1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 *
29 * Copyright (c) 2019, Joyent, Inc.
30 */
31
32 /*
33 * This file contains the functionality that mimics the boot operations
34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 * The x86 kernel now does everything on its own.
36 */
37
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/framebuffer.h>
54 #include <sys/cmn_err.h>
55 #include <sys/systm.h>
56 #include <sys/promif.h>
57 #include <sys/archsystm.h>
58 #include <sys/x86_archext.h>
59 #include <sys/kobj.h>
60 #include <sys/privregs.h>
61 #include <sys/sysmacros.h>
62 #include <sys/ctype.h>
63 #include <sys/fastboot.h>
64 #ifdef __xpv
65 #include <sys/hypervisor.h>
66 #include <net/if.h>
67 #endif
68 #include <vm/kboot_mmu.h>
69 #include <vm/hat_pte.h>
70 #include <sys/kobj.h>
71 #include <sys/kobj_lex.h>
72 #include <sys/pci_cfgspace_impl.h>
73 #include <sys/fastboot_impl.h>
74 #include <sys/acpi/acconfig.h>
75 #include <sys/acpi/acpi.h>
76 #include <sys/ddipropdefs.h> /* For DDI prop types */
77
78 static int have_console = 0; /* set once primitive console is initialized */
79 static char *boot_args = "";
80
81 /*
82 * Debugging macros
83 */
84 static uint_t kbm_debug = 0;
85 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
86 #define DBG(x) { if (kbm_debug) \
87 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
88 }
89
90 #define PUT_STRING(s) { \
91 char *cp; \
92 for (cp = (s); *cp; ++cp) \
93 bcons_putchar(*cp); \
94 }
95
96 /* callback to boot_fb to set shadow frame buffer */
97 extern void boot_fb_shadow_init(bootops_t *);
98
99 bootops_t bootop; /* simple bootops we'll pass on to kernel */
100 struct bsys_mem bm;
101
102 /*
103 * Boot info from "glue" code in low memory. xbootp is used by:
104 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
105 */
106 static struct xboot_info *xbootp;
107 static uintptr_t next_virt; /* next available virtual address */
108 static paddr_t next_phys; /* next available physical address from dboot */
109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
110
111 /*
112 * buffer for vsnprintf for console I/O
113 */
114 #define BUFFERSIZE 512
115 static char buffer[BUFFERSIZE];
116
117 /*
118 * stuff to store/report/manipulate boot property settings.
119 */
120 typedef struct bootprop {
121 struct bootprop *bp_next;
122 char *bp_name;
123 int bp_flags; /* DDI prop type */
124 uint_t bp_vlen; /* 0 for boolean */
125 char *bp_value;
126 } bootprop_t;
127
128 static bootprop_t *bprops = NULL;
129 static char *curr_page = NULL; /* ptr to avail bprop memory */
130 static int curr_space = 0; /* amount of memory at curr_page */
131
132 #ifdef __xpv
133 start_info_t *xen_info;
134 shared_info_t *HYPERVISOR_shared_info;
135 #endif
136
137 /*
138 * some allocator statistics
139 */
140 static ulong_t total_bop_alloc_scratch = 0;
141 static ulong_t total_bop_alloc_kernel = 0;
142
143 static void build_firmware_properties(struct xboot_info *);
144
145 static int early_allocation = 1;
146
147 int force_fastreboot = 0;
148 volatile int fastreboot_onpanic = 0;
149 int post_fastreboot = 0;
150 #ifdef __xpv
151 volatile int fastreboot_capable = 0;
152 #else
153 volatile int fastreboot_capable = 1;
154 #endif
155
156 /*
157 * Information saved from current boot for fast reboot.
158 * If the information size exceeds what we have allocated, fast reboot
159 * will not be supported.
160 */
161 multiboot_info_t saved_mbi;
162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
165 int saved_cmdline_len = 0;
166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
167
168 /*
169 * Turn off fastreboot_onpanic to avoid panic loop.
170 */
171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
173
174 /*
175 * Pointers to where System Resource Affinity Table (SRAT), System Locality
176 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
177 * are mapped into virtual memory
178 */
179 ACPI_TABLE_SRAT *srat_ptr = NULL;
180 ACPI_TABLE_SLIT *slit_ptr = NULL;
181 ACPI_TABLE_MSCT *msct_ptr = NULL;
182
183 /*
184 * Arbitrary limit on number of localities we handle; if
185 * this limit is raised to more than UINT16_MAX, make sure
186 * process_slit() knows how to handle it.
187 */
188 #define SLIT_LOCALITIES_MAX (4096)
189
190 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
191 #define SLIT_PROPNAME "acpi-slit"
192
193 /*
194 * Allocate aligned physical memory at boot time. This allocator allocates
195 * from the highest possible addresses. This avoids exhausting memory that
196 * would be useful for DMA buffers.
197 */
198 paddr_t
199 do_bop_phys_alloc(uint64_t size, uint64_t align)
200 {
201 paddr_t pa = 0;
202 paddr_t start;
203 paddr_t end;
204 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
205
206 /*
207 * Be careful if high memory usage is limited in startup.c
208 * Since there are holes in the low part of the physical address
209 * space we can treat physmem as a pfn (not just a pgcnt) and
210 * get a conservative upper limit.
211 */
212 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
213 high_phys = pfn_to_pa(physmem);
214
215 /*
216 * find the highest available memory in physinstalled
217 */
218 size = P2ROUNDUP(size, align);
219 for (; ml; ml = ml->ml_next) {
220 start = P2ROUNDUP(ml->ml_address, align);
221 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
222 if (start < next_phys)
223 start = P2ROUNDUP(next_phys, align);
224 if (end > high_phys)
225 end = P2ALIGN(high_phys, align);
226
227 if (end <= start)
228 continue;
229 if (end - start < size)
230 continue;
231
232 /*
233 * Early allocations need to use low memory, since
234 * physmem might be further limited by bootenv.rc
235 */
236 if (early_allocation) {
237 if (pa == 0 || start < pa)
238 pa = start;
239 } else {
240 if (end - size > pa)
241 pa = end - size;
242 }
243 }
244 if (pa != 0) {
245 if (early_allocation)
246 next_phys = pa + size;
247 else
248 high_phys = pa;
249 return (pa);
250 }
251 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
252 ") Out of memory\n", size, align);
253 /*NOTREACHED*/
254 }
255
256 uintptr_t
257 alloc_vaddr(size_t size, paddr_t align)
258 {
259 uintptr_t rv;
260
261 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
262 rv = (uintptr_t)next_virt;
263 next_virt += size;
264 return (rv);
265 }
266
267 /*
268 * Allocate virtual memory. The size is always rounded up to a multiple
269 * of base pagesize.
270 */
271
272 /*ARGSUSED*/
273 static caddr_t
274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
275 {
276 paddr_t a = align; /* same type as pa for masking */
277 uint_t pgsize;
278 paddr_t pa;
279 uintptr_t va;
280 ssize_t s; /* the aligned size */
281 uint_t level;
282 uint_t is_kernel = (virthint != 0);
283
284 if (a < MMU_PAGESIZE)
285 a = MMU_PAGESIZE;
286 else if (!ISP2(a))
287 prom_panic("do_bsys_alloc() incorrect alignment");
288 size = P2ROUNDUP(size, MMU_PAGESIZE);
289
290 /*
291 * Use the next aligned virtual address if we weren't given one.
292 */
293 if (virthint == NULL) {
294 virthint = (caddr_t)alloc_vaddr(size, a);
295 total_bop_alloc_scratch += size;
296 } else {
297 total_bop_alloc_kernel += size;
298 }
299
300 /*
301 * allocate the physical memory
302 */
303 pa = do_bop_phys_alloc(size, a);
304
305 /*
306 * Add the mappings to the page tables, try large pages first.
307 */
308 va = (uintptr_t)virthint;
309 s = size;
310 level = 1;
311 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
312 if (xbootp->bi_use_largepage && a == pgsize) {
313 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
314 s >= pgsize) {
315 kbm_map(va, pa, level, is_kernel);
316 va += pgsize;
317 pa += pgsize;
318 s -= pgsize;
319 }
320 }
321
322 /*
323 * Map remaining pages use small mappings
324 */
325 level = 0;
326 pgsize = MMU_PAGESIZE;
327 while (s > 0) {
328 kbm_map(va, pa, level, is_kernel);
329 va += pgsize;
330 pa += pgsize;
331 s -= pgsize;
332 }
333 return (virthint);
334 }
335
336 /*
337 * Free virtual memory - we'll just ignore these.
