1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2014 Toomas Soome <tsoome@me.com>
26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27 * Copyright (c) 2018, Joyent, Inc.
28 */
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <errno.h>
33 #include <strings.h>
34 #include <unistd.h>
35 #include <smbios.h>
36 #include <uuid/uuid.h>
37 #include <libintl.h>
38 #include <sys/types.h>
39 #include <sys/dkio.h>
40 #include <sys/vtoc.h>
41 #include <sys/mhd.h>
42 #include <sys/param.h>
43 #include <sys/dktp/fdisk.h>
44 #include <sys/efi_partition.h>
45 #include <sys/byteorder.h>
46 #include <sys/ddi.h>
47
48 /*
49 * The original conversion array used simple array index, but since
50 * we do need to take account of VTOC tag numbers from other systems,
51 * we need to provide tag values too, or the array will grow too large.
52 *
53 * Still we will fabricate the missing p_tag values.
54 */
55 static struct uuid_to_ptag {
56 struct uuid uuid;
57 ushort_t p_tag;
58 } conversion_array[] = {
59 { EFI_UNUSED, V_UNASSIGNED },
60 { EFI_BOOT, V_BOOT },
61 { EFI_ROOT, V_ROOT },
62 { EFI_SWAP, V_SWAP },
63 { EFI_USR, V_USR },
64 { EFI_BACKUP, V_BACKUP },
65 { EFI_VAR, V_VAR },
66 { EFI_HOME, V_HOME },
67 { EFI_ALTSCTR, V_ALTSCTR },
68 { EFI_RESERVED, V_RESERVED },
69 { EFI_SYSTEM, V_SYSTEM }, /* V_SYSTEM is 0xc */
70 { EFI_LEGACY_MBR, 0x10 },
71 { EFI_SYMC_PUB, 0x11 },
72 { EFI_SYMC_CDS, 0x12 },
73 { EFI_MSFT_RESV, 0x13 },
74 { EFI_DELL_BASIC, 0x14 },
75 { EFI_DELL_RAID, 0x15 },
76 { EFI_DELL_SWAP, 0x16 },
77 { EFI_DELL_LVM, 0x17 },
78 { EFI_DELL_RESV, 0x19 },
79 { EFI_AAPL_HFS, 0x1a },
80 { EFI_AAPL_UFS, 0x1b },
81 { EFI_AAPL_ZFS, 0x1c },
82 { EFI_AAPL_APFS, 0x1d },
83 { EFI_BIOS_BOOT, V_BIOS_BOOT }, /* V_BIOS_BOOT is 0x18 */
84 { EFI_FREEBSD_BOOT, V_FREEBSD_BOOT },
85 { EFI_FREEBSD_SWAP, V_FREEBSD_SWAP },
86 { EFI_FREEBSD_UFS, V_FREEBSD_UFS },
87 { EFI_FREEBSD_VINUM, V_FREEBSD_VINUM },
88 { EFI_FREEBSD_ZFS, V_FREEBSD_ZFS },
89 { EFI_FREEBSD_NANDFS, V_FREEBSD_NANDFS }
90 };
91
92 /*
93 * Default vtoc information for non-SVr4 partitions
94 */
95 struct dk_map2 default_vtoc_map[NDKMAP] = {
96 { V_ROOT, 0 }, /* a - 0 */
97 { V_SWAP, V_UNMNT }, /* b - 1 */
98 { V_BACKUP, V_UNMNT }, /* c - 2 */
99 { V_UNASSIGNED, 0 }, /* d - 3 */
100 { V_UNASSIGNED, 0 }, /* e - 4 */
101 { V_UNASSIGNED, 0 }, /* f - 5 */
102 { V_USR, 0 }, /* g - 6 */
103 { V_UNASSIGNED, 0 }, /* h - 7 */
104
105 #if defined(_SUNOS_VTOC_16)
106
107 #if defined(i386) || defined(__amd64)
108 { V_BOOT, V_UNMNT }, /* i - 8 */
109 { V_ALTSCTR, 0 }, /* j - 9 */
110
111 #else
112 #error No VTOC format defined.
