0) { 2516 /* No entries in source route */ 2517 break; 2518 } 2519 /* Last entry in source route if not already set */ 2520 if (dst == INADDR_ANY) 2521 bcopy(opt + off, buf1, IP_ADDR_LEN); 2522 off -= IP_ADDR_LEN; 2523 2524 while (off > 0) { 2525 bcopy(opt + off, 2526 buf + off + IP_ADDR_LEN, 2527 IP_ADDR_LEN); 2528 off -= IP_ADDR_LEN; 2529 } 2530 /* ipha_dst into first slot */ 2531 bcopy(&dst, buf + off + IP_ADDR_LEN, 2532 IP_ADDR_LEN); 2533 buf += optlen; 2534 len += optlen; 2535 break; 2536 2537 default: 2538 bcopy(opt, buf, optlen); 2539 buf += optlen; 2540 len += optlen; 2541 break; 2542 } 2543 } 2544 done: 2545 /* Pad the resulting options */ 2546 while (len & 0x3) { 2547 *buf++ = IPOPT_EOL; 2548 len++; 2549 } 2550 return (len); 2551 } 2552 2553 /* 2554 * Update any record route or timestamp options to include this host. 2555 * Reverse any source route option. 2556 * This routine assumes that the options are well formed i.e. that they 2557 * have already been checked. 2558 */ 2559 static void 2560 icmp_options_update(ipha_t *ipha) 2561 { 2562 ipoptp_t opts; 2563 uchar_t *opt; 2564 uint8_t optval; 2565 ipaddr_t src; /* Our local address */ 2566 ipaddr_t dst; 2567 2568 ip2dbg(("icmp_options_update\n")); 2569 src = ipha->ipha_src; 2570 dst = ipha->ipha_dst; 2571 2572 for (optval = ipoptp_first(&opts, ipha); 2573 optval != IPOPT_EOL; 2574 optval = ipoptp_next(&opts)) { 2575 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2576 opt = opts.ipoptp_cur; 2577 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2578 optval, opts.ipoptp_len)); 2579 switch (optval) { 2580 int off1, off2; 2581 case IPOPT_SSRR: 2582 case IPOPT_LSRR: 2583 /* 2584 * Reverse the source route. The first entry 2585 * should be the next to last one in the current 2586 * source route (the last entry is our address). 2587 * The last entry should be the final destination. 2588 */ 2589 off1 = IPOPT_MINOFF_SR - 1; 2590 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2591 if (off2 < 0) { 2592 /* No entries in source route */ 2593 ip1dbg(( 2594 "icmp_options_update: bad src route\n")); 2595 break; 2596 } 2597 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2598 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2599 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2600 off2 -= IP_ADDR_LEN; 2601 2602 while (off1 < off2) { 2603 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2604 bcopy((char *)opt + off2, (char *)opt + off1, 2605 IP_ADDR_LEN); 2606 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2607 off1 += IP_ADDR_LEN; 2608 off2 -= IP_ADDR_LEN; 2609 } 2610 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2611 break; 2612 } 2613 } 2614 } 2615 2616 /* 2617 * Process received ICMP Redirect messages. 2618 * Assumes the caller has verified that the headers are in the pulled up mblk. 2619 * Consumes mp. 2620 */ 2621 static void 2622 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2623 { 2624 ire_t *ire, *nire; 2625 ire_t *prev_ire; 2626 ipaddr_t src, dst, gateway; 2627 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2628 ipha_t *inner_ipha; /* Inner IP header */ 2629 2630 /* Caller already pulled up everything. */ 2631 inner_ipha = (ipha_t *)&icmph[1]; 2632 src = ipha->ipha_src; 2633 dst = inner_ipha->ipha_dst; 2634 gateway = icmph->icmph_rd_gateway; 2635 /* Make sure the new gateway is reachable somehow. */ 2636 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2637 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2638 /* 2639 * Make sure we had a route for the dest in question and that 2640 * that route was pointing to the old gateway (the source of the 2641 * redirect packet.) 2642 * We do longest match and then compare ire_gateway_addr below. 2643 */ 2644 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2645 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2646 /* 2647 * Check that 2648 * the redirect was not from ourselves 2649 * the new gateway and the old gateway are directly reachable 2650 */ 2651 if (prev_ire == NULL || ire == NULL || 2652 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2653 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2654 !(ire->ire_type & IRE_IF_ALL) || 2655 prev_ire->ire_gateway_addr != src) { 2656 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2657 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2658 freemsg(mp); 2659 if (ire != NULL) 2660 ire_refrele(ire); 2661 if (prev_ire != NULL) 2662 ire_refrele(prev_ire); 2663 return; 2664 } 2665 2666 ire_refrele(prev_ire); 2667 ire_refrele(ire); 2668 2669 /* 2670 * TODO: more precise handling for cases 0, 2, 3, the latter two 2671 * require TOS routing 2672 */ 2673 switch (icmph->icmph_code) { 2674 case 0: 2675 case 1: 2676 /* TODO: TOS specificity for cases 2 and 3 */ 2677 case 2: 2678 case 3: 2679 break; 2680 default: 2681 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2682 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2683 freemsg(mp); 2684 return; 2685 } 2686 /* 2687 * Create a Route Association. This will allow us to remember that 2688 * someone we believe told us to use the particular gateway. 2689 */ 2690 ire = ire_create( 2691 (uchar_t *)&dst, /* dest addr */ 2692 (uchar_t *)&ip_g_all_ones, /* mask */ 2693 (uchar_t *)&gateway, /* gateway addr */ 2694 IRE_HOST, 2695 NULL, /* ill */ 2696 ALL_ZONES, 2697 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2698 NULL, /* tsol_gc_t */ 2699 ipst); 2700 2701 if (ire == NULL) { 2702 freemsg(mp); 2703 return; 2704 } 2705 nire = ire_add(ire); 2706 /* Check if it was a duplicate entry */ 2707 if (nire != NULL && nire != ire) { 2708 ASSERT(nire->ire_identical_ref > 1); 2709 ire_delete(nire); 2710 ire_refrele(nire); 2711 nire = NULL; 2712 } 2713 ire = nire; 2714 if (ire != NULL) { 2715 ire_refrele(ire); /* Held in ire_add */ 2716 2717 /* tell routing sockets that we received a redirect */ 2718 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2719 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2720 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2721 } 2722 2723 /* 2724 * Delete any existing IRE_HOST type redirect ires for this destination. 2725 * This together with the added IRE has the effect of 2726 * modifying an existing redirect. 2727 */ 2728 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2729 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2730 if (prev_ire != NULL) { 2731 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2732 ire_delete(prev_ire); 2733 ire_refrele(prev_ire); 2734 } 2735 2736 freemsg(mp); 2737 } 2738 2739 /* 2740 * Generate an ICMP parameter problem message. 2741 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2742 * constructed by the caller. 2743 */ 2744 static void 2745 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2746 { 2747 icmph_t icmph; 2748 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2749 2750 mp = icmp_pkt_err_ok(mp, ira); 2751 if (mp == NULL) 2752 return; 2753 2754 bzero(&icmph, sizeof (icmph_t)); 2755 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2756 icmph.icmph_pp_ptr = ptr; 2757 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2758 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2759 } 2760 2761 /* 2762 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2763 * the ICMP header pointed to by "stuff". (May be called as writer.) 2764 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2765 * an icmp error packet can be sent. 2766 * Assigns an appropriate source address to the packet. If ipha_dst is 2767 * one of our addresses use it for source. Otherwise let ip_output_simple 2768 * pick the source address. 2769 */ 2770 static void 2771 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2772 { 2773 ipaddr_t dst; 2774 icmph_t *icmph; 2775 ipha_t *ipha; 2776 uint_t len_needed; 2777 size_t msg_len; 2778 mblk_t *mp1; 2779 ipaddr_t src; 2780 ire_t *ire; 2781 ip_xmit_attr_t ixas; 2782 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2783 2784 ipha = (ipha_t *)mp->b_rptr; 2785 2786 bzero(&ixas, sizeof (ixas)); 2787 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2788 ixas.ixa_zoneid = ira->ira_zoneid; 2789 ixas.ixa_ifindex = 0; 2790 ixas.ixa_ipst = ipst; 2791 ixas.ixa_cred = kcred; 2792 ixas.ixa_cpid = NOPID; 2793 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2794 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2795 2796 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2797 /* 2798 * Apply IPsec based on how IPsec was applied to 2799 * the packet that had the error. 2800 * 2801 * If it was an outbound packet that caused the ICMP 2802 * error, then the caller will have setup the IRA 2803 * appropriately. 2804 */ 2805 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2806 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2807 /* Note: mp already consumed and ip_drop_packet done */ 2808 return; 2809 } 2810 } else { 2811 /* 2812 * This is in clear. The icmp message we are building 2813 * here should go out in clear, independent of our policy. 2814 */ 2815 ixas.ixa_flags |= IXAF_NO_IPSEC; 2816 } 2817 2818 /* Remember our eventual destination */ 2819 dst = ipha->ipha_src; 2820 2821 /* 2822 * If the packet was for one of our unicast addresses, make 2823 * sure we respond with that as the source. Otherwise 2824 * have ip_output_simple pick the source address. 2825 */ 2826 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2827 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2828 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2829 if (ire != NULL) { 2830 ire_refrele(ire); 2831 src = ipha->ipha_dst; 2832 } else { 2833 src = INADDR_ANY; 2834 ixas.ixa_flags |= IXAF_SET_SOURCE; 2835 } 2836 2837 /* 2838 * Check if we can send back more then 8 bytes in addition to 2839 * the IP header. We try to send 64 bytes of data and the internal 2840 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2841 */ 2842 len_needed = IPH_HDR_LENGTH(ipha); 2843 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2844 ipha->ipha_protocol == IPPROTO_IPV6) { 2845 if (!pullupmsg(mp, -1)) { 2846 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2847 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2848 freemsg(mp); 2849 return; 2850 } 2851 ipha = (ipha_t *)mp->b_rptr; 2852 2853 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2854 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2855 len_needed)); 2856 } else { 2857 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2858 2859 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2860 len_needed += ip_hdr_length_v6(mp, ip6h); 2861 } 2862 } 2863 len_needed += ipst->ips_ip_icmp_return; 2864 msg_len = msgdsize(mp); 2865 if (msg_len > len_needed) { 2866 (void) adjmsg(mp, len_needed - msg_len); 2867 msg_len = len_needed; 2868 } 2869 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2870 if (mp1 == NULL) { 2871 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2872 freemsg(mp); 2873 return; 2874 } 2875 mp1->b_cont = mp; 2876 mp = mp1; 2877 2878 /* 2879 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2880 * node generates be accepted in peace by all on-host destinations. 2881 * If we do NOT assume that all on-host destinations trust 2882 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2883 * (Look for IXAF_TRUSTED_ICMP). 2884 */ 2885 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2886 2887 ipha = (ipha_t *)mp->b_rptr; 2888 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2889 *ipha = icmp_ipha; 2890 ipha->ipha_src = src; 2891 ipha->ipha_dst = dst; 2892 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2893 msg_len += sizeof (icmp_ipha) + len; 2894 if (msg_len > IP_MAXPACKET) { 2895 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2896 msg_len = IP_MAXPACKET; 2897 } 2898 ipha->ipha_length = htons((uint16_t)msg_len); 2899 icmph = (icmph_t *)&ipha[1]; 2900 bcopy(stuff, icmph, len); 2901 icmph->icmph_checksum = 0; 2902 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2903 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2904 2905 (void) ip_output_simple(mp, &ixas); 2906 ixa_cleanup(&ixas); 2907 } 2908 2909 /* 2910 * Determine if an ICMP error packet can be sent given the rate limit. 2911 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2912 * in milliseconds) and a burst size. Burst size number of packets can 2913 * be sent arbitrarely closely spaced. 2914 * The state is tracked using two variables to implement an approximate 2915 * token bucket filter: 2916 * icmp_pkt_err_last - lbolt value when the last burst started 2917 * icmp_pkt_err_sent - number of packets sent in current burst 2918 */ 2919 boolean_t 2920 icmp_err_rate_limit(ip_stack_t *ipst) 2921 { 2922 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2923 uint_t refilled; /* Number of packets refilled in tbf since last */ 2924 /* Guard against changes by loading into local variable */ 2925 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2926 2927 if (err_interval == 0) 2928 return (B_FALSE); 2929 2930 if (ipst->ips_icmp_pkt_err_last > now) { 2931 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2932 ipst->ips_icmp_pkt_err_last = 0; 2933 ipst->ips_icmp_pkt_err_sent = 0; 2934 } 2935 /* 2936 * If we are in a burst update the token bucket filter. 2937 * Update the "last" time to be close to "now" but make sure 2938 * we don't loose precision. 2939 */ 2940 if (ipst->ips_icmp_pkt_err_sent != 0) { 2941 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2942 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2943 ipst->ips_icmp_pkt_err_sent = 0; 2944 } else { 2945 ipst->ips_icmp_pkt_err_sent -= refilled; 2946 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2947 } 2948 } 2949 if (ipst->ips_icmp_pkt_err_sent == 0) { 2950 /* Start of new burst */ 2951 ipst->ips_icmp_pkt_err_last = now; 2952 } 2953 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2954 ipst->ips_icmp_pkt_err_sent++; 2955 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2956 ipst->ips_icmp_pkt_err_sent)); 2957 return (B_FALSE); 2958 } 2959 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2960 return (B_TRUE); 2961 } 2962 2963 /* 2964 * Check if it is ok to send an IPv4 ICMP error packet in 2965 * response to the IPv4 packet in mp. 2966 * Free the message and return null if no 2967 * ICMP error packet should be sent. 2968 */ 2969 static mblk_t * 2970 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2971 { 2972 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2973 icmph_t *icmph; 2974 ipha_t *ipha; 2975 uint_t len_needed; 2976 2977 if (!mp) 2978 return (NULL); 2979 ipha = (ipha_t *)mp->b_rptr; 2980 if (ip_csum_hdr(ipha)) { 2981 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2982 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2983 freemsg(mp); 2984 return (NULL); 2985 } 2986 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2987 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2988 CLASSD(ipha->ipha_dst) || 2989 CLASSD(ipha->ipha_src) || 2990 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2991 /* Note: only errors to the fragment with offset 0 */ 2992 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2993 freemsg(mp); 2994 return (NULL); 2995 } 2996 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2997 /* 2998 * Check the ICMP type. RFC 1122 sez: don't send ICMP 2999 * errors in response to any ICMP errors. 3000 */ 3001 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3002 if (mp->b_wptr - mp->b_rptr < len_needed) { 3003 if (!pullupmsg(mp, len_needed)) { 3004 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3005 freemsg(mp); 3006 return (NULL); 3007 } 3008 ipha = (ipha_t *)mp->b_rptr; 3009 } 3010 icmph = (icmph_t *) 3011 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3012 switch (icmph->icmph_type) { 3013 case ICMP_DEST_UNREACHABLE: 3014 case ICMP_SOURCE_QUENCH: 3015 case ICMP_TIME_EXCEEDED: 3016 case ICMP_PARAM_PROBLEM: 3017 case ICMP_REDIRECT: 3018 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3019 freemsg(mp); 3020 return (NULL); 3021 default: 3022 break; 3023 } 3024 } 3025 /* 3026 * If this is a labeled system, then check to see if we're allowed to 3027 * send a response to this particular sender. If not, then just drop. 3028 */ 3029 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3030 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3031 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3032 freemsg(mp); 3033 return (NULL); 3034 } 3035 if (icmp_err_rate_limit(ipst)) { 3036 /* 3037 * Only send ICMP error packets every so often. 3038 * This should be done on a per port/source basis, 3039 * but for now this will suffice. 3040 */ 3041 freemsg(mp); 3042 return (NULL); 3043 } 3044 return (mp); 3045 } 3046 3047 /* 3048 * Called when a packet was sent out the same link that it arrived on. 3049 * Check if it is ok to send a redirect and then send it. 3050 */ 3051 void 3052 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3053 ip_recv_attr_t *ira) 3054 { 3055 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3056 ipaddr_t src, nhop; 3057 mblk_t *mp1; 3058 ire_t *nhop_ire; 3059 3060 /* 3061 * Check the source address to see if it originated 3062 * on the same logical subnet it is going back out on. 3063 * If so, we should be able to send it a redirect. 3064 * Avoid sending a redirect if the destination 3065 * is directly connected (i.e., we matched an IRE_ONLINK), 3066 * or if the packet was source routed out this interface. 3067 * 3068 * We avoid sending a redirect if the 3069 * destination is directly connected 3070 * because it is possible that multiple 3071 * IP subnets may have been configured on 3072 * the link, and the source may not 3073 * be on the same subnet as ip destination, 3074 * even though they are on the same 3075 * physical link. 3076 */ 3077 if ((ire->ire_type & IRE_ONLINK) || 3078 ip_source_routed(ipha, ipst)) 3079 return; 3080 3081 nhop_ire = ire_nexthop(ire); 3082 if (nhop_ire == NULL) 3083 return; 3084 3085 nhop = nhop_ire->ire_addr; 3086 3087 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3088 ire_t *ire2; 3089 3090 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3091 mutex_enter(&nhop_ire->ire_lock); 3092 ire2 = nhop_ire->ire_dep_parent; 3093 if (ire2 != NULL) 3094 ire_refhold(ire2); 3095 mutex_exit(&nhop_ire->ire_lock); 3096 ire_refrele(nhop_ire); 3097 nhop_ire = ire2; 3098 } 3099 if (nhop_ire == NULL) 3100 return; 3101 3102 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3103 3104 src = ipha->ipha_src; 3105 3106 /* 3107 * We look at the interface ire for the nexthop, 3108 * to see if ipha_src is in the same subnet 3109 * as the nexthop. 3110 */ 3111 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3112 /* 3113 * The source is directly connected. 3114 */ 3115 mp1 = copymsg(mp); 3116 if (mp1 != NULL) { 3117 icmp_send_redirect(mp1, nhop, ira); 3118 } 3119 } 3120 ire_refrele(nhop_ire); 3121 } 3122 3123 /* 3124 * Generate an ICMP redirect message. 3125 */ 3126 static void 3127 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3128 { 3129 icmph_t icmph; 3130 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3131 3132 mp = icmp_pkt_err_ok(mp, ira); 3133 if (mp == NULL) 3134 return; 3135 3136 bzero(&icmph, sizeof (icmph_t)); 3137 icmph.icmph_type = ICMP_REDIRECT; 3138 icmph.icmph_code = 1; 3139 icmph.icmph_rd_gateway = gateway; 3140 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3141 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3142 } 3143 3144 /* 3145 * Generate an ICMP time exceeded message. 3146 */ 3147 void 3148 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3149 { 3150 icmph_t icmph; 3151 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3152 3153 mp = icmp_pkt_err_ok(mp, ira); 3154 if (mp == NULL) 3155 return; 3156 3157 bzero(&icmph, sizeof (icmph_t)); 3158 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3159 icmph.icmph_code = code; 3160 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3161 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3162 } 3163 3164 /* 3165 * Generate an ICMP unreachable message. 3166 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3167 * constructed by the caller. 3168 */ 3169 void 3170 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3171 { 3172 icmph_t icmph; 3173 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3174 3175 mp = icmp_pkt_err_ok(mp, ira); 3176 if (mp == NULL) 3177 return; 3178 3179 bzero(&icmph, sizeof (icmph_t)); 3180 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3181 icmph.icmph_code = code; 3182 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3183 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3184 } 3185 3186 /* 3187 * Latch in the IPsec state for a stream based the policy in the listener 3188 * and the actions in the ip_recv_attr_t. 3189 * Called directly from TCP and SCTP. 3190 */ 3191 boolean_t 3192 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3193 { 3194 ASSERT(lconnp->conn_policy != NULL); 3195 ASSERT(connp->conn_policy == NULL); 3196 3197 IPPH_REFHOLD(lconnp->conn_policy); 3198 connp->conn_policy = lconnp->conn_policy; 3199 3200 if (ira->ira_ipsec_action != NULL) { 3201 if (connp->conn_latch == NULL) { 3202 connp->conn_latch = iplatch_create(); 3203 if (connp->conn_latch == NULL) 3204 return (B_FALSE); 3205 } 3206 ipsec_latch_inbound(connp, ira); 3207 } 3208 return (B_TRUE); 3209 } 3210 3211 /* 3212 * Verify whether or not the IP address is a valid local address. 3213 * Could be a unicast, including one for a down interface. 3214 * If allow_mcbc then a multicast or broadcast address is also 3215 * acceptable. 3216 * 3217 * In the case of a broadcast/multicast address, however, the 3218 * upper protocol is expected to reset the src address 3219 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3220 * no packets are emitted with broadcast/multicast address as 3221 * source address (that violates hosts requirements RFC 1122) 3222 * The addresses valid for bind are: 3223 * (1) - INADDR_ANY (0) 3224 * (2) - IP address of an UP interface 3225 * (3) - IP address of a DOWN interface 3226 * (4) - valid local IP broadcast addresses. In this case 3227 * the conn will only receive packets destined to 3228 * the specified broadcast address. 3229 * (5) - a multicast address. In this case 3230 * the conn will only receive packets destined to 3231 * the specified multicast address. Note: the 3232 * application still has to issue an 3233 * IP_ADD_MEMBERSHIP socket option. 3234 * 3235 * In all the above cases, the bound address must be valid in the current zone. 3236 * When the address is loopback, multicast or broadcast, there might be many 3237 * matching IREs so bind has to look up based on the zone. 3238 */ 3239 ip_laddr_t 3240 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3241 ip_stack_t *ipst, boolean_t allow_mcbc) 3242 { 3243 ire_t *src_ire; 3244 3245 ASSERT(src_addr != INADDR_ANY); 3246 3247 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3248 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3249 3250 /* 3251 * If an address other than in6addr_any is requested, 3252 * we verify that it is a valid address for bind 3253 * Note: Following code is in if-else-if form for 3254 * readability compared to a condition check. 3255 */ 3256 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3257 /* 3258 * (2) Bind to address of local UP interface 3259 */ 3260 ire_refrele(src_ire); 3261 return (IPVL_UNICAST_UP); 3262 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3263 /* 3264 * (4) Bind to broadcast address 3265 */ 3266 ire_refrele(src_ire); 3267 if (allow_mcbc) 3268 return (IPVL_BCAST); 3269 else 3270 return (IPVL_BAD); 3271 } else if (CLASSD(src_addr)) { 3272 /* (5) bind to multicast address. */ 3273 if (src_ire != NULL) 3274 ire_refrele(src_ire); 3275 3276 if (allow_mcbc) 3277 return (IPVL_MCAST); 3278 else 3279 return (IPVL_BAD); 3280 } else { 3281 ipif_t *ipif; 3282 3283 /* 3284 * (3) Bind to address of local DOWN interface? 3285 * (ipif_lookup_addr() looks up all interfaces 3286 * but we do not get here for UP interfaces 3287 * - case (2) above) 3288 */ 3289 if (src_ire != NULL) 3290 ire_refrele(src_ire); 3291 3292 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3293 if (ipif == NULL) 3294 return (IPVL_BAD); 3295 3296 /* Not a useful source? */ 3297 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3298 ipif_refrele(ipif); 3299 return (IPVL_BAD); 3300 } 3301 ipif_refrele(ipif); 3302 return (IPVL_UNICAST_DOWN); 3303 } 3304 } 3305 3306 /* 3307 * Insert in the bind fanout for IPv4 and IPv6. 3308 * The caller should already have used ip_laddr_verify_v*() before calling 3309 * this. 3310 */ 3311 int 3312 ip_laddr_fanout_insert(conn_t *connp) 3313 { 3314 int error; 3315 3316 /* 3317 * Allow setting new policies. For example, disconnects result 3318 * in us being called. As we would have set conn_policy_cached 3319 * to B_TRUE before, we should set it to B_FALSE, so that policy 3320 * can change after the disconnect. 3321 */ 3322 connp->conn_policy_cached = B_FALSE; 3323 3324 error = ipcl_bind_insert(connp); 3325 if (error != 0) { 3326 if (connp->conn_anon_port) { 3327 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3328 connp->conn_mlp_type, connp->conn_proto, 3329 ntohs(connp->conn_lport), B_FALSE); 3330 } 3331 connp->conn_mlp_type = mlptSingle; 3332 } 3333 return (error); 3334 } 3335 3336 /* 3337 * Verify that both the source and destination addresses are valid. If 3338 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3339 * i.e. have no route to it. Protocols like TCP want to verify destination 3340 * reachability, while tunnels do not. 3341 * 3342 * Determine the route, the interface, and (optionally) the source address 3343 * to use to reach a given destination. 3344 * Note that we allow connect to broadcast and multicast addresses when 3345 * IPDF_ALLOW_MCBC is set. 3346 * first_hop and dst_addr are normally the same, but if source routing 3347 * they will differ; in that case the first_hop is what we'll use for the 3348 * routing lookup but the dce and label checks will be done on dst_addr, 3349 * 3350 * If uinfo is set, then we fill in the best available information 3351 * we have for the destination. This is based on (in priority order) any 3352 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3353 * ill_mtu/ill_mc_mtu. 3354 * 3355 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3356 * always do the label check on dst_addr. 3357 */ 3358 int 3359 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3360 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3361 { 3362 ire_t *ire = NULL; 3363 int error = 0; 3364 ipaddr_t setsrc; /* RTF_SETSRC */ 3365 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3366 ip_stack_t *ipst = ixa->ixa_ipst; 3367 dce_t *dce; 3368 uint_t pmtu; 3369 uint_t generation; 3370 nce_t *nce; 3371 ill_t *ill = NULL; 3372 boolean_t multirt = B_FALSE; 3373 3374 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3375 3376 /* 3377 * We never send to zero; the ULPs map it to the loopback address. 3378 * We can't allow it since we use zero to mean unitialized in some 3379 * places. 3380 */ 3381 ASSERT(dst_addr != INADDR_ANY); 3382 3383 if (is_system_labeled()) { 3384 ts_label_t *tsl = NULL; 3385 3386 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3387 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3388 if (error != 0) 3389 return (error); 3390 if (tsl != NULL) { 3391 /* Update the label */ 3392 ip_xmit_attr_replace_tsl(ixa, tsl); 3393 } 3394 } 3395 3396 setsrc = INADDR_ANY; 3397 /* 3398 * Select a route; For IPMP interfaces, we would only select 3399 * a "hidden" route (i.e., going through a specific under_ill) 3400 * if ixa_ifindex has been specified. 3401 */ 3402 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3403 &generation, &setsrc, &error, &multirt); 3404 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3405 if (error != 0) 3406 goto bad_addr; 3407 3408 /* 3409 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3410 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3411 * Otherwise the destination needn't be reachable. 3412 * 3413 * If we match on a reject or black hole, then we've got a 3414 * local failure. May as well fail out the connect() attempt, 3415 * since it's never going to succeed. 3416 */ 3417 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3418 /* 3419 * If we're verifying destination reachability, we always want 3420 * to complain here. 3421 * 3422 * If we're not verifying destination reachability but the 3423 * destination has a route, we still want to fail on the 3424 * temporary address and broadcast address tests. 3425 * 3426 * In both cases do we let the code continue so some reasonable 3427 * information is returned to the caller. That enables the 3428 * caller to use (and even cache) the IRE. conn_ip_ouput will 3429 * use the generation mismatch path to check for the unreachable 3430 * case thereby avoiding any specific check in the main path. 3431 */ 3432 ASSERT(generation == IRE_GENERATION_VERIFY); 3433 if (flags & IPDF_VERIFY_DST) { 3434 /* 3435 * Set errno but continue to set up ixa_ire to be 3436 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3437 * That allows callers to use ip_output to get an 3438 * ICMP error back. 3439 */ 3440 if (!(ire->ire_type & IRE_HOST)) 3441 error = ENETUNREACH; 3442 else 3443 error = EHOSTUNREACH; 3444 } 3445 } 3446 3447 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3448 !(flags & IPDF_ALLOW_MCBC)) { 3449 ire_refrele(ire); 3450 ire = ire_reject(ipst, B_FALSE); 3451 generation = IRE_GENERATION_VERIFY; 3452 error = ENETUNREACH; 3453 } 3454 3455 /* Cache things */ 3456 if (ixa->ixa_ire != NULL) 3457 ire_refrele_notr(ixa->ixa_ire); 3458 #ifdef DEBUG 3459 ire_refhold_notr(ire); 3460 ire_refrele(ire); 3461 #endif 3462 ixa->ixa_ire = ire; 3463 ixa->ixa_ire_generation = generation; 3464 3465 /* 3466 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3467 * since some callers will send a packet to conn_ip_output() even if 3468 * there's an error. 3469 */ 3470 if (flags & IPDF_UNIQUE_DCE) { 3471 /* Fallback to the default dce if allocation fails */ 3472 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3473 if (dce != NULL) 3474 generation = dce->dce_generation; 3475 else 3476 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3477 } else { 3478 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3479 } 3480 ASSERT(dce != NULL); 3481 if (ixa->ixa_dce != NULL) 3482 dce_refrele_notr(ixa->ixa_dce); 3483 #ifdef DEBUG 3484 dce_refhold_notr(dce); 3485 dce_refrele(dce); 3486 #endif 3487 ixa->ixa_dce = dce; 3488 ixa->ixa_dce_generation = generation; 3489 3490 /* 3491 * For multicast with multirt we have a flag passed back from 3492 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3493 * possible multicast address. 3494 * We also need a flag for multicast since we can't check 3495 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3496 */ 3497 if (multirt) { 3498 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3499 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3500 } else { 3501 ixa->ixa_postfragfn = ire->ire_postfragfn; 3502 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3503 } 3504 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3505 /* Get an nce to cache. */ 3506 nce = ire_to_nce(ire, firsthop, NULL); 3507 if (nce == NULL) { 3508 /* Allocation failure? */ 3509 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3510 } else { 3511 if (ixa->ixa_nce != NULL) 3512 nce_refrele(ixa->ixa_nce); 3513 ixa->ixa_nce = nce; 3514 } 3515 } 3516 3517 /* 3518 * If the source address is a loopback address, the 3519 * destination had best be local or multicast. 3520 * If we are sending to an IRE_LOCAL using a loopback source then 3521 * it had better be the same zoneid. 3522 */ 3523 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3524 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3525 ire = NULL; /* Stored in ixa_ire */ 3526 error = EADDRNOTAVAIL; 3527 goto bad_addr; 3528 } 3529 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3530 ire = NULL; /* Stored in ixa_ire */ 3531 error = EADDRNOTAVAIL; 3532 goto bad_addr; 3533 } 3534 } 3535 if (ire->ire_type & IRE_BROADCAST) { 3536 /* 3537 * If the ULP didn't have a specified source, then we 3538 * make sure we reselect the source when sending 3539 * broadcasts out different interfaces. 3540 */ 3541 if (flags & IPDF_SELECT_SRC) 3542 ixa->ixa_flags |= IXAF_SET_SOURCE; 3543 else 3544 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3545 } 3546 3547 /* 3548 * Does the caller want us to pick a source address? 3549 */ 3550 if (flags & IPDF_SELECT_SRC) { 3551 ipaddr_t src_addr; 3552 3553 /* 3554 * We use use ire_nexthop_ill to avoid the under ipmp 3555 * interface for source address selection. Note that for ipmp 3556 * probe packets, ixa_ifindex would have been specified, and 3557 * the ip_select_route() invocation would have picked an ire 3558 * will ire_ill pointing at an under interface. 3559 */ 3560 ill = ire_nexthop_ill(ire); 3561 3562 /* If unreachable we have no ill but need some source */ 3563 if (ill == NULL) { 3564 src_addr = htonl(INADDR_LOOPBACK); 3565 /* Make sure we look for a better source address */ 3566 generation = SRC_GENERATION_VERIFY; 3567 } else { 3568 error = ip_select_source_v4(ill, setsrc, dst_addr, 3569 ixa->ixa_multicast_ifaddr, zoneid, 3570 ipst, &src_addr, &generation, NULL); 3571 if (error != 0) { 3572 ire = NULL; /* Stored in ixa_ire */ 3573 goto bad_addr; 3574 } 3575 } 3576 3577 /* 3578 * We allow the source address to to down. 3579 * However, we check that we don't use the loopback address 3580 * as a source when sending out on the wire. 3581 */ 3582 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3583 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3584 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3585 ire = NULL; /* Stored in ixa_ire */ 3586 error = EADDRNOTAVAIL; 3587 goto bad_addr; 3588 } 3589 3590 *src_addrp = src_addr; 3591 ixa->ixa_src_generation = generation; 3592 } 3593 3594 /* 3595 * Make sure we don't leave an unreachable ixa_nce in place 3596 * since ip_select_route is used when we unplumb i.e., remove 3597 * references on ixa_ire, ixa_nce, and ixa_dce. 3598 */ 3599 nce = ixa->ixa_nce; 3600 if (nce != NULL && nce->nce_is_condemned) { 3601 nce_refrele(nce); 3602 ixa->ixa_nce = NULL; 3603 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3604 } 3605 3606 /* 3607 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3608 * However, we can't do it for IPv4 multicast or broadcast. 3609 */ 3610 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3611 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3612 3613 /* 3614 * Set initial value for fragmentation limit. Either conn_ip_output 3615 * or ULP might updates it when there are routing changes. 3616 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3617 */ 3618 pmtu = ip_get_pmtu(ixa); 3619 ixa->ixa_fragsize = pmtu; 3620 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3621 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3622 ixa->ixa_pmtu = pmtu; 3623 3624 /* 3625 * Extract information useful for some transports. 3626 * First we look for DCE metrics. Then we take what we have in 3627 * the metrics in the route, where the offlink is used if we have 3628 * one. 3629 */ 3630 if (uinfo != NULL) { 3631 bzero(uinfo, sizeof (*uinfo)); 3632 3633 if (dce->dce_flags & DCEF_UINFO) 3634 *uinfo = dce->dce_uinfo; 3635 3636 rts_merge_metrics(uinfo, &ire->ire_metrics); 3637 3638 /* Allow ire_metrics to decrease the path MTU from above */ 3639 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3640 uinfo->iulp_mtu = pmtu; 3641 3642 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3643 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3644 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3645 } 3646 3647 if (ill != NULL) 3648 ill_refrele(ill); 3649 3650 return (error); 3651 3652 bad_addr: 3653 if (ire != NULL) 3654 ire_refrele(ire); 3655 3656 if (ill != NULL) 3657 ill_refrele(ill); 3658 3659 /* 3660 * Make sure we don't leave an unreachable ixa_nce in place 3661 * since ip_select_route is used when we unplumb i.e., remove 3662 * references on ixa_ire, ixa_nce, and ixa_dce. 3663 */ 3664 nce = ixa->ixa_nce; 3665 if (nce != NULL && nce->nce_is_condemned) { 3666 nce_refrele(nce); 3667 ixa->ixa_nce = NULL; 3668 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3669 } 3670 3671 return (error); 3672 } 3673 3674 3675 /* 3676 * Get the base MTU for the case when path MTU discovery is not used. 3677 * Takes the MTU of the IRE into account. 3678 */ 3679 uint_t 3680 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3681 { 3682 uint_t mtu; 3683 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3684 3685 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3686 mtu = ill->ill_mc_mtu; 3687 else 3688 mtu = ill->ill_mtu; 3689 3690 if (iremtu != 0 && iremtu < mtu) 3691 mtu = iremtu; 3692 3693 return (mtu); 3694 } 3695 3696 /* 3697 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3698 * Assumes that ixa_ire, dce, and nce have already been set up. 3699 * 3700 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3701 * We avoid path MTU discovery if it is disabled with ndd. 3702 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3703 * 3704 * NOTE: We also used to turn it off for source routed packets. That 3705 * is no longer required since the dce is per final destination. 3706 */ 3707 uint_t 3708 ip_get_pmtu(ip_xmit_attr_t *ixa) 3709 { 3710 ip_stack_t *ipst = ixa->ixa_ipst; 3711 dce_t *dce; 3712 nce_t *nce; 3713 ire_t *ire; 3714 uint_t pmtu; 3715 3716 ire = ixa->ixa_ire; 3717 dce = ixa->ixa_dce; 3718 nce = ixa->ixa_nce; 3719 3720 /* 3721 * If path MTU discovery has been turned off by ndd, then we ignore 3722 * any dce_pmtu and for IPv4 we will not set DF. 3723 */ 3724 if (!ipst->ips_ip_path_mtu_discovery) 3725 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3726 3727 pmtu = IP_MAXPACKET; 3728 /* 3729 * Decide whether whether IPv4 sets DF 3730 * For IPv6 "no DF" means to use the 1280 mtu 3731 */ 3732 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3733 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3734 } else { 3735 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3736 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3737 pmtu = IPV6_MIN_MTU; 3738 } 3739 3740 /* Check if the PMTU is to old before we use it */ 3741 if ((dce->dce_flags & DCEF_PMTU) && 3742 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3743 ipst->ips_ip_pathmtu_interval) { 3744 /* 3745 * Older than 20 minutes. Drop the path MTU information. 3746 */ 3747 mutex_enter(&dce->dce_lock); 3748 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3749 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3750 mutex_exit(&dce->dce_lock); 3751 dce_increment_generation(dce); 3752 } 3753 3754 /* The metrics on the route can lower the path MTU */ 3755 if (ire->ire_metrics.iulp_mtu != 0 && 3756 ire->ire_metrics.iulp_mtu < pmtu) 3757 pmtu = ire->ire_metrics.iulp_mtu; 3758 3759 /* 3760 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3761 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3762 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3763 */ 3764 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3765 if (dce->dce_flags & DCEF_PMTU) { 3766 if (dce->dce_pmtu < pmtu) 3767 pmtu = dce->dce_pmtu; 3768 3769 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3770 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3771 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3772 } else { 3773 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3774 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3775 } 3776 } else { 3777 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3778 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3779 } 3780 } 3781 3782 /* 3783 * If we have an IRE_LOCAL we use the loopback mtu instead of 3784 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3785 * mtu as IRE_LOOPBACK. 3786 */ 3787 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3788 uint_t loopback_mtu; 3789 3790 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3791 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3792 3793 if (loopback_mtu < pmtu) 3794 pmtu = loopback_mtu; 3795 } else if (nce != NULL) { 3796 /* 3797 * Make sure we don't exceed the interface MTU. 3798 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3799 * an ill. We'd use the above IP_MAXPACKET in that case just 3800 * to tell the transport something larger than zero. 3801 */ 3802 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3803 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3804 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3805 if (nce->nce_common->ncec_ill != nce->nce_ill && 3806 nce->nce_ill->ill_mc_mtu < pmtu) { 3807 /* 3808 * for interfaces in an IPMP group, the mtu of 3809 * the nce_ill (under_ill) could be different 3810 * from the mtu of the ncec_ill, so we take the 3811 * min of the two. 3812 */ 3813 pmtu = nce->nce_ill->ill_mc_mtu; 3814 } 3815 } else { 3816 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3817 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3818 if (nce->nce_common->ncec_ill != nce->nce_ill && 3819 nce->nce_ill->ill_mtu < pmtu) { 3820 /* 3821 * for interfaces in an IPMP group, the mtu of 3822 * the nce_ill (under_ill) could be different 3823 * from the mtu of the ncec_ill, so we take the 3824 * min of the two. 3825 */ 3826 pmtu = nce->nce_ill->ill_mtu; 3827 } 3828 } 3829 } 3830 3831 /* 3832 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3833 * Only applies to IPv6. 3834 */ 3835 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3836 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3837 switch (ixa->ixa_use_min_mtu) { 3838 case IPV6_USE_MIN_MTU_MULTICAST: 3839 if (ire->ire_type & IRE_MULTICAST) 3840 pmtu = IPV6_MIN_MTU; 3841 break; 3842 case IPV6_USE_MIN_MTU_ALWAYS: 3843 pmtu = IPV6_MIN_MTU; 3844 break; 3845 case IPV6_USE_MIN_MTU_NEVER: 3846 break; 3847 } 3848 } else { 3849 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3850 if (ire->ire_type & IRE_MULTICAST) 3851 pmtu = IPV6_MIN_MTU; 3852 } 3853 } 3854 3855 /* 3856 * For multirouted IPv6 packets, the IP layer will insert a 8-byte 3857 * fragment header in every packet. We compensate for those cases by 3858 * returning a smaller path MTU to the ULP. 3859 * 3860 * In the case of CGTP then ip_output will add a fragment header. 3861 * Make sure there is room for it by telling a smaller number 3862 * to the transport. 3863 * 3864 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3865 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3866 * which is the size of the packets it can send. 3867 */ 3868 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3869 if ((ire->ire_flags & RTF_MULTIRT) || 3870 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3871 pmtu -= sizeof (ip6_frag_t); 3872 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3873 } 3874 } 3875 3876 return (pmtu); 3877 } 3878 3879 /* 3880 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3881 * the final piece where we don't. Return a pointer to the first mblk in the 3882 * result, and update the pointer to the next mblk to chew on. If anything 3883 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3884 * NULL pointer. 3885 */ 3886 mblk_t * 3887 ip_carve_mp(mblk_t **mpp, ssize_t len) 3888 { 3889 mblk_t *mp0; 3890 mblk_t *mp1; 3891 mblk_t *mp2; 3892 3893 if (!len || !mpp || !(mp0 = *mpp)) 3894 return (NULL); 3895 /* If we aren't going to consume the first mblk, we need a dup. */ 3896 if (mp0->b_wptr - mp0->b_rptr > len) { 3897 mp1 = dupb(mp0); 3898 if (mp1) { 3899 /* Partition the data between the two mblks. */ 3900 mp1->b_wptr = mp1->b_rptr + len; 3901 mp0->b_rptr = mp1->b_wptr; 3902 /* 3903 * after adjustments if mblk not consumed is now 3904 * unaligned, try to align it. If this fails free 3905 * all messages and let upper layer recover. 3906 */ 3907 if (!OK_32PTR(mp0->b_rptr)) { 3908 if (!pullupmsg(mp0, -1)) { 3909 freemsg(mp0); 3910 freemsg(mp1); 3911 *mpp = NULL; 3912 return (NULL); 3913 } 3914 } 3915 } 3916 return (mp1); 3917 } 3918 /* Eat through as many mblks as we need to get len bytes. */ 3919 len -= mp0->b_wptr - mp0->b_rptr; 3920 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3921 if (mp2->b_wptr - mp2->b_rptr > len) { 3922 /* 3923 * We won't consume the entire last mblk. Like 3924 * above, dup and partition it. 3925 */ 3926 mp1->b_cont = dupb(mp2); 3927 mp1 = mp1->b_cont; 3928 if (!mp1) { 3929 /* 3930 * Trouble. Rather than go to a lot of 3931 * trouble to clean up, we free the messages. 3932 * This won't be any worse than losing it on 3933 * the wire. 3934 */ 3935 freemsg(mp0); 3936 freemsg(mp2); 3937 *mpp = NULL; 3938 return (NULL); 3939 } 3940 mp1->b_wptr = mp1->b_rptr + len; 3941 mp2->b_rptr = mp1->b_wptr; 3942 /* 3943 * after adjustments if mblk not consumed is now 3944 * unaligned, try to align it. If this fails free 3945 * all messages and let upper layer recover. 3946 */ 3947 if (!OK_32PTR(mp2->b_rptr)) { 3948 if (!pullupmsg(mp2, -1)) { 3949 freemsg(mp0); 3950 freemsg(mp2); 3951 *mpp = NULL; 3952 return (NULL); 3953 } 3954 } 3955 *mpp = mp2; 3956 return (mp0); 3957 } 3958 /* Decrement len by the amount we just got. */ 3959 len -= mp2->b_wptr - mp2->b_rptr; 3960 } 3961 /* 3962 * len should be reduced to zero now. If not our caller has 3963 * screwed up. 3964 */ 3965 if (len) { 3966 /* Shouldn't happen! */ 3967 freemsg(mp0); 3968 *mpp = NULL; 3969 return (NULL); 3970 } 3971 /* 3972 * We consumed up to exactly the end of an mblk. Detach the part 3973 * we are returning from the rest of the chain. 3974 */ 3975 mp1->b_cont = NULL; 3976 *mpp = mp2; 3977 return (mp0); 3978 } 3979 3980 /* The ill stream is being unplumbed. Called from ip_close */ 3981 int 3982 ip_modclose(ill_t *ill) 3983 { 3984 boolean_t success; 3985 ipsq_t *ipsq; 3986 ipif_t *ipif; 3987 queue_t *q = ill->ill_rq; 3988 ip_stack_t *ipst = ill->ill_ipst; 3989 int i; 3990 arl_ill_common_t *ai = ill->ill_common; 3991 3992 /* 3993 * The punlink prior to this may have initiated a capability 3994 * negotiation. But ipsq_enter will block until that finishes or 3995 * times out. 3996 */ 3997 success = ipsq_enter(ill, B_FALSE, NEW_OP); 3998 3999 /* 4000 * Open/close/push/pop is guaranteed to be single threaded 4001 * per stream by STREAMS. FS guarantees that all references 4002 * from top are gone before close is called. So there can't 4003 * be another close thread that has set CONDEMNED on this ill. 4004 * and cause ipsq_enter to return failure. 4005 */ 4006 ASSERT(success); 4007 ipsq = ill->ill_phyint->phyint_ipsq; 4008 4009 /* 4010 * Mark it condemned. No new reference will be made to this ill. 4011 * Lookup functions will return an error. Threads that try to 4012 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4013 * that the refcnt will drop down to zero. 4014 */ 4015 mutex_enter(&ill->ill_lock); 4016 ill->ill_state_flags |= ILL_CONDEMNED; 4017 for (ipif = ill->ill_ipif; ipif != NULL; 4018 ipif = ipif->ipif_next) { 4019 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4020 } 4021 /* 4022 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4023 * returns error if ILL_CONDEMNED is set 4024 */ 4025 cv_broadcast(&ill->ill_cv); 4026 mutex_exit(&ill->ill_lock); 4027 4028 /* 4029 * Send all the deferred DLPI messages downstream which came in 4030 * during the small window right before ipsq_enter(). We do this 4031 * without waiting for the ACKs because all the ACKs for M_PROTO 4032 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4033 */ 4034 ill_dlpi_send_deferred(ill); 4035 4036 /* 4037 * Shut down fragmentation reassembly. 4038 * ill_frag_timer won't start a timer again. 4039 * Now cancel any existing timer 4040 */ 4041 (void) untimeout(ill->ill_frag_timer_id); 4042 (void) ill_frag_timeout(ill, 0); 4043 4044 /* 4045 * Call ill_delete to bring down the ipifs, ilms and ill on 4046 * this ill. Then wait for the refcnts to drop to zero. 4047 * ill_is_freeable checks whether the ill is really quiescent. 4048 * Then make sure that threads that are waiting to enter the 4049 * ipsq have seen the error returned by ipsq_enter and have 4050 * gone away. Then we call ill_delete_tail which does the 4051 * DL_UNBIND_REQ with the driver and then qprocsoff. 4052 */ 4053 ill_delete(ill); 4054 mutex_enter(&ill->ill_lock); 4055 while (!ill_is_freeable(ill)) 4056 cv_wait(&ill->ill_cv, &ill->ill_lock); 4057 4058 while (ill->ill_waiters) 4059 cv_wait(&ill->ill_cv, &ill->ill_lock); 4060 4061 mutex_exit(&ill->ill_lock); 4062 4063 /* 4064 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4065 * it held until the end of the function since the cleanup 4066 * below needs to be able to use the ip_stack_t. 4067 */ 4068 netstack_hold(ipst->ips_netstack); 4069 4070 /* qprocsoff is done via ill_delete_tail */ 4071 ill_delete_tail(ill); 4072 /* 4073 * synchronously wait for arp stream to unbind. After this, we 4074 * cannot get any data packets up from the driver. 4075 */ 4076 arp_unbind_complete(ill); 4077 ASSERT(ill->ill_ipst == NULL); 4078 4079 /* 4080 * Walk through all conns and qenable those that have queued data. 4081 * Close synchronization needs this to 4082 * be done to ensure that all upper layers blocked 4083 * due to flow control to the closing device 4084 * get unblocked. 4085 */ 4086 ip1dbg(("ip_wsrv: walking\n")); 4087 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4088 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4089 } 4090 4091 /* 4092 * ai can be null if this is an IPv6 ill, or if the IPv4 4093 * stream is being torn down before ARP was plumbed (e.g., 4094 * /sbin/ifconfig plumbing a stream twice, and encountering 4095 * an error 4096 */ 4097 if (ai != NULL) { 4098 ASSERT(!ill->ill_isv6); 4099 mutex_enter(&ai->ai_lock); 4100 ai->ai_ill = NULL; 4101 if (ai->ai_arl == NULL) { 4102 mutex_destroy(&ai->ai_lock); 4103 kmem_free(ai, sizeof (*ai)); 4104 } else { 4105 cv_signal(&ai->ai_ill_unplumb_done); 4106 mutex_exit(&ai->ai_lock); 4107 } 4108 } 4109 4110 mutex_enter(&ipst->ips_ip_mi_lock); 4111 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4112 mutex_exit(&ipst->ips_ip_mi_lock); 4113 4114 /* 4115 * credp could be null if the open didn't succeed and ip_modopen 4116 * itself calls ip_close. 