338 */
339 /*ARGSUSED*/
340 static void
341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
342 {
343 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
344 (void *)virt, size);
345 }
346
347 /*
348 * Old interface
349 */
350 /*ARGSUSED*/
351 static caddr_t
352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
353 int align, int flags)
354 {
355 prom_panic("unsupported call to BOP_EALLOC()\n");
356 return (0);
357 }
358
359
360 static void
361 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
362 {
363 uint_t size;
364 uint_t need_size;
365 bootprop_t *b;
366
367 /*
368 * align the size to 16 byte boundary
369 */
370 size = sizeof (bootprop_t) + nlen + 1 + vlen;
371 size = (size + 0xf) & ~0xf;
372 if (size > curr_space) {
373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
375 curr_space = need_size;
376 }
377
378 /*
379 * use a bootprop_t at curr_page and link into list
380 */
381 b = (bootprop_t *)curr_page;
382 curr_page += sizeof (bootprop_t);
383 curr_space -= sizeof (bootprop_t);
384 b->bp_next = bprops;
385 bprops = b;
386
387 /*
388 * follow by name and ending zero byte
389 */
390 b->bp_name = curr_page;
391 bcopy(name, curr_page, nlen);
392 curr_page += nlen;
393 *curr_page++ = 0;
394 curr_space -= nlen + 1;
395
396 /*
397 * set the property type
398 */
399 b->bp_flags = flags & DDI_PROP_TYPE_MASK;
400
401 /*
402 * copy in value, but no ending zero byte
403 */
404 b->bp_value = curr_page;
405 b->bp_vlen = vlen;
406 if (vlen > 0) {
407 bcopy(value, curr_page, vlen);
408 curr_page += vlen;
409 curr_space -= vlen;
410 }
411
412 /*
413 * align new values of curr_page, curr_space
414 */
415 while (curr_space & 0xf) {
416 ++curr_page;
417 --curr_space;
418 }
419 }
420
421 static void
422 bsetprops(char *name, char *value)
423 {
424 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
425 value, strlen(value) + 1);
426 }
427
428 static void
429 bsetprop32(char *name, uint32_t value)
430 {
431 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
432 (void *)&value, sizeof (value));
433 }
434
435 static void
436 bsetprop64(char *name, uint64_t value)
437 {
438 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
439 (void *)&value, sizeof (value));
440 }
441
442 static void
443 bsetpropsi(char *name, int value)
444 {
445 char prop_val[32];
446
447 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
448 bsetprops(name, prop_val);
449 }
450
451 /*
452 * to find the type of the value associated with this name
453 */
454 /*ARGSUSED*/
455 int
456 do_bsys_getproptype(bootops_t *bop, const char *name)
457 {
458 bootprop_t *b;
459
460 for (b = bprops; b != NULL; b = b->bp_next) {
461 if (strcmp(name, b->bp_name) != 0)
462 continue;
463 return (b->bp_flags);
464 }
465 return (-1);
466 }
467
468 /*
469 * to find the size of the buffer to allocate
470 */
471 /*ARGSUSED*/
472 int
473 do_bsys_getproplen(bootops_t *bop, const char *name)
474 {
475 bootprop_t *b;
476
477 for (b = bprops; b; b = b->bp_next) {
478 if (strcmp(name, b->bp_name) != 0)
479 continue;
480 return (b->bp_vlen);
481 }
482 return (-1);
483 }
484
485 /*
486 * get the value associated with this name
487 */
488 /*ARGSUSED*/
489 int
490 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
491 {
492 bootprop_t *b;
493
494 for (b = bprops; b; b = b->bp_next) {
495 if (strcmp(name, b->bp_name) != 0)
496 continue;
497 bcopy(b->bp_value, value, b->bp_vlen);
498 return (0);
499 }
500 return (-1);
501 }
502
503 /*
504 * get the name of the next property in succession from the standalone
505 */
506 /*ARGSUSED*/
507 static char *
508 do_bsys_nextprop(bootops_t *bop, char *name)
509 {
510 bootprop_t *b;
511
512 /*
513 * A null name is a special signal for the 1st boot property
514 */
515 if (name == NULL || strlen(name) == 0) {
516 if (bprops == NULL)
517 return (NULL);
518 return (bprops->bp_name);
519 }
520
521 for (b = bprops; b; b = b->bp_next) {
522 if (name != b->bp_name)
523 continue;
524 b = b->bp_next;
525 if (b == NULL)
526 return (NULL);
527 return (b->bp_name);
528 }
529 return (NULL);
530 }
531
532 /*
533 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
534 */
535 static int
536 parse_value(char *p, uint64_t *retval)
537 {
538 int adjust = 0;
539 uint64_t tmp = 0;
540 int digit;
541 int radix = 10;
542
543 *retval = 0;
544 if (*p == '-' || *p == '~')
545 adjust = *p++;
546
547 if (*p == '0') {
548 ++p;
549 if (*p == 0)
550 return (0);
551 if (*p == 'x' || *p == 'X') {
552 radix = 16;
553 ++p;
554 } else {
555 radix = 8;
556 ++p;
557 }
558 }
559 while (*p) {
560 if ('0' <= *p && *p <= '9')
561 digit = *p - '0';
562 else if ('a' <= *p && *p <= 'f')
563 digit = 10 + *p - 'a';
564 else if ('A' <= *p && *p <= 'F')
565 digit = 10 + *p - 'A';
566 else
567 return (-1);
568 if (digit >= radix)
569 return (-1);
570 tmp = tmp * radix + digit;
571 ++p;
572 }
573 if (adjust == '-')
574 tmp = -tmp;
575 else if (adjust == '~')
576 tmp = ~tmp;
577 *retval = tmp;
578 return (0);
579 }
580
581 static boolean_t
582 unprintable(char *value, int size)
583 {
584 int i;
585
586 if (size <= 0 || value[0] == '\0')
587 return (B_TRUE);
588
589 for (i = 0; i < size; i++) {
590 if (value[i] == '\0')
591 return (i != (size - 1));
592
593 if (!isprint(value[i]))
594 return (B_TRUE);
595 }
596 return (B_FALSE);
597 }
598
599 /*
600 * Print out information about all boot properties.
601 * buffer is pointer to pre-allocated space to be used as temporary
602 * space for property values.
603 */
604 static void
605 boot_prop_display(char *buffer)
606 {
607 char *name = "";
608 int i, len, flags, *buf32;
609 int64_t *buf64;
610
611 bop_printf(NULL, "\nBoot properties:\n");
612
613 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
614 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
615 (void) do_bsys_getprop(NULL, name, buffer);
616 len = do_bsys_getproplen(NULL, name);
617 flags = do_bsys_getproptype(NULL, name);
618 bop_printf(NULL, "len=%d ", len);
619
620 switch (flags) {
621 case DDI_PROP_TYPE_INT:
622 len = len / sizeof (int);
623 buf32 = (int *)buffer;
624 for (i = 0; i < len; i++) {
625 bop_printf(NULL, "%08x", buf32[i]);
626 if (i < len - 1)
627 bop_printf(NULL, ".");
628 }
629 break;
630 case DDI_PROP_TYPE_STRING:
631 bop_printf(NULL, "%s", buffer);
632 break;
633 case DDI_PROP_TYPE_INT64:
634 len = len / sizeof (int64_t);
635 buf64 = (int64_t *)buffer;
636 for (i = 0; i < len; i++) {
637 bop_printf(NULL, "%016" PRIx64, buf64[i]);
638 if (i < len - 1)
639 bop_printf(NULL, ".");
640 }
641 break;
642 default:
643 if (!unprintable(buffer, len)) {
644 buffer[len] = 0;
645 bop_printf(NULL, "%s", buffer);
646 break;
647 }
648 for (i = 0; i < len; i++) {
649 bop_printf(NULL, "%02x", buffer[i] & 0xff);
650 if (i < len - 1)
651 bop_printf(NULL, ".");
652 }
653 break;
654 }
655 bop_printf(NULL, "\n");
656 }
657 }
658
659 /*
660 * 2nd part of building the table of boot properties. This includes:
661 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
662 *
663 * lines look like one of:
664 * ^$
665 * ^# comment till end of line
666 * setprop name 'value'
667 * setprop name value
668 * setprop name "value"
669 *
670 * we do single character I/O since this is really just looking at memory
671 */
672 void
673 boot_prop_finish(void)
674 {
675 int fd;
676 char *line;
677 int c;
678 int bytes_read;
679 char *name;
680 int n_len;
681 char *value;
682 int v_len;
683 char *inputdev; /* these override the command line if serial ports */
684 char *outputdev;
685 char *consoledev;
686 uint64_t lvalue;
687 int use_xencons = 0;
688 extern int bootrd_debug;
689
690 #ifdef __xpv
691 if (!DOMAIN_IS_INITDOMAIN(xen_info))
692 use_xencons = 1;
693 #endif /* __xpv */
694
695 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
696 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
697 DBG(fd);
698
699 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
700 while (fd >= 0) {
701
702 /*
703 * get a line
704 */
705 for (c = 0; ; ++c) {
706 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
707 if (bytes_read == 0) {
708 if (c == 0)
709 goto done;
710 break;
711 }
712 if (line[c] == '\n')
713 break;
714 }
715 line[c] = 0;
716
717 /*
718 * ignore comment lines
719 */
720 c = 0;
721 while (ISSPACE(line[c]))
722 ++c;
723 if (line[c] == '#' || line[c] == 0)
724 continue;
725
726 /*
727 * must have "setprop " or "setprop\t"
728 */
729 if (strncmp(line + c, "setprop ", 8) != 0 &&
730 strncmp(line + c, "setprop\t", 8) != 0)
731 continue;
732 c += 8;
733 while (ISSPACE(line[c]))
734 ++c;
735 if (line[c] == 0)
736 continue;
737
738 /*
739 * gather up the property name
740 */
741 name = line + c;
742 n_len = 0;
743 while (line[c] && !ISSPACE(line[c]))
744 ++n_len, ++c;
745
746 /*
747 * gather up the value, if any
748 */
749 value = "";
750 v_len = 0;
751 while (ISSPACE(line[c]))
752 ++c;
753 if (line[c] != 0) {
754 value = line + c;
755 while (line[c] && !ISSPACE(line[c]))
756 ++v_len, ++c;
757 }
758
759 if (v_len >= 2 && value[0] == value[v_len - 1] &&
760 (value[0] == '\'' || value[0] == '"')) {
761 ++value;
762 v_len -= 2;
763 }
764 name[n_len] = 0;
765 if (v_len > 0)
766 value[v_len] = 0;
767 else
768 continue;
769
770 /*
771 * ignore "boot-file" property, it's now meaningless
772 */
773 if (strcmp(name, "boot-file") == 0)
774 continue;
775 if (strcmp(name, "boot-args") == 0 &&
776 strlen(boot_args) > 0)
777 continue;
778
779 /*
780 * If a property was explicitly set on the command line
781 * it will override a setting in bootenv.rc
782 */
783 if (do_bsys_getproplen(NULL, name) >= 0)
784 continue;
785
786 bsetprops(name, value);
787 }
788 done:
789 if (fd >= 0)
790 (void) BRD_CLOSE(bfs_ops, fd);
791
792 /*
793 * Check if we have to limit the boot time allocator
794 */
795 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
796 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
797 parse_value(line, &lvalue) != -1) {
798 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
799 physmem = (pgcnt_t)lvalue;
800 DBG(physmem);
801 }
802 }
803 early_allocation = 0;
804
805 /*
806 * Check for bootrd_debug.
807 */
808 if (find_boot_prop("bootrd_debug"))
809 bootrd_debug = 1;
810
811 /*
812 * check to see if we have to override the default value of the console
813 */
814 if (!use_xencons) {
815 inputdev = line;
816 v_len = do_bsys_getproplen(NULL, "input-device");
817 if (v_len > 0)
818 (void) do_bsys_getprop(NULL, "input-device", inputdev);
819 else
820 v_len = 0;
821 inputdev[v_len] = 0;
822
823 outputdev = inputdev + v_len + 1;
824 v_len = do_bsys_getproplen(NULL, "output-device");
825 if (v_len > 0)
826 (void) do_bsys_getprop(NULL, "output-device",
827 outputdev);
828 else
829 v_len = 0;
830 outputdev[v_len] = 0;
831
832 consoledev = outputdev + v_len + 1;
833 v_len = do_bsys_getproplen(NULL, "console");
834 if (v_len > 0) {
835 (void) do_bsys_getprop(NULL, "console", consoledev);
836 if (post_fastreboot &&
837 strcmp(consoledev, "graphics") == 0) {
838 bsetprops("console", "text");
839 v_len = strlen("text");
840 bcopy("text", consoledev, v_len);
841 }
842 } else {
843 v_len = 0;
844 }
845 consoledev[v_len] = 0;
846 bcons_init2(inputdev, outputdev, consoledev);
847 } else {
848 /*
849 * Ensure console property exists
850 * If not create it as "hypervisor"
851 */
852 v_len = do_bsys_getproplen(NULL, "console");
853 if (v_len < 0)
854 bsetprops("console", "hypervisor");
855 inputdev = outputdev = consoledev = "hypervisor";
856 bcons_init2(inputdev, outputdev, consoledev);
857 }
858
859 if (find_boot_prop("prom_debug") || kbm_debug)
860 boot_prop_display(line);
861 }
862
863 /*
864 * print formatted output
865 */
866 /*ARGSUSED*/
867 void
868 vbop_printf(void *ptr, const char *fmt, va_list ap)
869 {
870 if (have_console == 0)
871 return;
872
873 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
874 PUT_STRING(buffer);
875 }
876
877 /*PRINTFLIKE2*/
878 void
879 bop_printf(void *bop, const char *fmt, ...)
