1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
  28  * Copyright (c) 2014 Integros [integros.com]
  29  * Copyright 2019 Joyent, Inc.
  30  */
  31 
  32 #include <sys/zfs_context.h>
  33 #include <sys/vdev_impl.h>
  34 #include <sys/spa_impl.h>
  35 #include <sys/zio.h>
  36 #include <sys/avl.h>
  37 #include <sys/dsl_pool.h>
  38 #include <sys/metaslab_impl.h>
  39 #include <sys/abd.h>
  40 
  41 /*
  42  * ZFS I/O Scheduler
  43  * ---------------
  44  *
  45  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
  46  * I/O scheduler determines when and in what order those operations are
  47  * issued.  The I/O scheduler divides operations into five I/O classes
  48  * prioritized in the following order: sync read, sync write, async read,
  49  * async write, and scrub/resilver.  Each queue defines the minimum and
  50  * maximum number of concurrent operations that may be issued to the device.
  51  * In addition, the device has an aggregate maximum. Note that the sum of the
  52  * per-queue minimums must not exceed the aggregate maximum, and if the
  53  * aggregate maximum is equal to or greater than the sum of the per-queue
  54  * maximums, the per-queue minimum has no effect.
  55  *
  56  * For many physical devices, throughput increases with the number of
  57  * concurrent operations, but latency typically suffers. Further, physical
  58  * devices typically have a limit at which more concurrent operations have no
  59  * effect on throughput or can actually cause it to decrease.
  60  *
  61  * The scheduler selects the next operation to issue by first looking for an
  62  * I/O class whose minimum has not been satisfied. Once all are satisfied and
  63  * the aggregate maximum has not been hit, the scheduler looks for classes
  64  * whose maximum has not been satisfied. Iteration through the I/O classes is
  65  * done in the order specified above. No further operations are issued if the
  66  * aggregate maximum number of concurrent operations has been hit or if there
  67  * are no operations queued for an I/O class that has not hit its maximum.
  68  * Every time an i/o is queued or an operation completes, the I/O scheduler
  69  * looks for new operations to issue.
  70  *
  71  * All I/O classes have a fixed maximum number of outstanding operations
  72  * except for the async write class. Asynchronous writes represent the data
  73  * that is committed to stable storage during the syncing stage for
  74  * transaction groups (see txg.c). Transaction groups enter the syncing state
  75  * periodically so the number of queued async writes will quickly burst up and
  76  * then bleed down to zero. Rather than servicing them as quickly as possible,
  77  * the I/O scheduler changes the maximum number of active async write i/os
  78  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
  79  * both throughput and latency typically increase with the number of
  80  * concurrent operations issued to physical devices, reducing the burstiness
  81  * in the number of concurrent operations also stabilizes the response time of
  82  * operations from other -- and in particular synchronous -- queues. In broad
  83  * strokes, the I/O scheduler will issue more concurrent operations from the
  84  * async write queue as there's more dirty data in the pool.
  85  *
  86  * Async Writes
  87  *
  88  * The number of concurrent operations issued for the async write I/O class
  89  * follows a piece-wise linear function defined by a few adjustable points.
  90  *
  91  *        |                   o---------| <-- zfs_vdev_async_write_max_active
  92  *   ^    |                  /^         |
  93  *   |    |                 / |         |
  94  * active |                /  |         |
  95  *  I/O   |               /   |         |
  96  * count  |              /    |         |
  97  *        |             /     |         |
  98  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
  99  *       0|____________^______|_________|
 100  *        0%           |      |       100% of zfs_dirty_data_max
 101  *                     |      |
 102  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
 103  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
 104  *
 105  * Until the amount of dirty data exceeds a minimum percentage of the dirty
 106  * data allowed in the pool, the I/O scheduler will limit the number of
 107  * concurrent operations to the minimum. As that threshold is crossed, the
 108  * number of concurrent operations issued increases linearly to the maximum at
 109  * the specified maximum percentage of the dirty data allowed in the pool.