113 #endif /* defined(i386) */
114
115 { V_UNASSIGNED, 0 }, /* k - 10 */
116 { V_UNASSIGNED, 0 }, /* l - 11 */
117 { V_UNASSIGNED, 0 }, /* m - 12 */
118 { V_UNASSIGNED, 0 }, /* n - 13 */
119 { V_UNASSIGNED, 0 }, /* o - 14 */
120 { V_UNASSIGNED, 0 }, /* p - 15 */
121 #endif /* defined(_SUNOS_VTOC_16) */
122 };
123
124 #ifdef DEBUG
125 int efi_debug = 1;
126 #else
127 int efi_debug = 0;
128 #endif
129
130 #define EFI_FIXES_DB "/usr/share/hwdata/efi.fixes"
131
132 extern unsigned int efi_crc32(const unsigned char *, unsigned int);
133 static int efi_read(int, struct dk_gpt *);
134
135 static int
136 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
137 {
138 struct dk_minfo disk_info;
139
140 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
141 return (errno);
142 *capacity = disk_info.dki_capacity;
143 *lbsize = disk_info.dki_lbsize;
144 return (0);
145 }
146
147 /*
148 * the number of blocks the EFI label takes up (round up to nearest
149 * block)
150 */
151 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
152 ((l) - 1)) / (l)))
153 /* number of partitions -- limited by what we can malloc */
154 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
155 sizeof (struct dk_part))
156
157 int
158 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
159 {
160 diskaddr_t capacity;
161 uint_t lbsize;
162 uint_t nblocks;
163 size_t length;
164 struct dk_gpt *vptr;
165 struct uuid uuid;
166
167 if (read_disk_info(fd, &capacity, &lbsize) != 0) {
168 if (efi_debug)
169 (void) fprintf(stderr,
170 "couldn't read disk information\n");
171 return (-1);
172 }
173
174 nblocks = NBLOCKS(nparts, lbsize);
175 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
176 /* 16K plus one block for the GPT */
177 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
178 }
179
180 if (nparts > MAX_PARTS) {
181 if (efi_debug) {
182 (void) fprintf(stderr,
183 "the maximum number of partitions supported is %lu\n",
184 MAX_PARTS);
185 }
186 return (-1);
187 }
188
189 length = sizeof (struct dk_gpt) +
190 sizeof (struct dk_part) * (nparts - 1);
191
192 if ((*vtoc = calloc(1, length)) == NULL)
193 return (-1);
194
195 vptr = *vtoc;
196
197 vptr->efi_version = EFI_VERSION_CURRENT;
198 vptr->efi_lbasize = lbsize;
199 vptr->efi_nparts = nparts;
200 /*
201 * add one block here for the PMBR; on disks with a 512 byte
202 * block size and 128 or fewer partitions, efi_first_u_lba
203 * should work out to "34"
204 */
205 vptr->efi_first_u_lba = nblocks + 1;
206 vptr->efi_last_lba = capacity - 1;
207 vptr->efi_altern_lba = capacity -1;
208 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
209
210 (void) uuid_generate((uchar_t *)&uuid);
211 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
212 return (0);
213 }
214
215 /*
216 * Read EFI - return partition number upon success.
217 */
218 int
219 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
220 {
221 int rval;
222 uint32_t nparts;
223 int length;
224 struct mboot *mbr;
225 struct ipart *ipart;
226 diskaddr_t capacity;
227 uint_t lbsize;
228 int i;
229
230 if (read_disk_info(fd, &capacity, &lbsize) != 0)
231 return (VT_ERROR);
232
233 if ((mbr = calloc(1, lbsize)) == NULL)
234 return (VT_ERROR);
235
236 if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) {
237 free(mbr);
238 return (VT_ERROR);
239 }
240
241 if (mbr->signature != MBB_MAGIC) {
242 free(mbr);
243 return (VT_EINVAL);
244 }
245 ipart = (struct ipart *)(uintptr_t)mbr->parts;
246
247 /* Check if we have partition with ID EFI_PMBR */
248 for (i = 0; i < FD_NUMPART; i++) {
249 if (ipart[i].systid == EFI_PMBR)
250 break;
251 }
252 free(mbr);
253 if (i == FD_NUMPART)
254 return (VT_EINVAL);
255
256 /* figure out the number of entries that would fit into 16K */
257 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
258 length = (int) sizeof (struct dk_gpt) +
259 (int) sizeof (struct dk_part) * (nparts - 1);
260 if ((*vtoc = calloc(1, length)) == NULL)
261 return (VT_ERROR);
262
263 (*vtoc)->efi_nparts = nparts;
264 rval = efi_read(fd, *vtoc);
265
266 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
267 void *tmp;
268 length = (int) sizeof (struct dk_gpt) +
269 (int) sizeof (struct dk_part) *
270 ((*vtoc)->efi_nparts - 1);
271 nparts = (*vtoc)->efi_nparts;
272 if ((tmp = realloc(*vtoc, length)) == NULL) {
273 free (*vtoc);
274 *vtoc = NULL;
275 return (VT_ERROR);
276 } else {
277 *vtoc = tmp;
278 rval = efi_read(fd, *vtoc);
279 }
280 }
281
282 if (rval < 0) {
283 if (efi_debug) {
284 (void) fprintf(stderr,
285 "read of EFI table failed, rval=%d\n", rval);
286 }
287 free (*vtoc);
288 *vtoc = NULL;
289 }
290
291 return (rval);
292 }
293
294 static int
295 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
296 {
297 void *data = dk_ioc->dki_data;
298 int error;
299
300 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
301 error = ioctl(fd, cmd, (void *)dk_ioc);
302 dk_ioc->dki_data = data;
303
304 return (error);
305 }
306
307 static int
308 check_label(int fd, dk_efi_t *dk_ioc)
309 {
310 efi_gpt_t *efi;
311 uint_t crc;
312
313 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
314 switch (errno) {
315 case EIO:
316 return (VT_EIO);
317 default:
318 return (VT_ERROR);
319 }
320 }
321 efi = dk_ioc->dki_data;
322 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
323 if (efi_debug)
324 (void) fprintf(stderr,
325 "Bad EFI signature: 0x%llx != 0x%llx\n",
326 (long long)efi->efi_gpt_Signature,
327 (long long)LE_64(EFI_SIGNATURE));
328 return (VT_EINVAL);
329 }
330
331 /*
332 * check CRC of the header; the size of the header should
333 * never be larger than one block
334 */
335 crc = efi->efi_gpt_HeaderCRC32;
336 efi->efi_gpt_HeaderCRC32 = 0;
337
338 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
339 crc != LE_32(efi_crc32((unsigned char *)efi,
340 LE_32(efi->efi_gpt_HeaderSize)))) {
341 if (efi_debug)
342 (void) fprintf(stderr,
343 "Bad EFI CRC: 0x%x != 0x%x\n",
344 crc,
345 LE_32(efi_crc32((unsigned char *)efi,
346 sizeof (struct efi_gpt))));
347 return (VT_EINVAL);
348 }
349
350 return (0);
351 }
352
353 static int
354 efi_read(int fd, struct dk_gpt *vtoc)
355 {
356 int i, j;
357 int label_len;
358 int rval = 0;
359 int vdc_flag = 0;
360 struct dk_minfo disk_info;
361 dk_efi_t dk_ioc;
362 efi_gpt_t *efi;
363 efi_gpe_t *efi_parts;
364 struct dk_cinfo dki_info;
365 uint32_t user_length;
366 boolean_t legacy_label = B_FALSE;
367
368 /*
369 * get the partition number for this file descriptor.