880 {
881 va_list ap;
882
883 va_start(ap, fmt);
884 vbop_printf(bop, fmt, ap);
885 va_end(ap);
886 }
887
888 /*
889 * Another panic() variant; this one can be used even earlier during boot than
890 * prom_panic().
891 */
892 /*PRINTFLIKE1*/
893 void
894 bop_panic(const char *fmt, ...)
895 {
896 va_list ap;
897
898 va_start(ap, fmt);
899 bop_printf(NULL, fmt, ap);
900 va_end(ap);
901
902 bop_printf(NULL, "\nPress any key to reboot.\n");
903 (void) bcons_getchar();
904 bop_printf(NULL, "Resetting...\n");
905 pc_reset();
906 }
907
908 /*
909 * Do a real mode interrupt BIOS call
910 */
911 typedef struct bios_regs {
912 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
913 } bios_regs_t;
914 typedef int (*bios_func_t)(int, bios_regs_t *);
915
916 /*ARGSUSED*/
917 static void
918 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
919 {
920 #if defined(__xpv)
921 prom_panic("unsupported call to BOP_DOINT()\n");
922 #else /* __xpv */
923 static int firsttime = 1;
924 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
925 bios_regs_t br;
926
927 /*
928 * We're about to disable paging; we shouldn't be PCID enabled.
929 */
930 if (getcr4() & CR4_PCIDE)
931 prom_panic("do_bsys_doint() with PCID enabled\n");
932
933 /*
934 * The first time we do this, we have to copy the pre-packaged
935 * low memory bios call code image into place.
936 */
937 if (firsttime) {
938 extern char bios_image[];
939 extern uint32_t bios_size;
940
941 bcopy(bios_image, (void *)bios_func, bios_size);
942 firsttime = 0;
943 }
944
945 br.ax = rp->eax.word.ax;
946 br.bx = rp->ebx.word.bx;
947 br.cx = rp->ecx.word.cx;
948 br.dx = rp->edx.word.dx;
949 br.bp = rp->ebp.word.bp;
950 br.si = rp->esi.word.si;
951 br.di = rp->edi.word.di;
952 br.ds = rp->ds;
953 br.es = rp->es;
954
955 DBG_MSG("Doing BIOS call...");
956 DBG(br.ax);
957 DBG(br.bx);
958 DBG(br.dx);
959 rp->eflags = bios_func(intnum, &br);
960 DBG_MSG("done\n");
961
962 rp->eax.word.ax = br.ax;
963 rp->ebx.word.bx = br.bx;
964 rp->ecx.word.cx = br.cx;
965 rp->edx.word.dx = br.dx;
966 rp->ebp.word.bp = br.bp;
967 rp->esi.word.si = br.si;
968 rp->edi.word.di = br.di;
969 rp->ds = br.ds;
970 rp->es = br.es;
971 #endif /* __xpv */
972 }
973
974 static struct boot_syscalls bop_sysp = {
975 bcons_getchar,
976 bcons_putchar,
977 bcons_ischar,
978 };
979
980 static char *whoami;
981
982 #define BUFLEN 64
983
984 #if defined(__xpv)
985
986 static char namebuf[32];
987
988 static void
989 xen_parse_props(char *s, char *prop_map[], int n_prop)
990 {
991 char **prop_name = prop_map;
992 char *cp = s, *scp;
993
994 do {
995 scp = cp;
996 while ((*cp != NULL) && (*cp != ':'))
997 cp++;
998
999 if ((scp != cp) && (*prop_name != NULL)) {
1000 *cp = NULL;
1001 bsetprops(*prop_name, scp);
1002 }
1003
1004 cp++;
1005 prop_name++;
1006 n_prop--;
1007 } while (n_prop > 0);
1008 }
1009
1010 #define VBDPATHLEN 64
1011
1012 /*
1013 * parse the 'xpv-root' property to create properties used by
1014 * ufs_mountroot.
1015 */
1016 static void
1017 xen_vbdroot_props(char *s)
1018 {
1019 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1020 const char lnamefix[] = "/dev/dsk/c0d";
1021 char *pnp;
1022 char *prop_p;
1023 char mi;
1024 short minor;
1025 long addr = 0;
1026
1027 pnp = vbdpath + strlen(vbdpath);
1028 prop_p = s + strlen(lnamefix);
1029 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1030 addr = addr * 10 + *prop_p++ - '0';
1031 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1032 pnp = vbdpath + strlen(vbdpath);
1033 if (*prop_p == 's')
1034 mi = 'a';
1035 else if (*prop_p == 'p')
1036 mi = 'q';
1037 else
1038 ASSERT(0); /* shouldn't be here */
1039 prop_p++;
1040 ASSERT(*prop_p != '\0');
1041 if (ISDIGIT(*prop_p)) {
1042 minor = *prop_p - '0';
1043 prop_p++;
1044 if (ISDIGIT(*prop_p)) {
1045 minor = minor * 10 + *prop_p - '0';
1046 }
1047 } else {
1048 /* malformed root path, use 0 as default */
1049 minor = 0;
1050 }
1051 ASSERT(minor < 16); /* at most 16 partitions */
1052 mi += minor;
1053 *pnp++ = ':';
1054 *pnp++ = mi;
1055 *pnp++ = '\0';
1056 bsetprops("fstype", "ufs");
1057 bsetprops("bootpath", vbdpath);
1058
1059 DBG_MSG("VBD bootpath set to ");
1060 DBG_MSG(vbdpath);
1061 DBG_MSG("\n");
1062 }
1063
1064 /*
1065 * parse the xpv-nfsroot property to create properties used by
1066 * nfs_mountroot.
1067 */
1068 static void
1069 xen_nfsroot_props(char *s)
1070 {
1071 char *prop_map[] = {
1072 BP_SERVER_IP, /* server IP address */
1073 BP_SERVER_NAME, /* server hostname */
1074 BP_SERVER_PATH, /* root path */
1075 };
1076 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1077
1078 bsetprops("fstype", "nfs");
1079
1080 xen_parse_props(s, prop_map, n_prop);
1081
1082 /*
1083 * If a server name wasn't specified, use a default.
1084 */
1085 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1086 bsetprops(BP_SERVER_NAME, "unknown");
1087 }
1088
1089 /*
1090 * Extract our IP address, etc. from the "xpv-ip" property.
1091 */
1092 static void
1093 xen_ip_props(char *s)
1094 {
1095 char *prop_map[] = {
1096 BP_HOST_IP, /* IP address */
1097 NULL, /* NFS server IP address (ignored in */
1098 /* favour of xpv-nfsroot) */
1099 BP_ROUTER_IP, /* IP gateway */
1100 BP_SUBNET_MASK, /* IP subnet mask */
1101 "xpv-hostname", /* hostname (ignored) */
1102 BP_NETWORK_INTERFACE, /* interface name */
1103 "xpv-hcp", /* host configuration protocol */
1104 };
1105 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1106 char ifname[IFNAMSIZ];
1107
1108 xen_parse_props(s, prop_map, n_prop);
1109
1110 /*
1111 * A Linux dom0 administrator expects all interfaces to be
1112 * called "ethX", which is not the case here.
1113 *
1114 * If the interface name specified is "eth0", presume that
1115 * this is really intended to be "xnf0" (the first domU ->
1116 * dom0 interface for this domain).
1117 */
1118 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1119 (strcmp("eth0", ifname) == 0)) {
1120 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1121 bop_printf(NULL,
1122 "network interface name 'eth0' replaced with 'xnf0'\n");
1123 }
1124 }
1125
1126 #else /* __xpv */
1127
1128 static void
1129 setup_rarp_props(struct sol_netinfo *sip)
1130 {
1131 char buf[BUFLEN]; /* to hold ip/mac addrs */
1132 uint8_t *val;
1133
1134 val = (uint8_t *)&sip->sn_ciaddr;
1135 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1136 val[0], val[1], val[2], val[3]);
1137 bsetprops(BP_HOST_IP, buf);
1138
1139 val = (uint8_t *)&sip->sn_siaddr;
1140 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1141 val[0], val[1], val[2], val[3]);
1142 bsetprops(BP_SERVER_IP, buf);
1143
1144 if (sip->sn_giaddr != 0) {
1145 val = (uint8_t *)&sip->sn_giaddr;
1146 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1147 val[0], val[1], val[2], val[3]);
1148 bsetprops(BP_ROUTER_IP, buf);
1149 }
1150
1151 if (sip->sn_netmask != 0) {
1152 val = (uint8_t *)&sip->sn_netmask;
1153 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1154 val[0], val[1], val[2], val[3]);
1155 bsetprops(BP_SUBNET_MASK, buf);
1156 }
1157
1158 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1159 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1160 sip->sn_mactype, sip->sn_maclen);
1161 } else {
1162 val = sip->sn_macaddr;
1163 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1164 val[0], val[1], val[2], val[3], val[4], val[5]);
1165 bsetprops(BP_BOOT_MAC, buf);
1166 }
1167 }
1168
1169 #endif /* __xpv */
1170
1171 static void
1172 build_panic_cmdline(const char *cmd, int cmdlen)
1173 {
1174 int proplen;
1175 size_t arglen;
1176
1177 arglen = sizeof (fastreboot_onpanic_args);
1178 /*
1179 * If we allready have fastreboot-onpanic set to zero,
1180 * don't add them again.
1181 */
1182 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1183 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1184 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1185 fastreboot_onpanic_cmdline);
1186 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1187 arglen = 1;
1188 }
1189
1190 /*
1191 * construct fastreboot_onpanic_cmdline
1192 */
1193 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1194 DBG_MSG("Command line too long: clearing "
1195 FASTREBOOT_ONPANIC "\n");
1196 fastreboot_onpanic = 0;
1197 } else {
1198 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1199 if (arglen != 1)
1200 bcopy(fastreboot_onpanic_args,
1201 fastreboot_onpanic_cmdline + cmdlen, arglen);
1202 else
1203 fastreboot_onpanic_cmdline[cmdlen] = 0;
1204 }
1205 }
1206
1207
1208 #ifndef __xpv
1209 /*
1210 * Construct boot command line for Fast Reboot. The saved_cmdline
1211 * is also reported by "eeprom bootcmd".