4117 */ 4118 if (ill->ill_credp != NULL) 4119 crfree(ill->ill_credp); 4120 4121 mutex_destroy(&ill->ill_saved_ire_lock); 4122 mutex_destroy(&ill->ill_lock); 4123 rw_destroy(&ill->ill_mcast_lock); 4124 mutex_destroy(&ill->ill_mcast_serializer); 4125 list_destroy(&ill->ill_nce); 4126 4127 /* 4128 * Now we are done with the module close pieces that 4129 * need the netstack_t. 4130 */ 4131 netstack_rele(ipst->ips_netstack); 4132 4133 mi_close_free((IDP)ill); 4134 q->q_ptr = WR(q)->q_ptr = NULL; 4135 4136 ipsq_exit(ipsq); 4137 4138 return (0); 4139 } 4140 4141 /* 4142 * This is called as part of close() for IP, UDP, ICMP, and RTS 4143 * in order to quiesce the conn. 4144 */ 4145 void 4146 ip_quiesce_conn(conn_t *connp) 4147 { 4148 boolean_t drain_cleanup_reqd = B_FALSE; 4149 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4150 boolean_t ilg_cleanup_reqd = B_FALSE; 4151 ip_stack_t *ipst; 4152 4153 ASSERT(!IPCL_IS_TCP(connp)); 4154 ipst = connp->conn_netstack->netstack_ip; 4155 4156 /* 4157 * Mark the conn as closing, and this conn must not be 4158 * inserted in future into any list. Eg. conn_drain_insert(), 4159 * won't insert this conn into the conn_drain_list. 4160 * 4161 * conn_idl, and conn_ilg cannot get set henceforth. 4162 */ 4163 mutex_enter(&connp->conn_lock); 4164 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4165 connp->conn_state_flags |= CONN_CLOSING; 4166 if (connp->conn_idl != NULL) 4167 drain_cleanup_reqd = B_TRUE; 4168 if (connp->conn_oper_pending_ill != NULL) 4169 conn_ioctl_cleanup_reqd = B_TRUE; 4170 if (connp->conn_dhcpinit_ill != NULL) { 4171 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4172 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4173 ill_set_inputfn(connp->conn_dhcpinit_ill); 4174 connp->conn_dhcpinit_ill = NULL; 4175 } 4176 if (connp->conn_ilg != NULL) 4177 ilg_cleanup_reqd = B_TRUE; 4178 mutex_exit(&connp->conn_lock); 4179 4180 if (conn_ioctl_cleanup_reqd) 4181 conn_ioctl_cleanup(connp); 4182 4183 if (is_system_labeled() && connp->conn_anon_port) { 4184 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4185 connp->conn_mlp_type, connp->conn_proto, 4186 ntohs(connp->conn_lport), B_FALSE); 4187 connp->conn_anon_port = 0; 4188 } 4189 connp->conn_mlp_type = mlptSingle; 4190 4191 /* 4192 * Remove this conn from any fanout list it is on. 4193 * and then wait for any threads currently operating 4194 * on this endpoint to finish 4195 */ 4196 ipcl_hash_remove(connp); 4197 4198 /* 4199 * Remove this conn from the drain list, and do any other cleanup that 4200 * may be required. (TCP conns are never flow controlled, and 4201 * conn_idl will be NULL.) 4202 */ 4203 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4204 idl_t *idl = connp->conn_idl; 4205 4206 mutex_enter(&idl->idl_lock); 4207 conn_drain(connp, B_TRUE); 4208 mutex_exit(&idl->idl_lock); 4209 } 4210 4211 if (connp == ipst->ips_ip_g_mrouter) 4212 (void) ip_mrouter_done(ipst); 4213 4214 if (ilg_cleanup_reqd) 4215 ilg_delete_all(connp); 4216 4217 /* 4218 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4219 * callers from write side can't be there now because close 4220 * is in progress. The only other caller is ipcl_walk 4221 * which checks for the condemned flag. 4222 */ 4223 mutex_enter(&connp->conn_lock); 4224 connp->conn_state_flags |= CONN_CONDEMNED; 4225 while (connp->conn_ref != 1) 4226 cv_wait(&connp->conn_cv, &connp->conn_lock); 4227 connp->conn_state_flags |= CONN_QUIESCED; 4228 mutex_exit(&connp->conn_lock); 4229 } 4230 4231 /* ARGSUSED */ 4232 int 4233 ip_close(queue_t *q, int flags, cred_t *credp __unused) 4234 { 4235 conn_t *connp; 4236 4237 /* 4238 * Call the appropriate delete routine depending on whether this is 4239 * a module or device. 4240 */ 4241 if (WR(q)->q_next != NULL) { 4242 /* This is a module close */ 4243 return (ip_modclose((ill_t *)q->q_ptr)); 4244 } 4245 4246 connp = q->q_ptr; 4247 ip_quiesce_conn(connp); 4248 4249 qprocsoff(q); 4250 4251 /* 4252 * Now we are truly single threaded on this stream, and can 4253 * delete the things hanging off the connp, and finally the connp. 4254 * We removed this connp from the fanout list, it cannot be 4255 * accessed thru the fanouts, and we already waited for the 4256 * conn_ref to drop to 0. We are already in close, so 4257 * there cannot be any other thread from the top. qprocsoff 4258 * has completed, and service has completed or won't run in 4259 * future. 4260 */ 4261 ASSERT(connp->conn_ref == 1); 4262 4263 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4264 4265 connp->conn_ref--; 4266 ipcl_conn_destroy(connp); 4267 4268 q->q_ptr = WR(q)->q_ptr = NULL; 4269 return (0); 4270 } 4271 4272 /* 4273 * Wapper around putnext() so that ip_rts_request can merely use 4274 * conn_recv. 4275 */ 4276 /*ARGSUSED2*/ 4277 static void 4278 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4279 { 4280 conn_t *connp = (conn_t *)arg1; 4281 4282 putnext(connp->conn_rq, mp); 4283 } 4284 4285 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4286 /* ARGSUSED */ 4287 static void 4288 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4289 { 4290 freemsg(mp); 4291 } 4292 4293 /* 4294 * Called when the module is about to be unloaded 4295 */ 4296 void 4297 ip_ddi_destroy(void) 4298 { 4299 /* This needs to be called before destroying any transports. */ 4300 mutex_enter(&cpu_lock); 4301 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4302 mutex_exit(&cpu_lock); 4303 4304 tnet_fini(); 4305 4306 icmp_ddi_g_destroy(); 4307 rts_ddi_g_destroy(); 4308 udp_ddi_g_destroy(); 4309 sctp_ddi_g_destroy(); 4310 tcp_ddi_g_destroy(); 4311 ilb_ddi_g_destroy(); 4312 dce_g_destroy(); 4313 ipsec_policy_g_destroy(); 4314 ipcl_g_destroy(); 4315 ip_net_g_destroy(); 4316 ip_ire_g_fini(); 4317 inet_minor_destroy(ip_minor_arena_sa); 4318 #if defined(_LP64) 4319 inet_minor_destroy(ip_minor_arena_la); 4320 #endif 4321 4322 #ifdef DEBUG 4323 list_destroy(&ip_thread_list); 4324 rw_destroy(&ip_thread_rwlock); 4325 tsd_destroy(&ip_thread_data); 4326 #endif 4327 4328 netstack_unregister(NS_IP); 4329 } 4330 4331 /* 4332 * First step in cleanup. 4333 */ 4334 /* ARGSUSED */ 4335 static void 4336 ip_stack_shutdown(netstackid_t stackid, void *arg) 4337 { 4338 ip_stack_t *ipst = (ip_stack_t *)arg; 4339 kt_did_t ktid; 4340 4341 #ifdef NS_DEBUG 4342 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4343 #endif 4344 4345 /* 4346 * Perform cleanup for special interfaces (loopback and IPMP). 4347 */ 4348 ip_interface_cleanup(ipst); 4349 4350 /* 4351 * The *_hook_shutdown()s start the process of notifying any 4352 * consumers that things are going away.... nothing is destroyed. 4353 */ 4354 ipv4_hook_shutdown(ipst); 4355 ipv6_hook_shutdown(ipst); 4356 arp_hook_shutdown(ipst); 4357 4358 mutex_enter(&ipst->ips_capab_taskq_lock); 4359 ktid = ipst->ips_capab_taskq_thread->t_did; 4360 ipst->ips_capab_taskq_quit = B_TRUE; 4361 cv_signal(&ipst->ips_capab_taskq_cv); 4362 mutex_exit(&ipst->ips_capab_taskq_lock); 4363 4364 /* 4365 * In rare occurrences, particularly on virtual hardware where CPUs can 4366 * be de-scheduled, the thread that we just signaled will not run until 4367 * after we have gotten through parts of ip_stack_fini. If that happens 4368 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4369 * from cv_wait which no longer exists. 4370 */ 4371 thread_join(ktid); 4372 } 4373 4374 /* 4375 * Free the IP stack instance. 4376 */ 4377 static void 4378 ip_stack_fini(netstackid_t stackid, void *arg) 4379 { 4380 ip_stack_t *ipst = (ip_stack_t *)arg; 4381 int ret; 4382 4383 #ifdef NS_DEBUG 4384 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4385 #endif 4386 /* 4387 * At this point, all of the notifications that the events and 4388 * protocols are going away have been run, meaning that we can 4389 * now set about starting to clean things up. 4390 */ 4391 ipobs_fini(ipst); 4392 ipv4_hook_destroy(ipst); 4393 ipv6_hook_destroy(ipst); 4394 arp_hook_destroy(ipst); 4395 ip_net_destroy(ipst); 4396 4397 ipmp_destroy(ipst); 4398 4399 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4400 ipst->ips_ip_mibkp = NULL; 4401 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4402 ipst->ips_icmp_mibkp = NULL; 4403 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4404 ipst->ips_ip_kstat = NULL; 4405 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4406 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4407 ipst->ips_ip6_kstat = NULL; 4408 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4409 4410 kmem_free(ipst->ips_propinfo_tbl, 4411 ip_propinfo_count * sizeof (mod_prop_info_t)); 4412 ipst->ips_propinfo_tbl = NULL; 4413 4414 dce_stack_destroy(ipst); 4415 ip_mrouter_stack_destroy(ipst); 4416 4417 /* 4418 * Quiesce all of our timers. Note we set the quiesce flags before we 4419 * call untimeout. The slowtimers may actually kick off another instance 4420 * of the non-slow timers. 4421 */ 4422 mutex_enter(&ipst->ips_igmp_timer_lock); 4423 ipst->ips_igmp_timer_quiesce = B_TRUE; 4424 mutex_exit(&ipst->ips_igmp_timer_lock); 4425 4426 mutex_enter(&ipst->ips_mld_timer_lock); 4427 ipst->ips_mld_timer_quiesce = B_TRUE; 4428 mutex_exit(&ipst->ips_mld_timer_lock); 4429 4430 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4431 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4432 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4433 4434 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4435 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4436 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4437 4438 ret = untimeout(ipst->ips_igmp_timeout_id); 4439 if (ret == -1) { 4440 ASSERT(ipst->ips_igmp_timeout_id == 0); 4441 } else { 4442 ASSERT(ipst->ips_igmp_timeout_id != 0); 4443 ipst->ips_igmp_timeout_id = 0; 4444 } 4445 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4446 if (ret == -1) { 4447 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4448 } else { 4449 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4450 ipst->ips_igmp_slowtimeout_id = 0; 4451 } 4452 ret = untimeout(ipst->ips_mld_timeout_id); 4453 if (ret == -1) { 4454 ASSERT(ipst->ips_mld_timeout_id == 0); 4455 } else { 4456 ASSERT(ipst->ips_mld_timeout_id != 0); 4457 ipst->ips_mld_timeout_id = 0; 4458 } 4459 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4460 if (ret == -1) { 4461 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4462 } else { 4463 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4464 ipst->ips_mld_slowtimeout_id = 0; 4465 } 4466 4467 ip_ire_fini(ipst); 4468 ip6_asp_free(ipst); 4469 conn_drain_fini(ipst); 4470 ipcl_destroy(ipst); 4471 4472 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4473 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4474 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4475 ipst->ips_ndp4 = NULL; 4476 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4477 ipst->ips_ndp6 = NULL; 4478 4479 if (ipst->ips_loopback_ksp != NULL) { 4480 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4481 ipst->ips_loopback_ksp = NULL; 4482 } 4483 4484 mutex_destroy(&ipst->ips_capab_taskq_lock); 4485 cv_destroy(&ipst->ips_capab_taskq_cv); 4486 4487 rw_destroy(&ipst->ips_srcid_lock); 4488 4489 mutex_destroy(&ipst->ips_ip_mi_lock); 4490 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4491 4492 mutex_destroy(&ipst->ips_igmp_timer_lock); 4493 mutex_destroy(&ipst->ips_mld_timer_lock); 4494 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4495 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4496 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4497 rw_destroy(&ipst->ips_ill_g_lock); 4498 4499 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4500 ipst->ips_phyint_g_list = NULL; 4501 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4502 ipst->ips_ill_g_heads = NULL; 4503 4504 ldi_ident_release(ipst->ips_ldi_ident); 4505 kmem_free(ipst, sizeof (*ipst)); 4506 } 4507 4508 /* 4509 * This function is called from the TSD destructor, and is used to debug 4510 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4511 * details. 4512 */ 4513 static void 4514 ip_thread_exit(void *phash) 4515 { 4516 th_hash_t *thh = phash; 4517 4518 rw_enter(&ip_thread_rwlock, RW_WRITER); 4519 list_remove(&ip_thread_list, thh); 4520 rw_exit(&ip_thread_rwlock); 4521 mod_hash_destroy_hash(thh->thh_hash); 4522 kmem_free(thh, sizeof (*thh)); 4523 } 4524 4525 /* 4526 * Called when the IP kernel module is loaded into the kernel 4527 */ 4528 void 4529 ip_ddi_init(void) 4530 { 4531 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4532 4533 /* 4534 * For IP and TCP the minor numbers should start from 2 since we have 4 4535 * initial devices: ip, ip6, tcp, tcp6. 4536 */ 4537 /* 4538 * If this is a 64-bit kernel, then create two separate arenas - 4539 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4540 * other for socket apps in the range 2^^18 through 2^^32-1. 4541 */ 4542 ip_minor_arena_la = NULL; 4543 ip_minor_arena_sa = NULL; 4544 #if defined(_LP64) 4545 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4546 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4547 cmn_err(CE_PANIC, 4548 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4549 } 4550 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4551 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4552 cmn_err(CE_PANIC, 4553 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4554 } 4555 #else 4556 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4557 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4558 cmn_err(CE_PANIC, 4559 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4560 } 4561 #endif 4562 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4563 4564 ipcl_g_init(); 4565 ip_ire_g_init(); 4566 ip_net_g_init(); 4567 4568 #ifdef DEBUG 4569 tsd_create(&ip_thread_data, ip_thread_exit); 4570 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4571 list_create(&ip_thread_list, sizeof (th_hash_t), 4572 offsetof(th_hash_t, thh_link)); 4573 #endif 4574 ipsec_policy_g_init(); 4575 tcp_ddi_g_init(); 4576 sctp_ddi_g_init(); 4577 dce_g_init(); 4578 4579 /* 4580 * We want to be informed each time a stack is created or 4581 * destroyed in the kernel, so we can maintain the 4582 * set of udp_stack_t's. 4583 */ 4584 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4585 ip_stack_fini); 4586 4587 tnet_init(); 4588 4589 udp_ddi_g_init(); 4590 rts_ddi_g_init(); 4591 icmp_ddi_g_init(); 4592 ilb_ddi_g_init(); 4593 4594 /* This needs to be called after all transports are initialized. */ 4595 mutex_enter(&cpu_lock); 4596 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4597 mutex_exit(&cpu_lock); 4598 } 4599 4600 /* 4601 * Initialize the IP stack instance. 4602 */ 4603 static void * 4604 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4605 { 4606 ip_stack_t *ipst; 4607 size_t arrsz; 4608 major_t major; 4609 4610 #ifdef NS_DEBUG 4611 printf("ip_stack_init(stack %d)\n", stackid); 4612 #endif 4613 4614 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4615 ipst->ips_netstack = ns; 4616 4617 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4618 KM_SLEEP); 4619 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4620 KM_SLEEP); 4621 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4622 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4623 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4624 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4625 4626 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4627 ipst->ips_igmp_deferred_next = INFINITY; 4628 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4629 ipst->ips_mld_deferred_next = INFINITY; 4630 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4631 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4632 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4633 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4634 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4635 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4636 4637 ipcl_init(ipst); 4638 ip_ire_init(ipst); 4639 ip6_asp_init(ipst); 4640 ipif_init(ipst); 4641 conn_drain_init(ipst); 4642 ip_mrouter_stack_init(ipst); 4643 dce_stack_init(ipst); 4644 4645 ipst->ips_ip_multirt_log_interval = 1000; 4646 4647 ipst->ips_ill_index = 1; 4648 4649 ipst->ips_saved_ip_forwarding = -1; 4650 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4651 4652 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4653 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4654 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4655 4656 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4657 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4658 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4659 ipst->ips_ip6_kstat = 4660 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4661 4662 ipst->ips_ip_src_id = 1; 4663 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4664 4665 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4666 4667 ip_net_init(ipst, ns); 4668 ipv4_hook_init(ipst); 4669 ipv6_hook_init(ipst); 4670 arp_hook_init(ipst); 4671 ipmp_init(ipst); 4672 ipobs_init(ipst); 4673 4674 /* 4675 * Create the taskq dispatcher thread and initialize related stuff. 4676 */ 4677 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4678 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4679 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4680 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4681 4682 major = mod_name_to_major(INET_NAME); 4683 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4684 return (ipst); 4685 } 4686 4687 /* 4688 * Allocate and initialize a DLPI template of the specified length. (May be 4689 * called as writer.) 4690 */ 4691 mblk_t * 4692 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4693 { 4694 mblk_t *mp; 4695 4696 mp = allocb(len, BPRI_MED); 4697 if (!mp) 4698 return (NULL); 4699 4700 /* 4701 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4702 * of which we don't seem to use) are sent with M_PCPROTO, and 4703 * that other DLPI are M_PROTO. 4704 */ 4705 if (prim == DL_INFO_REQ) { 4706 mp->b_datap->db_type = M_PCPROTO; 4707 } else { 4708 mp->b_datap->db_type = M_PROTO; 4709 } 4710 4711 mp->b_wptr = mp->b_rptr + len; 4712 bzero(mp->b_rptr, len); 4713 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4714 return (mp); 4715 } 4716 4717 /* 4718 * Allocate and initialize a DLPI notification. (May be called as writer.) 4719 */ 4720 mblk_t * 4721 ip_dlnotify_alloc(uint_t notification, uint_t data) 4722 { 4723 dl_notify_ind_t *notifyp; 4724 mblk_t *mp; 4725 4726 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4727 return (NULL); 4728 4729 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4730 notifyp->dl_notification = notification; 4731 notifyp->dl_data = data; 4732 return (mp); 4733 } 4734 4735 mblk_t * 4736 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4737 { 4738 dl_notify_ind_t *notifyp; 4739 mblk_t *mp; 4740 4741 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4742 return (NULL); 4743 4744 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4745 notifyp->dl_notification = notification; 4746 notifyp->dl_data1 = data1; 4747 notifyp->dl_data2 = data2; 4748 return (mp); 4749 } 4750 4751 /* 4752 * Debug formatting routine. Returns a character string representation of the 4753 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4754 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4755 * 4756 * Once the ndd table-printing interfaces are removed, this can be changed to 4757 * standard dotted-decimal form. 4758 */ 4759 char * 4760 ip_dot_addr(ipaddr_t addr, char *buf) 4761 { 4762 uint8_t *ap = (uint8_t *)&addr; 4763 4764 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4765 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4766 return (buf); 4767 } 4768 4769 /* 4770 * Write the given MAC address as a printable string in the usual colon- 4771 * separated format. 4772 */ 4773 const char * 4774 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4775 { 4776 char *bp; 4777 4778 if (alen == 0 || buflen < 4) 4779 return ("?"); 4780 bp = buf; 4781 for (;;) { 4782 /* 4783 * If there are more MAC address bytes available, but we won't 4784 * have any room to print them, then add "..." to the string 4785 * instead. See below for the 'magic number' explanation. 4786 */ 4787 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4788 (void) strcpy(bp, "..."); 4789 break; 4790 } 4791 (void) sprintf(bp, "%02x", *addr++); 4792 bp += 2; 4793 if (--alen == 0) 4794 break; 4795 *bp++ = ':'; 4796 buflen -= 3; 4797 /* 4798 * At this point, based on the first 'if' statement above, 4799 * either alen == 1 and buflen >= 3, or alen > 1 and 4800 * buflen >= 4. The first case leaves room for the final "xx" 4801 * number and trailing NUL byte. The second leaves room for at 4802 * least "...". Thus the apparently 'magic' numbers chosen for 4803 * that statement. 4804 */ 4805 } 4806 return (buf); 4807 } 4808 4809 /* 4810 * Called when it is conceptually a ULP that would sent the packet 4811 * e.g., port unreachable and protocol unreachable. Check that the packet 4812 * would have passed the IPsec global policy before sending the error. 4813 * 4814 * Send an ICMP error after patching up the packet appropriately. 4815 * Uses ip_drop_input and bumps the appropriate MIB. 4816 */ 4817 void 4818 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4819 ip_recv_attr_t *ira) 4820 { 4821 ipha_t *ipha; 4822 boolean_t secure; 4823 ill_t *ill = ira->ira_ill; 4824 ip_stack_t *ipst = ill->ill_ipst; 4825 netstack_t *ns = ipst->ips_netstack; 4826 ipsec_stack_t *ipss = ns->netstack_ipsec; 4827 4828 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4829 4830 /* 4831 * We are generating an icmp error for some inbound packet. 4832 * Called from all ip_fanout_(udp, tcp, proto) functions. 4833 * Before we generate an error, check with global policy 4834 * to see whether this is allowed to enter the system. As 4835 * there is no "conn", we are checking with global policy. 4836 */ 4837 ipha = (ipha_t *)mp->b_rptr; 4838 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4839 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4840 if (mp == NULL) 4841 return; 4842 } 4843 4844 /* We never send errors for protocols that we do implement */ 4845 if (ira->ira_protocol == IPPROTO_ICMP || 4846 ira->ira_protocol == IPPROTO_IGMP) { 4847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4848 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4849 freemsg(mp); 4850 return; 4851 } 4852 /* 4853 * Have to correct checksum since 4854 * the packet might have been 4855 * fragmented and the reassembly code in ip_rput 4856 * does not restore the IP checksum. 4857 */ 4858 ipha->ipha_hdr_checksum = 0; 4859 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4860 4861 switch (icmp_type) { 4862 case ICMP_DEST_UNREACHABLE: 4863 switch (icmp_code) { 4864 case ICMP_PROTOCOL_UNREACHABLE: 4865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4866 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4867 break; 4868 case ICMP_PORT_UNREACHABLE: 4869 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4870 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4871 break; 4872 } 4873 4874 icmp_unreachable(mp, icmp_code, ira); 4875 break; 4876 default: 4877 #ifdef DEBUG 4878 panic("ip_fanout_send_icmp_v4: wrong type"); 4879 /*NOTREACHED*/ 4880 #else 4881 freemsg(mp); 4882 break; 4883 #endif 4884 } 4885 } 4886 4887 /* 4888 * Used to send an ICMP error message when a packet is received for 4889 * a protocol that is not supported. The mblk passed as argument 4890 * is consumed by this function. 4891 */ 4892 void 4893 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4894 { 4895 ipha_t *ipha; 4896 4897 ipha = (ipha_t *)mp->b_rptr; 4898 if (ira->ira_flags & IRAF_IS_IPV4) { 4899 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4900 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4901 ICMP_PROTOCOL_UNREACHABLE, ira); 4902 } else { 4903 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4904 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4905 ICMP6_PARAMPROB_NEXTHEADER, ira); 4906 } 4907 } 4908 4909 /* 4910 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4911 * Handles IPv4 and IPv6. 4912 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4913 * Caller is responsible for dropping references to the conn. 4914 */ 4915 void 4916 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4917 ip_recv_attr_t *ira) 4918 { 4919 ill_t *ill = ira->ira_ill; 4920 ip_stack_t *ipst = ill->ill_ipst; 4921 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4922 boolean_t secure; 4923 uint_t protocol = ira->ira_protocol; 4924 iaflags_t iraflags = ira->ira_flags; 4925 queue_t *rq; 4926 4927 secure = iraflags & IRAF_IPSEC_SECURE; 4928 4929 rq = connp->conn_rq; 4930 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4931 switch (protocol) { 4932 case IPPROTO_ICMPV6: 4933 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4934 break; 4935 case IPPROTO_ICMP: 4936 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4937 break; 4938 default: 4939 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4940 break; 4941 } 4942 freemsg(mp); 4943 return; 4944 } 4945 4946 ASSERT(!(IPCL_IS_IPTUN(connp))); 4947 4948 if (((iraflags & IRAF_IS_IPV4) ? 4949 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4950 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4951 secure) { 4952 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4953 ip6h, ira); 4954 if (mp == NULL) { 4955 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4956 /* Note that mp is NULL */ 4957 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4958 return; 4959 } 4960 } 4961 4962 if (iraflags & IRAF_ICMP_ERROR) { 4963 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4964 } else { 4965 ill_t *rill = ira->ira_rill; 4966 4967 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4968 ira->ira_ill = ira->ira_rill = NULL; 4969 /* Send it upstream */ 4970 (connp->conn_recv)(connp, mp, NULL, ira); 4971 ira->ira_ill = ill; 4972 ira->ira_rill = rill; 4973 } 4974 } 4975 4976 /* 4977 * Handle protocols with which IP is less intimate. There 4978 * can be more than one stream bound to a particular 4979 * protocol. When this is the case, normally each one gets a copy 4980 * of any incoming packets. 4981 * 4982 * IPsec NOTE : 4983 * 4984 * Don't allow a secure packet going up a non-secure connection. 4985 * We don't allow this because 4986 * 4987 * 1) Reply might go out in clear which will be dropped at 4988 * the sending side. 4989 * 2) If the reply goes out in clear it will give the 4990 * adversary enough information for getting the key in 4991 * most of the cases. 4992 * 4993 * Moreover getting a secure packet when we expect clear 4994 * implies that SA's were added without checking for 4995 * policy on both ends. This should not happen once ISAKMP 4996 * is used to negotiate SAs as SAs will be added only after 4997 * verifying the policy. 4998 * 4999 * Zones notes: 5000 * Earlier in ip_input on a system with multiple shared-IP zones we 5001 * duplicate the multicast and broadcast packets and send them up 5002 * with each explicit zoneid that exists on that ill. 5003 * This means that here we can match the zoneid with SO_ALLZONES being special. 5004 */ 5005 void 5006 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5007 { 5008 mblk_t *mp1; 5009 ipaddr_t laddr; 5010 conn_t *connp, *first_connp, *next_connp; 5011 connf_t *connfp; 5012 ill_t *ill = ira->ira_ill; 5013 ip_stack_t *ipst = ill->ill_ipst; 5014 5015 laddr = ipha->ipha_dst; 5016 5017 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5018 mutex_enter(&connfp->connf_lock); 5019 connp = connfp->connf_head; 5020 for (connp = connfp->connf_head; connp != NULL; 5021 connp = connp->conn_next) { 5022 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5023 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5024 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5025 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5026 break; 5027 } 5028 } 5029 5030 if (connp == NULL) { 5031 /* 5032 * No one bound to these addresses. Is 5033 * there a client that wants all 5034 * unclaimed datagrams? 5035 */ 5036 mutex_exit(&connfp->connf_lock); 5037 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5038 ICMP_PROTOCOL_UNREACHABLE, ira); 5039 return; 5040 } 5041 5042 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5043 5044 CONN_INC_REF(connp); 5045 first_connp = connp; 5046 connp = connp->conn_next; 5047 5048 for (;;) { 5049 while (connp != NULL) { 5050 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5051 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5052 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5053 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5054 ira, connp))) 5055 break; 5056 connp = connp->conn_next; 5057 } 5058 5059 if (connp == NULL) { 5060 /* No more interested clients */ 5061 connp = first_connp; 5062 break; 5063 } 5064 if (((mp1 = dupmsg(mp)) == NULL) && 5065 ((mp1 = copymsg(mp)) == NULL)) { 5066 /* Memory allocation failed */ 5067 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5068 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5069 connp = first_connp; 5070 break; 5071 } 5072 5073 CONN_INC_REF(connp); 5074 mutex_exit(&connfp->connf_lock); 5075 5076 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5077 ira); 5078 5079 mutex_enter(&connfp->connf_lock); 5080 /* Follow the next pointer before releasing the conn. */ 5081 next_connp = connp->conn_next; 5082 CONN_DEC_REF(connp); 5083 connp = next_connp; 5084 } 5085 5086 /* Last one. Send it upstream. */ 5087 mutex_exit(&connfp->connf_lock); 5088 5089 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5090 5091 CONN_DEC_REF(connp); 5092 } 5093 5094 /* 5095 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5096 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5097 * is not consumed. 5098 * 5099 * One of three things can happen, all of which affect the passed-in mblk: 5100 * 5101 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5102 * 5103 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5104 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5105 * 5106 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5107 */ 5108 mblk_t * 5109 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5110 { 5111 int shift, plen, iph_len; 5112 ipha_t *ipha; 5113 udpha_t *udpha; 5114 uint32_t *spi; 5115 uint32_t esp_ports; 5116 uint8_t *orptr; 5117 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5118 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5119 5120 ipha = (ipha_t *)mp->b_rptr; 5121 iph_len = ira->ira_ip_hdr_length; 5122 plen = ira->ira_pktlen; 5123 5124 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5125 /* 5126 * Most likely a keepalive for the benefit of an intervening 5127 * NAT. These aren't for us, per se, so drop it. 5128 * 5129 * RFC 3947/8 doesn't say for sure what to do for 2-3 5130 * byte packets (keepalives are 1-byte), but we'll drop them 5131 * also. 5132 */ 5133 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5134 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5135 return (NULL); 5136 } 5137 5138 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5139 /* might as well pull it all up - it might be ESP. */ 5140 if (!pullupmsg(mp, -1)) { 5141 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5142 DROPPER(ipss, ipds_esp_nomem), 5143 &ipss->ipsec_dropper); 5144 return (NULL); 5145 } 5146 5147 ipha = (ipha_t *)mp->b_rptr; 5148 } 5149 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5150 if (*spi == 0) { 5151 /* UDP packet - remove 0-spi. */ 5152 shift = sizeof (uint32_t); 5153 } else { 5154 /* ESP-in-UDP packet - reduce to ESP. */ 5155 ipha->ipha_protocol = IPPROTO_ESP; 5156 shift = sizeof (udpha_t); 5157 } 5158 5159 /* Fix IP header */ 5160 ira->ira_pktlen = (plen - shift); 5161 ipha->ipha_length = htons(ira->ira_pktlen); 5162 ipha->ipha_hdr_checksum = 0; 5163 5164 orptr = mp->b_rptr; 5165 mp->b_rptr += shift; 5166 5167 udpha = (udpha_t *)(orptr + iph_len); 5168 if (*spi == 0) { 5169 ASSERT((uint8_t *)ipha == orptr); 5170 udpha->uha_length = htons(plen - shift - iph_len); 5171 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5172 esp_ports = 0; 5173 } else { 5174 esp_ports = *((uint32_t *)udpha); 5175 ASSERT(esp_ports != 0); 5176 } 5177 ovbcopy(orptr, orptr + shift, iph_len); 5178 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5179 ipha = (ipha_t *)(orptr + shift); 5180 5181 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5182 ira->ira_esp_udp_ports = esp_ports; 5183 ip_fanout_v4(mp, ipha, ira); 5184 return (NULL); 5185 } 5186 return (mp); 5187 } 5188 5189 /* 5190 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5191 * Handles IPv4 and IPv6. 5192 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5193 * Caller is responsible for dropping references to the conn. 5194 */ 5195 void 5196 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5197 ip_recv_attr_t *ira) 5198 { 5199 ill_t *ill = ira->ira_ill; 5200 ip_stack_t *ipst = ill->ill_ipst; 5201 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5202 boolean_t secure; 5203 iaflags_t iraflags = ira->ira_flags; 5204 5205 secure = iraflags & IRAF_IPSEC_SECURE; 5206 5207 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5208 !canputnext(connp->conn_rq)) { 5209 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5210 freemsg(mp); 5211 return; 5212 } 5213 5214 if (((iraflags & IRAF_IS_IPV4) ? 5215 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5216 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5217 secure) { 5218 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5219 ip6h, ira); 5220 if (mp == NULL) { 5221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5222 /* Note that mp is NULL */ 5223 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5224 return; 5225 } 5226 } 5227 5228 /* 5229 * Since this code is not used for UDP unicast we don't need a NAT_T 5230 * check. Only ip_fanout_v4 has that check. 5231 */ 5232 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5233 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5234 } else { 5235 ill_t *rill = ira->ira_rill; 5236 5237 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5238 ira->ira_ill = ira->ira_rill = NULL; 5239 /* Send it upstream */ 5240 (connp->conn_recv)(connp, mp, NULL, ira); 5241 ira->ira_ill = ill; 5242 ira->ira_rill = rill; 5243 } 5244 } 5245 5246 /* 5247 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5248 * (Unicast fanout is handled in ip_input_v4.) 5249 * 5250 * If SO_REUSEADDR is set all multicast and broadcast packets 5251 * will be delivered to all conns bound to the same port. 5252 * 5253 * If there is at least one matching AF_INET receiver, then we will 5254 * ignore any AF_INET6 receivers. 5255 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5256 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5257 * packets. 5258 * 5259 * Zones notes: 5260 * Earlier in ip_input on a system with multiple shared-IP zones we 5261 * duplicate the multicast and broadcast packets and send them up 5262 * with each explicit zoneid that exists on that ill. 5263 * This means that here we can match the zoneid with SO_ALLZONES being special. 5264 */ 5265 void 5266 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5267 ip_recv_attr_t *ira) 5268 { 5269 ipaddr_t laddr; 5270 in6_addr_t v6faddr; 5271 conn_t *connp; 5272 connf_t *connfp; 5273 ipaddr_t faddr; 5274 ill_t *ill = ira->ira_ill; 5275 ip_stack_t *ipst = ill->ill_ipst; 5276 5277 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5278 5279 laddr = ipha->ipha_dst; 5280 faddr = ipha->ipha_src; 5281 5282 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5283 mutex_enter(&connfp->connf_lock); 5284 connp = connfp->connf_head; 5285 5286 /* 5287 * If SO_REUSEADDR has been set on the first we send the 5288 * packet to all clients that have joined the group and 5289 * match the port. 5290 */ 5291 while (connp != NULL) { 5292 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5293 conn_wantpacket(connp, ira, ipha) && 5294 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5295 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5296 break; 5297 connp = connp->conn_next; 5298 } 5299 5300 if (connp == NULL) 5301 goto notfound; 5302 5303 CONN_INC_REF(connp); 5304 5305 if (connp->conn_reuseaddr) { 5306 conn_t *first_connp = connp; 5307 conn_t *next_connp; 5308 mblk_t *mp1; 5309 5310 connp = connp->conn_next; 5311 for (;;) { 5312 while (connp != NULL) { 5313 if (IPCL_UDP_MATCH(connp, lport, laddr, 5314 fport, faddr) && 5315 conn_wantpacket(connp, ira, ipha) && 5316 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5317 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5318 ira, connp))) 5319 break; 5320 connp = connp->conn_next; 5321 } 5322 if (connp == NULL) { 5323 /* No more interested clients */ 5324 connp = first_connp; 5325 break; 5326 } 5327 if (((mp1 = dupmsg(mp)) == NULL) && 5328 ((mp1 = copymsg(mp)) == NULL)) { 5329 /* Memory allocation failed */ 5330 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5331 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5332 connp = first_connp; 5333 break; 5334 } 5335 CONN_INC_REF(connp); 5336 mutex_exit(&connfp->connf_lock); 5337 5338 IP_STAT(ipst, ip_udp_fanmb); 5339 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5340 NULL, ira); 5341 mutex_enter(&connfp->connf_lock); 5342 /* Follow the next pointer before releasing the conn */ 5343 next_connp = connp->conn_next; 5344 CONN_DEC_REF(connp); 5345 connp = next_connp; 5346 } 5347 } 5348 5349 /* Last one. Send it upstream. */ 5350 mutex_exit(&connfp->connf_lock); 5351 IP_STAT(ipst, ip_udp_fanmb); 5352 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5353 CONN_DEC_REF(connp); 5354 return; 5355 5356 notfound: 5357 mutex_exit(&connfp->connf_lock); 5358 /* 5359 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5360 * have already been matched above, since they live in the IPv4 5361 * fanout tables. This implies we only need to 5362 * check for IPv6 in6addr_any endpoints here. 5363 * Thus we compare using ipv6_all_zeros instead of the destination 5364 * address, except for the multicast group membership lookup which 5365 * uses the IPv4 destination. 5366 */ 5367 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5368 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5369 mutex_enter(&connfp->connf_lock); 5370 connp = connfp->connf_head; 5371 /* 5372 * IPv4 multicast packet being delivered to an AF_INET6 5373 * in6addr_any endpoint. 5374 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5375 * and not conn_wantpacket_v6() since any multicast membership is 5376 * for an IPv4-mapped multicast address. 5377 */ 5378 while (connp != NULL) { 5379 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5380 fport, v6faddr) && 5381 conn_wantpacket(connp, ira, ipha) && 5382 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5383 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5384 break; 5385 connp = connp->conn_next; 5386 } 5387 5388 if (connp == NULL) { 5389 /* 5390 * No one bound to this port. Is 5391 * there a client that wants all 5392 * unclaimed datagrams? 5393 */ 5394 mutex_exit(&connfp->connf_lock); 5395 5396 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5397 NULL) { 5398 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5399 ip_fanout_proto_v4(mp, ipha, ira); 5400 } else { 5401 /* 5402 * We used to attempt to send an icmp error here, but 5403 * since this is known to be a multicast packet 5404 * and we don't send icmp errors in response to 5405 * multicast, just drop the packet and give up sooner. 5406 */ 5407 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5408 freemsg(mp); 5409 } 5410 return; 5411 } 5412 CONN_INC_REF(connp); 5413 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5414 5415 /* 5416 * If SO_REUSEADDR has been set on the first we send the 5417 * packet to all clients that have joined the group and 5418 * match the port. 5419 */ 5420 if (connp->conn_reuseaddr) { 5421 conn_t *first_connp = connp; 5422 conn_t *next_connp; 5423 mblk_t *mp1; 5424 5425 connp = connp->conn_next; 5426 for (;;) { 5427 while (connp != NULL) { 5428 if (IPCL_UDP_MATCH_V6(connp, lport, 5429 ipv6_all_zeros, fport, v6faddr) && 5430 conn_wantpacket(connp, ira, ipha) && 5431 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5432 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5433 ira, connp))) 5434 break; 5435 connp = connp->conn_next; 5436 } 5437 if (connp == NULL) { 5438 /* No more interested clients */ 5439 connp = first_connp; 5440 break; 5441 } 5442 if (((mp1 = dupmsg(mp)) == NULL) && 5443 ((mp1 = copymsg(mp)) == NULL)) { 5444 /* Memory allocation failed */ 5445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5446 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5447 connp = first_connp; 5448 break; 5449 } 5450 CONN_INC_REF(connp); 5451 mutex_exit(&connfp->connf_lock); 5452 5453 IP_STAT(ipst, ip_udp_fanmb); 5454 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5455 NULL, ira); 5456 mutex_enter(&connfp->connf_lock); 5457 /* Follow the next pointer before releasing the conn */ 5458 next_connp = connp->conn_next; 5459 CONN_DEC_REF(connp); 5460 connp = next_connp; 5461 } 5462 } 5463 5464 /* Last one. Send it upstream. */ 5465 mutex_exit(&connfp->connf_lock); 5466 IP_STAT(ipst, ip_udp_fanmb); 5467 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5468 CONN_DEC_REF(connp); 5469 } 5470 5471 /* 5472 * Split an incoming packet's IPv4 options into the label and the other options. 5473 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5474 * clearing out any leftover label or options. 5475 * Otherwise it just makes ipp point into the packet. 5476 * 5477 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5478 */ 5479 int 5480 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5481 { 5482 uchar_t *opt; 5483 uint32_t totallen; 5484 uint32_t optval; 5485 uint32_t optlen; 5486 5487 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5488 ipp->ipp_hoplimit = ipha->ipha_ttl; 5489 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5490 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5491 5492 /* 5493 * Get length (in 4 byte octets) of IP header options. 5494 */ 5495 totallen = ipha->ipha_version_and_hdr_length - 5496 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5497 5498 if (totallen == 0) { 5499 if (!allocate) 5500 return (0); 5501 5502 /* Clear out anything from a previous packet */ 5503 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5504 kmem_free(ipp->ipp_ipv4_options, 5505 ipp->ipp_ipv4_options_len); 5506 ipp->ipp_ipv4_options = NULL; 5507 ipp->ipp_ipv4_options_len = 0; 5508 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5509 } 5510 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5511 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5512 ipp->ipp_label_v4 = NULL; 5513 ipp->ipp_label_len_v4 = 0; 5514 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5515 } 5516 return (0); 5517 } 5518 5519 totallen <<= 2; 5520 opt = (uchar_t *)&ipha[1]; 5521 if (!is_system_labeled()) { 5522 5523 copyall: 5524 if (!allocate) { 5525 if (totallen != 0) { 5526 ipp->ipp_ipv4_options = opt; 5527 ipp->ipp_ipv4_options_len = totallen; 5528 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5529 } 5530 return (0); 5531 } 5532 /* Just copy all of options */ 5533 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5534 if (totallen == ipp->ipp_ipv4_options_len) { 5535 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5536 return (0); 5537 } 5538 kmem_free(ipp->ipp_ipv4_options, 5539 ipp->ipp_ipv4_options_len); 5540 ipp->ipp_ipv4_options = NULL; 5541 ipp->ipp_ipv4_options_len = 0; 5542 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5543 } 5544 if (totallen == 0) 5545 return (0); 5546 5547 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5548 if (ipp->ipp_ipv4_options == NULL) 5549 return (ENOMEM); 5550 ipp->ipp_ipv4_options_len = totallen; 5551 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5552 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5553 return (0); 5554 } 5555 5556 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5557 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5558 ipp->ipp_label_v4 = NULL; 5559 ipp->ipp_label_len_v4 = 0; 5560 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5561 } 5562 5563 /* 5564 * Search for CIPSO option. 5565 * We assume CIPSO is first in options if it is present. 5566 * If it isn't, then ipp_opt_ipv4_options will not include the options 5567 * prior to the CIPSO option. 5568 */ 5569 while (totallen != 0) { 5570 switch (optval = opt[IPOPT_OPTVAL]) { 5571 case IPOPT_EOL: 5572 return (0); 5573 case IPOPT_NOP: 5574 optlen = 1; 5575 break; 5576 default: 5577 if (totallen <= IPOPT_OLEN) 5578 return (EINVAL); 5579 optlen = opt[IPOPT_OLEN]; 5580 if (optlen < 2) 5581 return (EINVAL); 5582 } 5583 if (optlen > totallen) 5584 return (EINVAL); 5585 5586 switch (optval) { 5587 case IPOPT_COMSEC: 5588 if (!allocate) { 5589 ipp->ipp_label_v4 = opt; 5590 ipp->ipp_label_len_v4 = optlen; 5591 ipp->ipp_fields |= IPPF_LABEL_V4; 5592 } else { 5593 ipp->ipp_label_v4 = kmem_alloc(optlen, 5594 KM_NOSLEEP); 5595 if (ipp->ipp_label_v4 == NULL) 5596 return (ENOMEM); 5597 ipp->ipp_label_len_v4 = optlen; 5598 ipp->ipp_fields |= IPPF_LABEL_V4; 5599 bcopy(opt, ipp->ipp_label_v4, optlen); 5600 } 5601 totallen -= optlen; 5602 opt += optlen; 5603 5604 /* Skip padding bytes until we get to a multiple of 4 */ 5605 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5606 totallen--; 5607 opt++; 5608 } 5609 /* Remaining as ipp_ipv4_options */ 5610 goto copyall; 5611 } 5612 totallen -= optlen; 5613 opt += optlen; 5614 } 5615 /* No CIPSO found; return everything as ipp_ipv4_options */ 5616 totallen = ipha->ipha_version_and_hdr_length - 5617 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5618 totallen <<= 2; 5619 opt = (uchar_t *)&ipha[1]; 5620 goto copyall; 5621 } 5622 5623 /* 5624 * Efficient versions of lookup for an IRE when we only 5625 * match the address. 5626 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5627 * Does not handle multicast addresses. 5628 */ 5629 uint_t 5630 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5631 { 5632 ire_t *ire; 5633 uint_t result; 5634 5635 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5636 ASSERT(ire != NULL); 5637 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5638 result = IRE_NOROUTE; 5639 else 5640 result = ire->ire_type; 5641 ire_refrele(ire); 5642 return (result); 5643 } 5644 5645 /* 5646 * Efficient versions of lookup for an IRE when we only 5647 * match the address. 5648 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5649 * Does not handle multicast addresses. 5650 */ 5651 uint_t 5652 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5653 { 5654 ire_t *ire; 5655 uint_t result; 5656 5657 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5658 ASSERT(ire != NULL); 5659 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5660 result = IRE_NOROUTE; 5661 else 5662 result = ire->ire_type; 5663 ire_refrele(ire); 5664 return (result); 5665 } 5666 5667 /* 5668 * Nobody should be sending 5669 * packets up this stream 5670 */ 5671 static int 5672 ip_lrput(queue_t *q, mblk_t *mp) 5673 { 5674 switch (mp->b_datap->db_type) { 5675 case M_FLUSH: 5676 /* Turn around */ 5677 if (*mp->b_rptr & FLUSHW) { 5678 *mp->b_rptr &= ~FLUSHR; 5679 qreply(q, mp); 5680 return (0); 5681 } 5682 break; 5683 } 5684 freemsg(mp); 5685 return (0); 5686 } 5687 5688 /* Nobody should be sending packets down this stream */ 5689 /* ARGSUSED */ 5690 int 5691 ip_lwput(queue_t *q, mblk_t *mp) 5692 { 5693 freemsg(mp); 5694 return (0); 5695 } 5696 5697 /* 5698 * Move the first hop in any source route to ipha_dst and remove that part of 5699 * the source route. Called by other protocols. Errors in option formatting 5700 * are ignored - will be handled by ip_output_options. Return the final 5701 * destination (either ipha_dst or the last entry in a source route.) 5702 */ 5703 ipaddr_t 5704 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5705 { 5706 ipoptp_t opts; 5707 uchar_t *opt; 5708 uint8_t optval; 5709 uint8_t optlen; 5710 ipaddr_t dst; 5711 int i; 5712 ip_stack_t *ipst = ns->netstack_ip; 5713 5714 ip2dbg(("ip_massage_options\n")); 5715 dst = ipha->ipha_dst; 5716 for (optval = ipoptp_first(&opts, ipha); 5717 optval != IPOPT_EOL; 5718 optval = ipoptp_next(&opts)) { 5719 opt = opts.ipoptp_cur; 5720 switch (optval) { 5721 uint8_t off; 5722 case IPOPT_SSRR: 5723 case IPOPT_LSRR: 5724 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5725 ip1dbg(("ip_massage_options: bad src route\n")); 5726 break; 5727 } 5728 optlen = opts.ipoptp_len; 5729 off = opt[IPOPT_OFFSET]; 5730 off--; 5731 redo_srr: 5732 if (optlen < IP_ADDR_LEN || 5733 off > optlen - IP_ADDR_LEN) { 5734 /* End of source route */ 5735 ip1dbg(("ip_massage_options: end of SR\n")); 5736 break; 5737 } 5738 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5739 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5740 ntohl(dst))); 5741 /* 5742 * Check if our address is present more than 5743 * once as consecutive hops in source route. 5744 * XXX verify per-interface ip_forwarding 5745 * for source route? 5746 */ 5747 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5748 off += IP_ADDR_LEN; 5749 goto redo_srr; 5750 } 5751 if (dst == htonl(INADDR_LOOPBACK)) { 5752 ip1dbg(("ip_massage_options: loopback addr in " 5753 "source route!\n")); 5754 break; 5755 } 5756 /* 5757 * Update ipha_dst to be the first hop and remove the 5758 * first hop from the source route (by overwriting 5759 * part of the option with NOP options). 5760 */ 5761 ipha->ipha_dst = dst; 5762 /* Put the last entry in dst */ 5763 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5764 3; 5765 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5766 5767 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5768 ntohl(dst))); 5769 /* Move down and overwrite */ 5770 opt[IP_ADDR_LEN] = opt[0]; 5771 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5772 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5773 for (i = 0; i < IP_ADDR_LEN; i++) 5774 opt[i] = IPOPT_NOP; 5775 break; 5776 } 5777 } 5778 return (dst); 5779 } 5780 5781 /* 5782 * Return the network mask 5783 * associated with the specified address. 