1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2014 Toomas Soome <tsoome@me.com>
26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27 */
28
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <errno.h>
32 #include <strings.h>
33 #include <unistd.h>
34 #include <smbios.h>
35 #include <uuid/uuid.h>
36 #include <libintl.h>
37 #include <sys/types.h>
38 #include <sys/dkio.h>
39 #include <sys/vtoc.h>
40 #include <sys/mhd.h>
41 #include <sys/param.h>
42 #include <sys/dktp/fdisk.h>
43 #include <sys/efi_partition.h>
44 #include <sys/byteorder.h>
45 #include <sys/ddi.h>
46
47 /*
48 * The original conversion array used simple array index, but since
49 * we do need to take account of VTOC tag numbers from other systems,
50 * we need to provide tag values too, or the array will grow too large.
51 *
52 * Still we will fabricate the missing p_tag values.
53 */
54 static struct uuid_to_ptag {
55 struct uuid uuid;
56 ushort_t p_tag;
57 } conversion_array[] = {
58 { EFI_UNUSED, V_UNASSIGNED },
59 { EFI_BOOT, V_BOOT },
60 { EFI_ROOT, V_ROOT },
61 { EFI_SWAP, V_SWAP },
62 { EFI_USR, V_USR },
63 { EFI_BACKUP, V_BACKUP },
64 { EFI_VAR, V_VAR },
65 { EFI_HOME, V_HOME },
66 { EFI_ALTSCTR, V_ALTSCTR },
67 { EFI_RESERVED, V_RESERVED },
68 { EFI_SYSTEM, V_SYSTEM }, /* V_SYSTEM is 0xc */
69 { EFI_LEGACY_MBR, 0x10 },
70 { EFI_SYMC_PUB, 0x11 },
71 { EFI_SYMC_CDS, 0x12 },
72 { EFI_MSFT_RESV, 0x13 },
73 { EFI_DELL_BASIC, 0x14 },
74 { EFI_DELL_RAID, 0x15 },
75 { EFI_DELL_SWAP, 0x16 },
76 { EFI_DELL_LVM, 0x17 },
77 { EFI_DELL_RESV, 0x19 },
78 { EFI_AAPL_HFS, 0x1a },
79 { EFI_AAPL_UFS, 0x1b },
80 { EFI_AAPL_ZFS, 0x1c },
81 { EFI_AAPL_APFS, 0x1d },
82 { EFI_BIOS_BOOT, V_BIOS_BOOT }, /* V_BIOS_BOOT is 0x18 */
83 { EFI_FREEBSD_BOOT, V_FREEBSD_BOOT },
84 { EFI_FREEBSD_SWAP, V_FREEBSD_SWAP },
85 { EFI_FREEBSD_UFS, V_FREEBSD_UFS },
86 { EFI_FREEBSD_VINUM, V_FREEBSD_VINUM },
87 { EFI_FREEBSD_ZFS, V_FREEBSD_ZFS },
88 { EFI_FREEBSD_NANDFS, V_FREEBSD_NANDFS }
89 };
90
91 /*
92 * Default vtoc information for non-SVr4 partitions
93 */
94 struct dk_map2 default_vtoc_map[NDKMAP] = {
95 { V_ROOT, 0 }, /* a - 0 */
96 { V_SWAP, V_UNMNT }, /* b - 1 */
97 { V_BACKUP, V_UNMNT }, /* c - 2 */
98 { V_UNASSIGNED, 0 }, /* d - 3 */
99 { V_UNASSIGNED, 0 }, /* e - 4 */
100 { V_UNASSIGNED, 0 }, /* f - 5 */
101 { V_USR, 0 }, /* g - 6 */
102 { V_UNASSIGNED, 0 }, /* h - 7 */
103
104 #if defined(_SUNOS_VTOC_16)
105
106 #if defined(i386) || defined(__amd64)
107 { V_BOOT, V_UNMNT }, /* i - 8 */
108 { V_ALTSCTR, 0 }, /* j - 9 */
109
110 #else
111 #error No VTOC format defined.