1212 */
1213 static void
1214 build_fastboot_cmdline(struct xboot_info *xbp)
1215 {
1216 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1;
1217 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1218 DBG(saved_cmdline_len);
1219 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1220 fastreboot_capable = 0;
1221 } else {
1222 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1223 saved_cmdline_len);
1224 saved_cmdline[saved_cmdline_len - 1] = '\0';
1225 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1226 }
1227 }
1228
1229 /*
1230 * Save memory layout, disk drive information, unix and boot archive sizes for
1231 * Fast Reboot.
1232 */
1233 static void
1234 save_boot_info(struct xboot_info *xbi)
1235 {
1236 multiboot_info_t *mbi = xbi->bi_mb_info;
1237 struct boot_modules *modp;
1238 int i;
1239
1240 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1241 if (mbi->mmap_length > sizeof (saved_mmap)) {
1242 DBG_MSG("mbi->mmap_length too big: clearing "
1243 "fastreboot_capable\n");
1244 fastreboot_capable = 0;
1245 } else {
1246 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1247 mbi->mmap_length);
1248 }
1249
1250 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1251 if (mbi->drives_length > sizeof (saved_drives)) {
1252 DBG(mbi->drives_length);
1253 DBG_MSG("mbi->drives_length too big: clearing "
1254 "fastreboot_capable\n");
1255 fastreboot_capable = 0;
1256 } else {
1257 bcopy((void *)(uintptr_t)mbi->drives_addr,
1258 (void *)saved_drives, mbi->drives_length);
1259 }
1260 } else {
1261 saved_mbi.drives_length = 0;
1262 saved_mbi.drives_addr = NULL;
1263 }
1264
1265 /*
1266 * Current file sizes. Used by fastboot.c to figure out how much
1267 * memory to reserve for panic reboot.
1268 * Use the module list from the dboot-constructed xboot_info
1269 * instead of the list referenced by the multiboot structure
1270 * because that structure may not be addressable now.
1271 */
1272 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1273 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1274 i < xbi->bi_module_cnt; i++, modp++) {
1275 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1276 }
1277 }
1278 #endif /* __xpv */
1279
1280 /*
1281 * Import boot environment module variables as properties, applying
1282 * blacklist filter for variables we know we will not use.
1283 *
1284 * Since the environment can be relatively large, containing many variables
1285 * used only for boot loader purposes, we will use a blacklist based filter.
1286 * To keep the blacklist from growing too large, we use prefix based filtering.
1287 * This is possible because in many cases, the loader variable names are
1288 * using a structured layout.
1289 *
1290 * We will not overwrite already set properties.
1291 *
1292 * Note that the menu items in particular can contain characters not
1293 * well-handled as bootparams, such as spaces, brackets, and the like, so that's
1294 * another reason.
1295 */
1296 static struct bop_blacklist {
1297 const char *bl_name;
1298 int bl_name_len;
1299 } bop_prop_blacklist[] = {
1300 { "ISADIR", sizeof ("ISADIR") },
1301 { "acpi", sizeof ("acpi") },
1302 { "autoboot_delay", sizeof ("autoboot_delay") },
1303 { "beansi_", sizeof ("beansi_") },
1304 { "beastie", sizeof ("beastie") },
1305 { "bemenu", sizeof ("bemenu") },
1306 { "boot.", sizeof ("boot.") },
1307 { "bootenv", sizeof ("bootenv") },
1308 { "currdev", sizeof ("currdev") },
1309 { "dhcp.", sizeof ("dhcp.") },
1310 { "interpret", sizeof ("interpret") },
1311 { "kernel", sizeof ("kernel") },
1312 { "loaddev", sizeof ("loaddev") },
1313 { "loader_", sizeof ("loader_") },
1314 { "mainansi_", sizeof ("mainansi_") },
1315 { "mainmenu_", sizeof ("mainmenu_") },
1316 { "maintoggled_", sizeof ("maintoggled_") },
1317 { "menu_timeout_command", sizeof ("menu_timeout_command") },
1318 { "menuset_", sizeof ("menuset_") },
1319 { "module_path", sizeof ("module_path") },
1320 { "nfs.", sizeof ("nfs.") },
1321 { "optionsansi_", sizeof ("optionsansi_") },
1322 { "optionsmenu_", sizeof ("optionsmenu_") },
1323 { "optionstoggled_", sizeof ("optionstoggled_") },
1324 { "pcibios", sizeof ("pcibios") },
1325 { "prompt", sizeof ("prompt") },
1326 { "smbios", sizeof ("smbios") },
1327 { "tem", sizeof ("tem") },
1328 { "twiddle_divisor", sizeof ("twiddle_divisor") },
1329 { "zfs_be", sizeof ("zfs_be") },
1330 };
1331
1332 /*
1333 * Match the name against prefixes in above blacklist. If the match was
1334 * found, this name is blacklisted.
1335 */
1336 static boolean_t
1337 name_is_blacklisted(const char *name)
1338 {
1339 int i, n;
1340
1341 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1342 for (i = 0; i < n; i++) {
1343 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1344 bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1345 return (B_TRUE);
1346 }
1347 }
1348 return (B_FALSE);
1349 }
1350
1351 static void
1352 process_boot_environment(struct boot_modules *benv)
1353 {
1354 char *env, *ptr, *name, *value;
1355 uint32_t size, name_len, value_len;
1356
1357 if (benv == NULL || benv->bm_type != BMT_ENV)
1358 return;
1359 ptr = env = benv->bm_addr;
1360 size = benv->bm_size;
1361 do {
1362 name = ptr;
1363 /* find '=' */
1364 while (*ptr != '=') {
1365 ptr++;
1366 if (ptr > env + size) /* Something is very wrong. */
1367 return;
1368 }
1369 name_len = ptr - name;
1370 if (sizeof (buffer) <= name_len)
1371 continue;
1372
1373 (void) strncpy(buffer, name, sizeof (buffer));
1374 buffer[name_len] = '\0';
1375 name = buffer;
1376
1377 value_len = 0;
1378 value = ++ptr;
1379 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1380 if (*ptr == '\0') {
1381 ptr++;
1382 value_len = (uintptr_t)ptr - (uintptr_t)env;
1383 break;
1384 }
1385 ptr++;
1386 }
1387
1388 /* Did we reach the end of the module? */
1389 if (value_len == 0)
1390 return;
1391
1392 if (*value == '\0')
1393 continue;
1394
1395 /* Is this property already set? */
1396 if (do_bsys_getproplen(NULL, name) >= 0)
1397 continue;
1398
1399 /* Translate netboot variables */
1400 if (strcmp(name, "boot.netif.gateway") == 0) {
1401 bsetprops(BP_ROUTER_IP, value);
1402 continue;
1403 }
1404 if (strcmp(name, "boot.netif.hwaddr") == 0) {
1405 bsetprops(BP_BOOT_MAC, value);
1406 continue;
1407 }
1408 if (strcmp(name, "boot.netif.ip") == 0) {
1409 bsetprops(BP_HOST_IP, value);
1410 continue;
1411 }
1412 if (strcmp(name, "boot.netif.netmask") == 0) {
1413 bsetprops(BP_SUBNET_MASK, value);
1414 continue;
1415 }
1416 if (strcmp(name, "boot.netif.server") == 0) {
1417 bsetprops(BP_SERVER_IP, value);
1418 continue;
1419 }
1420 if (strcmp(name, "boot.netif.server") == 0) {
1421 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1422 bsetprops(BP_SERVER_IP, value);
1423 continue;
1424 }
1425 if (strcmp(name, "boot.nfsroot.server") == 0) {
1426 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1427 bsetprops(BP_SERVER_IP, value);
1428 continue;
1429 }
1430 if (strcmp(name, "boot.nfsroot.path") == 0) {
1431 bsetprops(BP_SERVER_PATH, value);
1432 continue;
1433 }
1434
1435 if (name_is_blacklisted(name) == B_TRUE)
1436 continue;
1437
1438 /* Create new property. */
1439 bsetprops(name, value);
1440
1441 /* Avoid reading past the module end. */
1442 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1443 return;
1444 } while (*ptr != '\0');
1445 }
1446
1447 /*
1448 * 1st pass at building the table of boot properties. This includes:
1449 * - values set on the command line: -B a=x,b=y,c=z ....
1450 * - known values we just compute (ie. from xbp)
1451 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1452 *
1453 * the grub command line looked like:
1454 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1455 *
1456 * whoami is the same as boot-file
1457 */
1458 static void
1459 build_boot_properties(struct xboot_info *xbp)
1460 {
1461 char *name;
1462 int name_len;
1463 char *value;
1464 int value_len;
1465 struct boot_modules *bm, *rdbm, *benv = NULL;
1466 char *propbuf;
1467 int quoted = 0;
1468 int boot_arg_len;
1469 uint_t i, midx;
1470 char modid[32];
1471 #ifndef __xpv
1472 static int stdout_val = 0;
1473 uchar_t boot_device;
1474 char str[3];
1475 #endif
1476
1477 /*
1478 * These have to be done first, so that kobj_mount_root() works
1479 */
1480 DBG_MSG("Building boot properties\n");
1481 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1482 DBG((uintptr_t)propbuf);
1483 if (xbp->bi_module_cnt > 0) {
1484 bm = xbp->bi_modules;
1485 rdbm = NULL;
1486 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1487 if (bm[i].bm_type == BMT_ROOTFS) {
1488 rdbm = &bm[i];
1489 continue;
1490 }
1491 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1492 continue;
1493
1494 if (bm[i].bm_type == BMT_ENV) {
1495 if (benv == NULL)
1496 benv = &bm[i];
1497 else
1498 continue;
1499 }
1500
1501 (void) snprintf(modid, sizeof (modid),
1502 "module-name-%u", midx);
1503 bsetprops(modid, (char *)bm[i].bm_name);
1504 (void) snprintf(modid, sizeof (modid),
1505 "module-addr-%u", midx);
1506 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1507 (void) snprintf(modid, sizeof (modid),
1508 "module-size-%u", midx);
1509 bsetprop64(modid, (uint64_t)bm[i].bm_size);
1510 ++midx;
1511 }
1512 if (rdbm != NULL) {
1513 bsetprop64("ramdisk_start",
1514 (uint64_t)(uintptr_t)rdbm->bm_addr);
1515 bsetprop64("ramdisk_end",
1516 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1517 }
1518 }
1519
1520 /*
1521 * If there are any boot time modules or hashes present, then disable
1522 * fast reboot.