5784 */ 5785 ipaddr_t 5786 ip_net_mask(ipaddr_t addr) 5787 { 5788 uchar_t *up = (uchar_t *)&addr; 5789 ipaddr_t mask = 0; 5790 uchar_t *maskp = (uchar_t *)&mask; 5791 5792 #if defined(__i386) || defined(__amd64) 5793 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5794 #endif 5795 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5796 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5797 #endif 5798 if (CLASSD(addr)) { 5799 maskp[0] = 0xF0; 5800 return (mask); 5801 } 5802 5803 /* We assume Class E default netmask to be 32 */ 5804 if (CLASSE(addr)) 5805 return (0xffffffffU); 5806 5807 if (addr == 0) 5808 return (0); 5809 maskp[0] = 0xFF; 5810 if ((up[0] & 0x80) == 0) 5811 return (mask); 5812 5813 maskp[1] = 0xFF; 5814 if ((up[0] & 0xC0) == 0x80) 5815 return (mask); 5816 5817 maskp[2] = 0xFF; 5818 if ((up[0] & 0xE0) == 0xC0) 5819 return (mask); 5820 5821 /* Otherwise return no mask */ 5822 return ((ipaddr_t)0); 5823 } 5824 5825 /* Name/Value Table Lookup Routine */ 5826 char * 5827 ip_nv_lookup(nv_t *nv, int value) 5828 { 5829 if (!nv) 5830 return (NULL); 5831 for (; nv->nv_name; nv++) { 5832 if (nv->nv_value == value) 5833 return (nv->nv_name); 5834 } 5835 return ("unknown"); 5836 } 5837 5838 static int 5839 ip_wait_for_info_ack(ill_t *ill) 5840 { 5841 int err; 5842 5843 mutex_enter(&ill->ill_lock); 5844 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5845 /* 5846 * Return value of 0 indicates a pending signal. 5847 */ 5848 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5849 if (err == 0) { 5850 mutex_exit(&ill->ill_lock); 5851 return (EINTR); 5852 } 5853 } 5854 mutex_exit(&ill->ill_lock); 5855 /* 5856 * ip_rput_other could have set an error in ill_error on 5857 * receipt of M_ERROR. 5858 */ 5859 return (ill->ill_error); 5860 } 5861 5862 /* 5863 * This is a module open, i.e. this is a control stream for access 5864 * to a DLPI device. We allocate an ill_t as the instance data in 5865 * this case. 5866 */ 5867 static int 5868 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5869 { 5870 ill_t *ill; 5871 int err; 5872 zoneid_t zoneid; 5873 netstack_t *ns; 5874 ip_stack_t *ipst; 5875 5876 /* 5877 * Prevent unprivileged processes from pushing IP so that 5878 * they can't send raw IP. 5879 */ 5880 if (secpolicy_net_rawaccess(credp) != 0) 5881 return (EPERM); 5882 5883 ns = netstack_find_by_cred(credp); 5884 ASSERT(ns != NULL); 5885 ipst = ns->netstack_ip; 5886 ASSERT(ipst != NULL); 5887 5888 /* 5889 * For exclusive stacks we set the zoneid to zero 5890 * to make IP operate as if in the global zone. 5891 */ 5892 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5893 zoneid = GLOBAL_ZONEID; 5894 else 5895 zoneid = crgetzoneid(credp); 5896 5897 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5898 q->q_ptr = WR(q)->q_ptr = ill; 5899 ill->ill_ipst = ipst; 5900 ill->ill_zoneid = zoneid; 5901 5902 /* 5903 * ill_init initializes the ill fields and then sends down 5904 * down a DL_INFO_REQ after calling qprocson. 5905 */ 5906 err = ill_init(q, ill); 5907 5908 if (err != 0) { 5909 mi_free(ill); 5910 netstack_rele(ipst->ips_netstack); 5911 q->q_ptr = NULL; 5912 WR(q)->q_ptr = NULL; 5913 return (err); 5914 } 5915 5916 /* 5917 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5918 * 5919 * ill_init initializes the ipsq marking this thread as 5920 * writer 5921 */ 5922 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5923 err = ip_wait_for_info_ack(ill); 5924 if (err == 0) 5925 ill->ill_credp = credp; 5926 else 5927 goto fail; 5928 5929 crhold(credp); 5930 5931 mutex_enter(&ipst->ips_ip_mi_lock); 5932 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5933 sflag, credp); 5934 mutex_exit(&ipst->ips_ip_mi_lock); 5935 fail: 5936 if (err) { 5937 (void) ip_close(q, 0, credp); 5938 return (err); 5939 } 5940 return (0); 5941 } 5942 5943 /* For /dev/ip aka AF_INET open */ 5944 int 5945 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5946 { 5947 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5948 } 5949 5950 /* For /dev/ip6 aka AF_INET6 open */ 5951 int 5952 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5953 { 5954 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5955 } 5956 5957 /* IP open routine. */ 5958 int 5959 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5960 boolean_t isv6) 5961 { 5962 conn_t *connp; 5963 major_t maj; 5964 zoneid_t zoneid; 5965 netstack_t *ns; 5966 ip_stack_t *ipst; 5967 5968 /* Allow reopen. */ 5969 if (q->q_ptr != NULL) 5970 return (0); 5971 5972 if (sflag & MODOPEN) { 5973 /* This is a module open */ 5974 return (ip_modopen(q, devp, flag, sflag, credp)); 5975 } 5976 5977 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5978 /* 5979 * Non streams based socket looking for a stream 5980 * to access IP 5981 */ 5982 return (ip_helper_stream_setup(q, devp, flag, sflag, 5983 credp, isv6)); 5984 } 5985 5986 ns = netstack_find_by_cred(credp); 5987 ASSERT(ns != NULL); 5988 ipst = ns->netstack_ip; 5989 ASSERT(ipst != NULL); 5990 5991 /* 5992 * For exclusive stacks we set the zoneid to zero 5993 * to make IP operate as if in the global zone. 5994 */ 5995 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5996 zoneid = GLOBAL_ZONEID; 5997 else 5998 zoneid = crgetzoneid(credp); 5999 6000 /* 6001 * We are opening as a device. This is an IP client stream, and we 6002 * allocate an conn_t as the instance data. 6003 */ 6004 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6005 6006 /* 6007 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6008 * done by netstack_find_by_cred() 6009 */ 6010 netstack_rele(ipst->ips_netstack); 6011 6012 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6013 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6014 connp->conn_ixa->ixa_zoneid = zoneid; 6015 connp->conn_zoneid = zoneid; 6016 6017 connp->conn_rq = q; 6018 q->q_ptr = WR(q)->q_ptr = connp; 6019 6020 /* Minor tells us which /dev entry was opened */ 6021 if (isv6) { 6022 connp->conn_family = AF_INET6; 6023 connp->conn_ipversion = IPV6_VERSION; 6024 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6025 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6026 } else { 6027 connp->conn_family = AF_INET; 6028 connp->conn_ipversion = IPV4_VERSION; 6029 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6030 } 6031 6032 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6033 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6034 connp->conn_minor_arena = ip_minor_arena_la; 6035 } else { 6036 /* 6037 * Either minor numbers in the large arena were exhausted 6038 * or a non socket application is doing the open. 6039 * Try to allocate from the small arena. 6040 */ 6041 if ((connp->conn_dev = 6042 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6043 /* CONN_DEC_REF takes care of netstack_rele() */ 6044 q->q_ptr = WR(q)->q_ptr = NULL; 6045 CONN_DEC_REF(connp); 6046 return (EBUSY); 6047 } 6048 connp->conn_minor_arena = ip_minor_arena_sa; 6049 } 6050 6051 maj = getemajor(*devp); 6052 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6053 6054 /* 6055 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6056 */ 6057 connp->conn_cred = credp; 6058 connp->conn_cpid = curproc->p_pid; 6059 /* Cache things in ixa without an extra refhold */ 6060 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6061 connp->conn_ixa->ixa_cred = connp->conn_cred; 6062 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6063 if (is_system_labeled()) 6064 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6065 6066 /* 6067 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6068 */ 6069 connp->conn_recv = ip_conn_input; 6070 connp->conn_recvicmp = ip_conn_input_icmp; 6071 6072 crhold(connp->conn_cred); 6073 6074 /* 6075 * If the caller has the process-wide flag set, then default to MAC 6076 * exempt mode. This allows read-down to unlabeled hosts. 6077 */ 6078 if (getpflags(NET_MAC_AWARE, credp) != 0) 6079 connp->conn_mac_mode = CONN_MAC_AWARE; 6080 6081 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6082 6083 connp->conn_rq = q; 6084 connp->conn_wq = WR(q); 6085 6086 /* Non-zero default values */ 6087 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6088 6089 /* 6090 * Make the conn globally visible to walkers 6091 */ 6092 ASSERT(connp->conn_ref == 1); 6093 mutex_enter(&connp->conn_lock); 6094 connp->conn_state_flags &= ~CONN_INCIPIENT; 6095 mutex_exit(&connp->conn_lock); 6096 6097 qprocson(q); 6098 6099 return (0); 6100 } 6101 6102 /* 6103 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6104 * all of them are copied to the conn_t. If the req is "zero", the policy is 6105 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6106 * fields. 6107 * We keep only the latest setting of the policy and thus policy setting 6108 * is not incremental/cumulative. 6109 * 6110 * Requests to set policies with multiple alternative actions will 6111 * go through a different API. 6112 */ 6113 int 6114 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6115 { 6116 uint_t ah_req = 0; 6117 uint_t esp_req = 0; 6118 uint_t se_req = 0; 6119 ipsec_act_t *actp = NULL; 6120 uint_t nact; 6121 ipsec_policy_head_t *ph; 6122 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6123 int error = 0; 6124 netstack_t *ns = connp->conn_netstack; 6125 ip_stack_t *ipst = ns->netstack_ip; 6126 ipsec_stack_t *ipss = ns->netstack_ipsec; 6127 6128 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6129 6130 /* 6131 * The IP_SEC_OPT option does not allow variable length parameters, 6132 * hence a request cannot be NULL. 6133 */ 6134 if (req == NULL) 6135 return (EINVAL); 6136 6137 ah_req = req->ipsr_ah_req; 6138 esp_req = req->ipsr_esp_req; 6139 se_req = req->ipsr_self_encap_req; 6140 6141 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6142 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6143 return (EINVAL); 6144 6145 /* 6146 * Are we dealing with a request to reset the policy (i.e. 6147 * zero requests). 6148 */ 6149 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6150 (esp_req & REQ_MASK) == 0 && 6151 (se_req & REQ_MASK) == 0); 6152 6153 if (!is_pol_reset) { 6154 /* 6155 * If we couldn't load IPsec, fail with "protocol 6156 * not supported". 6157 * IPsec may not have been loaded for a request with zero 6158 * policies, so we don't fail in this case. 6159 */ 6160 mutex_enter(&ipss->ipsec_loader_lock); 6161 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6162 mutex_exit(&ipss->ipsec_loader_lock); 6163 return (EPROTONOSUPPORT); 6164 } 6165 mutex_exit(&ipss->ipsec_loader_lock); 6166 6167 /* 6168 * Test for valid requests. Invalid algorithms 6169 * need to be tested by IPsec code because new 6170 * algorithms can be added dynamically. 6171 */ 6172 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6173 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6174 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6175 return (EINVAL); 6176 } 6177 6178 /* 6179 * Only privileged users can issue these 6180 * requests. 6181 */ 6182 if (((ah_req & IPSEC_PREF_NEVER) || 6183 (esp_req & IPSEC_PREF_NEVER) || 6184 (se_req & IPSEC_PREF_NEVER)) && 6185 secpolicy_ip_config(cr, B_FALSE) != 0) { 6186 return (EPERM); 6187 } 6188 6189 /* 6190 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6191 * are mutually exclusive. 6192 */ 6193 if (((ah_req & REQ_MASK) == REQ_MASK) || 6194 ((esp_req & REQ_MASK) == REQ_MASK) || 6195 ((se_req & REQ_MASK) == REQ_MASK)) { 6196 /* Both of them are set */ 6197 return (EINVAL); 6198 } 6199 } 6200 6201 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6202 6203 /* 6204 * If we have already cached policies in conn_connect(), don't 6205 * let them change now. We cache policies for connections 6206 * whose src,dst [addr, port] is known. 6207 */ 6208 if (connp->conn_policy_cached) { 6209 return (EINVAL); 6210 } 6211 6212 /* 6213 * We have a zero policies, reset the connection policy if already 6214 * set. This will cause the connection to inherit the 6215 * global policy, if any. 6216 */ 6217 if (is_pol_reset) { 6218 if (connp->conn_policy != NULL) { 6219 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6220 connp->conn_policy = NULL; 6221 } 6222 connp->conn_in_enforce_policy = B_FALSE; 6223 connp->conn_out_enforce_policy = B_FALSE; 6224 return (0); 6225 } 6226 6227 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6228 ipst->ips_netstack); 6229 if (ph == NULL) 6230 goto enomem; 6231 6232 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6233 if (actp == NULL) 6234 goto enomem; 6235 6236 /* 6237 * Always insert IPv4 policy entries, since they can also apply to 6238 * ipv6 sockets being used in ipv4-compat mode. 6239 */ 6240 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6241 IPSEC_TYPE_INBOUND, ns)) 6242 goto enomem; 6243 is_pol_inserted = B_TRUE; 6244 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6245 IPSEC_TYPE_OUTBOUND, ns)) 6246 goto enomem; 6247 6248 /* 6249 * We're looking at a v6 socket, also insert the v6-specific 6250 * entries. 6251 */ 6252 if (connp->conn_family == AF_INET6) { 6253 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6254 IPSEC_TYPE_INBOUND, ns)) 6255 goto enomem; 6256 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6257 IPSEC_TYPE_OUTBOUND, ns)) 6258 goto enomem; 6259 } 6260 6261 ipsec_actvec_free(actp, nact); 6262 6263 /* 6264 * If the requests need security, set enforce_policy. 6265 * If the requests are IPSEC_PREF_NEVER, one should 6266 * still set conn_out_enforce_policy so that ip_set_destination 6267 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6268 * for connections that we don't cache policy in at connect time, 6269 * if global policy matches in ip_output_attach_policy, we 6270 * don't wrongly inherit global policy. Similarly, we need 6271 * to set conn_in_enforce_policy also so that we don't verify 6272 * policy wrongly. 6273 */ 6274 if ((ah_req & REQ_MASK) != 0 || 6275 (esp_req & REQ_MASK) != 0 || 6276 (se_req & REQ_MASK) != 0) { 6277 connp->conn_in_enforce_policy = B_TRUE; 6278 connp->conn_out_enforce_policy = B_TRUE; 6279 } 6280 6281 return (error); 6282 #undef REQ_MASK 6283 6284 /* 6285 * Common memory-allocation-failure exit path. 6286 */ 6287 enomem: 6288 if (actp != NULL) 6289 ipsec_actvec_free(actp, nact); 6290 if (is_pol_inserted) 6291 ipsec_polhead_flush(ph, ns); 6292 return (ENOMEM); 6293 } 6294 6295 /* 6296 * Set socket options for joining and leaving multicast groups. 6297 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6298 * The caller has already check that the option name is consistent with 6299 * the address family of the socket. 6300 */ 6301 int 6302 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6303 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6304 { 6305 int *i1 = (int *)invalp; 6306 int error = 0; 6307 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6308 struct ip_mreq *v4_mreqp; 6309 struct ipv6_mreq *v6_mreqp; 6310 struct group_req *greqp; 6311 ire_t *ire; 6312 boolean_t done = B_FALSE; 6313 ipaddr_t ifaddr; 6314 in6_addr_t v6group; 6315 uint_t ifindex; 6316 boolean_t mcast_opt = B_TRUE; 6317 mcast_record_t fmode; 6318 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6319 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6320 6321 switch (name) { 6322 case IP_ADD_MEMBERSHIP: 6323 case IPV6_JOIN_GROUP: 6324 mcast_opt = B_FALSE; 6325 /* FALLTHROUGH */ 6326 case MCAST_JOIN_GROUP: 6327 fmode = MODE_IS_EXCLUDE; 6328 optfn = ip_opt_add_group; 6329 break; 6330 6331 case IP_DROP_MEMBERSHIP: 6332 case IPV6_LEAVE_GROUP: 6333 mcast_opt = B_FALSE; 6334 /* FALLTHROUGH */ 6335 case MCAST_LEAVE_GROUP: 6336 fmode = MODE_IS_INCLUDE; 6337 optfn = ip_opt_delete_group; 6338 break; 6339 default: 6340 ASSERT(0); 6341 } 6342 6343 if (mcast_opt) { 6344 struct sockaddr_in *sin; 6345 struct sockaddr_in6 *sin6; 6346 6347 greqp = (struct group_req *)i1; 6348 if (greqp->gr_group.ss_family == AF_INET) { 6349 sin = (struct sockaddr_in *)&(greqp->gr_group); 6350 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6351 } else { 6352 if (!inet6) 6353 return (EINVAL); /* Not on INET socket */ 6354 6355 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6356 v6group = sin6->sin6_addr; 6357 } 6358 ifaddr = INADDR_ANY; 6359 ifindex = greqp->gr_interface; 6360 } else if (inet6) { 6361 v6_mreqp = (struct ipv6_mreq *)i1; 6362 v6group = v6_mreqp->ipv6mr_multiaddr; 6363 ifaddr = INADDR_ANY; 6364 ifindex = v6_mreqp->ipv6mr_interface; 6365 } else { 6366 v4_mreqp = (struct ip_mreq *)i1; 6367 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6368 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6369 ifindex = 0; 6370 } 6371 6372 /* 6373 * In the multirouting case, we need to replicate 6374 * the request on all interfaces that will take part 6375 * in replication. We do so because multirouting is 6376 * reflective, thus we will probably receive multi- 6377 * casts on those interfaces. 6378 * The ip_multirt_apply_membership() succeeds if 6379 * the operation succeeds on at least one interface. 6380 */ 6381 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6382 ipaddr_t group; 6383 6384 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6385 6386 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6387 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6388 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6389 } else { 6390 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6391 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6392 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6393 } 6394 if (ire != NULL) { 6395 if (ire->ire_flags & RTF_MULTIRT) { 6396 error = ip_multirt_apply_membership(optfn, ire, connp, 6397 checkonly, &v6group, fmode, &ipv6_all_zeros); 6398 done = B_TRUE; 6399 } 6400 ire_refrele(ire); 6401 } 6402 6403 if (!done) { 6404 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6405 fmode, &ipv6_all_zeros); 6406 } 6407 return (error); 6408 } 6409 6410 /* 6411 * Set socket options for joining and leaving multicast groups 6412 * for specific sources. 6413 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6414 * The caller has already check that the option name is consistent with 6415 * the address family of the socket. 6416 */ 6417 int 6418 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6419 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6420 { 6421 int *i1 = (int *)invalp; 6422 int error = 0; 6423 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6424 struct ip_mreq_source *imreqp; 6425 struct group_source_req *gsreqp; 6426 in6_addr_t v6group, v6src; 6427 uint32_t ifindex; 6428 ipaddr_t ifaddr; 6429 boolean_t mcast_opt = B_TRUE; 6430 mcast_record_t fmode; 6431 ire_t *ire; 6432 boolean_t done = B_FALSE; 6433 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6434 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6435 6436 switch (name) { 6437 case IP_BLOCK_SOURCE: 6438 mcast_opt = B_FALSE; 6439 /* FALLTHROUGH */ 6440 case MCAST_BLOCK_SOURCE: 6441 fmode = MODE_IS_EXCLUDE; 6442 optfn = ip_opt_add_group; 6443 break; 6444 6445 case IP_UNBLOCK_SOURCE: 6446 mcast_opt = B_FALSE; 6447 /* FALLTHROUGH */ 6448 case MCAST_UNBLOCK_SOURCE: 6449 fmode = MODE_IS_EXCLUDE; 6450 optfn = ip_opt_delete_group; 6451 break; 6452 6453 case IP_ADD_SOURCE_MEMBERSHIP: 6454 mcast_opt = B_FALSE; 6455 /* FALLTHROUGH */ 6456 case MCAST_JOIN_SOURCE_GROUP: 6457 fmode = MODE_IS_INCLUDE; 6458 optfn = ip_opt_add_group; 6459 break; 6460 6461 case IP_DROP_SOURCE_MEMBERSHIP: 6462 mcast_opt = B_FALSE; 6463 /* FALLTHROUGH */ 6464 case MCAST_LEAVE_SOURCE_GROUP: 6465 fmode = MODE_IS_INCLUDE; 6466 optfn = ip_opt_delete_group; 6467 break; 6468 default: 6469 ASSERT(0); 6470 } 6471 6472 if (mcast_opt) { 6473 gsreqp = (struct group_source_req *)i1; 6474 ifindex = gsreqp->gsr_interface; 6475 if (gsreqp->gsr_group.ss_family == AF_INET) { 6476 struct sockaddr_in *s; 6477 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6478 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6479 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6480 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6481 } else { 6482 struct sockaddr_in6 *s6; 6483 6484 if (!inet6) 6485 return (EINVAL); /* Not on INET socket */ 6486 6487 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6488 v6group = s6->sin6_addr; 6489 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6490 v6src = s6->sin6_addr; 6491 } 6492 ifaddr = INADDR_ANY; 6493 } else { 6494 imreqp = (struct ip_mreq_source *)i1; 6495 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6496 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6497 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6498 ifindex = 0; 6499 } 6500 6501 /* 6502 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6503 */ 6504 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6505 v6src = ipv6_all_zeros; 6506 6507 /* 6508 * In the multirouting case, we need to replicate 6509 * the request as noted in the mcast cases above. 6510 */ 6511 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6512 ipaddr_t group; 6513 6514 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6515 6516 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6517 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6518 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6519 } else { 6520 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6521 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6522 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6523 } 6524 if (ire != NULL) { 6525 if (ire->ire_flags & RTF_MULTIRT) { 6526 error = ip_multirt_apply_membership(optfn, ire, connp, 6527 checkonly, &v6group, fmode, &v6src); 6528 done = B_TRUE; 6529 } 6530 ire_refrele(ire); 6531 } 6532 if (!done) { 6533 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6534 fmode, &v6src); 6535 } 6536 return (error); 6537 } 6538 6539 /* 6540 * Given a destination address and a pointer to where to put the information 6541 * this routine fills in the mtuinfo. 6542 * The socket must be connected. 6543 * For sctp conn_faddr is the primary address. 6544 */ 6545 int 6546 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6547 { 6548 uint32_t pmtu = IP_MAXPACKET; 6549 uint_t scopeid; 6550 6551 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6552 return (-1); 6553 6554 /* In case we never sent or called ip_set_destination_v4/v6 */ 6555 if (ixa->ixa_ire != NULL) 6556 pmtu = ip_get_pmtu(ixa); 6557 6558 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6559 scopeid = ixa->ixa_scopeid; 6560 else 6561 scopeid = 0; 6562 6563 bzero(mtuinfo, sizeof (*mtuinfo)); 6564 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6565 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6566 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6567 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6568 mtuinfo->ip6m_mtu = pmtu; 6569 6570 return (sizeof (struct ip6_mtuinfo)); 6571 } 6572 6573 /* 6574 * When the src multihoming is changed from weak to [strong, preferred] 6575 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6576 * and identify routes that were created by user-applications in the 6577 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6578 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6579 * is selected by finding an interface route for the gateway. 6580 */ 6581 /* ARGSUSED */ 6582 void 6583 ip_ire_rebind_walker(ire_t *ire, void *notused) 6584 { 6585 if (!ire->ire_unbound || ire->ire_ill != NULL) 6586 return; 6587 ire_rebind(ire); 6588 ire_delete(ire); 6589 } 6590 6591 /* 6592 * When the src multihoming is changed from [strong, preferred] to weak, 6593 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6594 * set any entries that were created by user-applications in the unbound state 6595 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6596 */ 6597 /* ARGSUSED */ 6598 void 6599 ip_ire_unbind_walker(ire_t *ire, void *notused) 6600 { 6601 ire_t *new_ire; 6602 6603 if (!ire->ire_unbound || ire->ire_ill == NULL) 6604 return; 6605 if (ire->ire_ipversion == IPV6_VERSION) { 6606 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6607 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6608 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6609 } else { 6610 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6611 (uchar_t *)&ire->ire_mask, 6612 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6613 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6614 } 6615 if (new_ire == NULL) 6616 return; 6617 new_ire->ire_unbound = B_TRUE; 6618 /* 6619 * The bound ire must first be deleted so that we don't return 6620 * the existing one on the attempt to add the unbound new_ire. 6621 */ 6622 ire_delete(ire); 6623 new_ire = ire_add(new_ire); 6624 if (new_ire != NULL) 6625 ire_refrele(new_ire); 6626 } 6627 6628 /* 6629 * When the settings of ip*_strict_src_multihoming tunables are changed, 6630 * all cached routes need to be recomputed. This recomputation needs to be 6631 * done when going from weaker to stronger modes so that the cached ire 6632 * for the connection does not violate the current ip*_strict_src_multihoming 6633 * setting. It also needs to be done when going from stronger to weaker modes, 6634 * so that we fall back to matching on the longest-matching-route (as opposed 6635 * to a shorter match that may have been selected in the strong mode 6636 * to satisfy src_multihoming settings). 6637 * 6638 * The cached ixa_ire entires for all conn_t entries are marked as 6639 * "verify" so that they will be recomputed for the next packet. 6640 */ 6641 void 6642 conn_ire_revalidate(conn_t *connp, void *arg) 6643 { 6644 boolean_t isv6 = (boolean_t)arg; 6645 6646 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6647 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6648 return; 6649 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6650 } 6651 6652 /* 6653 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6654 * When an ipf is passed here for the first time, if 6655 * we already have in-order fragments on the queue, we convert from the fast- 6656 * path reassembly scheme to the hard-case scheme. From then on, additional 6657 * fragments are reassembled here. We keep track of the start and end offsets 6658 * of each piece, and the number of holes in the chain. When the hole count 6659 * goes to zero, we are done! 6660 * 6661 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6662 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6663 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6664 * after the call to ip_reassemble(). 6665 */ 6666 int 6667 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6668 size_t msg_len) 6669 { 6670 uint_t end; 6671 mblk_t *next_mp; 6672 mblk_t *mp1; 6673 uint_t offset; 6674 boolean_t incr_dups = B_TRUE; 6675 boolean_t offset_zero_seen = B_FALSE; 6676 boolean_t pkt_boundary_checked = B_FALSE; 6677 6678 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6679 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6680 6681 /* Add in byte count */ 6682 ipf->ipf_count += msg_len; 6683 if (ipf->ipf_end) { 6684 /* 6685 * We were part way through in-order reassembly, but now there 6686 * is a hole. We walk through messages already queued, and 6687 * mark them for hard case reassembly. We know that up till 6688 * now they were in order starting from offset zero. 6689 */ 6690 offset = 0; 6691 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6692 IP_REASS_SET_START(mp1, offset); 6693 if (offset == 0) { 6694 ASSERT(ipf->ipf_nf_hdr_len != 0); 6695 offset = -ipf->ipf_nf_hdr_len; 6696 } 6697 offset += mp1->b_wptr - mp1->b_rptr; 6698 IP_REASS_SET_END(mp1, offset); 6699 } 6700 /* One hole at the end. */ 6701 ipf->ipf_hole_cnt = 1; 6702 /* Brand it as a hard case, forever. */ 6703 ipf->ipf_end = 0; 6704 } 6705 /* Walk through all the new pieces. */ 6706 do { 6707 end = start + (mp->b_wptr - mp->b_rptr); 6708 /* 6709 * If start is 0, decrease 'end' only for the first mblk of 6710 * the fragment. Otherwise 'end' can get wrong value in the 6711 * second pass of the loop if first mblk is exactly the 6712 * size of ipf_nf_hdr_len. 6713 */ 6714 if (start == 0 && !offset_zero_seen) { 6715 /* First segment */ 6716 ASSERT(ipf->ipf_nf_hdr_len != 0); 6717 end -= ipf->ipf_nf_hdr_len; 6718 offset_zero_seen = B_TRUE; 6719 } 6720 next_mp = mp->b_cont; 6721 /* 6722 * We are checking to see if there is any interesing data 6723 * to process. If there isn't and the mblk isn't the 6724 * one which carries the unfragmentable header then we 6725 * drop it. It's possible to have just the unfragmentable 6726 * header come through without any data. That needs to be 6727 * saved. 6728 * 6729 * If the assert at the top of this function holds then the 6730 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6731 * is infrequently traveled enough that the test is left in 6732 * to protect against future code changes which break that 6733 * invariant. 6734 */ 6735 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6736 /* Empty. Blast it. */ 6737 IP_REASS_SET_START(mp, 0); 6738 IP_REASS_SET_END(mp, 0); 6739 /* 6740 * If the ipf points to the mblk we are about to free, 6741 * update ipf to point to the next mblk (or NULL 6742 * if none). 6743 */ 6744 if (ipf->ipf_mp->b_cont == mp) 6745 ipf->ipf_mp->b_cont = next_mp; 6746 freeb(mp); 6747 continue; 6748 } 6749 mp->b_cont = NULL; 6750 IP_REASS_SET_START(mp, start); 6751 IP_REASS_SET_END(mp, end); 6752 if (!ipf->ipf_tail_mp) { 6753 ipf->ipf_tail_mp = mp; 6754 ipf->ipf_mp->b_cont = mp; 6755 if (start == 0 || !more) { 6756 ipf->ipf_hole_cnt = 1; 6757 /* 6758 * if the first fragment comes in more than one 6759 * mblk, this loop will be executed for each 6760 * mblk. Need to adjust hole count so exiting 6761 * this routine will leave hole count at 1. 6762 */ 6763 if (next_mp) 6764 ipf->ipf_hole_cnt++; 6765 } else 6766 ipf->ipf_hole_cnt = 2; 6767 continue; 6768 } else if (ipf->ipf_last_frag_seen && !more && 6769 !pkt_boundary_checked) { 6770 /* 6771 * We check datagram boundary only if this fragment 6772 * claims to be the last fragment and we have seen a 6773 * last fragment in the past too. We do this only 6774 * once for a given fragment. 6775 * 6776 * start cannot be 0 here as fragments with start=0 6777 * and MF=0 gets handled as a complete packet. These 6778 * fragments should not reach here. 6779 */ 6780 6781 if (start + msgdsize(mp) != 6782 IP_REASS_END(ipf->ipf_tail_mp)) { 6783 /* 6784 * We have two fragments both of which claim 6785 * to be the last fragment but gives conflicting 6786 * information about the whole datagram size. 6787 * Something fishy is going on. Drop the 6788 * fragment and free up the reassembly list. 6789 */ 6790 return (IP_REASS_FAILED); 6791 } 6792 6793 /* 6794 * We shouldn't come to this code block again for this 6795 * particular fragment. 6796 */ 6797 pkt_boundary_checked = B_TRUE; 6798 } 6799 6800 /* New stuff at or beyond tail? */ 6801 offset = IP_REASS_END(ipf->ipf_tail_mp); 6802 if (start >= offset) { 6803 if (ipf->ipf_last_frag_seen) { 6804 /* current fragment is beyond last fragment */ 6805 return (IP_REASS_FAILED); 6806 } 6807 /* Link it on end. */ 6808 ipf->ipf_tail_mp->b_cont = mp; 6809 ipf->ipf_tail_mp = mp; 6810 if (more) { 6811 if (start != offset) 6812 ipf->ipf_hole_cnt++; 6813 } else if (start == offset && next_mp == NULL) 6814 ipf->ipf_hole_cnt--; 6815 continue; 6816 } 6817 mp1 = ipf->ipf_mp->b_cont; 6818 offset = IP_REASS_START(mp1); 6819 /* New stuff at the front? */ 6820 if (start < offset) { 6821 if (start == 0) { 6822 if (end >= offset) { 6823 /* Nailed the hole at the begining. */ 6824 ipf->ipf_hole_cnt--; 6825 } 6826 } else if (end < offset) { 6827 /* 6828 * A hole, stuff, and a hole where there used 6829 * to be just a hole. 6830 */ 6831 ipf->ipf_hole_cnt++; 6832 } 6833 mp->b_cont = mp1; 6834 /* Check for overlap. */ 6835 while (end > offset) { 6836 if (end < IP_REASS_END(mp1)) { 6837 mp->b_wptr -= end - offset; 6838 IP_REASS_SET_END(mp, offset); 6839 BUMP_MIB(ill->ill_ip_mib, 6840 ipIfStatsReasmPartDups); 6841 break; 6842 } 6843 /* Did we cover another hole? */ 6844 if ((mp1->b_cont && 6845 IP_REASS_END(mp1) != 6846 IP_REASS_START(mp1->b_cont) && 6847 end >= IP_REASS_START(mp1->b_cont)) || 6848 (!ipf->ipf_last_frag_seen && !more)) { 6849 ipf->ipf_hole_cnt--; 6850 } 6851 /* Clip out mp1. */ 6852 if ((mp->b_cont = mp1->b_cont) == NULL) { 6853 /* 6854 * After clipping out mp1, this guy 6855 * is now hanging off the end. 6856 */ 6857 ipf->ipf_tail_mp = mp; 6858 } 6859 IP_REASS_SET_START(mp1, 0); 6860 IP_REASS_SET_END(mp1, 0); 6861 /* Subtract byte count */ 6862 ipf->ipf_count -= mp1->b_datap->db_lim - 6863 mp1->b_datap->db_base; 6864 freeb(mp1); 6865 BUMP_MIB(ill->ill_ip_mib, 6866 ipIfStatsReasmPartDups); 6867 mp1 = mp->b_cont; 6868 if (!mp1) 6869 break; 6870 offset = IP_REASS_START(mp1); 6871 } 6872 ipf->ipf_mp->b_cont = mp; 6873 continue; 6874 } 6875 /* 6876 * The new piece starts somewhere between the start of the head 6877 * and before the end of the tail. 6878 */ 6879 for (; mp1; mp1 = mp1->b_cont) { 6880 offset = IP_REASS_END(mp1); 6881 if (start < offset) { 6882 if (end <= offset) { 6883 /* Nothing new. */ 6884 IP_REASS_SET_START(mp, 0); 6885 IP_REASS_SET_END(mp, 0); 6886 /* Subtract byte count */ 6887 ipf->ipf_count -= mp->b_datap->db_lim - 6888 mp->b_datap->db_base; 6889 if (incr_dups) { 6890 ipf->ipf_num_dups++; 6891 incr_dups = B_FALSE; 6892 } 6893 freeb(mp); 6894 BUMP_MIB(ill->ill_ip_mib, 6895 ipIfStatsReasmDuplicates); 6896 break; 6897 } 6898 /* 6899 * Trim redundant stuff off beginning of new 6900 * piece. 6901 */ 6902 IP_REASS_SET_START(mp, offset); 6903 mp->b_rptr += offset - start; 6904 BUMP_MIB(ill->ill_ip_mib, 6905 ipIfStatsReasmPartDups); 6906 start = offset; 6907 if (!mp1->b_cont) { 6908 /* 6909 * After trimming, this guy is now 6910 * hanging off the end. 6911 */ 6912 mp1->b_cont = mp; 6913 ipf->ipf_tail_mp = mp; 6914 if (!more) { 6915 ipf->ipf_hole_cnt--; 6916 } 6917 break; 6918 } 6919 } 6920 if (start >= IP_REASS_START(mp1->b_cont)) 6921 continue; 6922 /* Fill a hole */ 6923 if (start > offset) 6924 ipf->ipf_hole_cnt++; 6925 mp->b_cont = mp1->b_cont; 6926 mp1->b_cont = mp; 6927 mp1 = mp->b_cont; 6928 offset = IP_REASS_START(mp1); 6929 if (end >= offset) { 6930 ipf->ipf_hole_cnt--; 6931 /* Check for overlap. */ 6932 while (end > offset) { 6933 if (end < IP_REASS_END(mp1)) { 6934 mp->b_wptr -= end - offset; 6935 IP_REASS_SET_END(mp, offset); 6936 /* 6937 * TODO we might bump 6938 * this up twice if there is 6939 * overlap at both ends. 6940 */ 6941 BUMP_MIB(ill->ill_ip_mib, 6942 ipIfStatsReasmPartDups); 6943 break; 6944 } 6945 /* Did we cover another hole? */ 6946 if ((mp1->b_cont && 6947 IP_REASS_END(mp1) 6948 != IP_REASS_START(mp1->b_cont) && 6949 end >= 6950 IP_REASS_START(mp1->b_cont)) || 6951 (!ipf->ipf_last_frag_seen && 6952 !more)) { 6953 ipf->ipf_hole_cnt--; 6954 } 6955 /* Clip out mp1. */ 6956 if ((mp->b_cont = mp1->b_cont) == 6957 NULL) { 6958 /* 6959 * After clipping out mp1, 6960 * this guy is now hanging 6961 * off the end. 6962 */ 6963 ipf->ipf_tail_mp = mp; 6964 } 6965 IP_REASS_SET_START(mp1, 0); 6966 IP_REASS_SET_END(mp1, 0); 6967 /* Subtract byte count */ 6968 ipf->ipf_count -= 6969 mp1->b_datap->db_lim - 6970 mp1->b_datap->db_base; 6971 freeb(mp1); 6972 BUMP_MIB(ill->ill_ip_mib, 6973 ipIfStatsReasmPartDups); 6974 mp1 = mp->b_cont; 6975 if (!mp1) 6976 break; 6977 offset = IP_REASS_START(mp1); 6978 } 6979 } 6980 break; 6981 } 6982 } while (start = end, mp = next_mp); 6983 6984 /* Fragment just processed could be the last one. Remember this fact */ 6985 if (!more) 6986 ipf->ipf_last_frag_seen = B_TRUE; 6987 6988 /* Still got holes? */ 6989 if (ipf->ipf_hole_cnt) 6990 return (IP_REASS_PARTIAL); 6991 /* Clean up overloaded fields to avoid upstream disasters. */ 6992 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6993 IP_REASS_SET_START(mp1, 0); 6994 IP_REASS_SET_END(mp1, 0); 6995 } 6996 return (IP_REASS_COMPLETE); 6997 } 6998 6999 /* 7000 * Fragmentation reassembly. Each ILL has a hash table for 7001 * queuing packets undergoing reassembly for all IPIFs 7002 * associated with the ILL. The hash is based on the packet 7003 * IP ident field. The ILL frag hash table was allocated 7004 * as a timer block at the time the ILL was created. Whenever 7005 * there is anything on the reassembly queue, the timer will 7006 * be running. Returns the reassembled packet if reassembly completes. 7007 */ 7008 mblk_t * 7009 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7010 { 7011 uint32_t frag_offset_flags; 7012 mblk_t *t_mp; 7013 ipaddr_t dst; 7014 uint8_t proto = ipha->ipha_protocol; 7015 uint32_t sum_val; 7016 uint16_t sum_flags; 7017 ipf_t *ipf; 7018 ipf_t **ipfp; 7019 ipfb_t *ipfb; 7020 uint16_t ident; 7021 uint32_t offset; 7022 ipaddr_t src; 7023 uint_t hdr_length; 7024 uint32_t end; 7025 mblk_t *mp1; 7026 mblk_t *tail_mp; 7027 size_t count; 7028 size_t msg_len; 7029 uint8_t ecn_info = 0; 7030 uint32_t packet_size; 7031 boolean_t pruned = B_FALSE; 7032 ill_t *ill = ira->ira_ill; 7033 ip_stack_t *ipst = ill->ill_ipst; 7034 7035 /* 7036 * Drop the fragmented as early as possible, if 7037 * we don't have resource(s) to re-assemble. 7038 */ 7039 if (ipst->ips_ip_reass_queue_bytes == 0) { 7040 freemsg(mp); 7041 return (NULL); 7042 } 7043 7044 /* Check for fragmentation offset; return if there's none */ 7045 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7046 (IPH_MF | IPH_OFFSET)) == 0) 7047 return (mp); 7048 7049 /* 7050 * We utilize hardware computed checksum info only for UDP since 7051 * IP fragmentation is a normal occurrence for the protocol. In 7052 * addition, checksum offload support for IP fragments carrying 7053 * UDP payload is commonly implemented across network adapters. 7054 */ 7055 ASSERT(ira->ira_rill != NULL); 7056 if (proto == IPPROTO_UDP && dohwcksum && 7057 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7058 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7059 mblk_t *mp1 = mp->b_cont; 7060 int32_t len; 7061 7062 /* Record checksum information from the packet */ 7063 sum_val = (uint32_t)DB_CKSUM16(mp); 7064 sum_flags = DB_CKSUMFLAGS(mp); 7065 7066 /* IP payload offset from beginning of mblk */ 7067 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7068 7069 if ((sum_flags & HCK_PARTIALCKSUM) && 7070 (mp1 == NULL || mp1->b_cont == NULL) && 7071 offset >= DB_CKSUMSTART(mp) && 7072 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7073 uint32_t adj; 7074 /* 7075 * Partial checksum has been calculated by hardware 7076 * and attached to the packet; in addition, any 7077 * prepended extraneous data is even byte aligned. 7078 * If any such data exists, we adjust the checksum; 7079 * this would also handle any postpended data. 7080 */ 7081 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7082 mp, mp1, len, adj); 7083 7084 /* One's complement subtract extraneous checksum */ 7085 if (adj >= sum_val) 7086 sum_val = ~(adj - sum_val) & 0xFFFF; 7087 else 7088 sum_val -= adj; 7089 } 7090 } else { 7091 sum_val = 0; 7092 sum_flags = 0; 7093 } 7094 7095 /* Clear hardware checksumming flag */ 7096 DB_CKSUMFLAGS(mp) = 0; 7097 7098 ident = ipha->ipha_ident; 7099 offset = (frag_offset_flags << 3) & 0xFFFF; 7100 src = ipha->ipha_src; 7101 dst = ipha->ipha_dst; 7102 hdr_length = IPH_HDR_LENGTH(ipha); 7103 end = ntohs(ipha->ipha_length) - hdr_length; 7104 7105 /* If end == 0 then we have a packet with no data, so just free it */ 7106 if (end == 0) { 7107 freemsg(mp); 7108 return (NULL); 7109 } 7110 7111 /* Record the ECN field info. */ 7112 ecn_info = (ipha->ipha_type_of_service & 0x3); 7113 if (offset != 0) { 7114 /* 7115 * If this isn't the first piece, strip the header, and 7116 * add the offset to the end value. 7117 */ 7118 mp->b_rptr += hdr_length; 7119 end += offset; 7120 } 7121 7122 /* Handle vnic loopback of fragments */ 7123 if (mp->b_datap->db_ref > 2) 7124 msg_len = 0; 7125 else 7126 msg_len = MBLKSIZE(mp); 7127 7128 tail_mp = mp; 7129 while (tail_mp->b_cont != NULL) { 7130 tail_mp = tail_mp->b_cont; 7131 if (tail_mp->b_datap->db_ref <= 2) 7132 msg_len += MBLKSIZE(tail_mp); 7133 } 7134 7135 /* If the reassembly list for this ILL will get too big, prune it */ 7136 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7137 ipst->ips_ip_reass_queue_bytes) { 7138 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7139 uint_t, ill->ill_frag_count, 7140 uint_t, ipst->ips_ip_reass_queue_bytes); 7141 ill_frag_prune(ill, 7142 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7143 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7144 pruned = B_TRUE; 7145 } 7146 7147 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7148 mutex_enter(&ipfb->ipfb_lock); 7149 7150 ipfp = &ipfb->ipfb_ipf; 7151 /* Try to find an existing fragment queue for this packet. */ 7152 for (;;) { 7153 ipf = ipfp[0]; 7154 if (ipf != NULL) { 7155 /* 7156 * It has to match on ident and src/dst address. 7157 */ 7158 if (ipf->ipf_ident == ident && 7159 ipf->ipf_src == src && 7160 ipf->ipf_dst == dst && 7161 ipf->ipf_protocol == proto) { 7162 /* 7163 * If we have received too many 7164 * duplicate fragments for this packet 7165 * free it. 7166 */ 7167 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7168 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7169 freemsg(mp); 7170 mutex_exit(&ipfb->ipfb_lock); 7171 return (NULL); 7172 } 7173 /* Found it. */ 7174 break; 7175 } 7176 ipfp = &ipf->ipf_hash_next; 7177 continue; 7178 } 7179 7180 /* 7181 * If we pruned the list, do we want to store this new 7182 * fragment?. We apply an optimization here based on the 7183 * fact that most fragments will be received in order. 7184 * So if the offset of this incoming fragment is zero, 7185 * it is the first fragment of a new packet. We will 7186 * keep it. Otherwise drop the fragment, as we have 7187 * probably pruned the packet already (since the 7188 * packet cannot be found). 7189 */ 7190 if (pruned && offset != 0) { 7191 mutex_exit(&ipfb->ipfb_lock); 7192 freemsg(mp); 7193 return (NULL); 7194 } 7195 7196 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7197 /* 7198 * Too many fragmented packets in this hash 7199 * bucket. Free the oldest. 7200 */ 7201 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7202 } 7203 7204 /* New guy. Allocate a frag message. */ 7205 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7206 if (mp1 == NULL) { 7207 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7208 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7209 freemsg(mp); 7210 reass_done: 7211 mutex_exit(&ipfb->ipfb_lock); 7212 return (NULL); 7213 } 7214 7215 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7216 mp1->b_cont = mp; 7217 7218 /* Initialize the fragment header. */ 7219 ipf = (ipf_t *)mp1->b_rptr; 7220 ipf->ipf_mp = mp1; 7221 ipf->ipf_ptphn = ipfp; 7222 ipfp[0] = ipf; 7223 ipf->ipf_hash_next = NULL; 7224 ipf->ipf_ident = ident; 7225 ipf->ipf_protocol = proto; 7226 ipf->ipf_src = src; 7227 ipf->ipf_dst = dst; 7228 ipf->ipf_nf_hdr_len = 0; 7229 /* Record reassembly start time. */ 7230 ipf->ipf_timestamp = gethrestime_sec(); 7231 /* Record ipf generation and account for frag header */ 7232 ipf->ipf_gen = ill->ill_ipf_gen++; 7233 ipf->ipf_count = MBLKSIZE(mp1); 7234 ipf->ipf_last_frag_seen = B_FALSE; 7235 ipf->ipf_ecn = ecn_info; 7236 ipf->ipf_num_dups = 0; 7237 ipfb->ipfb_frag_pkts++; 7238 ipf->ipf_checksum = 0; 7239 ipf->ipf_checksum_flags = 0; 7240 7241 /* Store checksum value in fragment header */ 7242 if (sum_flags != 0) { 7243 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7244 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7245 ipf->ipf_checksum = sum_val; 7246 ipf->ipf_checksum_flags = sum_flags; 7247 } 7248 7249 /* 7250 * We handle reassembly two ways. In the easy case, 7251 * where all the fragments show up in order, we do 7252 * minimal bookkeeping, and just clip new pieces on 7253 * the end. If we ever see a hole, then we go off 7254 * to ip_reassemble which has to mark the pieces and 7255 * keep track of the number of holes, etc. Obviously, 7256 * the point of having both mechanisms is so we can 7257 * handle the easy case as efficiently as possible. 7258 */ 7259 if (offset == 0) { 7260 /* Easy case, in-order reassembly so far. */ 7261 ipf->ipf_count += msg_len; 7262 ipf->ipf_tail_mp = tail_mp; 7263 /* 7264 * Keep track of next expected offset in 7265 * ipf_end. 7266 */ 7267 ipf->ipf_end = end; 7268 ipf->ipf_nf_hdr_len = hdr_length; 7269 } else { 7270 /* Hard case, hole at the beginning. */ 7271 ipf->ipf_tail_mp = NULL; 7272 /* 7273 * ipf_end == 0 means that we have given up 7274 * on easy reassembly. 7275 */ 7276 ipf->ipf_end = 0; 7277 7278 /* Forget checksum offload from now on */ 7279 ipf->ipf_checksum_flags = 0; 7280 7281 /* 7282 * ipf_hole_cnt is set by ip_reassemble. 7283 * ipf_count is updated by ip_reassemble. 7284 * No need to check for return value here 7285 * as we don't expect reassembly to complete 7286 * or fail for the first fragment itself. 7287 */ 7288 (void) ip_reassemble(mp, ipf, 7289 (frag_offset_flags & IPH_OFFSET) << 3, 7290 (frag_offset_flags & IPH_MF), ill, msg_len); 7291 } 7292 /* Update per ipfb and ill byte counts */ 7293 ipfb->ipfb_count += ipf->ipf_count; 7294 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7295 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7296 /* If the frag timer wasn't already going, start it. */ 7297 mutex_enter(&ill->ill_lock); 7298 ill_frag_timer_start(ill); 7299 mutex_exit(&ill->ill_lock); 7300 goto reass_done; 7301 } 7302 7303 /* 7304 * If the packet's flag has changed (it could be coming up 7305 * from an interface different than the previous, therefore 7306 * possibly different checksum capability), then forget about 7307 * any stored checksum states. Otherwise add the value to 7308 * the existing one stored in the fragment header. 7309 */ 7310 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7311 sum_val += ipf->ipf_checksum; 7312 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7313 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7314 ipf->ipf_checksum = sum_val; 7315 } else if (ipf->ipf_checksum_flags != 0) { 7316 /* Forget checksum offload from now on */ 7317 ipf->ipf_checksum_flags = 0; 7318 } 7319 7320 /* 7321 * We have a new piece of a datagram which is already being 7322 * reassembled. Update the ECN info if all IP fragments 7323 * are ECN capable. If there is one which is not, clear 7324 * all the info. If there is at least one which has CE 7325 * code point, IP needs to report that up to transport. 7326 */ 7327 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7328 if (ecn_info == IPH_ECN_CE) 7329 ipf->ipf_ecn = IPH_ECN_CE; 7330 } else { 7331 ipf->ipf_ecn = IPH_ECN_NECT; 7332 } 7333 if (offset && ipf->ipf_end == offset) { 7334 /* The new fragment fits at the end */ 7335 ipf->ipf_tail_mp->b_cont = mp; 7336 /* Update the byte count */ 7337 ipf->ipf_count += msg_len; 7338 /* Update per ipfb and ill byte counts */ 7339 ipfb->ipfb_count += msg_len; 7340 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7341 atomic_add_32(&ill->ill_frag_count, msg_len); 7342 if (frag_offset_flags & IPH_MF) { 7343 /* More to come. */ 7344 ipf->ipf_end = end; 7345 ipf->ipf_tail_mp = tail_mp; 7346 goto reass_done; 7347 } 7348 } else { 7349 /* Go do the hard cases. */ 7350 int ret; 7351 7352 if (offset == 0) 7353 ipf->ipf_nf_hdr_len = hdr_length; 7354 7355 /* Save current byte count */ 7356 count = ipf->ipf_count; 7357 ret = ip_reassemble(mp, ipf, 7358 (frag_offset_flags & IPH_OFFSET) << 3, 7359 (frag_offset_flags & IPH_MF), ill, msg_len); 7360 /* Count of bytes added and subtracted (freeb()ed) */ 7361 count = ipf->ipf_count - count; 7362 if (count) { 7363 /* Update per ipfb and ill byte counts */ 7364 ipfb->ipfb_count += count; 7365 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7366 atomic_add_32(&ill->ill_frag_count, count); 7367 } 7368 if (ret == IP_REASS_PARTIAL) { 7369 goto reass_done; 7370 } else if (ret == IP_REASS_FAILED) { 7371 /* Reassembly failed. Free up all resources */ 7372 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7373 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7374 IP_REASS_SET_START(t_mp, 0); 7375 IP_REASS_SET_END(t_mp, 0); 7376 } 7377 freemsg(mp); 7378 goto reass_done; 7379 } 7380 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7381 } 7382 /* 7383 * We have completed reassembly. Unhook the frag header from 7384 * the reassembly list. 7385 * 7386 * Before we free the frag header, record the ECN info 7387 * to report back to the transport. 7388 */ 7389 ecn_info = ipf->ipf_ecn; 7390 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7391 ipfp = ipf->ipf_ptphn; 7392 7393 /* We need to supply these to caller */ 7394 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7395 sum_val = ipf->ipf_checksum; 7396 else 7397 sum_val = 0; 7398 7399 mp1 = ipf->ipf_mp; 7400 count = ipf->ipf_count; 7401 ipf = ipf->ipf_hash_next; 7402 if (ipf != NULL) 7403 ipf->ipf_ptphn = ipfp; 7404 ipfp[0] = ipf; 7405 atomic_add_32(&ill->ill_frag_count, -count); 7406 ASSERT(ipfb->ipfb_count >= count); 7407 ipfb->ipfb_count -= count; 7408 ipfb->ipfb_frag_pkts--; 7409 mutex_exit(&ipfb->ipfb_lock); 7410 /* Ditch the frag header. */ 7411 mp = mp1->b_cont; 7412 7413 freeb(mp1); 7414 7415 /* Restore original IP length in header. */ 7416 packet_size = (uint32_t)msgdsize(mp); 7417 if (packet_size > IP_MAXPACKET) { 7418 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7419 ip_drop_input("Reassembled packet too large", mp, ill); 7420 freemsg(mp); 7421 return (NULL); 7422 } 7423 7424 if (DB_REF(mp) > 1) { 7425 mblk_t *mp2 = copymsg(mp); 7426 7427 if (mp2 == NULL) { 7428 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7429 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7430 freemsg(mp); 7431 return (NULL); 7432 } 7433 freemsg(mp); 7434 mp = mp2; 7435 } 7436 ipha = (ipha_t *)mp->b_rptr; 7437 7438 ipha->ipha_length = htons((uint16_t)packet_size); 7439 /* We're now complete, zip the frag state */ 7440 ipha->ipha_fragment_offset_and_flags = 0; 7441 /* Record the ECN info. */ 7442 ipha->ipha_type_of_service &= 0xFC; 7443 ipha->ipha_type_of_service |= ecn_info; 7444 7445 /* Update the receive attributes */ 7446 ira->ira_pktlen = packet_size; 7447 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7448 7449 /* Reassembly is successful; set checksum information in packet */ 7450 DB_CKSUM16(mp) = (uint16_t)sum_val; 7451 DB_CKSUMFLAGS(mp) = sum_flags; 7452 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7453 7454 return (mp); 7455 } 7456 7457 /* 7458 * Pullup function that should be used for IP input in order to 7459 * ensure we do not loose the L2 source address; we need the l2 source 7460 * address for IP_RECVSLLA and for ndp_input. 