Print this page
    
10570 Need workaround to EFI boot on AMI BIOS
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/sun4v/io/vds.c
          +++ new/usr/src/uts/sun4v/io/vds.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  
    | 
      ↓ open down ↓ | 
    13 lines elided | 
    
      ↑ open up ↑ | 
  
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
       24 + * Copyright (c) 2019, Joyent, Inc.
  24   25   */
  25   26  
  26   27  /*
  27   28   * Virtual disk server
  28   29   */
  29   30  
  30   31  
  31   32  #include <sys/types.h>
  32   33  #include <sys/conf.h>
  33   34  #include <sys/crc32.h>
  34   35  #include <sys/ddi.h>
  35   36  #include <sys/dkio.h>
  36   37  #include <sys/file.h>
  37   38  #include <sys/fs/hsfs_isospec.h>
  38   39  #include <sys/mdeg.h>
  39   40  #include <sys/mhd.h>
  40   41  #include <sys/modhash.h>
  41   42  #include <sys/note.h>
  42   43  #include <sys/pathname.h>
  43   44  #include <sys/sdt.h>
  44   45  #include <sys/sunddi.h>
  45   46  #include <sys/sunldi.h>
  46   47  #include <sys/sysmacros.h>
  47   48  #include <sys/vio_common.h>
  48   49  #include <sys/vio_util.h>
  49   50  #include <sys/vdsk_mailbox.h>
  50   51  #include <sys/vdsk_common.h>
  51   52  #include <sys/vtoc.h>
  52   53  #include <sys/vfs.h>
  53   54  #include <sys/stat.h>
  54   55  #include <sys/scsi/impl/uscsi.h>
  55   56  #include <sys/ontrap.h>
  56   57  #include <vm/seg_map.h>
  57   58  
  58   59  #define ONE_MEGABYTE    (1ULL << 20)
  59   60  #define ONE_GIGABYTE    (1ULL << 30)
  60   61  #define ONE_TERABYTE    (1ULL << 40)
  61   62  
  62   63  /* Virtual disk server initialization flags */
  63   64  #define VDS_LDI                 0x01
  64   65  #define VDS_MDEG                0x02
  65   66  
  66   67  /* Virtual disk server tunable parameters */
  67   68  #define VDS_RETRIES             5
  68   69  #define VDS_LDC_DELAY           1000 /* 1 msecs */
  69   70  #define VDS_DEV_DELAY           10000000 /* 10 secs */
  70   71  #define VDS_NCHAINS             32
  71   72  
  72   73  /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
  73   74  #define VDS_NAME                "virtual-disk-server"
  74   75  
  75   76  #define VD_NAME                 "vd"
  76   77  #define VD_VOLUME_NAME          "vdisk"
  77   78  #define VD_ASCIILABEL           "Virtual Disk"
  78   79  
  79   80  #define VD_CHANNEL_ENDPOINT     "channel-endpoint"
  80   81  #define VD_ID_PROP              "id"
  81   82  #define VD_BLOCK_DEVICE_PROP    "vds-block-device"
  82   83  #define VD_BLOCK_DEVICE_OPTS    "vds-block-device-opts"
  83   84  #define VD_REG_PROP             "reg"
  84   85  
  85   86  /* Virtual disk initialization flags */
  86   87  #define VD_DISK_READY           0x01
  87   88  #define VD_LOCKING              0x02
  88   89  #define VD_LDC                  0x04
  89   90  #define VD_DRING                0x08
  90   91  #define VD_SID                  0x10
  91   92  #define VD_SEQ_NUM              0x20
  92   93  #define VD_SETUP_ERROR          0x40
  93   94  
  94   95  /* Number of backup labels */
  95   96  #define VD_DSKIMG_NUM_BACKUP    5
  96   97  
  97   98  /* Timeout for SCSI I/O */
  98   99  #define VD_SCSI_RDWR_TIMEOUT    30      /* 30 secs */
  99  100  
 100  101  /*
 101  102   * Default number of threads for the I/O queue. In many cases, we will not
 102  103   * receive more than 8 I/O requests at the same time. However there are
 103  104   * cases (for example during the OS installation) where we can have a lot
 104  105   * more (up to the limit of the DRing size).
 105  106   */
 106  107  #define VD_IOQ_NTHREADS         8
 107  108  
 108  109  /* Maximum number of logical partitions */
 109  110  #define VD_MAXPART      (NDKMAP + 1)
 110  111  
 111  112  /*
 112  113   * By Solaris convention, slice/partition 2 represents the entire disk;
 113  114   * unfortunately, this convention does not appear to be codified.
 114  115   */
 115  116  #define VD_ENTIRE_DISK_SLICE    2
 116  117  
 117  118  /* Logical block address for EFI */
 118  119  #define VD_EFI_LBA_GPT          1       /* LBA of the GPT */
 119  120  #define VD_EFI_LBA_GPE          2       /* LBA of the GPE */
 120  121  
 121  122  #define VD_EFI_DEV_SET(dev, vdsk, ioctl)        \
 122  123          VDSK_EFI_DEV_SET(dev, vdsk, ioctl,      \
 123  124              (vdsk)->vdisk_bsize, (vdsk)->vdisk_size)
 124  125  
 125  126  /*
 126  127   * Flags defining the behavior for flushing asynchronous writes used to
 127  128   * performed some write I/O requests.
 128  129   *
 129  130   * The VD_AWFLUSH_IMMEDIATE enables immediate flushing of asynchronous
 130  131   * writes. This ensures that data are committed to the backend when the I/O
 131  132   * request reply is sent to the guest domain so this prevents any data to
 132  133   * be lost in case a service domain unexpectedly crashes.
 133  134   *
 134  135   * The flag VD_AWFLUSH_DEFER indicates that flushing is deferred to another
 135  136   * thread while the request is immediatly marked as completed. In that case,
 136  137   * a guest domain can a receive a reply that its write request is completed
 137  138   * while data haven't been flushed to disk yet.
 138  139   *
 139  140   * Flags VD_AWFLUSH_IMMEDIATE and VD_AWFLUSH_DEFER are mutually exclusive.
 140  141   */
 141  142  #define VD_AWFLUSH_IMMEDIATE    0x01    /* immediate flushing */
 142  143  #define VD_AWFLUSH_DEFER        0x02    /* defer flushing */
 143  144  #define VD_AWFLUSH_GROUP        0x04    /* group requests before flushing */
 144  145  
 145  146  /* Driver types */
 146  147  typedef enum vd_driver {
 147  148          VD_DRIVER_UNKNOWN = 0,  /* driver type unknown  */
 148  149          VD_DRIVER_DISK,         /* disk driver */
 149  150          VD_DRIVER_VOLUME        /* volume driver */
 150  151  } vd_driver_t;
 151  152  
 152  153  #define VD_DRIVER_NAME_LEN      64
 153  154  
 154  155  #define VDS_NUM_DRIVERS (sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
 155  156  
 156  157  typedef struct vd_driver_type {
 157  158          char name[VD_DRIVER_NAME_LEN];  /* driver name */
 158  159          vd_driver_t type;               /* driver type (disk or volume) */
 159  160  } vd_driver_type_t;
 160  161  
 161  162  /*
 162  163   * There is no reliable way to determine if a device is representing a disk
 163  164   * or a volume, especially with pseudo devices. So we maintain a list of well
 164  165   * known drivers and the type of device they represent (either a disk or a
 165  166   * volume).
 166  167   *
 167  168   * The list can be extended by adding a "driver-type-list" entry in vds.conf
 168  169   * with the following syntax:
 169  170   *
 170  171   *      driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
 171  172   *
 172  173   * Where:
 173  174   *      <driver> is the name of a driver (limited to 64 characters)
 174  175   *      <type> is either the string "disk" or "volume"
 175  176   *
 176  177   * Invalid entries in "driver-type-list" will be ignored.
 177  178   *
 178  179   * For example, the following line in vds.conf:
 179  180   *
 180  181   *      driver-type-list="foo:disk","bar:volume";
 181  182   *
 182  183   * defines that "foo" is a disk driver, and driver "bar" is a volume driver.
 183  184   *
 184  185   * When a list is defined in vds.conf, it is checked before the built-in list
 185  186   * (vds_driver_types[]) so that any definition from this list can be overriden
 186  187   * using vds.conf.
 187  188   */
 188  189  vd_driver_type_t vds_driver_types[] = {
 189  190          { "dad",        VD_DRIVER_DISK },       /* Solaris */
 190  191          { "did",        VD_DRIVER_DISK },       /* Sun Cluster */
 191  192          { "dlmfdrv",    VD_DRIVER_DISK },       /* Hitachi HDLM */
 192  193          { "emcp",       VD_DRIVER_DISK },       /* EMC Powerpath */
 193  194          { "lofi",       VD_DRIVER_VOLUME },     /* Solaris */
 194  195          { "md",         VD_DRIVER_VOLUME },     /* Solaris - SVM */
 195  196          { "sd",         VD_DRIVER_DISK },       /* Solaris */
 196  197          { "ssd",        VD_DRIVER_DISK },       /* Solaris */
 197  198          { "vdc",        VD_DRIVER_DISK },       /* Solaris */
 198  199          { "vxdmp",      VD_DRIVER_DISK },       /* Veritas */
 199  200          { "vxio",       VD_DRIVER_VOLUME },     /* Veritas - VxVM */
 200  201          { "zfs",        VD_DRIVER_VOLUME }      /* Solaris */
 201  202  };
 202  203  
 203  204  /* Return a cpp token as a string */
 204  205  #define STRINGIZE(token)        #token
 205  206  
 206  207  /*
 207  208   * Print a message prefixed with the current function name to the message log
 208  209   * (and optionally to the console for verbose boots); these macros use cpp's
 209  210   * concatenation of string literals and C99 variable-length-argument-list
 210  211   * macros
 211  212   */
 212  213  #define PRN(...)        _PRN("?%s():  "__VA_ARGS__, "")
 213  214  #define _PRN(format, ...)                                       \
 214  215          cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
 215  216  
 216  217  /* Return a pointer to the "i"th vdisk dring element */
 217  218  #define VD_DRING_ELEM(i)        ((vd_dring_entry_t *)(void *)   \
 218  219              (vd->dring + (i)*vd->descriptor_size))
 219  220  
 220  221  /* Return the virtual disk client's type as a string (for use in messages) */
 221  222  #define VD_CLIENT(vd)                                                   \
 222  223          (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :        \
 223  224              (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" :    \
 224  225                  (((vd)->xfer_mode == 0) ? "null client" :               \
 225  226                      "unsupported client")))
 226  227  
 227  228  /* Read disk label from a disk image */
 228  229  #define VD_DSKIMG_LABEL_READ(vd, labelp) \
 229  230          vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
 230  231              0, sizeof (struct dk_label))
 231  232  
 232  233  /* Write disk label to a disk image */
 233  234  #define VD_DSKIMG_LABEL_WRITE(vd, labelp)       \
 234  235          vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
 235  236              0, sizeof (struct dk_label))
 236  237  
 237  238  /* Identify if a backend is a disk image */
 238  239  #define VD_DSKIMG(vd)   ((vd)->vdisk_type == VD_DISK_TYPE_DISK &&       \
 239  240          ((vd)->file || (vd)->volume))
 240  241  
 241  242  /* Next index in a write queue */
 242  243  #define VD_WRITE_INDEX_NEXT(vd, id)             \
 243  244          ((((id) + 1) >= vd->dring_len)? 0 : (id) + 1)
 244  245  
 245  246  /* Message for disk access rights reset failure */
 246  247  #define VD_RESET_ACCESS_FAILURE_MSG \
 247  248          "Fail to reset disk access rights for disk %s"
 248  249  
 249  250  /*
 250  251   * Specification of an MD node passed to the MDEG to filter any
 251  252   * 'vport' nodes that do not belong to the specified node. This
 252  253   * template is copied for each vds instance and filled in with
 253  254   * the appropriate 'cfg-handle' value before being passed to the MDEG.
 254  255   */
 255  256  static mdeg_prop_spec_t vds_prop_template[] = {
 256  257          { MDET_PROP_STR,        "name",         VDS_NAME },
 257  258          { MDET_PROP_VAL,        "cfg-handle",   NULL },
 258  259          { MDET_LIST_END,        NULL,           NULL }
 259  260  };
 260  261  
 261  262  #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
 262  263  
 263  264  /*
 264  265   * Matching criteria passed to the MDEG to register interest
 265  266   * in changes to 'virtual-device-port' nodes identified by their
 266  267   * 'id' property.
 267  268   */
 268  269  static md_prop_match_t  vd_prop_match[] = {
 269  270          { MDET_PROP_VAL,        VD_ID_PROP },
 270  271          { MDET_LIST_END,        NULL }
 271  272  };
 272  273  
 273  274  static mdeg_node_match_t vd_match = {"virtual-device-port",
 274  275                                      vd_prop_match};
 275  276  
 276  277  /*
 277  278   * Options for the VD_BLOCK_DEVICE_OPTS property.
 278  279   */
 279  280  #define VD_OPT_RDONLY           0x1     /* read-only  */
 280  281  #define VD_OPT_SLICE            0x2     /* single slice */
 281  282  #define VD_OPT_EXCLUSIVE        0x4     /* exclusive access */
 282  283  
 283  284  #define VD_OPTION_NLEN  128
 284  285  
 285  286  typedef struct vd_option {
 286  287          char vdo_name[VD_OPTION_NLEN];
 287  288          uint64_t vdo_value;
 288  289  } vd_option_t;
 289  290  
 290  291  vd_option_t vd_bdev_options[] = {
 291  292          { "ro",         VD_OPT_RDONLY },
 292  293          { "slice",      VD_OPT_SLICE },
 293  294          { "excl",       VD_OPT_EXCLUSIVE }
 294  295  };
 295  296  
 296  297  /* Debugging macros */
 297  298  #ifdef DEBUG
 298  299  
 299  300  static int      vd_msglevel = 0;
 300  301  
 301  302  #define PR0 if (vd_msglevel > 0)        PRN
 302  303  #define PR1 if (vd_msglevel > 1)        PRN
 303  304  #define PR2 if (vd_msglevel > 2)        PRN
 304  305  
 305  306  #define VD_DUMP_DRING_ELEM(elem)                                        \
 306  307          PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",            \
 307  308              elem->hdr.dstate,                                           \
 308  309              elem->payload.operation,                                    \
 309  310              elem->payload.status,                                       \
 310  311              elem->payload.nbytes,                                       \
 311  312              elem->payload.addr,                                         \
 312  313              elem->payload.ncookies);
 313  314  
 314  315  char *
 315  316  vd_decode_state(int state)
 316  317  {
 317  318          char *str;
 318  319  
 319  320  #define CASE_STATE(_s)  case _s: str = #_s; break;
 320  321  
 321  322          switch (state) {
 322  323          CASE_STATE(VD_STATE_INIT)
 323  324          CASE_STATE(VD_STATE_VER)
 324  325          CASE_STATE(VD_STATE_ATTR)
 325  326          CASE_STATE(VD_STATE_DRING)
 326  327          CASE_STATE(VD_STATE_RDX)
 327  328          CASE_STATE(VD_STATE_DATA)
 328  329          default: str = "unknown"; break;
 329  330          }
 330  331  
 331  332  #undef CASE_STATE
 332  333  
 333  334          return (str);
 334  335  }
 335  336  
 336  337  void
 337  338  vd_decode_tag(vio_msg_t *msg)
 338  339  {
 339  340          char *tstr, *sstr, *estr;
 340  341  
 341  342  #define CASE_TYPE(_s)   case _s: tstr = #_s; break;
 342  343  
 343  344          switch (msg->tag.vio_msgtype) {
 344  345          CASE_TYPE(VIO_TYPE_CTRL)
 345  346          CASE_TYPE(VIO_TYPE_DATA)
 346  347          CASE_TYPE(VIO_TYPE_ERR)
 347  348          default: tstr = "unknown"; break;
 348  349          }
 349  350  
 350  351  #undef CASE_TYPE
 351  352  
 352  353  #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
 353  354  
 354  355          switch (msg->tag.vio_subtype) {
 355  356          CASE_SUBTYPE(VIO_SUBTYPE_INFO)
 356  357          CASE_SUBTYPE(VIO_SUBTYPE_ACK)
 357  358          CASE_SUBTYPE(VIO_SUBTYPE_NACK)
 358  359          default: sstr = "unknown"; break;
 359  360          }
 360  361  
 361  362  #undef CASE_SUBTYPE
 362  363  
 363  364  #define CASE_ENV(_s)    case _s: estr = #_s; break;
 364  365  
 365  366          switch (msg->tag.vio_subtype_env) {
 366  367          CASE_ENV(VIO_VER_INFO)
 367  368          CASE_ENV(VIO_ATTR_INFO)
 368  369          CASE_ENV(VIO_DRING_REG)
 369  370          CASE_ENV(VIO_DRING_UNREG)
 370  371          CASE_ENV(VIO_RDX)
 371  372          CASE_ENV(VIO_PKT_DATA)
 372  373          CASE_ENV(VIO_DESC_DATA)
 373  374          CASE_ENV(VIO_DRING_DATA)
 374  375          default: estr = "unknown"; break;
 375  376          }
 376  377  
 377  378  #undef CASE_ENV
 378  379  
 379  380          PR1("(%x/%x/%x) message : (%s/%s/%s)",
 380  381              msg->tag.vio_msgtype, msg->tag.vio_subtype,
 381  382              msg->tag.vio_subtype_env, tstr, sstr, estr);
 382  383  }
 383  384  
 384  385  #else   /* !DEBUG */
 385  386  
 386  387  #define PR0(...)
 387  388  #define PR1(...)
 388  389  #define PR2(...)
 389  390  
 390  391  #define VD_DUMP_DRING_ELEM(elem)
 391  392  
 392  393  #define vd_decode_state(_s)     (NULL)
 393  394  #define vd_decode_tag(_s)       (NULL)
 394  395  
 395  396  #endif  /* DEBUG */
 396  397  
 397  398  
 398  399  /*
 399  400   * Soft state structure for a vds instance
 400  401   */
 401  402  typedef struct vds {
 402  403          uint_t          initialized;    /* driver inst initialization flags */
 403  404          dev_info_t      *dip;           /* driver inst devinfo pointer */
 404  405          ldi_ident_t     ldi_ident;      /* driver's identifier for LDI */
 405  406          mod_hash_t      *vd_table;      /* table of virtual disks served */
 406  407          mdeg_node_spec_t *ispecp;       /* mdeg node specification */
 407  408          mdeg_handle_t   mdeg;           /* handle for MDEG operations  */
 408  409          vd_driver_type_t *driver_types; /* extra driver types (from vds.conf) */
 409  410          int             num_drivers;    /* num of extra driver types */
 410  411  } vds_t;
 411  412  
 412  413  /*
 413  414   * Types of descriptor-processing tasks
 414  415   */
 415  416  typedef enum vd_task_type {
 416  417          VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */
 417  418          VD_FINAL_RANGE_TASK,    /* task for last in a range of descriptors */
 418  419  } vd_task_type_t;
 419  420  
 420  421  /*
 421  422   * Structure describing the task for processing a descriptor
 422  423   */
 423  424  typedef struct vd_task {
 424  425          struct vd               *vd;            /* vd instance task is for */
 425  426          vd_task_type_t          type;           /* type of descriptor task */
 426  427          int                     index;          /* dring elem index for task */
 427  428          vio_msg_t               *msg;           /* VIO message task is for */
 428  429          size_t                  msglen;         /* length of message content */
 429  430          vd_dring_payload_t      *request;       /* request task will perform */
 430  431          struct buf              buf;            /* buf(9s) for I/O request */
 431  432          ldc_mem_handle_t        mhdl;           /* task memory handle */
 432  433          int                     status;         /* status of processing task */
 433  434          int     (*completef)(struct vd_task *task); /* completion func ptr */
 434  435          uint32_t                write_index;    /* index in the write_queue */
 435  436  } vd_task_t;
 436  437  
 437  438  /*
 438  439   * Soft state structure for a virtual disk instance
 439  440   */
 440  441  typedef struct vd {
 441  442          uint64_t                id;             /* vdisk id */
 442  443          uint_t                  initialized;    /* vdisk initialization flags */
 443  444          uint64_t                operations;     /* bitmask of VD_OPs exported */
 444  445          vio_ver_t               version;        /* ver negotiated with client */
 445  446          vds_t                   *vds;           /* server for this vdisk */
 446  447          ddi_taskq_t             *startq;        /* queue for I/O start tasks */
 447  448          ddi_taskq_t             *completionq;   /* queue for completion tasks */
 448  449          ddi_taskq_t             *ioq;           /* queue for I/O */
 449  450          uint32_t                write_index;    /* next write index */
 450  451          buf_t                   **write_queue;  /* queue for async writes */
 451  452          ldi_handle_t            ldi_handle[V_NUMPAR];   /* LDI slice handles */
 452  453          char                    device_path[MAXPATHLEN + 1]; /* vdisk device */
 453  454          dev_t                   dev[V_NUMPAR];  /* dev numbers for slices */
 454  455          int                     open_flags;     /* open flags */
 455  456          uint_t                  nslices;        /* number of slices we export */
 456  457          size_t                  vdisk_size;     /* number of blocks in vdisk */
 457  458          size_t                  vdisk_bsize;    /* blk size of the vdisk */
 458  459          vd_disk_type_t          vdisk_type;     /* slice or entire disk */
 459  460          vd_disk_label_t         vdisk_label;    /* EFI or VTOC label */
 460  461          vd_media_t              vdisk_media;    /* media type of backing dev. */
 461  462          boolean_t               is_atapi_dev;   /* Is this an IDE CD-ROM dev? */
 462  463          ushort_t                max_xfer_sz;    /* max xfer size in DEV_BSIZE */
 463  464          size_t                  backend_bsize;  /* blk size of backend device */
 464  465          int                     vio_bshift;     /* shift for blk convertion */
 465  466          boolean_t               volume;         /* is vDisk backed by volume */
 466  467          boolean_t               zvol;           /* is vDisk backed by a zvol */
 467  468          boolean_t               file;           /* is vDisk backed by a file? */
 468  469          boolean_t               scsi;           /* is vDisk backed by scsi? */
 469  470          vnode_t                 *file_vnode;    /* file vnode */
 470  471          size_t                  dskimg_size;    /* size of disk image */
 471  472          ddi_devid_t             dskimg_devid;   /* devid for disk image */
 472  473          int                     efi_reserved;   /* EFI reserved slice */
 473  474          caddr_t                 flabel;         /* fake label for slice type */
 474  475          uint_t                  flabel_size;    /* fake label size */
 475  476          uint_t                  flabel_limit;   /* limit of the fake label */
 476  477          struct dk_geom          dk_geom;        /* synthetic for slice type */
 477  478          struct extvtoc          vtoc;           /* synthetic for slice type */
 478  479          vd_slice_t              slices[VD_MAXPART]; /* logical partitions */
 479  480          boolean_t               ownership;      /* disk ownership status */
 480  481          ldc_status_t            ldc_state;      /* LDC connection state */
 481  482          ldc_handle_t            ldc_handle;     /* handle for LDC comm */
 482  483          size_t                  max_msglen;     /* largest LDC message len */
 483  484          vd_state_t              state;          /* client handshake state */
 484  485          uint8_t                 xfer_mode;      /* transfer mode with client */
 485  486          uint32_t                sid;            /* client's session ID */
 486  487          uint64_t                seq_num;        /* message sequence number */
 487  488          uint64_t                dring_ident;    /* identifier of dring */
 488  489          ldc_dring_handle_t      dring_handle;   /* handle for dring ops */
 489  490          uint32_t                descriptor_size;        /* num bytes in desc */
 490  491          uint32_t                dring_len;      /* number of dring elements */
 491  492          uint8_t                 dring_mtype;    /* dring mem map type */
 492  493          caddr_t                 dring;          /* address of dring */
 493  494          caddr_t                 vio_msgp;       /* vio msg staging buffer */
 494  495          vd_task_t               inband_task;    /* task for inband descriptor */
 495  496          vd_task_t               *dring_task;    /* tasks dring elements */
 496  497  
 497  498          kmutex_t                lock;           /* protects variables below */
 498  499          boolean_t               enabled;        /* is vdisk enabled? */
 499  500          boolean_t               reset_state;    /* reset connection state? */
 500  501          boolean_t               reset_ldc;      /* reset LDC channel? */
 501  502  } vd_t;
 502  503  
 503  504  /*
 504  505   * Macros to manipulate the fake label (flabel) for single slice disks.
 505  506   *
 506  507   * If we fake a VTOC label then the fake label consists of only one block
 507  508   * containing the VTOC label (struct dk_label).
 508  509   *
 509  510   * If we fake an EFI label then the fake label consists of a blank block
 510  511   * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t).
 511  512   *
 512  513   */
 513  514  #define VD_LABEL_VTOC_SIZE(lba)                                 \
 514  515          P2ROUNDUP(sizeof (struct dk_label), (lba))
 515  516  
 516  517  #define VD_LABEL_EFI_SIZE(lba)                                  \
 517  518          P2ROUNDUP(2 * (lba) + sizeof (efi_gpe_t) * VD_MAXPART,  \
 518  519              (lba))
 519  520  
 520  521  #define VD_LABEL_VTOC(vd)       \
 521  522                  ((struct dk_label *)(void *)((vd)->flabel))
 522  523  
 523  524  #define VD_LABEL_EFI_GPT(vd, lba)       \
 524  525                  ((efi_gpt_t *)(void *)((vd)->flabel + (lba)))
 525  526  #define VD_LABEL_EFI_GPE(vd, lba)       \
 526  527                  ((efi_gpe_t *)(void *)((vd)->flabel + 2 * (lba)))
 527  528  
 528  529  
 529  530  typedef struct vds_operation {
 530  531          char    *namep;
 531  532          uint8_t operation;
 532  533          int     (*start)(vd_task_t *task);
 533  534          int     (*complete)(vd_task_t *task);
 534  535  } vds_operation_t;
 535  536  
 536  537  typedef struct vd_ioctl {
 537  538          uint8_t         operation;              /* vdisk operation */
 538  539          const char      *operation_name;        /* vdisk operation name */
 539  540          size_t          nbytes;                 /* size of operation buffer */
 540  541          int             cmd;                    /* corresponding ioctl cmd */
 541  542          const char      *cmd_name;              /* ioctl cmd name */
 542  543          void            *arg;                   /* ioctl cmd argument */
 543  544          /* convert input vd_buf to output ioctl_arg */
 544  545          int             (*copyin)(void *vd_buf, size_t, void *ioctl_arg);
 545  546          /* convert input ioctl_arg to output vd_buf */
 546  547          void            (*copyout)(void *ioctl_arg, void *vd_buf);
 547  548          /* write is true if the operation writes any data to the backend */
 548  549          boolean_t       write;
 549  550  } vd_ioctl_t;
 550  551  
 551  552  /* Define trivial copyin/copyout conversion function flag */
 552  553  #define VD_IDENTITY_IN  ((int (*)(void *, size_t, void *))-1)
 553  554  #define VD_IDENTITY_OUT ((void (*)(void *, void *))-1)
 554  555  
 555  556  
 556  557  static int      vds_ldc_retries = VDS_RETRIES;
 557  558  static int      vds_ldc_delay = VDS_LDC_DELAY;
 558  559  static int      vds_dev_retries = VDS_RETRIES;
 559  560  static int      vds_dev_delay = VDS_DEV_DELAY;
 560  561  static void     *vds_state;
 561  562  
 562  563  static short    vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
 563  564  static int      vd_scsi_debug = USCSI_SILENT;
 564  565  
 565  566  /*
 566  567   * Number of threads in the taskq handling vdisk I/O. This can be set up to
 567  568   * the size of the DRing which is the maximum number of I/O we can receive
 568  569   * in parallel. Note that using a high number of threads can improve performance
 569  570   * but this is going to consume a lot of resources if there are many vdisks.
 570  571   */
 571  572  static int      vd_ioq_nthreads = VD_IOQ_NTHREADS;
 572  573  
 573  574  /*
 574  575   * Tunable to define the behavior for flushing asynchronous writes used to
 575  576   * performed some write I/O requests. The default behavior is to group as
 576  577   * much asynchronous writes as possible and to flush them immediatly.
 577  578   *
 578  579   * If the tunable is set to 0 then explicit flushing is disabled. In that
 579  580   * case, data will be flushed by traditional mechanism (like fsflush) but
 580  581   * this might not happen immediatly.
 581  582   *
 582  583   */
 583  584  static int      vd_awflush = VD_AWFLUSH_IMMEDIATE | VD_AWFLUSH_GROUP;
 584  585  
 585  586  /*
 586  587   * Tunable to define the behavior of the service domain if the vdisk server
 587  588   * fails to reset disk exclusive access when a LDC channel is reset. When a
 588  589   * LDC channel is reset the vdisk server will try to reset disk exclusive
 589  590   * access by releasing any SCSI-2 reservation or resetting the disk. If these
 590  591   * actions fail then the default behavior (vd_reset_access_failure = 0) is to
 591  592   * print a warning message. This default behavior can be changed by setting
 592  593   * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
 593  594   * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
 594  595   * the service domain to panic. In both cases, the reset of the service domain
 595  596   * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
 596  597   */
 597  598  static int      vd_reset_access_failure = 0;
 598  599  
 599  600  /*
 600  601   * Tunable for backward compatibility. When this variable is set to B_TRUE,
 601  602   * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
 602  603   * slice disks whether or not they have the "slice" option set. This is
 603  604   * to provide a simple backward compatibility mechanism when upgrading
 604  605   * the vds driver and using a domain configuration created before the
 605  606   * "slice" option was available.
 606  607   */
 607  608  static boolean_t vd_volume_force_slice = B_FALSE;
 608  609  
 609  610  /*
 610  611   * The label of disk images created with some earlier versions of the virtual
 611  612   * disk software is not entirely correct and have an incorrect v_sanity field
 612  613   * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
 613  614   * these images because we are now validating that the disk label (and the
 614  615   * sanity) is correct when a disk image is opened.
 615  616   *
 616  617   * This tunable is set to false to not validate the sanity field and ensure
 617  618   * compatibility. If the tunable is set to true, we will do a strict checking
 618  619   * of the sanity but this can create compatibility problems with old disk
 619  620   * images.
 620  621   */
 621  622  static boolean_t vd_dskimg_validate_sanity = B_FALSE;
 622  623  
 623  624  /*
 624  625   * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings.
 625  626   */
 626  627  static boolean_t vd_direct_mapped_drings = B_TRUE;
 627  628  
 628  629  /*
 629  630   * When a backend is exported as a single-slice disk then we entirely fake
 630  631   * its disk label. So it can be exported either with a VTOC label or with
 631  632   * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all
 632  633   * single-slice disks will be exported with a VTOC label; and if it is set
 633  634   * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with
 634  635   * an EFI label.
 635  636   *
 636  637   * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk
 637  638   * or volume device then it will be exported with the same type of label as
 638  639   * defined on the device. Otherwise if the backend is a file then it will
 639  640   * exported with the disk label type set in the vd_file_slice_label variable.
 640  641   *
 641  642   * Note that if the backend size is greater than 1TB then it will always be
 642  643   * exported with an EFI label no matter what the setting is.
 643  644   */
 644  645  static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK;
 645  646  
 646  647  static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC;
 647  648  
 648  649  /*
 649  650   * Tunable for backward compatibility. If this variable is set to B_TRUE then
 650  651   * single-slice disks are exported as disks with only one slice instead of
 651  652   * faking a complete disk partitioning.
 652  653   */
 653  654  static boolean_t vd_slice_single_slice = B_FALSE;
 654  655  
 655  656  /*
 656  657   * Supported protocol version pairs, from highest (newest) to lowest (oldest)
 657  658   *
 658  659   * Each supported major version should appear only once, paired with (and only
 659  660   * with) its highest supported minor version number (as the protocol requires
 660  661   * supporting all lower minor version numbers as well)
 661  662   */
 662  663  static const vio_ver_t  vds_version[] = {{1, 1}};
 663  664  static const size_t     vds_num_versions =
 664  665      sizeof (vds_version)/sizeof (vds_version[0]);
 665  666  
 666  667  static void vd_free_dring_task(vd_t *vdp);
 667  668  static int vd_setup_vd(vd_t *vd);
 668  669  static int vd_setup_single_slice_disk(vd_t *vd);
 669  670  static int vd_setup_slice_image(vd_t *vd);
 670  671  static int vd_setup_disk_image(vd_t *vd);
 671  672  static int vd_backend_check_size(vd_t *vd);
 672  673  static boolean_t vd_enabled(vd_t *vd);
 673  674  static ushort_t vd_lbl2cksum(struct dk_label *label);
 674  675  static int vd_dskimg_validate_geometry(vd_t *vd);
 675  676  static boolean_t vd_dskimg_is_iso_image(vd_t *vd);
 676  677  static void vd_set_exported_operations(vd_t *vd);
 677  678  static void vd_reset_access(vd_t *vd);
 678  679  static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
 679  680  static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
 680  681  static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
 681  682  static void vds_driver_types_free(vds_t *vds);
 682  683  static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
 683  684      struct dk_label *label);
 684  685  static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
 685  686      struct dk_geom *geom);
 686  687  static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom);
 687  688  static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc);
 688  689  
 689  690  extern int is_pseudo_device(dev_info_t *);
 690  691  
 691  692  /*
 692  693   * Function:
 693  694   *      vd_get_readable_size
 694  695   *
 695  696   * Description:
 696  697   *      Convert a given size in bytes to a human readable format in
 697  698   *      kilobytes, megabytes, gigabytes or terabytes.
 698  699   *
 699  700   * Parameters:
 700  701   *      full_size       - the size to convert in bytes.
 701  702   *      size            - the converted size.
 702  703   *      unit            - the unit of the converted size: 'K' (kilobyte),
 703  704   *                        'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte).
 704  705   *
 705  706   * Return Code:
 706  707   *      none
 707  708   */
 708  709  static void
 709  710  vd_get_readable_size(size_t full_size, size_t *size, char *unit)
 710  711  {
 711  712          if (full_size < (1ULL << 20)) {
 712  713                  *size = full_size >> 10;
 713  714                  *unit = 'K'; /* Kilobyte */
 714  715          } else if (full_size < (1ULL << 30)) {
 715  716                  *size = full_size >> 20;
 716  717                  *unit = 'M'; /* Megabyte */
 717  718          } else if (full_size < (1ULL << 40)) {
 718  719                  *size = full_size >> 30;
 719  720                  *unit = 'G'; /* Gigabyte */
 720  721          } else {
 721  722                  *size = full_size >> 40;
 722  723                  *unit = 'T'; /* Terabyte */
 723  724          }
 724  725  }
 725  726  
 726  727  /*
 727  728   * Function:
 728  729   *      vd_dskimg_io_params
 729  730   *
 730  731   * Description:
 731  732   *      Convert virtual disk I/O parameters (slice, block, length) to
 732  733   *      (offset, length) relative to the disk image and according to
 733  734   *      the virtual disk partitioning.
 734  735   *
 735  736   * Parameters:
 736  737   *      vd              - disk on which the operation is performed.
 737  738   *      slice           - slice to which is the I/O parameters apply.
 738  739   *                        VD_SLICE_NONE indicates that parameters are
 739  740   *                        are relative to the entire virtual disk.
 740  741   *      blkp            - pointer to the starting block relative to the
 741  742   *                        slice; return the starting block relative to
 742  743   *                        the disk image.
 743  744   *      lenp            - pointer to the number of bytes requested; return
 744  745   *                        the number of bytes that can effectively be used.
 745  746   *
 746  747   * Return Code:
 747  748   *      0               - I/O parameters have been successfully converted;
 748  749   *                        blkp and lenp point to the converted values.
 749  750   *      ENODATA         - no data are available for the given I/O parameters;
 750  751   *                        This occurs if the starting block is past the limit
 751  752   *                        of the slice.
 752  753   *      EINVAL          - I/O parameters are invalid.
 753  754   */
 754  755  static int
 755  756  vd_dskimg_io_params(vd_t *vd, int slice, size_t *blkp, size_t *lenp)
 756  757  {
 757  758          size_t blk = *blkp;
 758  759          size_t len = *lenp;
 759  760          size_t offset, maxlen;
 760  761  
 761  762          ASSERT(vd->file || VD_DSKIMG(vd));
 762  763          ASSERT(len > 0);
 763  764          ASSERT(vd->vdisk_bsize == DEV_BSIZE);
 764  765  
 765  766          /*
 766  767           * If a file is exported as a slice then we don't care about the vtoc.
 767  768           * In that case, the vtoc is a fake mainly to make newfs happy and we
 768  769           * handle any I/O as a raw disk access so that we can have access to the
 769  770           * entire backend.
 770  771           */
 771  772          if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
 772  773                  /* raw disk access */
 773  774                  offset = blk * DEV_BSIZE;
 774  775                  if (offset >= vd->dskimg_size) {
 775  776                          /* offset past the end of the disk */
 776  777                          PR0("offset (0x%lx) >= size (0x%lx)",
 777  778                              offset, vd->dskimg_size);
 778  779                          return (ENODATA);
 779  780                  }
 780  781                  maxlen = vd->dskimg_size - offset;
 781  782          } else {
 782  783                  ASSERT(slice >= 0 && slice < V_NUMPAR);
 783  784  
 784  785                  /*
 785  786                   * v1.0 vDisk clients depended on the server not verifying
 786  787                   * the label of a unformatted disk.  This "feature" is
 787  788                   * maintained for backward compatibility but all versions
 788  789                   * from v1.1 onwards must do the right thing.
 789  790                   */
 790  791                  if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
 791  792                      vio_ver_is_supported(vd->version, 1, 1)) {
 792  793                          (void) vd_dskimg_validate_geometry(vd);
 793  794                          if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
 794  795                                  PR0("Unknown disk label, can't do I/O "
 795  796                                      "from slice %d", slice);
 796  797                                  return (EINVAL);
 797  798                          }
 798  799                  }
 799  800  
 800  801                  if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
 801  802                          ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
 802  803                  } else {
 803  804                          ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
 804  805                  }
 805  806  
 806  807                  if (blk >= vd->slices[slice].nblocks) {
 807  808                          /* address past the end of the slice */
 808  809                          PR0("req_addr (0x%lx) >= psize (0x%lx)",
 809  810                              blk, vd->slices[slice].nblocks);
 810  811                          return (ENODATA);
 811  812                  }
 812  813  
 813  814                  offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
 814  815                  maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
 815  816          }
 816  817  
 817  818          /*
 818  819           * If the requested size is greater than the size
 819  820           * of the partition, truncate the read/write.
 820  821           */
 821  822          if (len > maxlen) {
 822  823                  PR0("I/O size truncated to %lu bytes from %lu bytes",
 823  824                      maxlen, len);
 824  825                  len = maxlen;
 825  826          }
 826  827  
 827  828          /*
 828  829           * We have to ensure that we are reading/writing into the mmap
 829  830           * range. If we have a partial disk image (e.g. an image of
 830  831           * s0 instead s2) the system can try to access slices that
 831  832           * are not included into the disk image.