1523 */
1524 if (xbp->bi_module_cnt > 1) {
1525 fastreboot_disable(FBNS_BOOTMOD);
1526 }
1527
1528 #ifndef __xpv
1529 /*
1530 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1531 * since we don't currently support MB2 info and module relocation.
1532 * Note that fast reboot will have already been disabled if multiple
1533 * modules are present, since the current implementation assumes that
1534 * we only have a single module, the boot_archive.
1535 */
1536 if (xbp->bi_mb_version != 1) {
1537 fastreboot_disable(FBNS_MULTIBOOT2);
1538 }
1539 #endif
1540
1541 DBG_MSG("Parsing command line for boot properties\n");
1542 value = xbp->bi_cmdline;
1543
1544 /*
1545 * allocate memory to collect boot_args into
1546 */
1547 boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1548 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1549 boot_args[0] = 0;
1550 boot_arg_len = 0;
1551
1552 #ifdef __xpv
1553 /*
1554 * Xen puts a lot of device information in front of the kernel name
1555 * let's grab them and make them boot properties. The first
1556 * string w/o an "=" in it will be the boot-file property.
1557 */
1558 (void) strcpy(namebuf, "xpv-");
1559 for (;;) {
1560 /*
1561 * get to next property
1562 */
1563 while (ISSPACE(*value))
1564 ++value;
1565 name = value;
1566 /*
1567 * look for an "="
1568 */
1569 while (*value && !ISSPACE(*value) && *value != '=') {
1570 value++;
1571 }
1572 if (*value != '=') { /* no "=" in the property */
1573 value = name;
1574 break;
1575 }
1576 name_len = value - name;
1577 value_len = 0;
1578 /*
1579 * skip over the "="
1580 */
1581 value++;
1582 while (value[value_len] && !ISSPACE(value[value_len])) {
1583 ++value_len;
1584 }
1585 /*
1586 * build property name with "xpv-" prefix
1587 */
1588 if (name_len + 4 > 32) { /* skip if name too long */
1589 value += value_len;
1590 continue;
1591 }
1592 bcopy(name, &namebuf[4], name_len);
1593 name_len += 4;
1594 namebuf[name_len] = 0;
1595 bcopy(value, propbuf, value_len);
1596 propbuf[value_len] = 0;
1597 bsetprops(namebuf, propbuf);
1598
1599 /*
1600 * xpv-root is set to the logical disk name of the xen
1601 * VBD when booting from a disk-based filesystem.
1602 */
1603 if (strcmp(namebuf, "xpv-root") == 0)
1604 xen_vbdroot_props(propbuf);
1605 /*
1606 * While we're here, if we have a "xpv-nfsroot" property
1607 * then we need to set "fstype" to "nfs" so we mount
1608 * our root from the nfs server. Also parse the xpv-nfsroot
1609 * property to create the properties that nfs_mountroot will
1610 * need to find the root and mount it.
1611 */
1612 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1613 xen_nfsroot_props(propbuf);
1614
1615 if (strcmp(namebuf, "xpv-ip") == 0)
1616 xen_ip_props(propbuf);
1617 value += value_len;
1618 }
1619 #endif
1620
1621 while (ISSPACE(*value))
1622 ++value;
1623 /*
1624 * value now points at the boot-file
1625 */
1626 value_len = 0;
1627 while (value[value_len] && !ISSPACE(value[value_len]))
1628 ++value_len;
1629 if (value_len > 0) {
1630 whoami = propbuf;
1631 bcopy(value, whoami, value_len);
1632 whoami[value_len] = 0;
1633 bsetprops("boot-file", whoami);
1634 /*
1635 * strip leading path stuff from whoami, so running from
1636 * PXE/miniroot makes sense.
1637 */
1638 if (strstr(whoami, "/platform/") != NULL)
1639 whoami = strstr(whoami, "/platform/");
1640 bsetprops("whoami", whoami);
1641 }
1642
1643 /*
1644 * Values forcibly set boot properties on the command line via -B.
1645 * Allow use of quotes in values. Other stuff goes on kernel
1646 * command line.
1647 */
1648 name = value + value_len;
1649 while (*name != 0) {
1650 /*
1651 * anything not " -B" is copied to the command line
1652 */
1653 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1654 boot_args[boot_arg_len++] = *name;
1655 boot_args[boot_arg_len] = 0;
1656 ++name;
1657 continue;
1658 }
1659
1660 /*
1661 * skip the " -B" and following white space
1662 */
1663 name += 3;
1664 while (ISSPACE(*name))
1665 ++name;
1666 while (*name && !ISSPACE(*name)) {
1667 value = strstr(name, "=");
1668 if (value == NULL)
1669 break;
1670 name_len = value - name;
1671 ++value;
1672 value_len = 0;
1673 quoted = 0;
1674 for (; ; ++value_len) {
1675 if (!value[value_len])
1676 break;
1677
1678 /*
1679 * is this value quoted?
1680 */
1681 if (value_len == 0 &&
1682 (value[0] == '\'' || value[0] == '"')) {
1683 quoted = value[0];
1684 ++value_len;
1685 }
1686
1687 /*
1688 * In the quote accept any character,
1689 * but look for ending quote.
1690 */
1691 if (quoted) {
1692 if (value[value_len] == quoted)
1693 quoted = 0;
1694 continue;
1695 }
1696
1697 /*
1698 * a comma or white space ends the value
1699 */
1700 if (value[value_len] == ',' ||
1701 ISSPACE(value[value_len]))
1702 break;
1703 }
1704
1705 if (value_len == 0) {
1706 bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1707 NULL, 0);
1708 } else {
1709 char *v = value;
1710 int l = value_len;
1711 if (v[0] == v[l - 1] &&
1712 (v[0] == '\'' || v[0] == '"')) {
1713 ++v;
1714 l -= 2;
1715 }
1716 bcopy(v, propbuf, l);
1717 propbuf[l] = '\0';
1718 bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1719 propbuf, l + 1);
1720 }
1721 name = value + value_len;
1722 while (*name == ',')
1723 ++name;
1724 }
1725 }
1726
1727 /*
1728 * set boot-args property
1729 * 1275 name is bootargs, so set
1730 * that too
1731 */
1732 bsetprops("boot-args", boot_args);
1733 bsetprops("bootargs", boot_args);
1734
1735 process_boot_environment(benv);
1736
1737 #ifndef __xpv
1738 /*
1739 * Build boot command line for Fast Reboot
1740 */
1741 build_fastboot_cmdline(xbp);
1742
1743 if (xbp->bi_mb_version == 1) {
1744 multiboot_info_t *mbi = xbp->bi_mb_info;
1745 int netboot;
1746 struct sol_netinfo *sip;
1747
1748 /*
1749 * set the BIOS boot device from GRUB
1750 */
1751 netboot = 0;
1752
1753 /*
1754 * Save various boot information for Fast Reboot
1755 */
1756 save_boot_info(xbp);
1757
1758 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1759 boot_device = mbi->boot_device >> 24;
1760 if (boot_device == 0x20)
1761 netboot++;
1762 str[0] = (boot_device >> 4) + '0';
1763 str[1] = (boot_device & 0xf) + '0';
1764 str[2] = 0;
1765 bsetprops("bios-boot-device", str);
1766 } else {
1767 netboot = 1;
1768 }
1769
1770 /*
1771 * In the netboot case, drives_info is overloaded with the
1772 * dhcp ack. This is not multiboot compliant and requires
1773 * special pxegrub!
1774 */
1775 if (netboot && mbi->drives_length != 0) {
1776 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1777 if (sip->sn_infotype == SN_TYPE_BOOTP)
1778 bsetprop(DDI_PROP_TYPE_BYTE,
1779 "bootp-response",
1780 sizeof ("bootp-response"),
1781 (void *)(uintptr_t)mbi->drives_addr,
1782 mbi->drives_length);
1783 else if (sip->sn_infotype == SN_TYPE_RARP)
1784 setup_rarp_props(sip);
1785 }
1786 } else {
1787 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1788 multiboot_tag_bootdev_t *bootdev = NULL;
1789 multiboot_tag_network_t *netdev = NULL;
1790
1791 if (mbi != NULL) {
1792 bootdev = dboot_multiboot2_find_tag(mbi,
1793 MULTIBOOT_TAG_TYPE_BOOTDEV);
1794 netdev = dboot_multiboot2_find_tag(mbi,
1795 MULTIBOOT_TAG_TYPE_NETWORK);
1796 }
1797 if (bootdev != NULL) {
1798 DBG(bootdev->mb_biosdev);
1799 boot_device = bootdev->mb_biosdev;
1800 str[0] = (boot_device >> 4) + '0';
1801 str[1] = (boot_device & 0xf) + '0';
1802 str[2] = 0;
1803 bsetprops("bios-boot-device", str);
1804 }
1805 if (netdev != NULL) {
1806 bsetprop(DDI_PROP_TYPE_BYTE,
1807 "bootp-response", sizeof ("bootp-response"),
1808 (void *)(uintptr_t)netdev->mb_dhcpack,
1809 netdev->mb_size -
1810 sizeof (multiboot_tag_network_t));
1811 }
1812 }
1813
1814 bsetprop32("stdout", stdout_val);
1815 #endif /* __xpv */
1816
1817 /*
1818 * more conjured up values for made up things....
1819 */
1820 #if defined(__xpv)
1821 bsetprops("mfg-name", "i86xpv");
1822 bsetprops("impl-arch-name", "i86xpv");
1823 #else
1824 bsetprops("mfg-name", "i86pc");
1825 bsetprops("impl-arch-name", "i86pc");
1826 #endif
1827
1828 /*
1829 * Build firmware-provided system properties
1830 */
1831 build_firmware_properties(xbp);
1832
1833 /*
1834 * XXPV
1835 *
1836 * Find out what these are:
1837 * - cpuid_feature_ecx_include
1838 * - cpuid_feature_ecx_exclude
1839 * - cpuid_feature_edx_include
1840 * - cpuid_feature_edx_exclude
1841 *
1842 * Find out what these are in multiboot:
1843 * - netdev-path
1844 * - fstype
1845 */
1846 }
1847
1848 #ifdef __xpv
1849 /*
1850 * Under the Hypervisor, memory usable for DMA may be scarce. One
1851 * very likely large pool of DMA friendly memory is occupied by
1852 * the boot_archive, as it was loaded by grub into low MFNs.
1853 *
1854 * Here we free up that memory by copying the boot archive to what are
1855 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1856 */
1857 #define PFN_2GIG 0x80000
1858 static void
1859 relocate_boot_archive(struct xboot_info *xbp)
1860 {
1861 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1862 struct boot_modules *bm = xbp->bi_modules;
1863 uintptr_t va;
1864 pfn_t va_pfn;
1865 mfn_t va_mfn;
1866 caddr_t copy;
1867 pfn_t copy_pfn;
1868 mfn_t copy_mfn;
1869 size_t len;
1870 int slop;
1871 int total = 0;
1872 int relocated = 0;
1873 int mmu_update_return;
1874 mmu_update_t t[2];
1875 x86pte_t pte;
1876
1877 /*
1878 * If all MFN's are below 2Gig, don't bother doing this.