370 */
371 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
372 if (efi_debug) {
373 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
374 }
375 switch (errno) {
376 case EIO:
377 return (VT_EIO);
378 case EINVAL:
379 return (VT_EINVAL);
380 default:
381 return (VT_ERROR);
382 }
383 }
384
385 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
386 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
387 /*
388 * The controller and drive name "vdc" (virtual disk client)
389 * indicates a LDoms virtual disk.
390 */
391 vdc_flag++;
392 }
393
394 /* get the LBA size */
395 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
396 if (efi_debug) {
397 (void) fprintf(stderr,
398 "assuming LBA 512 bytes %d\n",
399 errno);
400 }
401 disk_info.dki_lbsize = DEV_BSIZE;
402 }
403 if (disk_info.dki_lbsize == 0) {
404 if (efi_debug) {
405 (void) fprintf(stderr,
406 "efi_read: assuming LBA 512 bytes\n");
407 }
408 disk_info.dki_lbsize = DEV_BSIZE;
409 }
410 /*
411 * Read the EFI GPT to figure out how many partitions we need
412 * to deal with.
413 */
414 dk_ioc.dki_lba = 1;
415 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
416 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
417 } else {
418 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
419 disk_info.dki_lbsize;
420 if (label_len % disk_info.dki_lbsize) {
421 /* pad to physical sector size */
422 label_len += disk_info.dki_lbsize;
423 label_len &= ~(disk_info.dki_lbsize - 1);
424 }
425 }
426
427 if ((dk_ioc.dki_data = calloc(1, label_len)) == NULL)
428 return (VT_ERROR);
429
430 dk_ioc.dki_length = disk_info.dki_lbsize;
431 user_length = vtoc->efi_nparts;
432 efi = dk_ioc.dki_data;
433 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
434 /*
435 * No valid label here; try the alternate. Note that here
436 * we just read GPT header and save it into dk_ioc.data,
437 * Later, we will read GUID partition entry array if we
438 * can get valid GPT header.
439 */
440
441 /*
442 * This is a workaround for legacy systems. In the past, the
443 * last sector of SCSI disk was invisible on x86 platform. At
444 * that time, backup label was saved on the next to the last
445 * sector. It is possible for users to move a disk from previous
446 * solaris system to present system. Here, we attempt to search
447 * legacy backup EFI label first.
448 */
449 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
450 dk_ioc.dki_length = disk_info.dki_lbsize;
451 rval = check_label(fd, &dk_ioc);
452 if (rval == VT_EINVAL) {
453 /*
454 * we didn't find legacy backup EFI label, try to
455 * search backup EFI label in the last block.
456 */
457 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
458 dk_ioc.dki_length = disk_info.dki_lbsize;
459 rval = check_label(fd, &dk_ioc);
460 if (rval == 0) {
461 legacy_label = B_TRUE;
462 if (efi_debug)
463 (void) fprintf(stderr,
464 "efi_read: primary label corrupt; "
465 "using EFI backup label located on"
466 " the last block\n");
467 }
468 } else {
469 if ((efi_debug) && (rval == 0))
470 (void) fprintf(stderr, "efi_read: primary label"
471 " corrupt; using legacy EFI backup label "
472 " located on the next to last block\n");
473 }
474
475 if (rval == 0) {
476 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
477 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
478 vtoc->efi_nparts =
479 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
480 /*
481 * Partition tables are between backup GPT header
482 * table and ParitionEntryLBA (the starting LBA of
483 * the GUID partition entries array). Now that we
484 * already got valid GPT header and saved it in
485 * dk_ioc.dki_data, we try to get GUID partition
486 * entry array here.