 832  833           */
 833  834          if ((offset + len) > vd->dskimg_size) {
 834  835                  PR0("offset + nbytes (0x%lx + 0x%lx) > "
 835  836                      "dskimg_size (0x%lx)", offset, len, vd->dskimg_size);
 836  837                  return (EINVAL);
 837  838          }
 838  839  
 839  840          *blkp = offset / DEV_BSIZE;
 840  841          *lenp = len;
 841  842  
 842  843          return (0);
 843  844  }
 844  845  
 845  846  /*
 846  847   * Function:
 847  848   *      vd_dskimg_rw
 848  849   *
 849  850   * Description:
 850  851   *      Read or write to a disk image. It handles the case where the disk
 851  852   *      image is a file or a volume exported as a full disk or a file
 852  853   *      exported as single-slice disk. Read or write to volumes exported as
 853  854   *      single slice disks are done by directly using the ldi interface.
 854  855   *
 855  856   * Parameters:
 856  857   *      vd              - disk on which the operation is performed.
 857  858   *      slice           - slice on which the operation is performed,
 858  859   *                        VD_SLICE_NONE indicates that the operation
 859  860   *                        is done using an absolute disk offset.
 860  861   *      operation       - operation to execute: read (VD_OP_BREAD) or
 861  862   *                        write (VD_OP_BWRITE).
 862  863   *      data            - buffer where data are read to or written from.
 863  864   *      blk             - starting block for the operation.
 864  865   *      len             - number of bytes to read or write.
 865  866   *
 866  867   * Return Code:
 867  868   *      n >= 0          - success, n indicates the number of bytes read
 868  869   *                        or written.
 869  870   *      -1              - error.
 870  871   */
 871  872  static ssize_t
 872  873  vd_dskimg_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t offset,
 873  874      size_t len)
 874  875  {
 875  876          ssize_t resid;
 876  877          struct buf buf;
 877  878          int status;
 878  879  
 879  880          ASSERT(vd->file || VD_DSKIMG(vd));
 880  881          ASSERT(len > 0);
 881  882          ASSERT(vd->vdisk_bsize == DEV_BSIZE);
 882  883  
 883  884          if ((status = vd_dskimg_io_params(vd, slice, &offset, &len)) != 0)
 884  885                  return ((status == ENODATA)? 0: -1);
 885  886  
 886  887          if (vd->volume) {
 887  888  
 888  889                  bioinit(&buf);
 889  890                  buf.b_flags     = B_BUSY |
 890  891                      ((operation == VD_OP_BREAD)? B_READ : B_WRITE);
 891  892                  buf.b_bcount    = len;
 892  893                  buf.b_lblkno    = offset;
 893  894                  buf.b_edev      = vd->dev[0];
 894  895                  buf.b_un.b_addr = data;
 895  896  
 896  897                  /*
 897  898                   * We use ldi_strategy() and not ldi_read()/ldi_write() because
 898  899                   * the read/write functions of the underlying driver may try to
 899  900                   * lock pages of the data buffer, and this requires the data
 900  901                   * buffer to be kmem_alloc'ed (and not allocated on the stack).
 901  902                   *
 902  903                   * Also using ldi_strategy() ensures that writes are immediatly
 903  904                   * commited and not cached as this may be the case with
 904  905                   * ldi_write() (for example with a ZFS volume).
 905  906                   */
 906  907                  if (ldi_strategy(vd->ldi_handle[0], &buf) != 0) {
 907  908                          biofini(&buf);
 908  909                          return (-1);
 909  910                  }
 910  911  
 911  912                  if (biowait(&buf) != 0) {
 912  913                          biofini(&buf);
 913  914                          return (-1);
 914  915                  }
 915  916  
 916  917                  resid = buf.b_resid;
 917  918                  biofini(&buf);
 918  919  
 919  920                  ASSERT(resid <= len);
 920  921                  return (len - resid);
 921  922          }
 922  923  
 923  924          ASSERT(vd->file);
 924  925  
 925  926          status = vn_rdwr((operation == VD_OP_BREAD)? UIO_READ : UIO_WRITE,
 926  927              vd->file_vnode, data, len, offset * DEV_BSIZE, UIO_SYSSPACE, FSYNC,
 927  928              RLIM64_INFINITY, kcred, &resid);
 928  929  
 929  930          if (status != 0)
 930  931                  return (-1);
 931  932  
 932  933          return (len);
 933  934  }
 934  935  
 935  936  /*
 936  937   * Function:
 937  938   *      vd_build_default_label
 938  939   *
 939  940   * Description:
 940  941   *      Return a default label for a given disk size. This is used when the disk
 941  942   *      does not have a valid VTOC so that the user can get a valid default
 942  943   *      configuration. The default label has all slice sizes set to 0 (except
 943  944   *      slice 2 which is the entire disk) to force the user to write a valid
 944  945   *      label onto the disk image.
 945  946   *
 946  947   * Parameters:
 947  948   *      disk_size       - the disk size in bytes
 948  949   *      bsize           - the disk block size in bytes
 949  950   *      label           - the returned default label.
 950  951   *
 951  952   * Return Code:
 952  953   *      none.
 953  954   */
 954  955  static void
 955  956  vd_build_default_label(size_t disk_size, size_t bsize, struct dk_label *label)
 956  957  {
 957  958          size_t size;
 958  959          char unit;
 959  960  
 960  961          ASSERT(bsize > 0);
 961  962  
 962  963          bzero(label, sizeof (struct dk_label));
 963  964  
 964  965          /*
 965  966           * Ideally we would like the cylinder size (nsect * nhead) to be the
 966  967           * same whatever the disk size is. That way the VTOC label could be
 967  968           * easily updated in case the disk size is increased (keeping the
 968  969           * same cylinder size allows to preserve the existing partitioning
 969  970           * when updating the VTOC label). But it is not possible to have
 970  971           * a fixed cylinder size and to cover all disk size.
 971  972           *
 972  973           * So we define different cylinder sizes depending on the disk size.
 973  974           * The cylinder size is chosen so that we don't have too few cylinders
 974  975           * for a small disk image, or so many on a big disk image that you
 975  976           * waste space for backup superblocks or cylinder group structures.
 976  977           * Also we must have a resonable number of cylinders and sectors so
 977  978           * that newfs can run using default values.
 978  979           *
 979  980           *      +-----------+--------+---------+--------+
 980  981           *      | disk_size |  < 2MB | 2MB-4GB | >= 8GB |
 981  982           *      +-----------+--------+---------+--------+
 982  983           *      | nhead     |    1   |     1   |    96  |
 983  984           *      | nsect     |  200   |   600   |   768  |
 984  985           *      +-----------+--------+---------+--------+
 985  986           *
 986  987           * Other parameters are computed from these values:
 987  988           *
 988  989           *      pcyl = disk_size / (nhead * nsect * 512)
 989  990           *      acyl = (pcyl > 2)? 2 : 0
 990  991           *      ncyl = pcyl - acyl
 991  992           *
 992  993           * The maximum number of cylinder is 65535 so this allows to define a
 993  994           * geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB
 994  995           * which is more than enough to cover the maximum size allowed by the
 995  996           * extended VTOC format (2TB).
 996  997           */
 997  998  
 998  999          if (disk_size >= 8 * ONE_GIGABYTE) {
 999 1000  
1000 1001                  label->dkl_nhead = 96;
1001 1002                  label->dkl_nsect = 768;
1002 1003  
1003 1004          } else if (disk_size >= 2 * ONE_MEGABYTE) {
1004 1005  
1005 1006                  label->dkl_nhead = 1;
1006 1007                  label->dkl_nsect = 600;
1007 1008  
1008 1009          } else {
1009 1010  
1010 1011                  label->dkl_nhead = 1;
1011 1012                  label->dkl_nsect = 200;
1012 1013          }
1013 1014  
1014 1015          label->dkl_pcyl = disk_size /
1015 1016              (label->dkl_nsect * label->dkl_nhead * bsize);
1016 1017  
1017 1018          if (label->dkl_pcyl == 0)
1018 1019                  label->dkl_pcyl = 1;
1019 1020  
1020 1021          label->dkl_acyl = 0;
1021 1022  
1022 1023          if (label->dkl_pcyl > 2)
1023 1024                  label->dkl_acyl = 2;
1024 1025  
1025 1026          label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
1026 1027          label->dkl_write_reinstruct = 0;
1027 1028          label->dkl_read_reinstruct = 0;
1028 1029          label->dkl_rpm = 7200;
1029 1030          label->dkl_apc = 0;
1030 1031          label->dkl_intrlv = 0;
1031 1032  
1032 1033          PR0("requested disk size: %ld bytes\n", disk_size);
1033 1034          PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
1034 1035              label->dkl_nhead, label->dkl_nsect);
1035 1036          PR0("provided disk size: %ld bytes\n", (uint64_t)
1036 1037              (label->dkl_pcyl * label->dkl_nhead *
1037 1038              label->dkl_nsect * bsize));
1038 1039  
1039 1040          vd_get_readable_size(disk_size, &size, &unit);
1040 1041  
1041 1042          /*
1042 1043           * We must have a correct label name otherwise format(1m) will
1043 1044           * not recognized the disk as labeled.
1044 1045           */
1045 1046          (void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
1046 1047              "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
1047 1048              size, unit,
1048 1049              label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
1049 1050              label->dkl_nsect);
1050 1051  
1051 1052          /* default VTOC */
1052 1053          label->dkl_vtoc.v_version = V_EXTVERSION;
1053 1054          label->dkl_vtoc.v_nparts = V_NUMPAR;
1054 1055          label->dkl_vtoc.v_sanity = VTOC_SANE;
1055 1056          label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
1056 1057          label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
1057 1058          label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
1058 1059              label->dkl_nhead * label->dkl_nsect;
1059 1060          label->dkl_magic = DKL_MAGIC;
1060 1061          label->dkl_cksum = vd_lbl2cksum(label);
1061 1062  }
1062 1063  
1063 1064  /*
1064 1065   * Function:
1065 1066   *      vd_dskimg_set_vtoc
1066 1067   *
1067 1068   * Description:
1068 1069   *      Set the vtoc of a disk image by writing the label and backup
1069 1070   *      labels into the disk image backend.
1070 1071   *
1071 1072   * Parameters:
1072 1073   *      vd              - disk on which the operation is performed.
1073 1074   *      label           - the data to be written.
1074 1075   *
1075 1076   * Return Code:
1076 1077   *      0               - success.
1077 1078   *      n > 0           - error, n indicates the errno code.
1078 1079   */
1079 1080  static int
1080 1081  vd_dskimg_set_vtoc(vd_t *vd, struct dk_label *label)
1081 1082  {
1082 1083          size_t blk, sec, cyl, head, cnt;
1083 1084  
1084 1085          ASSERT(VD_DSKIMG(vd));
1085 1086  
1086 1087          if (VD_DSKIMG_LABEL_WRITE(vd, label) < 0) {
1087 1088                  PR0("fail to write disk label");
1088 1089                  return (EIO);
1089 1090          }
1090 1091  
1091 1092          /*
1092 1093           * Backup labels are on the last alternate cylinder's
1093 1094           * first five odd sectors.
1094 1095           */
1095 1096          if (label->dkl_acyl == 0) {
1096 1097                  PR0("no alternate cylinder, can not store backup labels");
1097 1098                  return (0);
1098 1099          }
1099 1100  
1100 1101          cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
1101 1102          head = label->dkl_nhead - 1;
1102 1103  
1103 1104          blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
1104 1105              (head * label->dkl_nsect);
1105 1106  
1106 1107          /*
1107 1108           * Write the backup labels. Make sure we don't try to write past
1108 1109           * the last cylinder.
1109 1110           */
1110 1111          sec = 1;
1111 1112  
1112 1113          for (cnt = 0; cnt < VD_DSKIMG_NUM_BACKUP; cnt++) {
1113 1114  
1114 1115                  if (sec >= label->dkl_nsect) {
1115 1116                          PR0("not enough sector to store all backup labels");
1116 1117                          return (0);
1117 1118                  }
1118 1119  
1119 1120                  if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1120 1121                      (caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) {
1121 1122                          PR0("error writing backup label at block %lu\n",
1122 1123                              blk + sec);
1123 1124                          return (EIO);
1124 1125                  }
1125 1126  
1126 1127                  PR1("wrote backup label at block %lu\n", blk + sec);
1127 1128  
1128 1129                  sec += 2;
1129 1130          }
1130 1131  
1131 1132          return (0);
1132 1133  }
1133 1134  
1134 1135  /*
1135 1136   * Function:
1136 1137   *      vd_dskimg_get_devid_block
1137 1138   *
1138 1139   * Description:
1139 1140   *      Return the block number where the device id is stored.
1140 1141   *
1141 1142   * Parameters:
1142 1143   *      vd              - disk on which the operation is performed.
1143 1144   *      blkp            - pointer to the block number
1144 1145   *
1145 1146   * Return Code:
1146 1147   *      0               - success
1147 1148   *      ENOSPC          - disk has no space to store a device id
1148 1149   */
1149 1150  static int
1150 1151  vd_dskimg_get_devid_block(vd_t *vd, size_t *blkp)
1151 1152  {
1152 1153          diskaddr_t spc, head, cyl;
1153 1154  
1154 1155          ASSERT(VD_DSKIMG(vd));
1155 1156  
1156 1157          if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
1157 1158                  /*
1158 1159                   * If no label is defined we don't know where to find
1159 1160                   * a device id.
1160 1161                   */
1161 1162                  return (ENOSPC);
1162 1163          }
1163 1164  
1164 1165          if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1165 1166                  /*
1166 1167                   * For an EFI disk, the devid is at the beginning of
1167 1168                   * the reserved slice
1168 1169                   */
1169 1170                  if (vd->efi_reserved == -1) {
1170 1171                          PR0("EFI disk has no reserved slice");
1171 1172                          return (ENOSPC);
1172 1173                  }
1173 1174  
1174 1175                  *blkp = vd->slices[vd->efi_reserved].start;
1175 1176                  return (0);
1176 1177          }
1177 1178  
1178 1179          ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1179 1180  
1180 1181          /* this geometry doesn't allow us to have a devid */
1181 1182          if (vd->dk_geom.dkg_acyl < 2) {
1182 1183                  PR0("not enough alternate cylinder available for devid "
1183 1184                      "(acyl=%u)", vd->dk_geom.dkg_acyl);
1184 1185                  return (ENOSPC);
1185 1186          }
1186 1187  
1187 1188          /* the devid is in on the track next to the last cylinder */
1188 1189          cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
1189 1190          spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1190 1191          head = vd->dk_geom.dkg_nhead - 1;
1191 1192  
1192 1193          *blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
1193 1194              (head * vd->dk_geom.dkg_nsect) + 1;
1194 1195  
1195 1196          return (0);
1196 1197  }
1197 1198  
1198 1199  /*
1199 1200   * Return the checksum of a disk block containing an on-disk devid.
1200 1201   */
1201 1202  static uint_t
1202 1203  vd_dkdevid2cksum(struct dk_devid *dkdevid)
1203 1204  {
1204 1205          uint_t chksum, *ip;
1205 1206          int i;
1206 1207  
1207 1208          chksum = 0;
1208 1209          ip = (void *)dkdevid;
1209 1210          for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
1210 1211                  chksum ^= ip[i];
1211 1212  
1212 1213          return (chksum);
1213 1214  }
1214 1215  
1215 1216  /*
1216 1217   * Function:
1217 1218   *      vd_dskimg_read_devid
1218 1219   *
1219 1220   * Description:
1220 1221   *      Read the device id stored on a disk image.
1221 1222   *
1222 1223   * Parameters:
1223 1224   *      vd              - disk on which the operation is performed.
1224 1225   *      devid           - the return address of the device ID.
1225 1226   *
1226 1227   * Return Code:
1227 1228   *      0               - success
1228 1229   *      EIO             - I/O error while trying to access the disk image
1229 1230   *      EINVAL          - no valid device id was found
1230 1231   *      ENOSPC          - disk has no space to store a device id
1231 1232   */
1232 1233  static int
1233 1234  vd_dskimg_read_devid(vd_t *vd, ddi_devid_t *devid)
1234 1235  {
1235 1236          struct dk_devid *dkdevid;
1236 1237          size_t blk;
1237 1238          uint_t chksum;
1238 1239          int status, sz;
1239 1240  
1240 1241          ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1241 1242  
1242 1243          if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1243 1244                  return (status);
1244 1245  
1245 1246          dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1246 1247  
1247 1248          /* get the devid */
1248 1249          if ((vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
1249 1250              DEV_BSIZE)) < 0) {
1250 1251                  PR0("error reading devid block at %lu", blk);
1251 1252                  status = EIO;
1252 1253                  goto done;
1253 1254          }
1254 1255  
1255 1256          /* validate the revision */
1256 1257          if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1257 1258              (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
1258 1259                  PR0("invalid devid found at block %lu (bad revision)", blk);
1259 1260                  status = EINVAL;
1260 1261                  goto done;
1261 1262          }
1262 1263  
1263 1264          /* compute checksum */
1264 1265          chksum = vd_dkdevid2cksum(dkdevid);
1265 1266  
1266 1267          /* compare the checksums */
1267 1268          if (DKD_GETCHKSUM(dkdevid) != chksum) {
1268 1269                  PR0("invalid devid found at block %lu (bad checksum)", blk);
1269 1270                  status = EINVAL;
1270 1271                  goto done;
1271 1272          }
1272 1273  
1273 1274          /* validate the device id */
1274 1275          if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
1275 1276                  PR0("invalid devid found at block %lu", blk);
1276 1277                  status = EINVAL;
1277 1278                  goto done;
1278 1279          }
1279 1280  
1280 1281          PR1("devid read at block %lu", blk);
1281 1282  
1282 1283          sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
1283 1284          *devid = kmem_alloc(sz, KM_SLEEP);
1284 1285          bcopy(&dkdevid->dkd_devid, *devid, sz);
1285 1286  
1286 1287  done:
1287 1288          kmem_free(dkdevid, DEV_BSIZE);
1288 1289          return (status);
1289 1290  
1290 1291  }
1291 1292  
1292 1293  /*
1293 1294   * Function:
1294 1295   *      vd_dskimg_write_devid
1295 1296   *
1296 1297   * Description:
1297 1298   *      Write a device id into disk image.
1298 1299   *
1299 1300   * Parameters:
1300 1301   *      vd              - disk on which the operation is performed.
1301 1302   *      devid           - the device ID to store.
1302 1303   *
1303 1304   * Return Code:
1304 1305   *      0               - success
1305 1306   *      EIO             - I/O error while trying to access the disk image
1306 1307   *      ENOSPC          - disk has no space to store a device id
1307 1308   */
1308 1309  static int
1309 1310  vd_dskimg_write_devid(vd_t *vd, ddi_devid_t devid)
1310 1311  {
1311 1312          struct dk_devid *dkdevid;
1312 1313          uint_t chksum;
1313 1314          size_t blk;
1314 1315          int status;
1315 1316  
1316 1317          ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1317 1318  
1318 1319          if (devid == NULL) {
1319 1320                  /* nothing to write */
1320 1321                  return (0);
1321 1322          }
1322 1323  
1323 1324          if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1324 1325                  return (status);
1325 1326  
1326 1327          dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1327 1328  
1328 1329          /* set revision */
1329 1330          dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1330 1331          dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1331 1332  
1332 1333          /* copy devid */
1333 1334          bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1334 1335  
1335 1336          /* compute checksum */
1336 1337          chksum = vd_dkdevid2cksum(dkdevid);
1337 1338  
1338 1339          /* set checksum */
1339 1340          DKD_FORMCHKSUM(chksum, dkdevid);
1340 1341  
1341 1342          /* store the devid */
1342 1343          if ((status = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1343 1344              (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1344 1345                  PR0("Error writing devid block at %lu", blk);
1345 1346                  status = EIO;
1346 1347          } else {
1347 1348                  PR1("devid written at block %lu", blk);
1348 1349                  status = 0;
1349 1350          }
1350 1351  
1351 1352          kmem_free(dkdevid, DEV_BSIZE);
1352 1353          return (status);
1353 1354  }
1354 1355  
1355 1356  /*
1356 1357   * Function:
1357 1358   *      vd_do_scsi_rdwr
1358 1359   *
1359 1360   * Description:
1360 1361   *      Read or write to a SCSI disk using an absolute disk offset.
1361 1362   *
1362 1363   * Parameters:
1363 1364   *      vd              - disk on which the operation is performed.
1364 1365   *      operation       - operation to execute: read (VD_OP_BREAD) or
1365 1366   *                        write (VD_OP_BWRITE).
1366 1367   *      data            - buffer where data are read to or written from.
1367 1368   *      blk             - starting block for the operation.
1368 1369   *      len             - number of bytes to read or write.
1369 1370   *
1370 1371   * Return Code:
1371 1372   *      0               - success
1372 1373   *      n != 0          - error.
1373 1374   */
1374 1375  static int
1375 1376  vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1376 1377  {
1377 1378          struct uscsi_cmd ucmd;
1378 1379          union scsi_cdb cdb;
1379 1380          int nsectors, nblk;
1380 1381          int max_sectors;
1381 1382          int status, rval;
1382 1383  
1383 1384          ASSERT(!vd->file);
1384 1385          ASSERT(!vd->volume);
1385 1386          ASSERT(vd->vdisk_bsize > 0);
1386 1387  
1387 1388          max_sectors = vd->max_xfer_sz;
1388 1389          nblk = (len / vd->vdisk_bsize);
1389 1390  
1390 1391          if (len % vd->vdisk_bsize != 0)
1391 1392                  return (EINVAL);
1392 1393  
1393 1394          /*
1394 1395           * Build and execute the uscsi ioctl.  We build a group0, group1
1395 1396           * or group4 command as necessary, since some targets
1396 1397           * do not support group1 commands.
1397 1398           */
1398 1399          while (nblk) {
1399 1400  
1400 1401                  bzero(&ucmd, sizeof (ucmd));
1401 1402                  bzero(&cdb, sizeof (cdb));
1402 1403  
1403 1404                  nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1404 1405  
1405 1406                  /*
1406 1407                   * Some of the optical drives on sun4v machines are ATAPI
1407 1408                   * devices which use Group 1 Read/Write commands so we need
1408 1409                   * to explicitly check a flag which is set when a domain
1409 1410                   * is bound.
1410 1411                   */
1411 1412                  if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1412 1413                          FORMG0ADDR(&cdb, blk);
1413 1414                          FORMG0COUNT(&cdb, (uchar_t)nsectors);
1414 1415                          ucmd.uscsi_cdblen = CDB_GROUP0;
1415 1416                  } else if (blk > 0xffffffff) {
1416 1417                          FORMG4LONGADDR(&cdb, blk);
1417 1418                          FORMG4COUNT(&cdb, nsectors);
1418 1419                          ucmd.uscsi_cdblen = CDB_GROUP4;
1419 1420                          cdb.scc_cmd |= SCMD_GROUP4;
1420 1421                  } else {
1421 1422                          FORMG1ADDR(&cdb, blk);
1422 1423                          FORMG1COUNT(&cdb, nsectors);
1423 1424                          ucmd.uscsi_cdblen = CDB_GROUP1;
1424 1425                          cdb.scc_cmd |= SCMD_GROUP1;
1425 1426                  }
1426 1427                  ucmd.uscsi_cdb = (caddr_t)&cdb;
1427 1428                  ucmd.uscsi_bufaddr = data;
1428 1429                  ucmd.uscsi_buflen = nsectors * vd->backend_bsize;
1429 1430                  ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1430 1431                  /*
1431 1432                   * Set flags so that the command is isolated from normal
1432 1433                   * commands and no error message is printed.
1433 1434                   */
1434 1435                  ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1435 1436  
1436 1437                  if (operation == VD_OP_BREAD) {
1437 1438                          cdb.scc_cmd |= SCMD_READ;
1438 1439                          ucmd.uscsi_flags |= USCSI_READ;
1439 1440                  } else {
1440 1441                          cdb.scc_cmd |= SCMD_WRITE;
1441 1442                  }
1442 1443  
1443 1444                  status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1444 1445                      USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1445 1446                      kcred, &rval);
1446 1447  
1447 1448                  if (status == 0)
1448 1449                          status = ucmd.uscsi_status;
1449 1450  
1450 1451                  if (status != 0)
1451 1452                          break;
1452 1453  
1453 1454                  /*
1454 1455                   * Check if partial DMA breakup is required. If so, reduce
1455 1456                   * the request size by half and retry the last request.
1456 1457                   */
1457 1458                  if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1458 1459                          max_sectors >>= 1;
1459 1460                          if (max_sectors <= 0) {
1460 1461                                  status = EIO;
1461 1462                                  break;
1462 1463                          }
1463 1464                          continue;
1464 1465                  }
1465 1466  
1466 1467                  if (ucmd.uscsi_resid != 0) {
1467 1468                          status = EIO;
1468 1469                          break;
1469 1470                  }
1470 1471  
1471 1472                  blk += nsectors;
1472 1473                  nblk -= nsectors;
1473 1474                  data += nsectors * vd->vdisk_bsize;
1474 1475          }
1475 1476  
1476 1477          return (status);
1477 1478  }
1478 1479  
1479 1480  /*
1480 1481   * Function:
1481 1482   *      vd_scsi_rdwr
1482 1483   *
1483 1484   * Description:
1484 1485   *      Wrapper function to read or write to a SCSI disk using an absolute
1485 1486   *      disk offset. It checks the blocksize of the underlying device and,
1486 1487   *      if necessary, adjusts the buffers accordingly before calling
1487 1488   *      vd_do_scsi_rdwr() to do the actual read or write.
1488 1489   *
1489 1490   * Parameters:
1490 1491   *      vd              - disk on which the operation is performed.
1491 1492   *      operation       - operation to execute: read (VD_OP_BREAD) or
1492 1493   *                        write (VD_OP_BWRITE).
1493 1494   *      data            - buffer where data are read to or written from.
1494 1495   *      blk             - starting block for the operation.
1495 1496   *      len             - number of bytes to read or write.
1496 1497   *
1497 1498   * Return Code:
1498 1499   *      0               - success
1499 1500   *      n != 0          - error.
1500 1501   */
1501 1502  static int
1502 1503  vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1503 1504  {
1504 1505          int     rv;
1505 1506  
1506 1507          size_t  pblk;   /* physical device block number of data on device */
1507 1508          size_t  delta;  /* relative offset between pblk and vblk */
1508 1509          size_t  pnblk;  /* number of physical blocks to be read from device */
1509 1510          size_t  plen;   /* length of data to be read from physical device */
1510 1511          char    *buf;   /* buffer area to fit physical device's block size */
1511 1512  
1512 1513          if (vd->backend_bsize == 0) {
1513 1514                  /*
1514 1515                   * The block size was not available during the attach,
1515 1516                   * try to update it now.
1516 1517                   */
1517 1518                  if (vd_backend_check_size(vd) != 0)
1518 1519                          return (EIO);
1519 1520          }
1520 1521  
1521 1522          /*
1522 1523           * If the vdisk block size and the block size of the underlying device
1523 1524           * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1524 1525           * to create a buffer large enough to handle the device's block size
1525 1526           * and adjust the block to be read from and the amount of data to
1526 1527           * read to correspond with the device's block size.
1527 1528           */
1528 1529          if (vd->vdisk_bsize == vd->backend_bsize)
1529 1530                  return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1530 1531  
1531 1532          if (vd->vdisk_bsize > vd->backend_bsize)
1532 1533                  return (EINVAL);
1533 1534  
1534 1535          /*
1535 1536           * Writing of physical block sizes larger than the virtual block size
1536 1537           * is not supported. This would be added if/when support for guests
1537 1538           * writing to DVDs is implemented.
1538 1539           */
1539 1540          if (operation == VD_OP_BWRITE)
1540 1541                  return (ENOTSUP);
1541 1542  
1542 1543          /* BEGIN CSTYLED */
1543 1544          /*
1544 1545           * Below is a diagram showing the relationship between the physical
1545 1546           * and virtual blocks. If the virtual blocks marked by 'X' below are
1546 1547           * requested, then the physical blocks denoted by 'Y' are read.
1547 1548           *
1548 1549           *           vblk
1549 1550           *             |      vlen
1550 1551           *             |<--------------->|
1551 1552           *             v                 v
1552 1553           *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1553 1554           *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1554 1555           *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   vd->vdisk_bsize
1555 1556           *          :  :                 :  :
1556 1557           *         >:==:< delta          :  :
1557 1558           *          :  :                 :  :
1558 1559           *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1559 1560           *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1560 1561           *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->backend_bsize
1561 1562           *          ^                       ^
1562 1563           *          |<--------------------->|
1563 1564           *          |         plen
1564 1565           *         pblk 
1565 1566           */
1566 1567          /* END CSTYLED */
1567 1568          pblk = (vblk * vd->vdisk_bsize) / vd->backend_bsize;
1568 1569          delta = (vblk * vd->vdisk_bsize) - (pblk * vd->backend_bsize);
1569 1570          pnblk = ((delta + vlen - 1) / vd->backend_bsize) + 1;
1570 1571          plen = pnblk * vd->backend_bsize;
1571 1572  
1572 1573          PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1573 1574  
1574 1575          buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1575 1576          rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1576 1577          bcopy(buf + delta, data, vlen);
1577 1578  
1578 1579          kmem_free(buf, sizeof (caddr_t) * plen);
1579 1580  
1580 1581          return (rv);
1581 1582  }
1582 1583  
1583 1584  /*
1584 1585   * Function:
1585 1586   *      vd_slice_flabel_read
1586 1587   *
1587 1588   * Description:
1588 1589   *      This function simulates a read operation from the fake label of
1589 1590   *      a single-slice disk.
1590 1591   *
1591 1592   * Parameters:
1592 1593   *      vd              - single-slice disk to read from
1593 1594   *      data            - buffer where data should be read to
1594 1595   *      offset          - offset in byte where the read should start
1595 1596   *      length          - number of bytes to read
1596 1597   *
1597 1598   * Return Code:
1598 1599   *      n >= 0          - success, n indicates the number of bytes read
1599 1600   *      -1              - error
1600 1601   */
1601 1602  static ssize_t
1602 1603  vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length)
1603 1604  {
1604 1605          size_t n = 0;
1605 1606          uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
1606 1607  
1607 1608          ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1608 1609          ASSERT(vd->flabel != NULL);
1609 1610  
1610 1611          /* if offset is past the fake label limit there's nothing to read */
1611 1612          if (offset >= limit)
1612 1613                  return (0);
1613 1614  
1614 1615          /* data with offset 0 to flabel_size are read from flabel */
1615 1616          if (offset < vd->flabel_size) {
1616 1617  
1617 1618                  if (offset + length <= vd->flabel_size) {
1618 1619                          bcopy(vd->flabel + offset, data, length);
1619 1620                          return (length);
1620 1621                  }
1621 1622  
1622 1623                  n = vd->flabel_size - offset;
1623 1624                  bcopy(vd->flabel + offset, data, n);
1624 1625                  data += n;
1625 1626          }
1626 1627  
1627 1628          /* data with offset from flabel_size to flabel_limit are all zeros */
1628 1629          if (offset + length <= limit) {
1629 1630                  bzero(data, length - n);
1630 1631                  return (length);
1631 1632          }
1632 1633  
1633 1634          bzero(data, limit - offset - n);
1634 1635          return (limit - offset);
1635 1636  }
1636 1637  
1637 1638  /*
1638 1639   * Function:
1639 1640   *      vd_slice_flabel_write
1640 1641   *
1641 1642   * Description:
1642 1643   *      This function simulates a write operation to the fake label of
1643 1644   *      a single-slice disk. Write operations are actually faked and return
1644 1645   *      success although the label is never changed. This is mostly to
1645 1646   *      simulate a successful label update.
1646 1647   *
1647 1648   * Parameters:
1648 1649   *      vd              - single-slice disk to write to
1649 1650   *      data            - buffer where data should be written from
1650 1651   *      offset          - offset in byte where the write should start
1651 1652   *      length          - number of bytes to written
1652 1653   *
1653 1654   * Return Code:
1654 1655   *      n >= 0          - success, n indicates the number of bytes written
1655 1656   *      -1              - error
1656 1657   */
1657 1658  static ssize_t
1658 1659  vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length)
1659 1660  {
1660 1661          uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
1661 1662          struct dk_label *label;
1662 1663          struct dk_geom geom;
1663 1664          struct extvtoc vtoc;
1664 1665  
1665 1666          ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1666 1667          ASSERT(vd->flabel != NULL);
1667 1668  
1668 1669          if (offset >= limit)
1669 1670                  return (0);
1670 1671  
1671 1672          /*
1672 1673           * If this is a request to overwrite the VTOC disk label, check that
1673 1674           * the new label is similar to the previous one and return that the
1674 1675           * write was successful, but note that nothing is actually overwritten.
1675 1676           */
1676 1677          if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1677 1678              offset == 0 && length == vd->vdisk_bsize) {
1678 1679                  label = (void *)data;
1679 1680  
1680 1681                  /* check that this is a valid label */
1681 1682                  if (label->dkl_magic != DKL_MAGIC ||
1682 1683                      label->dkl_cksum != vd_lbl2cksum(label))
1683 1684                          return (-1);
1684 1685  
1685 1686                  /* check the vtoc and geometry */
1686 1687                  vd_label_to_vtocgeom(label, &vtoc, &geom);
1687 1688                  if (vd_slice_geom_isvalid(vd, &geom) &&
1688 1689                      vd_slice_vtoc_isvalid(vd, &vtoc))
1689 1690                          return (length);
1690 1691          }
1691 1692  
1692 1693          /* fail any other write */
1693 1694          return (-1);
1694 1695  }
1695 1696  
1696 1697  /*
1697 1698   * Function:
1698 1699   *      vd_slice_fake_rdwr
1699 1700   *
1700 1701   * Description:
1701 1702   *      This function simulates a raw read or write operation to a single-slice
1702 1703   *      disk. It only handles the faked part of the operation i.e. I/Os to
1703 1704   *      blocks which have no mapping with the vdisk backend (I/Os to the
1704 1705   *      beginning and to the end of the vdisk).
1705 1706   *
1706 1707   *      The function returns 0 is the operation is completed and it has been
1707 1708   *      entirely handled as a fake read or write. In that case, lengthp points
1708 1709   *      to the number of bytes not read or written. Values returned by datap
1709 1710   *      and blkp are undefined.
1710 1711   *
1711 1712   *      If the fake operation has succeeded but the read or write is not
1712 1713   *      complete (i.e. the read/write operation extends beyond the blocks
1713 1714   *      we fake) then the function returns EAGAIN and datap, blkp and lengthp
1714 1715   *      pointers points to the parameters for completing the operation.
1715 1716   *
1716 1717   *      In case of an error, for example if the slice is empty or parameters
1717 1718   *      are invalid, then the function returns a non-zero value different
1718 1719   *      from EAGAIN. In that case, the returned values of datap, blkp and
1719 1720   *      lengthp are undefined.
1720 1721   *
1721 1722   * Parameters:
1722 1723   *      vd              - single-slice disk on which the operation is performed
1723 1724   *      slice           - slice on which the operation is performed,
1724 1725   *                        VD_SLICE_NONE indicates that the operation
1725 1726   *                        is done using an absolute disk offset.
1726 1727   *      operation       - operation to execute: read (VD_OP_BREAD) or
1727 1728   *                        write (VD_OP_BWRITE).
1728 1729   *      datap           - pointer to the buffer where data are read to
1729 1730   *                        or written from. Return the pointer where remaining
1730 1731   *                        data have to be read to or written from.
1731 1732   *      blkp            - pointer to the starting block for the operation.
1732 1733   *                        Return the starting block relative to the vdisk
1733 1734   *                        backend for the remaining operation.
1734 1735   *      lengthp         - pointer to the number of bytes to read or write.
1735 1736   *                        This should be a multiple of vdisk_bsize. Return the
1736 1737   *                        remaining number of bytes to read or write.
1737 1738   *
1738 1739   * Return Code:
1739 1740   *      0               - read/write operation is completed
1740 1741   *      EAGAIN          - read/write operation is not completed
1741 1742   *      other values    - error
1742 1743   */
1743 1744  static int
1744 1745  vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap,
1745 1746      size_t *blkp, size_t *lengthp)
1746 1747  {
1747 1748          struct dk_label *label;
1748 1749          caddr_t data;
1749 1750          size_t blk, length, csize;
1750 1751          size_t ablk, asize, aoff, alen;
1751 1752          ssize_t n;
1752 1753          int sec, status;
1753 1754          size_t bsize = vd->vdisk_bsize;
1754 1755  
1755 1756          ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1756 1757          ASSERT(slice != 0);
1757 1758  
1758 1759          data = *datap;
1759 1760          blk = *blkp;
1760 1761          length = *lengthp;
1761 1762  
1762 1763          /*
1763 1764           * If this is not a raw I/O or an I/O from a full disk slice then
1764 1765           * this is an I/O to/from an empty slice.