 110  *
 111  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
 112  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
 113  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
 114  * maximum percentage, this indicates that the rate of incoming data is
 115  * greater than the rate that the backend storage can handle. In this case, we
 116  * must further throttle incoming writes (see dmu_tx_delay() for details).
 117  */
 118 
 119 /*
 120  * The maximum number of i/os active to each device.  Ideally, this will be >=
 121  * the sum of each queue's max_active.  It must be at least the sum of each
 122  * queue's min_active.
 123  */
 124 uint32_t zfs_vdev_max_active = 1000;
 125 
 126 /*
 127  * Per-queue limits on the number of i/os active to each device.  If the
 128  * sum of the queue's max_active is < zfs_vdev_max_active, then the
 129  * min_active comes into play.  We will send min_active from each queue,
 130  * and then select from queues in the order defined by zio_priority_t.
 131  *
 132  * In general, smaller max_active's will lead to lower latency of synchronous
 133  * operations.  Larger max_active's may lead to higher overall throughput,
 134  * depending on underlying storage.
 135  *
 136  * The ratio of the queues' max_actives determines the balance of performance
 137  * between reads, writes, and scrubs.  E.g., increasing
 138  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
 139  * more quickly, but reads and writes to have higher latency and lower
 140  * throughput.
 141  */
 142 uint32_t zfs_vdev_sync_read_min_active = 10;
 143 uint32_t zfs_vdev_sync_read_max_active = 10;
 144 uint32_t zfs_vdev_sync_write_min_active = 10;
 145 uint32_t zfs_vdev_sync_write_max_active = 10;
 146 uint32_t zfs_vdev_async_read_min_active = 1;
 147 uint32_t zfs_vdev_async_read_max_active = 3;
 148 uint32_t zfs_vdev_async_write_min_active = 1;
 149 uint32_t zfs_vdev_async_write_max_active = 10;
 150 uint32_t zfs_vdev_scrub_min_active = 1;
 151 uint32_t zfs_vdev_scrub_max_active = 2;
 152 uint32_t zfs_vdev_removal_min_active = 1;
 153 uint32_t zfs_vdev_removal_max_active = 2;
 154 uint32_t zfs_vdev_initializing_min_active = 1;
 155 uint32_t zfs_vdev_initializing_max_active = 1;
 156 
 157 /*
 158  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
 159  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
 160  * zfs_vdev_async_write_active_max_dirty_percent, use
 161  * zfs_vdev_async_write_max_active. The value is linearly interpolated
 162  * between min and max.
 163  */
 164 int zfs_vdev_async_write_active_min_dirty_percent = 30;
 165 int zfs_vdev_async_write_active_max_dirty_percent = 60;
 166 
 167 /*
 168  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
 169  * For read I/Os, we also aggregate across small adjacency gaps; for writes
 170  * we include spans of optional I/Os to aid aggregation at the disk even when
 171  * they aren't able to help us aggregate at this level.
 172  */
 173 int zfs_vdev_aggregation_limit = 1 << 20;
 174 int zfs_vdev_read_gap_limit = 32 << 10;
 175 int zfs_vdev_write_gap_limit = 4 << 10;
 176 
 177 /*
 178  * Define the queue depth percentage for each top-level. This percentage is
 179  * used in conjunction with zfs_vdev_async_max_active to determine how many
 180  * allocations a specific top-level vdev should handle. Once the queue depth
 181  * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
 182  * then allocator will stop allocating blocks on that top-level device.
 183  * The default kernel setting is 1000% which will yield 100 allocations per
 184  * device. For userland testing, the default setting is 300% which equates
 185  * to 30 allocations per device.
 186  */
 187 #ifdef _KERNEL
 188 int zfs_vdev_queue_depth_pct = 1000;
 189 #else
 190 int zfs_vdev_queue_depth_pct = 300;
 191 #endif
 192 
 193 /*
 194  * When performing allocations for a given metaslab, we want to make sure that
 195  * there are enough IOs to aggregate together to improve throughput. We want to
 196  * ensure that there are at least 128k worth of IOs that can be aggregated, and
 197  * we assume that the average allocation size is 4k, so we need the queue depth
 198  * to be 32 per allocator to get good aggregation of sequential writes.
