new usr/src/uts/comon/iollofi.c

R R R R

95794 Tue Apr 16 05:30:04 2019
new usr/src/uts/comon/iollofi.c

10567 | ofi

PR R R EE]

1/*

® Ok ok ok ok Rk O S b R b SF OF R ok Sk b R Sk Sk F Rk b % b % O kb

B T T R I A
- -

shoul d support basic EFl ioctl()s

Khkkkkkk kKA KKk

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 1999, 2010, Oracle and/or its affiliates. Al rights reserved.
Copyri ght 2013 Nexenta Systens, Inc. Al
Copyright (c) 2016 Andrey Sokol ov

Copyri ght 2016 Toomas Soone <t soone@we.cone
Copyri ght 2019 Joyent, Inc.

rights reserved.

lofi (loopback file) driver - allows you to attach a file to a device,
whi ch can then be accessed through that device. The sinple nodel is that
you tell lofi to open a file, and then use the block device you get as
you woul d any bl ock device. lofi translates access to the bl ock device
into I/Oon the underlying file. This is nostly useful for

mounting images of fil esystens.

lofi is controlled through /dev/lofictl
during attach, and is instance nunber 0. |ofiadm comunicates with |ofi
through ioctls on this device. Wen a file is attached to lofi, block and
character devices are exported in /dev/lofi and /dev/rlofi. These devices
are identified by lofi instance nunber, and the instance nunber is also used
as the nanme in /dev/lofi.

- this is the only device exported

Virtual disks, or, labeled lofi, inplenents virtual disk support to
support partition table and related tools. Such mappings will cause
bl ock and character devices to be exported in /dev/dsk and /dev/rdsk
directories.

To support virtual disks, the instance nunmber space is divided to two
parts, upper part for instance nunber and |ower part for mnor nunber
space to identify partitions and slices. The virtual disk support is

i npl emented by stacking cm b nodule. For virtual disks, the partition
related ioctl calls are routed to cnmlb nobdul e. Conpression and encryption
is not supported for virtual disks.

Mapped devices are tracked with state structures handled with
ddi _soft_state(9F) for sinplicity.

A file attached to lofi is opened when attached and not cl osed until
explicitly detached fromlofi. This seens nore sensible than deferring

new usr/src/uts/comon/io/lofi.c 2
62 * the open until the /dev/lofi device is opened, for a nunber of reasons.
63 * One is that any failure is likely to be noticed by the person (or script)
64 * running lofiadm Another is that it would be a security problemif the
65 * file was replaced by another one after being added but before being opened.
66 *
67 * The only hard part about lofi is the ioctls. In order to support things
68 * like 'newfs’ on a lofi device, it needs to support certain disk ioctls.
69 * So it has to fake disk geonmetry and partition information. Mre may need
70 * to be faked if your favorite utility doesn't work and you think it shoul d
71 * (fdformat doesn’t work because it really wants to know the type of floppy
72 * controller to talk to, and that didn't seemeasy to fake. O possibly even
73 * necessary, since we have nkfs_pcfs now).
74 *
75 * Normally, a |lofi device cannot be detached if it is open (i.e. busy). To
76 * support sinulation of hotplug events, an optional force flag is provided.
77 * If a lofi device is open when a force detach is requested, then the
78 * underlying file is closed and any subsequent operations return EIQO Wen the
79 * device is closed for the last tine, it will be cleaned up at that time. In
80 * addition, the DKI OCSTATE ioctl w Il return DKl O DEV_GONE when the device is
81 * detached but not renoved.
82 *
83 * |f detach was requested and | ofi device is not open, we will perform
84 * unmap and renove the lofi instance.
85 *
86 * If the lofi device is open and the |i_cleanup is set on ioctl request,
87 * we set |s_cleanup flag to notify the cleanup is requested, and the
88 * last lofi_close will performthe unmapping and this lofi instance will be
89 * renoved.
90 *
91 * If the lofi device is open and the |i_force is set on ioctl request,
92 * we set |Is_cleanup flag to notify the cleanup is requested,
93 * we also set Is_vp_closereq to notify IO tasks to return ElO on new
94 * |Orequests and wait in process |10 count to become O, indicating there
95 * are no nore IO requests. Since |s_cleanup is set, the |ast | ofi _cl ose
96 * will performunmap and this lofi instance wll be removed.
97 * See also lofi_unmap_file() for details.
98 *
99 * Once |Is_cleanup is set for the instance, we do not allow |ofi_open()
100 * calls to succeed and can have |last |ofi_close() to renpve the instance.
101 *
102 * Known probl ens:
103 *
104 * UFS 1 ogging. Mounting a UFS fil esysteminage "I oggi ng"
105 * wor ks for basic copy testing but wedges during a build of ON through
106 * that inmage. Sone deadl ock in lufs holding the | og nutex and then
107 * getting stuck on a buf. So for now, don’t do that.
108 *
109 * Direct 1/0 Since the filesystemdata i s being cached in the buffer
110 * cache, _and_ again in the underlying filesystem it's tenpting to
111 * enable direct 1/0 on the underlying file. Don't, because that deadl ocks.
112 = I think to fix the cache-twi ce probl emwe mght need fil esystem support.
113 *
114 * Interesting things to do:
115 *
116 * Allow nultiple files for each device. A poor-man’s netadi sk, basically.
117 *
118 * Pass-through ioctls on block devices. You can (though it’'s not
119 * docunented), give lofi a block device as a file nanme. Then we shoul dn’t
120 * need to fake a geonetry, however, it may be relevant if you' re replacing
121 * met adi sk, or using lofi to get crypto.
122 * I't makes sense to do |ofiadm-c aes -a /dev/dsk/cOt0dOs4 /dev/lofi/1l
123 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
124 * In fact this even nakes sense if you have |ofi "above" netadi sk.
125 *
126 * Encryption:
127 ~* Each | ofi device can have its own symetric key and ci pher.