1765 1766           */
1766 1767          if (slice != VD_SLICE_NONE &&
1767 1768              (slice != VD_ENTIRE_DISK_SLICE ||
1768 1769              vd->vdisk_label != VD_DISK_LABEL_VTOC) &&
1769 1770              (slice != VD_EFI_WD_SLICE ||
1770 1771              vd->vdisk_label != VD_DISK_LABEL_EFI)) {
1771 1772                  return (EIO);
1772 1773          }
1773 1774  
1774 1775          if (length % bsize != 0)
1775 1776                  return (EINVAL);
1776 1777  
1777 1778          /* handle any I/O with the fake label */
1778 1779          if (operation == VD_OP_BWRITE)
1779 1780                  n = vd_slice_flabel_write(vd, data, blk * bsize, length);
1780 1781          else
1781 1782                  n = vd_slice_flabel_read(vd, data, blk * bsize, length);
1782 1783  
1783 1784          if (n == -1)
1784 1785                  return (EINVAL);
1785 1786  
1786 1787          ASSERT(n % bsize == 0);
1787 1788  
1788 1789          /* adjust I/O arguments */
1789 1790          data += n;
1790 1791          blk += n / bsize;
1791 1792          length -= n;
1792 1793  
1793 1794          /* check if there's something else to process */
1794 1795          if (length == 0) {
1795 1796                  status = 0;
1796 1797                  goto done;
1797 1798          }
1798 1799  
1799 1800          if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1800 1801              slice == VD_ENTIRE_DISK_SLICE) {
1801 1802                  status = EAGAIN;
1802 1803                  goto done;
1803 1804          }
1804 1805  
1805 1806          if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1806 1807                  asize = EFI_MIN_RESV_SIZE + (EFI_MIN_ARRAY_SIZE / bsize) + 1;
1807 1808                  ablk = vd->vdisk_size - asize;
1808 1809          } else {
1809 1810                  ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1810 1811                  ASSERT(vd->dk_geom.dkg_apc == 0);
1811 1812  
1812 1813                  csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1813 1814                  ablk = vd->dk_geom.dkg_ncyl * csize;
1814 1815                  asize = vd->dk_geom.dkg_acyl * csize;
1815 1816          }
1816 1817  
1817 1818          alen = length / bsize;
1818 1819          aoff = blk;
1819 1820  
1820 1821          /* if we have reached the last block then the I/O is completed */
1821 1822          if (aoff == ablk + asize) {
1822 1823                  status = 0;
1823 1824                  goto done;
1824 1825          }
1825 1826  
1826 1827          /* if we are past the last block then return an error */
1827 1828          if (aoff > ablk + asize)
1828 1829                  return (EIO);
1829 1830  
1830 1831          /* check if there is any I/O to end of the disk */
1831 1832          if (aoff + alen < ablk) {
1832 1833                  status = EAGAIN;
1833 1834                  goto done;
1834 1835          }
1835 1836  
1836 1837          /* we don't allow any write to the end of the disk */
1837 1838          if (operation == VD_OP_BWRITE)
1838 1839                  return (EIO);
1839 1840  
1840 1841          if (aoff < ablk) {
1841 1842                  alen -= (ablk - aoff);
1842 1843                  aoff = ablk;
1843 1844          }
1844 1845  
1845 1846          if (aoff + alen > ablk + asize) {
1846 1847                  alen = ablk + asize - aoff;
1847 1848          }
1848 1849  
1849 1850          alen *= bsize;
1850 1851  
1851 1852          if (operation == VD_OP_BREAD) {
1852 1853                  bzero(data + (aoff - blk) * bsize, alen);
1853 1854  
1854 1855                  if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
1855 1856                          /* check if we read backup labels */
1856 1857                          label = VD_LABEL_VTOC(vd);
1857 1858                          ablk += (label->dkl_acyl - 1) * csize +
1858 1859                              (label->dkl_nhead - 1) * label->dkl_nsect;
1859 1860  
1860 1861                          for (sec = 1; (sec < 5 * 2 + 1); sec += 2) {
1861 1862  
1862 1863                                  if (ablk + sec >= blk &&
1863 1864                                      ablk + sec < blk + (length / bsize)) {
1864 1865                                          bcopy(label, data +
1865 1866                                              (ablk + sec - blk) * bsize,
1866 1867                                              sizeof (struct dk_label));
1867 1868                                  }
1868 1869                          }
1869 1870                  }
1870 1871          }
1871 1872  
1872 1873          length -= alen;
1873 1874  
1874 1875          status = (length == 0)? 0: EAGAIN;
1875 1876  
1876 1877  done:
1877 1878          ASSERT(length == 0 || blk >= vd->flabel_limit);
1878 1879  
1879 1880          /*
1880 1881           * Return the parameters for the remaining I/O. The starting block is
1881 1882           * adjusted so that it is relative to the vdisk backend.
1882 1883           */
1883 1884          *datap = data;
1884 1885          *blkp = blk - vd->flabel_limit;
1885 1886          *lengthp = length;
1886 1887  
1887 1888          return (status);
1888 1889  }
1889 1890  
1890 1891  static int
1891 1892  vd_flush_write(vd_t *vd)
1892 1893  {
1893 1894          int status, rval;
1894 1895  
1895 1896          if (vd->file) {
1896 1897                  status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
1897 1898          } else {
1898 1899                  status = ldi_ioctl(vd->ldi_handle[0], DKIOCFLUSHWRITECACHE,
1899 1900                      NULL, vd->open_flags | FKIOCTL, kcred, &rval);
1900 1901          }
1901 1902  
1902 1903          return (status);
1903 1904  }
1904 1905  
1905 1906  static void
1906 1907  vd_bio_task(void *arg)
1907 1908  {
1908 1909          struct buf *buf = (struct buf *)arg;
1909 1910          vd_task_t *task = (vd_task_t *)buf->b_private;
1910 1911          vd_t *vd = task->vd;
1911 1912          ssize_t resid;
1912 1913          int status;
1913 1914  
1914 1915          ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1915 1916  
1916 1917          if (vd->zvol) {
1917 1918  
1918 1919                  status = ldi_strategy(vd->ldi_handle[0], buf);
1919 1920  
1920 1921          } else {
1921 1922  
1922 1923                  ASSERT(vd->file);
1923 1924  
1924 1925                  status = vn_rdwr((buf->b_flags & B_READ)? UIO_READ : UIO_WRITE,
1925 1926                      vd->file_vnode, buf->b_un.b_addr, buf->b_bcount,
1926 1927                      buf->b_lblkno * DEV_BSIZE, UIO_SYSSPACE, 0,
1927 1928                      RLIM64_INFINITY, kcred, &resid);
1928 1929  
1929 1930                  if (status == 0) {
1930 1931                          buf->b_resid = resid;
1931 1932                          biodone(buf);
1932 1933                          return;
1933 1934                  }
1934 1935          }
1935 1936  
1936 1937          if (status != 0) {
1937 1938                  bioerror(buf, status);
1938 1939                  biodone(buf);
1939 1940          }
1940 1941  }
1941 1942  
1942 1943  /*
1943 1944   * We define our own biodone function so that buffers used for
1944 1945   * asynchronous writes are not released when biodone() is called.
1945 1946   */
1946 1947  static int
1947 1948  vd_biodone(struct buf *bp)
1948 1949  {
1949 1950          ASSERT((bp->b_flags & B_DONE) == 0);
1950 1951          ASSERT(SEMA_HELD(&bp->b_sem));
1951 1952  
1952 1953          bp->b_flags |= B_DONE;
1953 1954          sema_v(&bp->b_io);
1954 1955  
1955 1956          return (0);
1956 1957  }
1957 1958  
1958 1959  /*
1959 1960   * Return Values
1960 1961   *      EINPROGRESS     - operation was successfully started
1961 1962   *      EIO             - encountered LDC (aka. task error)
1962 1963   *      0               - operation completed successfully
1963 1964   *
1964 1965   * Side Effect
1965 1966   *     sets request->status = <disk operation status>
1966 1967   */
1967 1968  static int
1968 1969  vd_start_bio(vd_task_t *task)
1969 1970  {
1970 1971          int                     rv, status = 0;
1971 1972          vd_t                    *vd             = task->vd;
1972 1973          vd_dring_payload_t      *request        = task->request;
1973 1974          struct buf              *buf            = &task->buf;
1974 1975          uint8_t                 mtype;
1975 1976          int                     slice;
1976 1977          char                    *bufaddr = 0;
1977 1978          size_t                  buflen;
1978 1979          size_t                  offset, length, nbytes;
1979 1980  
1980 1981          ASSERT(vd != NULL);
1981 1982          ASSERT(request != NULL);
1982 1983  
1983 1984          slice = request->slice;
1984 1985  
1985 1986          ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1986 1987          ASSERT((request->operation == VD_OP_BREAD) ||
1987 1988              (request->operation == VD_OP_BWRITE));
1988 1989  
1989 1990          if (request->nbytes == 0) {
1990 1991                  /* no service for trivial requests */
1991 1992                  request->status = EINVAL;
1992 1993                  return (0);
1993 1994          }
1994 1995  
1995 1996          PR1("%s %lu bytes at block %lu",
1996 1997              (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1997 1998              request->nbytes, request->addr);
1998 1999  
1999 2000          /*
2000 2001           * We have to check the open flags because the functions processing
2001 2002           * the read/write request will not do it.
2002 2003           */
2003 2004          if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
2004 2005                  PR0("write fails because backend is opened read-only");
2005 2006                  request->nbytes = 0;
2006 2007                  request->status = EROFS;
2007 2008                  return (0);
2008 2009          }
2009 2010  
2010 2011          mtype = LDC_SHADOW_MAP;
2011 2012  
2012 2013          /* Map memory exported by client */
2013 2014          status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
2014 2015              mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
2015 2016              &bufaddr, NULL);
2016 2017          if (status != 0) {
2017 2018                  PR0("ldc_mem_map() returned err %d ", status);
2018 2019                  return (EIO);
2019 2020          }
2020 2021  
2021 2022          /*
2022 2023           * The buffer size has to be 8-byte aligned, so the client should have
2023 2024           * sent a buffer which size is roundup to the next 8-byte aligned value.
2024 2025           */
2025 2026          buflen = P2ROUNDUP(request->nbytes, 8);
2026 2027  
2027 2028          status = ldc_mem_acquire(task->mhdl, 0, buflen);
2028 2029          if (status != 0) {
2029 2030                  (void) ldc_mem_unmap(task->mhdl);
2030 2031                  PR0("ldc_mem_acquire() returned err %d ", status);
2031 2032                  return (EIO);
2032 2033          }
2033 2034  
2034 2035          offset = request->addr;
2035 2036          nbytes = request->nbytes;
2036 2037          length = nbytes;
2037 2038  
2038 2039          /* default number of byte returned by the I/O */
2039 2040          request->nbytes = 0;
2040 2041  
2041 2042          if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
2042 2043  
2043 2044                  if (slice != 0) {
2044 2045                          /* handle any fake I/O */
2045 2046                          rv = vd_slice_fake_rdwr(vd, slice, request->operation,
2046 2047                              &bufaddr, &offset, &length);
2047 2048  
2048 2049                          /* record the number of bytes from the fake I/O */
2049 2050                          request->nbytes = nbytes - length;
2050 2051  
2051 2052                          if (rv == 0) {
2052 2053                                  request->status = 0;
2053 2054                                  goto io_done;
2054 2055                          }
2055 2056  
2056 2057                          if (rv != EAGAIN) {
2057 2058                                  request->nbytes = 0;
2058 2059                                  request->status = EIO;
2059 2060                                  goto io_done;
2060 2061                          }
2061 2062  
2062 2063                          /*
2063 2064                           * If we return with EAGAIN then this means that there
2064 2065                           * are still data to read or write.
2065 2066                           */
2066 2067                          ASSERT(length != 0);
2067 2068  
2068 2069                          /*
2069 2070                           * We need to continue the I/O from the slice backend to
2070 2071                           * complete the request. The variables bufaddr, offset
2071 2072                           * and length have been adjusted to have the right
2072 2073                           * information to do the remaining I/O from the backend.
2073 2074                           * The backend is entirely mapped to slice 0 so we just
2074 2075                           * have to complete the I/O from that slice.
2075 2076                           */
2076 2077                          slice = 0;
2077 2078                  }
2078 2079  
2079 2080          } else if (vd->volume || vd->file) {
2080 2081  
2081 2082                  rv = vd_dskimg_io_params(vd, slice, &offset, &length);
2082 2083                  if (rv != 0) {
2083 2084                          request->status = (rv == ENODATA)? 0: EIO;
2084 2085                          goto io_done;
2085 2086                  }
2086 2087                  slice = 0;
2087 2088  
2088 2089          } else if (slice == VD_SLICE_NONE) {
2089 2090  
2090 2091                  /*
2091 2092                   * This is not a disk image so it is a real disk. We
2092 2093                   * assume that the underlying device driver supports
2093 2094                   * USCSICMD ioctls. This is the case of all SCSI devices
2094 2095                   * (sd, ssd...).
2095 2096                   *
2096 2097                   * In the future if we have non-SCSI disks we would need
2097 2098                   * to invoke the appropriate function to do I/O using an
2098 2099                   * absolute disk offset (for example using DIOCTL_RWCMD
2099 2100                   * for IDE disks).
2100 2101                   */
2101 2102                  rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset,
2102 2103                      length);
2103 2104                  if (rv != 0) {
2104 2105                          request->status = EIO;
2105 2106                  } else {
2106 2107                          request->nbytes = length;
2107 2108                          request->status = 0;
2108 2109                  }
2109 2110                  goto io_done;
2110 2111          }
2111 2112  
2112 2113          /* Start the block I/O */
2113 2114          bioinit(buf);
2114 2115          buf->b_flags    = B_BUSY;
2115 2116          buf->b_bcount   = length;
2116 2117          buf->b_lblkno   = offset;
2117 2118          buf->b_bufsize  = buflen;
2118 2119          buf->b_edev     = vd->dev[slice];
2119 2120          buf->b_un.b_addr = bufaddr;
2120 2121          buf->b_iodone   = vd_biodone;
2121 2122  
2122 2123          if (vd->file || vd->zvol) {
2123 2124                  /*
2124 2125                   * I/O to a file are dispatched to an I/O queue, so that several
2125 2126                   * I/Os can be processed in parallel. We also do that for ZFS
2126 2127                   * volumes because the ZFS volume strategy() function will only
2127 2128                   * return after the I/O is completed (instead of just starting
2128 2129                   * the I/O).
2129 2130                   */
2130 2131  
2131 2132                  if (request->operation == VD_OP_BREAD) {
2132 2133                          buf->b_flags |= B_READ;
2133 2134                  } else {
2134 2135                          /*
2135 2136                           * For ZFS volumes and files, we do an asynchronous
2136 2137                           * write and we will wait for the completion of the
2137 2138                           * write in vd_complete_bio() by flushing the volume
2138 2139                           * or file.
2139 2140                           *
2140 2141                           * This done for performance reasons, so that we can
2141 2142                           * group together several write requests into a single
2142 2143                           * flush operation.
2143 2144                           */
2144 2145                          buf->b_flags |= B_WRITE | B_ASYNC;
2145 2146  
2146 2147                          /*
2147 2148                           * We keep track of the write so that we can group
2148 2149                           * requests when flushing. The write queue has the
2149 2150                           * same number of slots as the dring so this prevents
2150 2151                           * the write queue from wrapping and overwriting
2151 2152                           * existing entries: if the write queue gets full
2152 2153                           * then that means that the dring is full so we stop
2153 2154                           * receiving new requests until an existing request
2154 2155                           * is processed, removed from the write queue and
2155 2156                           * then from the dring.
2156 2157                           */
2157 2158                          task->write_index = vd->write_index;
2158 2159                          vd->write_queue[task->write_index] = buf;
2159 2160                          vd->write_index =
2160 2161                              VD_WRITE_INDEX_NEXT(vd, vd->write_index);
2161 2162                  }
2162 2163  
2163 2164                  buf->b_private = task;
2164 2165  
2165 2166                  ASSERT(vd->ioq != NULL);
2166 2167  
2167 2168                  request->status = 0;
2168 2169                  (void) ddi_taskq_dispatch(task->vd->ioq, vd_bio_task, buf,
2169 2170                      DDI_SLEEP);
2170 2171  
2171 2172          } else {
2172 2173  
2173 2174                  if (request->operation == VD_OP_BREAD) {
2174 2175                          buf->b_flags |= B_READ;
2175 2176                  } else {
2176 2177                          buf->b_flags |= B_WRITE;
2177 2178                  }
2178 2179  
2179 2180                  /* convert VIO block number to buf block number */
2180 2181                  buf->b_lblkno = offset << vd->vio_bshift;
2181 2182  
2182 2183                  request->status = ldi_strategy(vd->ldi_handle[slice], buf);
2183 2184          }
2184 2185  
2185 2186          /*
2186 2187           * This is to indicate to the caller that the request
2187 2188           * needs to be finished by vd_complete_bio() by calling
2188 2189           * biowait() there and waiting for that to return before
2189 2190           * triggering the notification of the vDisk client.
2190 2191           *
2191 2192           * This is necessary when writing to real disks as
2192 2193           * otherwise calls to ldi_strategy() would be serialized
2193 2194           * behind the calls to biowait() and performance would
2194 2195           * suffer.
2195 2196           */
2196 2197          if (request->status == 0)
2197 2198                  return (EINPROGRESS);
2198 2199  
2199 2200          biofini(buf);
2200 2201  
2201 2202  io_done:
2202 2203          /* Clean up after error or completion */
2203 2204          rv = ldc_mem_release(task->mhdl, 0, buflen);
2204 2205          if (rv) {
2205 2206                  PR0("ldc_mem_release() returned err %d ", rv);
2206 2207                  status = EIO;
2207 2208          }
2208 2209          rv = ldc_mem_unmap(task->mhdl);
2209 2210          if (rv) {
2210 2211                  PR0("ldc_mem_unmap() returned err %d ", rv);
2211 2212                  status = EIO;
2212 2213          }
2213 2214  
2214 2215          return (status);
2215 2216  }
2216 2217  
2217 2218  /*
2218 2219   * This function should only be called from vd_notify to ensure that requests
2219 2220   * are responded to in the order that they are received.
2220 2221   */
2221 2222  static int
2222 2223  send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
2223 2224  {
2224 2225          int     status;
2225 2226          size_t  nbytes;
2226 2227  
2227 2228          do {
2228 2229                  nbytes = msglen;
2229 2230                  status = ldc_write(ldc_handle, msg, &nbytes);
2230 2231                  if (status != EWOULDBLOCK)
2231 2232                          break;
2232 2233                  drv_usecwait(vds_ldc_delay);
2233 2234          } while (status == EWOULDBLOCK);
2234 2235  
2235 2236          if (status != 0) {
2236 2237                  if (status != ECONNRESET)
2237 2238                          PR0("ldc_write() returned errno %d", status);
2238 2239                  return (status);
2239 2240          } else if (nbytes != msglen) {
2240 2241                  PR0("ldc_write() performed only partial write");
2241 2242                  return (EIO);
2242 2243          }
2243 2244  
2244 2245          PR1("SENT %lu bytes", msglen);
2245 2246          return (0);
2246 2247  }
2247 2248  
2248 2249  static void
2249 2250  vd_need_reset(vd_t *vd, boolean_t reset_ldc)
2250 2251  {
2251 2252          mutex_enter(&vd->lock);
2252 2253          vd->reset_state = B_TRUE;
2253 2254          vd->reset_ldc   = reset_ldc;
2254 2255          mutex_exit(&vd->lock);
2255 2256  }
2256 2257  
2257 2258  /*
2258 2259   * Reset the state of the connection with a client, if needed; reset the LDC
2259 2260   * transport as well, if needed.  This function should only be called from the
2260 2261   * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
2261 2262   */
2262 2263  static void
2263 2264  vd_reset_if_needed(vd_t *vd)
2264 2265  {
2265 2266          int     status = 0;
2266 2267  
2267 2268          mutex_enter(&vd->lock);
2268 2269          if (!vd->reset_state) {
2269 2270                  ASSERT(!vd->reset_ldc);
2270 2271                  mutex_exit(&vd->lock);
2271 2272                  return;
2272 2273          }
2273 2274          mutex_exit(&vd->lock);
2274 2275  
2275 2276          PR0("Resetting connection state with %s", VD_CLIENT(vd));
2276 2277  
2277 2278          /*
2278 2279           * Let any asynchronous I/O complete before possibly pulling the rug
2279 2280           * out from under it; defer checking vd->reset_ldc, as one of the
2280 2281           * asynchronous tasks might set it
2281 2282           */
2282 2283          if (vd->ioq != NULL)
2283 2284                  ddi_taskq_wait(vd->ioq);
2284 2285          ddi_taskq_wait(vd->completionq);
2285 2286  
2286 2287          status = vd_flush_write(vd);
2287 2288          if (status) {
2288 2289                  PR0("flushwrite returned error %d", status);
2289 2290          }
2290 2291  
2291 2292          if ((vd->initialized & VD_DRING) &&
2292 2293              ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
2293 2294                  PR0("ldc_mem_dring_unmap() returned errno %d", status);
2294 2295  
2295 2296          vd_free_dring_task(vd);
2296 2297  
2297 2298          /* Free the staging buffer for msgs */
2298 2299          if (vd->vio_msgp != NULL) {
2299 2300                  kmem_free(vd->vio_msgp, vd->max_msglen);
2300 2301                  vd->vio_msgp = NULL;
2301 2302          }
2302 2303  
2303 2304          /* Free the inband message buffer */
2304 2305          if (vd->inband_task.msg != NULL) {
2305 2306                  kmem_free(vd->inband_task.msg, vd->max_msglen);
2306 2307                  vd->inband_task.msg = NULL;
2307 2308          }
2308 2309  
2309 2310          mutex_enter(&vd->lock);
2310 2311  
2311 2312          if (vd->reset_ldc)
2312 2313                  PR0("taking down LDC channel");
2313 2314          if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
2314 2315                  PR0("ldc_down() returned errno %d", status);
2315 2316  
2316 2317          /* Reset exclusive access rights */
2317 2318          vd_reset_access(vd);
2318 2319  
2319 2320          vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
2320 2321          vd->state       = VD_STATE_INIT;
2321 2322          vd->max_msglen  = sizeof (vio_msg_t);   /* baseline vio message size */
2322 2323  
2323 2324          /* Allocate the staging buffer */
2324 2325          vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
2325 2326  
2326 2327          PR0("calling ldc_up\n");
2327 2328          (void) ldc_up(vd->ldc_handle);
2328 2329  
2329 2330          vd->reset_state = B_FALSE;
2330 2331          vd->reset_ldc   = B_FALSE;
2331 2332  
2332 2333          mutex_exit(&vd->lock);
2333 2334  }
2334 2335  
2335 2336  static void vd_recv_msg(void *arg);
2336 2337  
2337 2338  static void
2338 2339  vd_mark_in_reset(vd_t *vd)
2339 2340  {
2340 2341          int status;
2341 2342  
2342 2343          PR0("vd_mark_in_reset: marking vd in reset\n");
2343 2344  
2344 2345          vd_need_reset(vd, B_FALSE);
2345 2346          status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
2346 2347          if (status == DDI_FAILURE) {
2347 2348                  PR0("cannot schedule task to recv msg\n");
2348 2349                  vd_need_reset(vd, B_TRUE);
2349 2350                  return;
2350 2351          }
2351 2352  }
2352 2353  
2353 2354  static int
2354 2355  vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
2355 2356  {
2356 2357          boolean_t               accepted;
2357 2358          int                     status;
2358 2359          on_trap_data_t          otd;
2359 2360          vd_dring_entry_t        *elem = VD_DRING_ELEM(idx);
2360 2361  
2361 2362          if (vd->reset_state)
2362 2363                  return (0);
2363 2364  
2364 2365          /* Acquire the element */
2365 2366          if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
2366 2367              vd->dring_handle, idx, idx)) != 0) {
2367 2368                  if (status == ECONNRESET) {
2368 2369                          vd_mark_in_reset(vd);
2369 2370                          return (0);
2370 2371                  } else {
2371 2372                          return (status);
2372 2373                  }
2373 2374          }
2374 2375  
2375 2376          /* Set the element's status and mark it done */
2376 2377          accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
2377 2378          if (accepted) {
2378 2379                  elem->payload.nbytes    = elem_nbytes;
2379 2380                  elem->payload.status    = elem_status;
2380 2381                  elem->hdr.dstate        = VIO_DESC_DONE;
2381 2382          } else {
2382 2383                  /* Perhaps client timed out waiting for I/O... */
2383 2384                  PR0("element %u no longer \"accepted\"", idx);
2384 2385                  VD_DUMP_DRING_ELEM(elem);
2385 2386          }
2386 2387          /* Release the element */
2387 2388          if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
2388 2389              vd->dring_handle, idx, idx)) != 0) {
2389 2390                  if (status == ECONNRESET) {
2390 2391                          vd_mark_in_reset(vd);
2391 2392                          return (0);
2392 2393                  } else {
2393 2394                          PR0("VIO_DRING_RELEASE() returned errno %d",
2394 2395                              status);
2395 2396                          return (status);
2396 2397                  }
2397 2398          }
2398 2399  
2399 2400          return (accepted ? 0 : EINVAL);
2400 2401  }
2401 2402  
2402 2403  /*
2403 2404   * Return Values
2404 2405   *      0       - operation completed successfully
2405 2406   *      EIO     - encountered LDC / task error
2406 2407   *
2407 2408   * Side Effect
2408 2409   *      sets request->status = <disk operation status>
2409 2410   */
2410 2411  static int
2411 2412  vd_complete_bio(vd_task_t *task)
2412 2413  {
2413 2414          int                     status          = 0;
2414 2415          int                     rv              = 0;
2415 2416          vd_t                    *vd             = task->vd;
2416 2417          vd_dring_payload_t      *request        = task->request;
2417 2418          struct buf              *buf            = &task->buf;
2418 2419          int                     wid, nwrites;
2419 2420  
2420 2421  
2421 2422          ASSERT(vd != NULL);
2422 2423          ASSERT(request != NULL);
2423 2424          ASSERT(task->msg != NULL);
2424 2425          ASSERT(task->msglen >= sizeof (*task->msg));
2425 2426  
2426 2427          if (buf->b_flags & B_DONE) {
2427 2428                  /*
2428 2429                   * If the I/O is already done then we don't call biowait()
2429 2430                   * because biowait() might already have been called when
2430 2431                   * flushing a previous asynchronous write. So we just
2431 2432                   * retrieve the status of the request.
2432 2433                   */
2433 2434                  request->status = geterror(buf);
2434 2435          } else {
2435 2436                  /*
2436 2437                   * Wait for the I/O. For synchronous I/O, biowait() will return
2437 2438                   * when the I/O has completed. For asynchronous write, it will
2438 2439                   * return the write has been submitted to the backend, but it
2439 2440                   * may not have been committed.
2440 2441                   */
2441 2442                  request->status = biowait(buf);
2442 2443          }
2443 2444  
2444 2445          if (buf->b_flags & B_ASYNC) {
2445 2446                  /*
2446 2447                   * Asynchronous writes are used when writing to a file or a
2447 2448                   * ZFS volume. In that case the bio notification indicates
2448 2449                   * that the write has started. We have to flush the backend
2449 2450                   * to ensure that the write has been committed before marking
2450 2451                   * the request as completed.
2451 2452                   */
2452 2453                  ASSERT(task->request->operation == VD_OP_BWRITE);
2453 2454  
2454 2455                  wid = task->write_index;
2455 2456  
2456 2457                  /* check if write has been already flushed */
2457 2458                  if (vd->write_queue[wid] != NULL) {
2458 2459  
2459 2460                          vd->write_queue[wid] = NULL;
2460 2461                          wid = VD_WRITE_INDEX_NEXT(vd, wid);
2461 2462  
2462 2463                          /*
2463 2464                           * Because flushing is time consuming, it is worth
2464 2465                           * waiting for any other writes so that they can be
2465 2466                           * included in this single flush request.
2466 2467                           */
2467 2468                          if (vd_awflush & VD_AWFLUSH_GROUP) {
2468 2469                                  nwrites = 1;
2469 2470                                  while (vd->write_queue[wid] != NULL) {
2470 2471                                          (void) biowait(vd->write_queue[wid]);
2471 2472                                          vd->write_queue[wid] = NULL;
2472 2473                                          wid = VD_WRITE_INDEX_NEXT(vd, wid);
2473 2474                                          nwrites++;
2474 2475                                  }
2475 2476                                  DTRACE_PROBE2(flushgrp, vd_task_t *, task,
2476 2477                                      int, nwrites);
2477 2478                          }
2478 2479  
2479 2480                          if (vd_awflush & VD_AWFLUSH_IMMEDIATE) {
2480 2481                                  request->status = vd_flush_write(vd);
2481 2482                          } else if (vd_awflush & VD_AWFLUSH_DEFER) {
2482 2483                                  (void) taskq_dispatch(system_taskq,
2483 2484                                      (void (*)(void *))vd_flush_write, vd,
2484 2485                                      DDI_SLEEP);
2485 2486                                  request->status = 0;
2486 2487                          }
2487 2488                  }
2488 2489          }
2489 2490  
2490 2491          /* Update the number of bytes read/written */
2491 2492          request->nbytes += buf->b_bcount - buf->b_resid;
2492 2493  
2493 2494          /* Release the buffer */
2494 2495          if (!vd->reset_state)
2495 2496                  status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize);
2496 2497          if (status) {
2497 2498                  PR0("ldc_mem_release() returned errno %d copying to "
2498 2499                      "client", status);
2499 2500                  if (status == ECONNRESET) {
2500 2501                          vd_mark_in_reset(vd);
2501 2502                  }
2502 2503                  rv = EIO;
2503 2504          }
2504 2505  
2505 2506          /* Unmap the memory, even if in reset */
2506 2507          status = ldc_mem_unmap(task->mhdl);
2507 2508          if (status) {
2508 2509                  PR0("ldc_mem_unmap() returned errno %d copying to client",
2509 2510                      status);
2510 2511                  if (status == ECONNRESET) {
2511 2512                          vd_mark_in_reset(vd);
2512 2513                  }
2513 2514                  rv = EIO;
2514 2515          }
2515 2516  
2516 2517          biofini(buf);
2517 2518  
2518 2519          return (rv);
2519 2520  }
2520 2521  
2521 2522  /*
2522 2523   * Description:
2523 2524   *      This function is called by the two functions called by a taskq
2524 2525   *      [ vd_complete_notify() and vd_serial_notify()) ] to send the
2525 2526   *      message to the client.
2526 2527   *
2527 2528   * Parameters:
2528 2529   *      arg     - opaque pointer to structure containing task to be completed
2529 2530   *
2530 2531   * Return Values
2531 2532   *      None
2532 2533   */
2533 2534  static void
2534 2535  vd_notify(vd_task_t *task)
2535 2536  {
2536 2537          int     status;
2537 2538  
2538 2539          ASSERT(task != NULL);
2539 2540          ASSERT(task->vd != NULL);
2540 2541  
2541 2542          /*
2542 2543           * Send the "ack" or "nack" back to the client; if sending the message
2543 2544           * via LDC fails, arrange to reset both the connection state and LDC
2544 2545           * itself
2545 2546           */
2546 2547          PR2("Sending %s",
2547 2548              (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2548 2549  
2549 2550          status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
2550 2551          switch (status) {
2551 2552          case 0:
2552 2553                  break;
2553 2554          case ECONNRESET:
2554 2555                  vd_mark_in_reset(task->vd);
2555 2556                  break;
2556 2557          default:
2557 2558                  PR0("initiating full reset");
2558 2559                  vd_need_reset(task->vd, B_TRUE);
2559 2560                  break;
2560 2561          }
2561 2562  
2562 2563          DTRACE_PROBE1(task__end, vd_task_t *, task);
2563 2564  }
2564 2565  
2565 2566  /*
2566 2567   * Description:
2567 2568   *      Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
2568 2569   *      the vDisk client
2569 2570   *
2570 2571   * Parameters:
2571 2572   *      task            - structure containing the request sent from client
2572 2573   *
2573 2574   * Return Values
2574 2575   *      None
2575 2576   */
2576 2577  static void
2577 2578  vd_complete_notify(vd_task_t *task)
2578 2579  {
2579 2580          int                     status          = 0;
2580 2581          vd_t                    *vd             = task->vd;
2581 2582          vd_dring_payload_t      *request        = task->request;
2582 2583  
2583 2584          /* Update the dring element for a dring client */
2584 2585          if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
2585 2586                  status = vd_mark_elem_done(vd, task->index,
2586 2587                      request->status, request->nbytes);
2587 2588                  if (status == ECONNRESET)
2588 2589                          vd_mark_in_reset(vd);
2589 2590                  else if (status == EACCES)
2590 2591                          vd_need_reset(vd, B_TRUE);
2591 2592          }
2592 2593  
2593 2594          /*
2594 2595           * If a transport error occurred while marking the element done or
2595 2596           * previously while executing the task, arrange to "nack" the message
2596 2597           * when the final task in the descriptor element range completes
2597 2598           */
2598 2599          if ((status != 0) || (task->status != 0))
2599 2600                  task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2600 2601  
2601 2602          /*
2602 2603           * Only the final task for a range of elements will respond to and
2603 2604           * free the message
2604 2605           */
2605 2606          if (task->type == VD_NONFINAL_RANGE_TASK) {
2606 2607                  return;
2607 2608          }
2608 2609  
2609 2610          /*
2610 2611           * We should only send an ACK/NACK here if we are not currently in
2611 2612           * reset as, depending on how we reset, the dring may have been
2612 2613           * blown away and we don't want to ACK/NACK a message that isn't
2613 2614           * there.
2614 2615           */
2615 2616          if (!vd->reset_state)
2616 2617                  vd_notify(task);
2617 2618  }
2618 2619  
2619 2620  /*
2620 2621   * Description:
2621 2622   *      This is the basic completion function called to handle inband data
2622 2623   *      requests and handshake messages. All it needs to do is trigger a
2623 2624   *      message to the client that the request is completed.
2624 2625   *
2625 2626   * Parameters:
2626 2627   *      arg     - opaque pointer to structure containing task to be completed
2627 2628   *
2628 2629   * Return Values
2629 2630   *      None
2630 2631   */
2631 2632  static void
2632 2633  vd_serial_notify(void *arg)
2633 2634  {
2634 2635          vd_task_t               *task = (vd_task_t *)arg;
2635 2636  
2636 2637          ASSERT(task != NULL);
2637 2638          vd_notify(task);
2638 2639  }
2639 2640  
2640 2641  /* ARGSUSED */
2641 2642  static int
2642 2643  vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2643 2644  {
2644 2645          VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
2645 2646          return (0);
2646 2647  }
2647 2648  
2648 2649  /* ARGSUSED */
2649 2650  static int
2650 2651  vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2651 2652  {
2652 2653          VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg);
2653 2654          return (0);
2654 2655  }
2655 2656  
2656 2657  static void
2657 2658  dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
2658 2659  {
2659 2660          DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
2660 2661  }
2661 2662  
2662 2663  static void
2663 2664  vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
2664 2665  {
2665 2666          VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
2666 2667  }
2667 2668  
2668 2669  static int
2669 2670  vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2670 2671  {
2671 2672          vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2672 2673          dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2673 2674          size_t data_len;
2674 2675  
2675 2676          data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2676 2677          if (vd_efi->length > data_len)
2677 2678                  return (EINVAL);
2678 2679  
2679 2680          dk_efi->dki_lba = vd_efi->lba;
2680 2681          dk_efi->dki_length = vd_efi->length;
2681 2682          dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
2682 2683          return (0);
2683 2684  }
2684 2685  
2685 2686  static void
2686 2687  vd_get_efi_out(void *ioctl_arg, void *vd_buf)
2687 2688  {
2688 2689          int len;
2689 2690          vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2690 2691          dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2691 2692  
2692 2693          len = vd_efi->length;
2693 2694          DK_EFI2VD_EFI(dk_efi, vd_efi);
2694 2695          kmem_free(dk_efi->dki_data, len);
2695 2696  }
2696 2697  
2697 2698  static int
2698 2699  vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2699 2700  {
2700 2701          vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2701 2702          dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2702 2703          size_t data_len;
2703 2704  
2704 2705          data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2705 2706          if (vd_efi->length > data_len)
2706 2707                  return (EINVAL);
2707 2708  
2708 2709          dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
2709 2710          VD_EFI2DK_EFI(vd_efi, dk_efi);
2710 2711          return (0);
2711 2712  }
2712 2713  
2713 2714  static void
2714 2715  vd_set_efi_out(void *ioctl_arg, void *vd_buf)
2715 2716  {
2716 2717          vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2717 2718          dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2718 2719  
2719 2720          kmem_free(dk_efi->dki_data, vd_efi->length);
2720 2721  }
2721 2722  
2722 2723  static int
2723 2724  vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2724 2725  {
2725 2726          size_t vd_scsi_len;
2726 2727          vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2727 2728          struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2728 2729  
2729 2730          /* check buffer size */
2730 2731          vd_scsi_len = VD_SCSI_SIZE;
2731 2732          vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
2732 2733          vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
2733 2734          vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
2734 2735          vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
2735 2736  
2736 2737          ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
2737 2738  
2738 2739          if (vd_buf_len < vd_scsi_len)
2739 2740                  return (EINVAL);
2740 2741  
2741 2742          /* set flags */
2742 2743          uscsi->uscsi_flags = vd_scsi_debug;
2743 2744  
2744 2745          if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
2745 2746                  uscsi->uscsi_flags |= USCSI_ISOLATE;
2746 2747                  uscsi->uscsi_flags |= USCSI_DIAGNOSE;
2747 2748          }
2748 2749  
2749 2750          /* task attribute */
2750 2751          switch (vd_scsi->task_attribute) {
2751 2752          case VD_SCSI_TASK_ACA:
2752 2753                  uscsi->uscsi_flags |= USCSI_HEAD;
2753 2754                  break;
2754 2755          case VD_SCSI_TASK_HQUEUE:
2755 2756                  uscsi->uscsi_flags |= USCSI_HTAG;
2756 2757                  break;
2757 2758          case VD_SCSI_TASK_ORDERED:
2758 2759                  uscsi->uscsi_flags |= USCSI_OTAG;
2759 2760                  break;
2760 2761          default:
2761 2762                  uscsi->uscsi_flags |= USCSI_NOTAG;
2762 2763                  break;
2763 2764          }
2764 2765  
2765 2766          /* timeout */
2766 2767          uscsi->uscsi_timeout = vd_scsi->timeout;
2767 2768  
2768 2769          /* cdb data */
2769 2770          uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
2770 2771          uscsi->uscsi_cdblen = vd_scsi->cdb_len;
2771 2772  
2772 2773          /* sense buffer */
2773 2774          if (vd_scsi->sense_len != 0) {
2774 2775                  uscsi->uscsi_flags |= USCSI_RQENABLE;
2775 2776                  uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
2776 2777                  uscsi->uscsi_rqlen = vd_scsi->sense_len;
2777 2778          }
2778 2779  
2779 2780          if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
2780 2781                  /* uscsi does not support read/write request */
2781 2782                  return (EINVAL);
2782 2783          }
2783 2784  
2784 2785          /* request data-in */
2785 2786          if (vd_scsi->datain_len != 0) {
2786 2787                  uscsi->uscsi_flags |= USCSI_READ;
2787 2788                  uscsi->uscsi_buflen = vd_scsi->datain_len;
2788 2789                  uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
2789 2790          }
2790 2791  
2791 2792          /* request data-out */
2792 2793          if (vd_scsi->dataout_len != 0) {
2793 2794                  uscsi->uscsi_buflen = vd_scsi->dataout_len;
2794 2795                  uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
2795 2796          }
2796 2797  
2797 2798          return (0);
2798 2799  }
2799 2800  
2800 2801  static void
2801 2802  vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
2802 2803  {
2803 2804          vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2804 2805          struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2805 2806  
2806 2807          /* output fields */
2807 2808          vd_scsi->cmd_status = uscsi->uscsi_status;
2808 2809  
2809 2810          /* sense data */
2810 2811          if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
2811 2812              (uscsi->uscsi_status == STATUS_CHECK ||
2812 2813              uscsi->uscsi_status == STATUS_TERMINATED)) {
2813 2814                  vd_scsi->sense_status = uscsi->uscsi_rqstatus;
2814 2815                  if (uscsi->uscsi_rqstatus == STATUS_GOOD)
2815 2816                          vd_scsi->sense_len -= uscsi->uscsi_rqresid;
2816 2817                  else
2817 2818                          vd_scsi->sense_len = 0;
2818 2819          } else {
2819 2820                  vd_scsi->sense_len = 0;
2820 2821          }
2821 2822  
2822 2823          if (uscsi->uscsi_status != STATUS_GOOD) {
2823 2824                  vd_scsi->dataout_len = 0;
2824 2825                  vd_scsi->datain_len = 0;
2825 2826                  return;
2826 2827          }
2827 2828  
2828 2829          if (uscsi->uscsi_flags & USCSI_READ) {
2829 2830                  /* request data (read) */
2830 2831                  vd_scsi->datain_len -= uscsi->uscsi_resid;
2831 2832                  vd_scsi->dataout_len = 0;
2832 2833          } else {
2833 2834                  /* request data (write) */
2834 2835                  vd_scsi->datain_len = 0;
2835 2836                  vd_scsi->dataout_len -= uscsi->uscsi_resid;
2836 2837          }
2837 2838  }
2838 2839  
2839 2840  static ushort_t
2840 2841  vd_lbl2cksum(struct dk_label *label)
2841 2842  {
2842 2843          int     count;
2843 2844          ushort_t sum, *sp;
2844 2845  
2845 2846          count = (sizeof (struct dk_label)) / (sizeof (short)) - 1;
2846 2847          sp = (ushort_t *)label;
2847 2848          sum = 0;
2848 2849          while (count--) {
2849 2850                  sum ^= *sp++;
2850 2851          }
2851 2852  
2852 2853          return (sum);
2853 2854  }
2854 2855  
2855 2856  /*
2856 2857   * Copy information from a vtoc and dk_geom structures to a dk_label structure.