7461 * 7462 * We return either NULL or b_rptr. 7463 */ 7464 void * 7465 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7466 { 7467 ill_t *ill = ira->ira_ill; 7468 7469 if (ip_rput_pullups++ == 0) { 7470 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7471 "ip_pullup: %s forced us to " 7472 " pullup pkt, hdr len %ld, hdr addr %p", 7473 ill->ill_name, len, (void *)mp->b_rptr); 7474 } 7475 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7476 ip_setl2src(mp, ira, ira->ira_rill); 7477 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7478 if (!pullupmsg(mp, len)) 7479 return (NULL); 7480 else 7481 return (mp->b_rptr); 7482 } 7483 7484 /* 7485 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7486 * When called from the ULP ira_rill will be NULL hence the caller has to 7487 * pass in the ill. 7488 */ 7489 /* ARGSUSED */ 7490 void 7491 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7492 { 7493 const uchar_t *addr; 7494 int alen; 7495 7496 if (ira->ira_flags & IRAF_L2SRC_SET) 7497 return; 7498 7499 ASSERT(ill != NULL); 7500 alen = ill->ill_phys_addr_length; 7501 ASSERT(alen <= sizeof (ira->ira_l2src)); 7502 if (ira->ira_mhip != NULL && 7503 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7504 bcopy(addr, ira->ira_l2src, alen); 7505 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7506 (addr = ill->ill_phys_addr) != NULL) { 7507 bcopy(addr, ira->ira_l2src, alen); 7508 } else { 7509 bzero(ira->ira_l2src, alen); 7510 } 7511 ira->ira_flags |= IRAF_L2SRC_SET; 7512 } 7513 7514 /* 7515 * check ip header length and align it. 7516 */ 7517 mblk_t * 7518 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7519 { 7520 ill_t *ill = ira->ira_ill; 7521 ssize_t len; 7522 7523 len = MBLKL(mp); 7524 7525 if (!OK_32PTR(mp->b_rptr)) 7526 IP_STAT(ill->ill_ipst, ip_notaligned); 7527 else 7528 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7529 7530 /* Guard against bogus device drivers */ 7531 if (len < 0) { 7532 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7533 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7534 freemsg(mp); 7535 return (NULL); 7536 } 7537 7538 if (len == 0) { 7539 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7540 mblk_t *mp1 = mp->b_cont; 7541 7542 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7543 ip_setl2src(mp, ira, ira->ira_rill); 7544 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7545 7546 freeb(mp); 7547 mp = mp1; 7548 if (mp == NULL) 7549 return (NULL); 7550 7551 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7552 return (mp); 7553 } 7554 if (ip_pullup(mp, min_size, ira) == NULL) { 7555 if (msgdsize(mp) < min_size) { 7556 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7557 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7558 } else { 7559 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7560 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7561 } 7562 freemsg(mp); 7563 return (NULL); 7564 } 7565 return (mp); 7566 } 7567 7568 /* 7569 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7570 */ 7571 mblk_t * 7572 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7573 uint_t min_size, ip_recv_attr_t *ira) 7574 { 7575 ill_t *ill = ira->ira_ill; 7576 7577 /* 7578 * Make sure we have data length consistent 7579 * with the IP header. 7580 */ 7581 if (mp->b_cont == NULL) { 7582 /* pkt_len is based on ipha_len, not the mblk length */ 7583 if (pkt_len < min_size) { 7584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7585 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7586 freemsg(mp); 7587 return (NULL); 7588 } 7589 if (len < 0) { 7590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7591 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7592 freemsg(mp); 7593 return (NULL); 7594 } 7595 /* Drop any pad */ 7596 mp->b_wptr = rptr + pkt_len; 7597 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7598 ASSERT(pkt_len >= min_size); 7599 if (pkt_len < min_size) { 7600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7601 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7602 freemsg(mp); 7603 return (NULL); 7604 } 7605 if (len < 0) { 7606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7607 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7608 freemsg(mp); 7609 return (NULL); 7610 } 7611 /* Drop any pad */ 7612 (void) adjmsg(mp, -len); 7613 /* 7614 * adjmsg may have freed an mblk from the chain, hence 7615 * invalidate any hw checksum here. This will force IP to 7616 * calculate the checksum in sw, but only for this packet. 7617 */ 7618 DB_CKSUMFLAGS(mp) = 0; 7619 IP_STAT(ill->ill_ipst, ip_multimblk); 7620 } 7621 return (mp); 7622 } 7623 7624 /* 7625 * Check that the IPv4 opt_len is consistent with the packet and pullup 7626 * the options. 7627 */ 7628 mblk_t * 7629 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7630 ip_recv_attr_t *ira) 7631 { 7632 ill_t *ill = ira->ira_ill; 7633 ssize_t len; 7634 7635 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7636 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7639 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7640 freemsg(mp); 7641 return (NULL); 7642 } 7643 7644 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7645 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7646 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7647 freemsg(mp); 7648 return (NULL); 7649 } 7650 /* 7651 * Recompute complete header length and make sure we 7652 * have access to all of it. 7653 */ 7654 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7655 if (len > (mp->b_wptr - mp->b_rptr)) { 7656 if (len > pkt_len) { 7657 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7658 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7659 freemsg(mp); 7660 return (NULL); 7661 } 7662 if (ip_pullup(mp, len, ira) == NULL) { 7663 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7664 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7665 freemsg(mp); 7666 return (NULL); 7667 } 7668 } 7669 return (mp); 7670 } 7671 7672 /* 7673 * Returns a new ire, or the same ire, or NULL. 7674 * If a different IRE is returned, then it is held; the caller 7675 * needs to release it. 7676 * In no case is there any hold/release on the ire argument. 7677 */ 7678 ire_t * 7679 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7680 { 7681 ire_t *new_ire; 7682 ill_t *ire_ill; 7683 uint_t ifindex; 7684 ip_stack_t *ipst = ill->ill_ipst; 7685 boolean_t strict_check = B_FALSE; 7686 7687 /* 7688 * IPMP common case: if IRE and ILL are in the same group, there's no 7689 * issue (e.g. packet received on an underlying interface matched an 7690 * IRE_LOCAL on its associated group interface). 7691 */ 7692 ASSERT(ire->ire_ill != NULL); 7693 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7694 return (ire); 7695 7696 /* 7697 * Do another ire lookup here, using the ingress ill, to see if the 7698 * interface is in a usesrc group. 7699 * As long as the ills belong to the same group, we don't consider 7700 * them to be arriving on the wrong interface. Thus, if the switch 7701 * is doing inbound load spreading, we won't drop packets when the 7702 * ip*_strict_dst_multihoming switch is on. 7703 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7704 * where the local address may not be unique. In this case we were 7705 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7706 * actually returned. The new lookup, which is more specific, should 7707 * only find the IRE_LOCAL associated with the ingress ill if one 7708 * exists. 7709 */ 7710 if (ire->ire_ipversion == IPV4_VERSION) { 7711 if (ipst->ips_ip_strict_dst_multihoming) 7712 strict_check = B_TRUE; 7713 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7714 IRE_LOCAL, ill, ALL_ZONES, NULL, 7715 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7716 } else { 7717 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7718 if (ipst->ips_ipv6_strict_dst_multihoming) 7719 strict_check = B_TRUE; 7720 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7721 IRE_LOCAL, ill, ALL_ZONES, NULL, 7722 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7723 } 7724 /* 7725 * If the same ire that was returned in ip_input() is found then this 7726 * is an indication that usesrc groups are in use. The packet 7727 * arrived on a different ill in the group than the one associated with 7728 * the destination address. If a different ire was found then the same 7729 * IP address must be hosted on multiple ills. This is possible with 7730 * unnumbered point2point interfaces. We switch to use this new ire in 7731 * order to have accurate interface statistics. 7732 */ 7733 if (new_ire != NULL) { 7734 /* Note: held in one case but not the other? Caller handles */ 7735 if (new_ire != ire) 7736 return (new_ire); 7737 /* Unchanged */ 7738 ire_refrele(new_ire); 7739 return (ire); 7740 } 7741 7742 /* 7743 * Chase pointers once and store locally. 7744 */ 7745 ASSERT(ire->ire_ill != NULL); 7746 ire_ill = ire->ire_ill; 7747 ifindex = ill->ill_usesrc_ifindex; 7748 7749 /* 7750 * Check if it's a legal address on the 'usesrc' interface. 7751 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7752 * can just check phyint_ifindex. 7753 */ 7754 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7755 return (ire); 7756 } 7757 7758 /* 7759 * If the ip*_strict_dst_multihoming switch is on then we can 7760 * only accept this packet if the interface is marked as routing. 7761 */ 7762 if (!(strict_check)) 7763 return (ire); 7764 7765 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7766 return (ire); 7767 } 7768 return (NULL); 7769 } 7770 7771 /* 7772 * This function is used to construct a mac_header_info_s from a 7773 * DL_UNITDATA_IND message. 7774 * The address fields in the mhi structure points into the message, 7775 * thus the caller can't use those fields after freeing the message. 7776 * 7777 * We determine whether the packet received is a non-unicast packet 7778 * and in doing so, determine whether or not it is broadcast vs multicast. 7779 * For it to be a broadcast packet, we must have the appropriate mblk_t 7780 * hanging off the ill_t. If this is either not present or doesn't match 7781 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7782 * to be multicast. Thus NICs that have no broadcast address (or no 7783 * capability for one, such as point to point links) cannot return as 7784 * the packet being broadcast. 7785 */ 7786 void 7787 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7788 { 7789 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7790 mblk_t *bmp; 7791 uint_t extra_offset; 7792 7793 bzero(mhip, sizeof (struct mac_header_info_s)); 7794 7795 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7796 7797 if (ill->ill_sap_length < 0) 7798 extra_offset = 0; 7799 else 7800 extra_offset = ill->ill_sap_length; 7801 7802 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7803 extra_offset; 7804 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7805 extra_offset; 7806 7807 if (!ind->dl_group_address) 7808 return; 7809 7810 /* Multicast or broadcast */ 7811 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7812 7813 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7814 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7815 (bmp = ill->ill_bcast_mp) != NULL) { 7816 dl_unitdata_req_t *dlur; 7817 uint8_t *bphys_addr; 7818 7819 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7820 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7821 extra_offset; 7822 7823 if (bcmp(mhip->mhi_daddr, bphys_addr, 7824 ind->dl_dest_addr_length) == 0) 7825 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7826 } 7827 } 7828 7829 /* 7830 * This function is used to construct a mac_header_info_s from a 7831 * M_DATA fastpath message from a DLPI driver. 7832 * The address fields in the mhi structure points into the message, 7833 * thus the caller can't use those fields after freeing the message. 7834 * 7835 * We determine whether the packet received is a non-unicast packet 7836 * and in doing so, determine whether or not it is broadcast vs multicast. 7837 * For it to be a broadcast packet, we must have the appropriate mblk_t 7838 * hanging off the ill_t. If this is either not present or doesn't match 7839 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7840 * to be multicast. Thus NICs that have no broadcast address (or no 7841 * capability for one, such as point to point links) cannot return as 7842 * the packet being broadcast. 7843 */ 7844 void 7845 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7846 { 7847 mblk_t *bmp; 7848 struct ether_header *pether; 7849 7850 bzero(mhip, sizeof (struct mac_header_info_s)); 7851 7852 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7853 7854 pether = (struct ether_header *)((char *)mp->b_rptr 7855 - sizeof (struct ether_header)); 7856 7857 /* 7858 * Make sure the interface is an ethernet type, since we don't 7859 * know the header format for anything but Ethernet. Also make 7860 * sure we are pointing correctly above db_base. 7861 */ 7862 if (ill->ill_type != IFT_ETHER) 7863 return; 7864 7865 retry: 7866 if ((uchar_t *)pether < mp->b_datap->db_base) 7867 return; 7868 7869 /* Is there a VLAN tag? */ 7870 if (ill->ill_isv6) { 7871 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7872 pether = (struct ether_header *)((char *)pether - 4); 7873 goto retry; 7874 } 7875 } else { 7876 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7877 pether = (struct ether_header *)((char *)pether - 4); 7878 goto retry; 7879 } 7880 } 7881 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7882 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7883 7884 if (!(mhip->mhi_daddr[0] & 0x01)) 7885 return; 7886 7887 /* Multicast or broadcast */ 7888 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7889 7890 if ((bmp = ill->ill_bcast_mp) != NULL) { 7891 dl_unitdata_req_t *dlur; 7892 uint8_t *bphys_addr; 7893 uint_t addrlen; 7894 7895 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7896 addrlen = dlur->dl_dest_addr_length; 7897 if (ill->ill_sap_length < 0) { 7898 bphys_addr = (uchar_t *)dlur + 7899 dlur->dl_dest_addr_offset; 7900 addrlen += ill->ill_sap_length; 7901 } else { 7902 bphys_addr = (uchar_t *)dlur + 7903 dlur->dl_dest_addr_offset + 7904 ill->ill_sap_length; 7905 addrlen -= ill->ill_sap_length; 7906 } 7907 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7908 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7909 } 7910 } 7911 7912 /* 7913 * Handle anything but M_DATA messages 7914 * We see the DL_UNITDATA_IND which are part 7915 * of the data path, and also the other messages from the driver. 7916 */ 7917 void 7918 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7919 { 7920 mblk_t *first_mp; 7921 struct iocblk *iocp; 7922 struct mac_header_info_s mhi; 7923 7924 switch (DB_TYPE(mp)) { 7925 case M_PROTO: 7926 case M_PCPROTO: { 7927 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7928 DL_UNITDATA_IND) { 7929 /* Go handle anything other than data elsewhere. */ 7930 ip_rput_dlpi(ill, mp); 7931 return; 7932 } 7933 7934 first_mp = mp; 7935 mp = first_mp->b_cont; 7936 first_mp->b_cont = NULL; 7937 7938 if (mp == NULL) { 7939 freeb(first_mp); 7940 return; 7941 } 7942 ip_dlur_to_mhi(ill, first_mp, &mhi); 7943 if (ill->ill_isv6) 7944 ip_input_v6(ill, NULL, mp, &mhi); 7945 else 7946 ip_input(ill, NULL, mp, &mhi); 7947 7948 /* Ditch the DLPI header. */ 7949 freeb(first_mp); 7950 return; 7951 } 7952 case M_IOCACK: 7953 iocp = (struct iocblk *)mp->b_rptr; 7954 switch (iocp->ioc_cmd) { 7955 case DL_IOC_HDR_INFO: 7956 ill_fastpath_ack(ill, mp); 7957 return; 7958 default: 7959 putnext(ill->ill_rq, mp); 7960 return; 7961 } 7962 /* FALLTHROUGH */ 7963 case M_ERROR: 7964 case M_HANGUP: 7965 mutex_enter(&ill->ill_lock); 7966 if (ill->ill_state_flags & ILL_CONDEMNED) { 7967 mutex_exit(&ill->ill_lock); 7968 freemsg(mp); 7969 return; 7970 } 7971 ill_refhold_locked(ill); 7972 mutex_exit(&ill->ill_lock); 7973 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7974 B_FALSE); 7975 return; 7976 case M_CTL: 7977 putnext(ill->ill_rq, mp); 7978 return; 7979 case M_IOCNAK: 7980 ip1dbg(("got iocnak ")); 7981 iocp = (struct iocblk *)mp->b_rptr; 7982 switch (iocp->ioc_cmd) { 7983 case DL_IOC_HDR_INFO: 7984 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7985 return; 7986 default: 7987 break; 7988 } 7989 /* FALLTHROUGH */ 7990 default: 7991 putnext(ill->ill_rq, mp); 7992 return; 7993 } 7994 } 7995 7996 /* Read side put procedure. Packets coming from the wire arrive here. */ 7997 int 7998 ip_rput(queue_t *q, mblk_t *mp) 7999 { 8000 ill_t *ill; 8001 union DL_primitives *dl; 8002 8003 ill = (ill_t *)q->q_ptr; 8004 8005 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8006 /* 8007 * If things are opening or closing, only accept high-priority 8008 * DLPI messages. (On open ill->ill_ipif has not yet been 8009 * created; on close, things hanging off the ill may have been 8010 * freed already.) 8011 */ 8012 dl = (union DL_primitives *)mp->b_rptr; 8013 if (DB_TYPE(mp) != M_PCPROTO || 8014 dl->dl_primitive == DL_UNITDATA_IND) { 8015 inet_freemsg(mp); 8016 return (0); 8017 } 8018 } 8019 if (DB_TYPE(mp) == M_DATA) { 8020 struct mac_header_info_s mhi; 8021 8022 ip_mdata_to_mhi(ill, mp, &mhi); 8023 ip_input(ill, NULL, mp, &mhi); 8024 } else { 8025 ip_rput_notdata(ill, mp); 8026 } 8027 return (0); 8028 } 8029 8030 /* 8031 * Move the information to a copy. 8032 */ 8033 mblk_t * 8034 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8035 { 8036 mblk_t *mp1; 8037 ill_t *ill = ira->ira_ill; 8038 ip_stack_t *ipst = ill->ill_ipst; 8039 8040 IP_STAT(ipst, ip_db_ref); 8041 8042 /* Make sure we have ira_l2src before we loose the original mblk */ 8043 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8044 ip_setl2src(mp, ira, ira->ira_rill); 8045 8046 mp1 = copymsg(mp); 8047 if (mp1 == NULL) { 8048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8049 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8050 freemsg(mp); 8051 return (NULL); 8052 } 8053 /* preserve the hardware checksum flags and data, if present */ 8054 if (DB_CKSUMFLAGS(mp) != 0) { 8055 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8056 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8057 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8058 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8059 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8060 } 8061 freemsg(mp); 8062 return (mp1); 8063 } 8064 8065 static void 8066 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8067 t_uscalar_t err) 8068 { 8069 if (dl_err == DL_SYSERR) { 8070 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8071 "%s: %s failed: DL_SYSERR (errno %u)\n", 8072 ill->ill_name, dl_primstr(prim), err); 8073 return; 8074 } 8075 8076 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8077 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8078 dl_errstr(dl_err)); 8079 } 8080 8081 /* 8082 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8083 * than DL_UNITDATA_IND messages. If we need to process this message 8084 * exclusively, we call qwriter_ip, in which case we also need to call 8085 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8086 */ 8087 void 8088 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8089 { 8090 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8091 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8092 queue_t *q = ill->ill_rq; 8093 t_uscalar_t prim = dloa->dl_primitive; 8094 t_uscalar_t reqprim = DL_PRIM_INVAL; 8095 8096 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8097 char *, dl_primstr(prim), ill_t *, ill); 8098 ip1dbg(("ip_rput_dlpi")); 8099 8100 /* 8101 * If we received an ACK but didn't send a request for it, then it 8102 * can't be part of any pending operation; discard up-front. 8103 */ 8104 switch (prim) { 8105 case DL_ERROR_ACK: 8106 reqprim = dlea->dl_error_primitive; 8107 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8108 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8109 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8110 dlea->dl_unix_errno)); 8111 break; 8112 case DL_OK_ACK: 8113 reqprim = dloa->dl_correct_primitive; 8114 break; 8115 case DL_INFO_ACK: 8116 reqprim = DL_INFO_REQ; 8117 break; 8118 case DL_BIND_ACK: 8119 reqprim = DL_BIND_REQ; 8120 break; 8121 case DL_PHYS_ADDR_ACK: 8122 reqprim = DL_PHYS_ADDR_REQ; 8123 break; 8124 case DL_NOTIFY_ACK: 8125 reqprim = DL_NOTIFY_REQ; 8126 break; 8127 case DL_CAPABILITY_ACK: 8128 reqprim = DL_CAPABILITY_REQ; 8129 break; 8130 } 8131 8132 if (prim != DL_NOTIFY_IND) { 8133 if (reqprim == DL_PRIM_INVAL || 8134 !ill_dlpi_pending(ill, reqprim)) { 8135 /* Not a DLPI message we support or expected */ 8136 freemsg(mp); 8137 return; 8138 } 8139 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8140 dl_primstr(reqprim))); 8141 } 8142 8143 switch (reqprim) { 8144 case DL_UNBIND_REQ: 8145 /* 8146 * NOTE: we mark the unbind as complete even if we got a 8147 * DL_ERROR_ACK, since there's not much else we can do. 8148 */ 8149 mutex_enter(&ill->ill_lock); 8150 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8151 cv_signal(&ill->ill_cv); 8152 mutex_exit(&ill->ill_lock); 8153 break; 8154 8155 case DL_ENABMULTI_REQ: 8156 if (prim == DL_OK_ACK) { 8157 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8158 ill->ill_dlpi_multicast_state = IDS_OK; 8159 } 8160 break; 8161 } 8162 8163 /* 8164 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8165 * need to become writer to continue to process it. Because an 8166 * exclusive operation doesn't complete until replies to all queued 8167 * DLPI messages have been received, we know we're in the middle of an 8168 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8169 * 8170 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8171 * Since this is on the ill stream we unconditionally bump up the 8172 * refcount without doing ILL_CAN_LOOKUP(). 8173 */ 8174 ill_refhold(ill); 8175 if (prim == DL_NOTIFY_IND) 8176 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8177 else 8178 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8179 } 8180 8181 /* 8182 * Handling of DLPI messages that require exclusive access to the ipsq. 8183 * 8184 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8185 * happen here. (along with mi_copy_done) 8186 */ 8187 /* ARGSUSED */ 8188 static void 8189 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8190 { 8191 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8192 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8193 int err = 0; 8194 ill_t *ill = (ill_t *)q->q_ptr; 8195 ipif_t *ipif = NULL; 8196 mblk_t *mp1 = NULL; 8197 conn_t *connp = NULL; 8198 t_uscalar_t paddrreq; 8199 mblk_t *mp_hw; 8200 boolean_t success; 8201 boolean_t ioctl_aborted = B_FALSE; 8202 boolean_t log = B_TRUE; 8203 8204 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8205 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8206 8207 ip1dbg(("ip_rput_dlpi_writer ..")); 8208 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8209 ASSERT(IAM_WRITER_ILL(ill)); 8210 8211 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8212 /* 8213 * The current ioctl could have been aborted by the user and a new 8214 * ioctl to bring up another ill could have started. We could still 8215 * get a response from the driver later. 8216 */ 8217 if (ipif != NULL && ipif->ipif_ill != ill) 8218 ioctl_aborted = B_TRUE; 8219 8220 switch (dloa->dl_primitive) { 8221 case DL_ERROR_ACK: 8222 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8223 dl_primstr(dlea->dl_error_primitive))); 8224 8225 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8226 char *, dl_primstr(dlea->dl_error_primitive), 8227 ill_t *, ill); 8228 8229 switch (dlea->dl_error_primitive) { 8230 case DL_DISABMULTI_REQ: 8231 ill_dlpi_done(ill, dlea->dl_error_primitive); 8232 break; 8233 case DL_PROMISCON_REQ: 8234 case DL_PROMISCOFF_REQ: 8235 case DL_UNBIND_REQ: 8236 case DL_ATTACH_REQ: 8237 case DL_INFO_REQ: 8238 ill_dlpi_done(ill, dlea->dl_error_primitive); 8239 break; 8240 case DL_NOTIFY_REQ: 8241 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8242 log = B_FALSE; 8243 break; 8244 case DL_PHYS_ADDR_REQ: 8245 /* 8246 * For IPv6 only, there are two additional 8247 * phys_addr_req's sent to the driver to get the 8248 * IPv6 token and lla. This allows IP to acquire 8249 * the hardware address format for a given interface 8250 * without having built in knowledge of the hardware 8251 * address. ill_phys_addr_pend keeps track of the last 8252 * DL_PAR sent so we know which response we are 8253 * dealing with. ill_dlpi_done will update 8254 * ill_phys_addr_pend when it sends the next req. 8255 * We don't complete the IOCTL until all three DL_PARs 8256 * have been attempted, so set *_len to 0 and break. 8257 */ 8258 paddrreq = ill->ill_phys_addr_pend; 8259 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8260 if (paddrreq == DL_IPV6_TOKEN) { 8261 ill->ill_token_length = 0; 8262 log = B_FALSE; 8263 break; 8264 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8265 ill->ill_nd_lla_len = 0; 8266 log = B_FALSE; 8267 break; 8268 } 8269 /* 8270 * Something went wrong with the DL_PHYS_ADDR_REQ. 8271 * We presumably have an IOCTL hanging out waiting 8272 * for completion. Find it and complete the IOCTL 8273 * with the error noted. 8274 * However, ill_dl_phys was called on an ill queue 8275 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8276 * set. But the ioctl is known to be pending on ill_wq. 8277 */ 8278 if (!ill->ill_ifname_pending) 8279 break; 8280 ill->ill_ifname_pending = 0; 8281 if (!ioctl_aborted) 8282 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8283 if (mp1 != NULL) { 8284 /* 8285 * This operation (SIOCSLIFNAME) must have 8286 * happened on the ill. Assert there is no conn 8287 */ 8288 ASSERT(connp == NULL); 8289 q = ill->ill_wq; 8290 } 8291 break; 8292 case DL_BIND_REQ: 8293 ill_dlpi_done(ill, DL_BIND_REQ); 8294 if (ill->ill_ifname_pending) 8295 break; 8296 mutex_enter(&ill->ill_lock); 8297 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8298 mutex_exit(&ill->ill_lock); 8299 /* 8300 * Something went wrong with the bind. We presumably 8301 * have an IOCTL hanging out waiting for completion. 8302 * Find it, take down the interface that was coming 8303 * up, and complete the IOCTL with the error noted. 8304 */ 8305 if (!ioctl_aborted) 8306 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8307 if (mp1 != NULL) { 8308 /* 8309 * This might be a result of a DL_NOTE_REPLUMB 8310 * notification. In that case, connp is NULL. 8311 */ 8312 if (connp != NULL) 8313 q = CONNP_TO_WQ(connp); 8314 8315 (void) ipif_down(ipif, NULL, NULL); 8316 /* error is set below the switch */ 8317 } 8318 break; 8319 case DL_ENABMULTI_REQ: 8320 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8321 8322 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8323 ill->ill_dlpi_multicast_state = IDS_FAILED; 8324 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8325 8326 printf("ip: joining multicasts failed (%d)" 8327 " on %s - will use link layer " 8328 "broadcasts for multicast\n", 8329 dlea->dl_errno, ill->ill_name); 8330 8331 /* 8332 * Set up for multi_bcast; We are the 8333 * writer, so ok to access ill->ill_ipif 8334 * without any lock. 8335 */ 8336 mutex_enter(&ill->ill_phyint->phyint_lock); 8337 ill->ill_phyint->phyint_flags |= 8338 PHYI_MULTI_BCAST; 8339 mutex_exit(&ill->ill_phyint->phyint_lock); 8340 8341 } 8342 freemsg(mp); /* Don't want to pass this up */ 8343 return; 8344 case DL_CAPABILITY_REQ: 8345 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8346 "DL_CAPABILITY REQ\n")); 8347 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8348 ill->ill_dlpi_capab_state = IDCS_FAILED; 8349 ill_capability_done(ill); 8350 freemsg(mp); 8351 return; 8352 } 8353 /* 8354 * Note the error for IOCTL completion (mp1 is set when 8355 * ready to complete ioctl). If ill_ifname_pending_err is 8356 * set, an error occured during plumbing (ill_ifname_pending), 8357 * so we want to report that error. 8358 * 8359 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8360 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8361 * expected to get errack'd if the driver doesn't support 8362 * these flags (e.g. ethernet). log will be set to B_FALSE 8363 * if these error conditions are encountered. 8364 */ 8365 if (mp1 != NULL) { 8366 if (ill->ill_ifname_pending_err != 0) { 8367 err = ill->ill_ifname_pending_err; 8368 ill->ill_ifname_pending_err = 0; 8369 } else { 8370 err = dlea->dl_unix_errno ? 8371 dlea->dl_unix_errno : ENXIO; 8372 } 8373 /* 8374 * If we're plumbing an interface and an error hasn't already 8375 * been saved, set ill_ifname_pending_err to the error passed 8376 * up. Ignore the error if log is B_FALSE (see comment above). 8377 */ 8378 } else if (log && ill->ill_ifname_pending && 8379 ill->ill_ifname_pending_err == 0) { 8380 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8381 dlea->dl_unix_errno : ENXIO; 8382 } 8383 8384 if (log) 8385 ip_dlpi_error(ill, dlea->dl_error_primitive, 8386 dlea->dl_errno, dlea->dl_unix_errno); 8387 break; 8388 case DL_CAPABILITY_ACK: 8389 ill_capability_ack(ill, mp); 8390 /* 8391 * The message has been handed off to ill_capability_ack 8392 * and must not be freed below 8393 */ 8394 mp = NULL; 8395 break; 8396 8397 case DL_INFO_ACK: 8398 /* Call a routine to handle this one. */ 8399 ill_dlpi_done(ill, DL_INFO_REQ); 8400 ip_ll_subnet_defaults(ill, mp); 8401 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8402 return; 8403 case DL_BIND_ACK: 8404 /* 8405 * We should have an IOCTL waiting on this unless 8406 * sent by ill_dl_phys, in which case just return 8407 */ 8408 ill_dlpi_done(ill, DL_BIND_REQ); 8409 8410 if (ill->ill_ifname_pending) { 8411 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8412 ill_t *, ill, mblk_t *, mp); 8413 break; 8414 } 8415 mutex_enter(&ill->ill_lock); 8416 ill->ill_dl_up = 1; 8417 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8418 mutex_exit(&ill->ill_lock); 8419 8420 if (!ioctl_aborted) 8421 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8422 if (mp1 == NULL) { 8423 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8424 break; 8425 } 8426 /* 8427 * mp1 was added by ill_dl_up(). if that is a result of 8428 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8429 */ 8430 if (connp != NULL) 8431 q = CONNP_TO_WQ(connp); 8432 /* 8433 * We are exclusive. So nothing can change even after 8434 * we get the pending mp. 8435 */ 8436 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8437 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8438 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8439 8440 /* 8441 * Now bring up the resolver; when that is complete, we'll 8442 * create IREs. Note that we intentionally mirror what 8443 * ipif_up() would have done, because we got here by way of 8444 * ill_dl_up(), which stopped ipif_up()'s processing. 8445 */ 8446 if (ill->ill_isv6) { 8447 /* 8448 * v6 interfaces. 8449 * Unlike ARP which has to do another bind 8450 * and attach, once we get here we are 8451 * done with NDP 8452 */ 8453 (void) ipif_resolver_up(ipif, Res_act_initial); 8454 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8455 err = ipif_up_done_v6(ipif); 8456 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8457 /* 8458 * ARP and other v4 external resolvers. 8459 * Leave the pending mblk intact so that 8460 * the ioctl completes in ip_rput(). 8461 */ 8462 if (connp != NULL) 8463 mutex_enter(&connp->conn_lock); 8464 mutex_enter(&ill->ill_lock); 8465 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8466 mutex_exit(&ill->ill_lock); 8467 if (connp != NULL) 8468 mutex_exit(&connp->conn_lock); 8469 if (success) { 8470 err = ipif_resolver_up(ipif, Res_act_initial); 8471 if (err == EINPROGRESS) { 8472 freemsg(mp); 8473 return; 8474 } 8475 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8476 } else { 8477 /* The conn has started closing */ 8478 err = EINTR; 8479 } 8480 } else { 8481 /* 8482 * This one is complete. Reply to pending ioctl. 8483 */ 8484 (void) ipif_resolver_up(ipif, Res_act_initial); 8485 err = ipif_up_done(ipif); 8486 } 8487 8488 if ((err == 0) && (ill->ill_up_ipifs)) { 8489 err = ill_up_ipifs(ill, q, mp1); 8490 if (err == EINPROGRESS) { 8491 freemsg(mp); 8492 return; 8493 } 8494 } 8495 8496 /* 8497 * If we have a moved ipif to bring up, and everything has 8498 * succeeded to this point, bring it up on the IPMP ill. 8499 * Otherwise, leave it down -- the admin can try to bring it 8500 * up by hand if need be. 8501 */ 8502 if (ill->ill_move_ipif != NULL) { 8503 if (err != 0) { 8504 ill->ill_move_ipif = NULL; 8505 } else { 8506 ipif = ill->ill_move_ipif; 8507 ill->ill_move_ipif = NULL; 8508 err = ipif_up(ipif, q, mp1); 8509 if (err == EINPROGRESS) { 8510 freemsg(mp); 8511 return; 8512 } 8513 } 8514 } 8515 break; 8516 8517 case DL_NOTIFY_IND: { 8518 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8519 uint_t orig_mtu, orig_mc_mtu; 8520 8521 switch (notify->dl_notification) { 8522 case DL_NOTE_PHYS_ADDR: 8523 err = ill_set_phys_addr(ill, mp); 8524 break; 8525 8526 case DL_NOTE_REPLUMB: 8527 /* 8528 * Directly return after calling ill_replumb(). 8529 * Note that we should not free mp as it is reused 8530 * in the ill_replumb() function. 8531 */ 8532 err = ill_replumb(ill, mp); 8533 return; 8534 8535 case DL_NOTE_FASTPATH_FLUSH: 8536 nce_flush(ill, B_FALSE); 8537 break; 8538 8539 case DL_NOTE_SDU_SIZE: 8540 case DL_NOTE_SDU_SIZE2: 8541 /* 8542 * The dce and fragmentation code can cope with 8543 * this changing while packets are being sent. 8544 * When packets are sent ip_output will discover 8545 * a change. 8546 * 8547 * Change the MTU size of the interface. 8548 */ 8549 mutex_enter(&ill->ill_lock); 8550 orig_mtu = ill->ill_mtu; 8551 orig_mc_mtu = ill->ill_mc_mtu; 8552 switch (notify->dl_notification) { 8553 case DL_NOTE_SDU_SIZE: 8554 ill->ill_current_frag = 8555 (uint_t)notify->dl_data; 8556 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8557 break; 8558 case DL_NOTE_SDU_SIZE2: 8559 ill->ill_current_frag = 8560 (uint_t)notify->dl_data1; 8561 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8562 break; 8563 } 8564 if (ill->ill_current_frag > ill->ill_max_frag) 8565 ill->ill_max_frag = ill->ill_current_frag; 8566 8567 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8568 ill->ill_mtu = ill->ill_current_frag; 8569 8570 /* 8571 * If ill_user_mtu was set (via 8572 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8573 */ 8574 if (ill->ill_user_mtu != 0 && 8575 ill->ill_user_mtu < ill->ill_mtu) 8576 ill->ill_mtu = ill->ill_user_mtu; 8577 8578 if (ill->ill_user_mtu != 0 && 8579 ill->ill_user_mtu < ill->ill_mc_mtu) 8580 ill->ill_mc_mtu = ill->ill_user_mtu; 8581 8582 if (ill->ill_isv6) { 8583 if (ill->ill_mtu < IPV6_MIN_MTU) 8584 ill->ill_mtu = IPV6_MIN_MTU; 8585 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8586 ill->ill_mc_mtu = IPV6_MIN_MTU; 8587 } else { 8588 if (ill->ill_mtu < IP_MIN_MTU) 8589 ill->ill_mtu = IP_MIN_MTU; 8590 if (ill->ill_mc_mtu < IP_MIN_MTU) 8591 ill->ill_mc_mtu = IP_MIN_MTU; 8592 } 8593 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8594 ill->ill_mc_mtu = ill->ill_mtu; 8595 } 8596 8597 mutex_exit(&ill->ill_lock); 8598 /* 8599 * Make sure all dce_generation checks find out 8600 * that ill_mtu/ill_mc_mtu has changed. 8601 */ 8602 if (orig_mtu != ill->ill_mtu || 8603 orig_mc_mtu != ill->ill_mc_mtu) { 8604 dce_increment_all_generations(ill->ill_isv6, 8605 ill->ill_ipst); 8606 } 8607 8608 /* 8609 * Refresh IPMP meta-interface MTU if necessary. 8610 */ 8611 if (IS_UNDER_IPMP(ill)) 8612 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8613 break; 8614 8615 case DL_NOTE_LINK_UP: 8616 case DL_NOTE_LINK_DOWN: { 8617 /* 8618 * We are writer. ill / phyint / ipsq assocs stable. 8619 * The RUNNING flag reflects the state of the link. 8620 */ 8621 phyint_t *phyint = ill->ill_phyint; 8622 uint64_t new_phyint_flags; 8623 boolean_t changed = B_FALSE; 8624 boolean_t went_up; 8625 8626 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8627 mutex_enter(&phyint->phyint_lock); 8628 8629 new_phyint_flags = went_up ? 8630 phyint->phyint_flags | PHYI_RUNNING : 8631 phyint->phyint_flags & ~PHYI_RUNNING; 8632 8633 if (IS_IPMP(ill)) { 8634 new_phyint_flags = went_up ? 8635 new_phyint_flags & ~PHYI_FAILED : 8636 new_phyint_flags | PHYI_FAILED; 8637 } 8638 8639 if (new_phyint_flags != phyint->phyint_flags) { 8640 phyint->phyint_flags = new_phyint_flags; 8641 changed = B_TRUE; 8642 } 8643 mutex_exit(&phyint->phyint_lock); 8644 /* 8645 * ill_restart_dad handles the DAD restart and routing 8646 * socket notification logic. 8647 */ 8648 if (changed) { 8649 ill_restart_dad(phyint->phyint_illv4, went_up); 8650 ill_restart_dad(phyint->phyint_illv6, went_up); 8651 } 8652 break; 8653 } 8654 case DL_NOTE_PROMISC_ON_PHYS: { 8655 phyint_t *phyint = ill->ill_phyint; 8656 8657 mutex_enter(&phyint->phyint_lock); 8658 phyint->phyint_flags |= PHYI_PROMISC; 8659 mutex_exit(&phyint->phyint_lock); 8660 break; 8661 } 8662 case DL_NOTE_PROMISC_OFF_PHYS: { 8663 phyint_t *phyint = ill->ill_phyint; 8664 8665 mutex_enter(&phyint->phyint_lock); 8666 phyint->phyint_flags &= ~PHYI_PROMISC; 8667 mutex_exit(&phyint->phyint_lock); 8668 break; 8669 } 8670 case DL_NOTE_CAPAB_RENEG: 8671 /* 8672 * Something changed on the driver side. 8673 * It wants us to renegotiate the capabilities 8674 * on this ill. One possible cause is the aggregation 8675 * interface under us where a port got added or 8676 * went away. 8677 * 8678 * If the capability negotiation is already done 8679 * or is in progress, reset the capabilities and 8680 * mark the ill's ill_capab_reneg to be B_TRUE, 8681 * so that when the ack comes back, we can start 8682 * the renegotiation process. 8683 * 8684 * Note that if ill_capab_reneg is already B_TRUE 8685 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8686 * the capability resetting request has been sent 8687 * and the renegotiation has not been started yet; 8688 * nothing needs to be done in this case. 8689 */ 8690 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8691 ill_capability_reset(ill, B_TRUE); 8692 ipsq_current_finish(ipsq); 8693 break; 8694 8695 case DL_NOTE_ALLOWED_IPS: 8696 ill_set_allowed_ips(ill, mp); 8697 break; 8698 default: 8699 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8700 "type 0x%x for DL_NOTIFY_IND\n", 8701 notify->dl_notification)); 8702 break; 8703 } 8704 8705 /* 8706 * As this is an asynchronous operation, we 8707 * should not call ill_dlpi_done 8708 */ 8709 break; 8710 } 8711 case DL_NOTIFY_ACK: { 8712 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8713 8714 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8715 ill->ill_note_link = 1; 8716 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8717 break; 8718 } 8719 case DL_PHYS_ADDR_ACK: { 8720 /* 8721 * As part of plumbing the interface via SIOCSLIFNAME, 8722 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8723 * whose answers we receive here. As each answer is received, 8724 * we call ill_dlpi_done() to dispatch the next request as 8725 * we're processing the current one. Once all answers have 8726 * been received, we use ipsq_pending_mp_get() to dequeue the 8727 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8728 * is invoked from an ill queue, conn_oper_pending_ill is not 8729 * available, but we know the ioctl is pending on ill_wq.) 8730 */ 8731 uint_t paddrlen, paddroff; 8732 uint8_t *addr; 8733 8734 paddrreq = ill->ill_phys_addr_pend; 8735 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8736 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8737 addr = mp->b_rptr + paddroff; 8738 8739 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8740 if (paddrreq == DL_IPV6_TOKEN) { 8741 /* 8742 * bcopy to low-order bits of ill_token 8743 * 8744 * XXX Temporary hack - currently, all known tokens 8745 * are 64 bits, so I'll cheat for the moment. 8746 */ 8747 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8748 ill->ill_token_length = paddrlen; 8749 break; 8750 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8751 ASSERT(ill->ill_nd_lla_mp == NULL); 8752 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8753 mp = NULL; 8754 break; 8755 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8756 ASSERT(ill->ill_dest_addr_mp == NULL); 8757 ill->ill_dest_addr_mp = mp; 8758 ill->ill_dest_addr = addr; 8759 mp = NULL; 8760 if (ill->ill_isv6) { 8761 ill_setdesttoken(ill); 8762 ipif_setdestlinklocal(ill->ill_ipif); 8763 } 8764 break; 8765 } 8766 8767 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8768 ASSERT(ill->ill_phys_addr_mp == NULL); 8769 if (!ill->ill_ifname_pending) 8770 break; 8771 ill->ill_ifname_pending = 0; 8772 if (!ioctl_aborted) 8773 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8774 if (mp1 != NULL) { 8775 ASSERT(connp == NULL); 8776 q = ill->ill_wq; 8777 } 8778 /* 8779 * If any error acks received during the plumbing sequence, 8780 * ill_ifname_pending_err will be set. Break out and send up 8781 * the error to the pending ioctl. 8782 */ 8783 if (ill->ill_ifname_pending_err != 0) { 8784 err = ill->ill_ifname_pending_err; 8785 ill->ill_ifname_pending_err = 0; 8786 break; 8787 } 8788 8789 ill->ill_phys_addr_mp = mp; 8790 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8791 mp = NULL; 8792 8793 /* 8794 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8795 * provider doesn't support physical addresses. We check both 8796 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8797 * not have physical addresses, but historically adversises a 8798 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8799 * its DL_PHYS_ADDR_ACK. 8800 */ 8801 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8802 ill->ill_phys_addr = NULL; 8803 } else if (paddrlen != ill->ill_phys_addr_length) { 8804 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8805 paddrlen, ill->ill_phys_addr_length)); 8806 err = EINVAL; 8807 break; 8808 } 8809 8810 if (ill->ill_nd_lla_mp == NULL) { 8811 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8812 err = ENOMEM; 8813 break; 8814 } 8815 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8816 } 8817 8818 if (ill->ill_isv6) { 8819 ill_setdefaulttoken(ill); 8820 ipif_setlinklocal(ill->ill_ipif); 8821 } 8822 break; 8823 } 8824 case DL_OK_ACK: 8825 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8826 dl_primstr((int)dloa->dl_correct_primitive), 8827 dloa->dl_correct_primitive)); 8828 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8829 char *, dl_primstr(dloa->dl_correct_primitive), 8830 ill_t *, ill); 8831 8832 switch (dloa->dl_correct_primitive) { 8833 case DL_ENABMULTI_REQ: 8834 case DL_DISABMULTI_REQ: 8835 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8836 break; 8837 case DL_PROMISCON_REQ: 8838 case DL_PROMISCOFF_REQ: 8839 case DL_UNBIND_REQ: 8840 case DL_ATTACH_REQ: 8841 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8842 break; 8843 } 8844 break; 8845 default: 8846 break; 8847 } 8848 8849 freemsg(mp); 8850 if (mp1 == NULL) 8851 return; 8852 8853 /* 8854 * The operation must complete without EINPROGRESS since 8855 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8856 * the operation will be stuck forever inside the IPSQ. 8857 */ 8858 ASSERT(err != EINPROGRESS); 8859 8860 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8861 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8862 ipif_t *, NULL); 8863 8864 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8865 case 0: 8866 ipsq_current_finish(ipsq); 8867 break; 8868 8869 case SIOCSLIFNAME: 8870 case IF_UNITSEL: { 8871 ill_t *ill_other = ILL_OTHER(ill); 8872 8873 /* 8874 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8875 * ill has a peer which is in an IPMP group, then place ill 8876 * into the same group. One catch: although ifconfig plumbs 8877 * the appropriate IPMP meta-interface prior to plumbing this 8878 * ill, it is possible for multiple ifconfig applications to 8879 * race (or for another application to adjust plumbing), in 8880 * which case the IPMP meta-interface we need will be missing. 8881 * If so, kick the phyint out of the group. 8882 */ 8883 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8884 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8885 ipmp_illgrp_t *illg; 8886 8887 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8888 if (illg == NULL) 8889 ipmp_phyint_leave_grp(ill->ill_phyint); 8890 else 8891 ipmp_ill_join_illgrp(ill, illg); 8892 } 8893 8894 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8895 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8896 else 8897 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8898 break; 8899 } 8900 case SIOCLIFADDIF: 8901 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8902 break; 8903 8904 default: 8905 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8906 break; 8907 } 8908 } 8909 8910 /* 8911 * ip_rput_other is called by ip_rput to handle messages modifying the global 8912 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8913 */ 8914 /* ARGSUSED */ 8915 void 8916 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8917 { 8918 ill_t *ill = q->q_ptr; 8919 struct iocblk *iocp; 8920 8921 ip1dbg(("ip_rput_other ")); 8922 if (ipsq != NULL) { 8923 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8924 ASSERT(ipsq->ipsq_xop == 8925 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8926 } 8927 8928 switch (mp->b_datap->db_type) { 8929 case M_ERROR: 8930 case M_HANGUP: 8931 /* 8932 * The device has a problem. We force the ILL down. It can 8933 * be brought up again manually using SIOCSIFFLAGS (via 8934 * ifconfig or equivalent). 8935 */ 8936 ASSERT(ipsq != NULL); 8937 if (mp->b_rptr < mp->b_wptr) 8938 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8939 if (ill->ill_error == 0) 8940 ill->ill_error = ENXIO; 8941 if (!ill_down_start(q, mp)) 8942 return; 8943 ipif_all_down_tail(ipsq, q, mp, NULL); 8944 break; 8945 case M_IOCNAK: { 8946 iocp = (struct iocblk *)mp->b_rptr; 8947 8948 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8949 /* 8950 * If this was the first attempt, turn off the fastpath 8951 * probing. 8952 */ 8953 mutex_enter(&ill->ill_lock); 8954 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8955 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8956 mutex_exit(&ill->ill_lock); 8957 /* 8958 * don't flush the nce_t entries: we use them 8959 * as an index to the ncec itself. 8960 */ 8961 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8962 ill->ill_name)); 8963 } else { 8964 mutex_exit(&ill->ill_lock); 8965 } 8966 freemsg(mp); 8967 break; 8968 } 8969 default: 8970 ASSERT(0); 8971 break; 8972 } 8973 } 8974 8975 /* 8976 * Update any source route, record route or timestamp options 8977 * When it fails it has consumed the message and BUMPed the MIB. 8978 */ 8979 boolean_t 8980 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8981 ip_recv_attr_t *ira) 8982 { 8983 ipoptp_t opts; 8984 uchar_t *opt; 8985 uint8_t optval; 8986 uint8_t optlen; 8987 ipaddr_t dst; 8988 ipaddr_t ifaddr; 8989 uint32_t ts; 8990 timestruc_t now; 8991 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8992 8993 ip2dbg(("ip_forward_options\n")); 8994 dst = ipha->ipha_dst; 8995 for (optval = ipoptp_first(&opts, ipha); 8996 optval != IPOPT_EOL; 8997 optval = ipoptp_next(&opts)) { 8998 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8999 opt = opts.ipoptp_cur; 9000 optlen = opts.ipoptp_len; 9001 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9002 optval, opts.ipoptp_len)); 9003 switch (optval) { 9004 uint32_t off; 9005 case IPOPT_SSRR: 9006 case IPOPT_LSRR: 9007 /* Check if adminstratively disabled */ 9008 if (!ipst->ips_ip_forward_src_routed) { 9009 BUMP_MIB(dst_ill->ill_ip_mib, 9010 ipIfStatsForwProhibits); 9011 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9012 mp, dst_ill); 9013 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9014 ira); 9015 return (B_FALSE); 9016 } 9017 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9018 /* 9019 * Must be partial since ip_input_options 9020 * checked for strict. 9021 */ 9022 break; 9023 } 9024 off = opt[IPOPT_OFFSET]; 9025 off--; 9026 redo_srr: 9027 if (optlen < IP_ADDR_LEN || 9028 off > optlen - IP_ADDR_LEN) { 9029 /* End of source route */ 9030 ip1dbg(( 9031 "ip_forward_options: end of SR\n")); 9032 break; 9033 } 9034 /* Pick a reasonable address on the outbound if */ 9035 ASSERT(dst_ill != NULL); 9036 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9037 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9038 NULL) != 0) { 9039 /* No source! Shouldn't happen */ 9040 ifaddr = INADDR_ANY; 9041 } 9042 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9043 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9044 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9045 ntohl(dst))); 9046 9047 /* 9048 * Check if our address is present more than 9049 * once as consecutive hops in source route. 