new usr/src/uts/comon/iollofi.c

128
129
130
131
132
133

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

175
176
177

179
180
181
182
183
184
185

187
188
189
190
191

* ok kb F %

/

#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl
#i ncl

#def i
#def i
#def i

#def i

#def i

#def i

ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude
ude

ne
ne
ne

ne

ne

ne

They are passed to us by lofiadm(1n) in the correct format for use

with the msc/kcf crypto_* routines.

Each block has its own |V,
on the '

that is calculated in lofi_blk_nech(), based
"master” key held in the |sp and the bl ock nunber of the buffer.

<sys/types. h>
<netinet/in.h>
<sys/sysmacr os. h>
<sys/ ui 0. h>

<sys/ kmem h>
<sys/cred. h>

<sys/ mman. h>
<sys/errno. h>
<sys/ai o_req. h>
<sys/stat. h>
<sys/file.h>
<sys/nmodct| . h>
<sys/conf. h>

<sys/ debug. h>
<sys/vnode. h>
<sys/lofi.h>
<sys/lofi _inpl.h>
<sys/fecntl. h>
<sys/ pat hnane. h>
<sys/filio.h>

<sys/ fdio. h>

<sys/ open. h>
<sys/ di sp. h>

<vni seg_map. h>
<sys/ddi. h>
<sys/sunddi . h>

<sys/ znod. h>

<sys/i d_space. h>
<sys/ nkdev. h>

<sys/ crypt o/ cormon. h>
<sys/crypto/ api . h>
<sys/rctl.h>
<sys/vtoc. h>
<sys/scsi/scsi.h>
<sys/scsi/inpl/uscsi.h>
<sys/sysevent/dev. h>
<sys/efi_partition. h>

/* for cache structure */

/* for DTYPE_DI RECT */

<sys/ not e. h>

<LzmaDec. h>

NBLOCKS PROP_NAVE "Nbl ocks"

S| ZE_PROP_NANME "Si ze"

ZONE_PROP_NAME "zone"

SETUP_C DATA(cd buf, 1en) \

(cd).cd _format = CRYPTO DATA RAW \

(cd).cd_offset = 0; \

(cd).cd_niscdata = NULL \

(cd).cd_length = (le \

(cd).cd_raMLiov_base (buf) \

(cd).cd_raw.iov_len = (len);