2857 2858   */
2858 2859  static void
2859 2860  vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
2860 2861      struct dk_label *label)
2861 2862  {
2862 2863          int i;
2863 2864  
2864 2865          ASSERT(vtoc->v_nparts == V_NUMPAR);
2865 2866          ASSERT(vtoc->v_sanity == VTOC_SANE);
2866 2867  
2867 2868          bzero(label, sizeof (struct dk_label));
2868 2869  
2869 2870          label->dkl_ncyl = geom->dkg_ncyl;
2870 2871          label->dkl_acyl = geom->dkg_acyl;
2871 2872          label->dkl_pcyl = geom->dkg_pcyl;
2872 2873          label->dkl_nhead = geom->dkg_nhead;
2873 2874          label->dkl_nsect = geom->dkg_nsect;
2874 2875          label->dkl_intrlv = geom->dkg_intrlv;
2875 2876          label->dkl_apc = geom->dkg_apc;
2876 2877          label->dkl_rpm = geom->dkg_rpm;
2877 2878          label->dkl_write_reinstruct = geom->dkg_write_reinstruct;
2878 2879          label->dkl_read_reinstruct = geom->dkg_read_reinstruct;
2879 2880  
2880 2881          label->dkl_vtoc.v_nparts = V_NUMPAR;
2881 2882          label->dkl_vtoc.v_sanity = VTOC_SANE;
2882 2883          label->dkl_vtoc.v_version = vtoc->v_version;
2883 2884          for (i = 0; i < V_NUMPAR; i++) {
2884 2885                  label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
2885 2886                  label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag;
2886 2887                  label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag;
2887 2888                  label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start /
2888 2889                      (label->dkl_nhead * label->dkl_nsect);
2889 2890                  label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size;
2890 2891          }
2891 2892  
2892 2893          /*
2893 2894           * The bootinfo array can not be copied with bcopy() because
2894 2895           * elements are of type long in vtoc (so 64-bit) and of type
2895 2896           * int in dk_vtoc (so 32-bit).
2896 2897           */
2897 2898          label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2898 2899          label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2899 2900          label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2900 2901          bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII);
2901 2902          bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL);
2902 2903  
2903 2904          /* re-compute checksum */
2904 2905          label->dkl_magic = DKL_MAGIC;
2905 2906          label->dkl_cksum = vd_lbl2cksum(label);
2906 2907  }
2907 2908  
2908 2909  /*
2909 2910   * Copy information from a dk_label structure to a vtoc and dk_geom structures.
2910 2911   */
2911 2912  static void
2912 2913  vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
2913 2914      struct dk_geom *geom)
2914 2915  {
2915 2916          int i;
2916 2917  
2917 2918          bzero(vtoc, sizeof (struct extvtoc));
2918 2919          bzero(geom, sizeof (struct dk_geom));
2919 2920  
2920 2921          geom->dkg_ncyl = label->dkl_ncyl;
2921 2922          geom->dkg_acyl = label->dkl_acyl;
2922 2923          geom->dkg_nhead = label->dkl_nhead;
2923 2924          geom->dkg_nsect = label->dkl_nsect;
2924 2925          geom->dkg_intrlv = label->dkl_intrlv;
2925 2926          geom->dkg_apc = label->dkl_apc;
2926 2927          geom->dkg_rpm = label->dkl_rpm;
2927 2928          geom->dkg_pcyl = label->dkl_pcyl;
2928 2929          geom->dkg_write_reinstruct = label->dkl_write_reinstruct;
2929 2930          geom->dkg_read_reinstruct = label->dkl_read_reinstruct;
2930 2931  
2931 2932          vtoc->v_sanity = label->dkl_vtoc.v_sanity;
2932 2933          vtoc->v_version = label->dkl_vtoc.v_version;
2933 2934          vtoc->v_sectorsz = DEV_BSIZE;
2934 2935          vtoc->v_nparts = label->dkl_vtoc.v_nparts;
2935 2936  
2936 2937          for (i = 0; i < vtoc->v_nparts; i++) {
2937 2938                  vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag;
2938 2939                  vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag;
2939 2940                  vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno *
2940 2941                      (label->dkl_nhead * label->dkl_nsect);
2941 2942                  vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk;
2942 2943                  vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i];
2943 2944          }
2944 2945  
2945 2946          /*
2946 2947           * The bootinfo array can not be copied with bcopy() because
2947 2948           * elements are of type long in vtoc (so 64-bit) and of type
2948 2949           * int in dk_vtoc (so 32-bit).
2949 2950           */
2950 2951          vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0];
2951 2952          vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1];
2952 2953          vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2];
2953 2954          bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII);
2954 2955          bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL);
2955 2956  }
2956 2957  
2957 2958  /*
2958 2959   * Check if a geometry is valid for a single-slice disk. A geometry is
2959 2960   * considered valid if the main attributes of the geometry match with the
2960 2961   * attributes of the fake geometry we have created.
2961 2962   */
2962 2963  static boolean_t
2963 2964  vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom)
2964 2965  {
2965 2966          ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2966 2967          ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2967 2968  
2968 2969          if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl ||
2969 2970              geom->dkg_acyl != vd->dk_geom.dkg_acyl ||
2970 2971              geom->dkg_nsect != vd->dk_geom.dkg_nsect ||
2971 2972              geom->dkg_pcyl != vd->dk_geom.dkg_pcyl)
2972 2973                  return (B_FALSE);
2973 2974  
2974 2975          return (B_TRUE);
2975 2976  }
2976 2977  
2977 2978  /*
2978 2979   * Check if a vtoc is valid for a single-slice disk. A vtoc is considered
2979 2980   * valid if the main attributes of the vtoc match with the attributes of the
2980 2981   * fake vtoc we have created.
2981 2982   */
2982 2983  static boolean_t
2983 2984  vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc)
2984 2985  {
2985 2986          size_t csize;
2986 2987          int i;
2987 2988  
2988 2989          ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2989 2990          ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2990 2991  
2991 2992          if (vtoc->v_sanity != vd->vtoc.v_sanity ||
2992 2993              vtoc->v_version != vd->vtoc.v_version ||
2993 2994              vtoc->v_nparts != vd->vtoc.v_nparts ||
2994 2995              strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 ||
2995 2996              strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0)
2996 2997                  return (B_FALSE);
2997 2998  
2998 2999          /* slice 2 should be unchanged */
2999 3000          if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start !=
3000 3001              vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start ||
3001 3002              vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size !=
3002 3003              vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size)
3003 3004                  return (B_FALSE);
3004 3005  
3005 3006          /*
3006 3007           * Slice 0 should be mostly unchanged and cover most of the disk.
3007 3008           * However we allow some flexibility wrt to the start and the size
3008 3009           * of this slice mainly because we can't exactly know how it will
3009 3010           * be defined by the OS installer.
3010 3011           *
3011 3012           * We allow slice 0 to be defined as starting on any of the first
3012 3013           * 4 cylinders.
3013 3014           */
3014 3015          csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
3015 3016  
3016 3017          if (vtoc->v_part[0].p_start > 4 * csize ||
3017 3018              vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size)
3018 3019                          return (B_FALSE);
3019 3020  
3020 3021          if (vd->vtoc.v_part[0].p_size >= 4 * csize &&
3021 3022              vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize)
3022 3023                          return (B_FALSE);
3023 3024  
3024 3025          /* any other slice should have a size of 0 */
3025 3026          for (i = 1; i < vtoc->v_nparts; i++) {
3026 3027                  if (i != VD_ENTIRE_DISK_SLICE &&
3027 3028                      vtoc->v_part[i].p_size != 0)
3028 3029                          return (B_FALSE);
3029 3030          }
3030 3031  
3031 3032          return (B_TRUE);
3032 3033  }
3033 3034  
3034 3035  /*
3035 3036   * Handle ioctls to a disk slice.
3036 3037   *
3037 3038   * Return Values
3038 3039   *      0       - Indicates that there are no errors in disk operations
3039 3040   *      ENOTSUP - Unknown disk label type or unsupported DKIO ioctl
3040 3041   *      EINVAL  - Not enough room to copy the EFI label
3041 3042   *
3042 3043   */
3043 3044  static int
3044 3045  vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
3045 3046  {
3046 3047          dk_efi_t *dk_ioc;
3047 3048          struct extvtoc *vtoc;
3048 3049          struct dk_geom *geom;
3049 3050          size_t len, lba;
3050 3051  
3051 3052          ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
3052 3053  
3053 3054          if (cmd == DKIOCFLUSHWRITECACHE)
3054 3055                  return (vd_flush_write(vd));
3055 3056  
3056 3057          switch (vd->vdisk_label) {
3057 3058  
3058 3059          /* ioctls for a single slice disk with a VTOC label */
3059 3060          case VD_DISK_LABEL_VTOC:
3060 3061  
3061 3062                  switch (cmd) {
3062 3063  
3063 3064                  case DKIOCGGEOM:
3064 3065                          ASSERT(ioctl_arg != NULL);
3065 3066                          bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
3066 3067                          return (0);
3067 3068  
3068 3069                  case DKIOCGEXTVTOC:
3069 3070                          ASSERT(ioctl_arg != NULL);
3070 3071                          bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
3071 3072                          return (0);
3072 3073  
3073 3074                  case DKIOCSGEOM:
3074 3075                          ASSERT(ioctl_arg != NULL);
3075 3076                          if (vd_slice_single_slice)
3076 3077                                  return (ENOTSUP);
3077 3078  
3078 3079                          /* fake success only if new geometry is valid */
3079 3080                          geom = (struct dk_geom *)ioctl_arg;
3080 3081                          if (!vd_slice_geom_isvalid(vd, geom))
3081 3082                                  return (EINVAL);
3082 3083  
3083 3084                          return (0);
3084 3085  
3085 3086                  case DKIOCSEXTVTOC:
3086 3087                          ASSERT(ioctl_arg != NULL);
3087 3088                          if (vd_slice_single_slice)
3088 3089                                  return (ENOTSUP);
3089 3090  
3090 3091                          /* fake sucess only if the new vtoc is valid */
3091 3092                          vtoc = (struct extvtoc *)ioctl_arg;
3092 3093                          if (!vd_slice_vtoc_isvalid(vd, vtoc))
3093 3094                                  return (EINVAL);
3094 3095  
3095 3096                          return (0);
3096 3097  
3097 3098                  default:
3098 3099                          return (ENOTSUP);
3099 3100                  }
3100 3101  
3101 3102          /* ioctls for a single slice disk with an EFI label */
3102 3103          case VD_DISK_LABEL_EFI:
3103 3104  
3104 3105                  if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI)
3105 3106                          return (ENOTSUP);
3106 3107  
3107 3108                  ASSERT(ioctl_arg != NULL);
3108 3109                  dk_ioc = (dk_efi_t *)ioctl_arg;
3109 3110  
3110 3111                  len = dk_ioc->dki_length;
3111 3112                  lba = dk_ioc->dki_lba;
3112 3113  
3113 3114                  if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) ||
3114 3115                      (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) ||
3115 3116                      (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t)))
3116 3117                          return (EINVAL);
3117 3118  
3118 3119                  switch (cmd) {
3119 3120                  case DKIOCGETEFI:
3120 3121                          len = vd_slice_flabel_read(vd,
3121 3122                              (caddr_t)dk_ioc->dki_data,
3122 3123                              lba * vd->vdisk_bsize, len);
3123 3124  
3124 3125                          ASSERT(len > 0);
3125 3126  
3126 3127                          return (0);
3127 3128  
3128 3129                  case DKIOCSETEFI:
3129 3130                          if (vd_slice_single_slice)
3130 3131                                  return (ENOTSUP);
3131 3132  
3132 3133                          /* we currently don't support writing EFI */
3133 3134                          return (EIO);
3134 3135                  }
3135 3136  
3136 3137          default:
3137 3138                  /* Unknown disk label type */
3138 3139                  return (ENOTSUP);
3139 3140          }
3140 3141  }
3141 3142  
3142 3143  static int
3143 3144  vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
3144 3145  {
3145 3146          vd_efi_dev_t edev;
3146 3147          int status;
3147 3148  
3148 3149          VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3149 3150  
3150 3151          status = vd_efi_alloc_and_read(&edev, gpt, gpe);
3151 3152  
3152 3153          return (status);
3153 3154  }
3154 3155  
3155 3156  static void
3156 3157  vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
3157 3158  {
3158 3159          vd_efi_dev_t edev;
3159 3160  
3160 3161          VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3161 3162  
3162 3163          vd_efi_free(&edev, gpt, gpe);
3163 3164  }
3164 3165  
3165 3166  static int
3166 3167  vd_dskimg_validate_efi(vd_t *vd)
3167 3168  {
3168 3169          efi_gpt_t *gpt;
3169 3170          efi_gpe_t *gpe;
3170 3171          int i, nparts, status;
3171 3172          struct uuid efi_reserved = EFI_RESERVED;
3172 3173  
3173 3174          if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
3174 3175                  return (status);
3175 3176  
3176 3177          bzero(&vd->vtoc, sizeof (struct extvtoc));
3177 3178          bzero(&vd->dk_geom, sizeof (struct dk_geom));
3178 3179          bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3179 3180  
3180 3181          vd->efi_reserved = -1;
3181 3182  
3182 3183          nparts = gpt->efi_gpt_NumberOfPartitionEntries;
3183 3184  
3184 3185          for (i = 0; i < nparts && i < VD_MAXPART; i++) {
3185 3186  
3186 3187                  if (gpe[i].efi_gpe_StartingLBA == 0 &&
3187 3188                      gpe[i].efi_gpe_EndingLBA == 0) {
3188 3189                          continue;
3189 3190                  }
3190 3191  
3191 3192                  vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
3192 3193                  vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
3193 3194                      gpe[i].efi_gpe_StartingLBA + 1;
3194 3195  
3195 3196                  if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
3196 3197                      sizeof (struct uuid)) == 0)
3197 3198                          vd->efi_reserved = i;
3198 3199  
3199 3200          }
3200 3201  
3201 3202          ASSERT(vd->vdisk_size != 0);
3202 3203          vd->slices[VD_EFI_WD_SLICE].start = 0;
3203 3204          vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
3204 3205  
3205 3206          vds_efi_free(vd, gpt, gpe);
3206 3207  
3207 3208          return (status);
3208 3209  }
3209 3210  
3210 3211  /*
3211 3212   * Function:
3212 3213   *      vd_dskimg_validate_geometry
3213 3214   *
3214 3215   * Description:
3215 3216   *      Read the label and validate the geometry of a disk image. The driver
3216 3217   *      label, vtoc and geometry information are updated according to the
3217 3218   *      label read from the disk image.
3218 3219   *
3219 3220   *      If no valid label is found, the label is set to unknown and the
3220 3221   *      function returns EINVAL, but a default vtoc and geometry are provided
3221 3222   *      to the driver. If an EFI label is found, ENOTSUP is returned.
3222 3223   *
3223 3224   * Parameters:
3224 3225   *      vd      - disk on which the operation is performed.
3225 3226   *
3226 3227   * Return Code:
3227 3228   *      0       - success.
3228 3229   *      EIO     - error reading the label from the disk image.
3229 3230   *      EINVAL  - unknown disk label.
3230 3231   *      ENOTSUP - geometry not applicable (EFI label).
3231 3232   */
3232 3233  static int
3233 3234  vd_dskimg_validate_geometry(vd_t *vd)
3234 3235  {
3235 3236          struct dk_label label;
3236 3237          struct dk_geom *geom = &vd->dk_geom;
3237 3238          struct extvtoc *vtoc = &vd->vtoc;
3238 3239          int i;
3239 3240          int status = 0;
3240 3241  
3241 3242          ASSERT(VD_DSKIMG(vd));
3242 3243  
3243 3244          if (VD_DSKIMG_LABEL_READ(vd, &label) < 0)
3244 3245                  return (EIO);
3245 3246  
3246 3247          if (label.dkl_magic != DKL_MAGIC ||
3247 3248              label.dkl_cksum != vd_lbl2cksum(&label) ||
3248 3249              (vd_dskimg_validate_sanity &&
3249 3250              label.dkl_vtoc.v_sanity != VTOC_SANE) ||
3250 3251              label.dkl_vtoc.v_nparts != V_NUMPAR) {
3251 3252  
3252 3253                  if (vd_dskimg_validate_efi(vd) == 0) {
3253 3254                          vd->vdisk_label = VD_DISK_LABEL_EFI;
3254 3255                          return (ENOTSUP);
3255 3256                  }
3256 3257  
3257 3258                  vd->vdisk_label = VD_DISK_LABEL_UNK;
3258 3259                  vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
3259 3260                      &label);
3260 3261                  status = EINVAL;
3261 3262          } else {
3262 3263                  vd->vdisk_label = VD_DISK_LABEL_VTOC;
3263 3264          }
3264 3265  
3265 3266          /* Update the driver geometry and vtoc */
3266 3267          vd_label_to_vtocgeom(&label, vtoc, geom);
3267 3268  
3268 3269          /* Update logical partitions */
3269 3270          bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3270 3271          if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
3271 3272                  for (i = 0; i < vtoc->v_nparts; i++) {
3272 3273                          vd->slices[i].start = vtoc->v_part[i].p_start;
3273 3274                          vd->slices[i].nblocks = vtoc->v_part[i].p_size;
3274 3275                  }
3275 3276          }
3276 3277  
3277 3278          return (status);
3278 3279  }
3279 3280  
3280 3281  /*
3281 3282   * Handle ioctls to a disk image.
3282 3283   *
3283 3284   * Return Values
3284 3285   *      0       - Indicates that there are no errors
3285 3286   *      != 0    - Disk operation returned an error
3286 3287   */
3287 3288  static int
3288 3289  vd_do_dskimg_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
3289 3290  {
3290 3291          struct dk_label label;
3291 3292          struct dk_geom *geom;
3292 3293          struct extvtoc *vtoc;
3293 3294          dk_efi_t *efi;
3294 3295          int rc;
3295 3296  
3296 3297          ASSERT(VD_DSKIMG(vd));
3297 3298  
3298 3299          switch (cmd) {
3299 3300  
3300 3301          case DKIOCGGEOM:
3301 3302                  ASSERT(ioctl_arg != NULL);
3302 3303                  geom = (struct dk_geom *)ioctl_arg;
3303 3304  
3304 3305                  rc = vd_dskimg_validate_geometry(vd);
3305 3306                  if (rc != 0 && rc != EINVAL)
3306 3307                          return (rc);
3307 3308                  bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
3308 3309                  return (0);
3309 3310  
3310 3311          case DKIOCGEXTVTOC:
3311 3312                  ASSERT(ioctl_arg != NULL);
3312 3313                  vtoc = (struct extvtoc *)ioctl_arg;
3313 3314  
3314 3315                  rc = vd_dskimg_validate_geometry(vd);
3315 3316                  if (rc != 0 && rc != EINVAL)
3316 3317                          return (rc);
3317 3318                  bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc));
3318 3319                  return (0);
3319 3320  
3320 3321          case DKIOCSGEOM:
3321 3322                  ASSERT(ioctl_arg != NULL);
3322 3323                  geom = (struct dk_geom *)ioctl_arg;
3323 3324  
3324 3325                  if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
3325 3326                          return (EINVAL);
3326 3327  
3327 3328                  /*
3328 3329                   * The current device geometry is not updated, just the driver
3329 3330                   * "notion" of it. The device geometry will be effectively
3330 3331                   * updated when a label is written to the device during a next
3331 3332                   * DKIOCSEXTVTOC.
3332 3333                   */
3333 3334                  bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
3334 3335                  return (0);
3335 3336  
3336 3337          case DKIOCSEXTVTOC:
3337 3338                  ASSERT(ioctl_arg != NULL);
3338 3339                  ASSERT(vd->dk_geom.dkg_nhead != 0 &&
3339 3340                      vd->dk_geom.dkg_nsect != 0);
3340 3341                  vtoc = (struct extvtoc *)ioctl_arg;
3341 3342  
3342 3343                  if (vtoc->v_sanity != VTOC_SANE ||
3343 3344                      vtoc->v_sectorsz != DEV_BSIZE ||
3344 3345                      vtoc->v_nparts != V_NUMPAR)
3345 3346                          return (EINVAL);
3346 3347  
3347 3348                  vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label);
3348 3349  
3349 3350                  /* write label to the disk image */
3350 3351                  if ((rc = vd_dskimg_set_vtoc(vd, &label)) != 0)
3351 3352                          return (rc);
3352 3353  
3353 3354                  break;
3354 3355  
3355 3356          case DKIOCFLUSHWRITECACHE:
3356 3357                  return (vd_flush_write(vd));
3357 3358  
3358 3359          case DKIOCGETEFI:
3359 3360                  ASSERT(ioctl_arg != NULL);
3360 3361                  efi = (dk_efi_t *)ioctl_arg;
3361 3362  
3362 3363                  if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
3363 3364                      (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3364 3365                          return (EIO);
3365 3366  
3366 3367                  return (0);
3367 3368  
3368 3369          case DKIOCSETEFI:
3369 3370                  ASSERT(ioctl_arg != NULL);
3370 3371                  efi = (dk_efi_t *)ioctl_arg;
3371 3372  
3372 3373                  if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
3373 3374                      (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3374 3375                          return (EIO);
3375 3376  
3376 3377                  break;
3377 3378  
3378 3379  
3379 3380          default:
3380 3381                  return (ENOTSUP);
3381 3382          }
3382 3383  
3383 3384          ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI);
3384 3385  
3385 3386          /* label has changed, revalidate the geometry */
3386 3387          (void) vd_dskimg_validate_geometry(vd);
3387 3388  
3388 3389          /*
3389 3390           * The disk geometry may have changed, so we need to write
3390 3391           * the devid (if there is one) so that it is stored at the
3391 3392           * right location.
3392 3393           */
3393 3394          if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
3394 3395                  PR0("Fail to write devid");
3395 3396          }
3396 3397  
3397 3398          return (0);
3398 3399  }
3399 3400  
3400 3401  static int
3401 3402  vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
3402 3403  {
3403 3404          int rval = 0, status;
3404 3405          struct vtoc vtoc;
3405 3406  
3406 3407          /*
3407 3408           * Call the appropriate function to execute the ioctl depending
3408 3409           * on the type of vdisk.
3409 3410           */
3410 3411          if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3411 3412  
3412 3413                  /* slice, file or volume exported as a single slice disk */
3413 3414                  status = vd_do_slice_ioctl(vd, cmd, arg);
3414 3415  
3415 3416          } else if (VD_DSKIMG(vd)) {
3416 3417  
3417 3418                  /* file or volume exported as a full disk */
3418 3419                  status = vd_do_dskimg_ioctl(vd, cmd, arg);
3419 3420  
3420 3421          } else {
3421 3422  
3422 3423                  /* disk device exported as a full disk */
3423 3424                  status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
3424 3425                      vd->open_flags | FKIOCTL, kcred, &rval);
3425 3426  
3426 3427                  /*
3427 3428                   * By default VTOC ioctls are done using ioctls for the
3428 3429                   * extended VTOC. Some drivers (in particular non-Sun drivers)
3429 3430                   * may not support these ioctls. In that case, we fallback to
3430 3431                   * the regular VTOC ioctls.
3431 3432                   */
3432 3433                  if (status == ENOTTY) {
3433 3434                          switch (cmd) {
3434 3435  
3435 3436                          case DKIOCGEXTVTOC:
3436 3437                                  cmd = DKIOCGVTOC;
3437 3438                                  status = ldi_ioctl(vd->ldi_handle[0], cmd,
3438 3439                                      (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3439 3440                                      kcred, &rval);
3440 3441                                  vtoctoextvtoc(vtoc,
3441 3442                                      (*(struct extvtoc *)(void *)arg));
3442 3443                                  break;
3443 3444  
3444 3445                          case DKIOCSEXTVTOC:
3445 3446                                  cmd = DKIOCSVTOC;
3446 3447                                  extvtoctovtoc((*(struct extvtoc *)(void *)arg),
3447 3448                                      vtoc);
3448 3449                                  status = ldi_ioctl(vd->ldi_handle[0], cmd,
3449 3450                                      (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3450 3451                                      kcred, &rval);
3451 3452                                  break;
3452 3453                          }
3453 3454                  }
3454 3455          }
3455 3456  
3456 3457  #ifdef DEBUG
3457 3458          if (rval != 0) {
3458 3459                  PR0("ioctl %x set rval = %d, which is not being returned"
3459 3460                      " to caller", cmd, rval);
3460 3461          }
3461 3462  #endif /* DEBUG */
3462 3463  
3463 3464          return (status);
3464 3465  }
3465 3466  
3466 3467  /*
3467 3468   * Description:
3468 3469   *      This is the function that processes the ioctl requests (farming it
3469 3470   *      out to functions that handle slices, files or whole disks)
3470 3471   *
3471 3472   * Return Values
3472 3473   *     0                - ioctl operation completed successfully
3473 3474   *     != 0             - The LDC error value encountered
3474 3475   *                        (propagated back up the call stack as a task error)
3475 3476   *
3476 3477   * Side Effect
3477 3478   *     sets request->status to the return value of the ioctl function.
3478 3479   */
3479 3480  static int
3480 3481  vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
3481 3482  {
3482 3483          int     status = 0;
3483 3484          size_t  nbytes = request->nbytes;       /* modifiable copy */
3484 3485  
3485 3486  
3486 3487          ASSERT(request->slice < vd->nslices);
3487 3488          PR0("Performing %s", ioctl->operation_name);
3488 3489  
3489 3490          /* Get data from client and convert, if necessary */
3490 3491          if (ioctl->copyin != NULL)  {
3491 3492                  ASSERT(nbytes != 0 && buf != NULL);
3492 3493                  PR1("Getting \"arg\" data from client");
3493 3494                  if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3494 3495                      request->cookie, request->ncookies,
3495 3496                      LDC_COPY_IN)) != 0) {
3496 3497                          PR0("ldc_mem_copy() returned errno %d "
3497 3498                              "copying from client", status);
3498 3499                          return (status);
3499 3500                  }
3500 3501  
3501 3502                  /* Convert client's data, if necessary */
3502 3503                  if (ioctl->copyin == VD_IDENTITY_IN) {
3503 3504                          /* use client buffer */
3504 3505                          ioctl->arg = buf;
3505 3506                  } else {
3506 3507                          /* convert client vdisk operation data to ioctl data */
3507 3508                          status = (ioctl->copyin)(buf, nbytes,
3508 3509                              (void *)ioctl->arg);
3509 3510                          if (status != 0) {
3510 3511                                  request->status = status;
3511 3512                                  return (0);
3512 3513                          }
3513 3514                  }
3514 3515          }
3515 3516  
3516 3517          if (ioctl->operation == VD_OP_SCSICMD) {
3517 3518                  struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
3518 3519  
3519 3520                  /* check write permission */
3520 3521                  if (!(vd->open_flags & FWRITE) &&
3521 3522                      !(uscsi->uscsi_flags & USCSI_READ)) {
3522 3523                          PR0("uscsi fails because backend is opened read-only");
3523 3524                          request->status = EROFS;
3524 3525                          return (0);
3525 3526                  }
3526 3527          }
3527 3528  
3528 3529          /*
3529 3530           * Send the ioctl to the disk backend.
3530 3531           */
3531 3532          request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
3532 3533  
3533 3534          if (request->status != 0) {
3534 3535                  PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
3535 3536                  if (ioctl->operation == VD_OP_SCSICMD &&
3536 3537                      ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
3537 3538                          /*
3538 3539                           * USCSICMD has reported an error and the uscsi_status
3539 3540                           * field is not zero. This means that the SCSI command
3540 3541                           * has completed but it has an error. So we should
3541 3542                           * mark the VD operation has succesfully completed
3542 3543                           * and clients can check the SCSI status field for
3543 3544                           * SCSI errors.
3544 3545                           */
3545 3546                          request->status = 0;
3546 3547                  else
3547 3548                          return (0);
3548 3549          }
3549 3550  
3550 3551          /* Convert data and send to client, if necessary */
3551 3552          if (ioctl->copyout != NULL)  {
3552 3553                  ASSERT(nbytes != 0 && buf != NULL);
3553 3554                  PR1("Sending \"arg\" data to client");
3554 3555  
3555 3556                  /* Convert ioctl data to vdisk operation data, if necessary */
3556 3557                  if (ioctl->copyout != VD_IDENTITY_OUT)
3557 3558                          (ioctl->copyout)((void *)ioctl->arg, buf);
3558 3559  
3559 3560                  if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3560 3561                      request->cookie, request->ncookies,
3561 3562                      LDC_COPY_OUT)) != 0) {
3562 3563                          PR0("ldc_mem_copy() returned errno %d "
3563 3564                              "copying to client", status);
3564 3565                          return (status);
3565 3566                  }
3566 3567          }
3567 3568  
3568 3569          return (status);
3569 3570  }
3570 3571  
3571 3572  #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
3572 3573  
3573 3574  /*
3574 3575   * Description:
3575 3576   *      This generic function is called by the task queue to complete
3576 3577   *      the processing of the tasks. The specific completion function
3577 3578   *      is passed in as a field in the task pointer.
3578 3579   *
3579 3580   * Parameters:
3580 3581   *      arg     - opaque pointer to structure containing task to be completed
3581 3582   *
3582 3583   * Return Values
3583 3584   *      None
3584 3585   */
3585 3586  static void
3586 3587  vd_complete(void *arg)
3587 3588  {
3588 3589          vd_task_t       *task = (vd_task_t *)arg;
3589 3590  
3590 3591          ASSERT(task != NULL);
3591 3592          ASSERT(task->status == EINPROGRESS);
3592 3593          ASSERT(task->completef != NULL);
3593 3594  
3594 3595          task->status = task->completef(task);
3595 3596          if (task->status)
3596 3597                  PR0("%s: Error %d completing task", __func__, task->status);
3597 3598  
3598 3599          /* Now notify the vDisk client */
3599 3600          vd_complete_notify(task);
3600 3601  }
3601 3602  
3602 3603  static int
3603 3604  vd_ioctl(vd_task_t *task)
3604 3605  {
3605 3606          int                     i, status;
3606 3607          void                    *buf = NULL;
3607 3608          struct dk_geom          dk_geom = {0};
3608 3609          struct extvtoc          vtoc = {0};
3609 3610          struct dk_efi           dk_efi = {0};
3610 3611          struct uscsi_cmd        uscsi = {0};
3611 3612          vd_t                    *vd             = task->vd;
3612 3613          vd_dring_payload_t      *request        = task->request;
3613 3614          vd_ioctl_t              ioctl[] = {
3614 3615                  /* Command (no-copy) operations */
3615 3616                  {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
3616 3617                      DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
3617 3618                      NULL, NULL, NULL, B_TRUE},
3618 3619  
3619 3620                  /* "Get" (copy-out) operations */
3620 3621                  {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
3621 3622                      DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
3622 3623                      NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
3623 3624                  {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
3624 3625                      RNDSIZE(vd_geom_t),
3625 3626                      DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
3626 3627                      &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
3627 3628                  {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
3628 3629                      DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC),
3629 3630                      &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
3630 3631                  {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
3631 3632                      DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
3632 3633                      &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
3633 3634  
3634 3635                  /* "Set" (copy-in) operations */
3635 3636                  {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
3636 3637                      DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
3637 3638                      NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
3638 3639                  {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
3639 3640                      RNDSIZE(vd_geom_t),
3640 3641                      DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
3641 3642                      &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
3642 3643                  {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
3643 3644                      DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC),
3644 3645                      &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
3645 3646                  {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
3646 3647                      DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
3647 3648                      &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
3648 3649  
3649 3650                  {VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
3650 3651                      USCSICMD, STRINGIZE(USCSICMD),
3651 3652                      &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
3652 3653          };
3653 3654          size_t          nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
3654 3655  
3655 3656  
3656 3657          ASSERT(vd != NULL);
3657 3658          ASSERT(request != NULL);
3658 3659          ASSERT(request->slice < vd->nslices);
3659 3660  
3660 3661          /*
3661 3662           * Determine ioctl corresponding to caller's "operation" and
3662 3663           * validate caller's "nbytes"
3663 3664           */
3664 3665          for (i = 0; i < nioctls; i++) {
3665 3666                  if (request->operation == ioctl[i].operation) {
3666 3667                          /* LDC memory operations require 8-byte multiples */
3667 3668                          ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
3668 3669  
3669 3670                          if (request->operation == VD_OP_GET_EFI ||
3670 3671                              request->operation == VD_OP_SET_EFI ||
3671 3672                              request->operation == VD_OP_SCSICMD) {
3672 3673                                  if (request->nbytes >= ioctl[i].nbytes)
3673 3674                                          break;
3674 3675                                  PR0("%s:  Expected at least nbytes = %lu, "
3675 3676                                      "got %lu", ioctl[i].operation_name,
3676 3677                                      ioctl[i].nbytes, request->nbytes);
3677 3678                                  return (EINVAL);
3678 3679                          }
3679 3680  
3680 3681                          if (request->nbytes != ioctl[i].nbytes) {
3681 3682                                  PR0("%s:  Expected nbytes = %lu, got %lu",
3682 3683                                      ioctl[i].operation_name, ioctl[i].nbytes,
3683 3684                                      request->nbytes);
3684 3685                                  return (EINVAL);
3685 3686                          }
3686 3687  
3687 3688                          break;
3688 3689                  }
3689 3690          }
3690 3691          ASSERT(i < nioctls);    /* because "operation" already validated */
3691 3692  
3692 3693          if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
3693 3694                  PR0("%s fails because backend is opened read-only",
3694 3695                      ioctl[i].operation_name);
3695 3696                  request->status = EROFS;
3696 3697                  return (0);
3697 3698          }
3698 3699  
3699 3700          if (request->nbytes)
3700 3701                  buf = kmem_zalloc(request->nbytes, KM_SLEEP);
3701 3702          status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
3702 3703          if (request->nbytes)
3703 3704                  kmem_free(buf, request->nbytes);
3704 3705  
3705 3706          return (status);
3706 3707  }
3707 3708  
3708 3709  static int
3709 3710  vd_get_devid(vd_task_t *task)
3710 3711  {
3711 3712          vd_t *vd = task->vd;
3712 3713          vd_dring_payload_t *request = task->request;
3713 3714          vd_devid_t *vd_devid;
3714 3715          impl_devid_t *devid;
3715 3716          int status, bufid_len, devid_len, len, sz;
3716 3717          int bufbytes;
3717 3718  
3718 3719          PR1("Get Device ID, nbytes=%ld", request->nbytes);
3719 3720  
3720 3721          if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3721 3722                  /*
3722 3723                   * We don't support devid for single-slice disks because we
3723 3724                   * have no space to store a fabricated devid and for physical
3724 3725                   * disk slices, we can't use the devid of the disk otherwise
3725 3726                   * exporting multiple slices from the same disk will produce
3726 3727                   * the same devids.
3727 3728                   */
3728 3729                  PR2("No Device ID for slices");
3729 3730                  request->status = ENOTSUP;
3730 3731                  return (0);
3731 3732          }
3732 3733  
3733 3734          if (VD_DSKIMG(vd)) {
3734 3735                  if (vd->dskimg_devid == NULL) {
3735 3736                          PR2("No Device ID");
3736 3737                          request->status = ENOENT;
3737 3738                          return (0);
3738 3739                  } else {
3739 3740                          sz = ddi_devid_sizeof(vd->dskimg_devid);
3740 3741                          devid = kmem_alloc(sz, KM_SLEEP);
3741 3742                          bcopy(vd->dskimg_devid, devid, sz);
3742 3743                  }
3743 3744          } else {
3744 3745                  if (ddi_lyr_get_devid(vd->dev[request->slice],
3745 3746                      (ddi_devid_t *)&devid) != DDI_SUCCESS) {
3746 3747                          PR2("No Device ID");
3747 3748                          request->status = ENOENT;
3748 3749                          return (0);
3749 3750                  }
3750 3751          }
3751 3752  
3752 3753          bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
3753 3754          devid_len = DEVID_GETLEN(devid);
3754 3755  
3755 3756          /*
3756 3757           * Save the buffer size here for use in deallocation.
3757 3758           * The actual number of bytes copied is returned in
3758 3759           * the 'nbytes' field of the request structure.
