1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2014 Toomas Soome <tsoome@me.com> 26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 27 * Copyright (c) 2018, Joyent, Inc. 28 */ 29 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <errno.h> 33 #include <strings.h> 34 #include <unistd.h> 35 #include <smbios.h> 36 #include <uuid/uuid.h> 37 #include <libintl.h> 38 #include <sys/types.h> 39 #include <sys/dkio.h> 40 #include <sys/vtoc.h> 41 #include <sys/mhd.h> 42 #include <sys/param.h> 43 #include <sys/dktp/fdisk.h> 44 #include <sys/efi_partition.h> 45 #include <sys/byteorder.h> 46 #include <sys/ddi.h> 47 48 /* 49 * The original conversion array used simple array index, but since 50 * we do need to take account of VTOC tag numbers from other systems, 51 * we need to provide tag values too, or the array will grow too large. 52 * 53 * Still we will fabricate the missing p_tag values. 54 */ 55 static struct uuid_to_ptag { 56 struct uuid uuid; 57 ushort_t p_tag; 58 } conversion_array[] = { 59 { EFI_UNUSED, V_UNASSIGNED }, 60 { EFI_BOOT, V_BOOT }, 61 { EFI_ROOT, V_ROOT }, 62 { EFI_SWAP, V_SWAP }, 63 { EFI_USR, V_USR }, 64 { EFI_BACKUP, V_BACKUP }, 65 { EFI_VAR, V_VAR }, 66 { EFI_HOME, V_HOME }, 67 { EFI_ALTSCTR, V_ALTSCTR }, 68 { EFI_RESERVED, V_RESERVED }, 69 { EFI_SYSTEM, V_SYSTEM }, /* V_SYSTEM is 0xc */ 70 { EFI_LEGACY_MBR, 0x10 }, 71 { EFI_SYMC_PUB, 0x11 }, 72 { EFI_SYMC_CDS, 0x12 }, 73 { EFI_MSFT_RESV, 0x13 }, 74 { EFI_DELL_BASIC, 0x14 }, 75 { EFI_DELL_RAID, 0x15 }, 76 { EFI_DELL_SWAP, 0x16 }, 77 { EFI_DELL_LVM, 0x17 }, 78 { EFI_DELL_RESV, 0x19 }, 79 { EFI_AAPL_HFS, 0x1a }, 80 { EFI_AAPL_UFS, 0x1b }, 81 { EFI_AAPL_ZFS, 0x1c }, 82 { EFI_AAPL_APFS, 0x1d }, 83 { EFI_BIOS_BOOT, V_BIOS_BOOT }, /* V_BIOS_BOOT is 0x18 */ 84 { EFI_FREEBSD_BOOT, V_FREEBSD_BOOT }, 85 { EFI_FREEBSD_SWAP, V_FREEBSD_SWAP }, 86 { EFI_FREEBSD_UFS, V_FREEBSD_UFS }, 87 { EFI_FREEBSD_VINUM, V_FREEBSD_VINUM }, 88 { EFI_FREEBSD_ZFS, V_FREEBSD_ZFS }, 89 { EFI_FREEBSD_NANDFS, V_FREEBSD_NANDFS } 90 }; 91 92 /* 93 * Default vtoc information for non-SVr4 partitions 94 */ 95 struct dk_map2 default_vtoc_map[NDKMAP] = { 96 { V_ROOT, 0 }, /* a - 0 */ 97 { V_SWAP, V_UNMNT }, /* b - 1 */ 98 { V_BACKUP, V_UNMNT }, /* c - 2 */ 99 { V_UNASSIGNED, 0 }, /* d - 3 */ 100 { V_UNASSIGNED, 0 }, /* e - 4 */ 101 { V_UNASSIGNED, 0 }, /* f - 5 */ 102 { V_USR, 0 }, /* g - 6 */ 103 { V_UNASSIGNED, 0 }, /* h - 7 */ 104 105 #if defined(_SUNOS_VTOC_16) 106 107 #if defined(i386) || defined(__amd64) 108 { V_BOOT, V_UNMNT }, /* i - 8 */ 109 { V_ALTSCTR, 0 }, /* j - 9 */ 110 111 #else 112 #error No VTOC format defined. 113 #endif /* defined(i386) */ 114 115 { V_UNASSIGNED, 0 }, /* k - 10 */ 116 { V_UNASSIGNED, 0 }, /* l - 11 */ 117 { V_UNASSIGNED, 0 }, /* m - 12 */ 118 { V_UNASSIGNED, 0 }, /* n - 13 */ 119 { V_UNASSIGNED, 0 }, /* o - 14 */ 120 { V_UNASSIGNED, 0 }, /* p - 15 */ 121 #endif /* defined(_SUNOS_VTOC_16) */ 122 }; 123 124 #ifdef DEBUG 125 int efi_debug = 1; 126 #else 127 int efi_debug = 0; 128 #endif 129 130 #define EFI_FIXES_DB "/usr/share/hwdata/efi.fixes" 131 132 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 133 static int efi_read(int, struct dk_gpt *); 134 135 static int 136 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 137 { 138 struct dk_minfo disk_info; 139 140 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 141 return (errno); 142 *capacity = disk_info.dki_capacity; 143 *lbsize = disk_info.dki_lbsize; 144 return (0); 145 } 146 147 /* 148 * the number of blocks the EFI label takes up (round up to nearest 149 * block) 150 */ 151 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 152 ((l) - 1)) / (l))) 153 /* number of partitions -- limited by what we can malloc */ 154 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 155 sizeof (struct dk_part)) 156 157 int 158 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 159 { 160 diskaddr_t capacity; 161 uint_t lbsize; 162 uint_t nblocks; 163 size_t length; 164 struct dk_gpt *vptr; 165 struct uuid uuid; 166 167 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 168 if (efi_debug) 169 (void) fprintf(stderr, 170 "couldn't read disk information\n"); 171 return (-1); 172 } 173 174 nblocks = NBLOCKS(nparts, lbsize); 175 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 176 /* 16K plus one block for the GPT */ 177 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 178 } 179 180 if (nparts > MAX_PARTS) { 181 if (efi_debug) { 182 (void) fprintf(stderr, 183 "the maximum number of partitions supported is %lu\n", 184 MAX_PARTS); 185 } 186 return (-1); 187 } 188 189 length = sizeof (struct dk_gpt) + 190 sizeof (struct dk_part) * (nparts - 1); 191 192 if ((*vtoc = calloc(1, length)) == NULL) 193 return (-1); 194 195 vptr = *vtoc; 196 197 vptr->efi_version = EFI_VERSION_CURRENT; 198 vptr->efi_lbasize = lbsize; 199 vptr->efi_nparts = nparts; 200 /* 201 * add one block here for the PMBR; on disks with a 512 byte 202 * block size and 128 or fewer partitions, efi_first_u_lba 203 * should work out to "34" 204 */ 205 vptr->efi_first_u_lba = nblocks + 1; 206 vptr->efi_last_lba = capacity - 1; 207 vptr->efi_altern_lba = capacity -1; 208 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 209 210 (void) uuid_generate((uchar_t *)&uuid); 211 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 212 return (0); 213 } 214 215 /* 216 * Read EFI - return partition number upon success. 217 */ 218 int 219 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 220 { 221 int rval; 222 uint32_t nparts; 223 int length; 224 struct mboot *mbr; 225 struct ipart *ipart; 226 diskaddr_t capacity; 227 uint_t lbsize; 228 int i; 229 230 if (read_disk_info(fd, &capacity, &lbsize) != 0) 231 return (VT_ERROR); 232 233 if ((mbr = calloc(1, lbsize)) == NULL) 234 return (VT_ERROR); 235 236 if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) { 237 free(mbr); 238 return (VT_ERROR); 239 } 240 241 if (mbr->signature != MBB_MAGIC) { 242 free(mbr); 243 return (VT_EINVAL); 244 } 245 ipart = (struct ipart *)(uintptr_t)mbr->parts; 246 247 /* Check if we have partition with ID EFI_PMBR */ 248 for (i = 0; i < FD_NUMPART; i++) { 249 if (ipart[i].systid == EFI_PMBR) 250 break; 251 } 252 free(mbr); 253 if (i == FD_NUMPART) 254 return (VT_EINVAL); 255 256 /* figure out the number of entries that would fit into 16K */ 257 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 258 length = (int) sizeof (struct dk_gpt) + 259 (int) sizeof (struct dk_part) * (nparts - 1); 260 if ((*vtoc = calloc(1, length)) == NULL) 261 return (VT_ERROR); 262 263 (*vtoc)->efi_nparts = nparts; 264 rval = efi_read(fd, *vtoc); 265 266 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 267 void *tmp; 268 length = (int) sizeof (struct dk_gpt) + 269 (int) sizeof (struct dk_part) * 270 ((*vtoc)->efi_nparts - 1); 271 nparts = (*vtoc)->efi_nparts; 272 if ((tmp = realloc(*vtoc, length)) == NULL) { 273 free (*vtoc); 274 *vtoc = NULL; 275 return (VT_ERROR); 276 } else { 277 *vtoc = tmp; 278 rval = efi_read(fd, *vtoc); 279 } 280 } 281 282 if (rval < 0) { 283 if (efi_debug) { 284 (void) fprintf(stderr, 285 "read of EFI table failed, rval=%d\n", rval); 286 } 287 free (*vtoc); 288 *vtoc = NULL; 289 } 290 291 return (rval); 292 } 293 294 static int 295 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 296 { 297 void *data = dk_ioc->dki_data; 298 int error; 299 300 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 301 error = ioctl(fd, cmd, (void *)dk_ioc); 302 dk_ioc->dki_data = data; 303 304 return (error); 305 } 306 307 static int 308 check_label(int fd, dk_efi_t *dk_ioc) 309 { 310 efi_gpt_t *efi; 311 uint_t crc; 312 313 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 314 switch (errno) { 315 case EIO: 316 return (VT_EIO); 317 default: 318 return (VT_ERROR); 319 } 320 } 321 efi = dk_ioc->dki_data; 322 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 323 if (efi_debug) 324 (void) fprintf(stderr, 325 "Bad EFI signature: 0x%llx != 0x%llx\n", 326 (long long)efi->efi_gpt_Signature, 327 (long long)LE_64(EFI_SIGNATURE)); 328 return (VT_EINVAL); 329 } 330 331 /* 332 * check CRC of the header; the size of the header should 333 * never be larger than one block 334 */ 335 crc = efi->efi_gpt_HeaderCRC32; 336 efi->efi_gpt_HeaderCRC32 = 0; 337 338 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 339 crc != LE_32(efi_crc32((unsigned char *)efi, 340 LE_32(efi->efi_gpt_HeaderSize)))) { 341 if (efi_debug) 342 (void) fprintf(stderr, 343 "Bad EFI CRC: 0x%x != 0x%x\n", 344 crc, 345 LE_32(efi_crc32((unsigned char *)efi, 346 sizeof (struct efi_gpt)))); 347 return (VT_EINVAL); 348 } 349 350 return (0); 351 } 352 353 static int 354 efi_read(int fd, struct dk_gpt *vtoc) 355 { 356 int i, j; 357 int label_len; 358 int rval = 0; 359 int vdc_flag = 0; 360 struct dk_minfo disk_info; 361 dk_efi_t dk_ioc; 362 efi_gpt_t *efi; 363 efi_gpe_t *efi_parts; 364 struct dk_cinfo dki_info; 365 uint32_t user_length; 366 boolean_t legacy_label = B_FALSE; 367 368 /* 369 * get the partition number for this file descriptor. 370 */ 371 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 372 if (efi_debug) { 373 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 374 } 375 switch (errno) { 376 case EIO: 377 return (VT_EIO); 378 case EINVAL: 379 return (VT_EINVAL); 380 default: 381 return (VT_ERROR); 382 } 383 } 384 385 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && 386 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { 387 /* 388 * The controller and drive name "vdc" (virtual disk client) 389 * indicates a LDoms virtual disk. 390 */ 391 vdc_flag++; 392 } 393 394 /* get the LBA size */ 395 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 396 if (efi_debug) { 397 (void) fprintf(stderr, 398 "assuming LBA 512 bytes %d\n", 399 errno); 400 } 401 disk_info.dki_lbsize = DEV_BSIZE; 402 } 403 if (disk_info.dki_lbsize == 0) { 404 if (efi_debug) { 405 (void) fprintf(stderr, 406 "efi_read: assuming LBA 512 bytes\n"); 407 } 408 disk_info.dki_lbsize = DEV_BSIZE; 409 } 410 /* 411 * Read the EFI GPT to figure out how many partitions we need 412 * to deal with. 413 */ 414 dk_ioc.dki_lba = 1; 415 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 416 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 417 } else { 418 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 419 disk_info.dki_lbsize; 420 if (label_len % disk_info.dki_lbsize) { 421 /* pad to physical sector size */ 422 label_len += disk_info.dki_lbsize; 423 label_len &= ~(disk_info.dki_lbsize - 1); 424 } 425 } 426 427 if ((dk_ioc.dki_data = calloc(1, label_len)) == NULL) 428 return (VT_ERROR); 429 430 dk_ioc.dki_length = disk_info.dki_lbsize; 431 user_length = vtoc->efi_nparts; 432 efi = dk_ioc.dki_data; 433 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 434 /* 435 * No valid label here; try the alternate. Note that here 436 * we just read GPT header and save it into dk_ioc.data, 437 * Later, we will read GUID partition entry array if we 438 * can get valid GPT header. 439 */ 440 441 /* 442 * This is a workaround for legacy systems. In the past, the 443 * last sector of SCSI disk was invisible on x86 platform. At 444 * that time, backup label was saved on the next to the last 445 * sector. It is possible for users to move a disk from previous 446 * solaris system to present system. Here, we attempt to search 447 * legacy backup EFI label first. 448 */ 449 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 450 dk_ioc.dki_length = disk_info.dki_lbsize; 451 rval = check_label(fd, &dk_ioc); 452 if (rval == VT_EINVAL) { 453 /* 454 * we didn't find legacy backup EFI label, try to 455 * search backup EFI label in the last block. 456 */ 457 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 458 dk_ioc.dki_length = disk_info.dki_lbsize; 459 rval = check_label(fd, &dk_ioc); 460 if (rval == 0) { 461 legacy_label = B_TRUE; 462 if (efi_debug) 463 (void) fprintf(stderr, 464 "efi_read: primary label corrupt; " 465 "using EFI backup label located on" 466 " the last block\n"); 467 } 468 } else { 469 if ((efi_debug) && (rval == 0)) 470 (void) fprintf(stderr, "efi_read: primary label" 471 " corrupt; using legacy EFI backup label " 472 " located on the next to last block\n"); 473 } 474 475 if (rval == 0) { 476 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 477 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 478 vtoc->efi_nparts = 479 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 480 /* 481 * Partition tables are between backup GPT header 482 * table and ParitionEntryLBA (the starting LBA of 483 * the GUID partition entries array). Now that we 484 * already got valid GPT header and saved it in 485 * dk_ioc.dki_data, we try to get GUID partition 486 * entry array here. 487 */ 488 /* LINTED */ 489 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 490 + disk_info.dki_lbsize); 491 if (legacy_label) 492 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 493 dk_ioc.dki_lba; 494 else 495 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 496 dk_ioc.dki_lba; 497 dk_ioc.dki_length *= disk_info.dki_lbsize; 498 if (dk_ioc.dki_length > 499 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 500 rval = VT_EINVAL; 501 } else { 502 /* 503 * read GUID partition entry array 504 */ 505 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 506 } 507 } 508 509 } else if (rval == 0) { 510 511 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 512 /* LINTED */ 513 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 514 + disk_info.dki_lbsize); 515 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 516 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 517 518 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { 519 /* 520 * When the device is a LDoms virtual disk, the DKIOCGETEFI 521 * ioctl can fail with EINVAL if the virtual disk backend 522 * is a ZFS volume serviced by a domain running an old version 523 * of Solaris. This is because the DKIOCGETEFI ioctl was 524 * initially incorrectly implemented for a ZFS volume and it 525 * expected the GPT and GPE to be retrieved with a single ioctl. 526 * So we try to read the GPT and the GPE using that old style 527 * ioctl. 528 */ 529 dk_ioc.dki_lba = 1; 530 dk_ioc.dki_length = label_len; 531 rval = check_label(fd, &dk_ioc); 532 } 533 534 if (rval < 0) { 535 free(efi); 536 return (rval); 537 } 538 539 /* LINTED -- always longlong aligned */ 540 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 541 542 /* 543 * Assemble this into a "dk_gpt" struct for easier 544 * digestibility by applications. 545 */ 546 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 547 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 548 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 549 vtoc->efi_lbasize = disk_info.dki_lbsize; 550 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 551 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 552 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 553 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 554 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 555 556 /* 557 * If the array the user passed in is too small, set the length 558 * to what it needs to be and return 559 */ 560 if (user_length < vtoc->efi_nparts) { 561 return (VT_EINVAL); 562 } 563 564 for (i = 0; i < vtoc->efi_nparts; i++) { 565 566 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 567 efi_parts[i].efi_gpe_PartitionTypeGUID); 568 569 for (j = 0; 570 j < sizeof (conversion_array) 571 / sizeof (struct uuid_to_ptag); j++) { 572 573 if (bcmp(&vtoc->efi_parts[i].p_guid, 574 &conversion_array[j].uuid, 575 sizeof (struct uuid)) == 0) { 576 vtoc->efi_parts[i].p_tag = 577 conversion_array[j].p_tag; 578 break; 579 } 580 } 581 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 582 continue; 583 vtoc->efi_parts[i].p_flag = 584 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 585 vtoc->efi_parts[i].p_start = 586 LE_64(efi_parts[i].efi_gpe_StartingLBA); 587 vtoc->efi_parts[i].p_size = 588 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 589 vtoc->efi_parts[i].p_start + 1; 590 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 591 vtoc->efi_parts[i].p_name[j] = 592 (uchar_t)LE_16( 593 efi_parts[i].efi_gpe_PartitionName[j]); 594 } 595 596 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 597 efi_parts[i].efi_gpe_UniquePartitionGUID); 598 } 599 free(efi); 600 601 return (dki_info.dki_partition); 602 } 603 604 static void 605 hardware_workarounds(int *slot, int *active) 606 { 607 smbios_struct_t s_sys, s_mb; 608 smbios_info_t sys, mb; 609 smbios_hdl_t *shp; 610 char buf[0x400]; 611 FILE *fp; 612 int err; 613 614 if ((fp = fopen(EFI_FIXES_DB, "rF")) == NULL) 615 return; 616 617 if ((shp = smbios_open(NULL, SMB_VERSION, 0, &err)) == NULL) { 618 if (efi_debug) 619 (void) fprintf(stderr, 620 "libefi failed to load SMBIOS: %s\n", 621 smbios_errmsg(err)); 622 (void) fclose(fp); 623 return; 624 } 625 626 if (smbios_lookup_type(shp, SMB_TYPE_SYSTEM, &s_sys) == SMB_ERR || 627 smbios_info_common(shp, s_sys.smbstr_id, &sys) == SMB_ERR) 628 (void) memset(&sys, '\0', sizeof (sys)); 629 if (smbios_lookup_type(shp, SMB_TYPE_BASEBOARD, &s_mb) == SMB_ERR || 630 smbios_info_common(shp, s_mb.smbstr_id, &mb) == SMB_ERR) 631 (void) memset(&mb, '\0', sizeof (mb)); 632 633 while (fgets(buf, sizeof (buf), fp) != NULL) { 634 char *tok, *val, *end; 635 636 tok = buf + strspn(buf, " \t"); 637 if (*tok == '#') 638 continue; 639 while (*tok != '\0') { 640 tok += strspn(tok, " \t"); 641 if ((val = strchr(tok, '=')) == NULL) 642 break; 643 *val++ = '\0'; 644 if (*val == '"') 645 end = strchr(++val, '"'); 646 else 647 end = strpbrk(val, " \t\n"); 648 if (end == NULL) 649 break; 650 *end++ = '\0'; 651 652 if (strcmp(tok, "sys.manufacturer") == 0 && 653 (sys.smbi_manufacturer == NULL || 654 strcasecmp(val, sys.smbi_manufacturer))) 655 break; 656 if (strcmp(tok, "sys.product") == 0 && 657 (sys.smbi_product == NULL || 658 strcasecmp(val, sys.smbi_product))) 659 break; 660 if (strcmp(tok, "sys.version") == 0 && 661 (sys.smbi_version == NULL || 662 strcasecmp(val, sys.smbi_version))) 663 break; 664 if (strcmp(tok, "mb.manufacturer") == 0 && 665 (mb.smbi_manufacturer == NULL || 666 strcasecmp(val, mb.smbi_manufacturer))) 667 break; 668 if (strcmp(tok, "mb.product") == 0 && 669 (mb.smbi_product == NULL || 670 strcasecmp(val, mb.smbi_product))) 671 break; 672 if (strcmp(tok, "mb.version") == 0 && 673 (mb.smbi_version == NULL || 674 strcasecmp(val, mb.smbi_version))) 675 break; 676 677 if (strcmp(tok, "pmbr_slot") == 0) { 678 *slot = atoi(val); 679 if (*slot < 0 || *slot > 3) 680 *slot = 0; 681 if (efi_debug) 682 (void) fprintf(stderr, 683 "Using slot %d\n", *slot); 684 } 685 686 if (strcmp(tok, "pmbr_active") == 0) { 687 *active = atoi(val); 688 if (*active < 0 || *active > 1) 689 *active = 0; 690 if (efi_debug) 691 (void) fprintf(stderr, 692 "Using active %d\n", *active); 693 } 694 695 tok = end; 696 } 697 } 698 (void) fclose(fp); 699 smbios_close(shp); 700 } 701 702 /* writes a "protective" MBR */ 703 static int 704 write_pmbr(int fd, struct dk_gpt *vtoc) 705 { 706 dk_efi_t dk_ioc; 707 struct mboot mb; 708 uchar_t *cp; 709 diskaddr_t size_in_lba; 710 uchar_t *buf; 711 int len, slot, active; 712 713 slot = active = 0; 714 715 hardware_workarounds(&slot, &active); 716 717 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize; 718 buf = calloc(len, 1); 719 720 /* 721 * Preserve any boot code and disk signature if the first block is 722 * already an MBR. 723 */ 724 dk_ioc.dki_lba = 0; 725 dk_ioc.dki_length = len; 726 /* LINTED -- always longlong aligned */ 727 dk_ioc.dki_data = (efi_gpt_t *)buf; 728 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 729 (void) memcpy(&mb, buf, sizeof (mb)); 730 bzero(&mb, sizeof (mb)); 731 mb.signature = LE_16(MBB_MAGIC); 732 } else { 733 (void) memcpy(&mb, buf, sizeof (mb)); 734 if (mb.signature != LE_16(MBB_MAGIC)) { 735 bzero(&mb, sizeof (mb)); 736 mb.signature = LE_16(MBB_MAGIC); 737 } 738 } 739 740 bzero(&mb.parts, sizeof (mb.parts)); 741 cp = (uchar_t *)&mb.parts[slot * sizeof (struct ipart)]; 742 /* bootable or not */ 743 *cp++ = active ? ACTIVE : NOTACTIVE; 744 /* beginning CHS; 0xffffff if not representable */ 745 *cp++ = 0xff; 746 *cp++ = 0xff; 747 *cp++ = 0xff; 748 /* OS type */ 749 *cp++ = EFI_PMBR; 750 /* ending CHS; 0xffffff if not representable */ 751 *cp++ = 0xff; 752 *cp++ = 0xff; 753 *cp++ = 0xff; 754 /* starting LBA: 1 (little endian format) by EFI definition */ 755 *cp++ = 0x01; 756 *cp++ = 0x00; 757 *cp++ = 0x00; 758 *cp++ = 0x00; 759 /* ending LBA: last block on the disk (little endian format) */ 760 size_in_lba = vtoc->efi_last_lba; 761 if (size_in_lba < 0xffffffff) { 762 *cp++ = (size_in_lba & 0x000000ff); 763 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 764 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 765 *cp++ = (size_in_lba & 0xff000000) >> 24; 766 } else { 767 *cp++ = 0xff; 768 *cp++ = 0xff; 769 *cp++ = 0xff; 770 *cp++ = 0xff; 771 } 772 773 (void) memcpy(buf, &mb, sizeof (mb)); 774 /* LINTED -- always longlong aligned */ 775 dk_ioc.dki_data = (efi_gpt_t *)buf; 776 dk_ioc.dki_lba = 0; 777 dk_ioc.dki_length = len; 778 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 779 free(buf); 780 switch (errno) { 781 case EIO: 782 return (VT_EIO); 783 case EINVAL: 784 return (VT_EINVAL); 785 default: 786 return (VT_ERROR); 787 } 788 } 789 free(buf); 790 return (0); 791 } 792 793 /* make sure the user specified something reasonable */ 794 static int 795 check_input(struct dk_gpt *vtoc) 796 { 797 int resv_part = -1; 798 int i, j; 799 diskaddr_t istart, jstart, isize, jsize, endsect; 800 801 /* 802 * Sanity-check the input (make sure no partitions overlap) 803 */ 804 for (i = 0; i < vtoc->efi_nparts; i++) { 805 /* It can't be unassigned and have an actual size */ 806 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 807 (vtoc->efi_parts[i].p_size != 0)) { 808 if (efi_debug) { 809 (void) fprintf(stderr, 810 "partition %d is \"unassigned\" but has a size of %llu", 811 i, 812 vtoc->efi_parts[i].p_size); 813 } 814 return (VT_EINVAL); 815 } 816 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 817 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 818 continue; 819 /* we have encountered an unknown uuid */ 820 vtoc->efi_parts[i].p_tag = 0xff; 821 } 822 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 823 if (resv_part != -1) { 824 if (efi_debug) { 825 (void) fprintf(stderr, 826 "found duplicate reserved partition at %d\n", 827 i); 828 } 829 return (VT_EINVAL); 830 } 831 resv_part = i; 832 } 833 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 834 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 835 if (efi_debug) { 836 (void) fprintf(stderr, 837 "Partition %d starts at %llu. ", 838 i, 839 vtoc->efi_parts[i].p_start); 840 (void) fprintf(stderr, 841 "It must be between %llu and %llu.\n", 842 vtoc->efi_first_u_lba, 843 vtoc->efi_last_u_lba); 844 } 845 return (VT_EINVAL); 846 } 847 if ((vtoc->efi_parts[i].p_start + 848 vtoc->efi_parts[i].p_size < 849 vtoc->efi_first_u_lba) || 850 (vtoc->efi_parts[i].p_start + 851 vtoc->efi_parts[i].p_size > 852 vtoc->efi_last_u_lba + 1)) { 853 if (efi_debug) { 854 (void) fprintf(stderr, 855 "Partition %d ends at %llu. ", 856 i, 857 vtoc->efi_parts[i].p_start + 858 vtoc->efi_parts[i].p_size); 859 (void) fprintf(stderr, 860 "It must be between %llu and %llu.\n", 861 vtoc->efi_first_u_lba, 862 vtoc->efi_last_u_lba); 863 } 864 return (VT_EINVAL); 865 } 866 867 for (j = 0; j < vtoc->efi_nparts; j++) { 868 isize = vtoc->efi_parts[i].p_size; 869 jsize = vtoc->efi_parts[j].p_size; 870 istart = vtoc->efi_parts[i].p_start; 871 jstart = vtoc->efi_parts[j].p_start; 872 if ((i != j) && (isize != 0) && (jsize != 0)) { 873 endsect = jstart + jsize -1; 874 if ((jstart <= istart) && 875 (istart <= endsect)) { 876 if (efi_debug) { 877 (void) fprintf(stderr, 878 "Partition %d overlaps partition %d.", 879 i, j); 880 } 881 return (VT_EINVAL); 882 } 883 } 884 } 885 } 886 /* just a warning for now */ 887 if ((resv_part == -1) && efi_debug) { 888 (void) fprintf(stderr, 889 "no reserved partition found\n"); 890 } 891 return (0); 892 } 893 894 /* 895 * add all the unallocated space to the current label 896 */ 897 int 898 efi_use_whole_disk(int fd) 899 { 900 struct dk_gpt *efi_label; 901 int rval; 902 int i; 903 uint_t phy_last_slice = 0; 904 diskaddr_t pl_start = 0; 905 diskaddr_t pl_size; 906 907 rval = efi_alloc_and_read(fd, &efi_label); 908 if (rval < 0) { 909 return (rval); 910 } 911 912 /* find the last physically non-zero partition */ 913 for (i = 0; i < efi_label->efi_nparts - 2; i ++) { 914 if (pl_start < efi_label->efi_parts[i].p_start) { 915 pl_start = efi_label->efi_parts[i].p_start; 916 phy_last_slice = i; 917 } 918 } 919 pl_size = efi_label->efi_parts[phy_last_slice].p_size; 920 921 /* 922 * If alter_lba is 1, we are using the backup label. 923 * Since we can locate the backup label by disk capacity, 924 * there must be no unallocated space. 925 */ 926 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba 927 >= efi_label->efi_last_lba)) { 928 if (efi_debug) { 929 (void) fprintf(stderr, 930 "efi_use_whole_disk: requested space not found\n"); 931 } 932 efi_free(efi_label); 933 return (VT_ENOSPC); 934 } 935 936 /* 937 * If there is space between the last physically non-zero partition 938 * and the reserved partition, just add the unallocated space to this 939 * area. Otherwise, the unallocated space is added to the last 940 * physically non-zero partition. 941 */ 942 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba - 943 EFI_MIN_RESV_SIZE) { 944 efi_label->efi_parts[phy_last_slice].p_size += 945 efi_label->efi_last_lba - efi_label->efi_altern_lba; 946 } 947 948 /* 949 * Move the reserved partition. There is currently no data in 950 * here except fabricated devids (which get generated via 951 * efi_write()). So there is no need to copy data. 952 */ 953 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start += 954 efi_label->efi_last_lba - efi_label->efi_altern_lba; 955 efi_label->efi_last_u_lba += efi_label->efi_last_lba 956 - efi_label->efi_altern_lba; 957 958 rval = efi_write(fd, efi_label); 959 if (rval < 0) { 960 if (efi_debug) { 961 (void) fprintf(stderr, 962 "efi_use_whole_disk:fail to write label, rval=%d\n", 963 rval); 964 } 965 efi_free(efi_label); 966 return (rval); 967 } 968 969 efi_free(efi_label); 970 return (0); 971 } 972 973 974 /* 975 * write EFI label and backup label 976 */ 977 int 978 efi_write(int fd, struct dk_gpt *vtoc) 979 { 980 dk_efi_t dk_ioc; 981 efi_gpt_t *efi; 982 efi_gpe_t *efi_parts; 983 int i, j; 984 struct dk_cinfo dki_info; 985 int nblocks; 986 diskaddr_t lba_backup_gpt_hdr; 987 988 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 989 if (efi_debug) 990 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 991 switch (errno) { 992 case EIO: 993 return (VT_EIO); 994 case EINVAL: 995 return (VT_EINVAL); 996 default: 997 return (VT_ERROR); 998 } 999 } 1000 1001 if (check_input(vtoc)) 1002 return (VT_EINVAL); 1003 1004 dk_ioc.dki_lba = 1; 1005 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 1006 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 1007 } else { 1008 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 1009 vtoc->efi_lbasize) * 1010 vtoc->efi_lbasize; 1011 } 1012 1013 /* 1014 * the number of blocks occupied by GUID partition entry array 1015 */ 1016 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 1017 1018 /* 1019 * Backup GPT header is located on the block after GUID 1020 * partition entry array. Here, we calculate the address 1021 * for backup GPT header. 1022 */ 1023 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 1024 if ((dk_ioc.dki_data = calloc(1, dk_ioc.dki_length)) == NULL) 1025 return (VT_ERROR); 1026 1027 efi = dk_ioc.dki_data; 1028 1029 /* stuff user's input into EFI struct */ 1030 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 1031 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 1032 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt)); 1033 efi->efi_gpt_Reserved1 = 0; 1034 efi->efi_gpt_MyLBA = LE_64(1ULL); 1035 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 1036 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 1037 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 1038 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 1039 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 1040 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 1041 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 1042 1043 /* LINTED -- always longlong aligned */ 1044 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); 1045 1046 for (i = 0; i < vtoc->efi_nparts; i++) { 1047 for (j = 0; 1048 j < sizeof (conversion_array) / 1049 sizeof (struct uuid_to_ptag); j++) { 1050 1051 if (vtoc->efi_parts[i].p_tag == 1052 conversion_array[j].p_tag) { 1053 UUID_LE_CONVERT( 1054 efi_parts[i].efi_gpe_PartitionTypeGUID, 1055 conversion_array[j].uuid); 1056 break; 1057 } 1058 } 1059 1060 if (j == sizeof (conversion_array) / 1061 sizeof (struct uuid_to_ptag)) { 1062 /* 1063 * If we didn't have a matching uuid match, bail here. 1064 * Don't write a label with unknown uuid. 1065 */ 1066 if (efi_debug) { 1067 (void) fprintf(stderr, 1068 "Unknown uuid for p_tag %d\n", 1069 vtoc->efi_parts[i].p_tag); 1070 } 1071 return (VT_EINVAL); 1072 } 1073 1074 efi_parts[i].efi_gpe_StartingLBA = 1075 LE_64(vtoc->efi_parts[i].p_start); 1076 efi_parts[i].efi_gpe_EndingLBA = 1077 LE_64(vtoc->efi_parts[i].p_start + 1078 vtoc->efi_parts[i].p_size - 1); 1079 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 1080 LE_16(vtoc->efi_parts[i].p_flag); 1081 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 1082 efi_parts[i].efi_gpe_PartitionName[j] = 1083 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 1084 } 1085 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 1086 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 1087 (void) uuid_generate((uchar_t *) 1088 &vtoc->efi_parts[i].p_uguid); 1089 } 1090 bcopy(&vtoc->efi_parts[i].p_uguid, 1091 &efi_parts[i].efi_gpe_UniquePartitionGUID, 1092 sizeof (uuid_t)); 1093 } 1094 efi->efi_gpt_PartitionEntryArrayCRC32 = 1095 LE_32(efi_crc32((unsigned char *)efi_parts, 1096 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 1097 efi->efi_gpt_HeaderCRC32 = 1098 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt))); 1099 1100 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1101 free(dk_ioc.dki_data); 1102 switch (errno) { 1103 case EIO: 1104 return (VT_EIO); 1105 case EINVAL: 1106 return (VT_EINVAL); 1107 default: 1108 return (VT_ERROR); 1109 } 1110 } 1111 1112 /* write backup partition array */ 1113 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 1114 dk_ioc.dki_length -= vtoc->efi_lbasize; 1115 /* LINTED */ 1116 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + 1117 vtoc->efi_lbasize); 1118 1119 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1120 /* 1121 * we wrote the primary label okay, so don't fail 1122 */ 1123 if (efi_debug) { 1124 (void) fprintf(stderr, 1125 "write of backup partitions to block %llu " 1126 "failed, errno %d\n", 1127 vtoc->efi_last_u_lba + 1, 1128 errno); 1129 } 1130 } 1131 /* 1132 * now swap MyLBA and AlternateLBA fields and write backup 1133 * partition table header 1134 */ 1135 dk_ioc.dki_lba = lba_backup_gpt_hdr; 1136 dk_ioc.dki_length = vtoc->efi_lbasize; 1137 /* LINTED */ 1138 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - 1139 vtoc->efi_lbasize); 1140 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 1141 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 1142 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 1143 efi->efi_gpt_HeaderCRC32 = 0; 1144 efi->efi_gpt_HeaderCRC32 = 1145 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, 1146 sizeof (struct efi_gpt))); 1147 1148 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1149 if (efi_debug) { 1150 (void) fprintf(stderr, 1151 "write of backup header to block %llu failed, " 1152 "errno %d\n", 1153 lba_backup_gpt_hdr, 1154 errno); 1155 } 1156 } 1157 /* write the PMBR */ 1158 (void) write_pmbr(fd, vtoc); 1159 free(dk_ioc.dki_data); 1160 return (0); 1161 } 1162 1163 void 1164 efi_free(struct dk_gpt *ptr) 1165 { 1166 free(ptr); 1167 } 1168 1169 /* 1170 * Input: File descriptor 1171 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR. 1172 * Otherwise 0. 1173 */ 1174 int 1175 efi_type(int fd) 1176 { 1177 struct vtoc vtoc; 1178 struct extvtoc extvtoc; 1179 1180 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) { 1181 if (errno == ENOTSUP) 1182 return (1); 1183 else if (errno == ENOTTY) { 1184 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) 1185 if (errno == ENOTSUP) 1186 return (1); 1187 } 1188 } 1189 return (0); 1190 } 1191 1192 void 1193 efi_err_check(struct dk_gpt *vtoc) 1194 { 1195 int resv_part = -1; 1196 int i, j; 1197 diskaddr_t istart, jstart, isize, jsize, endsect; 1198 int overlap = 0; 1199 1200 /* 1201 * make sure no partitions overlap 1202 */ 1203 for (i = 0; i < vtoc->efi_nparts; i++) { 1204 /* It can't be unassigned and have an actual size */ 1205 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1206 (vtoc->efi_parts[i].p_size != 0)) { 1207 (void) fprintf(stderr, 1208 "partition %d is \"unassigned\" but has a size " 1209 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1210 } 1211 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1212 continue; 1213 } 1214 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1215 if (resv_part != -1) { 1216 (void) fprintf(stderr, 1217 "found duplicate reserved partition at " 1218 "%d\n", i); 1219 } 1220 resv_part = i; 1221 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) 1222 (void) fprintf(stderr, 1223 "Warning: reserved partition size must " 1224 "be %d sectors\n", EFI_MIN_RESV_SIZE); 1225 } 1226 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1227 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1228 (void) fprintf(stderr, 1229 "Partition %d starts at %llu\n", 1230 i, 1231 vtoc->efi_parts[i].p_start); 1232 (void) fprintf(stderr, 1233 "It must be between %llu and %llu.\n", 1234 vtoc->efi_first_u_lba, 1235 vtoc->efi_last_u_lba); 1236 } 1237 if ((vtoc->efi_parts[i].p_start + 1238 vtoc->efi_parts[i].p_size < 1239 vtoc->efi_first_u_lba) || 1240 (vtoc->efi_parts[i].p_start + 1241 vtoc->efi_parts[i].p_size > 1242 vtoc->efi_last_u_lba + 1)) { 1243 (void) fprintf(stderr, 1244 "Partition %d ends at %llu\n", 1245 i, 1246 vtoc->efi_parts[i].p_start + 1247 vtoc->efi_parts[i].p_size); 1248 (void) fprintf(stderr, 1249 "It must be between %llu and %llu.\n", 1250 vtoc->efi_first_u_lba, 1251 vtoc->efi_last_u_lba); 1252 } 1253 1254 for (j = 0; j < vtoc->efi_nparts; j++) { 1255 isize = vtoc->efi_parts[i].p_size; 1256 jsize = vtoc->efi_parts[j].p_size; 1257 istart = vtoc->efi_parts[i].p_start; 1258 jstart = vtoc->efi_parts[j].p_start; 1259 if ((i != j) && (isize != 0) && (jsize != 0)) { 1260 endsect = jstart + jsize -1; 1261 if ((jstart <= istart) && 1262 (istart <= endsect)) { 1263 if (!overlap) { 1264 (void) fprintf(stderr, 1265 "label error: EFI Labels do not " 1266 "support overlapping partitions\n"); 1267 } 1268 (void) fprintf(stderr, 1269 "Partition %d overlaps partition " 1270 "%d.\n", i, j); 1271 overlap = 1; 1272 } 1273 } 1274 } 1275 } 1276 /* make sure there is a reserved partition */ 1277 if (resv_part == -1) { 1278 (void) fprintf(stderr, 1279 "no reserved partition found\n"); 1280 } 1281 } 1282 1283 /* 1284 * We need to get information necessary to construct a *new* efi 1285 * label type 1286 */ 1287 int 1288 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1289 { 1290 1291 int i; 1292 1293 /* 1294 * Now build the default partition table 1295 */ 1296 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1297 if (efi_debug) { 1298 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1299 } 1300 return (-1); 1301 } 1302 1303 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1304 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1305 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1306 (*vtoc)->efi_parts[i].p_start = 0; 1307 (*vtoc)->efi_parts[i].p_size = 0; 1308 } 1309 /* 1310 * Make constants first 1311 * and variable partitions later 1312 */ 1313 1314 /* root partition - s0 128 MB */ 1315 (*vtoc)->efi_parts[0].p_start = 34; 1316 (*vtoc)->efi_parts[0].p_size = 262144; 1317 1318 /* partition - s1 128 MB */ 1319 (*vtoc)->efi_parts[1].p_start = 262178; 1320 (*vtoc)->efi_parts[1].p_size = 262144; 1321 1322 /* partition -s2 is NOT the Backup disk */ 1323 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1324 1325 /* partition -s6 /usr partition - HOG */ 1326 (*vtoc)->efi_parts[6].p_start = 524322; 1327 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1328 - (1024 * 16); 1329 1330 /* efi reserved partition - s9 16K */ 1331 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1332 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1333 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1334 return (0); 1335 }