Ul O CHECK(uio) \

if (((uio)->uio_loffset % DEV BSIZE) !=0 || \
((uio)->uio_resid % DEV_BSIZE) 1= 0) { \

return (EINVAL); \
}

LOFI _TIMEQUT 30

new usr/src/uts/comon/iollofi.c

195 static void *lofi_statep
196 static kmutex_t |ofi_lock; /* state lock */
197 static id_space_t *lofi_id; /* lofi 1D values */
198 static list_t lofi_list
199 static zone_key_t |ofi_zone_key
201 /*
202 * Because |lofi_taskq_nthreads limts the actual swanping of the device, the
203 * maxal |l oc paraneter (lofi_taskq_naxalloc) should be tuned conservatively
204 * high. If we want to be assured that the underlying device is always busy
205 * we nust be sure that the nunber of bytes enqueued when the nunber of
206 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
207 * the duration of the sleep tine in taskg_ent_alloc(). That is, lofi should
208 * set maxalloc to be the nmaxi mumthroughput (in bytes per second) of the
209 * underlying device divided by the minimumI|/O size. W assunme a realistic
210 * maxi mum t hr oughput of one hundred negabytes per second; we set maxalloc on
211 * the lofi task queue to be 104857600 divi ded by DEV_BSI ZE
212 */
213 static int |ofi_taskq_maxall oc = 104857600 / DEV_BSI ZE;
214 static int |ofi_taskq_nthreads = 4; /* # of taskq t hr eads per device */
216 const char lofi_crypto_nagic[6] = LOFI _CRYPTO MAG C,
218 /*
219 * To avoid deconpressing data in a conpressed segnent nmultiple tines
220 * when accessing snall parts of a segnent’s data, we cache and reuse
221 * the unconpressed segnent’s data
222 *
223 * A single cached segnent is sufficient to avoid lots of duplicate
224 * segnment deconpress operations. A small cache size al so reduces the
225 * menory footprint
226 *
227 * lofi_max_conp_cache is the maxi mum nunber of deconpressed data segnents
228 * cached for each conpressed lofi inmage. It can be set to O to disable
229 * caching
230 */
232 uint32_t |ofi_max_conp_cache = 1;
234 static int gzip_deconpress(void *src, size_t srclen, void *dst
235 size_t *destlen, int level);
237 static int |zma_deconpress(void *src, size_t srclen, void *dst
238 size_t *dstlen, int level)
240 | of i _conpress_info_t |ofi_conpress_tabl e[LOFI CtNPRESS_FUNCTIC}&ﬂ = {
241 {gzi p_deconpress, NULL, 6, 92|p "}, /* default */
242 {gzi p_deconpress, NULL, 6, 92|p 6"},
243 {gzi p_deconpress, NULL, 9, "gzip-9"},
244 {| zma_deconpress, NULL, 0, "lzma"}
245 };
__unchanged_portion_onitted_
1744 | * ARGSUSED2*/
1746 static int
1747 1 ofi _read(dev_t dev, struct uio *uio, struct cred *credp)
1748 {
1749 _NOTE(ARGUNUSED(cr edp)) ;
1751 if (getmnor(dev) == 0)
1752 return (El NVAL)
1753 Ul O_CHECK(ui 0) ;
1754 return (phyS|o(Iof| _strategy, NULL, dev, B_READ, mi nphys, uio))
1755 }

new usr/src/uts/comon/iollofi.c

1754 | * ARGSUSED2* /
1757 static int
1758 lofi _wite(dev_t dev, struct uio *uio, struct cred *credp)

1759 {

1760 _NOTE(ARGUNUSED(cr edp)) ;

1762 if (getmnor(dev) ==

1763 return (El N\/AL)

1764 Ul O_CHECK(ui 0) ;

1765 return (physi o(I ofi _strategy, NULL, dev, B_WRI TE, m nphys, uio));
1766 }

1768 static int

1769 lofi_urw(struct lofi_state *Isp, uintl16_t fnode, diskaddr_t

of f, size_t size,

1770 intptr_t arg, int flag, cred_t *credp)

1771 {

1772 struct uio uio;

1773 iovec_t iov;

1775 /*

1776 * 1024 * 1024 apes cm b_tg_max_efi_xfer as a reasonabl e nmax.
1777 */

1778 if (size == 0 || size > 1024 * 1024 ||
1779 (size % (1 << Isp->Is_Ibshift)) !'=0)
1780 return (EINVAL);

1782 iov.iov_base = (void *)arg;

1783 iov.iov_len = size;

1784 uio.uio_iov = &l ov;

1785 ui 0. uio_i ovcnt =1

1786 uio.uio_|loffset = off;

1787 ui 0. uio_segflg = (flag & FKIOCTL) ? U O SYSSPACE : U O USERSPACE;
1788 uio.uio_llimt = MAXOFFSET_T;

1789 uio.uio_resid = size;

1790 ui 0. ui o_fnode = fnode;

1791 uio.uio_extflg =

1793 return (fnode == FREAD ?