487 */
488 /* LINTED */
489 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
490 + disk_info.dki_lbsize);
491 if (legacy_label)
492 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
493 dk_ioc.dki_lba;
494 else
495 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
496 dk_ioc.dki_lba;
497 dk_ioc.dki_length *= disk_info.dki_lbsize;
498 if (dk_ioc.dki_length >
499 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
500 rval = VT_EINVAL;
501 } else {
502 /*
503 * read GUID partition entry array
504 */
505 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
506 }
507 }
508
509 } else if (rval == 0) {
510
511 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
512 /* LINTED */
513 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
514 + disk_info.dki_lbsize);
515 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
516 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
517
518 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
519 /*
520 * When the device is a LDoms virtual disk, the DKIOCGETEFI
521 * ioctl can fail with EINVAL if the virtual disk backend
522 * is a ZFS volume serviced by a domain running an old version
523 * of Solaris. This is because the DKIOCGETEFI ioctl was
524 * initially incorrectly implemented for a ZFS volume and it
525 * expected the GPT and GPE to be retrieved with a single ioctl.
526 * So we try to read the GPT and the GPE using that old style
527 * ioctl.
528 */
529 dk_ioc.dki_lba = 1;
530 dk_ioc.dki_length = label_len;
531 rval = check_label(fd, &dk_ioc);
532 }
533
534 if (rval < 0) {
535 free(efi);
536 return (rval);
537 }
538
539 /* LINTED -- always longlong aligned */
540 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
541
542 /*
543 * Assemble this into a "dk_gpt" struct for easier
544 * digestibility by applications.
545 */
546 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
547 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
548 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
549 vtoc->efi_lbasize = disk_info.dki_lbsize;
550 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
551 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
552 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
553 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
554 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
555
556 /*
557 * If the array the user passed in is too small, set the length
558 * to what it needs to be and return
559 */
560 if (user_length < vtoc->efi_nparts) {
561 return (VT_EINVAL);
562 }
563
564 for (i = 0; i < vtoc->efi_nparts; i++) {
565
566 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
567 efi_parts[i].efi_gpe_PartitionTypeGUID);
568
569 for (j = 0;
570 j < sizeof (conversion_array)
571 / sizeof (struct uuid_to_ptag); j++) {
572
573 if (bcmp(&vtoc->efi_parts[i].p_guid,
574 &conversion_array[j].uuid,
575 sizeof (struct uuid)) == 0) {
576 vtoc->efi_parts[i].p_tag =
577 conversion_array[j].p_tag;
578 break;
579 }
580 }
581 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
582 continue;
583 vtoc->efi_parts[i].p_flag =
584 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
585 vtoc->efi_parts[i].p_start =
586 LE_64(efi_parts[i].efi_gpe_StartingLBA);
587 vtoc->efi_parts[i].p_size =
588 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
589 vtoc->efi_parts[i].p_start + 1;
590 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
591 vtoc->efi_parts[i].p_name[j] =
592 (uchar_t)LE_16(
593 efi_parts[i].efi_gpe_PartitionName[j]);
594 }
595
596 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
597 efi_parts[i].efi_gpe_UniquePartitionGUID);
598 }
599 free(efi);
600
601 return (dki_info.dki_partition);
602 }
603
604 static void
605 hardware_workarounds(int *slot, int *active)
606 {
607 smbios_struct_t s_sys, s_mb;
608 smbios_info_t sys, mb;
609 smbios_hdl_t *shp;
610 char buf[0x400];
611 FILE *fp;
612 int err;
613
614 if ((fp = fopen(EFI_FIXES_DB, "rF")) == NULL)
615 return;
616
617 if ((shp = smbios_open(NULL, SMB_VERSION, 0, &err)) == NULL) {
618 if (efi_debug)
619 (void) fprintf(stderr,
620 "libefi failed to load SMBIOS: %s\n",
621 smbios_errmsg(err));
622 (void) fclose(fp);
623 return;
624 }
625
626 if (smbios_lookup_type(shp, SMB_TYPE_SYSTEM, &s_sys) == SMB_ERR ||
627 smbios_info_common(shp, s_sys.smbstr_id, &sys) == SMB_ERR)
628 (void) memset(&sys, '\0', sizeof (sys));
629 if (smbios_lookup_type(shp, SMB_TYPE_BASEBOARD, &s_mb) == SMB_ERR ||
630 smbios_info_common(shp, s_mb.smbstr_id, &mb) == SMB_ERR)
631 (void) memset(&mb, '\0', sizeof (mb));
632
633 while (fgets(buf, sizeof (buf), fp) != NULL) {
634 char *tok, *val, *end;
635
636 tok = buf + strspn(buf, " \t");
637 if (*tok == '#')
638 continue;
639 while (*tok != '\0') {
640 tok += strspn(tok, " \t");
641 if ((val = strchr(tok, '=')) == NULL)
642 break;
643 *val++ = '\0';
644 if (*val == '"')
645 end = strchr(++val, '"');
646 else
647 end = strpbrk(val, " \t\n");
648 if (end == NULL)
649 break;
650 *end++ = '\0';