1879 */
1880 if (max_mfn < PFN_2GIG)
1881 return;
1882 if (xbp->bi_module_cnt < 1) {
1883 DBG_MSG("no boot_archive!");
1884 return;
1885 }
1886
1887 DBG_MSG("moving boot_archive to high MFN memory\n");
1888 va = (uintptr_t)bm->bm_addr;
1889 len = bm->bm_size;
1890 slop = va & MMU_PAGEOFFSET;
1891 if (slop) {
1892 va += MMU_PAGESIZE - slop;
1893 len -= MMU_PAGESIZE - slop;
1894 }
1895 len = P2ALIGN(len, MMU_PAGESIZE);
1896
1897 /*
1898 * Go through all boot_archive pages, swapping any low MFN pages
1899 * with memory at next_phys.
1900 */
1901 while (len != 0) {
1902 ++total;
1903 va_pfn = mmu_btop(va - ONE_GIG);
1904 va_mfn = mfn_list[va_pfn];
1905 if (mfn_list[va_pfn] < PFN_2GIG) {
1906 copy = kbm_remap_window(next_phys, 1);
1907 bcopy((void *)va, copy, MMU_PAGESIZE);
1908 copy_pfn = mmu_btop(next_phys);
1909 copy_mfn = mfn_list[copy_pfn];
1910
1911 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1912 if (HYPERVISOR_update_va_mapping(va, pte,
1913 UVMF_INVLPG | UVMF_LOCAL))
1914 bop_panic("relocate_boot_archive(): "
1915 "HYPERVISOR_update_va_mapping() failed");
1916
1917 mfn_list[va_pfn] = copy_mfn;
1918 mfn_list[copy_pfn] = va_mfn;
1919
1920 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1921 t[0].val = va_pfn;
1922 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1923 t[1].val = copy_pfn;
1924 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1925 DOMID_SELF) != 0 || mmu_update_return != 2)
1926 bop_panic("relocate_boot_archive(): "
1927 "HYPERVISOR_mmu_update() failed");
1928
1929 next_phys += MMU_PAGESIZE;
1930 ++relocated;
1931 }
1932 len -= MMU_PAGESIZE;
1933 va += MMU_PAGESIZE;
1934 }
1935 DBG_MSG("Relocated pages:\n");
1936 DBG(relocated);
1937 DBG_MSG("Out of total pages:\n");
1938 DBG(total);
1939 }
1940 #endif /* __xpv */
1941
1942 #if !defined(__xpv)
1943 /*
1944 * simple description of a stack frame (args are 32 bit only currently)
1945 */
1946 typedef struct bop_frame {
1947 struct bop_frame *old_frame;
1948 pc_t retaddr;
1949 long arg[1];
1950 } bop_frame_t;
1951
1952 void
1953 bop_traceback(bop_frame_t *frame)
1954 {
1955 pc_t pc;
1956 int cnt;
1957 char *ksym;
1958 ulong_t off;
1959
1960 bop_printf(NULL, "Stack traceback:\n");
1961 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
1962 pc = frame->retaddr;
1963 if (pc == 0)
1964 break;
1965 ksym = kobj_getsymname(pc, &off);
1966 if (ksym)
1967 bop_printf(NULL, " %s+%lx", ksym, off);
1968 else
1969 bop_printf(NULL, " 0x%lx", pc);
1970
1971 frame = frame->old_frame;
1972 if (frame == 0) {
1973 bop_printf(NULL, "\n");
1974 break;
1975 }
1976 bop_printf(NULL, "\n");
1977 }
1978 }
1979
1980 struct trapframe {
1981 ulong_t error_code; /* optional */
1982 ulong_t inst_ptr;
1983 ulong_t code_seg;
1984 ulong_t flags_reg;
1985 ulong_t stk_ptr;
1986 ulong_t stk_seg;
1987 };
1988
1989 void
1990 bop_trap(ulong_t *tfp)
1991 {
1992 struct trapframe *tf = (struct trapframe *)tfp;
1993 bop_frame_t fakeframe;
1994 static int depth = 0;
1995
1996 /*
1997 * Check for an infinite loop of traps.
1998 */
1999 if (++depth > 2)
2000 bop_panic("Nested trap");
2001
2002 bop_printf(NULL, "Unexpected trap\n");
2003
2004 /*
2005 * adjust the tf for optional error_code by detecting the code selector
2006 */
2007 if (tf->code_seg != B64CODE_SEL)
2008 tf = (struct trapframe *)(tfp - 1);
2009 else
2010 bop_printf(NULL, "error code 0x%lx\n",
2011 tf->error_code & 0xffffffff);
2012
2013 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
2014 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
2015 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
2016 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
2017 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
2018
2019 /* grab %[er]bp pushed by our code from the stack */
2020 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
2021 fakeframe.retaddr = (pc_t)tf->inst_ptr;
2022 bop_printf(NULL, "Attempting stack backtrace:\n");
2023 bop_traceback(&fakeframe);
2024 bop_panic("unexpected trap in early boot");
2025 }
2026
2027 extern void bop_trap_handler(void);
2028
2029 static gate_desc_t *bop_idt;
2030
2031 static desctbr_t bop_idt_info;
2032
2033 /*
2034 * Install a temporary IDT that lets us catch errors in the boot time code.
2035 * We shouldn't get any faults at all while this is installed, so we'll
2036 * just generate a traceback and exit.
2037 */
2038 static void
2039 bop_idt_init(void)
2040 {
2041 int t;
2042
2043 bop_idt = (gate_desc_t *)
2044 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2045 bzero(bop_idt, MMU_PAGESIZE);
2046 for (t = 0; t < NIDT; ++t) {
2047 /*
2048 * Note that since boot runs without a TSS, the
2049 * double fault handler cannot use an alternate stack (64-bit).
2050 */
2051 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
2052 SDT_SYSIGT, TRP_KPL, 0);
2053 }
2054 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
2055 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
2056 wr_idtr(&bop_idt_info);
2057 }
2058 #endif /* !defined(__xpv) */
2059
2060 /*
2061 * This is where we enter the kernel. It dummies up the boot_ops and
2062 * boot_syscalls vectors and jumps off to _kobj_boot()
2063 */
2064 void
2065 _start(struct xboot_info *xbp)
2066 {
2067 bootops_t *bops = &bootop;
2068 extern void _kobj_boot();
2069
2070 /*
2071 * 1st off - initialize the console for any error messages
2072 */
2073 xbootp = xbp;
2074 #ifdef __xpv
2075 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2076 xen_info = xbp->bi_xen_start_info;
2077 #endif
2078
2079 #ifndef __xpv
2080 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2081 FASTBOOT_MAGIC) {
2082 post_fastreboot = 1;
2083 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2084 }
2085 #endif
2086
2087 bcons_init(xbp);
2088 have_console = 1;
2089
2090 /*
2091 * enable debugging
2092 */
2093 if (find_boot_prop("kbm_debug") != NULL)
2094 kbm_debug = 1;
2095
2096 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
2097 DBG_MSG((char *)xbp->bi_cmdline);
2098 DBG_MSG("\n\n\n");
2099
2100 /*
2101 * physavail is no longer used by startup
2102 */
2103 bm.physinstalled = xbp->bi_phys_install;
2104 bm.pcimem = xbp->bi_pcimem;
2105 bm.rsvdmem = xbp->bi_rsvdmem;
2106 bm.physavail = NULL;
2107
2108 /*
2109 * initialize the boot time allocator
2110 */
2111 next_phys = xbp->bi_next_paddr;
2112 DBG(next_phys);
2113 next_virt = (uintptr_t)xbp->bi_next_vaddr;
2114 DBG(next_virt);
2115 DBG_MSG("Initializing boot time memory management...");
2116 #ifdef __xpv
2117 {
2118 xen_platform_parameters_t p;
2119
2120 /* This call shouldn't fail, dboot already did it once. */
2121 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2122 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2123 DBG(xen_virt_start);
2124 }
2125 #endif
2126 kbm_init(xbp);
2127 DBG_MSG("done\n");
2128
2129 /*
2130 * Fill in the bootops vector
2131 */
2132 bops->bsys_version = BO_VERSION;
2133 bops->boot_mem = &bm;
2134 bops->bsys_alloc = do_bsys_alloc;
2135 bops->bsys_free = do_bsys_free;
2136 bops->bsys_getproplen = do_bsys_getproplen;
2137 bops->bsys_getprop = do_bsys_getprop;
2138 bops->bsys_nextprop = do_bsys_nextprop;
2139 bops->bsys_printf = bop_printf;
2140 bops->bsys_doint = do_bsys_doint;
2141
2142 /*
2143 * BOP_EALLOC() is no longer needed
2144 */
2145 bops->bsys_ealloc = do_bsys_ealloc;
2146
2147 #ifdef __xpv
2148 /*
2149 * On domain 0 we need to free up some physical memory that is
2150 * usable for DMA. Since GRUB loaded the boot_archive, it is
2151 * sitting in low MFN memory. We'll relocated the boot archive
2152 * pages to high PFN memory.
2153 */
2154 if (DOMAIN_IS_INITDOMAIN(xen_info))
2155 relocate_boot_archive(xbp);
2156 #endif
2157
2158 #ifndef __xpv
2159 /*
2160 * Install an IDT to catch early pagefaults (shouldn't have any).
2161 * Also needed for kmdb.
2162 */
2163 bop_idt_init();
2164 #endif
2165 /* Set up the shadow fb for framebuffer console */
2166 boot_fb_shadow_init(bops);
2167
2168 /*
2169 * Start building the boot properties from the command line
2170 */
2171 DBG_MSG("Initializing boot properties:\n");
2172 build_boot_properties(xbp);
2173
2174 if (find_boot_prop("prom_debug") || kbm_debug) {
2175 char *value;
2176
2177 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2178 boot_prop_display(value);
2179 }
2180
2181 /*
2182 * jump into krtld...