3759 3760           */
3760 3761          bufbytes = request->nbytes;
3761 3762  
3762 3763          vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
3763 3764          vd_devid->length = devid_len;
3764 3765          vd_devid->type = DEVID_GETTYPE(devid);
3765 3766  
3766 3767          len = (devid_len > bufid_len)? bufid_len : devid_len;
3767 3768  
3768 3769          bcopy(devid->did_id, vd_devid->id, len);
3769 3770  
3770 3771          request->status = 0;
3771 3772  
3772 3773          /* LDC memory operations require 8-byte multiples */
3773 3774          ASSERT(request->nbytes % sizeof (uint64_t) == 0);
3774 3775  
3775 3776          if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
3776 3777              &request->nbytes, request->cookie, request->ncookies,
3777 3778              LDC_COPY_OUT)) != 0) {
3778 3779                  PR0("ldc_mem_copy() returned errno %d copying to client",
3779 3780                      status);
3780 3781          }
3781 3782          PR1("post mem_copy: nbytes=%ld", request->nbytes);
3782 3783  
3783 3784          kmem_free(vd_devid, bufbytes);
3784 3785          ddi_devid_free((ddi_devid_t)devid);
3785 3786  
3786 3787          return (status);
3787 3788  }
3788 3789  
3789 3790  static int
3790 3791  vd_scsi_reset(vd_t *vd)
3791 3792  {
3792 3793          int rval, status;
3793 3794          struct uscsi_cmd uscsi = { 0 };
3794 3795  
3795 3796          uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
3796 3797          uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
3797 3798  
3798 3799          status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
3799 3800              (vd->open_flags | FKIOCTL), kcred, &rval);
3800 3801  
3801 3802          return (status);
3802 3803  }
3803 3804  
3804 3805  static int
3805 3806  vd_reset(vd_task_t *task)
3806 3807  {
3807 3808          vd_t *vd = task->vd;
3808 3809          vd_dring_payload_t *request = task->request;
3809 3810  
3810 3811          ASSERT(request->operation == VD_OP_RESET);
3811 3812          ASSERT(vd->scsi);
3812 3813  
3813 3814          PR0("Performing VD_OP_RESET");
3814 3815  
3815 3816          if (request->nbytes != 0) {
3816 3817                  PR0("VD_OP_RESET:  Expected nbytes = 0, got %lu",
3817 3818                      request->nbytes);
3818 3819                  return (EINVAL);
3819 3820          }
3820 3821  
3821 3822          request->status = vd_scsi_reset(vd);
3822 3823  
3823 3824          return (0);
3824 3825  }
3825 3826  
3826 3827  static int
3827 3828  vd_get_capacity(vd_task_t *task)
3828 3829  {
3829 3830          int rv;
3830 3831          size_t nbytes;
3831 3832          vd_t *vd = task->vd;
3832 3833          vd_dring_payload_t *request = task->request;
3833 3834          vd_capacity_t vd_cap = { 0 };
3834 3835  
3835 3836          ASSERT(request->operation == VD_OP_GET_CAPACITY);
3836 3837  
3837 3838          PR0("Performing VD_OP_GET_CAPACITY");
3838 3839  
3839 3840          nbytes = request->nbytes;
3840 3841  
3841 3842          if (nbytes != RNDSIZE(vd_capacity_t)) {
3842 3843                  PR0("VD_OP_GET_CAPACITY:  Expected nbytes = %lu, got %lu",
3843 3844                      RNDSIZE(vd_capacity_t), nbytes);
3844 3845                  return (EINVAL);
3845 3846          }
3846 3847  
3847 3848          /*
3848 3849           * Check the backend size in case it has changed. If the check fails
3849 3850           * then we will return the last known size.
3850 3851           */
3851 3852  
3852 3853          (void) vd_backend_check_size(vd);
3853 3854          ASSERT(vd->vdisk_size != 0);
3854 3855  
3855 3856          request->status = 0;
3856 3857  
3857 3858          vd_cap.vdisk_block_size = vd->vdisk_bsize;
3858 3859          vd_cap.vdisk_size = vd->vdisk_size;
3859 3860  
3860 3861          if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
3861 3862              request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3862 3863                  PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3863 3864                  return (rv);
3864 3865          }
3865 3866  
3866 3867          return (0);
3867 3868  }
3868 3869  
3869 3870  static int
3870 3871  vd_get_access(vd_task_t *task)
3871 3872  {
3872 3873          uint64_t access;
3873 3874          int rv, rval = 0;
3874 3875          size_t nbytes;
3875 3876          vd_t *vd = task->vd;
3876 3877          vd_dring_payload_t *request = task->request;
3877 3878  
3878 3879          ASSERT(request->operation == VD_OP_GET_ACCESS);
3879 3880          ASSERT(vd->scsi);
3880 3881  
3881 3882          PR0("Performing VD_OP_GET_ACCESS");
3882 3883  
3883 3884          nbytes = request->nbytes;
3884 3885  
3885 3886          if (nbytes != sizeof (uint64_t)) {
3886 3887                  PR0("VD_OP_GET_ACCESS:  Expected nbytes = %lu, got %lu",
3887 3888                      sizeof (uint64_t), nbytes);
3888 3889                  return (EINVAL);
3889 3890          }
3890 3891  
3891 3892          request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
3892 3893              NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3893 3894  
3894 3895          if (request->status != 0)
3895 3896                  return (0);
3896 3897  
3897 3898          access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
3898 3899  
3899 3900          if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
3900 3901              request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3901 3902                  PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3902 3903                  return (rv);
3903 3904          }
3904 3905  
3905 3906          return (0);
3906 3907  }
3907 3908  
3908 3909  static int
3909 3910  vd_set_access(vd_task_t *task)
3910 3911  {
3911 3912          uint64_t flags;
3912 3913          int rv, rval;
3913 3914          size_t nbytes;
3914 3915          vd_t *vd = task->vd;
3915 3916          vd_dring_payload_t *request = task->request;
3916 3917  
3917 3918          ASSERT(request->operation == VD_OP_SET_ACCESS);
3918 3919          ASSERT(vd->scsi);
3919 3920  
3920 3921          nbytes = request->nbytes;
3921 3922  
3922 3923          if (nbytes != sizeof (uint64_t)) {
3923 3924                  PR0("VD_OP_SET_ACCESS:  Expected nbytes = %lu, got %lu",
3924 3925                      sizeof (uint64_t), nbytes);
3925 3926                  return (EINVAL);
3926 3927          }
3927 3928  
3928 3929          if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
3929 3930              request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
3930 3931                  PR0("ldc_mem_copy() returned errno %d copying from client", rv);
3931 3932                  return (rv);
3932 3933          }
3933 3934  
3934 3935          if (flags == VD_ACCESS_SET_CLEAR) {
3935 3936                  PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
3936 3937                  request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3937 3938                      MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
3938 3939                      &rval);
3939 3940                  if (request->status == 0)
3940 3941                          vd->ownership = B_FALSE;
3941 3942                  return (0);
3942 3943          }
3943 3944  
3944 3945          /*
3945 3946           * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
3946 3947           * when the EXCLUSIVE flag is set.
3947 3948           */
3948 3949          if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
3949 3950                  PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
3950 3951                  request->status = EINVAL;
3951 3952                  return (0);
3952 3953          }
3953 3954  
3954 3955          switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
3955 3956  
3956 3957          case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
3957 3958                  /*
3958 3959                   * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
3959 3960                   * acquire exclusive access rights, preserve them and we
3960 3961                   * can use preemption. So we can use the MHIOCTKNOWN ioctl.
3961 3962                   */
3962 3963                  PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
3963 3964                  request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3964 3965                      MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3965 3966                  break;
3966 3967  
3967 3968          case VD_ACCESS_SET_PRESERVE:
3968 3969                  /*
3969 3970                   * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
3970 3971                   * access rights and preserve them, but not preempt any other
3971 3972                   * host. So we need to use the MHIOCTKOWN ioctl to enable the
3972 3973                   * "preserve" feature but we can not called it directly
3973 3974                   * because it uses preemption. So before that, we use the
3974 3975                   * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
3975 3976                   * without preempting anyone.
3976 3977                   */
3977 3978                  PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
3978 3979                  request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3979 3980                      MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3980 3981                      &rval);
3981 3982                  if (request->status != 0)
3982 3983                          break;
3983 3984                  request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3984 3985                      MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3985 3986                  break;
3986 3987  
3987 3988          case VD_ACCESS_SET_PREEMPT:
3988 3989                  /*
3989 3990                   * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
3990 3991                   * access rights and we can use preemption. So we try to do
3991 3992                   * a SCSI reservation, if it fails we reset the disk to clear
3992 3993                   * any reservation and we try to reserve again.
3993 3994                   */
3994 3995                  PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
3995 3996                  request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3996 3997                      MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3997 3998                      &rval);
3998 3999                  if (request->status == 0)
3999 4000                          break;
4000 4001  
4001 4002                  /* reset the disk */
4002 4003                  (void) vd_scsi_reset(vd);
4003 4004  
4004 4005                  /* try again even if the reset has failed */
4005 4006                  request->status = ldi_ioctl(vd->ldi_handle[request->slice],
4006 4007                      MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
4007 4008                      &rval);
4008 4009                  break;
4009 4010  
4010 4011          case 0:
4011 4012                  /* Flag EXCLUSIVE only. Just issue a SCSI reservation */
4012 4013                  PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
4013 4014                  request->status = ldi_ioctl(vd->ldi_handle[request->slice],
4014 4015                      MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
4015 4016                      &rval);
4016 4017                  break;
4017 4018          }
4018 4019  
4019 4020          if (request->status == 0)
4020 4021                  vd->ownership = B_TRUE;
4021 4022          else
4022 4023                  PR0("VD_OP_SET_ACCESS: error %d", request->status);
4023 4024  
4024 4025          return (0);
4025 4026  }
4026 4027  
4027 4028  static void
4028 4029  vd_reset_access(vd_t *vd)
4029 4030  {
4030 4031          int status, rval;
4031 4032  
4032 4033          if (vd->file || vd->volume || !vd->ownership)
4033 4034                  return;
4034 4035  
4035 4036          PR0("Releasing disk ownership");
4036 4037          status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
4037 4038              (vd->open_flags | FKIOCTL), kcred, &rval);
4038 4039  
4039 4040          /*
4040 4041           * An EACCES failure means that there is a reservation conflict,
4041 4042           * so we are not the owner of the disk anymore.
4042 4043           */
4043 4044          if (status == 0 || status == EACCES) {
4044 4045                  vd->ownership = B_FALSE;
4045 4046                  return;
4046 4047          }
4047 4048  
4048 4049          PR0("Fail to release ownership, error %d", status);
4049 4050  
4050 4051          /*
4051 4052           * We have failed to release the ownership, try to reset the disk
4052 4053           * to release reservations.
4053 4054           */
4054 4055          PR0("Resetting disk");
4055 4056          status = vd_scsi_reset(vd);
4056 4057  
4057 4058          if (status != 0)
4058 4059                  PR0("Fail to reset disk, error %d", status);
4059 4060  
4060 4061          /* whatever the result of the reset is, we try the release again */
4061 4062          status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
4062 4063              (vd->open_flags | FKIOCTL), kcred, &rval);
4063 4064  
4064 4065          if (status == 0 || status == EACCES) {
4065 4066                  vd->ownership = B_FALSE;
4066 4067                  return;
4067 4068          }
4068 4069  
4069 4070          PR0("Fail to release ownership, error %d", status);
4070 4071  
4071 4072          /*
4072 4073           * At this point we have done our best to try to reset the
4073 4074           * access rights to the disk and we don't know if we still
4074 4075           * own a reservation and if any mechanism to preserve the
4075 4076           * ownership is still in place. The ultimate solution would
4076 4077           * be to reset the system but this is usually not what we
4077 4078           * want to happen.
4078 4079           */
4079 4080  
4080 4081          if (vd_reset_access_failure == A_REBOOT) {
4081 4082                  cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
4082 4083                      ", rebooting the system", vd->device_path);
4083 4084                  (void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
4084 4085          } else if (vd_reset_access_failure == A_DUMP) {
4085 4086                  panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
4086 4087          }
4087 4088  
4088 4089          cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
4089 4090  }
4090 4091  
4091 4092  /*
4092 4093   * Define the supported operations once the functions for performing them have
4093 4094   * been defined
4094 4095   */
4095 4096  static const vds_operation_t    vds_operation[] = {
4096 4097  #define X(_s)   #_s, _s
4097 4098          {X(VD_OP_BREAD),        vd_start_bio,   vd_complete_bio},
4098 4099          {X(VD_OP_BWRITE),       vd_start_bio,   vd_complete_bio},
4099 4100          {X(VD_OP_FLUSH),        vd_ioctl,       NULL},
4100 4101          {X(VD_OP_GET_WCE),      vd_ioctl,       NULL},
4101 4102          {X(VD_OP_SET_WCE),      vd_ioctl,       NULL},
4102 4103          {X(VD_OP_GET_VTOC),     vd_ioctl,       NULL},
4103 4104          {X(VD_OP_SET_VTOC),     vd_ioctl,       NULL},
4104 4105          {X(VD_OP_GET_DISKGEOM), vd_ioctl,       NULL},
4105 4106          {X(VD_OP_SET_DISKGEOM), vd_ioctl,       NULL},
4106 4107          {X(VD_OP_GET_EFI),      vd_ioctl,       NULL},
4107 4108          {X(VD_OP_SET_EFI),      vd_ioctl,       NULL},
4108 4109          {X(VD_OP_GET_DEVID),    vd_get_devid,   NULL},
4109 4110          {X(VD_OP_SCSICMD),      vd_ioctl,       NULL},
4110 4111          {X(VD_OP_RESET),        vd_reset,       NULL},
4111 4112          {X(VD_OP_GET_CAPACITY), vd_get_capacity, NULL},
4112 4113          {X(VD_OP_SET_ACCESS),   vd_set_access,  NULL},
4113 4114          {X(VD_OP_GET_ACCESS),   vd_get_access,  NULL},
4114 4115  #undef  X
4115 4116  };
4116 4117  
4117 4118  static const size_t     vds_noperations =
4118 4119          (sizeof (vds_operation))/(sizeof (vds_operation[0]));
4119 4120  
4120 4121  /*
4121 4122   * Process a task specifying a client I/O request
4122 4123   *
4123 4124   * Parameters:
4124 4125   *      task            - structure containing the request sent from client
4125 4126   *
4126 4127   * Return Value
4127 4128   *      0       - success
4128 4129   *      ENOTSUP - Unknown/Unsupported VD_OP_XXX operation
4129 4130   *      EINVAL  - Invalid disk slice
4130 4131   *      != 0    - some other non-zero return value from start function
4131 4132   */
4132 4133  static int
4133 4134  vd_do_process_task(vd_task_t *task)
4134 4135  {
4135 4136          int                     i;
4136 4137          vd_t                    *vd             = task->vd;
4137 4138          vd_dring_payload_t      *request        = task->request;
4138 4139  
4139 4140          ASSERT(vd != NULL);
4140 4141          ASSERT(request != NULL);
4141 4142  
4142 4143          /* Find the requested operation */
4143 4144          for (i = 0; i < vds_noperations; i++) {
4144 4145                  if (request->operation == vds_operation[i].operation) {
4145 4146                          /* all operations should have a start func */
4146 4147                          ASSERT(vds_operation[i].start != NULL);
4147 4148  
4148 4149                          task->completef = vds_operation[i].complete;
4149 4150                          break;
4150 4151                  }
4151 4152          }
4152 4153  
4153 4154          /*
4154 4155           * We need to check that the requested operation is permitted
4155 4156           * for the particular client that sent it or that the loop above
4156 4157           * did not complete without finding the operation type (indicating
4157 4158           * that the requested operation is unknown/unimplemented)
4158 4159           */
4159 4160          if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
4160 4161              (i == vds_noperations)) {
4161 4162                  PR0("Unsupported operation %u", request->operation);
4162 4163                  request->status = ENOTSUP;
4163 4164                  return (0);
4164 4165          }
4165 4166  
4166 4167          /* Range-check slice */
4167 4168          if (request->slice >= vd->nslices &&
4168 4169              ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) ||
4169 4170              request->slice != VD_SLICE_NONE)) {
4170 4171                  PR0("Invalid \"slice\" %u (max %u) for virtual disk",
4171 4172                      request->slice, (vd->nslices - 1));
4172 4173                  request->status = EINVAL;
4173 4174                  return (0);
4174 4175          }
4175 4176  
4176 4177          /*
4177 4178           * Call the function pointer that starts the operation.
4178 4179           */
4179 4180          return (vds_operation[i].start(task));
4180 4181  }
4181 4182  
4182 4183  /*
4183 4184   * Description:
4184 4185   *      This function is called by both the in-band and descriptor ring
4185 4186   *      message processing functions paths to actually execute the task
4186 4187   *      requested by the vDisk client. It in turn calls its worker
4187 4188   *      function, vd_do_process_task(), to carry our the request.
4188 4189   *
4189 4190   *      Any transport errors (e.g. LDC errors, vDisk protocol errors) are
4190 4191   *      saved in the 'status' field of the task and are propagated back
4191 4192   *      up the call stack to trigger a NACK
4192 4193   *
4193 4194   *      Any request errors (e.g. ENOTTY from an ioctl) are saved in
4194 4195   *      the 'status' field of the request and result in an ACK being sent
4195 4196   *      by the completion handler.
4196 4197   *
4197 4198   * Parameters:
4198 4199   *      task            - structure containing the request sent from client
4199 4200   *
4200 4201   * Return Value
4201 4202   *      0               - successful synchronous request.
4202 4203   *      != 0            - transport error (e.g. LDC errors, vDisk protocol)
4203 4204   *      EINPROGRESS     - task will be finished in a completion handler
4204 4205   */
4205 4206  static int
4206 4207  vd_process_task(vd_task_t *task)
4207 4208  {
4208 4209          vd_t    *vd = task->vd;
4209 4210          int     status;
4210 4211  
4211 4212          DTRACE_PROBE1(task__start, vd_task_t *, task);
4212 4213  
4213 4214          task->status =  vd_do_process_task(task);
4214 4215  
4215 4216          /*
4216 4217           * If the task processing function returned EINPROGRESS indicating
4217 4218           * that the task needs completing then schedule a taskq entry to
4218 4219           * finish it now.
4219 4220           *
4220 4221           * Otherwise the task processing function returned either zero
4221 4222           * indicating that the task was finished in the start function (and we
4222 4223           * don't need to wait in a completion function) or the start function
4223 4224           * returned an error - in both cases all that needs to happen is the
4224 4225           * notification to the vDisk client higher up the call stack.
4225 4226           * If the task was using a Descriptor Ring, we need to mark it as done
4226 4227           * at this stage.
4227 4228           */
4228 4229          if (task->status == EINPROGRESS) {
4229 4230                  /* Queue a task to complete the operation */
4230 4231                  (void) ddi_taskq_dispatch(vd->completionq, vd_complete,
4231 4232                      task, DDI_SLEEP);
4232 4233                  return (EINPROGRESS);
4233 4234          }
4234 4235  
4235 4236          if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
4236 4237                  /* Update the dring element if it's a dring client */
4237 4238                  status = vd_mark_elem_done(vd, task->index,
4238 4239                      task->request->status, task->request->nbytes);
4239 4240                  if (status == ECONNRESET)
4240 4241                          vd_mark_in_reset(vd);
4241 4242                  else if (status == EACCES)
4242 4243                          vd_need_reset(vd, B_TRUE);
4243 4244          }
4244 4245  
4245 4246          return (task->status);
4246 4247  }
4247 4248  
4248 4249  /*
4249 4250   * Return true if the "type", "subtype", and "env" fields of the "tag" first
4250 4251   * argument match the corresponding remaining arguments; otherwise, return false
4251 4252   */
4252 4253  boolean_t
4253 4254  vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
4254 4255  {
4255 4256          return ((tag->vio_msgtype == type) &&
4256 4257              (tag->vio_subtype == subtype) &&
4257 4258              (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
4258 4259  }
4259 4260  
4260 4261  /*
4261 4262   * Check whether the major/minor version specified in "ver_msg" is supported
4262 4263   * by this server.
4263 4264   */
4264 4265  static boolean_t
4265 4266  vds_supported_version(vio_ver_msg_t *ver_msg)
4266 4267  {
4267 4268          for (int i = 0; i < vds_num_versions; i++) {
4268 4269                  ASSERT(vds_version[i].major > 0);
4269 4270                  ASSERT((i == 0) ||
4270 4271                      (vds_version[i].major < vds_version[i-1].major));
4271 4272  
4272 4273                  /*
4273 4274                   * If the major versions match, adjust the minor version, if
4274 4275                   * necessary, down to the highest value supported by this
4275 4276                   * server and return true so this message will get "ack"ed;
4276 4277                   * the client should also support all minor versions lower
4277 4278                   * than the value it sent
4278 4279                   */
4279 4280                  if (ver_msg->ver_major == vds_version[i].major) {
4280 4281                          if (ver_msg->ver_minor > vds_version[i].minor) {
4281 4282                                  PR0("Adjusting minor version from %u to %u",
4282 4283                                      ver_msg->ver_minor, vds_version[i].minor);
4283 4284                                  ver_msg->ver_minor = vds_version[i].minor;
4284 4285                          }
4285 4286                          return (B_TRUE);
4286 4287                  }
4287 4288  
4288 4289                  /*
4289 4290                   * If the message contains a higher major version number, set
4290 4291                   * the message's major/minor versions to the current values
4291 4292                   * and return false, so this message will get "nack"ed with
4292 4293                   * these values, and the client will potentially try again
4293 4294                   * with the same or a lower version
4294 4295                   */
4295 4296                  if (ver_msg->ver_major > vds_version[i].major) {
4296 4297                          ver_msg->ver_major = vds_version[i].major;
4297 4298                          ver_msg->ver_minor = vds_version[i].minor;
4298 4299                          return (B_FALSE);
4299 4300                  }
4300 4301  
4301 4302                  /*
4302 4303                   * Otherwise, the message's major version is less than the
4303 4304                   * current major version, so continue the loop to the next
4304 4305                   * (lower) supported version
4305 4306                   */
4306 4307          }
4307 4308  
4308 4309          /*
4309 4310           * No common version was found; "ground" the version pair in the
4310 4311           * message to terminate negotiation
4311 4312           */
4312 4313          ver_msg->ver_major = 0;
4313 4314          ver_msg->ver_minor = 0;
4314 4315          return (B_FALSE);
4315 4316  }
4316 4317  
4317 4318  /*
4318 4319   * Process a version message from a client.  vds expects to receive version
4319 4320   * messages from clients seeking service, but never issues version messages
4320 4321   * itself; therefore, vds can ACK or NACK client version messages, but does
4321 4322   * not expect to receive version-message ACKs or NACKs (and will treat such
4322 4323   * messages as invalid).
4323 4324   */
4324 4325  static int
4325 4326  vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4326 4327  {
4327 4328          vio_ver_msg_t   *ver_msg = (vio_ver_msg_t *)msg;
4328 4329  
4329 4330  
4330 4331          ASSERT(msglen >= sizeof (msg->tag));
4331 4332  
4332 4333          if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4333 4334              VIO_VER_INFO)) {
4334 4335                  return (ENOMSG);        /* not a version message */
4335 4336          }
4336 4337  
4337 4338          if (msglen != sizeof (*ver_msg)) {
4338 4339                  PR0("Expected %lu-byte version message; "
4339 4340                      "received %lu bytes", sizeof (*ver_msg), msglen);
4340 4341                  return (EBADMSG);
4341 4342          }
4342 4343  
4343 4344          if (ver_msg->dev_class != VDEV_DISK) {
4344 4345                  PR0("Expected device class %u (disk); received %u",
4345 4346                      VDEV_DISK, ver_msg->dev_class);
4346 4347                  return (EBADMSG);
4347 4348          }
4348 4349  
4349 4350          /*
4350 4351           * We're talking to the expected kind of client; set our device class
4351 4352           * for "ack/nack" back to the client
4352 4353           */
4353 4354          ver_msg->dev_class = VDEV_DISK_SERVER;
4354 4355  
4355 4356          /*
4356 4357           * Check whether the (valid) version message specifies a version
4357 4358           * supported by this server.  If the version is not supported, return
4358 4359           * EBADMSG so the message will get "nack"ed; vds_supported_version()
4359 4360           * will have updated the message with a supported version for the
4360 4361           * client to consider
4361 4362           */
4362 4363          if (!vds_supported_version(ver_msg))
4363 4364                  return (EBADMSG);
4364 4365  
4365 4366  
4366 4367          /*
4367 4368           * A version has been agreed upon; use the client's SID for
4368 4369           * communication on this channel now
4369 4370           */
4370 4371          ASSERT(!(vd->initialized & VD_SID));
4371 4372          vd->sid = ver_msg->tag.vio_sid;
4372 4373          vd->initialized |= VD_SID;
4373 4374  
4374 4375          /*
4375 4376           * Store the negotiated major and minor version values in the "vd" data
4376 4377           * structure so that we can check if certain operations are supported
4377 4378           * by the client.
4378 4379           */
4379 4380          vd->version.major = ver_msg->ver_major;
4380 4381          vd->version.minor = ver_msg->ver_minor;
4381 4382  
4382 4383          PR0("Using major version %u, minor version %u",
4383 4384              ver_msg->ver_major, ver_msg->ver_minor);
4384 4385          return (0);
4385 4386  }
4386 4387  
4387 4388  static void
4388 4389  vd_set_exported_operations(vd_t *vd)
4389 4390  {
4390 4391          vd->operations = 0;     /* clear field */
4391 4392  
4392 4393          /*
4393 4394           * We need to check from the highest version supported to the
4394 4395           * lowest because versions with a higher minor number implicitly
4395 4396           * support versions with a lower minor number.
4396 4397           */
4397 4398          if (vio_ver_is_supported(vd->version, 1, 1)) {
4398 4399                  ASSERT(vd->open_flags & FREAD);
4399 4400                  vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY);
4400 4401  
4401 4402                  if (vd->open_flags & FWRITE)
4402 4403                          vd->operations |= VD_OP_MASK_WRITE;
4403 4404  
4404 4405                  if (vd->scsi)
4405 4406                          vd->operations |= VD_OP_MASK_SCSI;
4406 4407  
4407 4408                  if (VD_DSKIMG(vd) && vd_dskimg_is_iso_image(vd)) {
4408 4409                          /*
4409 4410                           * can't write to ISO images, make sure that write
4410 4411                           * support is not set in case administrator did not
4411 4412                           * use "options=ro" when doing an ldm add-vdsdev
4412 4413                           */
4413 4414                          vd->operations &= ~VD_OP_MASK_WRITE;
4414 4415                  }
4415 4416          } else if (vio_ver_is_supported(vd->version, 1, 0)) {
4416 4417                  vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
4417 4418          }
4418 4419  
4419 4420          /* we should have already agreed on a version */
4420 4421          ASSERT(vd->operations != 0);
4421 4422  }
4422 4423  
4423 4424  static int
4424 4425  vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4425 4426  {
4426 4427          vd_attr_msg_t   *attr_msg = (vd_attr_msg_t *)msg;
4427 4428          int             status, retry = 0;
4428 4429  
4429 4430  
4430 4431          ASSERT(msglen >= sizeof (msg->tag));
4431 4432  
4432 4433          if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4433 4434              VIO_ATTR_INFO)) {
4434 4435                  PR0("Message is not an attribute message");
4435 4436                  return (ENOMSG);
4436 4437          }
4437 4438  
4438 4439          if (msglen != sizeof (*attr_msg)) {
4439 4440                  PR0("Expected %lu-byte attribute message; "
4440 4441                      "received %lu bytes", sizeof (*attr_msg), msglen);
4441 4442                  return (EBADMSG);
4442 4443          }
4443 4444  
4444 4445          if (attr_msg->max_xfer_sz == 0) {
4445 4446                  PR0("Received maximum transfer size of 0 from client");
4446 4447                  return (EBADMSG);
4447 4448          }
4448 4449  
4449 4450          if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
4450 4451              (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
4451 4452                  PR0("Client requested unsupported transfer mode");
4452 4453                  return (EBADMSG);
4453 4454          }
4454 4455  
4455 4456          /*
4456 4457           * check if the underlying disk is ready, if not try accessing
4457 4458           * the device again. Open the vdisk device and extract info
4458 4459           * about it, as this is needed to respond to the attr info msg
4459 4460           */
4460 4461          if ((vd->initialized & VD_DISK_READY) == 0) {
4461 4462                  PR0("Retry setting up disk (%s)", vd->device_path);
4462 4463                  do {
4463 4464                          status = vd_setup_vd(vd);
4464 4465                          if (status != EAGAIN || ++retry > vds_dev_retries)
4465 4466                                  break;
4466 4467  
4467 4468                          /* incremental delay */
4468 4469                          delay(drv_usectohz(vds_dev_delay));
4469 4470  
4470 4471                          /* if vdisk is no longer enabled - return error */
4471 4472                          if (!vd_enabled(vd))
4472 4473                                  return (ENXIO);
4473 4474  
4474 4475                  } while (status == EAGAIN);
4475 4476  
4476 4477                  if (status)
4477 4478                          return (ENXIO);
4478 4479  
4479 4480                  vd->initialized |= VD_DISK_READY;
4480 4481                  ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4481 4482                  PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
4482 4483                      ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4483 4484                      (vd->volume ? "yes" : "no"),
4484 4485                      (vd->file ? "yes" : "no"),
4485 4486                      vd->nslices);
4486 4487          }
4487 4488  
4488 4489          /* Success:  valid message and transfer mode */
4489 4490          vd->xfer_mode = attr_msg->xfer_mode;
4490 4491  
4491 4492          if (vd->xfer_mode == VIO_DESC_MODE) {
4492 4493  
4493 4494                  /*
4494 4495                   * The vd_dring_inband_msg_t contains one cookie; need room
4495 4496                   * for up to n-1 more cookies, where "n" is the number of full
4496 4497                   * pages plus possibly one partial page required to cover
4497 4498                   * "max_xfer_sz".  Add room for one more cookie if
4498 4499                   * "max_xfer_sz" isn't an integral multiple of the page size.
4499 4500                   * Must first get the maximum transfer size in bytes.
4500 4501                   */
4501 4502                  size_t  max_xfer_bytes = attr_msg->vdisk_block_size ?
4502 4503                      attr_msg->vdisk_block_size * attr_msg->max_xfer_sz :
4503 4504                      attr_msg->max_xfer_sz;
4504 4505                  size_t  max_inband_msglen =
4505 4506                      sizeof (vd_dring_inband_msg_t) +
4506 4507                      ((max_xfer_bytes/PAGESIZE +
4507 4508                      ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
4508 4509                      (sizeof (ldc_mem_cookie_t)));
4509 4510  
4510 4511                  /*
4511 4512                   * Set the maximum expected message length to
4512 4513                   * accommodate in-band-descriptor messages with all
4513 4514                   * their cookies
4514 4515                   */
4515 4516                  vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
4516 4517  
4517 4518                  /*
4518 4519                   * Initialize the data structure for processing in-band I/O
4519 4520                   * request descriptors
4520 4521                   */
4521 4522                  vd->inband_task.vd      = vd;
4522 4523                  vd->inband_task.msg     = kmem_alloc(vd->max_msglen, KM_SLEEP);
4523 4524                  vd->inband_task.index   = 0;
4524 4525                  vd->inband_task.type    = VD_FINAL_RANGE_TASK;  /* range == 1 */
4525 4526          }
4526 4527  
4527 4528          /* Return the device's block size and max transfer size to the client */
4528 4529          attr_msg->vdisk_block_size      = vd->vdisk_bsize;
4529 4530          attr_msg->max_xfer_sz           = vd->max_xfer_sz;
4530 4531  
4531 4532          attr_msg->vdisk_size = vd->vdisk_size;
4532 4533          attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type :
4533 4534              VD_DISK_TYPE_DISK;
4534 4535          attr_msg->vdisk_media = vd->vdisk_media;
4535 4536  
4536 4537          /* Discover and save the list of supported VD_OP_XXX operations */
4537 4538          vd_set_exported_operations(vd);
4538 4539          attr_msg->operations = vd->operations;
4539 4540  
4540 4541          PR0("%s", VD_CLIENT(vd));
4541 4542  
4542 4543          ASSERT(vd->dring_task == NULL);
4543 4544  
4544 4545          return (0);
4545 4546  }
4546 4547  
4547 4548  static int
4548 4549  vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4549 4550  {
4550 4551          int                     status;
4551 4552          size_t                  expected;
4552 4553          ldc_mem_info_t          dring_minfo;
4553 4554          uint8_t                 mtype;
4554 4555          vio_dring_reg_msg_t     *reg_msg = (vio_dring_reg_msg_t *)msg;
4555 4556  
4556 4557  
4557 4558          ASSERT(msglen >= sizeof (msg->tag));
4558 4559  
4559 4560          if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4560 4561              VIO_DRING_REG)) {
4561 4562                  PR0("Message is not a register-dring message");
4562 4563                  return (ENOMSG);
4563 4564          }
4564 4565  
4565 4566          if (msglen < sizeof (*reg_msg)) {
4566 4567                  PR0("Expected at least %lu-byte register-dring message; "
4567 4568                      "received %lu bytes", sizeof (*reg_msg), msglen);
4568 4569                  return (EBADMSG);
4569 4570          }
4570 4571  
4571 4572          expected = sizeof (*reg_msg) +
4572 4573              (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
4573 4574          if (msglen != expected) {
4574 4575                  PR0("Expected %lu-byte register-dring message; "
4575 4576                      "received %lu bytes", expected, msglen);
4576 4577                  return (EBADMSG);
4577 4578          }
4578 4579  
4579 4580          if (vd->initialized & VD_DRING) {
4580 4581                  PR0("A dring was previously registered; only support one");
4581 4582                  return (EBADMSG);
4582 4583          }
4583 4584  
4584 4585          if (reg_msg->num_descriptors > INT32_MAX) {
4585 4586                  PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
4586 4587                      reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
4587 4588                  return (EBADMSG);
4588 4589          }
4589 4590  
4590 4591          if (reg_msg->ncookies != 1) {
4591 4592                  /*
4592 4593                   * In addition to fixing the assertion in the success case
4593 4594                   * below, supporting drings which require more than one
4594 4595                   * "cookie" requires increasing the value of vd->max_msglen
4595 4596                   * somewhere in the code path prior to receiving the message
4596 4597                   * which results in calling this function.  Note that without
4597 4598                   * making this change, the larger message size required to
4598 4599                   * accommodate multiple cookies cannot be successfully
4599 4600                   * received, so this function will not even get called.
4600 4601                   * Gracefully accommodating more dring cookies might
4601 4602                   * reasonably demand exchanging an additional attribute or
4602 4603                   * making a minor protocol adjustment
4603 4604                   */
4604 4605                  PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
4605 4606                  return (EBADMSG);
4606 4607          }
4607 4608  
4608 4609          if (vd_direct_mapped_drings)
4609 4610                  mtype = LDC_DIRECT_MAP;
4610 4611          else
4611 4612                  mtype = LDC_SHADOW_MAP;
4612 4613  
4613 4614          status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
4614 4615              reg_msg->ncookies, reg_msg->num_descriptors,
4615 4616              reg_msg->descriptor_size, mtype, &vd->dring_handle);
4616 4617          if (status != 0) {
4617 4618                  PR0("ldc_mem_dring_map() returned errno %d", status);
4618 4619                  return (status);
4619 4620          }
4620 4621  
4621 4622          /*
4622 4623           * To remove the need for this assertion, must call
4623 4624           * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
4624 4625           * successful call to ldc_mem_dring_map()
4625 4626           */
4626 4627          ASSERT(reg_msg->ncookies == 1);
4627 4628  
4628 4629          if ((status =
4629 4630              ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
4630 4631                  PR0("ldc_mem_dring_info() returned errno %d", status);
4631 4632                  if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
4632 4633                          PR0("ldc_mem_dring_unmap() returned errno %d", status);
4633 4634                  return (status);
4634 4635          }
4635 4636  
4636 4637          if (dring_minfo.vaddr == NULL) {
4637 4638                  PR0("Descriptor ring virtual address is NULL");
4638 4639                  return (ENXIO);
4639 4640          }
4640 4641  
4641 4642  
4642 4643          /* Initialize for valid message and mapped dring */
4643 4644          vd->initialized |= VD_DRING;
4644 4645          vd->dring_ident = 1;    /* "There Can Be Only One" */
4645 4646          vd->dring = dring_minfo.vaddr;
4646 4647          vd->descriptor_size = reg_msg->descriptor_size;
4647 4648          vd->dring_len = reg_msg->num_descriptors;
4648 4649          vd->dring_mtype = dring_minfo.mtype;
4649 4650          reg_msg->dring_ident = vd->dring_ident;
4650 4651          PR1("descriptor size = %u, dring length = %u",
4651 4652              vd->descriptor_size, vd->dring_len);
4652 4653  
4653 4654          /*
4654 4655           * Allocate and initialize a "shadow" array of data structures for
4655 4656           * tasks to process I/O requests in dring elements
4656 4657           */
4657 4658          vd->dring_task =
4658 4659              kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
4659 4660          for (int i = 0; i < vd->dring_len; i++) {
4660 4661                  vd->dring_task[i].vd            = vd;
4661 4662                  vd->dring_task[i].index         = i;
4662 4663  
4663 4664                  status = ldc_mem_alloc_handle(vd->ldc_handle,
4664 4665                      &(vd->dring_task[i].mhdl));
4665 4666                  if (status) {
4666 4667                          PR0("ldc_mem_alloc_handle() returned err %d ", status);
4667 4668                          return (ENXIO);
4668 4669                  }
4669 4670  
4670 4671                  /*
4671 4672                   * The descriptor payload varies in length. Calculate its
4672 4673                   * size by subtracting the header size from the total
4673 4674                   * descriptor size.