651
652 if (strcmp(tok, "sys.manufacturer") == 0 &&
653 (sys.smbi_manufacturer == NULL ||
654 strcasecmp(val, sys.smbi_manufacturer)))
655 break;
656 if (strcmp(tok, "sys.product") == 0 &&
657 (sys.smbi_product == NULL ||
658 strcasecmp(val, sys.smbi_product)))
659 break;
660 if (strcmp(tok, "sys.version") == 0 &&
661 (sys.smbi_version == NULL ||
662 strcasecmp(val, sys.smbi_version)))
663 break;
664 if (strcmp(tok, "mb.manufacturer") == 0 &&
665 (mb.smbi_manufacturer == NULL ||
666 strcasecmp(val, mb.smbi_manufacturer)))
667 break;
668 if (strcmp(tok, "mb.product") == 0 &&
669 (mb.smbi_product == NULL ||
670 strcasecmp(val, mb.smbi_product)))
671 break;
672 if (strcmp(tok, "mb.version") == 0 &&
673 (mb.smbi_version == NULL ||
674 strcasecmp(val, mb.smbi_version)))
675 break;
676
677 if (strcmp(tok, "pmbr_slot") == 0) {
678 *slot = atoi(val);
679 if (*slot < 0 || *slot > 3)
680 *slot = 0;
681 if (efi_debug)
682 (void) fprintf(stderr,
683 "Using slot %d\n", *slot);
684 }
685
686 if (strcmp(tok, "pmbr_active") == 0) {
687 *active = atoi(val);
688 if (*active < 0 || *active > 1)
689 *active = 0;
690 if (efi_debug)
691 (void) fprintf(stderr,
692 "Using active %d\n", *active);
693 }
694
695 tok = end;
696 }
697 }
698 (void) fclose(fp);
699 smbios_close(shp);
700 }
701
702 /* writes a "protective" MBR */
703 static int
704 write_pmbr(int fd, struct dk_gpt *vtoc)
705 {
706 dk_efi_t dk_ioc;
707 struct mboot mb;
708 uchar_t *cp;
709 diskaddr_t size_in_lba;
710 uchar_t *buf;
711 int len, slot, active;
712
713 slot = active = 0;
714
715 hardware_workarounds(&slot, &active);
716
717 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
718 buf = calloc(len, 1);
719
720 /*
721 * Preserve any boot code and disk signature if the first block is
722 * already an MBR.
723 */
724 dk_ioc.dki_lba = 0;
725 dk_ioc.dki_length = len;
726 /* LINTED -- always longlong aligned */
727 dk_ioc.dki_data = (efi_gpt_t *)buf;
728 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
729 (void) memcpy(&mb, buf, sizeof (mb));
730 bzero(&mb, sizeof (mb));
731 mb.signature = LE_16(MBB_MAGIC);
732 } else {
733 (void) memcpy(&mb, buf, sizeof (mb));
734 if (mb.signature != LE_16(MBB_MAGIC)) {
735 bzero(&mb, sizeof (mb));
736 mb.signature = LE_16(MBB_MAGIC);
737 }
738 }
739
740 bzero(&mb.parts, sizeof (mb.parts));
741 cp = (uchar_t *)&mb.parts[slot * sizeof (struct ipart)];
742 /* bootable or not */
743 *cp++ = active ? ACTIVE : NOTACTIVE;
744 /* beginning CHS; 0xffffff if not representable */
745 *cp++ = 0xff;
746 *cp++ = 0xff;
747 *cp++ = 0xff;
748 /* OS type */
749 *cp++ = EFI_PMBR;
750 /* ending CHS; 0xffffff if not representable */
751 *cp++ = 0xff;
752 *cp++ = 0xff;
753 *cp++ = 0xff;
754 /* starting LBA: 1 (little endian format) by EFI definition */
755 *cp++ = 0x01;
756 *cp++ = 0x00;
757 *cp++ = 0x00;
758 *cp++ = 0x00;
759 /* ending LBA: last block on the disk (little endian format) */
760 size_in_lba = vtoc->efi_last_lba;
761 if (size_in_lba < 0xffffffff) {
762 *cp++ = (size_in_lba & 0x000000ff);
763 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
764 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
765 *cp++ = (size_in_lba & 0xff000000) >> 24;
766 } else {
767 *cp++ = 0xff;
768 *cp++ = 0xff;
769 *cp++ = 0xff;
770 *cp++ = 0xff;
771 }
772
773 (void) memcpy(buf, &mb, sizeof (mb));
774 /* LINTED -- always longlong aligned */
775 dk_ioc.dki_data = (efi_gpt_t *)buf;
776 dk_ioc.dki_lba = 0;
777 dk_ioc.dki_length = len;
778 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
779 free(buf);
780 switch (errno) {
781 case EIO:
782 return (VT_EIO);
783 case EINVAL:
784 return (VT_EINVAL);
785 default:
786 return (VT_ERROR);
787 }
788 }
789 free(buf);
790 return (0);
791 }
792
793 /* make sure the user specified something reasonable */
794 static int
795 check_input(struct dk_gpt *vtoc)
796 {
797 int resv_part = -1;
798 int i, j;
799 diskaddr_t istart, jstart, isize, jsize, endsect;
800
801 /*
802 * Sanity-check the input (make sure no partitions overlap)
803 */
804 for (i = 0; i < vtoc->efi_nparts; i++) {
805 /* It can't be unassigned and have an actual size */
806 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
807 (vtoc->efi_parts[i].p_size != 0)) {
808 if (efi_debug) {
809 (void) fprintf(stderr,
810 "partition %d is \"unassigned\" but has a size of %llu",
811 i,
812 vtoc->efi_parts[i].p_size);
813 }
814 return (VT_EINVAL);
815 }
816 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
817 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
818 continue;
819 /* we have encountered an unknown uuid */
820 vtoc->efi_parts[i].p_tag = 0xff;
821 }
822 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
823 if (resv_part != -1) {
824 if (efi_debug) {
825 (void) fprintf(stderr,
826 "found duplicate reserved partition at %d\n",
827 i);
828 }
829 return (VT_EINVAL);
830 }
831 resv_part = i;
832 }
833 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
834 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