2183 */
2184 _kobj_boot(&bop_sysp, NULL, bops, NULL);
2185 }
2186
2187
2188 /*ARGSUSED*/
2189 static caddr_t
2190 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2191 {
2192 panic("Attempt to bsys_alloc() too late\n");
2193 return (NULL);
2194 }
2195
2196 /*ARGSUSED*/
2197 static void
2198 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2199 {
2200 panic("Attempt to bsys_free() too late\n");
2201 }
2202
2203 void
2204 bop_no_more_mem(void)
2205 {
2206 DBG(total_bop_alloc_scratch);
2207 DBG(total_bop_alloc_kernel);
2208 bootops->bsys_alloc = no_more_alloc;
2209 bootops->bsys_free = no_more_free;
2210 }
2211
2212
2213 /*
2214 * Set ACPI firmware properties
2215 */
2216
2217 static caddr_t
2218 vmap_phys(size_t length, paddr_t pa)
2219 {
2220 paddr_t start, end;
2221 caddr_t va;
2222 size_t len, page;
2223
2224 #ifdef __xpv
2225 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2226 #endif
2227 start = P2ALIGN(pa, MMU_PAGESIZE);
2228 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2229 len = end - start;
2230 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2231 for (page = 0; page < len; page += MMU_PAGESIZE)
2232 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2233 return (va + (pa & MMU_PAGEOFFSET));
2234 }
2235
2236 static uint8_t
2237 checksum_table(uint8_t *tp, size_t len)
2238 {
2239 uint8_t sum = 0;
2240
2241 while (len-- > 0)
2242 sum += *tp++;
2243
2244 return (sum);
2245 }
2246
2247 static int
2248 valid_rsdp(ACPI_TABLE_RSDP *rp)
2249 {
2250
2251 /* validate the V1.x checksum */
2252 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2253 return (0);
2254
2255 /* If pre-ACPI 2.0, this is a valid RSDP */
2256 if (rp->Revision < 2)
2257 return (1);
2258
2259 /* validate the V2.x checksum */
2260 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2261 return (0);
2262
2263 return (1);
2264 }
2265
2266 /*
2267 * Scan memory range for an RSDP;
2268 * see ACPI 3.0 Spec, 5.2.5.1
2269 */
2270 static ACPI_TABLE_RSDP *
2271 scan_rsdp(paddr_t start, paddr_t end)
2272 {
2273 ssize_t len = end - start;
2274 caddr_t ptr;
2275
2276 ptr = vmap_phys(len, start);
2277 while (len > 0) {
2278 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2279 valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2280 return ((ACPI_TABLE_RSDP *)ptr);
2281
2282 ptr += ACPI_RSDP_SCAN_STEP;
2283 len -= ACPI_RSDP_SCAN_STEP;
2284 }
2285
2286 return (NULL);
2287 }
2288
2289 /*
2290 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2291 */
2292 static ACPI_TABLE_RSDP *
2293 find_rsdp()
2294 {
2295 ACPI_TABLE_RSDP *rsdp;
2296 uint64_t rsdp_val = 0;
2297 uint16_t *ebda_seg;
2298 paddr_t ebda_addr;
2299
2300 /* check for "acpi-root-tab" property */
2301 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2302 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2303 if (rsdp_val != 0) {
2304 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2305 if (rsdp != NULL) {
2306 if (kbm_debug) {
2307 bop_printf(NULL,
2308 "Using RSDP from bootloader: "
2309 "0x%p\n", (void *)rsdp);
2310 }
2311 return (rsdp);
2312 }
2313 }
2314 }
2315
2316 /*
2317 * Get the EBDA segment and scan the first 1K
2318 */
2319 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2320 ACPI_EBDA_PTR_LOCATION);
2321 ebda_addr = *ebda_seg << 4;
2322 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2323 if (rsdp == NULL)
2324 /* if EBDA doesn't contain RSDP, look in BIOS memory */
2325 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2326 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2327 return (rsdp);
2328 }
2329
2330 static ACPI_TABLE_HEADER *
2331 map_fw_table(paddr_t table_addr)
2332 {
2333 ACPI_TABLE_HEADER *tp;
2334 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2335
2336 /*
2337 * Map at least a page; if the table is larger than this, remap it
2338 */
2339 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2340 if (tp->Length > len)
2341 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2342 return (tp);
2343 }
2344
2345 static ACPI_TABLE_HEADER *
2346 find_fw_table(char *signature)
2347 {
2348 static int revision = 0;
2349 static ACPI_TABLE_XSDT *xsdt;
2350 static int len;
2351 paddr_t xsdt_addr;
2352 ACPI_TABLE_RSDP *rsdp;
2353 ACPI_TABLE_HEADER *tp;
2354 paddr_t table_addr;
2355 int n;
2356
2357 if (strlen(signature) != ACPI_NAME_SIZE)
2358 return (NULL);
2359
2360 /*
2361 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2362 * understand this code. If we haven't already found the RSDT/XSDT,
2363 * revision will be 0. Find the RSDP and check the revision
2364 * to find out whether to use the RSDT or XSDT. If revision is
2365 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2366 * use the XSDT. If the XSDT address is 0, though, fall back to
2367 * revision 1 and use the RSDT.
2368 */
2369 if (revision == 0) {
2370 if ((rsdp = find_rsdp()) != NULL) {
2371 revision = rsdp->Revision;
2372 /*
2373 * ACPI 6.0 states that current revision is 2
2374 * from acpi_table_rsdp definition:
2375 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2376 */
2377 if (revision > 2)
2378 revision = 2;
2379 switch (revision) {
2380 case 2:
2381 /*
2382 * Use the XSDT unless BIOS is buggy and
2383 * claims to be rev 2 but has a null XSDT
2384 * address
2385 */
2386 xsdt_addr = rsdp->XsdtPhysicalAddress;
2387 if (xsdt_addr != 0)
2388 break;
2389 /* FALLTHROUGH */
2390 case 0:
2391 /* treat RSDP rev 0 as revision 1 internally */
2392 revision = 1;
2393 /* FALLTHROUGH */
2394 case 1:
2395 /* use the RSDT for rev 0/1 */
2396 xsdt_addr = rsdp->RsdtPhysicalAddress;
2397 break;
2398 default:
2399 /* unknown revision */
2400 revision = 0;
2401 break;
2402 }
2403 }
2404 if (revision == 0)
2405 return (NULL);
2406
2407 /* cache the XSDT info */
2408 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2409 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2410 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2411 }
2412
2413 /*
2414 * Scan the table headers looking for a signature match
2415 */
2416 for (n = 0; n < len; n++) {
2417 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2418 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2419 xsdt->TableOffsetEntry[n];
2420
2421 if (table_addr == 0)
2422 continue;
2423 tp = map_fw_table(table_addr);
2424 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2425 return (tp);
2426 }
2427 }
2428 return (NULL);
2429 }
2430
2431 static void
2432 process_mcfg(ACPI_TABLE_MCFG *tp)
2433 {
2434 ACPI_MCFG_ALLOCATION *cfg_baap;
2435 char *cfg_baa_endp;
2436 int64_t ecfginfo[4];
2437
2438 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2439 cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2440 while ((char *)cfg_baap < cfg_baa_endp) {
2441 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2442 ecfginfo[0] = cfg_baap->Address;
2443 ecfginfo[1] = cfg_baap->PciSegment;
2444 ecfginfo[2] = cfg_baap->StartBusNumber;
2445 ecfginfo[3] = cfg_baap->EndBusNumber;
2446 bsetprop(DDI_PROP_TYPE_INT64,
2447 MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2448 ecfginfo, sizeof (ecfginfo));
2449 break;
2450 }
2451 cfg_baap++;
2452 }
2453 }
2454
2455 #ifndef __xpv
2456 static void
2457 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2458 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2459 {
2460 ACPI_SUBTABLE_HEADER *item, *end;
2461 uint32_t cpu_count = 0;
2462 uint32_t cpu_possible_count = 0;
2463
2464 /*
2465 * Determine number of CPUs and keep track of "final" APIC ID
2466 * for each CPU by walking through ACPI MADT processor list
2467 */
2468 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2469 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2470
2471 while (item < end) {
2472 switch (item->Type) {
2473 case ACPI_MADT_TYPE_LOCAL_APIC: {
2474 ACPI_MADT_LOCAL_APIC *cpu =
2475 (ACPI_MADT_LOCAL_APIC *) item;
2476
2477 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2478 if (cpu_apicid_array != NULL)
2479 cpu_apicid_array[cpu_count] = cpu->Id;
2480 cpu_count++;
2481 }
2482 cpu_possible_count++;
2483 break;
2484 }
2485 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2486 ACPI_MADT_LOCAL_X2APIC *cpu =
2487 (ACPI_MADT_LOCAL_X2APIC *) item;
2488
2489 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2490 if (cpu_apicid_array != NULL)
2491 cpu_apicid_array[cpu_count] =
2492 cpu->LocalApicId;
2493 cpu_count++;
2494 }
2495 cpu_possible_count++;
2496 break;
2497 }
2498 default:
2499 if (kbm_debug)
2500 bop_printf(NULL, "MADT type %d\n", item->Type);
2501 break;
2502 }
2503
2504 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2505 }
2506 if (cpu_countp)
2507 *cpu_countp = cpu_count;
2508 if (cpu_possible_countp)
2509 *cpu_possible_countp = cpu_possible_count;
2510 }
2511
2512 static void
2513 process_madt(ACPI_TABLE_MADT *tp)
2514 {
2515 uint32_t cpu_count = 0;
2516 uint32_t cpu_possible_count = 0;
2517 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2518
2519 if (tp != NULL) {
2520 /* count cpu's */
2521 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2522
2523 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2524 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2525 if (cpu_apicid_array == NULL)
2526 bop_panic("Not enough memory for APIC ID array");
2527
2528 /* copy IDs */
2529 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2530
2531 /*
2532 * Make boot property for array of "final" APIC IDs for each
2533 * CPU
2534 */
2535 bsetprop(DDI_PROP_TYPE_INT,
2536 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2537 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2538 }
2539
2540 /*
2541 * Check whether property plat-max-ncpus is already set.
2542 */
2543 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2544 /*
2545 * Set plat-max-ncpus to number of maximum possible CPUs given
2546 * in MADT if it hasn't been set.
2547 * There's no formal way to detect max possible CPUs supported
2548 * by platform according to ACPI spec3.0b. So current CPU
2549 * hotplug implementation expects that all possible CPUs will
2550 * have an entry in MADT table and set plat-max-ncpus to number
2551 * of entries in MADT.
2552 * With introducing of ACPI4.0, Maximum System Capability Table
2553 * (MSCT) provides maximum number of CPUs supported by platform.
2554 * If MSCT is unavailable, fall back to old way.
2555 */
2556 if (tp != NULL)
2557 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2558 }
2559
2560 /*
2561 * Set boot property boot-max-ncpus to number of CPUs existing at
2562 * boot time. boot-max-ncpus is mainly used for optimization.
2563 */
2564 if (tp != NULL)
2565 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2566
2567 /*
2568 * User-set boot-ncpus overrides firmware count
2569 */
2570 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2571 return;
2572
2573 /*
2574 * Set boot property boot-ncpus to number of active CPUs given in MADT
2575 * if it hasn't been set yet.