4674 4675                   */
4675 4676                  vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size -
4676 4677                      sizeof (vio_dring_entry_hdr_t)), KM_SLEEP);
4677 4678                  vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
4678 4679          }
4679 4680  
4680 4681          if (vd->file || vd->zvol) {
4681 4682                  vd->write_queue =
4682 4683                      kmem_zalloc(sizeof (buf_t *) * vd->dring_len, KM_SLEEP);
4683 4684          }
4684 4685  
4685 4686          return (0);
4686 4687  }
4687 4688  
4688 4689  static int
4689 4690  vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4690 4691  {
4691 4692          vio_dring_unreg_msg_t   *unreg_msg = (vio_dring_unreg_msg_t *)msg;
4692 4693  
4693 4694  
4694 4695          ASSERT(msglen >= sizeof (msg->tag));
4695 4696  
4696 4697          if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4697 4698              VIO_DRING_UNREG)) {
4698 4699                  PR0("Message is not an unregister-dring message");
4699 4700                  return (ENOMSG);
4700 4701          }
4701 4702  
4702 4703          if (msglen != sizeof (*unreg_msg)) {
4703 4704                  PR0("Expected %lu-byte unregister-dring message; "
4704 4705                      "received %lu bytes", sizeof (*unreg_msg), msglen);
4705 4706                  return (EBADMSG);
4706 4707          }
4707 4708  
4708 4709          if (unreg_msg->dring_ident != vd->dring_ident) {
4709 4710                  PR0("Expected dring ident %lu; received %lu",
4710 4711                      vd->dring_ident, unreg_msg->dring_ident);
4711 4712                  return (EBADMSG);
4712 4713          }
4713 4714  
4714 4715          return (0);
4715 4716  }
4716 4717  
4717 4718  static int
4718 4719  process_rdx_msg(vio_msg_t *msg, size_t msglen)
4719 4720  {
4720 4721          ASSERT(msglen >= sizeof (msg->tag));
4721 4722  
4722 4723          if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
4723 4724                  PR0("Message is not an RDX message");
4724 4725                  return (ENOMSG);
4725 4726          }
4726 4727  
4727 4728          if (msglen != sizeof (vio_rdx_msg_t)) {
4728 4729                  PR0("Expected %lu-byte RDX message; received %lu bytes",
4729 4730                      sizeof (vio_rdx_msg_t), msglen);
4730 4731                  return (EBADMSG);
4731 4732          }
4732 4733  
4733 4734          PR0("Valid RDX message");
4734 4735          return (0);
4735 4736  }
4736 4737  
4737 4738  static int
4738 4739  vd_check_seq_num(vd_t *vd, uint64_t seq_num)
4739 4740  {
4740 4741          if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
4741 4742                  PR0("Received seq_num %lu; expected %lu",
4742 4743                      seq_num, (vd->seq_num + 1));
4743 4744                  PR0("initiating soft reset");
4744 4745                  vd_need_reset(vd, B_FALSE);
4745 4746                  return (1);
4746 4747          }
4747 4748  
4748 4749          vd->seq_num = seq_num;
4749 4750          vd->initialized |= VD_SEQ_NUM;  /* superfluous after first time... */
4750 4751          return (0);
4751 4752  }
4752 4753  
4753 4754  /*
4754 4755   * Return the expected size of an inband-descriptor message with all the
4755 4756   * cookies it claims to include
4756 4757   */
4757 4758  static size_t
4758 4759  expected_inband_size(vd_dring_inband_msg_t *msg)
4759 4760  {
4760 4761          return ((sizeof (*msg)) +
4761 4762              (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
4762 4763  }
4763 4764  
4764 4765  /*
4765 4766   * Process an in-band descriptor message:  used with clients like OBP, with
4766 4767   * which vds exchanges descriptors within VIO message payloads, rather than
4767 4768   * operating on them within a descriptor ring
4768 4769   */
4769 4770  static int
4770 4771  vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4771 4772  {
4772 4773          size_t                  expected;
4773 4774          vd_dring_inband_msg_t   *desc_msg = (vd_dring_inband_msg_t *)msg;
4774 4775  
4775 4776  
4776 4777          ASSERT(msglen >= sizeof (msg->tag));
4777 4778  
4778 4779          if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4779 4780              VIO_DESC_DATA)) {
4780 4781                  PR1("Message is not an in-band-descriptor message");
4781 4782                  return (ENOMSG);
4782 4783          }
4783 4784  
4784 4785          if (msglen < sizeof (*desc_msg)) {
4785 4786                  PR0("Expected at least %lu-byte descriptor message; "
4786 4787                      "received %lu bytes", sizeof (*desc_msg), msglen);
4787 4788                  return (EBADMSG);
4788 4789          }
4789 4790  
4790 4791          if (msglen != (expected = expected_inband_size(desc_msg))) {
4791 4792                  PR0("Expected %lu-byte descriptor message; "
4792 4793                      "received %lu bytes", expected, msglen);
4793 4794                  return (EBADMSG);
4794 4795          }
4795 4796  
4796 4797          if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
4797 4798                  return (EBADMSG);
4798 4799  
4799 4800          /*
4800 4801           * Valid message:  Set up the in-band descriptor task and process the
4801 4802           * request.  Arrange to acknowledge the client's message, unless an
4802 4803           * error processing the descriptor task results in setting
4803 4804           * VIO_SUBTYPE_NACK
4804 4805           */
4805 4806          PR1("Valid in-band-descriptor message");
4806 4807          msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4807 4808  
4808 4809          ASSERT(vd->inband_task.msg != NULL);
4809 4810  
4810 4811          bcopy(msg, vd->inband_task.msg, msglen);
4811 4812          vd->inband_task.msglen  = msglen;
4812 4813  
4813 4814          /*
4814 4815           * The task request is now the payload of the message
4815 4816           * that was just copied into the body of the task.
4816 4817           */
4817 4818          desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
4818 4819          vd->inband_task.request = &desc_msg->payload;
4819 4820  
4820 4821          return (vd_process_task(&vd->inband_task));
4821 4822  }
4822 4823  
4823 4824  static int
4824 4825  vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
4825 4826      vio_msg_t *msg, size_t msglen)
4826 4827  {
4827 4828          int                     status;
4828 4829          boolean_t               ready;
4829 4830          on_trap_data_t          otd;
4830 4831          vd_dring_entry_t        *elem = VD_DRING_ELEM(idx);
4831 4832  
4832 4833          /* Accept the updated dring element */
4833 4834          if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
4834 4835              vd->dring_handle, idx, idx)) != 0) {
4835 4836                  return (status);
4836 4837          }
4837 4838          ready = (elem->hdr.dstate == VIO_DESC_READY);
4838 4839          if (ready) {
4839 4840                  elem->hdr.dstate = VIO_DESC_ACCEPTED;
4840 4841                  bcopy(&elem->payload, vd->dring_task[idx].request,
4841 4842                      (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t)));
4842 4843          } else {
4843 4844                  PR0("descriptor %u not ready", idx);
4844 4845                  VD_DUMP_DRING_ELEM(elem);
4845 4846          }
4846 4847          if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
4847 4848              vd->dring_handle, idx, idx)) != 0) {
4848 4849                  PR0("VIO_DRING_RELEASE() returned errno %d", status);
4849 4850                  return (status);
4850 4851          }
4851 4852          if (!ready)
4852 4853                  return (EBUSY);
4853 4854  
4854 4855  
4855 4856          /* Initialize a task and process the accepted element */
4856 4857          PR1("Processing dring element %u", idx);
4857 4858          vd->dring_task[idx].type        = type;
4858 4859  
4859 4860          /* duplicate msg buf for cookies etc. */
4860 4861          bcopy(msg, vd->dring_task[idx].msg, msglen);
4861 4862  
4862 4863          vd->dring_task[idx].msglen      = msglen;
4863 4864          return (vd_process_task(&vd->dring_task[idx]));
4864 4865  }
4865 4866  
4866 4867  static int
4867 4868  vd_process_element_range(vd_t *vd, int start, int end,
4868 4869      vio_msg_t *msg, size_t msglen)
4869 4870  {
4870 4871          int             i, n, nelem, status = 0;
4871 4872          boolean_t       inprogress = B_FALSE;
4872 4873          vd_task_type_t  type;
4873 4874  
4874 4875  
4875 4876          ASSERT(start >= 0);
4876 4877          ASSERT(end >= 0);
4877 4878  
4878 4879          /*
4879 4880           * Arrange to acknowledge the client's message, unless an error
4880 4881           * processing one of the dring elements results in setting
4881 4882           * VIO_SUBTYPE_NACK
4882 4883           */
4883 4884          msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4884 4885  
4885 4886          /*
4886 4887           * Process the dring elements in the range
4887 4888           */
4888 4889          nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
4889 4890          for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
4890 4891                  ((vio_dring_msg_t *)msg)->end_idx = i;
4891 4892                  type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
4892 4893                  status = vd_process_element(vd, type, i, msg, msglen);
4893 4894                  if (status == EINPROGRESS)
4894 4895                          inprogress = B_TRUE;
4895 4896                  else if (status != 0)
4896 4897                          break;
4897 4898          }
4898 4899  
4899 4900          /*
4900 4901           * If some, but not all, operations of a multi-element range are in
4901 4902           * progress, wait for other operations to complete before returning
4902 4903           * (which will result in "ack" or "nack" of the message).  Note that
4903 4904           * all outstanding operations will need to complete, not just the ones
4904 4905           * corresponding to the current range of dring elements; howevever, as
4905 4906           * this situation is an error case, performance is less critical.
4906 4907           */
4907 4908          if ((nelem > 1) && (status != EINPROGRESS) && inprogress) {
4908 4909                  if (vd->ioq != NULL)
4909 4910                          ddi_taskq_wait(vd->ioq);
4910 4911                  ddi_taskq_wait(vd->completionq);
4911 4912          }
4912 4913  
4913 4914          return (status);
4914 4915  }
4915 4916  
4916 4917  static int
4917 4918  vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4918 4919  {
4919 4920          vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg;
4920 4921  
4921 4922  
4922 4923          ASSERT(msglen >= sizeof (msg->tag));
4923 4924  
4924 4925          if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4925 4926              VIO_DRING_DATA)) {
4926 4927                  PR1("Message is not a dring-data message");
4927 4928                  return (ENOMSG);
4928 4929          }
4929 4930  
4930 4931          if (msglen != sizeof (*dring_msg)) {
4931 4932                  PR0("Expected %lu-byte dring message; received %lu bytes",
4932 4933                      sizeof (*dring_msg), msglen);
4933 4934                  return (EBADMSG);
4934 4935          }
4935 4936  
4936 4937          if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
4937 4938                  return (EBADMSG);
4938 4939  
4939 4940          if (dring_msg->dring_ident != vd->dring_ident) {
4940 4941                  PR0("Expected dring ident %lu; received ident %lu",
4941 4942                      vd->dring_ident, dring_msg->dring_ident);
4942 4943                  return (EBADMSG);
4943 4944          }
4944 4945  
4945 4946          if (dring_msg->start_idx >= vd->dring_len) {
4946 4947                  PR0("\"start_idx\" = %u; must be less than %u",
4947 4948                      dring_msg->start_idx, vd->dring_len);
4948 4949                  return (EBADMSG);
4949 4950          }
4950 4951  
4951 4952          if ((dring_msg->end_idx < 0) ||
4952 4953              (dring_msg->end_idx >= vd->dring_len)) {
4953 4954                  PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
4954 4955                      dring_msg->end_idx, vd->dring_len);
4955 4956                  return (EBADMSG);
4956 4957          }
4957 4958  
4958 4959          /* Valid message; process range of updated dring elements */
4959 4960          PR1("Processing descriptor range, start = %u, end = %u",
4960 4961              dring_msg->start_idx, dring_msg->end_idx);
4961 4962          return (vd_process_element_range(vd, dring_msg->start_idx,
4962 4963              dring_msg->end_idx, msg, msglen));
4963 4964  }
4964 4965  
4965 4966  static int
4966 4967  recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
4967 4968  {
4968 4969          int     retry, status;
4969 4970          size_t  size = *nbytes;
4970 4971  
4971 4972  
4972 4973          for (retry = 0, status = ETIMEDOUT;
4973 4974              retry < vds_ldc_retries && status == ETIMEDOUT;
4974 4975              retry++) {
4975 4976                  PR1("ldc_read() attempt %d", (retry + 1));
4976 4977                  *nbytes = size;
4977 4978                  status = ldc_read(ldc_handle, msg, nbytes);
4978 4979          }
4979 4980  
4980 4981          if (status) {
4981 4982                  PR0("ldc_read() returned errno %d", status);
4982 4983                  if (status != ECONNRESET)
4983 4984                          return (ENOMSG);
4984 4985                  return (status);
4985 4986          } else if (*nbytes == 0) {
4986 4987                  PR1("ldc_read() returned 0 and no message read");
4987 4988                  return (ENOMSG);
4988 4989          }
4989 4990  
4990 4991          PR1("RCVD %lu-byte message", *nbytes);
4991 4992          return (0);
4992 4993  }
4993 4994  
4994 4995  static int
4995 4996  vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4996 4997  {
4997 4998          int             status;
4998 4999  
4999 5000  
5000 5001          PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
5001 5002              msg->tag.vio_subtype, msg->tag.vio_subtype_env);
5002 5003  #ifdef  DEBUG
5003 5004          vd_decode_tag(msg);
5004 5005  #endif
5005 5006  
5006 5007          /*
5007 5008           * Validate session ID up front, since it applies to all messages
5008 5009           * once set
5009 5010           */
5010 5011          if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
5011 5012                  PR0("Expected SID %u, received %u", vd->sid,
5012 5013                      msg->tag.vio_sid);
5013 5014                  return (EBADMSG);
5014 5015          }
5015 5016  
5016 5017          PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
5017 5018  
5018 5019          /*
5019 5020           * Process the received message based on connection state
5020 5021           */
5021 5022          switch (vd->state) {
5022 5023          case VD_STATE_INIT:     /* expect version message */
5023 5024                  if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
5024 5025                          return (status);
5025 5026  
5026 5027                  /* Version negotiated, move to that state */
5027 5028                  vd->state = VD_STATE_VER;
5028 5029                  return (0);
5029 5030  
5030 5031          case VD_STATE_VER:      /* expect attribute message */
5031 5032                  if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
5032 5033                          return (status);
5033 5034  
5034 5035                  /* Attributes exchanged, move to that state */
5035 5036                  vd->state = VD_STATE_ATTR;
5036 5037                  return (0);
5037 5038  
5038 5039          case VD_STATE_ATTR:
5039 5040                  switch (vd->xfer_mode) {
5040 5041                  case VIO_DESC_MODE:     /* expect RDX message */
5041 5042                          if ((status = process_rdx_msg(msg, msglen)) != 0)
5042 5043                                  return (status);
5043 5044  
5044 5045                          /* Ready to receive in-band descriptors */
5045 5046                          vd->state = VD_STATE_DATA;
5046 5047                          return (0);
5047 5048  
5048 5049                  case VIO_DRING_MODE_V1_0:  /* expect register-dring message */
5049 5050                          if ((status =
5050 5051                              vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
5051 5052                                  return (status);
5052 5053  
5053 5054                          /* One dring negotiated, move to that state */
5054 5055                          vd->state = VD_STATE_DRING;
5055 5056                          return (0);
5056 5057  
5057 5058                  default:
5058 5059                          ASSERT("Unsupported transfer mode");
5059 5060                          PR0("Unsupported transfer mode");
5060 5061                          return (ENOTSUP);
5061 5062                  }
5062 5063  
5063 5064          case VD_STATE_DRING:    /* expect RDX, register-dring, or unreg-dring */
5064 5065                  if ((status = process_rdx_msg(msg, msglen)) == 0) {
5065 5066                          /* Ready to receive data */
5066 5067                          vd->state = VD_STATE_DATA;
5067 5068                          return (0);
5068 5069                  } else if (status != ENOMSG) {
5069 5070                          return (status);
5070 5071                  }
5071 5072  
5072 5073  
5073 5074                  /*
5074 5075                   * If another register-dring message is received, stay in
5075 5076                   * dring state in case the client sends RDX; although the
5076 5077                   * protocol allows multiple drings, this server does not
5077 5078                   * support using more than one
5078 5079                   */
5079 5080                  if ((status =
5080 5081                      vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
5081 5082                          return (status);
5082 5083  
5083 5084                  /*
5084 5085                   * Acknowledge an unregister-dring message, but reset the
5085 5086                   * connection anyway:  Although the protocol allows
5086 5087                   * unregistering drings, this server cannot serve a vdisk
5087 5088                   * without its only dring
5088 5089                   */
5089 5090                  status = vd_process_dring_unreg_msg(vd, msg, msglen);
5090 5091                  return ((status == 0) ? ENOTSUP : status);
5091 5092  
5092 5093          case VD_STATE_DATA:
5093 5094                  switch (vd->xfer_mode) {
5094 5095                  case VIO_DESC_MODE:     /* expect in-band-descriptor message */
5095 5096                          return (vd_process_desc_msg(vd, msg, msglen));
5096 5097  
5097 5098                  case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
5098 5099                          /*
5099 5100                           * Typically expect dring-data messages, so handle
5100 5101                           * them first
5101 5102                           */
5102 5103                          if ((status = vd_process_dring_msg(vd, msg,
5103 5104                              msglen)) != ENOMSG)
5104 5105                                  return (status);
5105 5106  
5106 5107                          /*
5107 5108                           * Acknowledge an unregister-dring message, but reset
5108 5109                           * the connection anyway:  Although the protocol
5109 5110                           * allows unregistering drings, this server cannot
5110 5111                           * serve a vdisk without its only dring
5111 5112                           */
5112 5113                          status = vd_process_dring_unreg_msg(vd, msg, msglen);
5113 5114                          return ((status == 0) ? ENOTSUP : status);
5114 5115  
5115 5116                  default:
5116 5117                          ASSERT("Unsupported transfer mode");
5117 5118                          PR0("Unsupported transfer mode");
5118 5119                          return (ENOTSUP);
5119 5120                  }
5120 5121  
5121 5122          default:
5122 5123                  ASSERT("Invalid client connection state");
5123 5124                  PR0("Invalid client connection state");
5124 5125                  return (ENOTSUP);
5125 5126          }
5126 5127  }
5127 5128  
5128 5129  static int
5129 5130  vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
5130 5131  {
5131 5132          int             status;
5132 5133          boolean_t       reset_ldc = B_FALSE;
5133 5134          vd_task_t       task;
5134 5135  
5135 5136          /*
5136 5137           * Check that the message is at least big enough for a "tag", so that
5137 5138           * message processing can proceed based on tag-specified message type
5138 5139           */
5139 5140          if (msglen < sizeof (vio_msg_tag_t)) {
5140 5141                  PR0("Received short (%lu-byte) message", msglen);
5141 5142                  /* Can't "nack" short message, so drop the big hammer */
5142 5143                  PR0("initiating full reset");
5143 5144                  vd_need_reset(vd, B_TRUE);
5144 5145                  return (EBADMSG);
5145 5146          }
5146 5147  
5147 5148          /*
5148 5149           * Process the message
5149 5150           */
5150 5151          switch (status = vd_do_process_msg(vd, msg, msglen)) {
5151 5152          case 0:
5152 5153                  /* "ack" valid, successfully-processed messages */
5153 5154                  msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
5154 5155                  break;
5155 5156  
5156 5157          case EINPROGRESS:
5157 5158                  /* The completion handler will "ack" or "nack" the message */
5158 5159                  return (EINPROGRESS);
5159 5160          case ENOMSG:
5160 5161                  PR0("Received unexpected message");
5161 5162                  _NOTE(FALLTHROUGH);
5162 5163          case EBADMSG:
5163 5164          case ENOTSUP:
5164 5165                  /* "transport" error will cause NACK of invalid messages */
5165 5166                  msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5166 5167                  break;
5167 5168  
5168 5169          default:
5169 5170                  /* "transport" error will cause NACK of invalid messages */
5170 5171                  msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5171 5172                  /* An LDC error probably occurred, so try resetting it */
5172 5173                  reset_ldc = B_TRUE;
5173 5174                  break;
5174 5175          }
5175 5176  
5176 5177          PR1("\tResulting in state %d (%s)", vd->state,
5177 5178              vd_decode_state(vd->state));
5178 5179  
5179 5180          /* populate the task so we can dispatch it on the taskq */
5180 5181          task.vd = vd;
5181 5182          task.msg = msg;
5182 5183          task.msglen = msglen;
5183 5184  
5184 5185          /*
5185 5186           * Queue a task to send the notification that the operation completed.
5186 5187           * We need to ensure that requests are responded to in the correct
5187 5188           * order and since the taskq is processed serially this ordering
5188 5189           * is maintained.
5189 5190           */
5190 5191          (void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
5191 5192              &task, DDI_SLEEP);
5192 5193  
5193 5194          /*
5194 5195           * To ensure handshake negotiations do not happen out of order, such
5195 5196           * requests that come through this path should not be done in parallel
5196 5197           * so we need to wait here until the response is sent to the client.
5197 5198           */
5198 5199          ddi_taskq_wait(vd->completionq);
5199 5200  
5200 5201          /* Arrange to reset the connection for nack'ed or failed messages */
5201 5202          if ((status != 0) || reset_ldc) {
5202 5203                  PR0("initiating %s reset",
5203 5204                      (reset_ldc) ? "full" : "soft");
5204 5205                  vd_need_reset(vd, reset_ldc);
5205 5206          }
5206 5207  
5207 5208          return (status);
5208 5209  }
5209 5210  
5210 5211  static boolean_t
5211 5212  vd_enabled(vd_t *vd)
5212 5213  {
5213 5214          boolean_t       enabled;
5214 5215  
5215 5216          mutex_enter(&vd->lock);
5216 5217          enabled = vd->enabled;
5217 5218          mutex_exit(&vd->lock);
5218 5219          return (enabled);
5219 5220  }
5220 5221  
5221 5222  static void
5222 5223  vd_recv_msg(void *arg)
5223 5224  {
5224 5225          vd_t    *vd = (vd_t *)arg;
5225 5226          int     rv = 0, status = 0;
5226 5227  
5227 5228          ASSERT(vd != NULL);
5228 5229  
5229 5230          PR2("New task to receive incoming message(s)");
5230 5231  
5231 5232  
5232 5233          while (vd_enabled(vd) && status == 0) {
5233 5234                  size_t          msglen, msgsize;
5234 5235                  ldc_status_t    lstatus;
5235 5236  
5236 5237                  /*
5237 5238                   * Receive and process a message
5238 5239                   */
5239 5240                  vd_reset_if_needed(vd); /* can change vd->max_msglen */
5240 5241  
5241 5242                  /*
5242 5243                   * check if channel is UP - else break out of loop
5243 5244                   */
5244 5245                  status = ldc_status(vd->ldc_handle, &lstatus);
5245 5246                  if (lstatus != LDC_UP) {
5246 5247                          PR0("channel not up (status=%d), exiting recv loop\n",
5247 5248                              lstatus);
5248 5249                          break;
5249 5250                  }
5250 5251  
5251 5252                  ASSERT(vd->max_msglen != 0);
5252 5253  
5253 5254                  msgsize = vd->max_msglen; /* stable copy for alloc/free */
5254 5255                  msglen  = msgsize;        /* actual len after recv_msg() */
5255 5256  
5256 5257                  status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
5257 5258                  switch (status) {
5258 5259                  case 0:
5259 5260                          rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen);
5260 5261                          /* check if max_msglen changed */
5261 5262                          if (msgsize != vd->max_msglen) {
5262 5263                                  PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
5263 5264                                      msgsize, vd->max_msglen);
5264 5265                                  kmem_free(vd->vio_msgp, msgsize);
5265 5266                                  vd->vio_msgp =
5266 5267                                      kmem_alloc(vd->max_msglen, KM_SLEEP);
5267 5268                          }
5268 5269                          if (rv == EINPROGRESS)
5269 5270                                  continue;
5270 5271                          break;
5271 5272  
5272 5273                  case ENOMSG:
5273 5274                          break;
5274 5275  
5275 5276                  case ECONNRESET:
5276 5277                          PR0("initiating soft reset (ECONNRESET)\n");
5277 5278                          vd_need_reset(vd, B_FALSE);
5278 5279                          status = 0;
5279 5280                          break;
5280 5281  
5281 5282                  default:
5282 5283                          /* Probably an LDC failure; arrange to reset it */
5283 5284                          PR0("initiating full reset (status=0x%x)", status);
5284 5285                          vd_need_reset(vd, B_TRUE);
5285 5286                          break;
5286 5287                  }
5287 5288          }
5288 5289  
5289 5290          PR2("Task finished");
5290 5291  }
5291 5292  
5292 5293  static uint_t
5293 5294  vd_handle_ldc_events(uint64_t event, caddr_t arg)
5294 5295  {
5295 5296          vd_t    *vd = (vd_t *)(void *)arg;
5296 5297          int     status;
5297 5298  
5298 5299          ASSERT(vd != NULL);
5299 5300  
5300 5301          if (!vd_enabled(vd))
5301 5302                  return (LDC_SUCCESS);
5302 5303  
5303 5304          if (event & LDC_EVT_DOWN) {
5304 5305                  PR0("LDC_EVT_DOWN: LDC channel went down");
5305 5306  
5306 5307                  vd_need_reset(vd, B_TRUE);
5307 5308                  status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5308 5309                      DDI_SLEEP);
5309 5310                  if (status == DDI_FAILURE) {
5310 5311                          PR0("cannot schedule task to recv msg\n");
5311 5312                          vd_need_reset(vd, B_TRUE);
5312 5313                  }
5313 5314          }
5314 5315  
5315 5316          if (event & LDC_EVT_RESET) {
5316 5317                  PR0("LDC_EVT_RESET: LDC channel was reset");
5317 5318  
5318 5319                  if (vd->state != VD_STATE_INIT) {
5319 5320                          PR0("scheduling full reset");
5320 5321                          vd_need_reset(vd, B_FALSE);
5321 5322                          status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5322 5323                              vd, DDI_SLEEP);
5323 5324                          if (status == DDI_FAILURE) {
5324 5325                                  PR0("cannot schedule task to recv msg\n");
5325 5326                                  vd_need_reset(vd, B_TRUE);
5326 5327                          }
5327 5328  
5328 5329                  } else {
5329 5330                          PR0("channel already reset, ignoring...\n");
5330 5331                          PR0("doing ldc up...\n");
5331 5332                          (void) ldc_up(vd->ldc_handle);
5332 5333                  }
5333 5334  
5334 5335                  return (LDC_SUCCESS);
5335 5336          }
5336 5337  
5337 5338          if (event & LDC_EVT_UP) {
5338 5339                  PR0("EVT_UP: LDC is up\nResetting client connection state");
5339 5340                  PR0("initiating soft reset");
5340 5341                  vd_need_reset(vd, B_FALSE);
5341 5342                  status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5342 5343                      vd, DDI_SLEEP);
5343 5344                  if (status == DDI_FAILURE) {
5344 5345                          PR0("cannot schedule task to recv msg\n");
5345 5346                          vd_need_reset(vd, B_TRUE);
5346 5347                          return (LDC_SUCCESS);
5347 5348                  }
5348 5349          }
5349 5350  
5350 5351          if (event & LDC_EVT_READ) {
5351 5352                  int     status;
5352 5353  
5353 5354                  PR1("New data available");
5354 5355                  /* Queue a task to receive the new data */
5355 5356                  status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5356 5357                      DDI_SLEEP);
5357 5358  
5358 5359                  if (status == DDI_FAILURE) {
5359 5360                          PR0("cannot schedule task to recv msg\n");
5360 5361                          vd_need_reset(vd, B_TRUE);
5361 5362                  }
5362 5363          }
5363 5364  
5364 5365          return (LDC_SUCCESS);
5365 5366  }
5366 5367  
5367 5368  static uint_t
5368 5369  vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5369 5370  {
5370 5371          _NOTE(ARGUNUSED(key, val))
5371 5372          (*((uint_t *)arg))++;
5372 5373          return (MH_WALK_TERMINATE);
5373 5374  }
5374 5375  
5375 5376  
5376 5377  static int
5377 5378  vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
5378 5379  {
5379 5380          uint_t  vd_present = 0;
5380 5381          minor_t instance;
5381 5382          vds_t   *vds;
5382 5383  
5383 5384  
5384 5385          switch (cmd) {
5385 5386          case DDI_DETACH:
5386 5387                  /* the real work happens below */
5387 5388                  break;
5388 5389          case DDI_SUSPEND:
5389 5390                  PR0("No action required for DDI_SUSPEND");
5390 5391                  return (DDI_SUCCESS);
5391 5392          default:
5392 5393                  PR0("Unrecognized \"cmd\"");
5393 5394                  return (DDI_FAILURE);
5394 5395          }
5395 5396  
5396 5397          ASSERT(cmd == DDI_DETACH);
5397 5398          instance = ddi_get_instance(dip);
5398 5399          if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5399 5400                  PR0("Could not get state for instance %u", instance);
5400 5401                  ddi_soft_state_free(vds_state, instance);
5401 5402                  return (DDI_FAILURE);
5402 5403          }
5403 5404  
5404 5405          /* Do no detach when serving any vdisks */
5405 5406          mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
5406 5407          if (vd_present) {
5407 5408                  PR0("Not detaching because serving vdisks");
5408 5409                  return (DDI_FAILURE);
5409 5410          }
5410 5411  
5411 5412          PR0("Detaching");
5412 5413          if (vds->initialized & VDS_MDEG) {
5413 5414                  (void) mdeg_unregister(vds->mdeg);
5414 5415                  kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
5415 5416                  kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
5416 5417                  vds->ispecp = NULL;
5417 5418                  vds->mdeg = NULL;
5418 5419          }
5419 5420  
5420 5421          vds_driver_types_free(vds);
5421 5422  
5422 5423          if (vds->initialized & VDS_LDI)
5423 5424                  (void) ldi_ident_release(vds->ldi_ident);
5424 5425          mod_hash_destroy_hash(vds->vd_table);
5425 5426          ddi_soft_state_free(vds_state, instance);
5426 5427          return (DDI_SUCCESS);
5427 5428  }
5428 5429  
5429 5430  /*
5430 5431   * Description:
5431 5432   *      This function checks to see if the disk image being used as a
5432 5433   *      virtual disk is an ISO image. An ISO image is a special case
5433 5434   *      which can be booted/installed from like a CD/DVD.
5434 5435   *
5435 5436   * Parameters:
5436 5437   *      vd              - disk on which the operation is performed.
5437 5438   *
5438 5439   * Return Code:
5439 5440   *      B_TRUE          - The disk image is an ISO 9660 compliant image
5440 5441   *      B_FALSE         - just a regular disk image
5441 5442   */
5442 5443  static boolean_t
5443 5444  vd_dskimg_is_iso_image(vd_t *vd)
5444 5445  {
5445 5446          char    iso_buf[ISO_SECTOR_SIZE];
5446 5447          int     i, rv;
5447 5448          uint_t  sec;
5448 5449  
5449 5450          ASSERT(VD_DSKIMG(vd));
5450 5451  
5451 5452          /*
5452 5453           * If we have already discovered and saved this info we can
5453 5454           * short-circuit the check and avoid reading the disk image.
5454 5455           */
5455 5456          if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
5456 5457                  return (B_TRUE);
5457 5458  
5458 5459          /*
5459 5460           * We wish to read the sector that should contain the 2nd ISO volume
5460 5461           * descriptor. The second field in this descriptor is called the
5461 5462           * Standard Identifier and is set to CD001 for a CD-ROM compliant
5462 5463           * to the ISO 9660 standard.
5463 5464           */
5464 5465          sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_bsize;
5465 5466          rv = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
5466 5467              sec, ISO_SECTOR_SIZE);
5467 5468  
5468 5469          if (rv < 0)
5469 5470                  return (B_FALSE);
5470 5471  
5471 5472          for (i = 0; i < ISO_ID_STRLEN; i++) {
5472 5473                  if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
5473 5474                          return (B_FALSE);
5474 5475          }
5475 5476  
5476 5477          return (B_TRUE);
5477 5478  }
5478 5479  
5479 5480  /*
5480 5481   * Description:
5481 5482   *      This function checks to see if the virtual device is an ATAPI
5482 5483   *      device. ATAPI devices use Group 1 Read/Write commands, so
5483 5484   *      any USCSI calls vds makes need to take this into account.
5484 5485   *
5485 5486   * Parameters:
5486 5487   *      vd              - disk on which the operation is performed.
5487 5488   *
5488 5489   * Return Code:
5489 5490   *      B_TRUE          - The virtual disk is backed by an ATAPI device
5490 5491   *      B_FALSE         - not an ATAPI device (presumably SCSI)
5491 5492   */
5492 5493  static boolean_t
5493 5494  vd_is_atapi_device(vd_t *vd)
5494 5495  {
5495 5496          boolean_t       is_atapi = B_FALSE;
5496 5497          char            *variantp;
5497 5498          int             rv;
5498 5499  
5499 5500          ASSERT(vd->ldi_handle[0] != NULL);
5500 5501          ASSERT(!vd->file);
5501 5502  
5502 5503          rv = ldi_prop_lookup_string(vd->ldi_handle[0],
5503 5504              (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
5504 5505          if (rv == DDI_PROP_SUCCESS) {
5505 5506                  PR0("'variant' property exists for %s", vd->device_path);
5506 5507                  if (strcmp(variantp, "atapi") == 0)
5507 5508                          is_atapi = B_TRUE;
5508 5509                  ddi_prop_free(variantp);
5509 5510          }
5510 5511  
5511 5512          rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
5512 5513          if (rv) {
5513 5514                  PR0("'atapi' property exists for %s", vd->device_path);
5514 5515                  is_atapi = B_TRUE;
5515 5516          }
5516 5517  
5517 5518          return (is_atapi);
5518 5519  }
5519 5520  
5520 5521  static int
5521 5522  vd_setup_full_disk(vd_t *vd)
5522 5523  {
5523 5524          int             status;
5524 5525          major_t         major = getmajor(vd->dev[0]);
5525 5526          minor_t         minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
5526 5527  
5527 5528          ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
5528 5529  
5529 5530          /* set the disk size, block size and the media type of the disk */
5530 5531          status = vd_backend_check_size(vd);
5531 5532  
5532 5533          if (status != 0) {
5533 5534                  if (!vd->scsi) {
5534 5535                          /* unexpected failure */
5535 5536                          PRN("Check size failed for %s (errno %d)",
5536 5537                              vd->device_path, status);
5537 5538                          return (EIO);
5538 5539                  }
5539 5540  
5540 5541                  /*
5541 5542                   * The function can fail for SCSI disks which are present but
5542 5543                   * reserved by another system. In that case, we don't know the
5543 5544                   * size of the disk and the block size.
5544 5545                   */
5545 5546                  vd->vdisk_size = VD_SIZE_UNKNOWN;
5546 5547                  vd->vdisk_bsize = 0;
5547 5548                  vd->backend_bsize = 0;
5548 5549                  vd->vdisk_media = VD_MEDIA_FIXED;
5549 5550          }
5550 5551  
5551 5552          /* Move dev number and LDI handle to entire-disk-slice array elements */
5552 5553          vd->dev[VD_ENTIRE_DISK_SLICE]           = vd->dev[0];
5553 5554          vd->dev[0]                              = 0;
5554 5555          vd->ldi_handle[VD_ENTIRE_DISK_SLICE]    = vd->ldi_handle[0];
5555 5556          vd->ldi_handle[0]                       = NULL;
5556 5557  
5557 5558          /* Initialize device numbers for remaining slices and open them */
5558 5559          for (int slice = 0; slice < vd->nslices; slice++) {
5559 5560                  /*
5560 5561                   * Skip the entire-disk slice, as it's already open and its
5561 5562                   * device known
5562 5563                   */
5563 5564                  if (slice == VD_ENTIRE_DISK_SLICE)
5564 5565                          continue;
5565 5566                  ASSERT(vd->dev[slice] == 0);
5566 5567                  ASSERT(vd->ldi_handle[slice] == NULL);
5567 5568  
5568 5569                  /*
5569 5570                   * Construct the device number for the current slice
5570 5571                   */
5571 5572                  vd->dev[slice] = makedevice(major, (minor + slice));
5572 5573  
5573 5574                  /*
5574 5575                   * Open all slices of the disk to serve them to the client.
5575 5576                   * Slices are opened exclusively to prevent other threads or
5576 5577                   * processes in the service domain from performing I/O to
5577 5578                   * slices being accessed by a client.  Failure to open a slice
5578 5579                   * results in vds not serving this disk, as the client could
5579 5580                   * attempt (and should be able) to access any slice immediately.
5580 5581                   * Any slices successfully opened before a failure will get
5581 5582                   * closed by vds_destroy_vd() as a result of the error returned
5582 5583                   * by this function.
5583 5584                   *
5584 5585                   * We need to do the open with FNDELAY so that opening an empty
5585 5586                   * slice does not fail.
5586 5587                   */
5587 5588                  PR0("Opening device major %u, minor %u = slice %u",
5588 5589                      major, minor, slice);
5589 5590  
5590 5591                  /*
5591 5592                   * Try to open the device. This can fail for example if we are
5592 5593                   * opening an empty slice. So in case of a failure, we try the
5593 5594                   * open again but this time with the FNDELAY flag.
5594 5595                   */
5595 5596                  status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5596 5597                      vd->open_flags, kcred, &vd->ldi_handle[slice],
5597 5598                      vd->vds->ldi_ident);
5598 5599  
5599 5600                  if (status != 0) {
5600 5601                          status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5601 5602                              vd->open_flags | FNDELAY, kcred,
5602 5603                              &vd->ldi_handle[slice], vd->vds->ldi_ident);
5603 5604                  }
5604 5605  
5605 5606                  if (status != 0) {
5606 5607                          PRN("ldi_open_by_dev() returned errno %d "
5607 5608                              "for slice %u", status, slice);
5608 5609                          /* vds_destroy_vd() will close any open slices */
5609 5610                          vd->ldi_handle[slice] = NULL;
5610 5611                          return (status);
5611 5612                  }
5612 5613          }
5613 5614  
5614 5615          return (0);
5615 5616  }
5616 5617  
5617 5618  /*
5618 5619   * When a slice or a volume is exported as a single-slice disk, we want
5619 5620   * the disk backend (i.e. the slice or volume) to be entirely mapped as
5620 5621   * a slice without the addition of any metadata.
5621 5622   *
5622 5623   * So when exporting the disk as a VTOC disk, we fake a disk with the following
5623 5624   * layout:
5624 5625   *                flabel +--- flabel_limit
5625 5626   *                 <->   V
5626 5627   *                 0 1   C                          D  E
5627 5628   *                 +-+---+--------------------------+--+
5628 5629   *  virtual disk:  |L|XXX|           slice 0        |AA|
5629 5630   *                 +-+---+--------------------------+--+
5630 5631   *                  ^    :                          :
5631 5632   *                  |    :                          :
5632 5633   *      VTOC LABEL--+    :                          :
5633 5634   *                       +--------------------------+
5634 5635   *  disk backend:        |     slice/volume/file    |
5635 5636   *                       +--------------------------+
5636 5637   *                       0                          N
5637 5638   *
5638 5639   * N is the number of blocks in the slice/volume/file.
5639 5640   *
5640 5641   * We simulate a disk with N+M blocks, where M is the number of blocks
5641 5642   * simluated at the beginning and at the end of the disk (blocks 0-C
5642 5643   * and D-E).
5643 5644   *
5644 5645   * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C
5645 5646   * to D defines slice 0 and are mapped to the backend. Finally we emulate 2
5646 5647   * alternate cylinders at the end of the disk (blocks D-E). In summary we have:
5647 5648   *
5648 5649   * - block 0 (L) returns a fake VTOC label
5649 5650   * - blocks 1 to C-1 (X) are unused and return 0
5650 5651   * - blocks C to D-1 are mapped to the exported slice or volume
5651 5652   * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders)
5652 5653   *
5653 5654   * Note: because we define a fake disk geometry, it is possible that the length
5654 5655   * of the backend is not a multiple of the size of cylinder, in that case the
5655 5656   * very end of the backend will not map to any block of the virtual disk.
5656 5657   */
5657 5658  static int
5658 5659  vd_setup_partition_vtoc(vd_t *vd)
5659 5660  {
5660 5661          char *device_path = vd->device_path;
5661 5662          char unit;
5662 5663          size_t size, csize;
5663 5664  
5664 5665          /* Initialize dk_geom structure for single-slice device */
5665 5666          if (vd->dk_geom.dkg_nsect == 0) {
5666 5667                  PRN("%s geometry claims 0 sectors per track", device_path);
5667 5668                  return (EIO);
5668 5669          }
5669 5670          if (vd->dk_geom.dkg_nhead == 0) {
5670 5671                  PRN("%s geometry claims 0 heads", device_path);
5671 5672                  return (EIO);
5672 5673          }
5673 5674  
5674 5675          /* size of a cylinder in block */
5675 5676          csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
5676 5677  
5677 5678          /*
5678 5679           * Add extra cylinders: we emulate the first cylinder (which contains
5679 5680           * the disk label).