835 if (efi_debug) {
836 (void) fprintf(stderr,
837 "Partition %d starts at %llu. ",
838 i,
839 vtoc->efi_parts[i].p_start);
840 (void) fprintf(stderr,
841 "It must be between %llu and %llu.\n",
842 vtoc->efi_first_u_lba,
843 vtoc->efi_last_u_lba);
844 }
845 return (VT_EINVAL);
846 }
847 if ((vtoc->efi_parts[i].p_start +
848 vtoc->efi_parts[i].p_size <
849 vtoc->efi_first_u_lba) ||
850 (vtoc->efi_parts[i].p_start +
851 vtoc->efi_parts[i].p_size >
852 vtoc->efi_last_u_lba + 1)) {
853 if (efi_debug) {
854 (void) fprintf(stderr,
855 "Partition %d ends at %llu. ",
856 i,
857 vtoc->efi_parts[i].p_start +
858 vtoc->efi_parts[i].p_size);
859 (void) fprintf(stderr,
860 "It must be between %llu and %llu.\n",
861 vtoc->efi_first_u_lba,
862 vtoc->efi_last_u_lba);
863 }
864 return (VT_EINVAL);
865 }
866
867 for (j = 0; j < vtoc->efi_nparts; j++) {
868 isize = vtoc->efi_parts[i].p_size;
869 jsize = vtoc->efi_parts[j].p_size;
870 istart = vtoc->efi_parts[i].p_start;
871 jstart = vtoc->efi_parts[j].p_start;
872 if ((i != j) && (isize != 0) && (jsize != 0)) {
873 endsect = jstart + jsize -1;
874 if ((jstart <= istart) &&
875 (istart <= endsect)) {
876 if (efi_debug) {
877 (void) fprintf(stderr,
878 "Partition %d overlaps partition %d.",
879 i, j);
880 }
881 return (VT_EINVAL);
882 }
883 }
884 }
885 }
886 /* just a warning for now */
887 if ((resv_part == -1) && efi_debug) {
888 (void) fprintf(stderr,
889 "no reserved partition found\n");
890 }
891 return (0);
892 }
893
894 /*
895 * add all the unallocated space to the current label
896 */
897 int
898 efi_use_whole_disk(int fd)
899 {
900 struct dk_gpt *efi_label;
901 int rval;
902 int i;
903 uint_t phy_last_slice = 0;
904 diskaddr_t pl_start = 0;
905 diskaddr_t pl_size;
906
907 rval = efi_alloc_and_read(fd, &efi_label);
908 if (rval < 0) {
909 return (rval);
910 }
911
912 /* find the last physically non-zero partition */
913 for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
914 if (pl_start < efi_label->efi_parts[i].p_start) {
915 pl_start = efi_label->efi_parts[i].p_start;
916 phy_last_slice = i;
917 }
918 }
919 pl_size = efi_label->efi_parts[phy_last_slice].p_size;
920
921 /*
922 * If alter_lba is 1, we are using the backup label.
923 * Since we can locate the backup label by disk capacity,
924 * there must be no unallocated space.
925 */
926 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
927 >= efi_label->efi_last_lba)) {
928 if (efi_debug) {
929 (void) fprintf(stderr,
930 "efi_use_whole_disk: requested space not found\n");
931 }
932 efi_free(efi_label);
933 return (VT_ENOSPC);
934 }
935
936 /*
937 * If there is space between the last physically non-zero partition
938 * and the reserved partition, just add the unallocated space to this
939 * area. Otherwise, the unallocated space is added to the last
940 * physically non-zero partition.
941 */
942 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
943 EFI_MIN_RESV_SIZE) {
944 efi_label->efi_parts[phy_last_slice].p_size +=
945 efi_label->efi_last_lba - efi_label->efi_altern_lba;
946 }
947
948 /*
949 * Move the reserved partition. There is currently no data in
950 * here except fabricated devids (which get generated via
951 * efi_write()). So there is no need to copy data.
952 */
953 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
954 efi_label->efi_last_lba - efi_label->efi_altern_lba;
955 efi_label->efi_last_u_lba += efi_label->efi_last_lba
956 - efi_label->efi_altern_lba;
957
958 rval = efi_write(fd, efi_label);
959 if (rval < 0) {
960 if (efi_debug) {
961 (void) fprintf(stderr,
962 "efi_use_whole_disk:fail to write label, rval=%d\n",
963 rval);
964 }
965 efi_free(efi_label);
966 return (rval);
967 }
968
969 efi_free(efi_label);
970 return (0);
971 }
972
973
974 /*
975 * write EFI label and backup label
976 */
977 int
978 efi_write(int fd, struct dk_gpt *vtoc)
979 {
980 dk_efi_t dk_ioc;
981 efi_gpt_t *efi;
982 efi_gpe_t *efi_parts;
983 int i, j;
984 struct dk_cinfo dki_info;
985 int nblocks;
986 diskaddr_t lba_backup_gpt_hdr;
987
988 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
989 if (efi_debug)
990 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
991 switch (errno) {
992 case EIO:
993 return (VT_EIO);
994 case EINVAL:
995 return (VT_EINVAL);
996 default:
997 return (VT_ERROR);
998 }
999 }
1000
1001 if (check_input(vtoc))
1002 return (VT_EINVAL);
1003
1004 dk_ioc.dki_lba = 1;
1005 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1006 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1007 } else {
1008 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1009 vtoc->efi_lbasize) *
1010 vtoc->efi_lbasize;
1011 }
1012
1013 /*
1014 * the number of blocks occupied by GUID partition entry array
1015 */
1016 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1017
1018 /*
1019 * Backup GPT header is located on the block after GUID
1020 * partition entry array. Here, we calculate the address
1021 * for backup GPT header.