 199  */
 200 int zfs_vdev_def_queue_depth = 32;
 201 
 202 
 203 int
 204 vdev_queue_offset_compare(const void *x1, const void *x2)
 205 {
 206         const zio_t *z1 = (const zio_t *)x1;
 207         const zio_t *z2 = (const zio_t *)x2;
 208 
 209         int cmp = AVL_CMP(z1->io_offset, z2->io_offset);
 210 
 211         if (likely(cmp))
 212                 return (cmp);
 213 
 214         return (AVL_PCMP(z1, z2));
 215 }
 216 
 217 static inline avl_tree_t *
 218 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
 219 {
 220         return (&vq->vq_class[p].vqc_queued_tree);
 221 }
 222 
 223 static inline avl_tree_t *
 224 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
 225 {
 226         ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
 227         if (t == ZIO_TYPE_READ)
 228                 return (&vq->vq_read_offset_tree);
 229         else
 230                 return (&vq->vq_write_offset_tree);
 231 }
 232 
 233 int
 234 vdev_queue_timestamp_compare(const void *x1, const void *x2)
 235 {
 236         const zio_t *z1 = (const zio_t *)x1;
 237         const zio_t *z2 = (const zio_t *)x2;
 238 
 239         int cmp = AVL_CMP(z1->io_timestamp, z2->io_timestamp);
 240 
 241         if (likely(cmp))
 242                 return (cmp);
 243 
 244         return (AVL_PCMP(z1, z2));
 245 }
 246 
 247 void
 248 vdev_queue_init(vdev_t *vd)
 249 {
 250         vdev_queue_t *vq = &vd->vdev_queue;
 251 
 252         mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
 253         vq->vq_vdev = vd;
 254 
 255         avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
 256             sizeof (zio_t), offsetof(struct zio, io_queue_node));
 257         avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
 258             vdev_queue_offset_compare, sizeof (zio_t),
 259             offsetof(struct zio, io_offset_node));
 260         avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
 261             vdev_queue_offset_compare, sizeof (zio_t),
 262             offsetof(struct zio, io_offset_node));
 263 
 264         for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
 265                 int (*compfn) (const void *, const void *);
 266 
 267                 /*
 268                  * The synchronous i/o queues are dispatched in FIFO rather
 269                  * than LBA order.  This provides more consistent latency for
 270                  * these i/os.
 271                  */
 272                 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
 273                         compfn = vdev_queue_timestamp_compare;
 274                 else
 275                         compfn = vdev_queue_offset_compare;
 276 
 277                 avl_create(vdev_queue_class_tree(vq, p), compfn,
 278                     sizeof (zio_t), offsetof(struct zio, io_queue_node));
 279         }
 280 
 281         vq->vq_last_offset = 0;
 282 }
 283 
 284 void
 285 vdev_queue_fini(vdev_t *vd)
 286 {
 287         vdev_queue_t *vq = &vd->vdev_queue;
 288 
 289         for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
 290                 avl_destroy(vdev_queue_class_tree(vq, p));
 291         avl_destroy(&vq->vq_active_tree);
 292         avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
 293         avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
 294 
 295         mutex_destroy(&vq->vq_lock);
 296 }
 297 
 298 static void
 299 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
 300 {
 301         spa_t *spa = zio->io_spa;
 302 
 303         ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
 304         avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
 305         avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
 306 
 307         mutex_enter(&spa->spa_iokstat_lock);
 308         spa->spa_queue_stats[zio->io_priority].spa_queued++;
 309         if (spa->spa_iokstat != NULL)
 310                 kstat_waitq_enter(spa->spa_iokstat->ks_data);
 311         mutex_exit(&spa->spa_iokstat_lock);
 312 }
 313 
 314 static void
 315 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
 316 {
 317         spa_t *spa = zio->io_spa;
 318 
 319         ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
 320         avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