5680 5681           */
5681 5682          vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1;
5682 5683  
5683 5684          /* we emulate 2 alternate cylinders */
5684 5685          vd->dk_geom.dkg_acyl = 2;
5685 5686          vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
5686 5687  
5687 5688  
5688 5689          /* Initialize vtoc structure for single-slice device */
5689 5690          bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
5690 5691          vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
5691 5692          vd->vtoc.v_part[0].p_flag = 0;
5692 5693          /*
5693 5694           * Partition 0 starts on cylinder 1 and its size has to be
5694 5695           * a multiple of a number of cylinder.
5695 5696           */
5696 5697          vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */
5697 5698          vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize;
5698 5699  
5699 5700          if (vd_slice_single_slice) {
5700 5701                  vd->vtoc.v_nparts = 1;
5701 5702                  bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
5702 5703                      MIN(sizeof (VD_ASCIILABEL),
5703 5704                      sizeof (vd->vtoc.v_asciilabel)));
5704 5705                  bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
5705 5706                      MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
5706 5707          } else {
5707 5708                  /* adjust the number of slices */
5708 5709                  vd->nslices = V_NUMPAR;
5709 5710                  vd->vtoc.v_nparts = V_NUMPAR;
5710 5711  
5711 5712                  /* define slice 2 representing the entire disk */
5712 5713                  vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
5713 5714                  vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0;
5714 5715                  vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0;
5715 5716                  vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size =
5716 5717                      vd->dk_geom.dkg_ncyl * csize;
5717 5718  
5718 5719                  vd_get_readable_size(vd->vdisk_size * vd->vdisk_bsize,
5719 5720                      &size, &unit);
5720 5721  
5721 5722                  /*
5722 5723                   * Set some attributes of the geometry to what format(1m) uses
5723 5724                   * so that writing a default label using format(1m) does not
5724 5725                   * produce any error.
5725 5726                   */
5726 5727                  vd->dk_geom.dkg_bcyl = 0;
5727 5728                  vd->dk_geom.dkg_intrlv = 1;
5728 5729                  vd->dk_geom.dkg_write_reinstruct = 0;
5729 5730                  vd->dk_geom.dkg_read_reinstruct = 0;
5730 5731  
5731 5732                  /*
5732 5733                   * We must have a correct label name otherwise format(1m) will
5733 5734                   * not recognized the disk as labeled.
5734 5735                   */
5735 5736                  (void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII,
5736 5737                      "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d",
5737 5738                      size, unit,
5738 5739                      vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl,
5739 5740                      vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect);
5740 5741                  bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume));
5741 5742  
5742 5743                  /* create a fake label from the vtoc and geometry */
5743 5744                  vd->flabel_limit = (uint_t)csize;
5744 5745                  vd->flabel_size = VD_LABEL_VTOC_SIZE(vd->vdisk_bsize);
5745 5746                  vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5746 5747                  vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom,
5747 5748                      VD_LABEL_VTOC(vd));
5748 5749          }
5749 5750  
5750 5751          /* adjust the vdisk_size, we emulate 3 cylinders */
5751 5752          vd->vdisk_size += csize * 3;
5752 5753  
5753 5754          return (0);
5754 5755  }
5755 5756  
5756 5757  /*
5757 5758   * When a slice, volume or file is exported as a single-slice disk, we want
5758 5759   * the disk backend (i.e. the slice, volume or file) to be entirely mapped
5759 5760   * as a slice without the addition of any metadata.
5760 5761   *
5761 5762   * So when exporting the disk as an EFI disk, we fake a disk with the following
5762 5763   * layout: (assuming the block size is 512 bytes)
5763 5764   *
5764 5765   *                  flabel        +--- flabel_limit
5765 5766   *                 <------>       v
5766 5767   *                 0 1 2  L      34                        34+N      P
5767 5768   *                 +-+-+--+-------+--------------------------+-------+
5768 5769   *  virtual disk:  |X|T|EE|XXXXXXX|           slice 0        |RRRRRRR|
5769 5770   *                 +-+-+--+-------+--------------------------+-------+
5770 5771   *                    ^ ^         :                          :
5771 5772   *                    | |         :                          :
5772 5773   *                GPT-+ +-GPE     :                          :
5773 5774   *                                +--------------------------+
5774 5775   *  disk backend:                 |     slice/volume/file    |
5775 5776   *                                +--------------------------+
5776 5777   *                                0                          N
5777 5778   *
5778 5779   * N is the number of blocks in the slice/volume/file.
5779 5780   *
5780 5781   * We simulate a disk with N+M blocks, where M is the number of blocks
5781 5782   * simluated at the beginning and at the end of the disk (blocks 0-34
5782 5783   * and 34+N-P).
5783 5784   *
5784 5785   * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34
5785 5786   * to 34+N defines slice 0 and are mapped to the exported backend, and we
5786 5787   * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI
5787 5788   * reserved partition.
5788 5789   *
5789 5790   * - block 0 (X) is unused and return 0
5790 5791   * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
5791 5792   * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI)
5792 5793   * - blocks L to 33 (X) are unused and return 0
5793 5794   * - blocks 34 to 34+N are mapped to the exported slice, volume or file
5794 5795   * - blocks 34+N+1 to P define a fake reserved partition and backup label, it
5795 5796   *   returns 0
5796 5797   *
5797 5798   * Note: if the backend size is not a multiple of the vdisk block size then
5798 5799   * the very end of the backend will not map to any block of the virtual disk.
5799 5800   */
5800 5801  static int
5801 5802  vd_setup_partition_efi(vd_t *vd)
5802 5803  {
5803 5804          efi_gpt_t *gpt;
5804 5805          efi_gpe_t *gpe;
5805 5806          struct uuid uuid = EFI_USR;
5806 5807          struct uuid efi_reserved = EFI_RESERVED;
5807 5808          uint32_t crc;
5808 5809          uint64_t s0_start, s0_end, first_u_lba;
5809 5810          size_t bsize;
5810 5811  
5811 5812          ASSERT(vd->vdisk_bsize > 0);
5812 5813  
5813 5814          bsize = vd->vdisk_bsize;
5814 5815          /*
5815 5816           * The minimum size for the label is 16K (EFI_MIN_ARRAY_SIZE)
5816 5817           * for GPEs plus one block for the GPT and one for PMBR.
5817 5818           */
5818 5819          first_u_lba = (EFI_MIN_ARRAY_SIZE / bsize) + 2;
5819 5820          vd->flabel_limit = (uint_t)first_u_lba;
5820 5821          vd->flabel_size = VD_LABEL_EFI_SIZE(bsize);
5821 5822          vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5822 5823          gpt = VD_LABEL_EFI_GPT(vd, bsize);
5823 5824          gpe = VD_LABEL_EFI_GPE(vd, bsize);
5824 5825  
  
    | 
      ↓ open down ↓ | 
    5791 lines elided | 
    
      ↑ open up ↑ | 
  
5825 5826          /*
5826 5827           * Adjust the vdisk_size, we emulate the first few blocks
5827 5828           * for the disk label.
5828 5829           */
5829 5830          vd->vdisk_size += first_u_lba;
5830 5831          s0_start = first_u_lba;
5831 5832          s0_end = vd->vdisk_size - 1;
5832 5833  
5833 5834          gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
5834 5835          gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
5835      -        gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
     5836 +        gpt->efi_gpt_HeaderSize = LE_32(EFI_HEADER_SIZE);
5836 5837          gpt->efi_gpt_FirstUsableLBA = LE_64(first_u_lba);
5837 5838          gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
5838 5839          gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
5839 5840  
5840 5841          UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid);
5841 5842          gpe[0].efi_gpe_StartingLBA = LE_64(s0_start);
5842 5843          gpe[0].efi_gpe_EndingLBA = LE_64(s0_end);
5843 5844  
5844 5845          if (vd_slice_single_slice) {
5845 5846                  gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
5846 5847          } else {
5847 5848                  /* adjust the number of slices */
5848 5849                  gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART);
5849 5850                  vd->nslices = V_NUMPAR;
5850 5851  
5851 5852                  /* define a fake reserved partition */
5852 5853                  UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID,
5853 5854                      efi_reserved);
5854 5855                  gpe[VD_MAXPART - 1].efi_gpe_StartingLBA =
5855 5856                      LE_64(s0_end + 1);
5856 5857                  gpe[VD_MAXPART - 1].efi_gpe_EndingLBA =
5857 5858                      LE_64(s0_end + EFI_MIN_RESV_SIZE);
5858 5859  
5859 5860                  /* adjust the vdisk_size to include the reserved slice */
5860 5861                  vd->vdisk_size += EFI_MIN_RESV_SIZE;
5861 5862          }
  
    | 
      ↓ open down ↓ | 
    16 lines elided | 
    
      ↑ open up ↑ | 
  
5862 5863  
5863 5864          gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
5864 5865  
5865 5866          /* adjust the vdisk size for the backup GPT and GPE */
5866 5867          vd->vdisk_size += (EFI_MIN_ARRAY_SIZE / bsize) + 1;
5867 5868          gpt->efi_gpt_AlternateLBA = LE_64(vd->vdisk_size - 1);
5868 5869  
5869 5870          CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table);
5870 5871          gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
5871 5872  
5872      -        CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
     5873 +        CRC32(crc, gpt, EFI_HEADER_SIZE, -1U, crc32_table);
5873 5874          gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
5874 5875  
5875 5876          return (0);
5876 5877  }
5877 5878  
5878 5879  /*
5879 5880   * Setup for a virtual disk whose backend is a file (exported as a single slice
5880 5881   * or as a full disk). In that case, the backend is accessed using the vnode
5881 5882   * interface.
5882 5883   */
5883 5884  static int
5884 5885  vd_setup_backend_vnode(vd_t *vd)
5885 5886  {
5886 5887          int             rval, status;
5887 5888          dev_t           dev;
5888 5889          char            *file_path = vd->device_path;
5889 5890          ldi_handle_t    lhandle;
5890 5891          struct dk_cinfo dk_cinfo;
5891 5892  
5892 5893          ASSERT(!vd->volume);
5893 5894  
5894 5895          if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
5895 5896              0, &vd->file_vnode, 0, 0)) != 0) {
5896 5897                  if ((status == ENXIO || status == ENODEV || status == ENOENT ||
5897 5898                      status == EROFS) && (!(vd->initialized & VD_SETUP_ERROR) &&
5898 5899                      !(DEVI_IS_ATTACHING(vd->vds->dip)))) {
5899 5900                          PRN("vn_open(%s) = errno %d", file_path, status);
5900 5901                  }
5901 5902                  return (status);
5902 5903          }
5903 5904  
5904 5905          /*
5905 5906           * We set vd->file now so that vds_destroy_vd will take care of
5906 5907           * closing the file and releasing the vnode in case of an error.
5907 5908           */
5908 5909          vd->file = B_TRUE;
5909 5910  
5910 5911          vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
5911 5912  
5912 5913          /*
5913 5914           * Get max_xfer_sz from the device where the file is.
5914 5915           */
5915 5916          dev = vd->file_vnode->v_vfsp->vfs_dev;
5916 5917          PR0("underlying device of %s = (%d, %d)\n", file_path,
5917 5918              getmajor(dev), getminor(dev));
5918 5919  
5919 5920          status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
5920 5921              vd->vds->ldi_ident);
5921 5922  
5922 5923          if (status != 0) {
5923 5924                  PR0("ldi_open() returned errno %d for underlying device",
5924 5925                      status);
5925 5926          } else {
5926 5927                  if ((status = ldi_ioctl(lhandle, DKIOCINFO,
5927 5928                      (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5928 5929                      &rval)) != 0) {
5929 5930                          PR0("ldi_ioctl(DKIOCINFO) returned errno %d for "
5930 5931                              "underlying device", status);
5931 5932                  } else {
5932 5933                          /*
5933 5934                           * Store the device's max transfer size for
5934 5935                           * return to the client
5935 5936                           */
5936 5937                          vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5937 5938                  }
5938 5939  
5939 5940                  PR0("close the underlying device");
5940 5941                  (void) ldi_close(lhandle, FREAD, kcred);
5941 5942          }
5942 5943  
5943 5944          PR0("using file %s on device (%d, %d), max_xfer = %u blks",
5944 5945              file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz);
5945 5946  
5946 5947          if (vd->vdisk_type == VD_DISK_TYPE_SLICE)
5947 5948                  status = vd_setup_slice_image(vd);
5948 5949          else
5949 5950                  status = vd_setup_disk_image(vd);
5950 5951  
5951 5952          return (status);
5952 5953  }
5953 5954  
5954 5955  static int
5955 5956  vd_setup_slice_image(vd_t *vd)
5956 5957  {
5957 5958          struct dk_label label;
5958 5959          int status;
5959 5960  
5960 5961          if ((status = vd_backend_check_size(vd)) != 0) {
5961 5962                  PRN("Check size failed for %s (errno %d)",
5962 5963                      vd->device_path, status);
5963 5964                  return (EIO);
5964 5965          }
5965 5966  
5966 5967          vd->vdisk_media = VD_MEDIA_FIXED;
5967 5968          vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)?
5968 5969              vd_file_slice_label : vd_slice_label;
5969 5970  
5970 5971          if (vd->vdisk_label == VD_DISK_LABEL_EFI ||
5971 5972              vd->dskimg_size >= 2 * ONE_TERABYTE) {
5972 5973                  status = vd_setup_partition_efi(vd);
5973 5974          } else {
5974 5975                  /*
5975 5976                   * We build a default label to get a geometry for
5976 5977                   * the vdisk. Then the partition setup function will
5977 5978                   * adjust the vtoc so that it defines a single-slice
5978 5979                   * disk.
5979 5980                   */
5980 5981                  vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
5981 5982                      &label);
5982 5983                  vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5983 5984                  status = vd_setup_partition_vtoc(vd);
5984 5985          }
5985 5986  
5986 5987          return (status);
5987 5988  }
5988 5989  
5989 5990  static int
5990 5991  vd_setup_disk_image(vd_t *vd)
5991 5992  {
5992 5993          int status;
5993 5994          char *backend_path = vd->device_path;
5994 5995  
5995 5996          if ((status = vd_backend_check_size(vd)) != 0) {
5996 5997                  PRN("Check size failed for %s (errno %d)",
5997 5998                      backend_path, status);
5998 5999                  return (EIO);
5999 6000          }
6000 6001  
6001 6002          /* size should be at least sizeof(dk_label) */
6002 6003          if (vd->dskimg_size < sizeof (struct dk_label)) {
6003 6004                  PRN("Size of file has to be at least %ld bytes",
6004 6005                      sizeof (struct dk_label));
6005 6006                  return (EIO);
6006 6007          }
6007 6008  
6008 6009          /*
6009 6010           * Find and validate the geometry of a disk image.
6010 6011           */
6011 6012          status = vd_dskimg_validate_geometry(vd);
6012 6013          if (status != 0 && status != EINVAL && status != ENOTSUP) {
6013 6014                  PRN("Failed to read label from %s", backend_path);
6014 6015                  return (EIO);
6015 6016          }
6016 6017  
6017 6018          if (vd_dskimg_is_iso_image(vd)) {
6018 6019                  /*
6019 6020                   * Indicate whether to call this a CD or DVD from the size
6020 6021                   * of the ISO image (images for both drive types are stored
6021 6022                   * in the ISO-9600 format). CDs can store up to just under 1Gb
6022 6023                   */
6023 6024                  if ((vd->vdisk_size * vd->vdisk_bsize) > ONE_GIGABYTE)
6024 6025                          vd->vdisk_media = VD_MEDIA_DVD;
6025 6026                  else
6026 6027                          vd->vdisk_media = VD_MEDIA_CD;
6027 6028          } else {
6028 6029                  vd->vdisk_media = VD_MEDIA_FIXED;
6029 6030          }
6030 6031  
6031 6032          /* Setup devid for the disk image */
6032 6033  
6033 6034          if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
6034 6035  
6035 6036                  status = vd_dskimg_read_devid(vd, &vd->dskimg_devid);
6036 6037  
6037 6038                  if (status == 0) {
6038 6039                          /* a valid devid was found */
6039 6040                          return (0);
6040 6041                  }
6041 6042  
6042 6043                  if (status != EINVAL) {
6043 6044                          /*
6044 6045                           * There was an error while trying to read the devid.
6045 6046                           * So this disk image may have a devid but we are
6046 6047                           * unable to read it.
6047 6048                           */
6048 6049                          PR0("can not read devid for %s", backend_path);
6049 6050                          vd->dskimg_devid = NULL;
6050 6051                          return (0);
6051 6052                  }
6052 6053          }
6053 6054  
6054 6055          /*
6055 6056           * No valid device id was found so we create one. Note that a failure
6056 6057           * to create a device id is not fatal and does not prevent the disk
6057 6058           * image from being attached.
6058 6059           */
6059 6060          PR1("creating devid for %s", backend_path);
6060 6061  
6061 6062          if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
6062 6063              &vd->dskimg_devid) != DDI_SUCCESS) {
6063 6064                  PR0("fail to create devid for %s", backend_path);
6064 6065                  vd->dskimg_devid = NULL;
6065 6066                  return (0);
6066 6067          }
6067 6068  
6068 6069          /*
6069 6070           * Write devid to the disk image. The devid is stored into the disk
6070 6071           * image if we have a valid label; otherwise the devid will be stored
6071 6072           * when the user writes a valid label.
6072 6073           */
6073 6074          if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
6074 6075                  if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
6075 6076                          PR0("fail to write devid for %s", backend_path);
6076 6077                          ddi_devid_free(vd->dskimg_devid);
6077 6078                          vd->dskimg_devid = NULL;
6078 6079                  }
6079 6080          }
6080 6081  
6081 6082          return (0);
6082 6083  }
6083 6084  
6084 6085  
6085 6086  /*
6086 6087   * Description:
6087 6088   *      Open a device using its device path (supplied by ldm(1m))
6088 6089   *
6089 6090   * Parameters:
6090 6091   *      vd      - pointer to structure containing the vDisk info
6091 6092   *      flags   - open flags
6092 6093   *
6093 6094   * Return Value
6094 6095   *      0       - success
6095 6096   *      != 0    - some other non-zero return value from ldi(9F) functions
6096 6097   */
6097 6098  static int
6098 6099  vd_open_using_ldi_by_name(vd_t *vd, int flags)
6099 6100  {
6100 6101          int             status;
6101 6102          char            *device_path = vd->device_path;
6102 6103  
6103 6104          /* Attempt to open device */
6104 6105          status = ldi_open_by_name(device_path, flags, kcred,
6105 6106              &vd->ldi_handle[0], vd->vds->ldi_ident);
6106 6107  
6107 6108          /*
6108 6109           * The open can fail for example if we are opening an empty slice.
6109 6110           * In case of a failure, we try the open again but this time with
6110 6111           * the FNDELAY flag.
6111 6112           */
6112 6113          if (status != 0)
6113 6114                  status = ldi_open_by_name(device_path, flags | FNDELAY,
6114 6115                      kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
6115 6116  
6116 6117          if (status != 0) {
6117 6118                  PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
6118 6119                  vd->ldi_handle[0] = NULL;
6119 6120                  return (status);
6120 6121          }
6121 6122  
6122 6123          return (0);
6123 6124  }
6124 6125  
6125 6126  /*
6126 6127   * Setup for a virtual disk which backend is a device (a physical disk,
6127 6128   * slice or volume device) exported as a full disk or as a slice. In these
6128 6129   * cases, the backend is accessed using the LDI interface.
6129 6130   */
6130 6131  static int
6131 6132  vd_setup_backend_ldi(vd_t *vd)
6132 6133  {
6133 6134          int             rval, status;
6134 6135          struct dk_cinfo dk_cinfo;
6135 6136          char            *device_path = vd->device_path;
6136 6137  
6137 6138          /* device has been opened by vd_identify_dev() */
6138 6139          ASSERT(vd->ldi_handle[0] != NULL);
6139 6140          ASSERT(vd->dev[0] != NULL);
6140 6141  
6141 6142          vd->file = B_FALSE;
6142 6143  
6143 6144          /* Verify backing device supports dk_cinfo */
6144 6145          if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
6145 6146              (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
6146 6147              &rval)) != 0) {
6147 6148                  PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
6148 6149                      status, device_path);
6149 6150                  return (status);
6150 6151          }
6151 6152          if (dk_cinfo.dki_partition >= V_NUMPAR) {
6152 6153                  PRN("slice %u >= maximum slice %u for %s",
6153 6154                      dk_cinfo.dki_partition, V_NUMPAR, device_path);
6154 6155                  return (EIO);
6155 6156          }
6156 6157  
6157 6158          /*
6158 6159           * The device has been opened read-only by vd_identify_dev(), re-open
6159 6160           * it read-write if the write flag is set and we don't have an optical
6160 6161           * device such as a CD-ROM, which, for now, we do not permit writes to
6161 6162           * and thus should not export write operations to the client.
6162 6163           *
6163 6164           * Future: if/when we implement support for guest domains writing to
6164 6165           * optical devices we will need to do further checking of the media type
6165 6166           * to distinguish between read-only and writable discs.
6166 6167           */
6167 6168          if (dk_cinfo.dki_ctype == DKC_CDROM) {
6168 6169  
6169 6170                  vd->open_flags &= ~FWRITE;
6170 6171  
6171 6172          } else if (vd->open_flags & FWRITE) {
6172 6173  
6173 6174                  (void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
6174 6175                      kcred);
6175 6176                  status = vd_open_using_ldi_by_name(vd, vd->open_flags);
6176 6177                  if (status != 0) {
6177 6178                          PR0("Failed to open (%s) = errno %d",
6178 6179                              device_path, status);
6179 6180                          return (status);
6180 6181                  }
6181 6182          }
6182 6183  
6183 6184          /* Store the device's max transfer size for return to the client */
6184 6185          vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
6185 6186  
6186 6187          /*
6187 6188           * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
6188 6189           * that we can use the correct CDB group when sending USCSI commands.
6189 6190           */
6190 6191          vd->is_atapi_dev = vd_is_atapi_device(vd);
6191 6192  
6192 6193          /*
6193 6194           * Export a full disk.
6194 6195           *
6195 6196           * The exported device can be either a volume, a disk or a CD/DVD
6196 6197           * device.  We export a device as a full disk if we have an entire
6197 6198           * disk slice (slice 2) and if this slice is exported as a full disk
6198 6199           * and not as a single slice disk. A CD or DVD device is exported
6199 6200           * as a full disk (even if it isn't s2). A volume is exported as a
6200 6201           * full disk as long as the "slice" option is not specified.
6201 6202           */
6202 6203          if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
6203 6204  
6204 6205                  if (vd->volume) {
6205 6206                          /* setup disk image */
6206 6207                          return (vd_setup_disk_image(vd));
6207 6208                  }
6208 6209  
6209 6210                  if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE ||
6210 6211                      dk_cinfo.dki_ctype == DKC_CDROM) {
6211 6212                          ASSERT(!vd->volume);
6212 6213                          if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
6213 6214                                  vd->scsi = B_TRUE;
6214 6215                          return (vd_setup_full_disk(vd));
6215 6216                  }
6216 6217          }
6217 6218  
6218 6219          /*
6219 6220           * Export a single slice disk.
6220 6221           *
6221 6222           * The exported device can be either a volume device or a disk slice. If
6222 6223           * it is a disk slice different from slice 2 then it is always exported
6223 6224           * as a single slice disk even if the "slice" option is not specified.
6224 6225           * If it is disk slice 2 or a volume device then it is exported as a
6225 6226           * single slice disk only if the "slice" option is specified.
6226 6227           */
6227 6228          return (vd_setup_single_slice_disk(vd));
6228 6229  }
6229 6230  
6230 6231  static int
6231 6232  vd_setup_single_slice_disk(vd_t *vd)
6232 6233  {
6233 6234          int status, rval;
6234 6235          struct dk_label label;
6235 6236          char *device_path = vd->device_path;
6236 6237          struct vtoc vtoc;
6237 6238  
6238 6239          vd->vdisk_media = VD_MEDIA_FIXED;
6239 6240  
6240 6241          if (vd->volume) {
6241 6242                  ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
6242 6243          }
6243 6244  
6244 6245          /*
6245 6246           * We export the slice as a single slice disk even if the "slice"
6246 6247           * option was not specified.
6247 6248           */
6248 6249          vd->vdisk_type  = VD_DISK_TYPE_SLICE;
6249 6250          vd->nslices     = 1;
6250 6251  
6251 6252          /* Get size of backing device */
6252 6253          if ((status = vd_backend_check_size(vd)) != 0) {
6253 6254                  PRN("Check size failed for %s (errno %d)", device_path, status);
6254 6255                  return (EIO);
6255 6256          }
6256 6257  
6257 6258          /*
6258 6259           * When exporting a slice or a device as a single slice disk, we don't
6259 6260           * care about any partitioning exposed by the backend. The goal is just
6260 6261           * to export the backend as a flat storage. We provide a fake partition
6261 6262           * table (either a VTOC or EFI), which presents only one slice, to
6262 6263           * accommodate tools expecting a disk label. The selection of the label
6263 6264           * type (VTOC or EFI) depends on the value of the vd_slice_label
6264 6265           * variable.
6265 6266           */
6266 6267          if (vd_slice_label == VD_DISK_LABEL_EFI ||
6267 6268              vd->vdisk_size >= ONE_TERABYTE / vd->vdisk_bsize) {
6268 6269                  vd->vdisk_label = VD_DISK_LABEL_EFI;
6269 6270          } else {
6270 6271                  status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC,
6271 6272                      (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL),
6272 6273                      kcred, &rval);
6273 6274  
6274 6275                  if (status == ENOTTY) {
6275 6276                          /* try with the non-extended vtoc ioctl */
6276 6277                          status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC,
6277 6278                              (intptr_t)&vtoc, (vd->open_flags | FKIOCTL),
6278 6279                              kcred, &rval);
6279 6280                          vtoctoextvtoc(vtoc, vd->vtoc);
6280 6281                  }
6281 6282  
6282 6283                  if (status == 0) {
6283 6284                          status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
6284 6285                              (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL),
6285 6286                              kcred, &rval);
6286 6287  
6287 6288                          if (status != 0) {
6288 6289                                  PRN("ldi_ioctl(DKIOCGEOM) returned errno %d "
6289 6290                                      "for %s", status, device_path);
6290 6291                                  return (status);
6291 6292                          }
6292 6293                          vd->vdisk_label = VD_DISK_LABEL_VTOC;
6293 6294  
6294 6295                  } else if (vd_slice_label == VD_DISK_LABEL_VTOC) {
6295 6296  
6296 6297                          vd->vdisk_label = VD_DISK_LABEL_VTOC;
6297 6298                          vd_build_default_label(vd->vdisk_size * vd->vdisk_bsize,
6298 6299                              vd->vdisk_bsize, &label);
6299 6300                          vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
6300 6301  
6301 6302                  } else {
6302 6303                          vd->vdisk_label = VD_DISK_LABEL_EFI;
6303 6304                  }
6304 6305          }
6305 6306  
6306 6307          if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6307 6308                  /* export with a fake VTOC label */
6308 6309                  status = vd_setup_partition_vtoc(vd);
6309 6310  
6310 6311          } else {
6311 6312                  /* export with a fake EFI label */
6312 6313                  status = vd_setup_partition_efi(vd);
6313 6314          }
6314 6315  
6315 6316          return (status);
6316 6317  }
6317 6318  
6318 6319  /*
6319 6320   * This function is invoked when setting up the vdisk backend and to process
6320 6321   * the VD_OP_GET_CAPACITY operation. It checks the backend size and set the
6321 6322   * following attributes of the vd structure:
6322 6323   *
6323 6324   * - vdisk_bsize: block size for the virtual disk used by the VIO protocol. Its
6324 6325   *   value is 512 bytes (DEV_BSIZE) when the backend is a file, a volume or a
6325 6326   *   CD/DVD. When the backend is a disk or a disk slice then it has the value
6326 6327   *   of the logical block size of that disk (as returned by the DKIOCGMEDIAINFO
6327 6328   *   ioctl). This block size is expected to be a power of 2 and a multiple of
6328 6329   *   512.
6329 6330   *
6330 6331   * - vdisk_size: size of the virtual disk expressed as a number of vdisk_bsize
6331 6332   *   blocks.
6332 6333   *
6333 6334   * vdisk_size and vdisk_bsize are sent to the vdisk client during the connection
6334 6335   * handshake and in the result of a VD_OP_GET_CAPACITY operation.
6335 6336   *
6336 6337   * - backend_bsize: block size of the backend device. backend_bsize has the same
6337 6338   *   value as vdisk_bsize except when the backend is a CD/DVD. In that case,
6338 6339   *   vdisk_bsize is set to 512 (DEV_BSIZE) while backend_bsize is set to the
6339 6340   *   effective logical block size of the CD/DVD (usually 2048).
6340 6341   *
6341 6342   * - dskimg_size: size of the backend when the backend is a disk image. This
6342 6343   *   attribute is set only when the backend is a file or a volume, otherwise it
6343 6344   *   is unused.
6344 6345   *
6345 6346   * - vio_bshift: number of bit to shift to convert a VIO block number (which
6346 6347   *   uses a block size of vdisk_bsize) to a buf(9s) block number (which uses a
6347 6348   *   block size of 512 bytes) i.e. we have vdisk_bsize = 512 x 2 ^ vio_bshift
6348 6349   *
6349 6350   * - vdisk_media: media of the virtual disk. This function only sets this
6350 6351   *   attribute for physical disk and CD/DVD. For other backend types, this
6351 6352   *   attribute is set in the setup function of the backend.
6352 6353   */
6353 6354  static int
6354 6355  vd_backend_check_size(vd_t *vd)
6355 6356  {
6356 6357          size_t backend_size, backend_bsize, vdisk_bsize;
6357 6358          size_t old_size, new_size;
6358 6359          struct dk_minfo minfo;
6359 6360          vattr_t vattr;
6360 6361          int rval, rv, media, nshift = 0;
6361 6362          uint32_t n;
6362 6363  
6363 6364          if (vd->file) {
6364 6365  
6365 6366                  /* file (slice or full disk) */
6366 6367                  vattr.va_mask = AT_SIZE;
6367 6368                  rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL);
6368 6369                  if (rv != 0) {
6369 6370                          PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv);
6370 6371                          return (rv);
6371 6372                  }
6372 6373                  backend_size = vattr.va_size;
6373 6374                  backend_bsize = DEV_BSIZE;
6374 6375                  vdisk_bsize = DEV_BSIZE;
6375 6376  
6376 6377          } else if (vd->volume) {
6377 6378  
6378 6379                  /* volume (slice or full disk) */
6379 6380                  rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6380 6381                  if (rv != DDI_SUCCESS) {
6381 6382                          PR0("ldi_get_size() failed for %s", vd->device_path);
6382 6383                          return (EIO);
6383 6384                  }
6384 6385                  backend_bsize = DEV_BSIZE;
6385 6386                  vdisk_bsize = DEV_BSIZE;
6386 6387  
6387 6388          } else {
6388 6389  
6389 6390                  /* physical disk or slice */
6390 6391                  rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
6391 6392                      (intptr_t)&minfo, (vd->open_flags | FKIOCTL),
6392 6393                      kcred, &rval);
6393 6394                  if (rv != 0) {
6394 6395                          PR0("DKIOCGMEDIAINFO failed for %s (err=%d)",
6395 6396                              vd->device_path, rv);
6396 6397                          return (rv);
6397 6398                  }
6398 6399  
6399 6400                  if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6400 6401                          rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6401 6402                          if (rv != DDI_SUCCESS) {
6402 6403                                  PR0("ldi_get_size() failed for %s",
6403 6404                                      vd->device_path);
6404 6405                                  return (EIO);
6405 6406                          }
6406 6407                  } else {
6407 6408                          ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6408 6409                          backend_size = minfo.dki_capacity * minfo.dki_lbsize;
6409 6410                  }
6410 6411  
6411 6412                  backend_bsize = minfo.dki_lbsize;
6412 6413                  media = DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type);
6413 6414  
6414 6415                  /*
6415 6416                   * If the device is a CD or a DVD then we force the vdisk block
6416 6417                   * size to 512 bytes (DEV_BSIZE). In that case, vdisk_bsize can
6417 6418                   * be different from backend_size.
6418 6419                   */
6419 6420                  if (media == VD_MEDIA_CD || media == VD_MEDIA_DVD)
6420 6421                          vdisk_bsize = DEV_BSIZE;
6421 6422                  else
6422 6423                          vdisk_bsize = backend_bsize;
6423 6424          }
6424 6425  
6425 6426          /* check vdisk block size */
6426 6427          if (vdisk_bsize == 0 || vdisk_bsize % DEV_BSIZE != 0)
6427 6428                  return (EINVAL);
6428 6429  
6429 6430          old_size = vd->vdisk_size;
6430 6431          new_size = backend_size / vdisk_bsize;
6431 6432  
6432 6433          /* check if size has changed */
6433 6434          if (old_size != VD_SIZE_UNKNOWN && old_size == new_size &&
6434 6435              vd->vdisk_bsize == vdisk_bsize)
6435 6436                  return (0);
6436 6437  
6437 6438          /* cache info for blk conversion */
6438 6439          for (n = vdisk_bsize / DEV_BSIZE; n > 1; n >>= 1) {
6439 6440                  if ((n & 0x1) != 0) {
6440 6441                          /* blk_size is not a power of 2 */
6441 6442                          return (EINVAL);
6442 6443                  }
6443 6444                  nshift++;
6444 6445          }
6445 6446  
6446 6447          vd->vio_bshift = nshift;
6447 6448          vd->vdisk_size = new_size;
6448 6449          vd->vdisk_bsize = vdisk_bsize;
6449 6450          vd->backend_bsize = backend_bsize;
6450 6451  
6451 6452          if (vd->file || vd->volume)
6452 6453                  vd->dskimg_size = backend_size;
6453 6454  
6454 6455          /*
6455 6456           * If we are exporting a single-slice disk and the size of the backend
6456 6457           * has changed then we regenerate the partition setup so that the
6457 6458           * partitioning matches with the new disk backend size.
6458 6459           */
6459 6460  
6460 6461          if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6461 6462                  /* slice or file or device exported as a slice */
6462 6463                  if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6463 6464                          rv = vd_setup_partition_vtoc(vd);
6464 6465                          if (rv != 0) {
6465 6466                                  PR0("vd_setup_partition_vtoc() failed for %s "
6466 6467                                      "(err = %d)", vd->device_path, rv);
6467 6468                                  return (rv);
6468 6469                          }
6469 6470                  } else {
6470 6471                          rv = vd_setup_partition_efi(vd);
6471 6472                          if (rv != 0) {
6472 6473                                  PR0("vd_setup_partition_efi() failed for %s "
6473 6474                                      "(err = %d)", vd->device_path, rv);
6474 6475                                  return (rv);
6475 6476                          }
6476 6477                  }
6477 6478  
6478 6479          } else if (!vd->file && !vd->volume) {
6479 6480                  /* physical disk */
6480 6481                  ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6481 6482                  vd->vdisk_media = media;
6482 6483          }
6483 6484  
6484 6485          return (0);
6485 6486  }
6486 6487  
6487 6488  /*
6488 6489   * Description:
6489 6490   *      Open a device using its device path and identify if this is
6490 6491   *      a disk device or a volume device.
6491 6492   *
6492 6493   * Parameters:
6493 6494   *      vd      - pointer to structure containing the vDisk info
6494 6495   *      dtype   - return the driver type of the device
6495 6496   *
6496 6497   * Return Value
6497 6498   *      0       - success
6498 6499   *      != 0    - some other non-zero return value from ldi(9F) functions
6499 6500   */
6500 6501  static int
6501 6502  vd_identify_dev(vd_t *vd, int *dtype)
6502 6503  {
6503 6504          int status, i;
6504 6505          char *device_path = vd->device_path;
6505 6506          char *drv_name;
6506 6507          int drv_type;
6507 6508          vds_t *vds = vd->vds;
6508 6509  
6509 6510          status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
6510 6511          if (status != 0) {
6511 6512                  PR0("Failed to open (%s) = errno %d", device_path, status);
6512 6513                  return (status);
6513 6514          }
6514 6515  
6515 6516          /* Get device number of backing device */
6516 6517          if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
6517 6518                  PRN("ldi_get_dev() returned errno %d for %s",
6518 6519                      status, device_path);
6519 6520                  return (status);
6520 6521          }
6521 6522  
6522 6523          /*
6523 6524           * We start by looking if the driver is in the list from vds.conf
6524 6525           * so that we can override the built-in list using vds.conf.
6525 6526           */
6526 6527          drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
6527 6528          drv_type = VD_DRIVER_UNKNOWN;
6528 6529  
6529 6530          /* check vds.conf list */
6530 6531          for (i = 0; i < vds->num_drivers; i++) {
6531 6532                  if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
6532 6533                          /* ignore invalid entries */
6533 6534                          continue;
6534 6535                  }
6535 6536                  if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
6536 6537                          drv_type = vds->driver_types[i].type;
6537 6538                          goto done;
6538 6539                  }
6539 6540          }
6540 6541  
6541 6542          /* check built-in list */
6542 6543          for (i = 0; i < VDS_NUM_DRIVERS; i++) {
6543 6544                  if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
6544 6545                          drv_type = vds_driver_types[i].type;
6545 6546                          goto done;
6546 6547                  }
6547 6548          }
6548 6549  
6549 6550  done:
6550 6551          PR0("driver %s identified as %s", drv_name,
6551 6552              (drv_type == VD_DRIVER_DISK)? "DISK" :
6552 6553              (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
6553 6554  
6554 6555          if (strcmp(drv_name, "zfs") == 0)
6555 6556                  vd->zvol = B_TRUE;
6556 6557  
6557 6558          *dtype = drv_type;
6558 6559  
6559 6560          return (0);
6560 6561  }
6561 6562  
6562 6563  static int
6563 6564  vd_setup_vd(vd_t *vd)
6564 6565  {
6565 6566          int             status, drv_type, pseudo;
6566 6567          dev_info_t      *dip;
6567 6568          vnode_t         *vnp;
6568 6569          char            *path = vd->device_path;
6569 6570          char            tq_name[TASKQ_NAMELEN];
6570 6571  
6571 6572          /* make sure the vdisk backend is valid */
6572 6573          if ((status = lookupname(path, UIO_SYSSPACE,
6573 6574              FOLLOW, NULLVPP, &vnp)) != 0) {
6574 6575                  PR0("Cannot lookup %s errno %d", path, status);
6575 6576                  goto done;
6576 6577          }
6577 6578  
6578 6579          switch (vnp->v_type) {
6579 6580          case VREG:
6580 6581                  /*
6581 6582                   * Backend is a file so it is exported as a full disk or as a
6582 6583                   * single slice disk using the vnode interface.