1794 | ofi _read(lsp->ls_dev, &uio, credp) :
1795 lofi_wite(lsp->ls_dev, &uio, credp));
1796 }

1798 /* ARGSUSED2*/
1799 static int

1800 | of i _aread(dev_t dev, struct aio_req *aio, struct cred *credp)

1801 {

1802 if (getmnor(dev) == 0)

1803 return (EINVAL);

1804 U O_CHECK(ai 0- >ai 0_ui 0);

1805) return (aphysio(lofi_strategy, anocancel, dev, B_READ, m nphys, aio));
1806

__unchanged_portion_onitted_

3218 static int

3219 lofi_ioctl(dev_t dev, int cnd, intptr_t arg, int flag, cred_t *credp,

3220 int *rval p)

3221 {

3222 int error;

3223 enum dki o_st ate dkst at e;

3224 struct lofi_state *Isp;

3225 dk_efi _t user_efi;

3226 int id;

3228 id = LOFI _M NOR2I D(get mi nor (dev));

3230 /* lofi ioctls only apply to the master device */

new usr/src/uts/comon/iollofi.c

3231 if (id==0) {

3232 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;

3234 /*

3235 * the query command only need read-access - i.e., nornal
3236 * users are allowed to do those on the ctl device as
3237 * long as they can open it read-only.

3238 */

3239 switch (cmd) {

3240 case LOFI _MAP_FI LE:

3241 if ((flag & FWRITE) == 0)

3242 return (EPERV;

3243 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
3244 case LOFI _MAP_FI LE_M NOR:

3245 if ((flag & FWRITE) == 0)

3246 return (EPERV;

3247 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
3248 case LOFI _UNMAP_FI LE:

3249 if ((flag & FWRITE) == 0)

3250 return (EPERV;

3251 return (lofi_unmap_file(lip, 1, credp, flag));
3252 case LOFI _UNVAP_FI LE_M NOR:

3253 if ((flag & FWRITE) == 0)

3254 return (EPERV;

3255 return (lofi_unmap_file(lip, O, credp, flag));
3256 case LOFI _CET_FI LENAIVE:

3257 return (lofi_get_info(dev, |ip, LOFI_GET_FI LENAME,
3258 credp, fI ag));

3259 case LOFI _GET_M NOR:

3260 return (lofi_get_info(dev, |ip, LOFI_GET_M NOR,
3261 credp, flag));

3263 /*

3264 * This APl nade |inmited sense when this value was fixed
3265 * at LOFI _MAX_FILES. However, its use to iterate

3266 * across all possible devices in |ofiadm neans we don't
3267 * want to return L_MAXM N, but the hi ghest

3268 * *all ocated* id.

3269 */

3270 case LOFI _GET_MAXM NOR:

3271 id=0;

3273 nmut ex_enter (& of i _| ock);

3275 for (Isp = list head(&Jofl_Ilst); I'sp I'= NULL;
3276 I'sp = list_next(&ofi_lis Isp)) {

3277 int i;

3278 if (lofi_access(lsp) !=0)

3279 conti nue;

3281 i = ddi _get_instance(lsp->ls_dip);

3282 if (i >id)

3283 id=1i;

3284 }

3286 mut ex_exit (& ofi _I ock);

3288 error = ddi _copyout (& d, & ip->li_id,

3289 sizeof (id), flag);

3290 if (error)

3291 return (EFAULT);

3292 return (0);

3294 case LOFI _CHECK COVPRESSED:

3295 return (lofi_get i nf o(dev, lip, LOFI_CHECK COVPRESSED,
3296 credp, flTag));

new usr/src/uts/comon/iollofi.c

3297
3298
3299
3300

3302
3303
3304
3305
3306
3307
3308

3310
3311
3312
3313
3314
3315
3316

3318
3319
3320
3321
3322
3323

3325
3326
3327
3328
3329
3330
3331

3333
3334
3335
3336
3337
3338

3340
3341
3342
3343

3345
3346
3347
3348
3349
3350
3351
3352
3353
3354

3356
3357
3358

3360
3361
3362

defaul t:
return (EINVAL);
}

}

mut ex_enter (& of i _| ock);
Isp = ddi_get_soft _state(lofi_statep, id);
if (I'sp == NULL || Isp->Is_cleanup) {

mut ex_exi t (& ofi _I ock);

return (ENXIO;