9050 */ 9051 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9052 off += IP_ADDR_LEN; 9053 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9054 goto redo_srr; 9055 } 9056 ipha->ipha_dst = dst; 9057 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9058 break; 9059 case IPOPT_RR: 9060 off = opt[IPOPT_OFFSET]; 9061 off--; 9062 if (optlen < IP_ADDR_LEN || 9063 off > optlen - IP_ADDR_LEN) { 9064 /* No more room - ignore */ 9065 ip1dbg(( 9066 "ip_forward_options: end of RR\n")); 9067 break; 9068 } 9069 /* Pick a reasonable address on the outbound if */ 9070 ASSERT(dst_ill != NULL); 9071 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9072 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9073 NULL) != 0) { 9074 /* No source! Shouldn't happen */ 9075 ifaddr = INADDR_ANY; 9076 } 9077 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9078 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9079 break; 9080 case IPOPT_TS: 9081 /* Insert timestamp if there is room */ 9082 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9083 case IPOPT_TS_TSONLY: 9084 off = IPOPT_TS_TIMELEN; 9085 break; 9086 case IPOPT_TS_PRESPEC: 9087 case IPOPT_TS_PRESPEC_RFC791: 9088 /* Verify that the address matched */ 9089 off = opt[IPOPT_OFFSET] - 1; 9090 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9091 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9092 /* Not for us */ 9093 break; 9094 } 9095 /* FALLTHROUGH */ 9096 case IPOPT_TS_TSANDADDR: 9097 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9098 break; 9099 default: 9100 /* 9101 * ip_*put_options should have already 9102 * dropped this packet. 9103 */ 9104 cmn_err(CE_PANIC, "ip_forward_options: " 9105 "unknown IT - bug in ip_input_options?\n"); 9106 } 9107 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9108 /* Increase overflow counter */ 9109 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9110 opt[IPOPT_POS_OV_FLG] = 9111 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9112 (off << 4)); 9113 break; 9114 } 9115 off = opt[IPOPT_OFFSET] - 1; 9116 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9117 case IPOPT_TS_PRESPEC: 9118 case IPOPT_TS_PRESPEC_RFC791: 9119 case IPOPT_TS_TSANDADDR: 9120 /* Pick a reasonable addr on the outbound if */ 9121 ASSERT(dst_ill != NULL); 9122 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9123 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9124 NULL, NULL) != 0) { 9125 /* No source! Shouldn't happen */ 9126 ifaddr = INADDR_ANY; 9127 } 9128 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9129 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9130 /* FALLTHROUGH */ 9131 case IPOPT_TS_TSONLY: 9132 off = opt[IPOPT_OFFSET] - 1; 9133 /* Compute # of milliseconds since midnight */ 9134 gethrestime(&now); 9135 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9136 NSEC2MSEC(now.tv_nsec); 9137 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9138 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9139 break; 9140 } 9141 break; 9142 } 9143 } 9144 return (B_TRUE); 9145 } 9146 9147 /* 9148 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9149 * returns 'true' if there are still fragments left on the queue, in 9150 * which case we restart the timer. 9151 */ 9152 void 9153 ill_frag_timer(void *arg) 9154 { 9155 ill_t *ill = (ill_t *)arg; 9156 boolean_t frag_pending; 9157 ip_stack_t *ipst = ill->ill_ipst; 9158 time_t timeout; 9159 9160 mutex_enter(&ill->ill_lock); 9161 ASSERT(!ill->ill_fragtimer_executing); 9162 if (ill->ill_state_flags & ILL_CONDEMNED) { 9163 ill->ill_frag_timer_id = 0; 9164 mutex_exit(&ill->ill_lock); 9165 return; 9166 } 9167 ill->ill_fragtimer_executing = 1; 9168 mutex_exit(&ill->ill_lock); 9169 9170 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9171 ipst->ips_ip_reassembly_timeout); 9172 9173 frag_pending = ill_frag_timeout(ill, timeout); 9174 9175 /* 9176 * Restart the timer, if we have fragments pending or if someone 9177 * wanted us to be scheduled again. 9178 */ 9179 mutex_enter(&ill->ill_lock); 9180 ill->ill_fragtimer_executing = 0; 9181 ill->ill_frag_timer_id = 0; 9182 if (frag_pending || ill->ill_fragtimer_needrestart) 9183 ill_frag_timer_start(ill); 9184 mutex_exit(&ill->ill_lock); 9185 } 9186 9187 void 9188 ill_frag_timer_start(ill_t *ill) 9189 { 9190 ip_stack_t *ipst = ill->ill_ipst; 9191 clock_t timeo_ms; 9192 9193 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9194 9195 /* If the ill is closing or opening don't proceed */ 9196 if (ill->ill_state_flags & ILL_CONDEMNED) 9197 return; 9198 9199 if (ill->ill_fragtimer_executing) { 9200 /* 9201 * ill_frag_timer is currently executing. Just record the 9202 * the fact that we want the timer to be restarted. 9203 * ill_frag_timer will post a timeout before it returns, 9204 * ensuring it will be called again. 9205 */ 9206 ill->ill_fragtimer_needrestart = 1; 9207 return; 9208 } 9209 9210 if (ill->ill_frag_timer_id == 0) { 9211 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9212 ipst->ips_ip_reassembly_timeout) * SECONDS; 9213 9214 /* 9215 * The timer is neither running nor is the timeout handler 9216 * executing. Post a timeout so that ill_frag_timer will be 9217 * called 9218 */ 9219 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9220 MSEC_TO_TICK(timeo_ms >> 1)); 9221 ill->ill_fragtimer_needrestart = 0; 9222 } 9223 } 9224 9225 /* 9226 * Update any source route, record route or timestamp options. 9227 * Check that we are at end of strict source route. 9228 * The options have already been checked for sanity in ip_input_options(). 9229 */ 9230 boolean_t 9231 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9232 { 9233 ipoptp_t opts; 9234 uchar_t *opt; 9235 uint8_t optval; 9236 uint8_t optlen; 9237 ipaddr_t dst; 9238 ipaddr_t ifaddr; 9239 uint32_t ts; 9240 timestruc_t now; 9241 ill_t *ill = ira->ira_ill; 9242 ip_stack_t *ipst = ill->ill_ipst; 9243 9244 ip2dbg(("ip_input_local_options\n")); 9245 9246 for (optval = ipoptp_first(&opts, ipha); 9247 optval != IPOPT_EOL; 9248 optval = ipoptp_next(&opts)) { 9249 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9250 opt = opts.ipoptp_cur; 9251 optlen = opts.ipoptp_len; 9252 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9253 optval, optlen)); 9254 switch (optval) { 9255 uint32_t off; 9256 case IPOPT_SSRR: 9257 case IPOPT_LSRR: 9258 off = opt[IPOPT_OFFSET]; 9259 off--; 9260 if (optlen < IP_ADDR_LEN || 9261 off > optlen - IP_ADDR_LEN) { 9262 /* End of source route */ 9263 ip1dbg(("ip_input_local_options: end of SR\n")); 9264 break; 9265 } 9266 /* 9267 * This will only happen if two consecutive entries 9268 * in the source route contains our address or if 9269 * it is a packet with a loose source route which 9270 * reaches us before consuming the whole source route 9271 */ 9272 ip1dbg(("ip_input_local_options: not end of SR\n")); 9273 if (optval == IPOPT_SSRR) { 9274 goto bad_src_route; 9275 } 9276 /* 9277 * Hack: instead of dropping the packet truncate the 9278 * source route to what has been used by filling the 9279 * rest with IPOPT_NOP. 9280 */ 9281 opt[IPOPT_OLEN] = (uint8_t)off; 9282 while (off < optlen) { 9283 opt[off++] = IPOPT_NOP; 9284 } 9285 break; 9286 case IPOPT_RR: 9287 off = opt[IPOPT_OFFSET]; 9288 off--; 9289 if (optlen < IP_ADDR_LEN || 9290 off > optlen - IP_ADDR_LEN) { 9291 /* No more room - ignore */ 9292 ip1dbg(( 9293 "ip_input_local_options: end of RR\n")); 9294 break; 9295 } 9296 /* Pick a reasonable address on the outbound if */ 9297 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9298 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9299 NULL) != 0) { 9300 /* No source! Shouldn't happen */ 9301 ifaddr = INADDR_ANY; 9302 } 9303 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9304 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9305 break; 9306 case IPOPT_TS: 9307 /* Insert timestamp if there is romm */ 9308 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9309 case IPOPT_TS_TSONLY: 9310 off = IPOPT_TS_TIMELEN; 9311 break; 9312 case IPOPT_TS_PRESPEC: 9313 case IPOPT_TS_PRESPEC_RFC791: 9314 /* Verify that the address matched */ 9315 off = opt[IPOPT_OFFSET] - 1; 9316 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9317 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9318 /* Not for us */ 9319 break; 9320 } 9321 /* FALLTHROUGH */ 9322 case IPOPT_TS_TSANDADDR: 9323 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9324 break; 9325 default: 9326 /* 9327 * ip_*put_options should have already 9328 * dropped this packet. 9329 */ 9330 cmn_err(CE_PANIC, "ip_input_local_options: " 9331 "unknown IT - bug in ip_input_options?\n"); 9332 } 9333 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9334 /* Increase overflow counter */ 9335 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9336 opt[IPOPT_POS_OV_FLG] = 9337 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9338 (off << 4)); 9339 break; 9340 } 9341 off = opt[IPOPT_OFFSET] - 1; 9342 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9343 case IPOPT_TS_PRESPEC: 9344 case IPOPT_TS_PRESPEC_RFC791: 9345 case IPOPT_TS_TSANDADDR: 9346 /* Pick a reasonable addr on the outbound if */ 9347 if (ip_select_source_v4(ill, INADDR_ANY, 9348 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9349 &ifaddr, NULL, NULL) != 0) { 9350 /* No source! Shouldn't happen */ 9351 ifaddr = INADDR_ANY; 9352 } 9353 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9354 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9355 /* FALLTHROUGH */ 9356 case IPOPT_TS_TSONLY: 9357 off = opt[IPOPT_OFFSET] - 1; 9358 /* Compute # of milliseconds since midnight */ 9359 gethrestime(&now); 9360 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9361 NSEC2MSEC(now.tv_nsec); 9362 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9363 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9364 break; 9365 } 9366 break; 9367 } 9368 } 9369 return (B_TRUE); 9370 9371 bad_src_route: 9372 /* make sure we clear any indication of a hardware checksum */ 9373 DB_CKSUMFLAGS(mp) = 0; 9374 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9375 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9376 return (B_FALSE); 9377 9378 } 9379 9380 /* 9381 * Process IP options in an inbound packet. Always returns the nexthop. 9382 * Normally this is the passed in nexthop, but if there is an option 9383 * that effects the nexthop (such as a source route) that will be returned. 9384 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9385 * and mp freed. 9386 */ 9387 ipaddr_t 9388 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9389 ip_recv_attr_t *ira, int *errorp) 9390 { 9391 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9392 ipoptp_t opts; 9393 uchar_t *opt; 9394 uint8_t optval; 9395 uint8_t optlen; 9396 intptr_t code = 0; 9397 ire_t *ire; 9398 9399 ip2dbg(("ip_input_options\n")); 9400 *errorp = 0; 9401 for (optval = ipoptp_first(&opts, ipha); 9402 optval != IPOPT_EOL; 9403 optval = ipoptp_next(&opts)) { 9404 opt = opts.ipoptp_cur; 9405 optlen = opts.ipoptp_len; 9406 ip2dbg(("ip_input_options: opt %d, len %d\n", 9407 optval, optlen)); 9408 /* 9409 * Note: we need to verify the checksum before we 9410 * modify anything thus this routine only extracts the next 9411 * hop dst from any source route. 9412 */ 9413 switch (optval) { 9414 uint32_t off; 9415 case IPOPT_SSRR: 9416 case IPOPT_LSRR: 9417 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9418 if (optval == IPOPT_SSRR) { 9419 ip1dbg(("ip_input_options: not next" 9420 " strict source route 0x%x\n", 9421 ntohl(dst))); 9422 code = (char *)&ipha->ipha_dst - 9423 (char *)ipha; 9424 goto param_prob; /* RouterReq's */ 9425 } 9426 ip2dbg(("ip_input_options: " 9427 "not next source route 0x%x\n", 9428 ntohl(dst))); 9429 break; 9430 } 9431 9432 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9433 ip1dbg(( 9434 "ip_input_options: bad option offset\n")); 9435 code = (char *)&opt[IPOPT_OLEN] - 9436 (char *)ipha; 9437 goto param_prob; 9438 } 9439 off = opt[IPOPT_OFFSET]; 9440 off--; 9441 redo_srr: 9442 if (optlen < IP_ADDR_LEN || 9443 off > optlen - IP_ADDR_LEN) { 9444 /* End of source route */ 9445 ip1dbg(("ip_input_options: end of SR\n")); 9446 break; 9447 } 9448 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9449 ip1dbg(("ip_input_options: next hop 0x%x\n", 9450 ntohl(dst))); 9451 9452 /* 9453 * Check if our address is present more than 9454 * once as consecutive hops in source route. 9455 * XXX verify per-interface ip_forwarding 9456 * for source route? 9457 */ 9458 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9459 off += IP_ADDR_LEN; 9460 goto redo_srr; 9461 } 9462 9463 if (dst == htonl(INADDR_LOOPBACK)) { 9464 ip1dbg(("ip_input_options: loopback addr in " 9465 "source route!\n")); 9466 goto bad_src_route; 9467 } 9468 /* 9469 * For strict: verify that dst is directly 9470 * reachable. 9471 */ 9472 if (optval == IPOPT_SSRR) { 9473 ire = ire_ftable_lookup_v4(dst, 0, 0, 9474 IRE_INTERFACE, NULL, ALL_ZONES, 9475 ira->ira_tsl, 9476 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9477 NULL); 9478 if (ire == NULL) { 9479 ip1dbg(("ip_input_options: SSRR not " 9480 "directly reachable: 0x%x\n", 9481 ntohl(dst))); 9482 goto bad_src_route; 9483 } 9484 ire_refrele(ire); 9485 } 9486 /* 9487 * Defer update of the offset and the record route 9488 * until the packet is forwarded. 9489 */ 9490 break; 9491 case IPOPT_RR: 9492 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9493 ip1dbg(( 9494 "ip_input_options: bad option offset\n")); 9495 code = (char *)&opt[IPOPT_OLEN] - 9496 (char *)ipha; 9497 goto param_prob; 9498 } 9499 break; 9500 case IPOPT_TS: 9501 /* 9502 * Verify that length >= 5 and that there is either 9503 * room for another timestamp or that the overflow 9504 * counter is not maxed out. 9505 */ 9506 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9507 if (optlen < IPOPT_MINLEN_IT) { 9508 goto param_prob; 9509 } 9510 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9511 ip1dbg(( 9512 "ip_input_options: bad option offset\n")); 9513 code = (char *)&opt[IPOPT_OFFSET] - 9514 (char *)ipha; 9515 goto param_prob; 9516 } 9517 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9518 case IPOPT_TS_TSONLY: 9519 off = IPOPT_TS_TIMELEN; 9520 break; 9521 case IPOPT_TS_TSANDADDR: 9522 case IPOPT_TS_PRESPEC: 9523 case IPOPT_TS_PRESPEC_RFC791: 9524 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9525 break; 9526 default: 9527 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9528 (char *)ipha; 9529 goto param_prob; 9530 } 9531 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9532 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9533 /* 9534 * No room and the overflow counter is 15 9535 * already. 9536 */ 9537 goto param_prob; 9538 } 9539 break; 9540 } 9541 } 9542 9543 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9544 return (dst); 9545 } 9546 9547 ip1dbg(("ip_input_options: error processing IP options.")); 9548 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9549 9550 param_prob: 9551 /* make sure we clear any indication of a hardware checksum */ 9552 DB_CKSUMFLAGS(mp) = 0; 9553 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9554 icmp_param_problem(mp, (uint8_t)code, ira); 9555 *errorp = -1; 9556 return (dst); 9557 9558 bad_src_route: 9559 /* make sure we clear any indication of a hardware checksum */ 9560 DB_CKSUMFLAGS(mp) = 0; 9561 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9562 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9563 *errorp = -1; 9564 return (dst); 9565 } 9566 9567 /* 9568 * IP & ICMP info in >=14 msg's ... 9569 * - ip fixed part (mib2_ip_t) 9570 * - icmp fixed part (mib2_icmp_t) 9571 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9572 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9573 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9574 * - ipRouteAttributeTable (ip 102) labeled routes 9575 * - ip multicast membership (ip_member_t) 9576 * - ip multicast source filtering (ip_grpsrc_t) 9577 * - igmp fixed part (struct igmpstat) 9578 * - multicast routing stats (struct mrtstat) 9579 * - multicast routing vifs (array of struct vifctl) 9580 * - multicast routing routes (array of struct mfcctl) 9581 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9582 * One per ill plus one generic 9583 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9584 * One per ill plus one generic 9585 * - ipv6RouteEntry all IPv6 IREs 9586 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9587 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9588 * - ipv6AddrEntry all IPv6 ipifs 9589 * - ipv6 multicast membership (ipv6_member_t) 9590 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9591 * 9592 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9593 * already filled in by the caller. 9594 * If legacy_req is true then MIB structures needs to be truncated to their 9595 * legacy sizes before being returned. 9596 * Return value of 0 indicates that no messages were sent and caller 9597 * should free mpctl. 9598 */ 9599 int 9600 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9601 { 9602 ip_stack_t *ipst; 9603 sctp_stack_t *sctps; 9604 9605 if (q->q_next != NULL) { 9606 ipst = ILLQ_TO_IPST(q); 9607 } else { 9608 ipst = CONNQ_TO_IPST(q); 9609 } 9610 ASSERT(ipst != NULL); 9611 sctps = ipst->ips_netstack->netstack_sctp; 9612 9613 if (mpctl == NULL || mpctl->b_cont == NULL) { 9614 return (0); 9615 } 9616 9617 /* 9618 * For the purposes of the (broken) packet shell use 9619 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9620 * to make TCP and UDP appear first in the list of mib items. 9621 * TBD: We could expand this and use it in netstat so that 9622 * the kernel doesn't have to produce large tables (connections, 9623 * routes, etc) when netstat only wants the statistics or a particular 9624 * table. 9625 */ 9626 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9627 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9628 return (1); 9629 } 9630 } 9631 9632 if (level != MIB2_TCP) { 9633 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9634 return (1); 9635 } 9636 } 9637 9638 if (level != MIB2_UDP) { 9639 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9640 return (1); 9641 } 9642 } 9643 9644 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9645 ipst, legacy_req)) == NULL) { 9646 return (1); 9647 } 9648 9649 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9650 legacy_req)) == NULL) { 9651 return (1); 9652 } 9653 9654 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9655 return (1); 9656 } 9657 9658 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9659 return (1); 9660 } 9661 9662 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9663 return (1); 9664 } 9665 9666 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9667 return (1); 9668 } 9669 9670 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9671 legacy_req)) == NULL) { 9672 return (1); 9673 } 9674 9675 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9676 legacy_req)) == NULL) { 9677 return (1); 9678 } 9679 9680 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9681 return (1); 9682 } 9683 9684 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9685 return (1); 9686 } 9687 9688 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9689 return (1); 9690 } 9691 9692 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9693 return (1); 9694 } 9695 9696 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9697 return (1); 9698 } 9699 9700 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9701 return (1); 9702 } 9703 9704 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9705 if (mpctl == NULL) 9706 return (1); 9707 9708 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9709 if (mpctl == NULL) 9710 return (1); 9711 9712 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9713 return (1); 9714 } 9715 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9716 return (1); 9717 } 9718 freemsg(mpctl); 9719 return (1); 9720 } 9721 9722 /* Get global (legacy) IPv4 statistics */ 9723 static mblk_t * 9724 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9725 ip_stack_t *ipst, boolean_t legacy_req) 9726 { 9727 mib2_ip_t old_ip_mib; 9728 struct opthdr *optp; 9729 mblk_t *mp2ctl; 9730 mib2_ipAddrEntry_t mae; 9731 9732 /* 9733 * make a copy of the original message 9734 */ 9735 mp2ctl = copymsg(mpctl); 9736 9737 /* fixed length IP structure... */ 9738 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9739 optp->level = MIB2_IP; 9740 optp->name = 0; 9741 SET_MIB(old_ip_mib.ipForwarding, 9742 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9743 SET_MIB(old_ip_mib.ipDefaultTTL, 9744 (uint32_t)ipst->ips_ip_def_ttl); 9745 SET_MIB(old_ip_mib.ipReasmTimeout, 9746 ipst->ips_ip_reassembly_timeout); 9747 SET_MIB(old_ip_mib.ipAddrEntrySize, 9748 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9749 sizeof (mib2_ipAddrEntry_t)); 9750 SET_MIB(old_ip_mib.ipRouteEntrySize, 9751 sizeof (mib2_ipRouteEntry_t)); 9752 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9753 sizeof (mib2_ipNetToMediaEntry_t)); 9754 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9755 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9756 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9757 sizeof (mib2_ipAttributeEntry_t)); 9758 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9759 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9760 9761 /* 9762 * Grab the statistics from the new IP MIB 9763 */ 9764 SET_MIB(old_ip_mib.ipInReceives, 9765 (uint32_t)ipmib->ipIfStatsHCInReceives); 9766 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9767 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9768 SET_MIB(old_ip_mib.ipForwDatagrams, 9769 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9770 SET_MIB(old_ip_mib.ipInUnknownProtos, 9771 ipmib->ipIfStatsInUnknownProtos); 9772 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9773 SET_MIB(old_ip_mib.ipInDelivers, 9774 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9775 SET_MIB(old_ip_mib.ipOutRequests, 9776 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9777 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9778 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9779 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9780 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9781 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9782 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9783 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9784 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9785 9786 /* ipRoutingDiscards is not being used */ 9787 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9788 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9789 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9790 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9791 SET_MIB(old_ip_mib.ipReasmDuplicates, 9792 ipmib->ipIfStatsReasmDuplicates); 9793 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9794 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9795 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9796 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9797 SET_MIB(old_ip_mib.rawipInOverflows, 9798 ipmib->rawipIfStatsInOverflows); 9799 9800 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9801 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9802 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9803 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9804 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9805 ipmib->ipIfStatsOutSwitchIPVersion); 9806 9807 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9808 (int)sizeof (old_ip_mib))) { 9809 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9810 (uint_t)sizeof (old_ip_mib))); 9811 } 9812 9813 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9814 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9815 (int)optp->level, (int)optp->name, (int)optp->len)); 9816 qreply(q, mpctl); 9817 return (mp2ctl); 9818 } 9819 9820 /* Per interface IPv4 statistics */ 9821 static mblk_t * 9822 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9823 boolean_t legacy_req) 9824 { 9825 struct opthdr *optp; 9826 mblk_t *mp2ctl; 9827 ill_t *ill; 9828 ill_walk_context_t ctx; 9829 mblk_t *mp_tail = NULL; 9830 mib2_ipIfStatsEntry_t global_ip_mib; 9831 mib2_ipAddrEntry_t mae; 9832 9833 /* 9834 * Make a copy of the original message 9835 */ 9836 mp2ctl = copymsg(mpctl); 9837 9838 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9839 optp->level = MIB2_IP; 9840 optp->name = MIB2_IP_TRAFFIC_STATS; 9841 /* Include "unknown interface" ip_mib */ 9842 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9843 ipst->ips_ip_mib.ipIfStatsIfIndex = 9844 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9845 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9846 (ipst->ips_ip_forwarding ? 1 : 2)); 9847 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9848 (uint32_t)ipst->ips_ip_def_ttl); 9849 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9850 sizeof (mib2_ipIfStatsEntry_t)); 9851 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9852 sizeof (mib2_ipAddrEntry_t)); 9853 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9854 sizeof (mib2_ipRouteEntry_t)); 9855 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9856 sizeof (mib2_ipNetToMediaEntry_t)); 9857 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9858 sizeof (ip_member_t)); 9859 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9860 sizeof (ip_grpsrc_t)); 9861 9862 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9863 9864 if (legacy_req) { 9865 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9866 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9867 } 9868 9869 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9870 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9871 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9872 "failed to allocate %u bytes\n", 9873 (uint_t)sizeof (global_ip_mib))); 9874 } 9875 9876 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9877 ill = ILL_START_WALK_V4(&ctx, ipst); 9878 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9879 ill->ill_ip_mib->ipIfStatsIfIndex = 9880 ill->ill_phyint->phyint_ifindex; 9881 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9882 (ipst->ips_ip_forwarding ? 1 : 2)); 9883 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9884 (uint32_t)ipst->ips_ip_def_ttl); 9885 9886 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9887 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9888 (char *)ill->ill_ip_mib, 9889 (int)sizeof (*ill->ill_ip_mib))) { 9890 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9891 "failed to allocate %u bytes\n", 9892 (uint_t)sizeof (*ill->ill_ip_mib))); 9893 } 9894 } 9895 rw_exit(&ipst->ips_ill_g_lock); 9896 9897 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9898 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9899 "level %d, name %d, len %d\n", 9900 (int)optp->level, (int)optp->name, (int)optp->len)); 9901 qreply(q, mpctl); 9902 9903 if (mp2ctl == NULL) 9904 return (NULL); 9905 9906 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9907 legacy_req)); 9908 } 9909 9910 /* Global IPv4 ICMP statistics */ 9911 static mblk_t * 9912 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9913 { 9914 struct opthdr *optp; 9915 mblk_t *mp2ctl; 9916 9917 /* 9918 * Make a copy of the original message 9919 */ 9920 mp2ctl = copymsg(mpctl); 9921 9922 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9923 optp->level = MIB2_ICMP; 9924 optp->name = 0; 9925 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9926 (int)sizeof (ipst->ips_icmp_mib))) { 9927 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9928 (uint_t)sizeof (ipst->ips_icmp_mib))); 9929 } 9930 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9931 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9932 (int)optp->level, (int)optp->name, (int)optp->len)); 9933 qreply(q, mpctl); 9934 return (mp2ctl); 9935 } 9936 9937 /* Global IPv4 IGMP statistics */ 9938 static mblk_t * 9939 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9940 { 9941 struct opthdr *optp; 9942 mblk_t *mp2ctl; 9943 9944 /* 9945 * make a copy of the original message 9946 */ 9947 mp2ctl = copymsg(mpctl); 9948 9949 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9950 optp->level = EXPER_IGMP; 9951 optp->name = 0; 9952 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9953 (int)sizeof (ipst->ips_igmpstat))) { 9954 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9955 (uint_t)sizeof (ipst->ips_igmpstat))); 9956 } 9957 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9958 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9959 (int)optp->level, (int)optp->name, (int)optp->len)); 9960 qreply(q, mpctl); 9961 return (mp2ctl); 9962 } 9963 9964 /* Global IPv4 Multicast Routing statistics */ 9965 static mblk_t * 9966 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9967 { 9968 struct opthdr *optp; 9969 mblk_t *mp2ctl; 9970 9971 /* 9972 * make a copy of the original message 9973 */ 9974 mp2ctl = copymsg(mpctl); 9975 9976 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9977 optp->level = EXPER_DVMRP; 9978 optp->name = 0; 9979 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9980 ip0dbg(("ip_mroute_stats: failed\n")); 9981 } 9982 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9983 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9984 (int)optp->level, (int)optp->name, (int)optp->len)); 9985 qreply(q, mpctl); 9986 return (mp2ctl); 9987 } 9988 9989 /* IPv4 address information */ 9990 static mblk_t * 9991 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9992 boolean_t legacy_req) 9993 { 9994 struct opthdr *optp; 9995 mblk_t *mp2ctl; 9996 mblk_t *mp_tail = NULL; 9997 ill_t *ill; 9998 ipif_t *ipif; 9999 uint_t bitval; 10000 mib2_ipAddrEntry_t mae; 10001 size_t mae_size; 10002 zoneid_t zoneid; 10003 ill_walk_context_t ctx; 10004 10005 /* 10006 * make a copy of the original message 10007 */ 10008 mp2ctl = copymsg(mpctl); 10009 10010 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10011 sizeof (mib2_ipAddrEntry_t); 10012 10013 /* ipAddrEntryTable */ 10014 10015 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10016 optp->level = MIB2_IP; 10017 optp->name = MIB2_IP_ADDR; 10018 zoneid = Q_TO_CONN(q)->conn_zoneid; 10019 10020 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10021 ill = ILL_START_WALK_V4(&ctx, ipst); 10022 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10023 for (ipif = ill->ill_ipif; ipif != NULL; 10024 ipif = ipif->ipif_next) { 10025 if (ipif->ipif_zoneid != zoneid && 10026 ipif->ipif_zoneid != ALL_ZONES) 10027 continue; 10028 /* Sum of count from dead IRE_LO* and our current */ 10029 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10030 if (ipif->ipif_ire_local != NULL) { 10031 mae.ipAdEntInfo.ae_ibcnt += 10032 ipif->ipif_ire_local->ire_ib_pkt_count; 10033 } 10034 mae.ipAdEntInfo.ae_obcnt = 0; 10035 mae.ipAdEntInfo.ae_focnt = 0; 10036 10037 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10038 OCTET_LENGTH); 10039 mae.ipAdEntIfIndex.o_length = 10040 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10041 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10042 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10043 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10044 mae.ipAdEntInfo.ae_subnet_len = 10045 ip_mask_to_plen(ipif->ipif_net_mask); 10046 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10047 for (bitval = 1; 10048 bitval && 10049 !(bitval & ipif->ipif_brd_addr); 10050 bitval <<= 1) 10051 noop; 10052 mae.ipAdEntBcastAddr = bitval; 10053 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10054 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10055 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10056 mae.ipAdEntInfo.ae_broadcast_addr = 10057 ipif->ipif_brd_addr; 10058 mae.ipAdEntInfo.ae_pp_dst_addr = 10059 ipif->ipif_pp_dst_addr; 10060 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10061 ill->ill_flags | ill->ill_phyint->phyint_flags; 10062 mae.ipAdEntRetransmitTime = 10063 ill->ill_reachable_retrans_time; 10064 10065 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10066 (char *)&mae, (int)mae_size)) { 10067 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10068 "allocate %u bytes\n", (uint_t)mae_size)); 10069 } 10070 } 10071 } 10072 rw_exit(&ipst->ips_ill_g_lock); 10073 10074 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10075 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10076 (int)optp->level, (int)optp->name, (int)optp->len)); 10077 qreply(q, mpctl); 10078 return (mp2ctl); 10079 } 10080 10081 /* IPv6 address information */ 10082 static mblk_t * 10083 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10084 boolean_t legacy_req) 10085 { 10086 struct opthdr *optp; 10087 mblk_t *mp2ctl; 10088 mblk_t *mp_tail = NULL; 10089 ill_t *ill; 10090 ipif_t *ipif; 10091 mib2_ipv6AddrEntry_t mae6; 10092 size_t mae6_size; 10093 zoneid_t zoneid; 10094 ill_walk_context_t ctx; 10095 10096 /* 10097 * make a copy of the original message 10098 */ 10099 mp2ctl = copymsg(mpctl); 10100 10101 mae6_size = (legacy_req) ? 10102 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10103 sizeof (mib2_ipv6AddrEntry_t); 10104 10105 /* ipv6AddrEntryTable */ 10106 10107 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10108 optp->level = MIB2_IP6; 10109 optp->name = MIB2_IP6_ADDR; 10110 zoneid = Q_TO_CONN(q)->conn_zoneid; 10111 10112 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10113 ill = ILL_START_WALK_V6(&ctx, ipst); 10114 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10115 for (ipif = ill->ill_ipif; ipif != NULL; 10116 ipif = ipif->ipif_next) { 10117 if (ipif->ipif_zoneid != zoneid && 10118 ipif->ipif_zoneid != ALL_ZONES) 10119 continue; 10120 /* Sum of count from dead IRE_LO* and our current */ 10121 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10122 if (ipif->ipif_ire_local != NULL) { 10123 mae6.ipv6AddrInfo.ae_ibcnt += 10124 ipif->ipif_ire_local->ire_ib_pkt_count; 10125 } 10126 mae6.ipv6AddrInfo.ae_obcnt = 0; 10127 mae6.ipv6AddrInfo.ae_focnt = 0; 10128 10129 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10130 OCTET_LENGTH); 10131 mae6.ipv6AddrIfIndex.o_length = 10132 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10133 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10134 mae6.ipv6AddrPfxLength = 10135 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10136 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10137 mae6.ipv6AddrInfo.ae_subnet_len = 10138 mae6.ipv6AddrPfxLength; 10139 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10140 10141 /* Type: stateless(1), stateful(2), unknown(3) */ 10142 if (ipif->ipif_flags & IPIF_ADDRCONF) 10143 mae6.ipv6AddrType = 1; 10144 else 10145 mae6.ipv6AddrType = 2; 10146 /* Anycast: true(1), false(2) */ 10147 if (ipif->ipif_flags & IPIF_ANYCAST) 10148 mae6.ipv6AddrAnycastFlag = 1; 10149 else 10150 mae6.ipv6AddrAnycastFlag = 2; 10151 10152 /* 10153 * Address status: preferred(1), deprecated(2), 10154 * invalid(3), inaccessible(4), unknown(5) 10155 */ 10156 if (ipif->ipif_flags & IPIF_NOLOCAL) 10157 mae6.ipv6AddrStatus = 3; 10158 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10159 mae6.ipv6AddrStatus = 2; 10160 else 10161 mae6.ipv6AddrStatus = 1; 10162 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10163 mae6.ipv6AddrInfo.ae_metric = 10164 ipif->ipif_ill->ill_metric; 10165 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10166 ipif->ipif_v6pp_dst_addr; 10167 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10168 ill->ill_flags | ill->ill_phyint->phyint_flags; 10169 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10170 mae6.ipv6AddrIdentifier = ill->ill_token; 10171 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10172 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10173 mae6.ipv6AddrRetransmitTime = 10174 ill->ill_reachable_retrans_time; 10175 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10176 (char *)&mae6, (int)mae6_size)) { 10177 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10178 "allocate %u bytes\n", 10179 (uint_t)mae6_size)); 10180 } 10181 } 10182 } 10183 rw_exit(&ipst->ips_ill_g_lock); 10184 10185 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10186 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10187 (int)optp->level, (int)optp->name, (int)optp->len)); 10188 qreply(q, mpctl); 10189 return (mp2ctl); 10190 } 10191 10192 /* IPv4 multicast group membership. */ 10193 static mblk_t * 10194 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10195 { 10196 struct opthdr *optp; 10197 mblk_t *mp2ctl; 10198 ill_t *ill; 10199 ipif_t *ipif; 10200 ilm_t *ilm; 10201 ip_member_t ipm; 10202 mblk_t *mp_tail = NULL; 10203 ill_walk_context_t ctx; 10204 zoneid_t zoneid; 10205 10206 /* 10207 * make a copy of the original message 10208 */ 10209 mp2ctl = copymsg(mpctl); 10210 zoneid = Q_TO_CONN(q)->conn_zoneid; 10211 10212 /* ipGroupMember table */ 10213 optp = (struct opthdr *)&mpctl->b_rptr[ 10214 sizeof (struct T_optmgmt_ack)]; 10215 optp->level = MIB2_IP; 10216 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10217 10218 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10219 ill = ILL_START_WALK_V4(&ctx, ipst); 10220 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10221 /* Make sure the ill isn't going away. */ 10222 if (!ill_check_and_refhold(ill)) 10223 continue; 10224 rw_exit(&ipst->ips_ill_g_lock); 10225 rw_enter(&ill->ill_mcast_lock, RW_READER); 10226 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10227 if (ilm->ilm_zoneid != zoneid && 10228 ilm->ilm_zoneid != ALL_ZONES) 10229 continue; 10230 10231 /* Is there an ipif for ilm_ifaddr? */ 10232 for (ipif = ill->ill_ipif; ipif != NULL; 10233 ipif = ipif->ipif_next) { 10234 if (!IPIF_IS_CONDEMNED(ipif) && 10235 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10236 ilm->ilm_ifaddr != INADDR_ANY) 10237 break; 10238 } 10239 if (ipif != NULL) { 10240 ipif_get_name(ipif, 10241 ipm.ipGroupMemberIfIndex.o_bytes, 10242 OCTET_LENGTH); 10243 } else { 10244 ill_get_name(ill, 10245 ipm.ipGroupMemberIfIndex.o_bytes, 10246 OCTET_LENGTH); 10247 } 10248 ipm.ipGroupMemberIfIndex.o_length = 10249 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10250 10251 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10252 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10253 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10254 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10255 (char *)&ipm, (int)sizeof (ipm))) { 10256 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10257 "failed to allocate %u bytes\n", 10258 (uint_t)sizeof (ipm))); 10259 } 10260 } 10261 rw_exit(&ill->ill_mcast_lock); 10262 ill_refrele(ill); 10263 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10264 } 10265 rw_exit(&ipst->ips_ill_g_lock); 10266 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10267 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10268 (int)optp->level, (int)optp->name, (int)optp->len)); 10269 qreply(q, mpctl); 10270 return (mp2ctl); 10271 } 10272 10273 /* IPv6 multicast group membership. */ 10274 static mblk_t * 10275 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10276 { 10277 struct opthdr *optp; 10278 mblk_t *mp2ctl; 10279 ill_t *ill; 10280 ilm_t *ilm; 10281 ipv6_member_t ipm6; 10282 mblk_t *mp_tail = NULL; 10283 ill_walk_context_t ctx; 10284 zoneid_t zoneid; 10285 10286 /* 10287 * make a copy of the original message 10288 */ 10289 mp2ctl = copymsg(mpctl); 10290 zoneid = Q_TO_CONN(q)->conn_zoneid; 10291 10292 /* ip6GroupMember table */ 10293 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10294 optp->level = MIB2_IP6; 10295 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10296 10297 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10298 ill = ILL_START_WALK_V6(&ctx, ipst); 10299 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10300 /* Make sure the ill isn't going away. */ 10301 if (!ill_check_and_refhold(ill)) 10302 continue; 10303 rw_exit(&ipst->ips_ill_g_lock); 10304 /* 10305 * Normally we don't have any members on under IPMP interfaces. 10306 * We report them as a debugging aid. 10307 */ 10308 rw_enter(&ill->ill_mcast_lock, RW_READER); 10309 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10310 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10311 if (ilm->ilm_zoneid != zoneid && 10312 ilm->ilm_zoneid != ALL_ZONES) 10313 continue; /* not this zone */ 10314 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10315 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10316 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10317 if (!snmp_append_data2(mpctl->b_cont, 10318 &mp_tail, 10319 (char *)&ipm6, (int)sizeof (ipm6))) { 10320 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10321 "failed to allocate %u bytes\n", 10322 (uint_t)sizeof (ipm6))); 10323 } 10324 } 10325 rw_exit(&ill->ill_mcast_lock); 10326 ill_refrele(ill); 10327 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10328 } 10329 rw_exit(&ipst->ips_ill_g_lock); 10330 10331 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10332 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10333 (int)optp->level, (int)optp->name, (int)optp->len)); 10334 qreply(q, mpctl); 10335 return (mp2ctl); 10336 } 10337 10338 /* IP multicast filtered sources */ 10339 static mblk_t * 10340 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10341 { 10342 struct opthdr *optp; 10343 mblk_t *mp2ctl; 10344 ill_t *ill; 10345 ipif_t *ipif; 10346 ilm_t *ilm; 10347 ip_grpsrc_t ips; 10348 mblk_t *mp_tail = NULL; 10349 ill_walk_context_t ctx; 10350 zoneid_t zoneid; 10351 int i; 10352 slist_t *sl; 10353 10354 /* 10355 * make a copy of the original message 10356 */ 10357 mp2ctl = copymsg(mpctl); 10358 zoneid = Q_TO_CONN(q)->conn_zoneid; 10359 10360 /* ipGroupSource table */ 10361 optp = (struct opthdr *)&mpctl->b_rptr[ 10362 sizeof (struct T_optmgmt_ack)]; 10363 optp->level = MIB2_IP; 10364 optp->name = EXPER_IP_GROUP_SOURCES; 10365 10366 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10367 ill = ILL_START_WALK_V4(&ctx, ipst); 10368 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10369 /* Make sure the ill isn't going away. */ 10370 if (!ill_check_and_refhold(ill)) 10371 continue; 10372 rw_exit(&ipst->ips_ill_g_lock); 10373 rw_enter(&ill->ill_mcast_lock, RW_READER); 10374 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10375 sl = ilm->ilm_filter; 10376 if (ilm->ilm_zoneid != zoneid && 10377 ilm->ilm_zoneid != ALL_ZONES) 10378 continue; 10379 if (SLIST_IS_EMPTY(sl)) 10380 continue; 10381 10382 /* Is there an ipif for ilm_ifaddr? */ 10383 for (ipif = ill->ill_ipif; ipif != NULL; 10384 ipif = ipif->ipif_next) { 10385 if (!IPIF_IS_CONDEMNED(ipif) && 10386 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10387 ilm->ilm_ifaddr != INADDR_ANY) 10388 break; 10389 } 10390 if (ipif != NULL) { 10391 ipif_get_name(ipif, 10392 ips.ipGroupSourceIfIndex.o_bytes, 10393 OCTET_LENGTH); 10394 } else { 10395 ill_get_name(ill, 10396 ips.ipGroupSourceIfIndex.o_bytes, 10397 OCTET_LENGTH); 10398 } 10399 ips.ipGroupSourceIfIndex.o_length = 10400 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10401 10402 ips.ipGroupSourceGroup = ilm->ilm_addr; 10403 for (i = 0; i < sl->sl_numsrc; i++) { 10404 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10405 continue; 10406 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10407 ips.ipGroupSourceAddress); 10408 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10409 (char *)&ips, (int)sizeof (ips)) == 0) { 10410 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10411 " failed to allocate %u bytes\n", 10412 (uint_t)sizeof (ips))); 10413 } 10414 } 10415 } 10416 rw_exit(&ill->ill_mcast_lock); 10417 ill_refrele(ill); 10418 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10419 } 10420 rw_exit(&ipst->ips_ill_g_lock); 10421 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10422 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10423 (int)optp->level, (int)optp->name, (int)optp->len)); 10424 qreply(q, mpctl); 10425 return (mp2ctl); 10426 } 10427 10428 /* IPv6 multicast filtered sources. */ 10429 static mblk_t * 10430 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10431 { 10432 struct opthdr *optp; 10433 mblk_t *mp2ctl; 10434 ill_t *ill; 10435 ilm_t *ilm; 10436 ipv6_grpsrc_t ips6; 10437 mblk_t *mp_tail = NULL; 10438 ill_walk_context_t ctx; 10439 zoneid_t zoneid; 10440 int i; 10441 slist_t *sl; 10442 10443 /* 10444 * make a copy of the original message 10445 */ 10446 mp2ctl = copymsg(mpctl); 10447 zoneid = Q_TO_CONN(q)->conn_zoneid; 10448 10449 /* ip6GroupMember table */ 10450 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10451 optp->level = MIB2_IP6; 10452 optp->name = EXPER_IP6_GROUP_SOURCES; 10453 10454 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10455 ill = ILL_START_WALK_V6(&ctx, ipst); 10456 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10457 /* Make sure the ill isn't going away. */ 10458 if (!ill_check_and_refhold(ill)) 10459 continue; 10460 rw_exit(&ipst->ips_ill_g_lock); 10461 /* 10462 * Normally we don't have any members on under IPMP interfaces. 10463 * We report them as a debugging aid. 10464 */ 10465 rw_enter(&ill->ill_mcast_lock, RW_READER); 10466 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10467 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10468 sl = ilm->ilm_filter; 10469 if (ilm->ilm_zoneid != zoneid && 10470 ilm->ilm_zoneid != ALL_ZONES) 10471 continue; 10472 if (SLIST_IS_EMPTY(sl)) 10473 continue; 10474 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10475 for (i = 0; i < sl->sl_numsrc; i++) { 10476 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10477 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10478 (char *)&ips6, (int)sizeof (ips6))) { 10479 ip1dbg(("ip_snmp_get_mib2_ip6_" 10480 "group_src: failed to allocate " 10481 "%u bytes\n", 10482 (uint_t)sizeof (ips6))); 10483 } 10484 } 10485 } 10486 rw_exit(&ill->ill_mcast_lock); 10487 ill_refrele(ill); 10488 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10489 } 10490 rw_exit(&ipst->ips_ill_g_lock); 10491 10492 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10493 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10494 (int)optp->level, (int)optp->name, (int)optp->len)); 10495 qreply(q, mpctl); 10496 return (mp2ctl); 10497 } 10498 10499 /* Multicast routing virtual interface table. */ 10500 static mblk_t * 10501 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10502 { 10503 struct opthdr *optp; 10504 mblk_t *mp2ctl; 10505 10506 /* 10507 * make a copy of the original message 10508 */ 10509 mp2ctl = copymsg(mpctl); 10510 10511 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10512 optp->level = EXPER_DVMRP; 10513 optp->name = EXPER_DVMRP_VIF; 10514 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10515 ip0dbg(("ip_mroute_vif: failed\n")); 10516 } 10517 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10518 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10519 (int)optp->level, (int)optp->name, (int)optp->len)); 10520 qreply(q, mpctl); 10521 return (mp2ctl); 10522 } 10523 10524 /* Multicast routing table. */ 10525 static mblk_t * 10526 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10527 { 10528 struct opthdr *optp; 10529 mblk_t *mp2ctl; 10530 10531 /* 10532 * make a copy of the original message 10533 */ 10534 mp2ctl = copymsg(mpctl); 10535 10536 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10537 optp->level = EXPER_DVMRP; 10538 optp->name = EXPER_DVMRP_MRT; 10539 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10540 ip0dbg(("ip_mroute_mrt: failed\n")); 10541 } 10542 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10543 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10544 (int)optp->level, (int)optp->name, (int)optp->len)); 10545 qreply(q, mpctl); 10546 return (mp2ctl); 10547 } 10548 10549 /* 10550 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10551 * in one IRE walk. 10552 */ 10553 static mblk_t * 10554 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10555 ip_stack_t *ipst) 10556 { 10557 struct opthdr *optp; 10558 mblk_t *mp2ctl; /* Returned */ 10559 mblk_t *mp3ctl; /* nettomedia */ 10560 mblk_t *mp4ctl; /* routeattrs */ 10561 iproutedata_t ird; 10562 zoneid_t zoneid; 10563 10564 /* 10565 * make copies of the original message 10566 * - mp2ctl is returned unchanged to the caller for its use 10567 * - mpctl is sent upstream as ipRouteEntryTable 10568 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10569 * - mp4ctl is sent upstream as ipRouteAttributeTable 10570 */ 10571 mp2ctl = copymsg(mpctl); 10572 mp3ctl = copymsg(mpctl); 10573 mp4ctl = copymsg(mpctl); 10574 if (mp3ctl == NULL || mp4ctl == NULL) { 10575 freemsg(mp4ctl); 10576 freemsg(mp3ctl); 10577 freemsg(mp2ctl); 10578 freemsg(mpctl); 10579 return (NULL); 10580 } 10581 10582 bzero(&ird, sizeof (ird)); 10583 10584 ird.ird_route.lp_head = mpctl->b_cont; 10585 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10586 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10587 /* 10588 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10589 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10590 * intended a temporary solution until a proper MIB API is provided 10591 * that provides complete filtering/caller-opt-in. 10592 */ 10593 if (level == EXPER_IP_AND_ALL_IRES) 10594 ird.ird_flags |= IRD_REPORT_ALL; 10595 10596 zoneid = Q_TO_CONN(q)->conn_zoneid; 10597 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10598 10599 /* ipRouteEntryTable in mpctl */ 10600 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10601 optp->level = MIB2_IP; 10602 optp->name = MIB2_IP_ROUTE; 10603 optp->len = msgdsize(ird.ird_route.lp_head); 10604 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10605 (int)optp->level, (int)optp->name, (int)optp->len)); 10606 qreply(q, mpctl); 10607 10608 /* ipNetToMediaEntryTable in mp3ctl */ 10609 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10610 10611 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10612 optp->level = MIB2_IP; 10613 optp->name = MIB2_IP_MEDIA; 10614 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10615 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10616 (int)optp->level, (int)optp->name, (int)optp->len)); 10617 qreply(q, mp3ctl); 10618 10619 /* ipRouteAttributeTable in mp4ctl */ 10620 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10621 optp->level = MIB2_IP; 10622 optp->name = EXPER_IP_RTATTR; 10623 optp->len = msgdsize(ird.ird_attrs.lp_head); 10624 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10625 (int)optp->level, (int)optp->name, (int)optp->len)); 10626 if (optp->len == 0) 10627 freemsg(mp4ctl); 10628 else 10629 qreply(q, mp4ctl); 10630 10631 return (mp2ctl); 10632 } 10633 10634 /* 10635 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10636 * ipv6NetToMediaEntryTable in an NDP walk. 10637 */ 10638 static mblk_t * 10639 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10640 ip_stack_t *ipst) 10641 { 10642 struct opthdr *optp; 10643 mblk_t *mp2ctl; /* Returned */ 10644 mblk_t *mp3ctl; /* nettomedia */ 10645 mblk_t *mp4ctl; /* routeattrs */ 10646 iproutedata_t ird; 10647 zoneid_t zoneid; 10648 10649 /* 10650 * make copies of the original message 10651 * - mp2ctl is returned unchanged to the caller for its use 10652 * - mpctl is sent upstream as ipv6RouteEntryTable 10653 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10654 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10655 */ 10656 mp2ctl = copymsg(mpctl); 10657 mp3ctl = copymsg(mpctl); 10658 mp4ctl = copymsg(mpctl); 10659 if (mp3ctl == NULL || mp4ctl == NULL) { 10660 freemsg(mp4ctl); 10661 freemsg(mp3ctl); 10662 freemsg(mp2ctl); 10663 freemsg(mpctl); 10664 return (NULL); 10665 } 10666 10667 bzero(&ird, sizeof (ird)); 10668 10669 ird.ird_route.lp_head = mpctl->b_cont; 10670 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10671 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10672 /* 10673 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10674 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10675 * intended a temporary solution until a proper MIB API is provided 10676 * that provides complete filtering/caller-opt-in. 10677 */ 10678 if (level == EXPER_IP_AND_ALL_IRES) 10679 ird.ird_flags |= IRD_REPORT_ALL; 10680 10681 zoneid = Q_TO_CONN(q)->conn_zoneid; 10682 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10683 10684 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10685 optp->level = MIB2_IP6; 10686 optp->name = MIB2_IP6_ROUTE; 10687 optp->len = msgdsize(ird.ird_route.lp_head); 10688 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10689 (int)optp->level, (int)optp->name, (int)optp->len)); 10690 qreply(q, mpctl); 10691 10692 /* ipv6NetToMediaEntryTable in mp3ctl */ 10693 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10694 10695 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10696 optp->level = MIB2_IP6; 10697 optp->name = MIB2_IP6_MEDIA; 10698 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10699 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10700 (int)optp->level, (int)optp->name, (int)optp->len)); 10701 qreply(q, mp3ctl); 10702 10703 /* ipv6RouteAttributeTable in mp4ctl */ 10704 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10705 optp->level = MIB2_IP6; 10706 optp->name = EXPER_IP_RTATTR; 10707 optp->len = msgdsize(ird.ird_attrs.lp_head); 10708 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10709 (int)optp->level, (int)optp->name, (int)optp->len)); 10710 if (optp->len == 0) 10711 freemsg(mp4ctl); 10712 else 10713 qreply(q, mp4ctl); 10714 10715 return (mp2ctl); 10716 } 10717 10718 /* 10719 * IPv6 mib: One per ill 10720 */ 10721 static mblk_t * 10722 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10723 boolean_t legacy_req) 10724 { 10725 struct opthdr *optp; 10726 mblk_t *mp2ctl; 10727 ill_t *ill; 10728 ill_walk_context_t ctx; 10729 mblk_t *mp_tail = NULL; 10730 mib2_ipv6AddrEntry_t mae6; 10731 mib2_ipIfStatsEntry_t *ise; 10732 size_t ise_size, iae_size; 10733 10734 /* 10735 * Make a copy of the original message 10736 */ 10737 mp2ctl = copymsg(mpctl); 10738 10739 /* fixed length IPv6 structure ... */ 10740 10741 if (legacy_req) { 10742 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10743 mib2_ipIfStatsEntry_t); 10744 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10745 } else { 10746 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10747 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10748 } 10749 10750 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10751 optp->level = MIB2_IP6; 10752 optp->name = 0; 10753 /* Include "unknown interface" ip6_mib */ 10754 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10755 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10756 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10757 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10758 ipst->ips_ipv6_forwarding ? 