2576 */
2577 if (tp != NULL)
2578 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2579 }
2580
2581 static void
2582 process_srat(ACPI_TABLE_SRAT *tp)
2583 {
2584 ACPI_SUBTABLE_HEADER *item, *end;
2585 int i;
2586 int proc_num, mem_num;
2587 #pragma pack(1)
2588 struct {
2589 uint32_t domain;
2590 uint32_t apic_id;
2591 uint32_t sapic_id;
2592 } processor;
2593 struct {
2594 uint32_t domain;
2595 uint32_t x2apic_id;
2596 } x2apic;
2597 struct {
2598 uint32_t domain;
2599 uint64_t addr;
2600 uint64_t length;
2601 uint32_t flags;
2602 } memory;
2603 #pragma pack()
2604 char prop_name[30];
2605 uint64_t maxmem = 0;
2606
2607 if (tp == NULL)
2608 return;
2609
2610 proc_num = mem_num = 0;
2611 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2612 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2613 while (item < end) {
2614 switch (item->Type) {
2615 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2616 ACPI_SRAT_CPU_AFFINITY *cpu =
2617 (ACPI_SRAT_CPU_AFFINITY *) item;
2618
2619 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2620 break;
2621 processor.domain = cpu->ProximityDomainLo;
2622 for (i = 0; i < 3; i++)
2623 processor.domain +=
2624 cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2625 processor.apic_id = cpu->ApicId;
2626 processor.sapic_id = cpu->LocalSapicEid;
2627 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2628 proc_num);
2629 bsetprop(DDI_PROP_TYPE_INT,
2630 prop_name, strlen(prop_name), &processor,
2631 sizeof (processor));
2632 proc_num++;
2633 break;
2634 }
2635 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2636 ACPI_SRAT_MEM_AFFINITY *mem =
2637 (ACPI_SRAT_MEM_AFFINITY *)item;
2638
2639 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2640 break;
2641 memory.domain = mem->ProximityDomain;
2642 memory.addr = mem->BaseAddress;
2643 memory.length = mem->Length;
2644 memory.flags = mem->Flags;
2645 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2646 mem_num);
2647 bsetprop(DDI_PROP_TYPE_INT,
2648 prop_name, strlen(prop_name), &memory,
2649 sizeof (memory));
2650 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2651 (memory.addr + memory.length > maxmem)) {
2652 maxmem = memory.addr + memory.length;
2653 }
2654 mem_num++;
2655 break;
2656 }
2657 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2658 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2659 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2660
2661 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2662 break;
2663 x2apic.domain = x2cpu->ProximityDomain;
2664 x2apic.x2apic_id = x2cpu->ApicId;
2665 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2666 proc_num);
2667 bsetprop(DDI_PROP_TYPE_INT,
2668 prop_name, strlen(prop_name), &x2apic,
2669 sizeof (x2apic));
2670 proc_num++;
2671 break;
2672 }
2673 default:
2674 if (kbm_debug)
2675 bop_printf(NULL, "SRAT type %d\n", item->Type);
2676 break;
2677 }
2678
2679 item = (ACPI_SUBTABLE_HEADER *)
2680 (item->Length + (uintptr_t)item);
2681 }
2682
2683 /*
2684 * The maximum physical address calculated from the SRAT table is more
2685 * accurate than that calculated from the MSCT table.
2686 */
2687 if (maxmem != 0) {
2688 plat_dr_physmax = btop(maxmem);
2689 }
2690 }
2691
2692 static void
2693 process_slit(ACPI_TABLE_SLIT *tp)
2694 {
2695
2696 /*
2697 * Check the number of localities; if it's too huge, we just
2698 * return and locality enumeration code will handle this later,
2699 * if possible.
2700 *
2701 * Note that the size of the table is the square of the
2702 * number of localities; if the number of localities exceeds
2703 * UINT16_MAX, the table size may overflow an int when being
2704 * passed to bsetprop() below.
2705 */
2706 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2707 return;
2708
2709 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2710 bsetprop(DDI_PROP_TYPE_BYTE,
2711 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2712 tp->LocalityCount * tp->LocalityCount);
2713 }
2714
2715 static ACPI_TABLE_MSCT *
2716 process_msct(ACPI_TABLE_MSCT *tp)
2717 {
2718 int last_seen = 0;
2719 int proc_num = 0;
2720 ACPI_MSCT_PROXIMITY *item, *end;
2721 extern uint64_t plat_dr_options;
2722
2723 ASSERT(tp != NULL);
2724
2725 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2726 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2727 item < end;
2728 item = (void *)(item->Length + (uintptr_t)item)) {
2729 /*
2730 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2731 * Revision 1
2732 * Length 22
2733 */
2734 if (item->Revision != 1 || item->Length != 22) {
2735 cmn_err(CE_CONT,
2736 "?boot: unknown proximity domain structure in MSCT "
2737 "with Revision(%d), Length(%d).\n",
2738 (int)item->Revision, (int)item->Length);
2739 return (NULL);
2740 } else if (item->RangeStart > item->RangeEnd) {
2741 cmn_err(CE_CONT,
2742 "?boot: invalid proximity domain structure in MSCT "
2743 "with RangeStart(%u), RangeEnd(%u).\n",
2744 item->RangeStart, item->RangeEnd);
2745 return (NULL);
2746 } else if (item->RangeStart != last_seen) {
2747 /*
2748 * Items must be organized in ascending order of the
2749 * proximity domain enumerations.
2750 */
2751 cmn_err(CE_CONT,
2752 "?boot: invalid proximity domain structure in MSCT,"
2753 " items are not orginized in ascending order.\n");
2754 return (NULL);
2755 }
2756
2757 /*
2758 * If ProcessorCapacity is 0 then there would be no CPUs in this
2759 * domain.
2760 */
2761 if (item->ProcessorCapacity != 0) {
2762 proc_num += (item->RangeEnd - item->RangeStart + 1) *
2763 item->ProcessorCapacity;
2764 }
2765
2766 last_seen = item->RangeEnd - item->RangeStart + 1;
2767 /*
2768 * Break out if all proximity domains have been processed.
2769 * Some BIOSes may have unused items at the end of MSCT table.
2770 */
2771 if (last_seen > tp->MaxProximityDomains) {
2772 break;
2773 }
2774 }
2775 if (last_seen != tp->MaxProximityDomains + 1) {
2776 cmn_err(CE_CONT,
2777 "?boot: invalid proximity domain structure in MSCT, "
2778 "proximity domain count doesn't match.\n");
2779 return (NULL);
2780 }
2781
2782 /*
2783 * Set plat-max-ncpus property if it hasn't been set yet.
2784 */
2785 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2786 if (proc_num != 0) {
2787 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2788 }
2789 }
2790
2791 /*
2792 * Use Maximum Physical Address from the MSCT table as upper limit for
2793 * memory hot-adding by default. It may be overridden by value from
2794 * the SRAT table or the "plat-dr-physmax" boot option.
2795 */
2796 plat_dr_physmax = btop(tp->MaxAddress + 1);
2797
2798 /*
2799 * Existence of MSCT implies CPU/memory hotplug-capability for the
2800 * platform.
2801 */
2802 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2803 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2804
2805 return (tp);
2806 }
2807
2808 #else /* __xpv */
2809 static void
2810 enumerate_xen_cpus()
2811 {
2812 processorid_t id, max_id;
2813
2814 /*
2815 * User-set boot-ncpus overrides enumeration
2816 */
2817 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2818 return;
2819
2820 /*
2821 * Probe every possible virtual CPU id and remember the
2822 * highest id present; the count of CPUs is one greater
2823 * than this. This tacitly assumes at least cpu 0 is present.
2824 */
2825 max_id = 0;
2826 for (id = 0; id < MAX_VIRT_CPUS; id++)
2827 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2828 max_id = id;
2829
2830 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2831
2832 }
2833 #endif /* __xpv */
2834
2835 /*ARGSUSED*/
2836 static void
2837 build_firmware_properties(struct xboot_info *xbp)
2838 {
2839 ACPI_TABLE_HEADER *tp = NULL;
2840
2841 #ifndef __xpv
2842 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2843 bsetprops("efi-systype", "64");
2844 bsetprop64("efi-systab",
2845 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2846 if (kbm_debug)
2847 bop_printf(NULL, "64-bit UEFI detected.\n");
2848 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2849 bsetprops("efi-systype", "32");
2850 bsetprop64("efi-systab",
2851 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2852 if (kbm_debug)
2853 bop_printf(NULL, "32-bit UEFI detected.\n");
2854 }
2855
2856 if (xbp->bi_acpi_rsdp != NULL) {
2857 bsetprop64("acpi-root-tab",
2858 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2859 }
2860
2861 if (xbp->bi_smbios != NULL) {
2862 bsetprop64("smbios-address",
2863 (uint64_t)(uintptr_t)xbp->bi_smbios);
2864 }
2865
2866 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2867 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2868 else
2869 msct_ptr = NULL;
2870
2871 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2872 process_madt((ACPI_TABLE_MADT *)tp);
2873
2874 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2875 find_fw_table(ACPI_SIG_SRAT)) != NULL)
2876 process_srat(srat_ptr);
2877
2878 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2879 process_slit(slit_ptr);
2880
2881 tp = find_fw_table(ACPI_SIG_MCFG);
2882 #else /* __xpv */
2883 enumerate_xen_cpus();
2884 if (DOMAIN_IS_INITDOMAIN(xen_info))
2885 tp = find_fw_table(ACPI_SIG_MCFG);
2886 #endif /* __xpv */
2887 if (tp != NULL)
2888 process_mcfg((ACPI_TABLE_MCFG *)tp);
2889 }
2890
2891 /*
2892 * fake up a boot property for deferred early console output
2893 * this is used by both graphical boot and the (developer only)
2894 * USB serial console
2895 */
2896 void *
2897 defcons_init(size_t size)
2898 {
2899 static char *p = NULL;
2900
2901 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2902 *p = 0;
2903 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2904 return (p);
2905 }
2906
2907 /*ARGSUSED*/
2908 int
2909 boot_compinfo(int fd, struct compinfo *cbp)
2910 {
2911 cbp->iscmp = 0;
2912 cbp->blksize = MAXBSIZE;
2913 return (0);
2914 }
2915
2916 #define BP_MAX_STRLEN 32
2917
2918 /*
2919 * Get value for given boot property
2920 */
2921 int
2922 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2923 {
2924 int boot_prop_len;
2925 char str[BP_MAX_STRLEN];
2926 u_longlong_t value;
2927
2928 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2929 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2930 BOP_GETPROP(bootops, prop_name, str) < 0 ||
2931 kobj_getvalue(str, &value) == -1)
2932 return (-1);
2933
2934 if (prop_value)
2935 *prop_value = value;
2936
2937 return (0);
2938 }