}
mut ex_exit (& ofi_l ock);

if (ddi_pr op_exi st s(DDI _DEV_T_ANY, |sp->Is_dip, DD _PROP_DONTPASS,
"l abel ed") == 1)
error = cn1b _ioctl (Isp->s_cm bhandl e, dev, cnd, arg, flag,
credp, rvalp, 0);
if (error !'= ENOTTY)
return (error);

}

/*
* We explicitly allow DKI OCSTATE, but all other ioctls should fail
* ElO as if the device was no | onger present.
*
if (Isp->ls_vp == NULL && cnd ! = DKI OCSTATE)
return (ElO;

/* these are for faking out utilities |ike newfs */
switch (cnd)
case DKI CCGVEDI Al NFO
case DKI OCGQVEDI Al NFOEXT:
struct dk_m nfo_ext nedia_info;
int shift = 1sp->ls_|lbshift;
int size;

if (cmd == DKI OCGVEDI Al NFOEXT) {
nedi a_i nfo. dki _pbsi ze = 1U << | sp->| s_pbshift;
size = sizeof (struct dk_m nfo_ext);

} else {
) size = sizeof (struct dk_m nfo);
medi a_i nf o. dki _medi a_t ype = DK_FI XED_DI SK;
medi a_i nf o. dki “Ibsize = 1U << shift
medi a_i nfo. dki _capacity =
(I'sp->ls_vp_size - |Isp->ls_crypto_offset) >> shift;

if (ddi _copyout(&redia_info, (void *)arg, size, flag))
return (EFAULT);
return (0);

}
case DKI G:REI\/D\/ABLE {
int i =0;
if (ddi _copyout(&j , (caddr_t)arg, sizeof (int), flag))
return (EFAULT);
return (0);

}

case DKI OCGVTCC:
struct vtoc vt;
fake_di sk_vtoc(lsp, &vt);

switch (ddi _nodel _convert_fron(flag & FMODELS)) {
case DDl _MODEL_ILP32: {
struct vtoc32 vtoc32;

wth

new usr/src/uts/comon/iollofi.c

3364
3365
3366
3367
3368
3369

3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402

3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416

3418
3419
3420

3422
3423
3424
3425
3426
3427
3428

vt oct ovt oc32(vt, vtoc32);
if (ddi _copyout (&toc32, (void *)arg,
sizeof (struct vtoc32), flag))
return (EFAULT);
break;

case DDl _MODEL_NONE:
if (ddi _copyout(&t, (void *)arg,
si zeof (struct vtoc), flag))
return (EFAULT);
br eak;

}
return (0);

}
case DKI OCI NFO
struct dk_cinfo ci;
fake_di sk_i nfo(dev, &ci);
if (ddi _copyout(&ci, (void *)arg, sizeof (ci), flag))
return (EFAULT);
return (0);

}
case DKI OCG VI RTGEOM
case DKI OCG_PHYGEOM
case DKI OCGCEQOVt

error = ddi _copyout (& sp->Is_dkg, (void *)arg,

si zeof (struct dk_geom, flag);
if (error)
return (EFAULT);

return (0);

case DKI OCSTATE
*

* Normal ly, lofi devices are always in the |INSERTED state. |f
* a device is forcefully unmapped, then the device transitions
* to the DKI O DEV_GONE state.

