
new/usr/src/uts/common/io/lofi.c 1

**
 95794 Tue Apr 16 05:30:04 2019
new/usr/src/uts/common/io/lofi.c
10567 lofi should support basic EFI ioctl()s
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23 *
24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2016 Andrey Sokolov
26 * Copyright 2016 Toomas Soome <tsoome@me.com>
27 * Copyright 2019 Joyent, Inc.
28 */

30 /*
31 * lofi (loopback file) driver - allows you to attach a file to a device,
32 * which can then be accessed through that device. The simple model is that
33 * you tell lofi to open a file, and then use the block device you get as
34 * you would any block device. lofi translates access to the block device
35 * into I/O on the underlying file. This is mostly useful for
36 * mounting images of filesystems.
37 *
38 * lofi is controlled through /dev/lofictl - this is the only device exported
39 * during attach, and is instance number 0. lofiadm communicates with lofi
40 * through ioctls on this device. When a file is attached to lofi, block and
41 * character devices are exported in /dev/lofi and /dev/rlofi. These devices
42 * are identified by lofi instance number, and the instance number is also used
43 * as the name in /dev/lofi.
44 *
45 * Virtual disks, or, labeled lofi, implements virtual disk support to
46 * support partition table and related tools. Such mappings will cause
47 * block and character devices to be exported in /dev/dsk and /dev/rdsk
48 * directories.
49 *
50 * To support virtual disks, the instance number space is divided to two
51 * parts, upper part for instance number and lower part for minor number
52 * space to identify partitions and slices. The virtual disk support is
53 * implemented by stacking cmlb module. For virtual disks, the partition
54 * related ioctl calls are routed to cmlb module. Compression and encryption
55 * is not supported for virtual disks.
56 *
57 * Mapped devices are tracked with state structures handled with
58 * ddi_soft_state(9F) for simplicity.
59 *
60 * A file attached to lofi is opened when attached and not closed until
61 * explicitly detached from lofi. This seems more sensible than deferring

new/usr/src/uts/common/io/lofi.c 2

62 * the open until the /dev/lofi device is opened, for a number of reasons.
63 * One is that any failure is likely to be noticed by the person (or script)
64 * running lofiadm. Another is that it would be a security problem if the
65 * file was replaced by another one after being added but before being opened.
66 *
67 * The only hard part about lofi is the ioctls. In order to support things
68 * like ’newfs’ on a lofi device, it needs to support certain disk ioctls.
69 * So it has to fake disk geometry and partition information. More may need
70 * to be faked if your favorite utility doesn’t work and you think it should
71 * (fdformat doesn’t work because it really wants to know the type of floppy
72 * controller to talk to, and that didn’t seem easy to fake. Or possibly even
73 * necessary, since we have mkfs_pcfs now).
74 *
75 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To
76 * support simulation of hotplug events, an optional force flag is provided.
77 * If a lofi device is open when a force detach is requested, then the
78 * underlying file is closed and any subsequent operations return EIO. When the
79 * device is closed for the last time, it will be cleaned up at that time. In
80 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
81 * detached but not removed.
82 *
83 * If detach was requested and lofi device is not open, we will perform
84 * unmap and remove the lofi instance.
85 *
86 * If the lofi device is open and the li_cleanup is set on ioctl request,
87 * we set ls_cleanup flag to notify the cleanup is requested, and the
88 * last lofi_close will perform the unmapping and this lofi instance will be
89 * removed.
90 *
91 * If the lofi device is open and the li_force is set on ioctl request,
92 * we set ls_cleanup flag to notify the cleanup is requested,
93 * we also set ls_vp_closereq to notify IO tasks to return EIO on new
94 * IO requests and wait in process IO count to become 0, indicating there
95 * are no more IO requests. Since ls_cleanup is set, the last lofi_close
96 * will perform unmap and this lofi instance will be removed.
97 * See also lofi_unmap_file() for details.
98 *
99 * Once ls_cleanup is set for the instance, we do not allow lofi_open()
100 * calls to succeed and can have last lofi_close() to remove the instance.
101 *
102 * Known problems:
103 *
104 * UFS logging. Mounting a UFS filesystem image "logging"
105 * works for basic copy testing but wedges during a build of ON through
106 * that image. Some deadlock in lufs holding the log mutex and then
107 * getting stuck on a buf. So for now, don’t do that.
108 *
109 * Direct I/O. Since the filesystem data is being cached in the buffer
110 * cache, _and_ again in the underlying filesystem, it’s tempting to
111 * enable direct I/O on the underlying file. Don’t, because that deadlocks.
112 * I think to fix the cache-twice problem we might need filesystem support.
113 *
114 * Interesting things to do:
115 *
116 * Allow multiple files for each device. A poor-man’s metadisk, basically.
117 *
118 * Pass-through ioctls on block devices. You can (though it’s not
119 * documented), give lofi a block device as a file name. Then we shouldn’t
120 * need to fake a geometry, however, it may be relevant if you’re replacing
121 * metadisk, or using lofi to get crypto.
122 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
123 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
124 * In fact this even makes sense if you have lofi "above" metadisk.
125 *
126 * Encryption:
127 * Each lofi device can have its own symmetric key and cipher.

new/usr/src/uts/common/io/lofi.c 3

128 * They are passed to us by lofiadm(1m) in the correct format for use
129 * with the misc/kcf crypto_* routines.
130 *
131 * Each block has its own IV, that is calculated in lofi_blk_mech(), based
132 * on the "master" key held in the lsp and the block number of the buffer.
133 */

135 #include <sys/types.h>
136 #include <netinet/in.h>
137 #include <sys/sysmacros.h>
138 #include <sys/uio.h>
139 #include <sys/kmem.h>
140 #include <sys/cred.h>
141 #include <sys/mman.h>
142 #include <sys/errno.h>
143 #include <sys/aio_req.h>
144 #include <sys/stat.h>
145 #include <sys/file.h>
146 #include <sys/modctl.h>
147 #include <sys/conf.h>
148 #include <sys/debug.h>
149 #include <sys/vnode.h>
150 #include <sys/lofi.h>
151 #include <sys/lofi_impl.h> /* for cache structure */
152 #include <sys/fcntl.h>
153 #include <sys/pathname.h>
154 #include <sys/filio.h>
155 #include <sys/fdio.h>
156 #include <sys/open.h>
157 #include <sys/disp.h>
158 #include <vm/seg_map.h>
159 #include <sys/ddi.h>
160 #include <sys/sunddi.h>
161 #include <sys/zmod.h>
162 #include <sys/id_space.h>
163 #include <sys/mkdev.h>
164 #include <sys/crypto/common.h>
165 #include <sys/crypto/api.h>
166 #include <sys/rctl.h>
167 #include <sys/vtoc.h>
168 #include <sys/scsi/scsi.h> /* for DTYPE_DIRECT */
169 #include <sys/scsi/impl/uscsi.h>
170 #include <sys/sysevent/dev.h>
171 #include <sys/efi_partition.h>
172 #include <sys/note.h>
173 #include <LzmaDec.h>

175 #define NBLOCKS_PROP_NAME "Nblocks"
176 #define SIZE_PROP_NAME "Size"
177 #define ZONE_PROP_NAME "zone"

179 #define SETUP_C_DATA(cd, buf, len) \
180 (cd).cd_format = CRYPTO_DATA_RAW; \
181 (cd).cd_offset = 0; \
182 (cd).cd_miscdata = NULL; \
183 (cd).cd_length = (len); \
184 (cd).cd_raw.iov_base = (buf); \
185 (cd).cd_raw.iov_len = (len);

187 #define UIO_CHECK(uio) \
188 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
189 ((uio)->uio_resid % DEV_BSIZE) != 0) { \
190 return (EINVAL); \
191 }

193 #define LOFI_TIMEOUT 30

new/usr/src/uts/common/io/lofi.c 4

195 static void *lofi_statep;
196 static kmutex_t lofi_lock; /* state lock */
197 static id_space_t *lofi_id; /* lofi ID values */
198 static list_t lofi_list;
199 static zone_key_t lofi_zone_key;

201 /*
202 * Because lofi_taskq_nthreads limits the actual swamping of the device, the
203 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
204 * high. If we want to be assured that the underlying device is always busy,
205 * we must be sure that the number of bytes enqueued when the number of
206 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
207 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should
208 * set maxalloc to be the maximum throughput (in bytes per second) of the
209 * underlying device divided by the minimum I/O size. We assume a realistic
210 * maximum throughput of one hundred megabytes per second; we set maxalloc on
211 * the lofi task queue to be 104857600 divided by DEV_BSIZE.
212 */
213 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
214 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */

216 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;

218 /*
219 * To avoid decompressing data in a compressed segment multiple times
220 * when accessing small parts of a segment’s data, we cache and reuse
221 * the uncompressed segment’s data.
222 *
223 * A single cached segment is sufficient to avoid lots of duplicate
224 * segment decompress operations. A small cache size also reduces the
225 * memory footprint.
226 *
227 * lofi_max_comp_cache is the maximum number of decompressed data segments
228 * cached for each compressed lofi image. It can be set to 0 to disable
229 * caching.
230 */

232 uint32_t lofi_max_comp_cache = 1;

234 static int gzip_decompress(void *src, size_t srclen, void *dst,
235 size_t *destlen, int level);

237 static int lzma_decompress(void *src, size_t srclen, void *dst,
238 size_t *dstlen, int level);

240 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
241 {gzip_decompress, NULL, 6, "gzip"}, /* default */
242 {gzip_decompress, NULL, 6, "gzip-6"},
243 {gzip_decompress, NULL, 9, "gzip-9"},
244 {lzma_decompress, NULL, 0, "lzma"}
245 };

______unchanged_portion_omitted_

1744 /*ARGSUSED2*/
1746 static int
1747 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1748 {
1749 _NOTE(ARGUNUSED(credp));

1751 if (getminor(dev) == 0)
1752 return (EINVAL);
1753 UIO_CHECK(uio);
1754 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1755 }

new/usr/src/uts/common/io/lofi.c 5

1754 /*ARGSUSED2*/
1757 static int
1758 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1759 {
1760 _NOTE(ARGUNUSED(credp));

1762 if (getminor(dev) == 0)
1763 return (EINVAL);
1764 UIO_CHECK(uio);
1765 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1766 }

1768 static int
1769 lofi_urw(struct lofi_state *lsp, uint16_t fmode, diskaddr_t off, size_t size,
1770 intptr_t arg, int flag, cred_t *credp)
1771 {
1772 struct uio uio;
1773 iovec_t iov;

1775 /*
1776 * 1024 * 1024 apes cmlb_tg_max_efi_xfer as a reasonable max.
1777 */
1778 if (size == 0 || size > 1024 * 1024 ||
1779 (size % (1 << lsp->ls_lbshift)) != 0)
1780 return (EINVAL);

1782 iov.iov_base = (void *)arg;
1783 iov.iov_len = size;
1784 uio.uio_iov = &iov;
1785 uio.uio_iovcnt = 1;
1786 uio.uio_loffset = off;
1787 uio.uio_segflg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
1788 uio.uio_llimit = MAXOFFSET_T;
1789 uio.uio_resid = size;
1790 uio.uio_fmode = fmode;
1791 uio.uio_extflg = 0;

1793 return (fmode == FREAD ?
1794 lofi_read(lsp->ls_dev, &uio, credp) :
1795 lofi_write(lsp->ls_dev, &uio, credp));
1796 }

1798 /*ARGSUSED2*/
1799 static int
1800 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1801 {
1802 if (getminor(dev) == 0)
1803 return (EINVAL);
1804 UIO_CHECK(aio->aio_uio);
1805 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1806 }
______unchanged_portion_omitted_

3218 static int
3219 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
3220 int *rvalp)
3221 {
3222 int error;
3223 enum dkio_state dkstate;
3224 struct lofi_state *lsp;
3225 dk_efi_t user_efi;
3226 int id;

3228 id = LOFI_MINOR2ID(getminor(dev));

3230 /* lofi ioctls only apply to the master device */

new/usr/src/uts/common/io/lofi.c 6

3231 if (id == 0) {
3232 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;

3234 /*
3235 * the query command only need read-access - i.e., normal
3236 * users are allowed to do those on the ctl device as
3237 * long as they can open it read-only.
3238 */
3239 switch (cmd) {
3240 case LOFI_MAP_FILE:
3241 if ((flag & FWRITE) == 0)
3242 return (EPERM);
3243 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
3244 case LOFI_MAP_FILE_MINOR:
3245 if ((flag & FWRITE) == 0)
3246 return (EPERM);
3247 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
3248 case LOFI_UNMAP_FILE:
3249 if ((flag & FWRITE) == 0)
3250 return (EPERM);
3251 return (lofi_unmap_file(lip, 1, credp, flag));
3252 case LOFI_UNMAP_FILE_MINOR:
3253 if ((flag & FWRITE) == 0)
3254 return (EPERM);
3255 return (lofi_unmap_file(lip, 0, credp, flag));
3256 case LOFI_GET_FILENAME:
3257 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
3258 credp, flag));
3259 case LOFI_GET_MINOR:
3260 return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
3261 credp, flag));

3263 /*
3264 * This API made limited sense when this value was fixed
3265 * at LOFI_MAX_FILES. However, its use to iterate
3266 * across all possible devices in lofiadm means we don’t
3267 * want to return L_MAXMIN, but the highest
3268 * *allocated* id.
3269 */
3270 case LOFI_GET_MAXMINOR:
3271 id = 0;

3273 mutex_enter(&lofi_lock);

3275 for (lsp = list_head(&lofi_list); lsp != NULL;
3276 lsp = list_next(&lofi_list, lsp)) {
3277 int i;
3278 if (lofi_access(lsp) != 0)
3279 continue;

3281 i = ddi_get_instance(lsp->ls_dip);
3282 if (i > id)
3283 id = i;
3284 }

3286 mutex_exit(&lofi_lock);

3288 error = ddi_copyout(&id, &lip->li_id,
3289 sizeof (id), flag);
3290 if (error)
3291 return (EFAULT);
3292 return (0);

3294 case LOFI_CHECK_COMPRESSED:
3295 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
3296 credp, flag));

new/usr/src/uts/common/io/lofi.c 7

3297 default:
3298 return (EINVAL);
3299 }
3300 }

3302 mutex_enter(&lofi_lock);
3303 lsp = ddi_get_soft_state(lofi_statep, id);
3304 if (lsp == NULL || lsp->ls_cleanup) {
3305 mutex_exit(&lofi_lock);
3306 return (ENXIO);
3307 }
3308 mutex_exit(&lofi_lock);

3310 if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS,
3311 "labeled") == 1) {
3312 error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag,
3313 credp, rvalp, 0);
3314 if (error != ENOTTY)
3315 return (error);
3316 }

3318 /*
3319 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
3320 * EIO as if the device was no longer present.
3321 */
3322 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
3323 return (EIO);

3325 /* these are for faking out utilities like newfs */
3326 switch (cmd) {
3327 case DKIOCGMEDIAINFO:
3328 case DKIOCGMEDIAINFOEXT: {
3329 struct dk_minfo_ext media_info;
3330 int shift = lsp->ls_lbshift;
3331 int size;

3333 if (cmd == DKIOCGMEDIAINFOEXT) {
3334 media_info.dki_pbsize = 1U << lsp->ls_pbshift;
3335 size = sizeof (struct dk_minfo_ext);
3336 } else {
3337 size = sizeof (struct dk_minfo);
3338 }

3340 media_info.dki_media_type = DK_FIXED_DISK;
3341 media_info.dki_lbsize = 1U << shift;
3342 media_info.dki_capacity =
3343 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift;

3345 if (ddi_copyout(&media_info, (void *)arg, size, flag))
3346 return (EFAULT);
3347 return (0);
3348 }
3349 case DKIOCREMOVABLE: {
3350 int i = 0;
3351 if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
3352 return (EFAULT);
3353 return (0);
3354 }

3356 case DKIOCGVTOC: {
3357 struct vtoc vt;
3358 fake_disk_vtoc(lsp, &vt);

3360 switch (ddi_model_convert_from(flag & FMODELS)) {
3361 case DDI_MODEL_ILP32: {
3362 struct vtoc32 vtoc32;

new/usr/src/uts/common/io/lofi.c 8

3364 vtoctovtoc32(vt, vtoc32);
3365 if (ddi_copyout(&vtoc32, (void *)arg,
3366 sizeof (struct vtoc32), flag))
3367 return (EFAULT);
3368 break;
3369 }

3371 case DDI_MODEL_NONE:
3372 if (ddi_copyout(&vt, (void *)arg,
3373 sizeof (struct vtoc), flag))
3374 return (EFAULT);
3375 break;
3376 }
3377 return (0);
3378 }
3379 case DKIOCINFO: {
3380 struct dk_cinfo ci;
3381 fake_disk_info(dev, &ci);
3382 if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag))
3383 return (EFAULT);
3384 return (0);
3385 }
3386 case DKIOCG_VIRTGEOM:
3387 case DKIOCG_PHYGEOM:
3388 case DKIOCGGEOM:
3389 error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
3390 sizeof (struct dk_geom), flag);
3391 if (error)
3392 return (EFAULT);
3393 return (0);
3394 case DKIOCSTATE:
3395 /*
3396 * Normally, lofi devices are always in the INSERTED state. If
3397 * a device is forcefully unmapped, then the device transitions
3398 * to the DKIO_DEV_GONE state.
3399 */
3400 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
3401 flag) != 0)
3402 return (EFAULT);

3404 mutex_enter(&lsp->ls_vp_lock);
3405 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
3406 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
3407 !lsp->ls_cleanup) {
3408 /*
3409 * By virtue of having the device open, we know that
3410 * ’lsp’ will remain valid when we return.
3411 */
3412 if (!cv_wait_sig(&lsp->ls_vp_cv, &lsp->ls_vp_lock)) {
3413 mutex_exit(&lsp->ls_vp_lock);
3414 return (EINTR);
3415 }
3416 }

3418 dkstate = (!lsp->ls_cleanup && lsp->ls_vp != NULL ?
3419 DKIO_INSERTED : DKIO_DEV_GONE);
3420 mutex_exit(&lsp->ls_vp_lock);

3422 if (ddi_copyout(&dkstate, (void *)arg,
3423 sizeof (dkstate), flag) != 0)
3424 return (EFAULT);
3425 return (0);
3426 case USCSICMD: {
3427 struct uscsi_cmd uscmd;
3428 union scsi_cdb cdb;

new/usr/src/uts/common/io/lofi.c 9

3430 if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) {
3431 struct scsi_inquiry inq = {0};

3433 lofi_create_inquiry(lsp, &inq);
3434 if (ddi_copyout(&inq, uscmd.uscsi_bufaddr,
3435 uscmd.uscsi_buflen, flag) != 0)
3436 return (EFAULT);
3437 return (0);
3438 } else if (cdb.scc_cmd == SCMD_READ_CAPACITY) {
3439 struct scsi_capacity capacity;

3441 capacity.capacity =
3442 BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >>
3443 lsp->ls_lbshift);
3444 capacity.lbasize = BE_32(1 << lsp->ls_lbshift);
3445 if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr,
3446 uscmd.uscsi_buflen, flag) != 0)
3447 return (EFAULT);
3448 return (0);
3449 }

3451 uscmd.uscsi_rqstatus = 0xff;
3452 #ifdef _MULTI_DATAMODEL
3453 switch (ddi_model_convert_from(flag & FMODELS)) {
3454 case DDI_MODEL_ILP32: {
3455 struct uscsi_cmd32 ucmd32;
3456 uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32));
3457 if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32),
3458 flag) != 0)
3459 return (EFAULT);
3460 break;
3461 }
3462 case DDI_MODEL_NONE:
3463 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd),
3464 flag) != 0)
3465 return (EFAULT);
3466 break;
3467 default:
3468 return (EFAULT);
3469 }
3470 #else
3471 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0)
3472 return (EFAULT);
3473 #endif /* _MULTI_DATAMODEL */
3474 return (0);
3475 }

3477 case DKIOCGMBOOT:
3478 return (lofi_urw(lsp, FREAD, 0, 1 << lsp->ls_lbshift,
3479 arg, flag, credp));

3481 case DKIOCSMBOOT:
3482 return (lofi_urw(lsp, FWRITE, 0, 1 << lsp->ls_lbshift,
3483 arg, flag, credp));

3485 case DKIOCGETEFI:
3486 if (ddi_copyin((void *)arg, &user_efi,
3487 sizeof (dk_efi_t), flag) != 0)
3488 return (EFAULT);

3490 return (lofi_urw(lsp, FREAD,
3491 user_efi.dki_lba * (1 << lsp->ls_lbshift),
3492 user_efi.dki_length, (intptr_t)user_efi.dki_data,
3493 flag, credp));

new/usr/src/uts/common/io/lofi.c 10

3495 case DKIOCSETEFI:
3496 if (ddi_copyin((void *)arg, &user_efi,
3497 sizeof (dk_efi_t), flag) != 0)
3498 return (EFAULT);

3500 return (lofi_urw(lsp, FWRITE,
3501 user_efi.dki_lba * (1 << lsp->ls_lbshift),
3502 user_efi.dki_length, (intptr_t)user_efi.dki_data,
3503 flag, credp));

3505 default:
3506 #ifdef DEBUG
3507 cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd);
3508 #endif /* DEBUG */
3509 return (ENOTTY);
3510 }
3511 }
______unchanged_portion_omitted_