6583 6584                   */
6584 6585                  VN_RELE(vnp);
6585 6586                  vd->volume = B_FALSE;
6586 6587                  status = vd_setup_backend_vnode(vd);
6587 6588                  break;
6588 6589  
6589 6590          case VBLK:
6590 6591          case VCHR:
6591 6592                  /*
6592 6593                   * Backend is a device. In that case, it is exported using the
6593 6594                   * LDI interface, and it is exported either as a single-slice
6594 6595                   * disk or as a full disk depending on the "slice" option and
6595 6596                   * on the type of device.
6596 6597                   *
6597 6598                   * - A volume device is exported as a single-slice disk if the
6598 6599                   *   "slice" is specified, otherwise it is exported as a full
6599 6600                   *   disk.
6600 6601                   *
6601 6602                   * - A disk slice (different from slice 2) is always exported
6602 6603                   *   as a single slice disk using the LDI interface.
6603 6604                   *
6604 6605                   * - The slice 2 of a disk is exported as a single slice disk
6605 6606                   *   if the "slice" option is specified, otherwise the entire
6606 6607                   *   disk will be exported.
6607 6608                   *
6608 6609                   * - The slice of a CD or DVD is exported as single slice disk
6609 6610                   *   if the "slice" option is specified, otherwise the entire
6610 6611                   *   disk will be exported.
6611 6612                   */
6612 6613  
6613 6614                  /* check if this is a pseudo device */
6614 6615                  if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
6615 6616                      dev_to_instance(vnp->v_rdev), 0))  == NULL) {
6616 6617                          PRN("%s is no longer accessible", path);
6617 6618                          VN_RELE(vnp);
6618 6619                          status = EIO;
6619 6620                          break;
6620 6621                  }
6621 6622                  pseudo = is_pseudo_device(dip);
6622 6623                  ddi_release_devi(dip);
6623 6624                  VN_RELE(vnp);
6624 6625  
6625 6626                  if ((status = vd_identify_dev(vd, &drv_type)) != 0) {
6626 6627                          if (status != ENODEV && status != ENXIO &&
6627 6628                              status != ENOENT && status != EROFS) {
6628 6629                                  PRN("%s identification failed with status %d",
6629 6630                                      path, status);
6630 6631                                  status = EIO;
6631 6632                          }
6632 6633                          break;
6633 6634                  }
6634 6635  
6635 6636                  /*
6636 6637                   * If the driver hasn't been identified then we consider that
6637 6638                   * pseudo devices are volumes and other devices are disks.
6638 6639                   */
6639 6640                  if (drv_type == VD_DRIVER_VOLUME ||
6640 6641                      (drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
6641 6642                          vd->volume = B_TRUE;
6642 6643                  }
6643 6644  
6644 6645                  /*
6645 6646                   * If this is a volume device then its usage depends if the
6646 6647                   * "slice" option is set or not. If the "slice" option is set
6647 6648                   * then the volume device will be exported as a single slice,
6648 6649                   * otherwise it will be exported as a full disk.
6649 6650                   *
6650 6651                   * For backward compatibility, if vd_volume_force_slice is set
6651 6652                   * then we always export volume devices as slices.
6652 6653                   */
6653 6654                  if (vd->volume && vd_volume_force_slice) {
6654 6655                          vd->vdisk_type = VD_DISK_TYPE_SLICE;
6655 6656                          vd->nslices = 1;
6656 6657                  }
6657 6658  
6658 6659                  status = vd_setup_backend_ldi(vd);
6659 6660                  break;
6660 6661  
6661 6662          default:
6662 6663                  PRN("Unsupported vdisk backend %s", path);
6663 6664                  VN_RELE(vnp);
6664 6665                  status = EBADF;
6665 6666          }
6666 6667  
6667 6668  done:
6668 6669          if (status != 0) {
6669 6670                  /*
6670 6671                   * If the error is retryable print an error message only
6671 6672                   * during the first try.
6672 6673                   */
6673 6674                  if (status == ENXIO || status == ENODEV ||
6674 6675                      status == ENOENT || status == EROFS) {
6675 6676                          if (!(vd->initialized & VD_SETUP_ERROR) &&
6676 6677                              !(DEVI_IS_ATTACHING(vd->vds->dip))) {
6677 6678                                  PRN("%s is currently inaccessible (error %d)",
6678 6679                                      path, status);
6679 6680                          }
6680 6681                          status = EAGAIN;
6681 6682                  } else {
6682 6683                          PRN("%s can not be exported as a virtual disk "
6683 6684                              "(error %d)", path, status);
6684 6685                  }
6685 6686                  vd->initialized |= VD_SETUP_ERROR;
6686 6687  
6687 6688          } else if (vd->initialized & VD_SETUP_ERROR) {
6688 6689                  /* print a message only if we previously had an error */
6689 6690                  PRN("%s is now online", path);
6690 6691                  vd->initialized &= ~VD_SETUP_ERROR;
6691 6692          }
6692 6693  
6693 6694          /*
6694 6695           * For file or ZFS volume we also need an I/O queue.
6695 6696           *
6696 6697           * The I/O task queue is initialized here and not in vds_do_init_vd()
6697 6698           * (as the start and completion queues) because vd_setup_vd() will be
6698 6699           * call again if the backend is not available, and we need to know if
6699 6700           * the backend is a ZFS volume or a file.
6700 6701           */
6701 6702          if ((vd->file || vd->zvol) && vd->ioq == NULL) {
6702 6703                  (void) snprintf(tq_name, sizeof (tq_name), "vd_ioq%lu", vd->id);
6703 6704  
6704 6705                  if ((vd->ioq = ddi_taskq_create(vd->vds->dip, tq_name,
6705 6706                      vd_ioq_nthreads, TASKQ_DEFAULTPRI, 0)) == NULL) {
6706 6707                          PRN("Could not create io task queue");
6707 6708                          return (EIO);
6708 6709                  }
6709 6710          }
6710 6711  
6711 6712          return (status);
6712 6713  }
6713 6714  
6714 6715  static int
6715 6716  vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6716 6717      uint64_t ldc_id, vd_t **vdp)
6717 6718  {
6718 6719          char                    tq_name[TASKQ_NAMELEN];
6719 6720          int                     status;
6720 6721          ddi_iblock_cookie_t     iblock = NULL;
6721 6722          ldc_attr_t              ldc_attr;
6722 6723          vd_t                    *vd;
6723 6724  
6724 6725  
6725 6726          ASSERT(vds != NULL);
6726 6727          ASSERT(device_path != NULL);
6727 6728          ASSERT(vdp != NULL);
6728 6729          PR0("Adding vdisk for %s", device_path);
6729 6730  
6730 6731          if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
6731 6732                  PRN("No memory for virtual disk");
6732 6733                  return (EAGAIN);
6733 6734          }
6734 6735          *vdp = vd;      /* assign here so vds_destroy_vd() can cleanup later */
6735 6736          vd->id = id;
6736 6737          vd->vds = vds;
6737 6738          (void) strncpy(vd->device_path, device_path, MAXPATHLEN);
6738 6739  
6739 6740          /* Setup open flags */
6740 6741          vd->open_flags = FREAD;
6741 6742  
6742 6743          if (!(options & VD_OPT_RDONLY))
6743 6744                  vd->open_flags |= FWRITE;
6744 6745  
6745 6746          if (options & VD_OPT_EXCLUSIVE)
6746 6747                  vd->open_flags |= FEXCL;
6747 6748  
6748 6749          /* Setup disk type */
6749 6750          if (options & VD_OPT_SLICE) {
6750 6751                  vd->vdisk_type = VD_DISK_TYPE_SLICE;
6751 6752                  vd->nslices = 1;
6752 6753          } else {
6753 6754                  vd->vdisk_type = VD_DISK_TYPE_DISK;
6754 6755                  vd->nslices = V_NUMPAR;
6755 6756          }
6756 6757  
6757 6758          /* default disk label */
6758 6759          vd->vdisk_label = VD_DISK_LABEL_UNK;
6759 6760  
6760 6761          /* Open vdisk and initialize parameters */
6761 6762          if ((status = vd_setup_vd(vd)) == 0) {
6762 6763                  vd->initialized |= VD_DISK_READY;
6763 6764  
6764 6765                  ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
6765 6766                  PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
6766 6767                      ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
6767 6768                      (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
6768 6769                      vd->nslices);
6769 6770          } else {
6770 6771                  if (status != EAGAIN)
6771 6772                          return (status);
6772 6773          }
6773 6774  
6774 6775          /* Initialize locking */
6775 6776          if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
6776 6777              &iblock) != DDI_SUCCESS) {
6777 6778                  PRN("Could not get iblock cookie.");
6778 6779                  return (EIO);
6779 6780          }
6780 6781  
6781 6782          mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
6782 6783          vd->initialized |= VD_LOCKING;
6783 6784  
6784 6785  
6785 6786          /* Create start and completion task queues for the vdisk */
6786 6787          (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
6787 6788          PR1("tq_name = %s", tq_name);
6788 6789          if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
6789 6790              TASKQ_DEFAULTPRI, 0)) == NULL) {
6790 6791                  PRN("Could not create task queue");
6791 6792                  return (EIO);
6792 6793          }
6793 6794          (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
6794 6795          PR1("tq_name = %s", tq_name);
6795 6796          if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
6796 6797              TASKQ_DEFAULTPRI, 0)) == NULL) {
6797 6798                  PRN("Could not create task queue");
6798 6799                  return (EIO);
6799 6800          }
6800 6801  
6801 6802          /* Allocate the staging buffer */
6802 6803          vd->max_msglen = sizeof (vio_msg_t);    /* baseline vio message size */
6803 6804          vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
6804 6805  
6805 6806          vd->enabled = 1;        /* before callback can dispatch to startq */
6806 6807  
6807 6808  
6808 6809          /* Bring up LDC */
6809 6810          ldc_attr.devclass       = LDC_DEV_BLK_SVC;
6810 6811          ldc_attr.instance       = ddi_get_instance(vds->dip);
6811 6812          ldc_attr.mode           = LDC_MODE_UNRELIABLE;
6812 6813          ldc_attr.mtu            = VD_LDC_MTU;
6813 6814          if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
6814 6815                  PRN("Could not initialize LDC channel %lx, "
6815 6816                      "init failed with error %d", ldc_id, status);
6816 6817                  return (status);
6817 6818          }
6818 6819          vd->initialized |= VD_LDC;
6819 6820  
6820 6821          if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
6821 6822              (caddr_t)vd)) != 0) {
6822 6823                  PRN("Could not initialize LDC channel %lu,"
6823 6824                      "reg_callback failed with error %d", ldc_id, status);
6824 6825                  return (status);
6825 6826          }
6826 6827  
6827 6828          if ((status = ldc_open(vd->ldc_handle)) != 0) {
6828 6829                  PRN("Could not initialize LDC channel %lu,"
6829 6830                      "open failed with error %d", ldc_id, status);
6830 6831                  return (status);
6831 6832          }
6832 6833  
6833 6834          if ((status = ldc_up(vd->ldc_handle)) != 0) {
6834 6835                  PR0("ldc_up() returned errno %d", status);
6835 6836          }
6836 6837  
6837 6838          /* Allocate the inband task memory handle */
6838 6839          status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
6839 6840          if (status) {
6840 6841                  PRN("Could not initialize LDC channel %lu,"
6841 6842                      "alloc_handle failed with error %d", ldc_id, status);
6842 6843                  return (ENXIO);
6843 6844          }
6844 6845  
6845 6846          /* Add the successfully-initialized vdisk to the server's table */
6846 6847          if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
6847 6848                  PRN("Error adding vdisk ID %lu to table", id);
6848 6849                  return (EIO);
6849 6850          }
6850 6851  
6851 6852          /* store initial state */
6852 6853          vd->state = VD_STATE_INIT;
6853 6854  
6854 6855          return (0);
6855 6856  }
6856 6857  
6857 6858  static void
6858 6859  vd_free_dring_task(vd_t *vdp)
6859 6860  {
6860 6861          if (vdp->dring_task != NULL) {
6861 6862                  ASSERT(vdp->dring_len != 0);
6862 6863                  /* Free all dring_task memory handles */
6863 6864                  for (int i = 0; i < vdp->dring_len; i++) {
6864 6865                          (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
6865 6866                          kmem_free(vdp->dring_task[i].request,
6866 6867                              (vdp->descriptor_size -
6867 6868                              sizeof (vio_dring_entry_hdr_t)));
6868 6869                          vdp->dring_task[i].request = NULL;
6869 6870                          kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
6870 6871                          vdp->dring_task[i].msg = NULL;
6871 6872                  }
6872 6873                  kmem_free(vdp->dring_task,
6873 6874                      (sizeof (*vdp->dring_task)) * vdp->dring_len);
6874 6875                  vdp->dring_task = NULL;
6875 6876          }
6876 6877  
6877 6878          if (vdp->write_queue != NULL) {
6878 6879                  kmem_free(vdp->write_queue, sizeof (buf_t *) * vdp->dring_len);
6879 6880                  vdp->write_queue = NULL;
6880 6881          }
6881 6882  }
6882 6883  
6883 6884  /*
6884 6885   * Destroy the state associated with a virtual disk
6885 6886   */
6886 6887  static void
6887 6888  vds_destroy_vd(void *arg)
6888 6889  {
6889 6890          vd_t    *vd = (vd_t *)arg;
6890 6891          int     retry = 0, rv;
6891 6892  
6892 6893          if (vd == NULL)
6893 6894                  return;
6894 6895  
6895 6896          PR0("Destroying vdisk state");
6896 6897  
6897 6898          /* Disable queuing requests for the vdisk */
6898 6899          if (vd->initialized & VD_LOCKING) {
6899 6900                  mutex_enter(&vd->lock);
6900 6901                  vd->enabled = 0;
6901 6902                  mutex_exit(&vd->lock);
6902 6903          }
6903 6904  
6904 6905          /* Drain and destroy start queue (*before* destroying ioq) */
6905 6906          if (vd->startq != NULL)
6906 6907                  ddi_taskq_destroy(vd->startq);  /* waits for queued tasks */
6907 6908  
6908 6909          /* Drain and destroy the I/O queue (*before* destroying completionq) */
6909 6910          if (vd->ioq != NULL)
6910 6911                  ddi_taskq_destroy(vd->ioq);
6911 6912  
6912 6913          /* Drain and destroy completion queue (*before* shutting down LDC) */
6913 6914          if (vd->completionq != NULL)
6914 6915                  ddi_taskq_destroy(vd->completionq);     /* waits for tasks */
6915 6916  
6916 6917          vd_free_dring_task(vd);
6917 6918  
6918 6919          /* Free the inband task memory handle */
6919 6920          (void) ldc_mem_free_handle(vd->inband_task.mhdl);
6920 6921  
6921 6922          /* Shut down LDC */
6922 6923          if (vd->initialized & VD_LDC) {
6923 6924                  /* unmap the dring */
6924 6925                  if (vd->initialized & VD_DRING)
6925 6926                          (void) ldc_mem_dring_unmap(vd->dring_handle);
6926 6927  
6927 6928                  /* close LDC channel - retry on EAGAIN */
6928 6929                  while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
6929 6930                          if (++retry > vds_ldc_retries) {
6930 6931                                  PR0("Timed out closing channel");
6931 6932                                  break;
6932 6933                          }
6933 6934                          drv_usecwait(vds_ldc_delay);
6934 6935                  }
6935 6936                  if (rv == 0) {
6936 6937                          (void) ldc_unreg_callback(vd->ldc_handle);
6937 6938                          (void) ldc_fini(vd->ldc_handle);
6938 6939                  } else {
6939 6940                          /*
6940 6941                           * Closing the LDC channel has failed. Ideally we should
6941 6942                           * fail here but there is no Zeus level infrastructure
6942 6943                           * to handle this. The MD has already been changed and
6943 6944                           * we have to do the close. So we try to do as much
6944 6945                           * clean up as we can.
6945 6946                           */
6946 6947                          (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
6947 6948                          while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
6948 6949                                  drv_usecwait(vds_ldc_delay);
6949 6950                  }
6950 6951          }
6951 6952  
6952 6953          /* Free the staging buffer for msgs */
6953 6954          if (vd->vio_msgp != NULL) {
6954 6955                  kmem_free(vd->vio_msgp, vd->max_msglen);
6955 6956                  vd->vio_msgp = NULL;
6956 6957          }
6957 6958  
6958 6959          /* Free the inband message buffer */
6959 6960          if (vd->inband_task.msg != NULL) {
6960 6961                  kmem_free(vd->inband_task.msg, vd->max_msglen);
6961 6962                  vd->inband_task.msg = NULL;
6962 6963          }
6963 6964  
6964 6965          if (vd->file) {
6965 6966                  /* Close file */
6966 6967                  (void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
6967 6968                      0, kcred, NULL);
6968 6969                  VN_RELE(vd->file_vnode);
6969 6970          } else {
6970 6971                  /* Close any open backing-device slices */
6971 6972                  for (uint_t slice = 0; slice < V_NUMPAR; slice++) {
6972 6973                          if (vd->ldi_handle[slice] != NULL) {
6973 6974                                  PR0("Closing slice %u", slice);
6974 6975                                  (void) ldi_close(vd->ldi_handle[slice],
6975 6976                                      vd->open_flags, kcred);
6976 6977                          }
6977 6978                  }
6978 6979          }
6979 6980  
6980 6981          /* Free disk image devid */
6981 6982          if (vd->dskimg_devid != NULL)
6982 6983                  ddi_devid_free(vd->dskimg_devid);
6983 6984  
6984 6985          /* Free any fake label */
6985 6986          if (vd->flabel) {
6986 6987                  kmem_free(vd->flabel, vd->flabel_size);
6987 6988                  vd->flabel = NULL;
6988 6989                  vd->flabel_size = 0;
6989 6990          }
6990 6991  
6991 6992          /* Free lock */
6992 6993          if (vd->initialized & VD_LOCKING)
6993 6994                  mutex_destroy(&vd->lock);
6994 6995  
6995 6996          /* Finally, free the vdisk structure itself */
6996 6997          kmem_free(vd, sizeof (*vd));
6997 6998  }
6998 6999  
6999 7000  static int
7000 7001  vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
7001 7002      uint64_t ldc_id)
7002 7003  {
7003 7004          int     status;
7004 7005          vd_t    *vd = NULL;
7005 7006  
7006 7007  
7007 7008          if ((status = vds_do_init_vd(vds, id, device_path, options,
7008 7009              ldc_id, &vd)) != 0)
7009 7010                  vds_destroy_vd(vd);
7010 7011  
7011 7012          return (status);
7012 7013  }
7013 7014  
7014 7015  static int
7015 7016  vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
7016 7017      uint64_t *ldc_id)
7017 7018  {
7018 7019          int     num_channels;
7019 7020  
7020 7021  
7021 7022          /* Look for channel endpoint child(ren) of the vdisk MD node */
7022 7023          if ((num_channels = md_scan_dag(md, vd_node,
7023 7024              md_find_name(md, VD_CHANNEL_ENDPOINT),
7024 7025              md_find_name(md, "fwd"), channel)) <= 0) {
7025 7026                  PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
7026 7027                  return (-1);
7027 7028          }
7028 7029  
7029 7030          /* Get the "id" value for the first channel endpoint node */
7030 7031          if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
7031 7032                  PRN("No \"%s\" property found for \"%s\" of vdisk",
7032 7033                      VD_ID_PROP, VD_CHANNEL_ENDPOINT);
7033 7034                  return (-1);
7034 7035          }
7035 7036  
7036 7037          if (num_channels > 1) {
7037 7038                  PRN("Using ID of first of multiple channels for this vdisk");
7038 7039          }
7039 7040  
7040 7041          return (0);
7041 7042  }
7042 7043  
7043 7044  static int
7044 7045  vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
7045 7046  {
7046 7047          int             num_nodes, status;
7047 7048          size_t          size;
7048 7049          mde_cookie_t    *channel;
7049 7050  
7050 7051  
7051 7052          if ((num_nodes = md_node_count(md)) <= 0) {
7052 7053                  PRN("Invalid node count in Machine Description subtree");
7053 7054                  return (-1);
7054 7055          }
7055 7056          size = num_nodes*(sizeof (*channel));
7056 7057          channel = kmem_zalloc(size, KM_SLEEP);
7057 7058          status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
7058 7059          kmem_free(channel, size);
7059 7060  
7060 7061          return (status);
7061 7062  }
7062 7063  
7063 7064  /*
7064 7065   * Function:
7065 7066   *      vds_get_options
7066 7067   *
7067 7068   * Description:
7068 7069   *      Parse the options of a vds node. Options are defined as an array
7069 7070   *      of strings in the vds-block-device-opts property of the vds node
7070 7071   *      in the machine description. Options are returned as a bitmask. The
7071 7072   *      mapping between the bitmask options and the options strings from the
7072 7073   *      machine description is defined in the vd_bdev_options[] array.
7073 7074   *
7074 7075   *      The vds-block-device-opts property is optional. If a vds has no such
7075 7076   *      property then no option is defined.
7076 7077   *
7077 7078   * Parameters:
7078 7079   *      md              - machine description.
7079 7080   *      vd_node         - vds node in the machine description for which
7080 7081   *                        options have to be parsed.
7081 7082   *      options         - the returned options.
7082 7083   *
7083 7084   * Return Code:
7084 7085   *      none.
7085 7086   */
7086 7087  static void
7087 7088  vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
7088 7089  {
7089 7090          char    *optstr, *opt;
7090 7091          int     len, n, i;
7091 7092  
7092 7093          *options = 0;
7093 7094  
7094 7095          if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
7095 7096              (uint8_t **)&optstr, &len) != 0) {
7096 7097                  PR0("No options found");
7097 7098                  return;
7098 7099          }
7099 7100  
7100 7101          /* parse options */
7101 7102          opt = optstr;
7102 7103          n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
7103 7104  
7104 7105          while (opt < optstr + len) {
7105 7106                  for (i = 0; i < n; i++) {
7106 7107                          if (strncmp(vd_bdev_options[i].vdo_name,
7107 7108                              opt, VD_OPTION_NLEN) == 0) {
7108 7109                                  *options |= vd_bdev_options[i].vdo_value;
7109 7110                                  break;
7110 7111                          }
7111 7112                  }
7112 7113  
7113 7114                  if (i < n) {
7114 7115                          PR0("option: %s", opt);
7115 7116                  } else {
7116 7117                          PRN("option %s is unknown or unsupported", opt);
7117 7118                  }
7118 7119  
7119 7120                  opt += strlen(opt) + 1;
7120 7121          }
7121 7122  }
7122 7123  
7123 7124  static void
7124 7125  vds_driver_types_free(vds_t *vds)
7125 7126  {
7126 7127          if (vds->driver_types != NULL) {
7127 7128                  kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
7128 7129                      vds->num_drivers);
7129 7130                  vds->driver_types = NULL;
7130 7131                  vds->num_drivers = 0;
7131 7132          }
7132 7133  }
7133 7134  
7134 7135  /*
7135 7136   * Update the driver type list with information from vds.conf.
7136 7137   */
7137 7138  static void
7138 7139  vds_driver_types_update(vds_t *vds)
7139 7140  {
7140 7141          char **list, *s;
7141 7142          uint_t i, num, count = 0, len;
7142 7143  
7143 7144          if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
7144 7145              DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
7145 7146              DDI_PROP_SUCCESS)
7146 7147                  return;
7147 7148  
7148 7149          /*
7149 7150           * We create a driver_types list with as many as entries as there
7150 7151           * is in the driver-type-list from vds.conf. However only valid
7151 7152           * entries will be populated (i.e. entries from driver-type-list
7152 7153           * with a valid syntax). Invalid entries will be left blank so
7153 7154           * they will have no driver name and the driver type will be
7154 7155           * VD_DRIVER_UNKNOWN (= 0).
7155 7156           */
7156 7157          vds->num_drivers = num;
7157 7158          vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
7158 7159              KM_SLEEP);
7159 7160  
7160 7161          for (i = 0; i < num; i++) {
7161 7162  
7162 7163                  s = strchr(list[i], ':');
7163 7164  
7164 7165                  if (s == NULL) {
7165 7166                          PRN("vds.conf: driver-type-list, entry %d (%s): "
7166 7167                              "a colon is expected in the entry",
7167 7168                              i, list[i]);
7168 7169                          continue;
7169 7170                  }
7170 7171  
7171 7172                  len = (uintptr_t)s - (uintptr_t)list[i];
7172 7173  
7173 7174                  if (len == 0) {
7174 7175                          PRN("vds.conf: driver-type-list, entry %d (%s): "
7175 7176                              "the driver name is empty",
7176 7177                              i, list[i]);
7177 7178                          continue;
7178 7179                  }
7179 7180  
7180 7181                  if (len >= VD_DRIVER_NAME_LEN) {
7181 7182                          PRN("vds.conf: driver-type-list, entry %d (%s): "
7182 7183                              "the driver name is too long",
7183 7184                              i, list[i]);
7184 7185                          continue;
7185 7186                  }
7186 7187  
7187 7188                  if (strcmp(s + 1, "disk") == 0) {
7188 7189  
7189 7190                          vds->driver_types[i].type = VD_DRIVER_DISK;
7190 7191  
7191 7192                  } else if (strcmp(s + 1, "volume") == 0) {
7192 7193  
7193 7194                          vds->driver_types[i].type = VD_DRIVER_VOLUME;
7194 7195  
7195 7196                  } else {
7196 7197                          PRN("vds.conf: driver-type-list, entry %d (%s): "
7197 7198                              "the driver type is invalid",
7198 7199                              i, list[i]);
7199 7200                          continue;
7200 7201                  }
7201 7202  
7202 7203                  (void) strncpy(vds->driver_types[i].name, list[i], len);
7203 7204  
7204 7205                  PR0("driver-type-list, entry %d (%s) added",
7205 7206                      i, list[i]);
7206 7207  
7207 7208                  count++;
7208 7209          }
7209 7210  
7210 7211          ddi_prop_free(list);
7211 7212  
7212 7213          if (count == 0) {
7213 7214                  /* nothing was added, clean up */
7214 7215                  vds_driver_types_free(vds);
7215 7216          }
7216 7217  }
7217 7218  
7218 7219  static void
7219 7220  vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
7220 7221  {
7221 7222          char            *device_path = NULL;
7222 7223          uint64_t        id = 0, ldc_id = 0, options = 0;
7223 7224  
7224 7225          if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
7225 7226                  PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
7226 7227                  return;
7227 7228          }
7228 7229          PR0("Adding vdisk ID %lu", id);
7229 7230          if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
7230 7231              &device_path) != 0) {
7231 7232                  PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
7232 7233                  return;
7233 7234          }
7234 7235  
7235 7236          vds_get_options(md, vd_node, &options);
7236 7237  
7237 7238          if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
7238 7239                  PRN("Error getting LDC ID for vdisk %lu", id);
7239 7240                  return;
7240 7241          }
7241 7242  
7242 7243          if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
7243 7244                  PRN("Failed to add vdisk ID %lu", id);
7244 7245                  if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
7245 7246                          PRN("No vDisk entry found for vdisk ID %lu", id);
7246 7247                  return;
7247 7248          }
7248 7249  }
7249 7250  
7250 7251  static void
7251 7252  vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
7252 7253  {
7253 7254          uint64_t        id = 0;
7254 7255  
7255 7256  
7256 7257          if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
7257 7258                  PRN("Unable to get \"%s\" property from vdisk's MD node",
7258 7259                      VD_ID_PROP);
7259 7260                  return;
7260 7261          }
7261 7262          PR0("Removing vdisk ID %lu", id);
7262 7263          if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
7263 7264                  PRN("No vdisk entry found for vdisk ID %lu", id);
7264 7265  }
7265 7266  
7266 7267  static void
7267 7268  vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
7268 7269      md_t *curr_md, mde_cookie_t curr_vd_node)
7269 7270  {
7270 7271          char            *curr_dev, *prev_dev;
7271 7272          uint64_t        curr_id = 0, curr_ldc_id = 0, curr_options = 0;
7272 7273          uint64_t        prev_id = 0, prev_ldc_id = 0, prev_options = 0;
7273 7274          size_t          len;
7274 7275  
7275 7276  
7276 7277          /* Validate that vdisk ID has not changed */
7277 7278          if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
7278 7279                  PRN("Error getting previous vdisk \"%s\" property",
7279 7280                      VD_ID_PROP);
7280 7281                  return;
7281 7282          }
7282 7283          if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
7283 7284                  PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
7284 7285                  return;
7285 7286          }
7286 7287          if (curr_id != prev_id) {
7287 7288                  PRN("Not changing vdisk:  ID changed from %lu to %lu",
7288 7289                      prev_id, curr_id);
7289 7290                  return;
7290 7291          }
7291 7292  
7292 7293          /* Validate that LDC ID has not changed */
7293 7294          if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
7294 7295                  PRN("Error getting LDC ID for vdisk %lu", prev_id);
7295 7296                  return;
7296 7297          }
7297 7298  
7298 7299          if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
7299 7300                  PRN("Error getting LDC ID for vdisk %lu", curr_id);
7300 7301                  return;
7301 7302          }
7302 7303          if (curr_ldc_id != prev_ldc_id) {
7303 7304                  _NOTE(NOTREACHED);      /* lint is confused */
7304 7305                  PRN("Not changing vdisk:  "
7305 7306                      "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
7306 7307                  return;
7307 7308          }
7308 7309  
7309 7310          /* Determine whether device path has changed */
7310 7311          if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
7311 7312              &prev_dev) != 0) {
7312 7313                  PRN("Error getting previous vdisk \"%s\"",
7313 7314                      VD_BLOCK_DEVICE_PROP);
7314 7315                  return;
7315 7316          }
7316 7317          if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
7317 7318              &curr_dev) != 0) {
7318 7319                  PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
7319 7320                  return;
7320 7321          }
7321 7322          if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
7322 7323              (strncmp(curr_dev, prev_dev, len) == 0))
7323 7324                  return; /* no relevant (supported) change */
7324 7325  
7325 7326          /* Validate that options have not changed */
7326 7327          vds_get_options(prev_md, prev_vd_node, &prev_options);
7327 7328          vds_get_options(curr_md, curr_vd_node, &curr_options);
7328 7329          if (prev_options != curr_options) {
7329 7330                  PRN("Not changing vdisk:  options changed from %lx to %lx",
7330 7331                      prev_options, curr_options);
7331 7332                  return;
7332 7333          }
7333 7334  
7334 7335          PR0("Changing vdisk ID %lu", prev_id);
7335 7336  
7336 7337          /* Remove old state, which will close vdisk and reset */
7337 7338          if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
7338 7339                  PRN("No entry found for vdisk ID %lu", prev_id);
7339 7340  
7340 7341          /* Re-initialize vdisk with new state */
7341 7342          if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
7342 7343              curr_ldc_id) != 0) {
7343 7344                  PRN("Failed to change vdisk ID %lu", curr_id);
7344 7345                  return;
7345 7346          }
7346 7347  }
7347 7348  
7348 7349  static int
7349 7350  vds_process_md(void *arg, mdeg_result_t *md)
7350 7351  {
7351 7352          int     i;
7352 7353          vds_t   *vds = arg;
7353 7354  
7354 7355  
7355 7356          if (md == NULL)
7356 7357                  return (MDEG_FAILURE);
7357 7358          ASSERT(vds != NULL);
7358 7359  
7359 7360          for (i = 0; i < md->removed.nelem; i++)
7360 7361                  vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
7361 7362          for (i = 0; i < md->match_curr.nelem; i++)
7362 7363                  vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
7363 7364                      md->match_curr.mdp, md->match_curr.mdep[i]);
7364 7365          for (i = 0; i < md->added.nelem; i++)
7365 7366                  vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
7366 7367  
7367 7368          return (MDEG_SUCCESS);
7368 7369  }
7369 7370  
7370 7371  
7371 7372  static int
7372 7373  vds_do_attach(dev_info_t *dip)
7373 7374  {
7374 7375          int                     status, sz;
7375 7376          int                     cfg_handle;
7376 7377          minor_t                 instance = ddi_get_instance(dip);
7377 7378          vds_t                   *vds;
7378 7379          mdeg_prop_spec_t        *pspecp;
7379 7380          mdeg_node_spec_t        *ispecp;
7380 7381  
7381 7382          /*
7382 7383           * The "cfg-handle" property of a vds node in an MD contains the MD's
7383 7384           * notion of "instance", or unique identifier, for that node; OBP
7384 7385           * stores the value of the "cfg-handle" MD property as the value of
7385 7386           * the "reg" property on the node in the device tree it builds from
7386 7387           * the MD and passes to Solaris.  Thus, we look up the devinfo node's
7387 7388           * "reg" property value to uniquely identify this device instance when
7388 7389           * registering with the MD event-generation framework.  If the "reg"
7389 7390           * property cannot be found, the device tree state is presumably so
7390 7391           * broken that there is no point in continuing.
7391 7392           */
7392 7393          if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7393 7394              VD_REG_PROP)) {
7394 7395                  PRN("vds \"%s\" property does not exist", VD_REG_PROP);
7395 7396                  return (DDI_FAILURE);
7396 7397          }
7397 7398  
7398 7399          /* Get the MD instance for later MDEG registration */
7399 7400          cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7400 7401              VD_REG_PROP, -1);
7401 7402  
7402 7403          if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
7403 7404                  PRN("Could not allocate state for instance %u", instance);
7404 7405                  return (DDI_FAILURE);
7405 7406          }
7406 7407  
7407 7408          if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
7408 7409                  PRN("Could not get state for instance %u", instance);
7409 7410                  ddi_soft_state_free(vds_state, instance);
7410 7411                  return (DDI_FAILURE);
7411 7412          }
7412 7413  
7413 7414          vds->dip        = dip;
7414 7415          vds->vd_table   = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
7415 7416              vds_destroy_vd, sizeof (void *));
7416 7417  
7417 7418          ASSERT(vds->vd_table != NULL);
7418 7419  
7419 7420          if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
7420 7421                  PRN("ldi_ident_from_dip() returned errno %d", status);
7421 7422                  return (DDI_FAILURE);
7422 7423          }
7423 7424          vds->initialized |= VDS_LDI;
7424 7425  
7425 7426          /* Register for MD updates */
7426 7427          sz = sizeof (vds_prop_template);
7427 7428          pspecp = kmem_alloc(sz, KM_SLEEP);
7428 7429          bcopy(vds_prop_template, pspecp, sz);
7429 7430  
7430 7431          VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
7431 7432  
7432 7433          /* initialize the complete prop spec structure */
7433 7434          ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
7434 7435          ispecp->namep = "virtual-device";
7435 7436          ispecp->specp = pspecp;
7436 7437  
7437 7438          if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
7438 7439              &vds->mdeg) != MDEG_SUCCESS) {
7439 7440                  PRN("Unable to register for MD updates");
7440 7441                  kmem_free(ispecp, sizeof (mdeg_node_spec_t));
7441 7442                  kmem_free(pspecp, sz);
7442 7443                  return (DDI_FAILURE);
7443 7444          }
7444 7445  
7445 7446          vds->ispecp = ispecp;
7446 7447          vds->initialized |= VDS_MDEG;
7447 7448  
7448 7449          /* Prevent auto-detaching so driver is available whenever MD changes */
7449 7450          if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
7450 7451              DDI_PROP_SUCCESS) {
7451 7452                  PRN("failed to set \"%s\" property for instance %u",
7452 7453                      DDI_NO_AUTODETACH, instance);
7453 7454          }
7454 7455  
7455 7456          /* read any user defined driver types from conf file and update list */
7456 7457          vds_driver_types_update(vds);
7457 7458  
7458 7459          ddi_report_dev(dip);
7459 7460          return (DDI_SUCCESS);
7460 7461  }
7461 7462  
7462 7463  static int
7463 7464  vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
7464 7465  {
7465 7466          int     status;
7466 7467  
7467 7468          switch (cmd) {
7468 7469          case DDI_ATTACH:
7469 7470                  PR0("Attaching");
7470 7471                  if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
7471 7472                          (void) vds_detach(dip, DDI_DETACH);
7472 7473                  return (status);
7473 7474          case DDI_RESUME:
7474 7475                  PR0("No action required for DDI_RESUME");
7475 7476                  return (DDI_SUCCESS);
7476 7477          default:
7477 7478                  return (DDI_FAILURE);
7478 7479          }
7479 7480  }
7480 7481  
7481 7482  static struct dev_ops vds_ops = {
7482 7483          DEVO_REV,       /* devo_rev */
7483 7484          0,              /* devo_refcnt */
7484 7485          ddi_no_info,    /* devo_getinfo */
7485 7486          nulldev,        /* devo_identify */
7486 7487          nulldev,        /* devo_probe */
7487 7488          vds_attach,     /* devo_attach */
7488 7489          vds_detach,     /* devo_detach */
7489 7490          nodev,          /* devo_reset */
7490 7491          NULL,           /* devo_cb_ops */
7491 7492          NULL,           /* devo_bus_ops */
7492 7493          nulldev,        /* devo_power */
7493 7494          ddi_quiesce_not_needed, /* devo_quiesce */
7494 7495  };
7495 7496  
7496 7497  static struct modldrv modldrv = {
7497 7498          &mod_driverops,
7498 7499          "virtual disk server",
7499 7500          &vds_ops,
7500 7501  };
7501 7502  
7502 7503  static struct modlinkage modlinkage = {
7503 7504          MODREV_1,
7504 7505          &modldrv,
7505 7506          NULL
7506 7507  };
7507 7508  
7508 7509  
7509 7510  int
7510 7511  _init(void)
7511 7512  {
7512 7513          int             status;
7513 7514  
7514 7515          if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
7515 7516                  return (status);
7516 7517  
7517 7518          if ((status = mod_install(&modlinkage)) != 0) {
7518 7519                  ddi_soft_state_fini(&vds_state);
7519 7520                  return (status);
7520 7521          }
7521 7522  
7522 7523          return (0);
7523 7524  }
7524 7525  
7525 7526  int
7526 7527  _info(struct modinfo *modinfop)
7527 7528  {
7528 7529          return (mod_info(&modlinkage, modinfop));
7529 7530  }
7530 7531  
7531 7532  int
7532 7533  _fini(void)
7533 7534  {
7534 7535          int     status;
7535 7536  
7536 7537          if ((status = mod_remove(&modlinkage)) != 0)
7537 7538                  return (status);
7538 7539          ddi_soft_state_fini(&vds_state);
7539 7540          return (0);
7540 7541  }
  
    | 
      ↓ open down ↓ | 
    1658 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX