
new/usr/src/cmd/picl/plugins/common/devtree/picldevtree.c 1

**
 96501 Thu Jan 24 09:58:58 2019
new/usr/src/cmd/picl/plugins/common/devtree/picldevtree.c
10135 picl plugins need smatch fixes
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2018, Joyent, Inc.
28 */

30 /*
31 * PICL plug-in that creates device tree nodes for all platforms
32 */

34 #include <stdio.h>
35 #include <string.h>
36 #include <ctype.h>
37 #include <limits.h>
38 #include <stdlib.h>
39 #include <assert.h>
40 #include <alloca.h>
41 #include <unistd.h>
42 #include <stropts.h>
43 #include <syslog.h>
44 #include <libdevinfo.h>
45 #include <sys/dkio.h>
46 #include <sys/vtoc.h>
47 #include <sys/time.h>
48 #include <fcntl.h>
49 #include <picl.h>
50 #include <picltree.h>
51 #include <sys/types.h>
52 #include <sys/processor.h>
53 #include <kstat.h>
54 #include <sys/sysinfo.h>
55 #include <dirent.h>
56 #include <libintl.h>
57 #include <pthread.h>
58 #include <libnvpair.h>
59 #include <sys/utsname.h>
60 #include <sys/systeminfo.h>
61 #include <sys/obpdefs.h>

new/usr/src/cmd/picl/plugins/common/devtree/picldevtree.c 2

62 #include <sys/openpromio.h>
63 #include "picldevtree.h"

65 /*
66 * Plugin registration entry points
67 */
68 static void picldevtree_register(void);
69 static void picldevtree_init(void);
70 static void picldevtree_fini(void);

72 static void picldevtree_evhandler(const char *ename, const void *earg,
73 size_t size, void *cookie);

75 #pragma init(picldevtree_register)

77 /*
78 * Log message texts
79 */
80 #define DEVINFO_PLUGIN_INIT_FAILED gettext("SUNW_picldevtree failed!\n")
81 #define PICL_EVENT_DROPPED \
82 gettext("SUNW_picldevtree ’%s’ event dropped.\n")

84 /*
85 * Macro to get PCI device id (from IEEE 1275 spec)
86 */
87 #define PCI_DEVICE_ID(x) (((x) >> 11) & 0x1f)
88 /*
89 * Local variables
90 */
91 static picld_plugin_reg_t my_reg_info = {
92 PICLD_PLUGIN_VERSION_1,
93 PICLD_PLUGIN_CRITICAL,
94 "SUNW_picldevtree",
95 picldevtree_init,
96 picldevtree_fini
97 };

______unchanged_portion_omitted_

1770 /*
1771 * Walk the snapshot and check the OBP properties of each node.
1772 */
1773 static int
1774 is_snapshot_stale(di_node_t root)
1775 {
1776 snapshot_stale = 0;
1777 (void) di_walk_node(root, DI_WALK_CLDFIRST, NULL, check_stale_node);
1773 di_walk_node(root, DI_WALK_CLDFIRST, NULL, check_stale_node);
1778 return (snapshot_stale);
1779 }
______unchanged_portion_omitted_

2513 /*
2514 * This function reads the export file list from ASR
2515 */
2516 static int
2517 get_asr_export_list(char **exportlist, int *exportlistlen)
2518 {
2519 struct openpromio oppbuf;
2520 struct openpromio *opp = &oppbuf;
2521 int d;
2522 int listsize;

2524 d = open("/dev/openprom", O_RDWR);
2525 if (d < 0)
2526 return (0);

new/usr/src/cmd/picl/plugins/common/devtree/picldevtree.c 3

2528 if (ioctl(d, OPROMEXPORTLEN, opp) == -1) {
2529 (void) close(d);
2530 return (0);
2531 }
2532 listsize = opp->oprom_size;
2533 opp = (struct openpromio *)malloc(sizeof (struct openpromio) +
2534 listsize);
2535 if (opp == NULL) {
2536 (void) close(d);
2537 return (0);
2538 }
2539 (void) memset(opp, ’\0’, sizeof (struct openpromio) + listsize);
2540 opp->oprom_size = listsize;
2541 if (ioctl(d, OPROMEXPORT, opp) == -1) {
2542 free(opp);
2543 (void) close(d);
2544 return (0);
2545 }
2546 *exportlist = malloc(listsize);
2547 if (*exportlist == NULL) {
2548 free(opp);
2549 (void) close(d);
2550 return (0);
2551 }
2552 (void) memcpy(*exportlist, opp->oprom_array, opp->oprom_size);
2553 *exportlistlen = opp->oprom_size;
2554 free(opp);
2550 *exportlistlen = opp->oprom_size;
2555 (void) close(d);
2556 return (1);
2557 }
______unchanged_portion_omitted_

new/usr/src/cmd/picl/plugins/common/memcfg/piclmemcfg_comm.c 1

**
 23005 Thu Jan 24 09:58:59 2019
new/usr/src/cmd/picl/plugins/common/memcfg/piclmemcfg_comm.c
10135 picl plugins need smatch fixes
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright (c) 2018, Joyent, Inc.
26 */

28 /*
29 * This plugin creates memory configuration nodes and properties in the
30 * PICL tree for Cheetah platforms.
31 *
32 * Subtree of memory-controller in the physical aspect.
33 * memory-controller --- memory-module-group --- memory-module
34 *
35 * Subtree of memory in the logical aspect.
36 * memory --- memory-segment --- memory-bank
37 * Add property _memory-module-group_ at memory-segment referring to the
38 * memory-module-group if InterleaveFactor is one, or at memory-bank
39 * if InterleaveFactor is greater than one.
40 *
41 * Undo strategy:
42 * Create all nodes and properties, or none if it fails in physical and
43 * logical memory tree respectively. It keeps on creating logic
44 * memory tree although it falis on physical logic tree, but no link to
45 * memory module group.
46 *
47 * NOTE:
48 * It depends on PICL devtree plugin and currently
49 * there is no refresh routine for DR.
50 */
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 #include <alloca.h>
56 #include <syslog.h>
57 #include <string.h>
58 #include <libintl.h>
59 #include <picl.h>
60 #include <picltree.h>
61 #include <fcntl.h>

new/usr/src/cmd/picl/plugins/common/memcfg/piclmemcfg_comm.c 2

62 #include <errno.h>
63 #include <sys/types.h>
64 #include <dirent.h>
65 #include <sys/stat.h>
66 #include <mc.h>
67 #include <libnvpair.h>
68 #include <limits.h>
69 #include "piclmemcfg.h"

71 /*
72 * Plugin registration entry points
73 */
74 static void piclmemcfg_register(void);
75 static void piclmemcfg_init(void);
76 static void piclmemcfg_fini(void);

78 /*
79 * PICL event handler
80 */
81 static void piclmemcfg_evhandler(const char *ename, const void *earg,
82 size_t size, void *cookie);

84 #pragma init(piclmemcfg_register)

86 static picld_plugin_reg_t my_reg_info = {
87 PICLD_PLUGIN_VERSION_1,
88 PICLD_PLUGIN_NON_CRITICAL,
89 "SUNW_piclmemcfg",
90 piclmemcfg_init,
91 piclmemcfg_fini
92 };

______unchanged_portion_omitted_

364 /*
365 * Create logical memory tree
366 * memory --- memory-segment --- memory-bank
367 * Get information via ioctl of memory control driver
368 */
369 static int
370 create_logical_tree(picl_nodehdl_t memh, int fd)
371 {
372 int i;
373 int err = PICL_SUCCESS;
374 picl_nodehdl_t msegh;
375 ptree_propinfo_t propinfo;
376 struct mc_memory *mcmem;
377 struct mc_segment *mcseg;
378 picl_prophdl_t proph;
379 uint64_t memsize = 0;

381 /*
382 * allocate memory for mc_memory where nsegmentids are various
383 */
384 if ((mcmem = alloca((nsegments - 1) * sizeof (mcmem->segmentids[0]) +
385 sizeof (*mcmem))) == NULL)
386 return (PICL_FAILURE);

388 mcmem->nsegments = nsegments;

390 /*
391 * Get logical memory information
392 */
393 if (ioctl(fd, MCIOC_MEM, mcmem) == -1)
394 return (PICL_FAILURE);

396 /*

new/usr/src/cmd/picl/plugins/common/memcfg/piclmemcfg_comm.c 3

397 * allocate memory for mc_segment where nbanks are various
398 */
399 if ((mcseg = alloca((nbanks - 1) * sizeof (mcseg->bankids[0]) +
400 sizeof (*mcseg))) == NULL)
401 return (PICL_FAILURE);

403 /*
404 * Get all segments to create memory-segment nodes and
405 * add properties.
406 */
407 for (i = 0; i < nsegments; i++) {
408 mcseg->id = mcmem->segmentids[i].globalid;
409 mcseg->nbanks = nbanks;

411 if (ioctl(fd, MCIOC_SEG, mcseg) == -1)
412 break;

414 /*
415 * Create memory-segment node under memory node
416 */
417 err = ptree_create_and_add_node(memh, PICL_NAME_MEMORY_SEGMENT,
418 PICL_CLASS_MEMORY_SEGMENT, &msegh);
419 if (err != PICL_SUCCESS)
420 break;

422 msegh_info[i] = msegh;

424 /*
425 * Add property, Size to memory-segment node
426 */
427 err = ptree_init_propinfo(&propinfo, PTREE_PROPINFO_VERSION,
425 if ((ptree_init_propinfo(&propinfo, PTREE_PROPINFO_VERSION,
428 PICL_PTYPE_UNSIGNED_INT, PICL_READ, sizeof (mcseg->size),
429 PICL_PROP_SIZE, NULL, NULL);
427 PICL_PROP_SIZE, NULL, NULL)) != PICL_SUCCESS)
430 if (err != PICL_SUCCESS)
431 break;

433 memsize += mcseg->size;
434 err = ptree_create_and_add_prop(msegh, &propinfo, &mcseg->size,
435 NULL);
436 if (err != PICL_SUCCESS)
437 break;

439 /*
440 * Add property, BaseAddress to memory-segment node
441 */
442 err = ptree_init_propinfo(&propinfo, PTREE_PROPINFO_VERSION,
443 PICL_PTYPE_UNSIGNED_INT, PICL_READ, sizeof (mcseg->base),
444 PICL_PROP_BASEADDRESS, NULL, NULL);
445 if (err != PICL_SUCCESS)
446 break;

448 err = ptree_create_and_add_prop(msegh, &propinfo, &mcseg->base,
449 NULL);
450 if (err != PICL_SUCCESS)
451 break;

453 err = ptree_init_propinfo(&propinfo, PTREE_PROPINFO_VERSION,
454 PICL_PTYPE_UNSIGNED_INT, PICL_READ, sizeof (mcseg->ifactor),
455 PICL_PROP_INTERLEAVE_FACTOR, NULL, NULL);
456 if (err != PICL_SUCCESS)
457 break;

459 err = ptree_create_and_add_prop(msegh, &propinfo,
460 &mcseg->ifactor, NULL);

new/usr/src/cmd/picl/plugins/common/memcfg/piclmemcfg_comm.c 4

461 if (err != PICL_SUCCESS)
462 break;

464 err = add_mem_banks(msegh, fd, mcseg);
465 if (err != PICL_SUCCESS)
466 break;
467 }

469 if (err != PICL_SUCCESS) {
470 undo_logical_tree(nsegments);
471 return (err);
472 }

474 err = ptree_get_prop_by_name(memh, PICL_PROP_SIZE, &proph);
475 if (err == PICL_SUCCESS) { /* update the value */
476 err = ptree_update_propval(proph, &memsize, sizeof (memsize));
477 return (err);
478 }

480 /*
481 * Add the size property
482 */
483 (void) ptree_init_propinfo(&propinfo, PTREE_PROPINFO_VERSION,
484 PICL_PTYPE_UNSIGNED_INT, PICL_READ, sizeof (memsize),
485 PICL_PROP_SIZE, NULL, NULL);
486 err = ptree_create_and_add_prop(memh, &propinfo, &memsize, NULL);

488 return (err);
489 }

______unchanged_portion_omitted_