 321         avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
 322 
 323         mutex_enter(&spa->spa_iokstat_lock);
 324         ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
 325         spa->spa_queue_stats[zio->io_priority].spa_queued--;
 326         if (spa->spa_iokstat != NULL)
 327                 kstat_waitq_exit(spa->spa_iokstat->ks_data);
 328         mutex_exit(&spa->spa_iokstat_lock);
 329 }
 330 
 331 static void
 332 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
 333 {
 334         spa_t *spa = zio->io_spa;
 335         ASSERT(MUTEX_HELD(&vq->vq_lock));
 336         ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
 337         vq->vq_class[zio->io_priority].vqc_active++;
 338         avl_add(&vq->vq_active_tree, zio);
 339 
 340         mutex_enter(&spa->spa_iokstat_lock);
 341         spa->spa_queue_stats[zio->io_priority].spa_active++;
 342         if (spa->spa_iokstat != NULL)
 343                 kstat_runq_enter(spa->spa_iokstat->ks_data);
 344         mutex_exit(&spa->spa_iokstat_lock);
 345 }
 346 
 347 static void
 348 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
 349 {
 350         spa_t *spa = zio->io_spa;
 351         ASSERT(MUTEX_HELD(&vq->vq_lock));
 352         ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
 353         vq->vq_class[zio->io_priority].vqc_active--;
 354         avl_remove(&vq->vq_active_tree, zio);
 355 
 356         mutex_enter(&spa->spa_iokstat_lock);
 357         ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
 358         spa->spa_queue_stats[zio->io_priority].spa_active--;
 359         if (spa->spa_iokstat != NULL) {
 360                 kstat_io_t *ksio = spa->spa_iokstat->ks_data;
 361 
 362                 kstat_runq_exit(spa->spa_iokstat->ks_data);
 363                 if (zio->io_type == ZIO_TYPE_READ) {
 364                         ksio->reads++;
 365                         ksio->nread += zio->io_size;
 366                 } else if (zio->io_type == ZIO_TYPE_WRITE) {
 367                         ksio->writes++;
 368                         ksio->nwritten += zio->io_size;
 369                 }
 370         }
 371         mutex_exit(&spa->spa_iokstat_lock);
 372 }
 373 
 374 static void
 375 vdev_queue_agg_io_done(zio_t *aio)
 376 {
 377         if (aio->io_type == ZIO_TYPE_READ) {
 378                 zio_t *pio;
 379                 zio_link_t *zl = NULL;
 380                 while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
 381                         abd_copy_off(pio->io_abd, aio->io_abd,
 382                             0, pio->io_offset - aio->io_offset, pio->io_size);
 383                 }
 384         }
 385 
 386         abd_free(aio->io_abd);
 387 }
 388 
 389 static int
 390 vdev_queue_class_min_active(zio_priority_t p)
 391 {
 392         switch (p) {
 393         case ZIO_PRIORITY_SYNC_READ:
 394                 return (zfs_vdev_sync_read_min_active);
 395         case ZIO_PRIORITY_SYNC_WRITE:
 396                 return (zfs_vdev_sync_write_min_active);
 397         case ZIO_PRIORITY_ASYNC_READ:
 398                 return (zfs_vdev_async_read_min_active);
 399         case ZIO_PRIORITY_ASYNC_WRITE:
 400                 return (zfs_vdev_async_write_min_active);
 401         case ZIO_PRIORITY_SCRUB:
 402                 return (zfs_vdev_scrub_min_active);
 403         case ZIO_PRIORITY_REMOVAL:
 404                 return (zfs_vdev_removal_min_active);
 405         case ZIO_PRIORITY_INITIALIZING:
 406                 return (zfs_vdev_initializing_min_active);
 407         default:
 408                 panic("invalid priority %u", p);
 409         }
 410 }
 411 
 412 static int
 413 vdev_queue_max_async_writes(spa_t *spa)
 414 {
 415         int writes;
 416         uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
 417         uint64_t min_bytes = zfs_dirty_data_max *
 418             zfs_vdev_async_write_active_min_dirty_percent / 100;
 419         uint64_t max_bytes = zfs_dirty_data_max *
 420             zfs_vdev_async_write_active_max_dirty_percent / 100;
 421 
 422         /*
 423          * Sync tasks correspond to interactive user actions. To reduce the
 424          * execution time of those actions we push data out as fast as possible.