1 : 2); 10759 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10760 ipst->ips_ipv6_def_hops); 10761 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10762 sizeof (mib2_ipIfStatsEntry_t)); 10763 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10764 sizeof (mib2_ipv6AddrEntry_t)); 10765 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10766 sizeof (mib2_ipv6RouteEntry_t)); 10767 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10768 sizeof (mib2_ipv6NetToMediaEntry_t)); 10769 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10770 sizeof (ipv6_member_t)); 10771 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10772 sizeof (ipv6_grpsrc_t)); 10773 10774 /* 10775 * Synchronize 64- and 32-bit counters 10776 */ 10777 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10778 ipIfStatsHCInReceives); 10779 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10780 ipIfStatsHCInDelivers); 10781 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10782 ipIfStatsHCOutRequests); 10783 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10784 ipIfStatsHCOutForwDatagrams); 10785 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10786 ipIfStatsHCOutMcastPkts); 10787 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10788 ipIfStatsHCInMcastPkts); 10789 10790 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10791 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10792 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10793 (uint_t)ise_size)); 10794 } else if (legacy_req) { 10795 /* Adjust the EntrySize fields for legacy requests. */ 10796 ise = 10797 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10798 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10799 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10800 } 10801 10802 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10803 ill = ILL_START_WALK_V6(&ctx, ipst); 10804 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10805 ill->ill_ip_mib->ipIfStatsIfIndex = 10806 ill->ill_phyint->phyint_ifindex; 10807 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10808 ipst->ips_ipv6_forwarding ? 1 : 2); 10809 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10810 ill->ill_max_hops); 10811 10812 /* 10813 * Synchronize 64- and 32-bit counters 10814 */ 10815 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10816 ipIfStatsHCInReceives); 10817 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10818 ipIfStatsHCInDelivers); 10819 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10820 ipIfStatsHCOutRequests); 10821 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10822 ipIfStatsHCOutForwDatagrams); 10823 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10824 ipIfStatsHCOutMcastPkts); 10825 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10826 ipIfStatsHCInMcastPkts); 10827 10828 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10829 (char *)ill->ill_ip_mib, (int)ise_size)) { 10830 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10831 "%u bytes\n", (uint_t)ise_size)); 10832 } else if (legacy_req) { 10833 /* Adjust the EntrySize fields for legacy requests. */ 10834 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10835 (int)ise_size); 10836 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10837 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10838 } 10839 } 10840 rw_exit(&ipst->ips_ill_g_lock); 10841 10842 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10843 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10844 (int)optp->level, (int)optp->name, (int)optp->len)); 10845 qreply(q, mpctl); 10846 return (mp2ctl); 10847 } 10848 10849 /* 10850 * ICMPv6 mib: One per ill 10851 */ 10852 static mblk_t * 10853 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10854 { 10855 struct opthdr *optp; 10856 mblk_t *mp2ctl; 10857 ill_t *ill; 10858 ill_walk_context_t ctx; 10859 mblk_t *mp_tail = NULL; 10860 /* 10861 * Make a copy of the original message 10862 */ 10863 mp2ctl = copymsg(mpctl); 10864 10865 /* fixed length ICMPv6 structure ... */ 10866 10867 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10868 optp->level = MIB2_ICMP6; 10869 optp->name = 0; 10870 /* Include "unknown interface" icmp6_mib */ 10871 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10872 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10873 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10874 sizeof (mib2_ipv6IfIcmpEntry_t); 10875 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10876 (char *)&ipst->ips_icmp6_mib, 10877 (int)sizeof (ipst->ips_icmp6_mib))) { 10878 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10879 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10880 } 10881 10882 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10883 ill = ILL_START_WALK_V6(&ctx, ipst); 10884 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10885 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10886 ill->ill_phyint->phyint_ifindex; 10887 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10888 (char *)ill->ill_icmp6_mib, 10889 (int)sizeof (*ill->ill_icmp6_mib))) { 10890 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10891 "%u bytes\n", 10892 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10893 } 10894 } 10895 rw_exit(&ipst->ips_ill_g_lock); 10896 10897 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10898 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10899 (int)optp->level, (int)optp->name, (int)optp->len)); 10900 qreply(q, mpctl); 10901 return (mp2ctl); 10902 } 10903 10904 /* 10905 * ire_walk routine to create both ipRouteEntryTable and 10906 * ipRouteAttributeTable in one IRE walk 10907 */ 10908 static void 10909 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10910 { 10911 ill_t *ill; 10912 mib2_ipRouteEntry_t *re; 10913 mib2_ipAttributeEntry_t iaes; 10914 tsol_ire_gw_secattr_t *attrp; 10915 tsol_gc_t *gc = NULL; 10916 tsol_gcgrp_t *gcgrp = NULL; 10917 ip_stack_t *ipst = ire->ire_ipst; 10918 10919 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10920 10921 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10922 if (ire->ire_testhidden) 10923 return; 10924 if (ire->ire_type & IRE_IF_CLONE) 10925 return; 10926 } 10927 10928 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10929 return; 10930 10931 if ((attrp = ire->ire_gw_secattr) != NULL) { 10932 mutex_enter(&attrp->igsa_lock); 10933 if ((gc = attrp->igsa_gc) != NULL) { 10934 gcgrp = gc->gc_grp; 10935 ASSERT(gcgrp != NULL); 10936 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10937 } 10938 mutex_exit(&attrp->igsa_lock); 10939 } 10940 /* 10941 * Return all IRE types for route table... let caller pick and choose 10942 */ 10943 re->ipRouteDest = ire->ire_addr; 10944 ill = ire->ire_ill; 10945 re->ipRouteIfIndex.o_length = 0; 10946 if (ill != NULL) { 10947 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10948 re->ipRouteIfIndex.o_length = 10949 mi_strlen(re->ipRouteIfIndex.o_bytes); 10950 } 10951 re->ipRouteMetric1 = -1; 10952 re->ipRouteMetric2 = -1; 10953 re->ipRouteMetric3 = -1; 10954 re->ipRouteMetric4 = -1; 10955 10956 re->ipRouteNextHop = ire->ire_gateway_addr; 10957 /* indirect(4), direct(3), or invalid(2) */ 10958 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10959 re->ipRouteType = 2; 10960 else if (ire->ire_type & IRE_ONLINK) 10961 re->ipRouteType = 3; 10962 else 10963 re->ipRouteType = 4; 10964 10965 re->ipRouteProto = -1; 10966 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10967 re->ipRouteMask = ire->ire_mask; 10968 re->ipRouteMetric5 = -1; 10969 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10970 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10971 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10972 10973 re->ipRouteInfo.re_frag_flag = 0; 10974 re->ipRouteInfo.re_rtt = 0; 10975 re->ipRouteInfo.re_src_addr = 0; 10976 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10977 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10978 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10979 re->ipRouteInfo.re_flags = ire->ire_flags; 10980 10981 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10982 if (ire->ire_type & IRE_INTERFACE) { 10983 ire_t *child; 10984 10985 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10986 child = ire->ire_dep_children; 10987 while (child != NULL) { 10988 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10989 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10990 child = child->ire_dep_sib_next; 10991 } 10992 rw_exit(&ipst->ips_ire_dep_lock); 10993 } 10994 10995 if (ire->ire_flags & RTF_DYNAMIC) { 10996 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10997 } else { 10998 re->ipRouteInfo.re_ire_type = ire->ire_type; 10999 } 11000 11001 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11002 (char *)re, (int)sizeof (*re))) { 11003 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11004 (uint_t)sizeof (*re))); 11005 } 11006 11007 if (gc != NULL) { 11008 iaes.iae_routeidx = ird->ird_idx; 11009 iaes.iae_doi = gc->gc_db->gcdb_doi; 11010 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11011 11012 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11013 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11014 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11015 "bytes\n", (uint_t)sizeof (iaes))); 11016 } 11017 } 11018 11019 /* bump route index for next pass */ 11020 ird->ird_idx++; 11021 11022 kmem_free(re, sizeof (*re)); 11023 if (gcgrp != NULL) 11024 rw_exit(&gcgrp->gcgrp_rwlock); 11025 } 11026 11027 /* 11028 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11029 */ 11030 static void 11031 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11032 { 11033 ill_t *ill; 11034 mib2_ipv6RouteEntry_t *re; 11035 mib2_ipAttributeEntry_t iaes; 11036 tsol_ire_gw_secattr_t *attrp; 11037 tsol_gc_t *gc = NULL; 11038 tsol_gcgrp_t *gcgrp = NULL; 11039 ip_stack_t *ipst = ire->ire_ipst; 11040 11041 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11042 11043 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11044 if (ire->ire_testhidden) 11045 return; 11046 if (ire->ire_type & IRE_IF_CLONE) 11047 return; 11048 } 11049 11050 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11051 return; 11052 11053 if ((attrp = ire->ire_gw_secattr) != NULL) { 11054 mutex_enter(&attrp->igsa_lock); 11055 if ((gc = attrp->igsa_gc) != NULL) { 11056 gcgrp = gc->gc_grp; 11057 ASSERT(gcgrp != NULL); 11058 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11059 } 11060 mutex_exit(&attrp->igsa_lock); 11061 } 11062 /* 11063 * Return all IRE types for route table... let caller pick and choose 11064 */ 11065 re->ipv6RouteDest = ire->ire_addr_v6; 11066 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11067 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11068 re->ipv6RouteIfIndex.o_length = 0; 11069 ill = ire->ire_ill; 11070 if (ill != NULL) { 11071 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11072 re->ipv6RouteIfIndex.o_length = 11073 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11074 } 11075 11076 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11077 11078 mutex_enter(&ire->ire_lock); 11079 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11080 mutex_exit(&ire->ire_lock); 11081 11082 /* remote(4), local(3), or discard(2) */ 11083 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11084 re->ipv6RouteType = 2; 11085 else if (ire->ire_type & IRE_ONLINK) 11086 re->ipv6RouteType = 3; 11087 else 11088 re->ipv6RouteType = 4; 11089 11090 re->ipv6RouteProtocol = -1; 11091 re->ipv6RoutePolicy = 0; 11092 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11093 re->ipv6RouteNextHopRDI = 0; 11094 re->ipv6RouteWeight = 0; 11095 re->ipv6RouteMetric = 0; 11096 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11097 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11098 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11099 11100 re->ipv6RouteInfo.re_frag_flag = 0; 11101 re->ipv6RouteInfo.re_rtt = 0; 11102 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11103 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11104 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11105 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11106 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11107 11108 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11109 if (ire->ire_type & IRE_INTERFACE) { 11110 ire_t *child; 11111 11112 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11113 child = ire->ire_dep_children; 11114 while (child != NULL) { 11115 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11116 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11117 child = child->ire_dep_sib_next; 11118 } 11119 rw_exit(&ipst->ips_ire_dep_lock); 11120 } 11121 if (ire->ire_flags & RTF_DYNAMIC) { 11122 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11123 } else { 11124 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11125 } 11126 11127 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11128 (char *)re, (int)sizeof (*re))) { 11129 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11130 (uint_t)sizeof (*re))); 11131 } 11132 11133 if (gc != NULL) { 11134 iaes.iae_routeidx = ird->ird_idx; 11135 iaes.iae_doi = gc->gc_db->gcdb_doi; 11136 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11137 11138 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11139 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11140 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11141 "bytes\n", (uint_t)sizeof (iaes))); 11142 } 11143 } 11144 11145 /* bump route index for next pass */ 11146 ird->ird_idx++; 11147 11148 kmem_free(re, sizeof (*re)); 11149 if (gcgrp != NULL) 11150 rw_exit(&gcgrp->gcgrp_rwlock); 11151 } 11152 11153 /* 11154 * ncec_walk routine to create ipv6NetToMediaEntryTable 11155 */ 11156 static void 11157 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr) 11158 { 11159 iproutedata_t *ird = ptr; 11160 ill_t *ill; 11161 mib2_ipv6NetToMediaEntry_t ntme; 11162 11163 ill = ncec->ncec_ill; 11164 /* skip arpce entries, and loopback ncec entries */ 11165 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11166 return; 11167 /* 11168 * Neighbor cache entry attached to IRE with on-link 11169 * destination. 11170 * We report all IPMP groups on ncec_ill which is normally the upper. 11171 */ 11172 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11173 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11174 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11175 if (ncec->ncec_lladdr != NULL) { 11176 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11177 ntme.ipv6NetToMediaPhysAddress.o_length); 11178 } 11179 /* 11180 * Note: Returns ND_* states. Should be: 11181 * reachable(1), stale(2), delay(3), probe(4), 11182 * invalid(5), unknown(6) 11183 */ 11184 ntme.ipv6NetToMediaState = ncec->ncec_state; 11185 ntme.ipv6NetToMediaLastUpdated = 0; 11186 11187 /* other(1), dynamic(2), static(3), local(4) */ 11188 if (NCE_MYADDR(ncec)) { 11189 ntme.ipv6NetToMediaType = 4; 11190 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11191 ntme.ipv6NetToMediaType = 1; /* proxy */ 11192 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11193 ntme.ipv6NetToMediaType = 3; 11194 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11195 ntme.ipv6NetToMediaType = 1; 11196 } else { 11197 ntme.ipv6NetToMediaType = 2; 11198 } 11199 11200 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11201 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11202 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11203 (uint_t)sizeof (ntme))); 11204 } 11205 } 11206 11207 int 11208 nce2ace(ncec_t *ncec) 11209 { 11210 int flags = 0; 11211 11212 if (NCE_ISREACHABLE(ncec)) 11213 flags |= ACE_F_RESOLVED; 11214 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11215 flags |= ACE_F_AUTHORITY; 11216 if (ncec->ncec_flags & NCE_F_PUBLISH) 11217 flags |= ACE_F_PUBLISH; 11218 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11219 flags |= ACE_F_PERMANENT; 11220 if (NCE_MYADDR(ncec)) 11221 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11222 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11223 flags |= ACE_F_UNVERIFIED; 11224 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11225 flags |= ACE_F_AUTHORITY; 11226 if (ncec->ncec_flags & NCE_F_DELAYED) 11227 flags |= ACE_F_DELAYED; 11228 return (flags); 11229 } 11230 11231 /* 11232 * ncec_walk routine to create ipNetToMediaEntryTable 11233 */ 11234 static void 11235 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr) 11236 { 11237 iproutedata_t *ird = ptr; 11238 ill_t *ill; 11239 mib2_ipNetToMediaEntry_t ntme; 11240 const char *name = "unknown"; 11241 ipaddr_t ncec_addr; 11242 11243 ill = ncec->ncec_ill; 11244 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11245 ill->ill_net_type == IRE_LOOPBACK) 11246 return; 11247 11248 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11249 name = ill->ill_name; 11250 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11251 if (NCE_MYADDR(ncec)) { 11252 ntme.ipNetToMediaType = 4; 11253 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11254 ntme.ipNetToMediaType = 1; 11255 } else { 11256 ntme.ipNetToMediaType = 3; 11257 } 11258 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11259 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11260 ntme.ipNetToMediaIfIndex.o_length); 11261 11262 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11263 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11264 11265 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11266 ncec_addr = INADDR_BROADCAST; 11267 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11268 sizeof (ncec_addr)); 11269 /* 11270 * map all the flags to the ACE counterpart. 11271 */ 11272 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11273 11274 ntme.ipNetToMediaPhysAddress.o_length = 11275 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11276 11277 if (!NCE_ISREACHABLE(ncec)) 11278 ntme.ipNetToMediaPhysAddress.o_length = 0; 11279 else { 11280 if (ncec->ncec_lladdr != NULL) { 11281 bcopy(ncec->ncec_lladdr, 11282 ntme.ipNetToMediaPhysAddress.o_bytes, 11283 ntme.ipNetToMediaPhysAddress.o_length); 11284 } 11285 } 11286 11287 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11288 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11289 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11290 (uint_t)sizeof (ntme))); 11291 } 11292 } 11293 11294 /* 11295 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11296 */ 11297 /* ARGSUSED */ 11298 int 11299 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11300 { 11301 switch (level) { 11302 case MIB2_IP: 11303 case MIB2_ICMP: 11304 switch (name) { 11305 default: 11306 break; 11307 } 11308 return (1); 11309 default: 11310 return (1); 11311 } 11312 } 11313 11314 /* 11315 * When there exists both a 64- and 32-bit counter of a particular type 11316 * (i.e., InReceives), only the 64-bit counters are added. 11317 */ 11318 void 11319 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11320 { 11321 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11322 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11323 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11324 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11325 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11326 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11327 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11328 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11329 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11330 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11331 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11332 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11333 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11334 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11335 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11336 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11337 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11338 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11339 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11340 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11341 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11342 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11343 o2->ipIfStatsInWrongIPVersion); 11344 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11345 o2->ipIfStatsInWrongIPVersion); 11346 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11347 o2->ipIfStatsOutSwitchIPVersion); 11348 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11349 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11350 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11351 o2->ipIfStatsHCInForwDatagrams); 11352 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11353 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11354 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11355 o2->ipIfStatsHCOutForwDatagrams); 11356 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11357 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11358 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11359 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11360 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11361 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11362 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11363 o2->ipIfStatsHCOutMcastOctets); 11364 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11365 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11366 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11367 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11368 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11369 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11370 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11371 } 11372 11373 void 11374 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11375 { 11376 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11377 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11378 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11379 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11380 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11381 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11382 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11383 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11384 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11385 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11386 o2->ipv6IfIcmpInRouterSolicits); 11387 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11388 o2->ipv6IfIcmpInRouterAdvertisements); 11389 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11390 o2->ipv6IfIcmpInNeighborSolicits); 11391 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11392 o2->ipv6IfIcmpInNeighborAdvertisements); 11393 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11394 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11395 o2->ipv6IfIcmpInGroupMembQueries); 11396 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11397 o2->ipv6IfIcmpInGroupMembResponses); 11398 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11399 o2->ipv6IfIcmpInGroupMembReductions); 11400 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11401 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11402 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11403 o2->ipv6IfIcmpOutDestUnreachs); 11404 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11405 o2->ipv6IfIcmpOutAdminProhibs); 11406 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11407 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11408 o2->ipv6IfIcmpOutParmProblems); 11409 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11410 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11411 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11412 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11413 o2->ipv6IfIcmpOutRouterSolicits); 11414 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11415 o2->ipv6IfIcmpOutRouterAdvertisements); 11416 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11417 o2->ipv6IfIcmpOutNeighborSolicits); 11418 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11419 o2->ipv6IfIcmpOutNeighborAdvertisements); 11420 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11421 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11422 o2->ipv6IfIcmpOutGroupMembQueries); 11423 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11424 o2->ipv6IfIcmpOutGroupMembResponses); 11425 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11426 o2->ipv6IfIcmpOutGroupMembReductions); 11427 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11428 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11429 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11430 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11431 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11432 o2->ipv6IfIcmpInBadNeighborSolicitations); 11433 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11434 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11435 o2->ipv6IfIcmpInGroupMembTotal); 11436 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11437 o2->ipv6IfIcmpInGroupMembBadQueries); 11438 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11439 o2->ipv6IfIcmpInGroupMembBadReports); 11440 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11441 o2->ipv6IfIcmpInGroupMembOurReports); 11442 } 11443 11444 /* 11445 * Called before the options are updated to check if this packet will 11446 * be source routed from here. 11447 * This routine assumes that the options are well formed i.e. that they 11448 * have already been checked. 11449 */ 11450 boolean_t 11451 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11452 { 11453 ipoptp_t opts; 11454 uchar_t *opt; 11455 uint8_t optval; 11456 uint8_t optlen; 11457 ipaddr_t dst; 11458 11459 if (IS_SIMPLE_IPH(ipha)) { 11460 ip2dbg(("not source routed\n")); 11461 return (B_FALSE); 11462 } 11463 dst = ipha->ipha_dst; 11464 for (optval = ipoptp_first(&opts, ipha); 11465 optval != IPOPT_EOL; 11466 optval = ipoptp_next(&opts)) { 11467 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11468 opt = opts.ipoptp_cur; 11469 optlen = opts.ipoptp_len; 11470 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11471 optval, optlen)); 11472 switch (optval) { 11473 uint32_t off; 11474 case IPOPT_SSRR: 11475 case IPOPT_LSRR: 11476 /* 11477 * If dst is one of our addresses and there are some 11478 * entries left in the source route return (true). 11479 */ 11480 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11481 ip2dbg(("ip_source_routed: not next" 11482 " source route 0x%x\n", 11483 ntohl(dst))); 11484 return (B_FALSE); 11485 } 11486 off = opt[IPOPT_OFFSET]; 11487 off--; 11488 if (optlen < IP_ADDR_LEN || 11489 off > optlen - IP_ADDR_LEN) { 11490 /* End of source route */ 11491 ip1dbg(("ip_source_routed: end of SR\n")); 11492 return (B_FALSE); 11493 } 11494 return (B_TRUE); 11495 } 11496 } 11497 ip2dbg(("not source routed\n")); 11498 return (B_FALSE); 11499 } 11500 11501 /* 11502 * ip_unbind is called by the transports to remove a conn from 11503 * the fanout table. 11504 */ 11505 void 11506 ip_unbind(conn_t *connp) 11507 { 11508 11509 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11510 11511 if (is_system_labeled() && connp->conn_anon_port) { 11512 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11513 connp->conn_mlp_type, connp->conn_proto, 11514 ntohs(connp->conn_lport), B_FALSE); 11515 connp->conn_anon_port = 0; 11516 } 11517 connp->conn_mlp_type = mlptSingle; 11518 11519 ipcl_hash_remove(connp); 11520 } 11521 11522 /* 11523 * Used for deciding the MSS size for the upper layer. Thus 11524 * we need to check the outbound policy values in the conn. 11525 */ 11526 int 11527 conn_ipsec_length(conn_t *connp) 11528 { 11529 ipsec_latch_t *ipl; 11530 11531 ipl = connp->conn_latch; 11532 if (ipl == NULL) 11533 return (0); 11534 11535 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11536 return (0); 11537 11538 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11539 } 11540 11541 /* 11542 * Returns an estimate of the IPsec headers size. This is used if 11543 * we don't want to call into IPsec to get the exact size. 11544 */ 11545 int 11546 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11547 { 11548 ipsec_action_t *a; 11549 11550 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11551 return (0); 11552 11553 a = ixa->ixa_ipsec_action; 11554 if (a == NULL) { 11555 ASSERT(ixa->ixa_ipsec_policy != NULL); 11556 a = ixa->ixa_ipsec_policy->ipsp_act; 11557 } 11558 ASSERT(a != NULL); 11559 11560 return (a->ipa_ovhd); 11561 } 11562 11563 /* 11564 * If there are any source route options, return the true final 11565 * destination. Otherwise, return the destination. 11566 */ 11567 ipaddr_t 11568 ip_get_dst(ipha_t *ipha) 11569 { 11570 ipoptp_t opts; 11571 uchar_t *opt; 11572 uint8_t optval; 11573 uint8_t optlen; 11574 ipaddr_t dst; 11575 uint32_t off; 11576 11577 dst = ipha->ipha_dst; 11578 11579 if (IS_SIMPLE_IPH(ipha)) 11580 return (dst); 11581 11582 for (optval = ipoptp_first(&opts, ipha); 11583 optval != IPOPT_EOL; 11584 optval = ipoptp_next(&opts)) { 11585 opt = opts.ipoptp_cur; 11586 optlen = opts.ipoptp_len; 11587 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11588 switch (optval) { 11589 case IPOPT_SSRR: 11590 case IPOPT_LSRR: 11591 off = opt[IPOPT_OFFSET]; 11592 /* 11593 * If one of the conditions is true, it means 11594 * end of options and dst already has the right 11595 * value. 11596 */ 11597 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11598 off = optlen - IP_ADDR_LEN; 11599 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11600 } 11601 return (dst); 11602 default: 11603 break; 11604 } 11605 } 11606 11607 return (dst); 11608 } 11609 11610 /* 11611 * Outbound IP fragmentation routine. 11612 * Assumes the caller has checked whether or not fragmentation should 11613 * be allowed. Here we copy the DF bit from the header to all the generated 11614 * fragments. 11615 */ 11616 int 11617 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11618 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11619 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11620 { 11621 int i1; 11622 int hdr_len; 11623 mblk_t *hdr_mp; 11624 ipha_t *ipha; 11625 int ip_data_end; 11626 int len; 11627 mblk_t *mp = mp_orig; 11628 int offset; 11629 ill_t *ill = nce->nce_ill; 11630 ip_stack_t *ipst = ill->ill_ipst; 11631 mblk_t *carve_mp; 11632 uint32_t frag_flag; 11633 uint_t priority = mp->b_band; 11634 int error = 0; 11635 11636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11637 11638 if (pkt_len != msgdsize(mp)) { 11639 ip0dbg(("Packet length mismatch: %d, %ld\n", 11640 pkt_len, msgdsize(mp))); 11641 freemsg(mp); 11642 return (EINVAL); 11643 } 11644 11645 if (max_frag == 0) { 11646 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11648 ip_drop_output("FragFails: zero max_frag", mp, ill); 11649 freemsg(mp); 11650 return (EINVAL); 11651 } 11652 11653 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11654 ipha = (ipha_t *)mp->b_rptr; 11655 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11656 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11657 11658 /* 11659 * Establish the starting offset. May not be zero if we are fragging 11660 * a fragment that is being forwarded. 11661 */ 11662 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11663 11664 /* TODO why is this test needed? */ 11665 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11666 /* TODO: notify ulp somehow */ 11667 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11668 ip_drop_output("FragFails: bad starting offset", mp, ill); 11669 freemsg(mp); 11670 return (EINVAL); 11671 } 11672 11673 hdr_len = IPH_HDR_LENGTH(ipha); 11674 ipha->ipha_hdr_checksum = 0; 11675 11676 /* 11677 * Establish the number of bytes maximum per frag, after putting 11678 * in the header. 11679 */ 11680 len = (max_frag - hdr_len) & ~7; 11681 11682 /* Get a copy of the header for the trailing frags */ 11683 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11684 mp); 11685 if (hdr_mp == NULL) { 11686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11687 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11688 freemsg(mp); 11689 return (ENOBUFS); 11690 } 11691 11692 /* Store the starting offset, with the MoreFrags flag. */ 11693 i1 = offset | IPH_MF | frag_flag; 11694 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11695 11696 /* Establish the ending byte offset, based on the starting offset. */ 11697 offset <<= 3; 11698 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11699 11700 /* Store the length of the first fragment in the IP header. */ 11701 i1 = len + hdr_len; 11702 ASSERT(i1 <= IP_MAXPACKET); 11703 ipha->ipha_length = htons((uint16_t)i1); 11704 11705 /* 11706 * Compute the IP header checksum for the first frag. We have to 11707 * watch out that we stop at the end of the header. 11708 */ 11709 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11710 11711 /* 11712 * Now carve off the first frag. Note that this will include the 11713 * original IP header. 11714 */ 11715 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11717 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11718 freeb(hdr_mp); 11719 freemsg(mp_orig); 11720 return (ENOBUFS); 11721 } 11722 11723 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11724 11725 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11726 ixa_cookie); 11727 if (error != 0 && error != EWOULDBLOCK) { 11728 /* No point in sending the other fragments */ 11729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11730 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11731 freeb(hdr_mp); 11732 freemsg(mp_orig); 11733 return (error); 11734 } 11735 11736 /* No need to redo state machine in loop */ 11737 ixaflags &= ~IXAF_REACH_CONF; 11738 11739 /* Advance the offset to the second frag starting point. */ 11740 offset += len; 11741 /* 11742 * Update hdr_len from the copied header - there might be less options 11743 * in the later fragments. 11744 */ 11745 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11746 /* Loop until done. */ 11747 for (;;) { 11748 uint16_t offset_and_flags; 11749 uint16_t ip_len; 11750 11751 if (ip_data_end - offset > len) { 11752 /* 11753 * Carve off the appropriate amount from the original 11754 * datagram. 11755 */ 11756 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11757 mp = NULL; 11758 break; 11759 } 11760 /* 11761 * More frags after this one. Get another copy 11762 * of the header. 11763 */ 11764 if (carve_mp->b_datap->db_ref == 1 && 11765 hdr_mp->b_wptr - hdr_mp->b_rptr < 11766 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11767 /* Inline IP header */ 11768 carve_mp->b_rptr -= hdr_mp->b_wptr - 11769 hdr_mp->b_rptr; 11770 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11771 hdr_mp->b_wptr - hdr_mp->b_rptr); 11772 mp = carve_mp; 11773 } else { 11774 if (!(mp = copyb(hdr_mp))) { 11775 freemsg(carve_mp); 11776 break; 11777 } 11778 /* Get priority marking, if any. */ 11779 mp->b_band = priority; 11780 mp->b_cont = carve_mp; 11781 } 11782 ipha = (ipha_t *)mp->b_rptr; 11783 offset_and_flags = IPH_MF; 11784 } else { 11785 /* 11786 * Last frag. Consume the header. Set len to 11787 * the length of this last piece. 11788 */ 11789 len = ip_data_end - offset; 11790 11791 /* 11792 * Carve off the appropriate amount from the original 11793 * datagram. 11794 */ 11795 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11796 mp = NULL; 11797 break; 11798 } 11799 if (carve_mp->b_datap->db_ref == 1 && 11800 hdr_mp->b_wptr - hdr_mp->b_rptr < 11801 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11802 /* Inline IP header */ 11803 carve_mp->b_rptr -= hdr_mp->b_wptr - 11804 hdr_mp->b_rptr; 11805 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11806 hdr_mp->b_wptr - hdr_mp->b_rptr); 11807 mp = carve_mp; 11808 freeb(hdr_mp); 11809 hdr_mp = mp; 11810 } else { 11811 mp = hdr_mp; 11812 /* Get priority marking, if any. */ 11813 mp->b_band = priority; 11814 mp->b_cont = carve_mp; 11815 } 11816 ipha = (ipha_t *)mp->b_rptr; 11817 /* A frag of a frag might have IPH_MF non-zero */ 11818 offset_and_flags = 11819 ntohs(ipha->ipha_fragment_offset_and_flags) & 11820 IPH_MF; 11821 } 11822 offset_and_flags |= (uint16_t)(offset >> 3); 11823 offset_and_flags |= (uint16_t)frag_flag; 11824 /* Store the offset and flags in the IP header. */ 11825 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11826 11827 /* Store the length in the IP header. */ 11828 ip_len = (uint16_t)(len + hdr_len); 11829 ipha->ipha_length = htons(ip_len); 11830 11831 /* 11832 * Set the IP header checksum. Note that mp is just 11833 * the header, so this is easy to pass to ip_csum. 11834 */ 11835 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11836 11837 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11838 11839 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11840 nolzid, ixa_cookie); 11841 /* All done if we just consumed the hdr_mp. */ 11842 if (mp == hdr_mp) { 11843 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11844 return (error); 11845 } 11846 if (error != 0 && error != EWOULDBLOCK) { 11847 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11848 mblk_t *, hdr_mp); 11849 /* No point in sending the other fragments */ 11850 break; 11851 } 11852 11853 /* Otherwise, advance and loop. */ 11854 offset += len; 11855 } 11856 /* Clean up following allocation failure. */ 11857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11858 ip_drop_output("FragFails: loop ended", NULL, ill); 11859 if (mp != hdr_mp) 11860 freeb(hdr_mp); 11861 if (mp != mp_orig) 11862 freemsg(mp_orig); 11863 return (error); 11864 } 11865 11866 /* 11867 * Copy the header plus those options which have the copy bit set 11868 */ 11869 static mblk_t * 11870 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11871 mblk_t *src) 11872 { 11873 mblk_t *mp; 11874 uchar_t *up; 11875 11876 /* 11877 * Quick check if we need to look for options without the copy bit 11878 * set 11879 */ 11880 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11881 if (!mp) 11882 return (mp); 11883 mp->b_rptr += ipst->ips_ip_wroff_extra; 11884 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11885 bcopy(rptr, mp->b_rptr, hdr_len); 11886 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11887 return (mp); 11888 } 11889 up = mp->b_rptr; 11890 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11891 up += IP_SIMPLE_HDR_LENGTH; 11892 rptr += IP_SIMPLE_HDR_LENGTH; 11893 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11894 while (hdr_len > 0) { 11895 uint32_t optval; 11896 uint32_t optlen; 11897 11898 optval = *rptr; 11899 if (optval == IPOPT_EOL) 11900 break; 11901 if (optval == IPOPT_NOP) 11902 optlen = 1; 11903 else 11904 optlen = rptr[1]; 11905 if (optval & IPOPT_COPY) { 11906 bcopy(rptr, up, optlen); 11907 up += optlen; 11908 } 11909 rptr += optlen; 11910 hdr_len -= optlen; 11911 } 11912 /* 11913 * Make sure that we drop an even number of words by filling 11914 * with EOL to the next word boundary. 11915 */ 11916 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11917 hdr_len & 0x3; hdr_len++) 11918 *up++ = IPOPT_EOL; 11919 mp->b_wptr = up; 11920 /* Update header length */ 11921 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11922 return (mp); 11923 } 11924 11925 /* 11926 * Update any source route, record route, or timestamp options when 11927 * sending a packet back to ourselves. 11928 * Check that we are at end of strict source route. 11929 * The options have been sanity checked by ip_output_options(). 11930 */ 11931 void 11932 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11933 { 11934 ipoptp_t opts; 11935 uchar_t *opt; 11936 uint8_t optval; 11937 uint8_t optlen; 11938 ipaddr_t dst; 11939 uint32_t ts; 11940 timestruc_t now; 11941 11942 for (optval = ipoptp_first(&opts, ipha); 11943 optval != IPOPT_EOL; 11944 optval = ipoptp_next(&opts)) { 11945 opt = opts.ipoptp_cur; 11946 optlen = opts.ipoptp_len; 11947 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11948 switch (optval) { 11949 uint32_t off; 11950 case IPOPT_SSRR: 11951 case IPOPT_LSRR: 11952 off = opt[IPOPT_OFFSET]; 11953 off--; 11954 if (optlen < IP_ADDR_LEN || 11955 off > optlen - IP_ADDR_LEN) { 11956 /* End of source route */ 11957 break; 11958 } 11959 /* 11960 * This will only happen if two consecutive entries 11961 * in the source route contains our address or if 11962 * it is a packet with a loose source route which 11963 * reaches us before consuming the whole source route 11964 */ 11965 11966 if (optval == IPOPT_SSRR) { 11967 return; 11968 } 11969 /* 11970 * Hack: instead of dropping the packet truncate the 11971 * source route to what has been used by filling the 11972 * rest with IPOPT_NOP. 11973 */ 11974 opt[IPOPT_OLEN] = (uint8_t)off; 11975 while (off < optlen) { 11976 opt[off++] = IPOPT_NOP; 11977 } 11978 break; 11979 case IPOPT_RR: 11980 off = opt[IPOPT_OFFSET]; 11981 off--; 11982 if (optlen < IP_ADDR_LEN || 11983 off > optlen - IP_ADDR_LEN) { 11984 /* No more room - ignore */ 11985 ip1dbg(( 11986 "ip_output_local_options: end of RR\n")); 11987 break; 11988 } 11989 dst = htonl(INADDR_LOOPBACK); 11990 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11991 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11992 break; 11993 case IPOPT_TS: 11994 /* Insert timestamp if there is romm */ 11995 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11996 case IPOPT_TS_TSONLY: 11997 off = IPOPT_TS_TIMELEN; 11998 break; 11999 case IPOPT_TS_PRESPEC: 12000 case IPOPT_TS_PRESPEC_RFC791: 12001 /* Verify that the address matched */ 12002 off = opt[IPOPT_OFFSET] - 1; 12003 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12004 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12005 /* Not for us */ 12006 break; 12007 } 12008 /* FALLTHROUGH */ 12009 case IPOPT_TS_TSANDADDR: 12010 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12011 break; 12012 default: 12013 /* 12014 * ip_*put_options should have already 12015 * dropped this packet. 12016 */ 12017 cmn_err(CE_PANIC, "ip_output_local_options: " 12018 "unknown IT - bug in ip_output_options?\n"); 12019 } 12020 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12021 /* Increase overflow counter */ 12022 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12023 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12024 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12025 (off << 4); 12026 break; 12027 } 12028 off = opt[IPOPT_OFFSET] - 1; 12029 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12030 case IPOPT_TS_PRESPEC: 12031 case IPOPT_TS_PRESPEC_RFC791: 12032 case IPOPT_TS_TSANDADDR: 12033 dst = htonl(INADDR_LOOPBACK); 12034 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12035 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12036 /* FALLTHROUGH */ 12037 case IPOPT_TS_TSONLY: 12038 off = opt[IPOPT_OFFSET] - 1; 12039 /* Compute # of milliseconds since midnight */ 12040 gethrestime(&now); 12041 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12042 NSEC2MSEC(now.tv_nsec); 12043 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12044 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12045 break; 12046 } 12047 break; 12048 } 12049 } 12050 } 12051 12052 /* 12053 * Prepend an M_DATA fastpath header, and if none present prepend a 12054 * DL_UNITDATA_REQ. Frees the mblk on failure. 12055 * 12056 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12057 * If there is a change to them, the nce will be deleted (condemned) and 12058 * a new nce_t will be created when packets are sent. Thus we need no locks 12059 * to access those fields. 12060 * 12061 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12062 * we place b_band in dl_priority.dl_max. 12063 */ 12064 static mblk_t * 12065 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12066 { 12067 uint_t hlen; 12068 mblk_t *mp1; 12069 uint_t priority; 12070 uchar_t *rptr; 12071 12072 rptr = mp->b_rptr; 12073 12074 ASSERT(DB_TYPE(mp) == M_DATA); 12075 priority = mp->b_band; 12076 12077 ASSERT(nce != NULL); 12078 if ((mp1 = nce->nce_fp_mp) != NULL) { 12079 hlen = MBLKL(mp1); 12080 /* 12081 * Check if we have enough room to prepend fastpath 12082 * header 12083 */ 12084 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12085 rptr -= hlen; 12086 bcopy(mp1->b_rptr, rptr, hlen); 12087 /* 12088 * Set the b_rptr to the start of the link layer 12089 * header 12090 */ 12091 mp->b_rptr = rptr; 12092 return (mp); 12093 } 12094 mp1 = copyb(mp1); 12095 if (mp1 == NULL) { 12096 ill_t *ill = nce->nce_ill; 12097 12098 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12099 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12100 freemsg(mp); 12101 return (NULL); 12102 } 12103 mp1->b_band = priority; 12104 mp1->b_cont = mp; 12105 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12106 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12107 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12108 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12109 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12110 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12111 /* 12112 * XXX disable ICK_VALID and compute checksum 12113 * here; can happen if nce_fp_mp changes and 12114 * it can't be copied now due to insufficient 12115 * space. (unlikely, fp mp can change, but it 12116 * does not increase in length) 12117 */ 12118 return (mp1); 12119 } 12120 mp1 = copyb(nce->nce_dlur_mp); 12121 12122 if (mp1 == NULL) { 12123 ill_t *ill = nce->nce_ill; 12124 12125 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12126 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12127 freemsg(mp); 12128 return (NULL); 12129 } 12130 mp1->b_cont = mp; 12131 if (priority != 0) { 12132 mp1->b_band = priority; 12133 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12134 priority; 12135 } 12136 return (mp1); 12137 } 12138 12139 /* 12140 * Finish the outbound IPsec processing. This function is called from 12141 * ipsec_out_process() if the IPsec packet was processed 12142 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12143 * asynchronously. 12144 * 12145 * This is common to IPv4 and IPv6. 12146 */ 12147 int 12148 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12149 { 12150 iaflags_t ixaflags = ixa->ixa_flags; 12151 uint_t pktlen; 12152 12153 12154 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12155 if (ixaflags & IXAF_IS_IPV4) { 12156 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12157 12158 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12159 pktlen = ntohs(ipha->ipha_length); 12160 } else { 12161 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12162 12163 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12164 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12165 } 12166 12167 /* 12168 * We release any hard reference on the SAs here to make 12169 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12170 * on the SAs. 12171 * If in the future we want the hard latching of the SAs in the 12172 * ip_xmit_attr_t then we should remove this. 12173 */ 12174 if (ixa->ixa_ipsec_esp_sa != NULL) { 12175 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12176 ixa->ixa_ipsec_esp_sa = NULL; 12177 } 12178 if (ixa->ixa_ipsec_ah_sa != NULL) { 12179 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12180 ixa->ixa_ipsec_ah_sa = NULL; 12181 } 12182 12183 /* Do we need to fragment? */ 12184 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12185 pktlen > ixa->ixa_fragsize) { 12186 if (ixaflags & IXAF_IS_IPV4) { 12187 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12188 /* 12189 * We check for the DF case in ipsec_out_process 12190 * hence this only handles the non-DF case. 12191 */ 12192 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12193 pktlen, ixa->ixa_fragsize, 12194 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12195 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12196 &ixa->ixa_cookie)); 12197 } else { 12198 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12199 if (mp == NULL) { 12200 /* MIB and ip_drop_output already done */ 12201 return (ENOMEM); 12202 } 12203 pktlen += sizeof (ip6_frag_t); 12204 if (pktlen > ixa->ixa_fragsize) { 12205 return (ip_fragment_v6(mp, ixa->ixa_nce, 12206 ixa->ixa_flags, pktlen, 12207 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12208 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12209 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12210 } 12211 } 12212 } 12213 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12214 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12215 ixa->ixa_no_loop_zoneid, NULL)); 12216 } 12217 12218 /* 12219 * Finish the inbound IPsec processing. This function is called from 12220 * ipsec_out_process() if the IPsec packet was processed 12221 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12222 * asynchronously. 12223 * 12224 * This is common to IPv4 and IPv6. 12225 */ 12226 void 12227 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12228 { 12229 iaflags_t iraflags = ira->ira_flags; 12230 12231 /* Length might have changed */ 12232 if (iraflags & IRAF_IS_IPV4) { 12233 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12234 12235 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12236 ira->ira_pktlen = ntohs(ipha->ipha_length); 12237 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12238 ira->ira_protocol = ipha->ipha_protocol; 12239 12240 ip_fanout_v4(mp, ipha, ira); 12241 } else { 12242 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12243 uint8_t *nexthdrp; 12244 12245 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12246 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12247 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12248 &nexthdrp)) { 12249 /* Malformed packet */ 12250 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12251 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12252 freemsg(mp); 12253 return; 12254 } 12255 ira->ira_protocol = *nexthdrp; 12256 ip_fanout_v6(mp, ip6h, ira); 12257 } 12258 } 12259 12260 /* 12261 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12262 * 12263 * If this function returns B_TRUE, the requested SA's have been filled 12264 * into the ixa_ipsec_*_sa pointers. 12265 * 12266 * If the function returns B_FALSE, the packet has been "consumed", most 12267 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12268 * 12269 * The SA references created by the protocol-specific "select" 12270 * function will be released in ip_output_post_ipsec. 12271 */ 12272 static boolean_t 12273 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12274 { 12275 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12276 ipsec_policy_t *pp; 12277 ipsec_action_t *ap; 12278 12279 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12280 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12281 (ixa->ixa_ipsec_action != NULL)); 12282 12283 ap = ixa->ixa_ipsec_action; 12284 if (ap == NULL) { 12285 pp = ixa->ixa_ipsec_policy; 12286 ASSERT(pp != NULL); 12287 ap = pp->ipsp_act; 12288 ASSERT(ap != NULL); 12289 } 12290 12291 /* 12292 * We have an action. now, let's select SA's. 12293 * A side effect of setting ixa_ipsec_*_sa is that it will 12294 * be cached in the conn_t. 12295 */ 12296 if (ap->ipa_want_esp) { 12297 if (ixa->ixa_ipsec_esp_sa == NULL) { 12298 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12299 IPPROTO_ESP); 12300 } 12301 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12302 } 12303 12304 if (ap->ipa_want_ah) { 12305 if (ixa->ixa_ipsec_ah_sa == NULL) { 12306 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12307 IPPROTO_AH); 12308 } 12309 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12310 /* 12311 * The ESP and AH processing order needs to be preserved 12312 * when both protocols are required (ESP should be applied 12313 * before AH for an outbound packet). Force an ESP ACQUIRE 12314 * when both ESP and AH are required, and an AH ACQUIRE 12315 * is needed. 12316 */ 12317 if (ap->ipa_want_esp && need_ah_acquire) 12318 need_esp_acquire = B_TRUE; 12319 } 12320 12321 /* 12322 * Send an ACQUIRE (extended, regular, or both) if we need one. 12323 * Release SAs that got referenced, but will not be used until we 12324 * acquire _all_ of the SAs we need. 12325 */ 12326 if (need_ah_acquire || need_esp_acquire) { 12327 if (ixa->ixa_ipsec_ah_sa != NULL) { 12328 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12329 ixa->ixa_ipsec_ah_sa = NULL; 12330 } 12331 if (ixa->ixa_ipsec_esp_sa != NULL) { 12332 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12333 ixa->ixa_ipsec_esp_sa = NULL; 12334 } 12335 12336 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12337 return (B_FALSE); 12338 } 12339 12340 return (B_TRUE); 12341 } 12342 12343 /* 12344 * Handle IPsec output processing. 12345 * This function is only entered once for a given packet. 12346 * We try to do things synchronously, but if we need to have user-level 12347 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12348 * will be completed 12349 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12350 * - when asynchronous ESP is done it will do AH 12351 * 12352 * In all cases we come back in ip_output_post_ipsec() to fragment and 12353 * send out the packet. 12354 */ 12355 int 12356 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12357 { 12358 ill_t *ill = ixa->ixa_nce->nce_ill; 12359 ip_stack_t *ipst = ixa->ixa_ipst; 12360 ipsec_stack_t *ipss; 12361 ipsec_policy_t *pp; 12362 ipsec_action_t *ap; 12363 12364 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12365 12366 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12367 (ixa->ixa_ipsec_action != NULL)); 12368 12369 ipss = ipst->ips_netstack->netstack_ipsec; 12370 if (!ipsec_loaded(ipss)) { 12371 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12372 ip_drop_packet(mp, B_TRUE, ill, 12373 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12374 &ipss->ipsec_dropper); 12375 return (ENOTSUP); 12376 } 12377 12378 ap = ixa->ixa_ipsec_action; 12379 if (ap == NULL) { 12380 pp = ixa->ixa_ipsec_policy; 12381 ASSERT(pp != NULL); 12382 ap = pp->ipsp_act; 12383 ASSERT(ap != NULL); 12384 } 12385 12386 /* Handle explicit drop action and bypass. */ 12387 switch (ap->ipa_act.ipa_type) { 12388 case IPSEC_ACT_DISCARD: 12389 case IPSEC_ACT_REJECT: 12390 ip_drop_packet(mp, B_FALSE, ill, 12391 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12392 return (EHOSTUNREACH); /* IPsec policy failure */ 12393 case IPSEC_ACT_BYPASS: 12394 return (ip_output_post_ipsec(mp, ixa)); 12395 } 12396 12397 /* 12398 * The order of processing is first insert a IP header if needed. 12399 * Then insert the ESP header and then the AH header. 12400 */ 12401 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12402 /* 12403 * First get the outer IP header before sending 12404 * it to ESP. 12405 */ 12406 ipha_t *oipha, *iipha; 12407 mblk_t *outer_mp, *inner_mp; 12408 12409 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12410 (void) mi_strlog(ill->ill_rq, 0, 12411 SL_ERROR|SL_TRACE|SL_CONSOLE, 12412 "ipsec_out_process: " 12413 "Self-Encapsulation failed: Out of memory\n"); 12414 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12415 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12416 freemsg(mp); 12417 return (ENOBUFS); 12418 } 12419 inner_mp = mp; 12420 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12421 oipha = (ipha_t *)outer_mp->b_rptr; 12422 iipha = (ipha_t *)inner_mp->b_rptr; 12423 *oipha = *iipha; 12424 outer_mp->b_wptr += sizeof (ipha_t); 12425 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12426 sizeof (ipha_t)); 12427 oipha->ipha_protocol = IPPROTO_ENCAP; 12428 oipha->ipha_version_and_hdr_length = 12429 IP_SIMPLE_HDR_VERSION; 12430 oipha->ipha_hdr_checksum = 0; 12431 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12432 outer_mp->b_cont = inner_mp; 12433 mp = outer_mp; 12434 12435 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12436 } 12437 12438 /* If we need to wait for a SA then we can't return any errno */ 12439 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12440 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12441 !ipsec_out_select_sa(mp, ixa)) 12442 return (0); 12443 12444 /* 12445 * By now, we know what SA's to use. Toss over to ESP & AH 12446 * to do the heavy lifting. 12447 */ 12448 if (ap->ipa_want_esp) { 12449 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12450 12451 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12452 if (mp == NULL) { 12453 /* 12454 * Either it failed or is pending. In the former case 12455 * ipIfStatsInDiscards was increased. 12456 */ 12457 return (0); 12458 } 12459 } 12460 12461 if (ap->ipa_want_ah) { 12462 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12463 12464 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12465 if (mp == NULL) { 12466 /* 12467 * Either it failed or is pending. In the former case 12468 * ipIfStatsInDiscards was increased. 12469 */ 12470 return (0); 12471 } 12472 } 12473 /* 12474 * We are done with IPsec processing. Send it over 12475 * the wire. 12476 */ 12477 return (ip_output_post_ipsec(mp, ixa)); 12478 } 12479 12480 /* 12481 * ioctls that go through a down/up sequence may need to wait for the down 12482 * to complete. This involves waiting for the ire and ipif refcnts to go down 12483 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12484 */ 12485 /* ARGSUSED */ 12486 void 12487 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12488 { 12489 struct iocblk *iocp; 12490 mblk_t *mp1; 12491 ip_ioctl_cmd_t *ipip; 12492 int err; 12493 sin_t *sin; 12494 struct lifreq *lifr; 12495 struct ifreq *ifr; 12496 12497 iocp = (struct iocblk *)mp->b_rptr; 12498 ASSERT(ipsq != NULL); 12499 /* Existence of mp1 verified in ip_wput_nondata */ 12500 mp1 = mp->b_cont->b_cont; 12501 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12502 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12503 /* 12504 * Special case where ipx_current_ipif is not set: 12505 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12506 * We are here as were not able to complete the operation in 12507 * ipif_set_values because we could not become exclusive on 12508 * the new ipsq. 12509 */ 12510 ill_t *ill = q->q_ptr; 12511 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12512 } 12513 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12514 12515 if (ipip->ipi_cmd_type == IF_CMD) { 12516 /* This a old style SIOC[GS]IF* command */ 12517 ifr = (struct ifreq *)mp1->b_rptr; 12518 sin = (sin_t *)&ifr->ifr_addr; 12519 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12520 /* This a new style SIOC[GS]LIF* command */ 12521 lifr = (struct lifreq *)mp1->b_rptr; 12522 sin = (sin_t *)&lifr->lifr_addr; 12523 } else { 12524 sin = NULL; 12525 } 12526 12527 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12528 q, mp, ipip, mp1->b_rptr); 12529 12530 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12531 int, ipip->ipi_cmd, 12532 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12533 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12534 12535 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12536 } 12537 12538 /* 12539 * ioctl processing 12540 * 12541 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12542 * the ioctl command in the ioctl tables, determines the copyin data size 12543 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12544 * 12545 * ioctl processing then continues when the M_IOCDATA makes its way down to 12546 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12547 * associated 'conn' is refheld till the end of the ioctl and the general 12548 * ioctl processing function ip_process_ioctl() is called to extract the 12549 * arguments and process the ioctl. To simplify extraction, ioctl commands 12550 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12551 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12552 * is used to extract the ioctl's arguments. 12553 * 12554 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12555 * so goes thru the serialization primitive ipsq_try_enter. Then the 12556 * appropriate function to handle the ioctl is called based on the entry in 12557 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12558 * which also refreleases the 'conn' that was refheld at the start of the 12559 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12560 * 12561 * Many exclusive ioctls go thru an internal down up sequence as part of 12562 * the operation. For example an attempt to change the IP address of an 12563 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12564 * does all the cleanup such as deleting all ires that use this address. 12565 * Then we need to wait till all references to the interface go away. 12566 */ 12567 void 12568 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12569 { 12570 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12571 ip_ioctl_cmd_t *ipip = arg; 12572 ip_extract_func_t *extract_funcp; 12573 cmd_info_t ci; 12574 int err; 12575 boolean_t entered_ipsq = B_FALSE; 12576 12577 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12578 12579 if (ipip == NULL) 12580 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12581 12582 /* 12583 * SIOCLIFADDIF needs to go thru a special path since the 12584 * ill may not exist yet. This happens in the case of lo0 12585 * which is created using this ioctl. 12586 */ 12587 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12588 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12589 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12590 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12591 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12592 return; 12593 } 12594 12595 ci.ci_ipif = NULL; 12596 switch (ipip->ipi_cmd_type) { 12597 case MISC_CMD: 12598 case MSFILT_CMD: 12599 /* 12600 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12601 */ 12602 if (ipip->ipi_cmd == IF_UNITSEL) { 12603 /* ioctl comes down the ill */ 12604 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12605 ipif_refhold(ci.ci_ipif); 12606 } 12607 err = 0; 12608 ci.ci_sin = NULL; 12609 ci.ci_sin6 = NULL; 12610 ci.ci_lifr = NULL; 12611 extract_funcp = NULL; 12612 break; 12613 12614 case IF_CMD: 12615 case LIF_CMD: 12616 extract_funcp = ip_extract_lifreq; 12617 break; 12618 12619 case ARP_CMD: 12620 case XARP_CMD: 12621 extract_funcp = ip_extract_arpreq; 12622 break; 12623 12624 default: 12625 ASSERT(0); 12626 } 12627 12628 if (extract_funcp != NULL) { 12629 err = (*extract_funcp)(q, mp, ipip, &ci); 12630 if (err != 0) { 12631 DTRACE_PROBE4(ipif__ioctl, 12632 char *, "ip_process_ioctl finish err", 12633 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12634 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12635 return; 12636 } 12637 12638 /* 12639 * All of the extraction functions return a refheld ipif. 12640 */ 12641 ASSERT(ci.ci_ipif != NULL); 12642 } 12643 12644 if (!(ipip->ipi_flags & IPI_WR)) { 12645 /* 12646 * A return value of EINPROGRESS means the ioctl is 12647 * either queued and waiting for some reason or has 12648 * already completed. 12649 */ 12650 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12651 ci.ci_lifr); 12652 if (ci.ci_ipif != NULL) { 12653 DTRACE_PROBE4(ipif__ioctl, 12654 char *, "ip_process_ioctl finish RD", 12655 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12656 ipif_t *, ci.ci_ipif); 12657 ipif_refrele(ci.ci_ipif); 12658 } else { 12659 DTRACE_PROBE4(ipif__ioctl, 12660 char *, "ip_process_ioctl finish RD", 12661 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12662 } 12663 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12664 return; 12665 } 12666 12667 ASSERT(ci.ci_ipif != NULL); 12668 12669 /* 12670 * If ipsq is non-NULL, we are already being called exclusively 12671 */ 12672 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12673 if (ipsq == NULL) { 12674 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12675 NEW_OP, B_TRUE); 12676 if (ipsq == NULL) { 12677 ipif_refrele(ci.ci_ipif); 12678 return; 12679 } 12680 entered_ipsq = B_TRUE; 12681 } 12682 /* 12683 * Release the ipif so that ipif_down and friends that wait for 12684 * references to go away are not misled about the current ipif_refcnt 12685 * values. We are writer so we can access the ipif even after releasing 12686 * the ipif. 12687 */ 12688 ipif_refrele(ci.ci_ipif); 12689 12690 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12691 12692 /* 12693 * A return value of EINPROGRESS means the ioctl is 12694 * either queued and waiting for some reason or has 12695 * already completed. 12696 */ 12697 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12698 12699 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12700 int, ipip->ipi_cmd, 12701 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12702 ipif_t *, ci.ci_ipif); 12703 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12704 12705 if (entered_ipsq) 12706 ipsq_exit(ipsq); 12707 } 12708 12709 /* 12710 * Complete the ioctl. Typically ioctls use the mi package and need to 12711 * do mi_copyout/mi_copy_done. 12712 */ 12713 void 12714 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12715 { 12716 conn_t *connp = NULL; 12717 12718 if (err == EINPROGRESS) 12719 return; 12720 12721 if (CONN_Q(q)) { 12722 connp = Q_TO_CONN(q); 12723 ASSERT(connp->conn_ref >= 2); 12724 } 12725 12726 switch (mode) { 12727 case COPYOUT: 12728 if (err == 0) 12729 mi_copyout(q, mp); 12730 else 12731 mi_copy_done(q, mp, err); 12732 break; 12733 12734 case NO_COPYOUT: 12735 mi_copy_done(q, mp, err); 12736 break; 12737 12738 default: 12739 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12740 break; 12741 } 12742 12743 /* 12744 * The conn refhold and ioctlref placed on the conn at the start of the 12745 * ioctl are released here. 12746 */ 12747 if (connp != NULL) { 12748 CONN_DEC_IOCTLREF(connp); 12749 CONN_OPER_PENDING_DONE(connp); 12750 } 12751 12752 if (ipsq != NULL) 12753 ipsq_current_finish(ipsq); 12754 } 12755 12756 /* Handles all non data messages */ 12757 int 12758 ip_wput_nondata(queue_t *q, mblk_t *mp) 12759 { 12760 mblk_t *mp1; 12761 struct iocblk *iocp; 12762 ip_ioctl_cmd_t *ipip; 12763 conn_t *connp; 12764 cred_t *cr; 12765 char *proto_str; 12766 12767 if (CONN_Q(q)) 12768 connp = Q_TO_CONN(q); 12769 else 12770 connp = NULL; 12771 12772 switch (DB_TYPE(mp)) { 12773 case M_IOCTL: 12774 /* 12775 * IOCTL processing begins in ip_sioctl_copyin_setup which 12776 * will arrange to copy in associated control structures. 12777 */ 12778 ip_sioctl_copyin_setup(q, mp); 12779 return (0); 12780 case M_IOCDATA: 12781 /* 12782 * Ensure that this is associated with one of our trans- 12783 * parent ioctls. If it's not ours, discard it if we're 12784 * running as a driver, or pass it on if we're a module. 12785 */ 12786 iocp = (struct iocblk *)mp->b_rptr; 12787 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12788 if (ipip == NULL) { 12789 if (q->q_next == NULL) { 12790 goto nak; 12791 } else { 12792 putnext(q, mp); 12793 } 12794 return (0); 12795 } 12796 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12797 /* 12798 * The ioctl is one we recognise, but is not consumed 12799 * by IP as a module and we are a module, so we drop 12800 */ 12801 goto nak; 12802 } 12803 12804 /* IOCTL continuation following copyin or copyout. */ 12805 if (mi_copy_state(q, mp, NULL) == -1) { 12806 /* 12807 * The copy operation failed. mi_copy_state already 12808 * cleaned up, so we're out of here. 12809 */ 12810 return (0); 12811 } 12812 /* 12813 * If we just completed a copy in, we become writer and 12814 * continue processing in ip_sioctl_copyin_done. If it 12815 * was a copy out, we call mi_copyout again. If there is 12816 * nothing more to copy out, it will complete the IOCTL. 12817 */ 12818 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12819 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12820 mi_copy_done(q, mp, EPROTO); 12821 return (0); 12822 } 12823 /* 12824 * Check for cases that need more copying. A return 12825 * value of 0 means a second copyin has been started, 12826 * so we return; a return value of 1 means no more 12827 * copying is needed, so we continue. 12828 */ 12829 if (ipip->ipi_cmd_type == MSFILT_CMD && 12830 MI_COPY_COUNT(mp) == 1) { 12831 if (ip_copyin_msfilter(q, mp) == 0) 12832 return (0); 12833 } 12834 /* 12835 * Refhold the conn, till the ioctl completes. This is 12836 * needed in case the ioctl ends up in the pending mp 12837 * list. Every mp in the ipx_pending_mp list must have 12838 * a refhold on the conn to resume processing. The 12839 * refhold is released when the ioctl completes 12840 * (whether normally or abnormally). An ioctlref is also 12841 * placed on the conn to prevent TCP from removing the 12842 * queue needed to send the ioctl reply back. 12843 * In all cases ip_ioctl_finish is called to finish 12844 * the ioctl and release the refholds. 12845 */ 12846 if (connp != NULL) { 12847 /* This is not a reentry */ 12848 CONN_INC_REF(connp); 12849 CONN_INC_IOCTLREF(connp); 12850 } else { 12851 if (!(ipip->ipi_flags & IPI_MODOK)) { 12852 mi_copy_done(q, mp, EINVAL); 12853 return (0); 12854 } 12855 } 12856 12857 ip_process_ioctl(NULL, q, mp, ipip); 12858 12859 } else { 12860 mi_copyout(q, mp); 12861 } 12862 return (0); 12863 12864 case M_IOCNAK: 12865 /* 12866 * The only way we could get here is if a resolver didn't like 12867 * an IOCTL we sent it. This shouldn't happen. 12868 */ 12869 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12870 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12871 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12872 freemsg(mp); 12873 return (0); 12874 case M_IOCACK: 12875 /* /dev/ip shouldn't see this */ 12876 goto nak; 12877 case M_FLUSH: 12878 if (*mp->b_rptr & FLUSHW) 12879 flushq(q, FLUSHALL); 12880 if (q->q_next) { 12881 putnext(q, mp); 12882 return (0); 12883 } 12884 if (*mp->b_rptr & FLUSHR) { 12885 *mp->b_rptr &= ~FLUSHW; 12886 qreply(q, mp); 12887 return (0); 12888 } 12889 freemsg(mp); 12890 return (0); 12891 case M_CTL: 12892 break; 12893 case M_PROTO: 12894 case M_PCPROTO: 12895 /* 12896 * The only PROTO messages we expect are SNMP-related. 12897 */ 12898 switch (((union T_primitives *)mp->b_rptr)->type) { 12899 case T_SVR4_OPTMGMT_REQ: 12900 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12901 "flags %x\n", 12902 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12903 12904 if (connp == NULL) { 12905 proto_str = "T_SVR4_OPTMGMT_REQ"; 12906 goto protonak; 12907 } 12908 12909 /* 12910 * All Solaris components should pass a db_credp 12911 * for this TPI message, hence we ASSERT. 12912 * But in case there is some other M_PROTO that looks 12913 * like a TPI message sent by some other kernel 12914 * component, we check and return an error. 12915 */ 12916 cr = msg_getcred(mp, NULL); 12917 ASSERT(cr != NULL); 12918 if (cr == NULL) { 12919 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12920 if (mp != NULL) 12921 qreply(q, mp); 12922 return (0); 12923 } 12924 12925 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12926 proto_str = "Bad SNMPCOM request?"; 12927 goto protonak; 12928 } 12929 return (0); 12930 default: 12931 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12932 (int)*(uint_t *)mp->b_rptr)); 12933 freemsg(mp); 12934 return (0); 12935 } 12936 default: 12937 break; 12938 } 12939 if (q->q_next) { 12940 putnext(q, mp); 12941 } else 12942 freemsg(mp); 12943 return (0); 12944 12945 nak: 12946 iocp->ioc_error = EINVAL; 12947 mp->b_datap->db_type = M_IOCNAK; 12948 iocp->ioc_count = 0; 12949 qreply(q, mp); 12950 return (0); 12951 12952 protonak: 12953 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12954 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12955 qreply(q, mp); 12956 return (0); 12957 } 12958 12959 /* 12960 * Process IP options in an outbound packet. Verify that the nexthop in a 12961 * strict source route is onlink. 12962 * Returns non-zero if something fails in which case an ICMP error has been 12963 * sent and mp freed. 12964 * 12965 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12966 */ 12967 int 12968 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12969 { 12970 ipoptp_t opts; 12971 uchar_t *opt; 12972 uint8_t optval; 12973 uint8_t optlen; 12974 ipaddr_t dst; 12975 intptr_t code = 0; 12976 ire_t *ire; 12977 ip_stack_t *ipst = ixa->ixa_ipst; 12978 ip_recv_attr_t iras; 12979 12980 ip2dbg(("ip_output_options\n")); 12981 12982 dst = ipha->ipha_dst; 12983 for (optval = ipoptp_first(&opts, ipha); 12984 optval != IPOPT_EOL; 12985 optval = ipoptp_next(&opts)) { 12986 opt = opts.ipoptp_cur; 12987 optlen = opts.ipoptp_len; 12988 ip2dbg(("ip_output_options: opt %d, len %d\n", 12989 optval, optlen)); 12990 switch (optval) { 12991 uint32_t off; 12992 case IPOPT_SSRR: 12993 case IPOPT_LSRR: 12994 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12995 ip1dbg(( 12996 "ip_output_options: bad option offset\n")); 12997 code = (char *)&opt[IPOPT_OLEN] - 12998 (char *)ipha; 12999 goto param_prob; 13000 } 13001 off = opt[IPOPT_OFFSET]; 13002 ip1dbg(("ip_output_options: next hop 0x%x\n", 13003 ntohl(dst))); 13004 /* 13005 * For strict: verify that dst is directly 13006 * reachable. 13007 */ 13008 if (optval == IPOPT_SSRR) { 13009 ire = ire_ftable_lookup_v4(dst, 0, 0, 13010 IRE_INTERFACE, NULL, ALL_ZONES, 13011 ixa->ixa_tsl, 13012 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13013 NULL); 13014 if (ire == NULL) { 13015 ip1dbg(("ip_output_options: SSRR not" 13016 " directly reachable: 0x%x\n", 13017 ntohl(dst))); 13018 goto bad_src_route; 13019 } 13020 ire_refrele(ire); 13021 } 13022 break; 13023 case IPOPT_RR: 13024 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13025 ip1dbg(( 13026 "ip_output_options: bad option offset\n")); 13027 code = (char *)&opt[IPOPT_OLEN] - 13028 (char *)ipha; 13029 goto param_prob; 13030 } 13031 break; 13032 case IPOPT_TS: 13033 /* 13034 * Verify that length >=5 and that there is either 13035 * room for another timestamp or that the overflow 13036 * counter is not maxed out. 13037 */ 13038 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13039 if (optlen < IPOPT_MINLEN_IT) { 13040 goto param_prob; 13041 } 13042 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13043 ip1dbg(( 13044 "ip_output_options: bad option offset\n")); 13045 code = (char *)&opt[IPOPT_OFFSET] - 13046 (char *)ipha; 13047 goto param_prob; 13048 } 13049 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13050 case IPOPT_TS_TSONLY: 13051 off = IPOPT_TS_TIMELEN; 13052 break; 13053 case IPOPT_TS_TSANDADDR: 13054 case IPOPT_TS_PRESPEC: 13055 case IPOPT_TS_PRESPEC_RFC791: 13056 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13057 break; 13058 default: 13059 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13060 (char *)ipha; 13061 goto param_prob; 13062 } 13063 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13064 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13065 /* 13066 * No room and the overflow counter is 15 13067 * already. 13068 */ 13069 goto param_prob; 13070 } 13071 break; 13072 } 13073 } 13074 13075 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13076 return (0); 13077 13078 ip1dbg(("ip_output_options: error processing IP options.")); 13079 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13080 13081 param_prob: 13082 bzero(&iras, sizeof (iras)); 13083 iras.ira_ill = iras.ira_rill = ill; 13084 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13085 iras.ira_rifindex = iras.ira_ruifindex; 13086 iras.ira_flags = IRAF_IS_IPV4; 13087 13088 ip_drop_output("ip_output_options", mp, ill); 13089 icmp_param_problem(mp, (uint8_t)code, &iras); 13090 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13091 return (-1); 13092 13093 bad_src_route: 13094 bzero(&iras, sizeof (iras)); 13095 iras.ira_ill = iras.ira_rill = ill; 13096 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13097 iras.ira_rifindex = iras.ira_ruifindex; 13098 iras.ira_flags = IRAF_IS_IPV4; 13099 13100 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13101 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13102 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13103 return (-1); 13104 } 13105 13106 /* 13107 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13108 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13109 * thru /etc/system. 13110 */ 13111 #define CONN_MAXDRAINCNT 64 13112 13113 static void 13114 conn_drain_init(ip_stack_t *ipst) 13115 { 13116 int i, j; 13117 idl_tx_list_t *itl_tx; 13118 13119 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13120 13121 if ((ipst->ips_conn_drain_list_cnt == 0) || 13122 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13123 /* 13124 * Default value of the number of drainers is the 13125 * number of cpus, subject to maximum of 8 drainers. 13126 */ 13127 if (boot_max_ncpus != -1) 13128 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13129 else 13130 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13131 } 13132 13133 ipst->ips_idl_tx_list = 13134 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13135 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13136 itl_tx = &ipst->ips_idl_tx_list[i]; 13137 itl_tx->txl_drain_list = 13138 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13139 sizeof (idl_t), KM_SLEEP); 13140 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13141 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13142 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13143 MUTEX_DEFAULT, NULL); 13144 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13145 } 13146 } 13147 } 13148 13149 static void 13150 conn_drain_fini(ip_stack_t *ipst) 13151 { 13152 int i; 13153 idl_tx_list_t *itl_tx; 13154 13155 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13156 itl_tx = &ipst->ips_idl_tx_list[i]; 13157 kmem_free(itl_tx->txl_drain_list, 13158 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13159 } 13160 kmem_free(ipst->ips_idl_tx_list, 13161 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13162 ipst->ips_idl_tx_list = NULL; 13163 } 13164 13165 /* 13166 * Flow control has blocked us from proceeding. Insert the given conn in one 13167 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13168 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13169 * will call conn_walk_drain(). See the flow control notes at the top of this 13170 * file for more details. 13171 */ 13172 void 13173 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13174 { 13175 idl_t *idl = tx_list->txl_drain_list; 13176 uint_t index; 13177 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13178 13179 mutex_enter(&connp->conn_lock); 13180 if (connp->conn_state_flags & CONN_CLOSING) { 13181 /* 13182 * The conn is closing as a result of which CONN_CLOSING 13183 * is set. Return. 13184 */ 13185 mutex_exit(&connp->conn_lock); 13186 return; 13187 } else if (connp->conn_idl == NULL) { 13188 /* 13189 * Assign the next drain list round robin. We dont' use 13190 * a lock, and thus it may not be strictly round robin. 13191 * Atomicity of load/stores is enough to make sure that 13192 * conn_drain_list_index is always within bounds. 13193 */ 13194 index = tx_list->txl_drain_index; 13195 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13196 connp->conn_idl = &tx_list->txl_drain_list[index]; 13197 index++; 13198 if (index == ipst->ips_conn_drain_list_cnt) 13199 index = 0; 13200 tx_list->txl_drain_index = index; 13201 } else { 13202 ASSERT(connp->conn_idl->idl_itl == tx_list); 13203 } 13204 mutex_exit(&connp->conn_lock); 13205 13206 idl = connp->conn_idl; 13207 mutex_enter(&idl->idl_lock); 13208 if ((connp->conn_drain_prev != NULL) || 13209 (connp->conn_state_flags & CONN_CLOSING)) { 13210 /* 13211 * The conn is either already in the drain list or closing. 13212 * (We needed to check for CONN_CLOSING again since close can 13213 * sneak in between dropping conn_lock and acquiring idl_lock.) 13214 */ 13215 mutex_exit(&idl->idl_lock); 13216 return; 13217 } 13218 13219 /* 13220 * The conn is not in the drain list. Insert it at the 13221 * tail of the drain list. The drain list is circular 13222 * and doubly linked. idl_conn points to the 1st element 13223 * in the list. 13224 */ 13225 if (idl->idl_conn == NULL) { 13226 idl->idl_conn = connp; 13227 connp->conn_drain_next = connp; 13228 connp->conn_drain_prev = connp; 13229 } else { 13230 conn_t *head = idl->idl_conn; 13231 13232 connp->conn_drain_next = head; 13233 connp->conn_drain_prev = head->conn_drain_prev; 13234 head->conn_drain_prev->conn_drain_next = connp; 13235 head->conn_drain_prev = connp; 13236 } 13237 /* 13238 * For non streams based sockets assert flow control. 13239 */ 13240 conn_setqfull(connp, NULL); 13241 mutex_exit(&idl->idl_lock); 13242 } 13243 13244 static void 13245 conn_drain_remove(conn_t *connp) 13246 { 13247 idl_t *idl = connp->conn_idl; 13248 13249 if (idl != NULL) { 13250 /* 13251 * Remove ourself from the drain list. 13252 */ 13253 if (connp->conn_drain_next == connp) { 13254 /* Singleton in the list */ 13255 ASSERT(connp->conn_drain_prev == connp); 13256 idl->idl_conn = NULL; 13257 } else { 13258 connp->conn_drain_prev->conn_drain_next = 13259 connp->conn_drain_next; 13260 connp->conn_drain_next->conn_drain_prev = 13261 connp->conn_drain_prev; 13262 if (idl->idl_conn == connp) 13263 idl->idl_conn = connp->conn_drain_next; 13264 } 13265 13266 /* 13267 * NOTE: because conn_idl is associated with a specific drain 13268 * list which in turn is tied to the index the TX ring 13269 * (txl_cookie) hashes to, and because the TX ring can change 13270 * over the lifetime of the conn_t, we must clear conn_idl so 13271 * a subsequent conn_drain_insert() will set conn_idl again 13272 * based on the latest txl_cookie. 13273 */ 13274 connp->conn_idl = NULL; 13275 } 13276 connp->conn_drain_next = NULL; 13277 connp->conn_drain_prev = NULL; 13278 13279 conn_clrqfull(connp, NULL); 13280 /* 13281 * For streams based sockets open up flow control. 13282 */ 13283 if (!IPCL_IS_NONSTR(connp)) 13284 enableok(connp->conn_wq); 13285 } 13286 13287 /* 13288 * This conn is closing, and we are called from ip_close. OR 13289 * this conn is draining because flow-control on the ill has been relieved. 13290 * 13291 * We must also need to remove conn's on this idl from the list, and also 13292 * inform the sockfs upcalls about the change in flow-control. 13293 */ 13294 static void 13295 conn_drain(conn_t *connp, boolean_t closing) 13296 { 13297 idl_t *idl; 13298 conn_t *next_connp; 13299 13300 /* 13301 * connp->conn_idl is stable at this point, and no lock is needed 13302 * to check it. If we are called from ip_close, close has already 13303 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13304 * called us only because conn_idl is non-null. If we are called thru 13305 * service, conn_idl could be null, but it cannot change because 13306 * service is single-threaded per queue, and there cannot be another 13307 * instance of service trying to call conn_drain_insert on this conn 13308 * now. 13309 */ 13310 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13311 13312 /* 13313 * If the conn doesn't exist or is not on a drain list, bail. 13314 */ 13315 if (connp == NULL || connp->conn_idl == NULL || 13316 connp->conn_drain_prev == NULL) { 13317 return; 13318 } 13319 13320 idl = connp->conn_idl; 13321 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13322 13323 if (!closing) { 13324 next_connp = connp->conn_drain_next; 13325 while (next_connp != connp) { 13326 conn_t *delconnp = next_connp; 13327 13328 next_connp = next_connp->conn_drain_next; 13329 conn_drain_remove(delconnp); 13330 } 13331 ASSERT(connp->conn_drain_next == idl->idl_conn); 13332 } 13333 conn_drain_remove(connp); 13334 } 13335 13336 /* 13337 * Write service routine. Shared perimeter entry point. 13338 * The device queue's messages has fallen below the low water mark and STREAMS 13339 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13340 * each waiting conn. 13341 */ 13342 int 13343 ip_wsrv(queue_t *q) 13344 { 13345 ill_t *ill; 13346 13347 ill = (ill_t *)q->q_ptr; 13348 if (ill->ill_state_flags == 0) { 13349 ip_stack_t *ipst = ill->ill_ipst; 13350 13351 /* 13352 * The device flow control has opened up. 13353 * Walk through conn drain lists and qenable the 13354 * first conn in each list. This makes sense only 13355 * if the stream is fully plumbed and setup. 13356 * Hence the ill_state_flags check above. 13357 */ 13358 ip1dbg(("ip_wsrv: walking\n")); 13359 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13360 enableok(ill->ill_wq); 13361 } 13362 return (0); 13363 } 13364 13365 /* 13366 * Callback to disable flow control in IP. 13367 * 13368 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13369 * is enabled. 13370 * 13371 * When MAC_TX() is not able to send any more packets, dld sets its queue 13372 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13373 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13374 * function and wakes up corresponding mac worker threads, which in turn 13375 * calls this callback function, and disables flow control. 13376 */ 13377 void 13378 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13379 { 13380 ill_t *ill = (ill_t *)arg; 13381 ip_stack_t *ipst = ill->ill_ipst; 13382 idl_tx_list_t *idl_txl; 13383 13384 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13385 mutex_enter(&idl_txl->txl_lock); 13386 /* add code to to set a flag to indicate idl_txl is enabled */ 13387 conn_walk_drain(ipst, idl_txl); 13388 mutex_exit(&idl_txl->txl_lock); 13389 } 13390 13391 /* 13392 * Flow control has been relieved and STREAMS has backenabled us; drain 13393 * all the conn lists on `tx_list'. 13394 */ 13395 static void 13396 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13397 { 13398 int i; 13399 idl_t *idl; 13400 13401 IP_STAT(ipst, ip_conn_walk_drain); 13402 13403 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13404 idl = &tx_list->txl_drain_list[i]; 13405 mutex_enter(&idl->idl_lock); 13406 conn_drain(idl->idl_conn, B_FALSE); 13407 mutex_exit(&idl->idl_lock); 13408 } 13409 } 13410 13411 /* 13412 * Determine if the ill and multicast aspects of that packets 13413 * "matches" the conn. 13414 */ 13415 boolean_t 13416 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13417 { 13418 ill_t *ill = ira->ira_rill; 13419 zoneid_t zoneid = ira->ira_zoneid; 13420 uint_t in_ifindex; 13421 ipaddr_t dst, src; 13422 13423 dst = ipha->ipha_dst; 13424 src = ipha->ipha_src; 13425 13426 /* 13427 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13428 * unicast, broadcast and multicast reception to 13429 * conn_incoming_ifindex. 13430 * conn_wantpacket is called for unicast, broadcast and 13431 * multicast packets. 13432 */ 13433 in_ifindex = connp->conn_incoming_ifindex; 13434 13435 /* mpathd can bind to the under IPMP interface, which we allow */ 13436 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13437 if (!IS_UNDER_IPMP(ill)) 13438 return (B_FALSE); 13439 13440 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13441 return (B_FALSE); 13442 } 13443 13444 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13445 return (B_FALSE); 13446 13447 if (!(ira->ira_flags & IRAF_MULTICAST)) 13448 return (B_TRUE); 13449 13450 if (connp->conn_multi_router) { 13451 /* multicast packet and multicast router socket: send up */ 13452 return (B_TRUE); 13453 } 13454 13455 if (ipha->ipha_protocol == IPPROTO_PIM || 13456 ipha->ipha_protocol == IPPROTO_RSVP) 13457 return (B_TRUE); 13458 13459 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13460 } 13461 13462 void 13463 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13464 { 13465 if (IPCL_IS_NONSTR(connp)) { 13466 (*connp->conn_upcalls->su_txq_full) 13467 (connp->conn_upper_handle, B_TRUE); 13468 if (flow_stopped != NULL) 13469 *flow_stopped = B_TRUE; 13470 } else { 13471 queue_t *q = connp->conn_wq; 13472 13473 ASSERT(q != NULL); 13474 if (!(q->q_flag & QFULL)) { 13475 mutex_enter(QLOCK(q)); 13476 if (!(q->q_flag & QFULL)) { 13477 /* still need to set QFULL */ 13478 q->q_flag |= QFULL; 13479 /* set flow_stopped to true under QLOCK */ 13480 if (flow_stopped != NULL) 13481 *flow_stopped = B_TRUE; 13482 mutex_exit(QLOCK(q)); 13483 } else { 13484 /* flow_stopped is left unchanged */ 13485 mutex_exit(QLOCK(q)); 13486 } 13487 } 13488 } 13489 } 13490 13491 void 13492 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13493 { 13494 if (IPCL_IS_NONSTR(connp)) { 13495 (*connp->conn_upcalls->su_txq_full) 13496 (connp->conn_upper_handle, B_FALSE); 13497 if (flow_stopped != NULL) 13498 *flow_stopped = B_FALSE; 13499 } else { 13500 queue_t *q = connp->conn_wq; 13501 13502 ASSERT(q != NULL); 13503 if (q->q_flag & QFULL) { 13504 mutex_enter(QLOCK(q)); 13505 if (q->q_flag & QFULL) { 13506 q->q_flag &= ~QFULL; 13507 /* set flow_stopped to false under QLOCK */ 13508 if (flow_stopped != NULL) 13509 *flow_stopped = B_FALSE; 13510 mutex_exit(QLOCK(q)); 13511 if (q->q_flag & QWANTW) 13512 qbackenable(q, 0); 13513 } else { 13514 /* flow_stopped is left unchanged */ 13515 mutex_exit(QLOCK(q)); 13516 } 13517 } 13518 } 13519 13520 mutex_enter(&connp->conn_lock); 13521 connp->conn_blocked = B_FALSE; 13522 mutex_exit(&connp->conn_lock); 13523 } 13524 13525 /* 13526 * Return the length in bytes of the IPv4 headers (base header, label, and 13527 * other IP options) that will be needed based on the 13528 * ip_pkt_t structure passed by the caller. 13529 * 13530 * The returned length does not include the length of the upper level 13531 * protocol (ULP) header. 13532 * The caller needs to check that the length doesn't exceed the max for IPv4. 13533 */ 13534 int 13535 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13536 { 13537 int len; 13538 13539 len = IP_SIMPLE_HDR_LENGTH; 13540 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13541 ASSERT(ipp->ipp_label_len_v4 != 0); 13542 /* We need to round up here */ 13543 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13544 } 13545 13546 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13547 ASSERT(ipp->ipp_ipv4_options_len != 0); 13548 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13549 len += ipp->ipp_ipv4_options_len; 13550 } 13551 return (len); 13552 } 13553 13554 /* 13555 * All-purpose routine to build an IPv4 header with options based 13556 * on the abstract ip_pkt_t. 13557 * 13558 * The caller has to set the source and destination address as well as 13559 * ipha_length. The caller has to massage any source route and compensate 13560 * for the ULP pseudo-header checksum due to the source route. 13561 */ 13562 void 13563 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13564 uint8_t protocol) 13565 { 13566 ipha_t *ipha = (ipha_t *)buf; 13567 uint8_t *cp; 13568 13569 /* Initialize IPv4 header */ 13570 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13571 ipha->ipha_length = 0; /* Caller will set later */ 13572 ipha->ipha_ident = 0; 13573 ipha->ipha_fragment_offset_and_flags = 0; 13574 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13575 ipha->ipha_protocol = protocol; 13576 ipha->ipha_hdr_checksum = 0; 13577 13578 if ((ipp->ipp_fields & IPPF_ADDR) && 13579 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13580 ipha->ipha_src = ipp->ipp_addr_v4; 13581 13582 cp = (uint8_t *)&ipha[1]; 13583 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13584 ASSERT(ipp->ipp_label_len_v4 != 0); 13585 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13586 cp += ipp->ipp_label_len_v4; 13587 /* We need to round up here */ 13588 while ((uintptr_t)cp & 0x3) { 13589 *cp++ = IPOPT_NOP; 13590 } 13591 } 13592 13593 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13594 ASSERT(ipp->ipp_ipv4_options_len != 0); 13595 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13596 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13597 cp += ipp->ipp_ipv4_options_len; 13598 } 13599 ipha->ipha_version_and_hdr_length = 13600 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13601 13602 ASSERT((int)(cp - buf) == buf_len); 13603 } 13604 13605 /* Allocate the private structure */ 13606 static int 13607 ip_priv_alloc(void **bufp) 13608 { 13609 void *buf; 13610 13611 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13612 return (ENOMEM); 13613 13614 *bufp = buf; 13615 return (0); 13616 } 13617 13618 /* Function to delete the private structure */ 13619 void 13620 ip_priv_free(void *buf) 13621 { 13622 ASSERT(buf != NULL); 13623 kmem_free(buf, sizeof (ip_priv_t)); 13624 } 13625 13626 /* 13627 * The entry point for IPPF processing. 13628 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13629 * routine just returns. 13630 * 13631 * When called, ip_process generates an ipp_packet_t structure 13632 * which holds the state information for this packet and invokes the 13633 * the classifier (via ipp_packet_process). The classification, depending on 13634 * configured filters, results in a list of actions for this packet. Invoking 13635 * an action may cause the packet to be dropped, in which case we return NULL. 13636 * proc indicates the callout position for 13637 * this packet and ill is the interface this packet arrived on or will leave 13638 * on (inbound and outbound resp.). 13639 * 13640 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13641 * on the ill corrsponding to the destination IP address. 13642 */ 13643 mblk_t * 13644 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13645 { 13646 ip_priv_t *priv; 13647 ipp_action_id_t aid; 13648 int rc = 0; 13649 ipp_packet_t *pp; 13650 13651 /* If the classifier is not loaded, return */ 13652 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13653 return (mp); 13654 } 13655 13656 ASSERT(mp != NULL); 13657 13658 /* Allocate the packet structure */ 13659 rc = ipp_packet_alloc(&pp, "ip", aid); 13660 if (rc != 0) 13661 goto drop; 13662 13663 /* Allocate the private structure */ 13664 rc = ip_priv_alloc((void **)&priv); 13665 if (rc != 0) { 13666 ipp_packet_free(pp); 13667 goto drop; 13668 } 13669 priv->proc = proc; 13670 priv->ill_index = ill_get_upper_ifindex(rill); 13671 13672 ipp_packet_set_private(pp, priv, ip_priv_free); 13673 ipp_packet_set_data(pp, mp); 13674 13675 /* Invoke the classifier */ 13676 rc = ipp_packet_process(&pp); 13677 if (pp != NULL) { 13678 mp = ipp_packet_get_data(pp); 13679 ipp_packet_free(pp); 13680 if (rc != 0) 13681 goto drop; 13682 return (mp); 13683 } else { 13684 /* No mp to trace in ip_drop_input/ip_drop_output */ 13685 mp = NULL; 13686 } 13687 drop: 13688 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13689 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13690 ip_drop_input("ip_process", mp, ill); 13691 } else { 13692 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13693 ip_drop_output("ip_process", mp, ill); 13694 } 13695 freemsg(mp); 13696 return (NULL); 13697 } 13698 13699 /* 13700 * Propagate a multicast group membership operation (add/drop) on 13701 * all the interfaces crossed by the related multirt routes. 13702 * The call is considered successful if the operation succeeds 13703 * on at least one interface. 13704 * 13705 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13706 * multicast addresses with the ire argument being the first one. 13707 * We walk the bucket to find all the of those. 13708 * 13709 * Common to IPv4 and IPv6. 13710 */ 13711 static int 13712 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13713 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13714 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13715 mcast_record_t fmode, const in6_addr_t *v6src) 13716 { 13717 ire_t *ire_gw; 13718 irb_t *irb; 13719 int ifindex; 13720 int error = 0; 13721 int result; 13722 ip_stack_t *ipst = ire->ire_ipst; 13723 ipaddr_t group; 13724 boolean_t isv6; 13725 int match_flags; 13726 13727 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13728 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13729 isv6 = B_FALSE; 13730 } else { 13731 isv6 = B_TRUE; 13732 } 13733 13734 irb = ire->ire_bucket; 13735 ASSERT(irb != NULL); 13736 13737 result = 0; 13738 irb_refhold(irb); 13739 for (; ire != NULL; ire = ire->ire_next) { 13740 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13741 continue; 13742 13743 /* We handle -ifp routes by matching on the ill if set */ 13744 match_flags = MATCH_IRE_TYPE; 13745 if (ire->ire_ill != NULL) 13746 match_flags |= MATCH_IRE_ILL; 13747 13748 if (isv6) { 13749 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13750 continue; 13751 13752 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13753 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13754 match_flags, 0, ipst, NULL); 13755 } else { 13756 if (ire->ire_addr != group) 13757 continue; 13758 13759 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13760 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13761 match_flags, 0, ipst, NULL); 13762 } 13763 /* No interface route exists for the gateway; skip this ire. */ 13764 if (ire_gw == NULL) 13765 continue; 13766 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13767 ire_refrele(ire_gw); 13768 continue; 13769 } 13770 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13771 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13772 13773 /* 13774 * The operation is considered a success if 13775 * it succeeds at least once on any one interface. 13776 */ 13777 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13778 fmode, v6src); 13779 if (error == 0) 13780 result = CGTP_MCAST_SUCCESS; 13781 13782 ire_refrele(ire_gw); 13783 } 13784 irb_refrele(irb); 13785 /* 13786 * Consider the call as successful if we succeeded on at least 13787 * one interface. Otherwise, return the last encountered error. 13788 */ 13789 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13790 } 13791 13792 /* 13793 * Return the expected CGTP hooks version number. 13794 */ 13795 int 13796 ip_cgtp_filter_supported(void) 13797 { 13798 return (ip_cgtp_filter_rev); 13799 } 13800 13801 /* 13802 * CGTP hooks can be registered by invoking this function. 13803 * Checks that the version number matches. 13804 */ 13805 int 13806 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13807 { 13808 netstack_t *ns; 13809 ip_stack_t *ipst; 13810 13811 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13812 return (ENOTSUP); 13813 13814 ns = netstack_find_by_stackid(stackid); 13815 if (ns == NULL) 13816 return (EINVAL); 13817 ipst = ns->netstack_ip; 13818 ASSERT(ipst != NULL); 13819 13820 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13821 netstack_rele(ns); 13822 return (EALREADY); 13823 } 13824 13825 ipst->ips_ip_cgtp_filter_ops = ops; 13826 13827 ill_set_inputfn_all(ipst); 13828 13829 netstack_rele(ns); 13830 return (0); 13831 } 13832 13833 /* 13834 * CGTP hooks can be unregistered by invoking this function. 13835 * Returns ENXIO if there was no registration. 13836 * Returns EBUSY if the ndd variable has not been turned off. 13837 */ 13838 int 13839 ip_cgtp_filter_unregister(netstackid_t stackid) 13840 { 13841 netstack_t *ns; 13842 ip_stack_t *ipst; 13843 13844 ns = netstack_find_by_stackid(stackid); 13845 if (ns == NULL) 13846 return (EINVAL); 13847 ipst = ns->netstack_ip; 13848 ASSERT(ipst != NULL); 13849 13850 if (ipst->ips_ip_cgtp_filter) { 13851 netstack_rele(ns); 13852 return (EBUSY); 13853 } 13854 13855 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13856 netstack_rele(ns); 13857 return (ENXIO); 13858 } 13859 ipst->ips_ip_cgtp_filter_ops = NULL; 13860 13861 ill_set_inputfn_all(ipst); 13862 13863 netstack_rele(ns); 13864 return (0); 13865 } 13866 13867 /* 13868 * Check whether there is a CGTP filter registration. 13869 * Returns non-zero if there is a registration, otherwise returns zero. 13870 * Note: returns zero if bad stackid. 13871 */ 13872 int 13873 ip_cgtp_filter_is_registered(netstackid_t stackid) 13874 { 13875 netstack_t *ns; 13876 ip_stack_t *ipst; 13877 int ret; 13878 13879 ns = netstack_find_by_stackid(stackid); 13880 if (ns == NULL) 13881 return (0); 13882 ipst = ns->netstack_ip; 13883 ASSERT(ipst != NULL); 13884 13885 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13886 ret = 1; 13887 else 13888 ret = 0; 13889 13890 netstack_rele(ns); 13891 return (ret); 13892 } 13893 13894 static int 13895 ip_squeue_switch(int val) 13896 { 13897 int rval; 13898 13899 switch (val) { 13900 case IP_SQUEUE_ENTER_NODRAIN: 13901 rval = SQ_NODRAIN; 13902 break; 13903 case IP_SQUEUE_ENTER: 13904 rval = SQ_PROCESS; 13905 break; 13906 case IP_SQUEUE_FILL: 13907 default: 13908 rval = SQ_FILL; 13909 break; 13910 } 13911 return (rval); 13912 } 13913 13914 static void * 13915 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13916 { 13917 kstat_t *ksp; 13918 13919 ip_stat_t template = { 13920 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13921 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13922 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13923 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13924 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13925 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13926 { "ip_opt", KSTAT_DATA_UINT64 }, 13927 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13928 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13929 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13930 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13931 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13932 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13933 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13934 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13935 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13936 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13937 { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 }, 13938 { "ip_nce_mcast_reclaim_deleted", KSTAT_DATA_UINT64 }, 13939 { "ip_nce_mcast_reclaim_tqfail", KSTAT_DATA_UINT64 }, 13940 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13941 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13942 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13943 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13944 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13945 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13946 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13947 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13948 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13949 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13950 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13951 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13952 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13953 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13954 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13955 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13956 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13957 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13958 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13959 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13960 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13961 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13962 }; 13963 13964 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13965 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13966 KSTAT_FLAG_VIRTUAL, stackid); 13967 13968 if (ksp == NULL) 13969 return (NULL); 13970 13971 bcopy(&template, ip_statisticsp, sizeof (template)); 13972 ksp->ks_data = (void *)ip_statisticsp; 13973 ksp->ks_private = (void *)(uintptr_t)stackid; 13974 13975 kstat_install(ksp); 13976 return (ksp); 13977 } 13978 13979 static void 13980 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13981 { 13982 if (ksp != NULL) { 13983 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13984 kstat_delete_netstack(ksp, stackid); 13985 } 13986 } 13987 13988 static void * 13989 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13990 { 13991 kstat_t *ksp; 13992 13993 ip_named_kstat_t template = { 13994 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13995 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13996 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13997 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13998 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13999 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14000 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14001 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14002 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14003 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14004 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14005 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14006 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14007 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14008 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14009 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14010 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14011 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14012 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14013 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14014 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14015 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14016 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14017 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14018 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14019 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14020 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14021 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14022 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14023 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14024 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14025 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14026 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14027 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14028 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14029 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14030 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14031 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14032 }; 14033 14034 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14035 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14036 if (ksp == NULL || ksp->ks_data == NULL) 14037 return (NULL); 14038 14039 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14040 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14041 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14042 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14043 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14044 14045 template.netToMediaEntrySize.value.i32 = 14046 sizeof (mib2_ipNetToMediaEntry_t); 14047 14048 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14049 14050 bcopy(&template, ksp->ks_data, sizeof (template)); 14051 ksp->ks_update = ip_kstat_update; 14052 ksp->ks_private = (void *)(uintptr_t)stackid; 14053 14054 kstat_install(ksp); 14055 return (ksp); 14056 } 14057 14058 static void 14059 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14060 { 14061 if (ksp != NULL) { 14062 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14063 kstat_delete_netstack(ksp, stackid); 14064 } 14065 } 14066 14067 static int 14068 ip_kstat_update(kstat_t *kp, int rw) 14069 { 14070 ip_named_kstat_t *ipkp; 14071 mib2_ipIfStatsEntry_t ipmib; 14072 ill_walk_context_t ctx; 14073 ill_t *ill; 14074 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14075 netstack_t *ns; 14076 ip_stack_t *ipst; 14077 14078 if (kp->ks_data == NULL) 14079 return (EIO); 14080 14081 if (rw == KSTAT_WRITE) 14082 return (EACCES); 14083 14084 ns = netstack_find_by_stackid(stackid); 14085 if (ns == NULL) 14086 return (-1); 14087 ipst = ns->netstack_ip; 14088 if (ipst == NULL) { 14089 netstack_rele(ns); 14090 return (-1); 14091 } 14092 ipkp = (ip_named_kstat_t *)kp->ks_data; 14093 14094 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14095 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14096 ill = ILL_START_WALK_V4(&ctx, ipst); 14097 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14098 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14099 rw_exit(&ipst->ips_ill_g_lock); 14100 14101 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14102 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14103 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14104 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14105 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14106 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14107 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14108 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14109 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14110 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14111 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14112 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14113 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14114 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14115 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14116 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14117 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14118 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14119 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14120 14121 ipkp->routingDiscards.value.ui32 = 0; 14122 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14123 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14124 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14125 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14126 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14127 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14128 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14129 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14130 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14131 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14132 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14133 14134 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14135 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14136 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14137 14138 netstack_rele(ns); 14139 14140 return (0); 14141 } 14142 14143 static void * 14144 icmp_kstat_init(netstackid_t stackid) 14145 { 14146 kstat_t *ksp; 14147 14148 icmp_named_kstat_t template = { 14149 { "inMsgs", KSTAT_DATA_UINT32 }, 14150 { "inErrors", KSTAT_DATA_UINT32 }, 14151 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14152 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14153 { "inParmProbs", KSTAT_DATA_UINT32 }, 14154 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14155 { "inRedirects", KSTAT_DATA_UINT32 }, 14156 { "inEchos", KSTAT_DATA_UINT32 }, 14157 { "inEchoReps", KSTAT_DATA_UINT32 }, 14158 { "inTimestamps", KSTAT_DATA_UINT32 }, 14159 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14160 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14161 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14162 { "outMsgs", KSTAT_DATA_UINT32 }, 14163 { "outErrors", KSTAT_DATA_UINT32 }, 14164 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14165 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14166 { "outParmProbs", KSTAT_DATA_UINT32 }, 14167 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14168 { "outRedirects", KSTAT_DATA_UINT32 }, 14169 { "outEchos", KSTAT_DATA_UINT32 }, 14170 { "outEchoReps", KSTAT_DATA_UINT32 }, 14171 { "outTimestamps", KSTAT_DATA_UINT32 }, 14172 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14173 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14174 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14175 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14176 { "inUnknowns", KSTAT_DATA_UINT32 }, 14177 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14178 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14179 { "outDrops", KSTAT_DATA_UINT32 }, 14180 { "inOverFlows", KSTAT_DATA_UINT32 }, 14181 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14182 }; 14183 14184 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14185 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14186 if (ksp == NULL || ksp->ks_data == NULL) 14187 return (NULL); 14188 14189 bcopy(&template, ksp->ks_data, sizeof (template)); 14190 14191 ksp->ks_update = icmp_kstat_update; 14192 ksp->ks_private = (void *)(uintptr_t)stackid; 14193 14194 kstat_install(ksp); 14195 return (ksp); 14196 } 14197 14198 static void 14199 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14200 { 14201 if (ksp != NULL) { 14202 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14203 kstat_delete_netstack(ksp, stackid); 14204 } 14205 } 14206 14207 static int 14208 icmp_kstat_update(kstat_t *kp, int rw) 14209 { 14210 icmp_named_kstat_t *icmpkp; 14211 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14212 netstack_t *ns; 14213 ip_stack_t *ipst; 14214 14215 if (kp->ks_data == NULL) 14216 return (EIO); 14217 14218 if (rw == KSTAT_WRITE) 14219 return (EACCES); 14220 14221 ns = netstack_find_by_stackid(stackid); 14222 if (ns == NULL) 14223 return (-1); 14224 ipst = ns->netstack_ip; 14225 if (ipst == NULL) { 14226 netstack_rele(ns); 14227 return (-1); 14228 } 14229 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14230 14231 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14232 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14233 icmpkp->inDestUnreachs.value.ui32 = 14234 ipst->ips_icmp_mib.icmpInDestUnreachs; 14235 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14236 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14237 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14238 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14239 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14240 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14241 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14242 icmpkp->inTimestampReps.value.ui32 = 14243 ipst->ips_icmp_mib.icmpInTimestampReps; 14244 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14245 icmpkp->inAddrMaskReps.value.ui32 = 14246 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14247 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14248 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14249 icmpkp->outDestUnreachs.value.ui32 = 14250 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14251 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14252 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14253 icmpkp->outSrcQuenchs.value.ui32 = 14254 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14255 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14256 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14257 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14258 icmpkp->outTimestamps.value.ui32 = 14259 ipst->ips_icmp_mib.icmpOutTimestamps; 14260 icmpkp->outTimestampReps.value.ui32 = 14261 ipst->ips_icmp_mib.icmpOutTimestampReps; 14262 icmpkp->outAddrMasks.value.ui32 = 14263 ipst->ips_icmp_mib.icmpOutAddrMasks; 14264 icmpkp->outAddrMaskReps.value.ui32 = 14265 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14266 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14267 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14268 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14269 icmpkp->outFragNeeded.value.ui32 = 14270 ipst->ips_icmp_mib.icmpOutFragNeeded; 14271 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14272 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14273 icmpkp->inBadRedirects.value.ui32 = 14274 ipst->ips_icmp_mib.icmpInBadRedirects; 14275 14276 netstack_rele(ns); 14277 return (0); 14278 } 14279 14280 /* 14281 * This is the fanout function for raw socket opened for SCTP. Note 14282 * that it is called after SCTP checks that there is no socket which 14283 * wants a packet. Then before SCTP handles this out of the blue packet, 14284 * this function is called to see if there is any raw socket for SCTP. 14285 * If there is and it is bound to the correct address, the packet will 14286 * be sent to that socket. Note that only one raw socket can be bound to 14287 * a port. This is assured in ipcl_sctp_hash_insert(); 14288 */ 14289 void 14290 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14291 ip_recv_attr_t *ira) 14292 { 14293 conn_t *connp; 14294 queue_t *rq; 14295 boolean_t secure; 14296 ill_t *ill = ira->ira_ill; 14297 ip_stack_t *ipst = ill->ill_ipst; 14298 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14299 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14300 iaflags_t iraflags = ira->ira_flags; 14301 ill_t *rill = ira->ira_rill; 14302 14303 secure = iraflags & IRAF_IPSEC_SECURE; 14304 14305 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14306 ira, ipst); 14307 if (connp == NULL) { 14308 /* 14309 * Although raw sctp is not summed, OOB chunks must be. 14310 * Drop the packet here if the sctp checksum failed. 14311 */ 14312 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14313 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14314 freemsg(mp); 14315 return; 14316 } 14317 ira->ira_ill = ira->ira_rill = NULL; 14318 sctp_ootb_input(mp, ira, ipst); 14319 ira->ira_ill = ill; 14320 ira->ira_rill = rill; 14321 return; 14322 } 14323 rq = connp->conn_rq; 14324 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14325 CONN_DEC_REF(connp); 14326 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14327 freemsg(mp); 14328 return; 14329 } 14330 if (((iraflags & IRAF_IS_IPV4) ? 14331 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14332 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14333 secure) { 14334 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14335 ip6h, ira); 14336 if (mp == NULL) { 14337 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14338 /* Note that mp is NULL */ 14339 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14340 CONN_DEC_REF(connp); 14341 return; 14342 } 14343 } 14344 14345 if (iraflags & IRAF_ICMP_ERROR) { 14346 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14347 } else { 14348 ill_t *rill = ira->ira_rill; 14349 14350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14351 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14352 ira->ira_ill = ira->ira_rill = NULL; 14353 (connp->conn_recv)(connp, mp, NULL, ira); 14354 ira->ira_ill = ill; 14355 ira->ira_rill = rill; 14356 } 14357 CONN_DEC_REF(connp); 14358 } 14359 14360 /* 14361 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14362 * header before the ip payload. 14363 */ 14364 static void 14365 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14366 { 14367 int len = (mp->b_wptr - mp->b_rptr); 14368 mblk_t *ip_mp; 14369 14370 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14371 if (is_fp_mp || len != fp_mp_len) { 14372 if (len > fp_mp_len) { 14373 /* 14374 * fastpath header and ip header in the first mblk 14375 */ 14376 mp->b_rptr += fp_mp_len; 14377 } else { 14378 /* 14379 * ip_xmit_attach_llhdr had to prepend an mblk to 14380 * attach the fastpath header before ip header. 14381 */ 14382 ip_mp = mp->b_cont; 14383 freeb(mp); 14384 mp = ip_mp; 14385 mp->b_rptr += (fp_mp_len - len); 14386 } 14387 } else { 14388 ip_mp = mp->b_cont; 14389 freeb(mp); 14390 mp = ip_mp; 14391 } 14392 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14393 freemsg(mp); 14394 } 14395 14396 /* 14397 * Normal post fragmentation function. 14398 * 14399 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14400 * using the same state machine. 14401 * 14402 * We return an error on failure. In particular we return EWOULDBLOCK 14403 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14404 * (currently by canputnext failure resulting in backenabling from GLD.) 14405 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14406 * indication that they can flow control until ip_wsrv() tells then to restart. 14407 * 14408 * If the nce passed by caller is incomplete, this function 14409 * queues the packet and if necessary, sends ARP request and bails. 14410 * If the Neighbor Cache passed is fully resolved, we simply prepend 14411 * the link-layer header to the packet, do ipsec hw acceleration 14412 * work if necessary, and send the packet out on the wire. 14413 */ 14414 /* ARGSUSED6 */ 14415 int 14416 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14417 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14418 { 14419 queue_t *wq; 14420 ill_t *ill = nce->nce_ill; 14421 ip_stack_t *ipst = ill->ill_ipst; 14422 uint64_t delta; 14423 boolean_t isv6 = ill->ill_isv6; 14424 boolean_t fp_mp; 14425 ncec_t *ncec = nce->nce_common; 14426 int64_t now = LBOLT_FASTPATH64; 14427 boolean_t is_probe; 14428 14429 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14430 14431 ASSERT(mp != NULL); 14432 ASSERT(mp->b_datap->db_type == M_DATA); 14433 ASSERT(pkt_len == msgdsize(mp)); 14434 14435 /* 14436 * If we have already been here and are coming back after ARP/ND. 14437 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14438 * in that case since they have seen the packet when it came here 14439 * the first time. 14440 */ 14441 if (ixaflags & IXAF_NO_TRACE) 14442 goto sendit; 14443 14444 if (ixaflags & IXAF_IS_IPV4) { 14445 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14446 14447 ASSERT(!isv6); 14448 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14449 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14450 !(ixaflags & IXAF_NO_PFHOOK)) { 14451 int error; 14452 14453 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14454 ipst->ips_ipv4firewall_physical_out, 14455 NULL, ill, ipha, mp, mp, 0, ipst, error); 14456 DTRACE_PROBE1(ip4__physical__out__end, 14457 mblk_t *, mp); 14458 if (mp == NULL) 14459 return (error); 14460 14461 /* The length could have changed */ 14462 pkt_len = msgdsize(mp); 14463 } 14464 if (ipst->ips_ip4_observe.he_interested) { 14465 /* 14466 * Note that for TX the zoneid is the sending 14467 * zone, whether or not MLP is in play. 14468 * Since the szone argument is the IP zoneid (i.e., 14469 * zero for exclusive-IP zones) and ipobs wants 14470 * the system zoneid, we map it here. 14471 */ 14472 szone = IP_REAL_ZONEID(szone, ipst); 14473 14474 /* 14475 * On the outbound path the destination zone will be 14476 * unknown as we're sending this packet out on the 14477 * wire. 14478 */ 14479 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14480 ill, ipst); 14481 } 14482 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14483 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14484 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14485 } else { 14486 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14487 14488 ASSERT(isv6); 14489 ASSERT(pkt_len == 14490 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14491 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14492 !(ixaflags & IXAF_NO_PFHOOK)) { 14493 int error; 14494 14495 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14496 ipst->ips_ipv6firewall_physical_out, 14497 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14498 DTRACE_PROBE1(ip6__physical__out__end, 14499 mblk_t *, mp); 14500 if (mp == NULL) 14501 return (error); 14502 14503 /* The length could have changed */ 14504 pkt_len = msgdsize(mp); 14505 } 14506 if (ipst->ips_ip6_observe.he_interested) { 14507 /* See above */ 14508 szone = IP_REAL_ZONEID(szone, ipst); 14509 14510 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14511 ill, ipst); 14512 } 14513 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14514 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14515 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14516 } 14517 14518 sendit: 14519 /* 14520 * We check the state without a lock because the state can never 14521 * move "backwards" to initial or incomplete. 14522 */ 14523 switch (ncec->ncec_state) { 14524 case ND_REACHABLE: 14525 case ND_STALE: 14526 case ND_DELAY: 14527 case ND_PROBE: 14528 mp = ip_xmit_attach_llhdr(mp, nce); 14529 if (mp == NULL) { 14530 /* 14531 * ip_xmit_attach_llhdr has increased 14532 * ipIfStatsOutDiscards and called ip_drop_output() 14533 */ 14534 return (ENOBUFS); 14535 } 14536 /* 14537 * check if nce_fastpath completed and we tagged on a 14538 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14539 */ 14540 fp_mp = (mp->b_datap->db_type == M_DATA); 14541 14542 if (fp_mp && 14543 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14544 ill_dld_direct_t *idd; 14545 14546 idd = &ill->ill_dld_capab->idc_direct; 14547 /* 14548 * Send the packet directly to DLD, where it 14549 * may be queued depending on the availability 14550 * of transmit resources at the media layer. 14551 * Return value should be taken into 14552 * account and flow control the TCP. 14553 */ 14554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14555 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14556 pkt_len); 14557 14558 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14559 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14560 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14561 } else { 14562 uintptr_t cookie; 14563 14564 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14565 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14566 if (ixacookie != NULL) 14567 *ixacookie = cookie; 14568 return (EWOULDBLOCK); 14569 } 14570 } 14571 } else { 14572 wq = ill->ill_wq; 14573 14574 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14575 !canputnext(wq)) { 14576 if (ixacookie != NULL) 14577 *ixacookie = 0; 14578 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14579 nce->nce_fp_mp != NULL ? 14580 MBLKL(nce->nce_fp_mp) : 0); 14581 return (EWOULDBLOCK); 14582 } 14583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14584 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14585 pkt_len); 14586 putnext(wq, mp); 14587 } 14588 14589 /* 14590 * The rest of this function implements Neighbor Unreachability 14591 * detection. Determine if the ncec is eligible for NUD. 14592 */ 14593 if (ncec->ncec_flags & NCE_F_NONUD) 14594 return (0); 14595 14596 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14597 14598 /* 14599 * Check for upper layer advice 14600 */ 14601 if (ixaflags & IXAF_REACH_CONF) { 14602 timeout_id_t tid; 14603 14604 /* 14605 * It should be o.k. to check the state without 14606 * a lock here, at most we lose an advice. 14607 */ 14608 ncec->ncec_last = TICK_TO_MSEC(now); 14609 if (ncec->ncec_state != ND_REACHABLE) { 14610 mutex_enter(&ncec->ncec_lock); 14611 ncec->ncec_state = ND_REACHABLE; 14612 tid = ncec->ncec_timeout_id; 14613 ncec->ncec_timeout_id = 0; 14614 mutex_exit(&ncec->ncec_lock); 14615 (void) untimeout(tid); 14616 if (ip_debug > 2) { 14617 /* ip1dbg */ 14618 pr_addr_dbg("ip_xmit: state" 14619 " for %s changed to" 14620 " REACHABLE\n", AF_INET6, 14621 &ncec->ncec_addr); 14622 } 14623 } 14624 return (0); 14625 } 14626 14627 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14628 ip1dbg(("ip_xmit: delta = %" PRId64 14629 " ill_reachable_time = %d \n", delta, 14630 ill->ill_reachable_time)); 14631 if (delta > (uint64_t)ill->ill_reachable_time) { 14632 mutex_enter(&ncec->ncec_lock); 14633 switch (ncec->ncec_state) { 14634 case ND_REACHABLE: 14635 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14636 /* FALLTHROUGH */ 14637 case ND_STALE: 14638 /* 14639 * ND_REACHABLE is identical to 14640 * ND_STALE in this specific case. If 14641 * reachable time has expired for this 14642 * neighbor (delta is greater than 14643 * reachable time), conceptually, the 14644 * neighbor cache is no longer in 14645 * REACHABLE state, but already in 14646 * STALE state. So the correct 14647 * transition here is to ND_DELAY. 14648 */ 14649 ncec->ncec_state = ND_DELAY; 14650 mutex_exit(&ncec->ncec_lock); 14651 nce_restart_timer(ncec, 14652 ipst->ips_delay_first_probe_time); 14653 if (ip_debug > 3) { 14654 /* ip2dbg */ 14655 pr_addr_dbg("ip_xmit: state" 14656 " for %s changed to" 14657 " DELAY\n", AF_INET6, 14658 &ncec->ncec_addr); 14659 } 14660 break; 14661 case ND_DELAY: 14662 case ND_PROBE: 14663 mutex_exit(&ncec->ncec_lock); 14664 /* Timers have already started */ 14665 break; 14666 case ND_UNREACHABLE: 14667 /* 14668 * nce_timer has detected that this ncec 14669 * is unreachable and initiated deleting 14670 * this ncec. 14671 * This is a harmless race where we found the 14672 * ncec before it was deleted and have 14673 * just sent out a packet using this 14674 * unreachable ncec. 14675 */ 14676 mutex_exit(&ncec->ncec_lock); 14677 break; 14678 default: 14679 ASSERT(0); 14680 mutex_exit(&ncec->ncec_lock); 14681 } 14682 } 14683 return (0); 14684 14685 case ND_INCOMPLETE: 14686 /* 14687 * the state could have changed since we didn't hold the lock. 14688 * Re-verify state under lock. 14689 */ 14690 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14691 mutex_enter(&ncec->ncec_lock); 14692 if (NCE_ISREACHABLE(ncec)) { 14693 mutex_exit(&ncec->ncec_lock); 14694 goto sendit; 14695 } 14696 /* queue the packet */ 14697 nce_queue_mp(ncec, mp, is_probe); 14698 mutex_exit(&ncec->ncec_lock); 14699 DTRACE_PROBE2(ip__xmit__incomplete, 14700 (ncec_t *), ncec, (mblk_t *), mp); 14701 return (0); 14702 14703 case ND_INITIAL: 14704 /* 14705 * State could have changed since we didn't hold the lock, so 14706 * re-verify state. 14707 */ 14708 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14709 mutex_enter(&ncec->ncec_lock); 14710 if (NCE_ISREACHABLE(ncec)) { 14711 mutex_exit(&ncec->ncec_lock); 14712 goto sendit; 14713 } 14714 nce_queue_mp(ncec, mp, is_probe); 14715 if (ncec->ncec_state == ND_INITIAL) { 14716 ncec->ncec_state = ND_INCOMPLETE; 14717 mutex_exit(&ncec->ncec_lock); 14718 /* 14719 * figure out the source we want to use 14720 * and resolve it. 14721 */ 14722 ip_ndp_resolve(ncec); 14723 } else { 14724 mutex_exit(&ncec->ncec_lock); 14725 } 14726 return (0); 14727 14728 case ND_UNREACHABLE: 14729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14730 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14731 mp, ill); 14732 freemsg(mp); 14733 return (0); 14734 14735 default: 14736 ASSERT(0); 14737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14738 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14739 mp, ill); 14740 freemsg(mp); 14741 return (ENETUNREACH); 14742 } 14743 } 14744 14745 /* 14746 * Return B_TRUE if the buffers differ in length or content. 14747 * This is used for comparing extension header buffers. 14748 * Note that an extension header would be declared different 14749 * even if all that changed was the next header value in that header i.e. 14750 * what really changed is the next extension header. 14751 */ 14752 boolean_t 14753 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14754 uint_t blen) 14755 { 14756 if (!b_valid) 14757 blen = 0; 14758 14759 if (alen != blen) 14760 return (B_TRUE); 14761 if (alen == 0) 14762 return (B_FALSE); /* Both zero length */ 14763 return (bcmp(abuf, bbuf, alen)); 14764 } 14765 14766 /* 14767 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14768 * Return B_FALSE if memory allocation fails - don't change any state! 14769 */ 14770 boolean_t 14771 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14772 const void *src, uint_t srclen) 14773 { 14774 void *dst; 14775 14776 if (!src_valid) 14777 srclen = 0; 14778 14779 ASSERT(*dstlenp == 0); 14780 if (src != NULL && srclen != 0) { 14781 dst = mi_alloc(srclen, BPRI_MED); 14782 if (dst == NULL) 14783 return (B_FALSE); 14784 } else { 14785 dst = NULL; 14786 } 14787 if (*dstp != NULL) 14788 mi_free(*dstp); 14789 *dstp = dst; 14790 *dstlenp = dst == NULL ? 0 : srclen; 14791 return (B_TRUE); 14792 } 14793 14794 /* 14795 * Replace what is in *dst, *dstlen with the source. 14796 * Assumes ip_allocbuf has already been called. 14797 */ 14798 void 14799 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14800 const void *src, uint_t srclen) 14801 { 14802 if (!src_valid) 14803 srclen = 0; 14804 14805 ASSERT(*dstlenp == srclen); 14806 if (src != NULL && srclen != 0) 14807 bcopy(src, *dstp, srclen); 14808 } 14809 14810 /* 14811 * Free the storage pointed to by the members of an ip_pkt_t. 14812 */ 14813 void 14814 ip_pkt_free(ip_pkt_t *ipp) 14815 { 14816 uint_t fields = ipp->ipp_fields; 14817 14818 if (fields & IPPF_HOPOPTS) { 14819 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14820 ipp->ipp_hopopts = NULL; 14821 ipp->ipp_hopoptslen = 0; 14822 } 14823 if (fields & IPPF_RTHDRDSTOPTS) { 14824 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14825 ipp->ipp_rthdrdstopts = NULL; 14826 ipp->ipp_rthdrdstoptslen = 0; 14827 } 14828 if (fields & IPPF_DSTOPTS) { 14829 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14830 ipp->ipp_dstopts = NULL; 14831 ipp->ipp_dstoptslen = 0; 14832 } 14833 if (fields & IPPF_RTHDR) { 14834 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14835 ipp->ipp_rthdr = NULL; 14836 ipp->ipp_rthdrlen = 0; 14837 } 14838 if (fields & IPPF_IPV4_OPTIONS) { 14839 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14840 ipp->ipp_ipv4_options = NULL; 14841 ipp->ipp_ipv4_options_len = 0; 14842 } 14843 if (fields & IPPF_LABEL_V4) { 14844 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14845 ipp->ipp_label_v4 = NULL; 14846 ipp->ipp_label_len_v4 = 0; 14847 } 14848 if (fields & IPPF_LABEL_V6) { 14849 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14850 ipp->ipp_label_v6 = NULL; 14851 ipp->ipp_label_len_v6 = 0; 14852 } 14853 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14854 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14855 } 14856 14857 /* 14858 * Copy from src to dst and allocate as needed. 14859 * Returns zero or ENOMEM. 14860 * 14861 * The caller must initialize dst to zero. 14862 */ 14863 int 14864 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14865 { 14866 uint_t fields = src->ipp_fields; 14867 14868 /* Start with fields that don't require memory allocation */ 14869 dst->ipp_fields = fields & 14870 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14871 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14872 14873 dst->ipp_addr = src->ipp_addr; 14874 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14875 dst->ipp_hoplimit = src->ipp_hoplimit; 14876 dst->ipp_tclass = src->ipp_tclass; 14877 dst->ipp_type_of_service = src->ipp_type_of_service; 14878 14879 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14880 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14881 return (0); 14882 14883 if (fields & IPPF_HOPOPTS) { 14884 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14885 if (dst->ipp_hopopts == NULL) { 14886 ip_pkt_free(dst); 14887 return (ENOMEM); 14888 } 14889 dst->ipp_fields |= IPPF_HOPOPTS; 14890 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14891 src->ipp_hopoptslen); 14892 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14893 } 14894 if (fields & IPPF_RTHDRDSTOPTS) { 14895 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14896 kmflag); 14897 if (dst->ipp_rthdrdstopts == NULL) { 14898 ip_pkt_free(dst); 14899 return (ENOMEM); 14900 } 14901 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14902 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14903 src->ipp_rthdrdstoptslen); 14904 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14905 } 14906 if (fields & IPPF_DSTOPTS) { 14907 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14908 if (dst->ipp_dstopts == NULL) { 14909 ip_pkt_free(dst); 14910 return (ENOMEM); 14911 } 14912 dst->ipp_fields |= IPPF_DSTOPTS; 14913 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14914 src->ipp_dstoptslen); 14915 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14916 } 14917 if (fields & IPPF_RTHDR) { 14918 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14919 if (dst->ipp_rthdr == NULL) { 14920 ip_pkt_free(dst); 14921 return (ENOMEM); 14922 } 14923 dst->ipp_fields |= IPPF_RTHDR; 14924 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14925 src->ipp_rthdrlen); 14926 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14927 } 14928 if (fields & IPPF_IPV4_OPTIONS) { 14929 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14930 kmflag); 14931 if (dst->ipp_ipv4_options == NULL) { 14932 ip_pkt_free(dst); 14933 return (ENOMEM); 14934 } 14935 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14936 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14937 src->ipp_ipv4_options_len); 14938 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14939 } 14940 if (fields & IPPF_LABEL_V4) { 14941 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14942 if (dst->ipp_label_v4 == NULL) { 14943 ip_pkt_free(dst); 14944 return (ENOMEM); 14945 } 14946 dst->ipp_fields |= IPPF_LABEL_V4; 14947 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14948 src->ipp_label_len_v4); 14949 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14950 } 14951 if (fields & IPPF_LABEL_V6) { 14952 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14953 if (dst->ipp_label_v6 == NULL) { 14954 ip_pkt_free(dst); 14955 return (ENOMEM); 14956 } 14957 dst->ipp_fields |= IPPF_LABEL_V6; 14958 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14959 src->ipp_label_len_v6); 14960 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14961 } 14962 if (fields & IPPF_FRAGHDR) { 14963 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14964 if (dst->ipp_fraghdr == NULL) { 14965 ip_pkt_free(dst); 14966 return (ENOMEM); 14967 } 14968 dst->ipp_fields |= IPPF_FRAGHDR; 14969 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14970 src->ipp_fraghdrlen); 14971 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14972 } 14973 return (0); 14974 } 14975 14976 /* 14977 * Returns INADDR_ANY if no source route 14978 */ 14979 ipaddr_t 14980 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14981 { 14982 ipaddr_t nexthop = INADDR_ANY; 14983 ipoptp_t opts; 14984 uchar_t *opt; 14985 uint8_t optval; 14986 uint8_t optlen; 14987 uint32_t totallen; 14988 14989 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14990 return (INADDR_ANY); 14991 14992 totallen = ipp->ipp_ipv4_options_len; 14993 if (totallen & 0x3) 14994 return (INADDR_ANY); 14995 14996 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14997 optval != IPOPT_EOL; 14998 optval = ipoptp_next(&opts)) { 14999 opt = opts.ipoptp_cur; 15000 switch (optval) { 15001 uint8_t off; 15002 case IPOPT_SSRR: 15003 case IPOPT_LSRR: 15004 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15005 break; 15006 } 15007 optlen = opts.ipoptp_len; 15008 off = opt[IPOPT_OFFSET]; 15009 off--; 15010 if (optlen < IP_ADDR_LEN || 15011 off > optlen - IP_ADDR_LEN) { 15012 /* End of source route */ 15013 break; 15014 } 15015 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15016 if (nexthop == htonl(INADDR_LOOPBACK)) { 15017 /* Ignore */ 15018 nexthop = INADDR_ANY; 15019 break; 15020 } 15021 break; 15022 } 15023 } 15024 return (nexthop); 15025 } 15026 15027 /* 15028 * Reverse a source route. 15029 */ 15030 void 15031 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15032 { 15033 ipaddr_t tmp; 15034 ipoptp_t opts; 15035 uchar_t *opt; 15036 uint8_t optval; 15037 uint32_t totallen; 15038 15039 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15040 return; 15041 15042 totallen = ipp->ipp_ipv4_options_len; 15043 if (totallen & 0x3) 15044 return; 15045 15046 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15047 optval != IPOPT_EOL; 15048 optval = ipoptp_next(&opts)) { 15049 uint8_t off1, off2; 15050 15051 opt = opts.ipoptp_cur; 15052 switch (optval) { 15053 case IPOPT_SSRR: 15054 case IPOPT_LSRR: 15055 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15056 break; 15057 } 15058 off1 = IPOPT_MINOFF_SR - 1; 15059 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15060 while (off2 > off1) { 15061 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15062 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15063 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15064 off2 -= IP_ADDR_LEN; 15065 off1 += IP_ADDR_LEN; 15066 } 15067 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15068 break; 15069 } 15070 } 15071 } 15072 15073 /* 15074 * Returns NULL if no routing header 15075 */ 15076 in6_addr_t * 15077 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15078 { 15079 in6_addr_t *nexthop = NULL; 15080 ip6_rthdr0_t *rthdr; 15081 15082 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15083 return (NULL); 15084 15085 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15086 if (rthdr->ip6r0_segleft == 0) 15087 return (NULL); 15088 15089 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15090 return (nexthop); 15091 } 15092 15093 zoneid_t 15094 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15095 zoneid_t lookup_zoneid) 15096 { 15097 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15098 ire_t *ire; 15099 int ire_flags = MATCH_IRE_TYPE; 15100 zoneid_t zoneid = ALL_ZONES; 15101 15102 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15103 return (ALL_ZONES); 15104 15105 if (lookup_zoneid != ALL_ZONES) 15106 ire_flags |= MATCH_IRE_ZONEONLY; 15107 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK, 15108 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15109 if (ire != NULL) { 15110 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15111 ire_refrele(ire); 15112 } 15113 return (zoneid); 15114 } 15115 15116 zoneid_t 15117 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15118 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15119 { 15120 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15121 ire_t *ire; 15122 int ire_flags = MATCH_IRE_TYPE; 15123 zoneid_t zoneid = ALL_ZONES; 15124 15125 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15126 return (ALL_ZONES); 15127 15128 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15129 ire_flags |= MATCH_IRE_ILL; 15130 15131 if (lookup_zoneid != ALL_ZONES) 15132 ire_flags |= MATCH_IRE_ZONEONLY; 15133 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15134 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15135 if (ire != NULL) { 15136 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15137 ire_refrele(ire); 15138 } 15139 return (zoneid); 15140 } 15141 15142 /* 15143 * IP obserability hook support functions. 15144 */ 15145 static void 15146 ipobs_init(ip_stack_t *ipst) 15147 { 15148 netid_t id; 15149 15150 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15151 15152 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15153 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15154 15155 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15156 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15157 } 15158 15159 static void 15160 ipobs_fini(ip_stack_t *ipst) 15161 { 15162 15163 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15164 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15165 } 15166 15167 /* 15168 * hook_pkt_observe_t is composed in network byte order so that the 15169 * entire mblk_t chain handed into hook_run can be used as-is. 15170 * The caveat is that use of the fields, such as the zone fields, 15171 * requires conversion into host byte order first. 15172 */ 15173 void 15174 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15175 const ill_t *ill, ip_stack_t *ipst) 15176 { 15177 hook_pkt_observe_t *hdr; 15178 uint64_t grifindex; 15179 mblk_t *imp; 15180 15181 imp = allocb(sizeof (*hdr), BPRI_HI); 15182 if (imp == NULL) 15183 return; 15184 15185 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15186 /* 15187 * b_wptr is set to make the apparent size of the data in the mblk_t 15188 * to exclude the pointers at the end of hook_pkt_observer_t. 15189 */ 15190 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15191 imp->b_cont = mp; 15192 15193 ASSERT(DB_TYPE(mp) == M_DATA); 15194 15195 if (IS_UNDER_IPMP(ill)) 15196 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15197 else 15198 grifindex = 0; 15199 15200 hdr->hpo_version = 1; 15201 hdr->hpo_htype = htons(htype); 15202 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15203 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15204 hdr->hpo_grifindex = htonl(grifindex); 15205 hdr->hpo_zsrc = htonl(zsrc); 15206 hdr->hpo_zdst = htonl(zdst); 15207 hdr->hpo_pkt = imp; 15208 hdr->hpo_ctx = ipst->ips_netstack; 15209 15210 if (ill->ill_isv6) { 15211 hdr->hpo_family = AF_INET6; 15212 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15213 ipst->ips_ipv6observing, (hook_data_t)hdr); 15214 } else { 15215 hdr->hpo_family = AF_INET; 15216 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15217 ipst->ips_ipv4observing, (hook_data_t)hdr); 15218 } 15219 15220 imp->b_cont = NULL; 15221 freemsg(imp); 15222 } 15223 15224 /* 15225 * Utility routine that checks if `v4srcp' is a valid address on underlying 15226 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15227 * associated with `v4srcp' on success. NOTE: if this is not called from 15228 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15229 * group during or after this lookup. 15230 */ 15231 boolean_t 15232 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15233 { 15234 ipif_t *ipif; 15235 15236 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15237 if (ipif != NULL) { 15238 if (ipifp != NULL) 15239 *ipifp = ipif; 15240 else 15241 ipif_refrele(ipif); 15242 return (B_TRUE); 15243 } 15244 15245 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15246 *v4srcp)); 15247 return (B_FALSE); 15248 } 15249 15250 /* 15251 * Transport protocol call back function for CPU state change. 15252 */ 15253 /* ARGSUSED */ 15254 static int 15255 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15256 { 15257 processorid_t cpu_seqid; 15258 netstack_handle_t nh; 15259 netstack_t *ns; 15260 15261 ASSERT(MUTEX_HELD(&cpu_lock)); 15262 15263 switch (what) { 15264 case CPU_CONFIG: 15265 case CPU_ON: 15266 case CPU_INIT: 15267 case CPU_CPUPART_IN: 15268 cpu_seqid = cpu[id]->cpu_seqid; 15269 netstack_next_init(&nh); 15270 while ((ns = netstack_next(&nh)) != NULL) { 15271 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15272 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15273 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15274 netstack_rele(ns); 15275 } 15276 netstack_next_fini(&nh); 15277 break; 15278 case CPU_UNCONFIG: 15279 case CPU_OFF: 15280 case CPU_CPUPART_OUT: 15281 /* 15282 * Nothing to do. We don't remove the per CPU stats from 15283 * the IP stack even when the CPU goes offline. 15284 */ 15285 break; 15286 default: 15287 break; 15288 } 15289 return (0); 15290 }