*

if (ddi _copyin((void *)arg, &dkstate, sizeof (dkstate),
flag) '=0
return (EFAULT);

mut ex_enter (& sp->l s_vp_| ock);

whi l e (((dkstate == DKIOINSERTED&& | sp->ls _vp !'= NULL) ||
(dkstate == DKI O DEV_GONE && | sp->ls_vp == NULL)) &&
IIsp/>|s _cl eanup) {

* By virtue of having the device open, we know that
* 'lsp” will renmain valid when we return.
*
if (lev_wait_sig(& sp->ls_vp_cv, & sp->Is_vp_lock)) {
mut ex_exi t (& sp->ls_vp_| Iock)
return (EINTR);

}

dkstate = (!lsp->ls_cleanup & |sp->Is_vp != NULL ?
DKI O_| NSERTED : ~DKI O_DEV_GONE) ;
mut ex_exi t (& sp- >l's _vp_l ock);

if (ddi_copyout (&dkstate, (void *)arg,
si zeof (dkstate), flag) != 0)
return (EFAULT)
return (0);
case USCSI CMVD:
struct uscsi_cnd uscnd;
uni on scsi_cdb cdb;

new usr/src/uts/comon/io/lofi.c 9 new usr/src/uts/comon/io/lofi.c 10
3495 case DKI OCSETEFI :

3430 if (uscsi_is_inquiry(arg, flag, &db, &uscmd) == 0) { 3496 if (ddi_copyin((void *)arg, &user_efi,

3431 struct scsi_inquiry ing = {0}; 3497 si zeof (dk_efi_t), flag) != 0)
3498 return (EFAULT);

3433 | ofi _create_inquiry(lsp, & nq);

3434 i f (ddi _copyout (& ng, uscnd. uscsi_bufaddr, 3500 return (lofi_urw(lsp, FWRITE,

3435 uscrd. uscsi _buflen, flag) !'= 0) 3501 user _efi.dki_lba * (1 << Isp->Is_lbshift),

3436 return (EFAULT); 3502 user _efi.dki_length, (intptr_t)user_efi.dki_data,

3437 return (0); 3503 flag, credp));

3438 } else if (cdb.scc_cnmd == SCMD_READ CAPACI TY) {

3439 struct scsi_capacity capacity; 3505 defaul t:
3506 #ifdef DEBUG

3441 capacity.capacity = 3507 com_err (CE_WARN, "lofi_ioctl: %l is not inplemented\n", cnd);

3442 BE 32((lsp->ls_vp_size - Isp->ls_crypto_offset) >> 3508 #endif /* DEBUG */

3443 I sp->I's_|l bshift); 3509 return (ENOTTY);

3444 capacity. | basize = BE_32(1 << Isp->Is_|bshift); 3510 }

3445 if (ddi _copyout (&capacity, uscnd.uscsi_bufaddr, 3511 }

3446 uscmd. uscsi _buflen, flag) != 0) ____unchanged_portion_onitted_

3447 return (EFAULT);

3448 return (0);

3449 }

3451 uscnd. uscsi _rqstatus = Oxff;

3452 #ifdef _MILTI _DATAMODEL

3453 switch (ddi _nodel _convert_fron(flag & FMODELS)) {

3454 case DDl _MODEL_ILP32: {

3455 struct uscsi_cnd32 ucnd32;

3456 uscsi _cmdt ouscsi _cnd32((&uscnd), (&ucnd32));

3457 if (ddi _copyout(&icnd32, (void *)arg, sizeof (ucnd32),

3458 flag) '=0

3459 return (EFAULT);

3460 break;

3461 }

3462 case DDl _MODEL_NONE:

3463 if (ddi_copyout (&uscnd, (void *)arg, sizeof (uscnd),

3464 flag) != 0)

3465 return (EFAULT);

3466 br eak;

3467 defaul t:

3468 return (EFAULT);

3469 }

3470 #el se

3471 if (ddi_copyout(&uscnd, (void *)arg, sizeof (uscnd), flag) != 0)

3472 return (EFAULT);

3473 #endif /* _MJLTI _DATAMODEL */

3474 return (0);

3475 }

3477 case DKI OCGVBOOT:

3478 return (lofi_urw(lsp, FREAD, 0, 1 << |sp->Is_|lbshift,

3479 arg, flag, credp));

3481 case DKI OCSVBOOT:

3482 return (lofi_urw(lsp, FWRITE, 0, 1 << |sp->ls_|lbshift,

3483 arg, flag, credp));

3485 case DKI OCCGETEFI :

3486 if (ddi _copyin((void *)arg, &user_efi,

3487 sizeof (dk_efi_t), flag) !'= 0)

3488 return (EFAULT);

3490 return (lofi_urw(lsp, FREAD,

3491 user _efi.dki_lba * (1 << Isp->Is_|lbshift),

3492 user_efi.dki _l ength, (intptr_t)user_efi.dki_data,

3493 flag, credp));