1022 */
1023 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1024 if ((dk_ioc.dki_data = calloc(1, dk_ioc.dki_length)) == NULL)
1025 return (VT_ERROR);
1026
1027 efi = dk_ioc.dki_data;
1028
1029 /* stuff user's input into EFI struct */
1030 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1031 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1032 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
1033 efi->efi_gpt_Reserved1 = 0;
1034 efi->efi_gpt_MyLBA = LE_64(1ULL);
1035 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1036 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1037 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1038 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1039 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1040 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1041 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1042
1043 /* LINTED -- always longlong aligned */
1044 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1045
1046 for (i = 0; i < vtoc->efi_nparts; i++) {
1047 for (j = 0;
1048 j < sizeof (conversion_array) /
1049 sizeof (struct uuid_to_ptag); j++) {
1050
1051 if (vtoc->efi_parts[i].p_tag ==
1052 conversion_array[j].p_tag) {
1053 UUID_LE_CONVERT(
1054 efi_parts[i].efi_gpe_PartitionTypeGUID,
1055 conversion_array[j].uuid);
1056 break;
1057 }
1058 }
1059
1060 if (j == sizeof (conversion_array) /
1061 sizeof (struct uuid_to_ptag)) {
1062 /*
1063 * If we didn't have a matching uuid match, bail here.
1064 * Don't write a label with unknown uuid.
1065 */
1066 if (efi_debug) {
1067 (void) fprintf(stderr,
1068 "Unknown uuid for p_tag %d\n",
1069 vtoc->efi_parts[i].p_tag);
1070 }
1071 return (VT_EINVAL);
1072 }
1073
1074 efi_parts[i].efi_gpe_StartingLBA =
1075 LE_64(vtoc->efi_parts[i].p_start);
1076 efi_parts[i].efi_gpe_EndingLBA =
1077 LE_64(vtoc->efi_parts[i].p_start +
1078 vtoc->efi_parts[i].p_size - 1);
1079 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1080 LE_16(vtoc->efi_parts[i].p_flag);
1081 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1082 efi_parts[i].efi_gpe_PartitionName[j] =
1083 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1084 }
1085 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1086 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1087 (void) uuid_generate((uchar_t *)
1088 &vtoc->efi_parts[i].p_uguid);
1089 }
1090 bcopy(&vtoc->efi_parts[i].p_uguid,
1091 &efi_parts[i].efi_gpe_UniquePartitionGUID,
1092 sizeof (uuid_t));
1093 }
1094 efi->efi_gpt_PartitionEntryArrayCRC32 =
1095 LE_32(efi_crc32((unsigned char *)efi_parts,
1096 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1097 efi->efi_gpt_HeaderCRC32 =
1098 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
1099
1100 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1101 free(dk_ioc.dki_data);
1102 switch (errno) {
1103 case EIO:
1104 return (VT_EIO);
1105 case EINVAL:
1106 return (VT_EINVAL);
1107 default:
1108 return (VT_ERROR);
1109 }
1110 }
1111
1112 /* write backup partition array */
1113 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1114 dk_ioc.dki_length -= vtoc->efi_lbasize;
1115 /* LINTED */
1116 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1117 vtoc->efi_lbasize);
1118
1119 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1120 /*
1121 * we wrote the primary label okay, so don't fail
1122 */
1123 if (efi_debug) {
1124 (void) fprintf(stderr,
1125 "write of backup partitions to block %llu "
1126 "failed, errno %d\n",
1127 vtoc->efi_last_u_lba + 1,
1128 errno);
1129 }
1130 }
1131 /*
1132 * now swap MyLBA and AlternateLBA fields and write backup
1133 * partition table header
1134 */
1135 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1136 dk_ioc.dki_length = vtoc->efi_lbasize;
1137 /* LINTED */
1138 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1139 vtoc->efi_lbasize);
1140 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1141 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1142 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1143 efi->efi_gpt_HeaderCRC32 = 0;
1144 efi->efi_gpt_HeaderCRC32 =
1145 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1146 sizeof (struct efi_gpt)));
1147
1148 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1149 if (efi_debug) {
1150 (void) fprintf(stderr,
1151 "write of backup header to block %llu failed, "
1152 "errno %d\n",
1153 lba_backup_gpt_hdr,
1154 errno);
1155 }
1156 }
1157 /* write the PMBR */
1158 (void) write_pmbr(fd, vtoc);
1159 free(dk_ioc.dki_data);
1160 return (0);
1161 }
1162
1163 void
1164 efi_free(struct dk_gpt *ptr)
1165 {
1166 free(ptr);
1167 }
1168
1169 /*
1170 * Input: File descriptor
1171 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1172 * Otherwise 0.