 425          */
 426         if (spa_has_pending_synctask(spa)) {
 427                 return (zfs_vdev_async_write_max_active);
 428         }
 429 
 430         if (dirty < min_bytes)
 431                 return (zfs_vdev_async_write_min_active);
 432         if (dirty > max_bytes)
 433                 return (zfs_vdev_async_write_max_active);
 434 
 435         /*
 436          * linear interpolation:
 437          * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
 438          * move right by min_bytes
 439          * move up by min_writes
 440          */
 441         writes = (dirty - min_bytes) *
 442             (zfs_vdev_async_write_max_active -
 443             zfs_vdev_async_write_min_active) /
 444             (max_bytes - min_bytes) +
 445             zfs_vdev_async_write_min_active;
 446         ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
 447         ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
 448         return (writes);
 449 }
 450 
 451 static int
 452 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
 453 {
 454         switch (p) {
 455         case ZIO_PRIORITY_SYNC_READ:
 456                 return (zfs_vdev_sync_read_max_active);
 457         case ZIO_PRIORITY_SYNC_WRITE:
 458                 return (zfs_vdev_sync_write_max_active);
 459         case ZIO_PRIORITY_ASYNC_READ:
 460                 return (zfs_vdev_async_read_max_active);
 461         case ZIO_PRIORITY_ASYNC_WRITE:
 462                 return (vdev_queue_max_async_writes(spa));
 463         case ZIO_PRIORITY_SCRUB:
 464                 return (zfs_vdev_scrub_max_active);
 465         case ZIO_PRIORITY_REMOVAL:
 466                 return (zfs_vdev_removal_max_active);
 467         case ZIO_PRIORITY_INITIALIZING:
 468                 return (zfs_vdev_initializing_max_active);
 469         default:
 470                 panic("invalid priority %u", p);
 471         }
 472 }
 473 
 474 /*
 475  * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
 476  * there is no eligible class.
 477  */
 478 static zio_priority_t
 479 vdev_queue_class_to_issue(vdev_queue_t *vq)
 480 {
 481         spa_t *spa = vq->vq_vdev->vdev_spa;
 482         zio_priority_t p;
 483 
 484         if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
 485                 return (ZIO_PRIORITY_NUM_QUEUEABLE);
 486 
 487         /* find a queue that has not reached its minimum # outstanding i/os */
 488         for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
 489                 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
 490                     vq->vq_class[p].vqc_active <
 491                     vdev_queue_class_min_active(p))
 492                         return (p);
 493         }
 494 
 495         /*
 496          * If we haven't found a queue, look for one that hasn't reached its
 497          * maximum # outstanding i/os.
 498          */
 499         for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
 500                 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
 501                     vq->vq_class[p].vqc_active <
 502                     vdev_queue_class_max_active(spa, p))
 503                         return (p);
 504         }
 505 
 506         /* No eligible queued i/os */
 507         return (ZIO_PRIORITY_NUM_QUEUEABLE);
 508 }
 509 
 510 /*
 511  * Compute the range spanned by two i/os, which is the endpoint of the last
 512  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
 513  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
 514  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
 515  */
 516 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
 517 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
 518 
 519 static zio_t *
 520 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
 521 {
 522         zio_t *first, *last, *aio, *dio, *mandatory, *nio;
 523         zio_link_t *zl = NULL;
 524         uint64_t maxgap = 0;
 525         uint64_t size;
 526         boolean_t stretch = B_FALSE;
 527         avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
 528         enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
 529 
 530         if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
 531                 return (NULL);
 532 
 533         first = last = zio;
 534 
 535         if (zio->io_type == ZIO_TYPE_READ)
 536                 maxgap = zfs_vdev_read_gap_limit;
 537 
 538         /*
 539          * We can aggregate I/Os that are sufficiently adjacent and of
 540          * the same flavor, as expressed by the AGG_INHERIT flags.
 541          * The latter requirement is necessary so that certain
 542          * attributes of the I/O, such as whether it's a normal I/O
 543          * or a scrub/resilver, can be preserved in the aggregate.
 544          * We can include optional I/Os, but don't allow them
 545          * to begin a range as they add no benefit in that situation.
 546          */
 547 
 548         /*
 549          * We keep track of the last non-optional I/O.
 550          */
 551         mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
 552 
 553         /*
 554          * Walk backwards through sufficiently contiguous I/Os
 555          * recording the last non-optional I/O.
 556          */
 557         while ((dio = AVL_PREV(t, first)) != NULL &&
 558             (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
 559             IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
 560             IO_GAP(dio, first) <= maxgap &&
 561             dio->io_type == zio->io_type) {
 562                 first = dio;
 563                 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
 564                         mandatory = first;
 565         }
 566 
 567         /*
 568          * Skip any initial optional I/Os.
 569          */
 570         while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
 571                 first = AVL_NEXT(t, first);
 572                 ASSERT(first != NULL);
 573         }
 574 
 575         /*
 576          * Walk forward through sufficiently contiguous I/Os.
 577          * The aggregation limit does not apply to optional i/os, so that
 578          * we can issue contiguous writes even if they are larger than the
 579          * aggregation limit.
 580          */
 581         while ((dio = AVL_NEXT(t, last)) != NULL &&
 582             (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
 583             (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit ||
 584             (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
 585             IO_GAP(last, dio) <= maxgap &&
 586             dio->io_type == zio->io_type) {
 587                 last = dio;
 588                 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
 589                         mandatory = last;
 590         }
 591 
 592         /*
 593          * Now that we've established the range of the I/O aggregation
 594          * we must decide what to do with trailing optional I/Os.
 595          * For reads, there's nothing to do. While we are unable to
 596          * aggregate further, it's possible that a trailing optional
 597          * I/O would allow the underlying device to aggregate with
 598          * subsequent I/Os. We must therefore determine if the next
 599          * non-optional I/O is close enough to make aggregation
 600          * worthwhile.
 601          */
 602         if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
 603                 zio_t *nio = last;
 604                 while ((dio = AVL_NEXT(t, nio)) != NULL &&
 605                     IO_GAP(nio, dio) == 0 &&
 606                     IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
 607                         nio = dio;
 608                         if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
 609                                 stretch = B_TRUE;
 610                                 break;
 611                         }
 612                 }
 613         }
 614 
 615         if (stretch) {
 616                 /*
 617                  * We are going to include an optional io in our aggregated
 618                  * span, thus closing the write gap.  Only mandatory i/os can
 619                  * start aggregated spans, so make sure that the next i/o
 620                  * after our span is mandatory.
 621                  */
 622                 dio = AVL_NEXT(t, last);
 623                 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
 624         } else {
 625                 /* do not include the optional i/o */
 626                 while (last != mandatory && last != first) {
 627                         ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
 628                         last = AVL_PREV(t, last);
 629                         ASSERT(last != NULL);
 630                 }
 631         }
 632 
 633         if (first == last)
 634                 return (NULL);
 635 
 636         size = IO_SPAN(first, last);
 637         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 638 
 639         aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
 640             abd_alloc_for_io(size, B_TRUE), size, first->io_type,
 641             zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
 642             vdev_queue_agg_io_done, NULL);
 643         aio->io_timestamp = first->io_timestamp;
 644 
 645         nio = first;
 646         do {
 647                 dio = nio;
 648                 nio = AVL_NEXT(t, dio);
 649                 ASSERT3U(dio->io_type, ==, aio->io_type);
 650 
 651                 if (dio->io_flags & ZIO_FLAG_NODATA) {
 652                         ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
 653                         abd_zero_off(aio->io_abd,
 654                             dio->io_offset - aio->io_offset, dio->io_size);
 655                 } else if (dio->io_type == ZIO_TYPE_WRITE) {
 656                         abd_copy_off(aio->io_abd, dio->io_abd,
 657                             dio->io_offset - aio->io_offset, 0, dio->io_size);
 658                 }
 659 
 660                 zio_add_child(dio, aio);
 661                 vdev_queue_io_remove(vq, dio);
 662         } while (dio != last);
 663 
 664         /*
 665          * We need to drop the vdev queue's lock to avoid a deadlock that we
 666          * could encounter since this I/O will complete immediately.
 667          */
 668         mutex_exit(&vq->vq_lock);
 669         while ((dio = zio_walk_parents(aio, &zl)) != NULL) {
 670                 zio_vdev_io_bypass(dio);
 671                 zio_execute(dio);
 672         }
 673         mutex_enter(&vq->vq_lock);
 674 
 675         return (aio);
 676 }
 677 
 678 static zio_t *
 679 vdev_queue_io_to_issue(vdev_queue_t *vq)
 680 {
 681         zio_t *zio, *aio;
 682         zio_priority_t p;
 683         avl_index_t idx;
 684         avl_tree_t *tree;
 685         zio_t search;
 686 
 687 again:
 688         ASSERT(MUTEX_HELD(&vq->vq_lock));
 689 
 690         p = vdev_queue_class_to_issue(vq);
 691 
 692         if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
 693                 /* No eligible queued i/os */
 694                 return (NULL);
 695         }
 696 
 697         /*
 698          * For LBA-ordered queues (async / scrub / initializing), issue the
 699          * i/o which follows the most recently issued i/o in LBA (offset) order.
 700          *
 701          * For FIFO queues (sync), issue the i/o with the lowest timestamp.
 702          */
 703         tree = vdev_queue_class_tree(vq, p);
 704         search.io_timestamp = 0;
 705         search.io_offset = vq->vq_last_offset - 1;
 706         VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
 707         zio = avl_nearest(tree, idx, AVL_AFTER);
 708         if (zio == NULL)
 709                 zio = avl_first(tree);
 710         ASSERT3U(zio->io_priority, ==, p);
 711 
 712         aio = vdev_queue_aggregate(vq, zio);
 713         if (aio != NULL)
 714                 zio = aio;
 715         else
 716                 vdev_queue_io_remove(vq, zio);
 717 
 718         /*
 719          * If the I/O is or was optional and therefore has no data, we need to
 720          * simply discard it. We need to drop the vdev queue's lock to avoid a
 721          * deadlock that we could encounter since this I/O will complete
 722          * immediately.
 723          */
 724         if (zio->io_flags & ZIO_FLAG_NODATA) {
 725                 mutex_exit(&vq->vq_lock);
 726                 zio_vdev_io_bypass(zio);
 727                 zio_execute(zio);
 728                 mutex_enter(&vq->vq_lock);
 729                 goto again;
 730         }
 731 
 732         vdev_queue_pending_add(vq, zio);
 733         vq->vq_last_offset = zio->io_offset + zio->io_size;
 734 
 735         return (zio);
 736 }
 737 
 738 zio_t *
 739 vdev_queue_io(zio_t *zio)
 740 {
 741         vdev_queue_t *vq = &zio->io_vd->vdev_queue;
 742         zio_t *nio;
 743 
 744         if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
 745                 return (zio);
 746 
 747         /*
 748          * Children i/os inherent their parent's priority, which might
 749          * not match the child's i/o type.  Fix it up here.