1173 */
1174 int
1175 efi_type(int fd)
1176 {
1177 struct vtoc vtoc;
1178 struct extvtoc extvtoc;
1179
1180 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1181 if (errno == ENOTSUP)
1182 return (1);
1183 else if (errno == ENOTTY) {
1184 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1185 if (errno == ENOTSUP)
1186 return (1);
1187 }
1188 }
1189 return (0);
1190 }
1191
1192 void
1193 efi_err_check(struct dk_gpt *vtoc)
1194 {
1195 int resv_part = -1;
1196 int i, j;
1197 diskaddr_t istart, jstart, isize, jsize, endsect;
1198 int overlap = 0;
1199
1200 /*
1201 * make sure no partitions overlap
1202 */
1203 for (i = 0; i < vtoc->efi_nparts; i++) {
1204 /* It can't be unassigned and have an actual size */
1205 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1206 (vtoc->efi_parts[i].p_size != 0)) {
1207 (void) fprintf(stderr,
1208 "partition %d is \"unassigned\" but has a size "
1209 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1210 }
1211 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1212 continue;
1213 }
1214 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1215 if (resv_part != -1) {
1216 (void) fprintf(stderr,
1217 "found duplicate reserved partition at "
1218 "%d\n", i);
1219 }
1220 resv_part = i;
1221 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1222 (void) fprintf(stderr,
1223 "Warning: reserved partition size must "
1224 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1225 }
1226 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1227 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1228 (void) fprintf(stderr,
1229 "Partition %d starts at %llu\n",
1230 i,
1231 vtoc->efi_parts[i].p_start);
1232 (void) fprintf(stderr,
1233 "It must be between %llu and %llu.\n",
1234 vtoc->efi_first_u_lba,
1235 vtoc->efi_last_u_lba);
1236 }
1237 if ((vtoc->efi_parts[i].p_start +
1238 vtoc->efi_parts[i].p_size <
1239 vtoc->efi_first_u_lba) ||
1240 (vtoc->efi_parts[i].p_start +
1241 vtoc->efi_parts[i].p_size >
1242 vtoc->efi_last_u_lba + 1)) {
1243 (void) fprintf(stderr,
1244 "Partition %d ends at %llu\n",
1245 i,
1246 vtoc->efi_parts[i].p_start +
1247 vtoc->efi_parts[i].p_size);
1248 (void) fprintf(stderr,
1249 "It must be between %llu and %llu.\n",
1250 vtoc->efi_first_u_lba,
1251 vtoc->efi_last_u_lba);
1252 }
1253
1254 for (j = 0; j < vtoc->efi_nparts; j++) {
1255 isize = vtoc->efi_parts[i].p_size;
1256 jsize = vtoc->efi_parts[j].p_size;
1257 istart = vtoc->efi_parts[i].p_start;
1258 jstart = vtoc->efi_parts[j].p_start;
1259 if ((i != j) && (isize != 0) && (jsize != 0)) {
1260 endsect = jstart + jsize -1;
1261 if ((jstart <= istart) &&
1262 (istart <= endsect)) {
1263 if (!overlap) {
1264 (void) fprintf(stderr,
1265 "label error: EFI Labels do not "
1266 "support overlapping partitions\n");
1267 }
1268 (void) fprintf(stderr,
1269 "Partition %d overlaps partition "
1270 "%d.\n", i, j);
1271 overlap = 1;
1272 }
1273 }
1274 }
1275 }
1276 /* make sure there is a reserved partition */
1277 if (resv_part == -1) {
1278 (void) fprintf(stderr,
1279 "no reserved partition found\n");
1280 }
1281 }
1282
1283 /*
1284 * We need to get information necessary to construct a *new* efi
1285 * label type
1286 */
1287 int
1288 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1289 {
1290
1291 int i;
1292
1293 /*
1294 * Now build the default partition table
1295 */
1296 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1297 if (efi_debug) {
1298 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1299 }
1300 return (-1);
1301 }
1302
1303 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1304 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1305 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1306 (*vtoc)->efi_parts[i].p_start = 0;
1307 (*vtoc)->efi_parts[i].p_size = 0;
1308 }
1309 /*
1310 * Make constants first
1311 * and variable partitions later
1312 */
1313
1314 /* root partition - s0 128 MB */
1315 (*vtoc)->efi_parts[0].p_start = 34;
1316 (*vtoc)->efi_parts[0].p_size = 262144;
1317
1318 /* partition - s1 128 MB */
1319 (*vtoc)->efi_parts[1].p_start = 262178;
1320 (*vtoc)->efi_parts[1].p_size = 262144;
1321
1322 /* partition -s2 is NOT the Backup disk */
1323 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1324
1325 /* partition -s6 /usr partition - HOG */
1326 (*vtoc)->efi_parts[6].p_start = 524322;
1327 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1328 - (1024 * 16);
1329
1330 /* efi reserved partition - s9 16K */
1331 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1332 (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1333 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1334 return (0);
1335 }