 750          */
 751         if (zio->io_type == ZIO_TYPE_READ) {
 752                 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
 753                     zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
 754                     zio->io_priority != ZIO_PRIORITY_SCRUB &&
 755                     zio->io_priority != ZIO_PRIORITY_REMOVAL &&
 756                     zio->io_priority != ZIO_PRIORITY_INITIALIZING)
 757                         zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
 758         } else {
 759                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 760                 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
 761                     zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
 762                     zio->io_priority != ZIO_PRIORITY_REMOVAL &&
 763                     zio->io_priority != ZIO_PRIORITY_INITIALIZING)
 764                         zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
 765         }
 766 
 767         zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
 768 
 769         mutex_enter(&vq->vq_lock);
 770         zio->io_timestamp = gethrtime();
 771         vdev_queue_io_add(vq, zio);
 772         nio = vdev_queue_io_to_issue(vq);
 773         mutex_exit(&vq->vq_lock);
 774 
 775         if (nio == NULL)
 776                 return (NULL);
 777 
 778         if (nio->io_done == vdev_queue_agg_io_done) {
 779                 zio_nowait(nio);
 780                 return (NULL);
 781         }
 782 
 783         return (nio);
 784 }
 785 
 786 void
 787 vdev_queue_io_done(zio_t *zio)
 788 {
 789         vdev_queue_t *vq = &zio->io_vd->vdev_queue;
 790         zio_t *nio;
 791 
 792         mutex_enter(&vq->vq_lock);
 793 
 794         vdev_queue_pending_remove(vq, zio);
 795 
 796         vq->vq_io_complete_ts = gethrtime();
 797 
 798         while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
 799                 mutex_exit(&vq->vq_lock);
 800                 if (nio->io_done == vdev_queue_agg_io_done) {
 801                         zio_nowait(nio);
 802                 } else {
 803                         zio_vdev_io_reissue(nio);
 804                         zio_execute(nio);
 805                 }
 806                 mutex_enter(&vq->vq_lock);
 807         }
 808 
 809         mutex_exit(&vq->vq_lock);
 810 }
 811 
 812 void
 813 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
 814 {
 815         vdev_queue_t *vq = &zio->io_vd->vdev_queue;
 816         avl_tree_t *tree;
 817 
 818         /*
 819          * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
 820          * code to issue IOs without adding them to the vdev queue. In this
 821          * case, the zio is already going to be issued as quickly as possible
 822          * and so it doesn't need any reprioitization to help.
 823          */
 824         if (zio->io_priority == ZIO_PRIORITY_NOW)
 825                 return;
 826 
 827         ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
 828         ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
 829 
 830         if (zio->io_type == ZIO_TYPE_READ) {
 831                 if (priority != ZIO_PRIORITY_SYNC_READ &&
 832                     priority != ZIO_PRIORITY_ASYNC_READ &&
 833                     priority != ZIO_PRIORITY_SCRUB)
 834                         priority = ZIO_PRIORITY_ASYNC_READ;
 835         } else {
 836                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 837                 if (priority != ZIO_PRIORITY_SYNC_WRITE &&
 838                     priority != ZIO_PRIORITY_ASYNC_WRITE)
 839                         priority = ZIO_PRIORITY_ASYNC_WRITE;
 840         }
 841 
 842         mutex_enter(&vq->vq_lock);
 843 
 844         /*
 845          * If the zio is in none of the queues we can simply change
 846          * the priority. If the zio is waiting to be submitted we must
 847          * remove it from the queue and re-insert it with the new priority.
 848          * Otherwise, the zio is currently active and we cannot change its
 849          * priority.
 850          */
 851         tree = vdev_queue_class_tree(vq, zio->io_priority);
 852         if (avl_find(tree, zio, NULL) == zio) {
 853                 spa_t *spa = zio->io_spa;
 854                 zio_priority_t oldpri = zio->io_priority;
 855 
 856                 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
 857                 zio->io_priority = priority;
 858                 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
 859 
 860                 mutex_enter(&spa->spa_iokstat_lock);
 861                 ASSERT3U(spa->spa_queue_stats[oldpri].spa_queued, >, 0);
 862                 spa->spa_queue_stats[oldpri].spa_queued--;
 863                 spa->spa_queue_stats[zio->io_priority].spa_queued++;
 864                 mutex_exit(&spa->spa_iokstat_lock);
 865         } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
 866                 zio->io_priority = priority;
 867         }
 868 
 869         mutex_exit(&vq->vq_lock);
 870 }
 871 
 872 /*
 873  * As these two methods are only used for load calculations we're not
 874  * concerned if we get an incorrect value on 32bit platforms due to lack of
 875  * vq_lock mutex use here, instead we prefer to keep it lock free for
 876  * performance.
 877  */
 878 int
 879 vdev_queue_length(vdev_t *vd)
 880 {
 881         return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
 882 }
 883 
 884 uint64_t
 885 vdev_queue_last_offset(vdev_t *vd)
 886 {
 887         return (vd->vdev_queue.vq_last_offset);
 888 }