112 #endif /* defined(i386) */
113
114 { V_UNASSIGNED, 0 }, /* k - 10 */
115 { V_UNASSIGNED, 0 }, /* l - 11 */
116 { V_UNASSIGNED, 0 }, /* m - 12 */
117 { V_UNASSIGNED, 0 }, /* n - 13 */
118 { V_UNASSIGNED, 0 }, /* o - 14 */
119 { V_UNASSIGNED, 0 }, /* p - 15 */
120 #endif /* defined(_SUNOS_VTOC_16) */
121 };
122
123 #ifdef DEBUG
124 int efi_debug = 1;
125 #else
126 int efi_debug = 0;
127 #endif
128
129 #define EFI_FIXES_DB "/usr/share/hwdata/efi.fixes"
130
131 extern unsigned int efi_crc32(const unsigned char *, unsigned int);
132 static int efi_read(int, struct dk_gpt *);
133
134 static int
135 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
136 {
137 struct dk_minfo disk_info;
138
139 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
140 return (errno);
141 *capacity = disk_info.dki_capacity;
142 *lbsize = disk_info.dki_lbsize;
143 return (0);
144 }
145
146 /*
147 * the number of blocks the EFI label takes up (round up to nearest
148 * block)
149 */
150 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
151 ((l) - 1)) / (l)))
152 /* number of partitions -- limited by what we can malloc */
153 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
154 sizeof (struct dk_part))
155
156 int
157 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
158 {
159 diskaddr_t capacity;
160 uint_t lbsize;
161 uint_t nblocks;
162 size_t length;
163 struct dk_gpt *vptr;
164 struct uuid uuid;
165
166 if (read_disk_info(fd, &capacity, &lbsize) != 0) {
167 if (efi_debug)
168 (void) fprintf(stderr,
169 "couldn't read disk information\n");
170 return (-1);
171 }
172
173 nblocks = NBLOCKS(nparts, lbsize);
174 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
175 /* 16K plus one block for the GPT */
176 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
177 }
178
179 if (nparts > MAX_PARTS) {
180 if (efi_debug) {
181 (void) fprintf(stderr,
182 "the maximum number of partitions supported is %lu\n",
183 MAX_PARTS);
184 }
185 return (-1);
186 }
187
188 length = sizeof (struct dk_gpt) +
189 sizeof (struct dk_part) * (nparts - 1);
190
191 if ((*vtoc = calloc(length, 1)) == NULL)
192 return (-1);
193
194 vptr = *vtoc;
195
196 vptr->efi_version = EFI_VERSION_CURRENT;
197 vptr->efi_lbasize = lbsize;
198 vptr->efi_nparts = nparts;
199 /*
200 * add one block here for the PMBR; on disks with a 512 byte
201 * block size and 128 or fewer partitions, efi_first_u_lba
202 * should work out to "34"
203 */
204 vptr->efi_first_u_lba = nblocks + 1;
205 vptr->efi_last_lba = capacity - 1;
206 vptr->efi_altern_lba = capacity -1;
207 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
208
209 (void) uuid_generate((uchar_t *)&uuid);
210 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
211 return (0);
212 }
213
214 /*
215 * Read EFI - return partition number upon success.
216 */
217 int
218 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
219 {
220 int rval;
221 uint32_t nparts;
222 int length;
223 struct mboot *mbr;
224 struct ipart *ipart;
225 diskaddr_t capacity;
226 uint_t lbsize;
227 int i;
228
229 if (read_disk_info(fd, &capacity, &lbsize) != 0)
230 return (VT_ERROR);
231
232 if ((mbr = calloc(lbsize, 1)) == NULL)
233 return (VT_ERROR);
234
235 if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) {
236 free(mbr);
237 return (VT_ERROR);
238 }
239
240 if (mbr->signature != MBB_MAGIC) {
241 free(mbr);
242 return (VT_EINVAL);
243 }
244 ipart = (struct ipart *)(uintptr_t)mbr->parts;
245
246 /* Check if we have partition with ID EFI_PMBR */
247 for (i = 0; i < FD_NUMPART; i++) {
248 if (ipart[i].systid == EFI_PMBR)
249 break;
250 }
251 free(mbr);
252 if (i == FD_NUMPART)
253 return (VT_EINVAL);
254
255 /* figure out the number of entries that would fit into 16K */
256 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
257 length = (int) sizeof (struct dk_gpt) +
258 (int) sizeof (struct dk_part) * (nparts - 1);
259 if ((*vtoc = calloc(length, 1)) == NULL)
260 return (VT_ERROR);
261
262 (*vtoc)->efi_nparts = nparts;
263 rval = efi_read(fd, *vtoc);
264
265 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
266 void *tmp;
267 length = (int) sizeof (struct dk_gpt) +
268 (int) sizeof (struct dk_part) *
269 ((*vtoc)->efi_nparts - 1);
270 nparts = (*vtoc)->efi_nparts;
271 if ((tmp = realloc(*vtoc, length)) == NULL) {
272 free (*vtoc);
273 *vtoc = NULL;
274 return (VT_ERROR);
275 } else {
276 *vtoc = tmp;
277 rval = efi_read(fd, *vtoc);
278 }
279 }
280
281 if (rval < 0) {
282 if (efi_debug) {
283 (void) fprintf(stderr,
284 "read of EFI table failed, rval=%d\n", rval);
285 }
286 free (*vtoc);
287 *vtoc = NULL;
288 }
289
290 return (rval);
291 }
292
293 static int
294 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
295 {
296 void *data = dk_ioc->dki_data;
297 int error;
298
299 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
300 error = ioctl(fd, cmd, (void *)dk_ioc);
301 dk_ioc->dki_data = data;
302
303 return (error);
304 }
305
306 static int
307 check_label(int fd, dk_efi_t *dk_ioc)
308 {
309 efi_gpt_t *efi;
310 uint_t crc;
311
312 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
313 switch (errno) {
314 case EIO:
315 return (VT_EIO);
316 default:
317 return (VT_ERROR);
318 }
319 }
320 efi = dk_ioc->dki_data;
321 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
322 if (efi_debug)
323 (void) fprintf(stderr,
324 "Bad EFI signature: 0x%llx != 0x%llx\n",
325 (long long)efi->efi_gpt_Signature,
326 (long long)LE_64(EFI_SIGNATURE));
327 return (VT_EINVAL);
328 }
329
330 /*
331 * check CRC of the header; the size of the header should
332 * never be larger than one block
333 */
334 crc = efi->efi_gpt_HeaderCRC32;
335 efi->efi_gpt_HeaderCRC32 = 0;
336
337 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
338 crc != LE_32(efi_crc32((unsigned char *)efi,
339 LE_32(efi->efi_gpt_HeaderSize)))) {
340 if (efi_debug)
341 (void) fprintf(stderr,
342 "Bad EFI CRC: 0x%x != 0x%x\n",
343 crc,
344 LE_32(efi_crc32((unsigned char *)efi,
345 sizeof (struct efi_gpt))));
346 return (VT_EINVAL);
347 }
348
349 return (0);
350 }
351
352 static int
353 efi_read(int fd, struct dk_gpt *vtoc)
354 {
355 int i, j;
356 int label_len;
357 int rval = 0;
358 int vdc_flag = 0;
359 struct dk_minfo disk_info;
360 dk_efi_t dk_ioc;
361 efi_gpt_t *efi;
362 efi_gpe_t *efi_parts;
363 struct dk_cinfo dki_info;
364 uint32_t user_length;
365 boolean_t legacy_label = B_FALSE;
366
367 /*
368 * get the partition number for this file descriptor.
369 */
370 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
371 if (efi_debug) {
372 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
373 }
374 switch (errno) {
375 case EIO:
376 return (VT_EIO);
377 case EINVAL:
378 return (VT_EINVAL);
379 default:
380 return (VT_ERROR);
381 }
382 }
383
384 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
385 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
386 /*
387 * The controller and drive name "vdc" (virtual disk client)
388 * indicates a LDoms virtual disk.
389 */
390 vdc_flag++;
391 }
392
393 /* get the LBA size */
394 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
395 if (efi_debug) {
396 (void) fprintf(stderr,
397 "assuming LBA 512 bytes %d\n",
398 errno);
399 }
400 disk_info.dki_lbsize = DEV_BSIZE;
401 }
402 if (disk_info.dki_lbsize == 0) {
403 if (efi_debug) {
404 (void) fprintf(stderr,
405 "efi_read: assuming LBA 512 bytes\n");
406 }
407 disk_info.dki_lbsize = DEV_BSIZE;
408 }
409 /*
410 * Read the EFI GPT to figure out how many partitions we need
411 * to deal with.
412 */
413 dk_ioc.dki_lba = 1;
414 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
415 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
416 } else {
417 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
418 disk_info.dki_lbsize;
419 if (label_len % disk_info.dki_lbsize) {
420 /* pad to physical sector size */
421 label_len += disk_info.dki_lbsize;
422 label_len &= ~(disk_info.dki_lbsize - 1);
423 }
424 }
425
426 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL)
427 return (VT_ERROR);
428
429 dk_ioc.dki_length = disk_info.dki_lbsize;
430 user_length = vtoc->efi_nparts;
431 efi = dk_ioc.dki_data;
432 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
433 /*
434 * No valid label here; try the alternate. Note that here
435 * we just read GPT header and save it into dk_ioc.data,
436 * Later, we will read GUID partition entry array if we
437 * can get valid GPT header.
438 */
439
440 /*
441 * This is a workaround for legacy systems. In the past, the
442 * last sector of SCSI disk was invisible on x86 platform. At
443 * that time, backup label was saved on the next to the last
444 * sector. It is possible for users to move a disk from previous
445 * solaris system to present system. Here, we attempt to search
446 * legacy backup EFI label first.
447 */
448 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
449 dk_ioc.dki_length = disk_info.dki_lbsize;
450 rval = check_label(fd, &dk_ioc);
451 if (rval == VT_EINVAL) {
452 /*
453 * we didn't find legacy backup EFI label, try to
454 * search backup EFI label in the last block.
455 */
456 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
457 dk_ioc.dki_length = disk_info.dki_lbsize;
458 rval = check_label(fd, &dk_ioc);
459 if (rval == 0) {
460 legacy_label = B_TRUE;
461 if (efi_debug)
462 (void) fprintf(stderr,
463 "efi_read: primary label corrupt; "
464 "using EFI backup label located on"
465 " the last block\n");
466 }
467 } else {
468 if ((efi_debug) && (rval == 0))
469 (void) fprintf(stderr, "efi_read: primary label"
470 " corrupt; using legacy EFI backup label "
471 " located on the next to last block\n");
472 }
473
474 if (rval == 0) {
475 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
476 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
477 vtoc->efi_nparts =
478 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
479 /*
480 * Partition tables are between backup GPT header
481 * table and ParitionEntryLBA (the starting LBA of
482 * the GUID partition entries array). Now that we
483 * already got valid GPT header and saved it in
484 * dk_ioc.dki_data, we try to get GUID partition
485 * entry array here.
486 */
487 /* LINTED */
488 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
489 + disk_info.dki_lbsize);
490 if (legacy_label)
491 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
492 dk_ioc.dki_lba;
493 else
494 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
495 dk_ioc.dki_lba;
496 dk_ioc.dki_length *= disk_info.dki_lbsize;
497 if (dk_ioc.dki_length >
498 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
499 rval = VT_EINVAL;
500 } else {
501 /*
502 * read GUID partition entry array
503 */
504 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
505 }
506 }
507
508 } else if (rval == 0) {
509
510 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
511 /* LINTED */
512 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
513 + disk_info.dki_lbsize);
514 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
515 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
516
517 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
518 /*
519 * When the device is a LDoms virtual disk, the DKIOCGETEFI
520 * ioctl can fail with EINVAL if the virtual disk backend
521 * is a ZFS volume serviced by a domain running an old version
522 * of Solaris. This is because the DKIOCGETEFI ioctl was
523 * initially incorrectly implemented for a ZFS volume and it
524 * expected the GPT and GPE to be retrieved with a single ioctl.
525 * So we try to read the GPT and the GPE using that old style
526 * ioctl.
527 */
528 dk_ioc.dki_lba = 1;
529 dk_ioc.dki_length = label_len;
530 rval = check_label(fd, &dk_ioc);
531 }
532
533 if (rval < 0) {
534 free(efi);
535 return (rval);
536 }
537
538 /* LINTED -- always longlong aligned */
539 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
540
541 /*
542 * Assemble this into a "dk_gpt" struct for easier
543 * digestibility by applications.
544 */
545 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
546 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
547 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
548 vtoc->efi_lbasize = disk_info.dki_lbsize;
549 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
550 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
551 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
552 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
553 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
554
555 /*
556 * If the array the user passed in is too small, set the length
557 * to what it needs to be and return
558 */
559 if (user_length < vtoc->efi_nparts) {
560 return (VT_EINVAL);
561 }
562
563 for (i = 0; i < vtoc->efi_nparts; i++) {
564
565 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
566 efi_parts[i].efi_gpe_PartitionTypeGUID);
567
568 for (j = 0;
569 j < sizeof (conversion_array)
570 / sizeof (struct uuid_to_ptag); j++) {
571
572 if (bcmp(&vtoc->efi_parts[i].p_guid,
573 &conversion_array[j].uuid,
574 sizeof (struct uuid)) == 0) {
575 vtoc->efi_parts[i].p_tag =
576 conversion_array[j].p_tag;
577 break;
578 }
579 }
580 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
581 continue;
582 vtoc->efi_parts[i].p_flag =
583 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
584 vtoc->efi_parts[i].p_start =
585 LE_64(efi_parts[i].efi_gpe_StartingLBA);
586 vtoc->efi_parts[i].p_size =
587 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
588 vtoc->efi_parts[i].p_start + 1;
589 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
590 vtoc->efi_parts[i].p_name[j] =
591 (uchar_t)LE_16(
592 efi_parts[i].efi_gpe_PartitionName[j]);
593 }
594
595 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
596 efi_parts[i].efi_gpe_UniquePartitionGUID);
597 }
598 free(efi);
599
600 return (dki_info.dki_partition);
601 }
602
603 static void
604 hardware_workarounds(int *slot, int *active)
605 {
606 smbios_struct_t s_sys, s_mb;
607 smbios_info_t sys, mb;
608 smbios_hdl_t *shp;
609 char buf[0x400];
610 FILE *fp;
611 int err;
612
613 if ((fp = fopen(EFI_FIXES_DB, "rF")) == NULL)
614 return;
615
616 if ((shp = smbios_open(NULL, SMB_VERSION, 0, &err)) == NULL) {
617 if (efi_debug)
618 (void) fprintf(stderr,
619 "libefi failed to load SMBIOS: %s\n",
620 smbios_errmsg(err));
621 (void) fclose(fp);
622 return;
623 }
624
625 if (smbios_lookup_type(shp, SMB_TYPE_SYSTEM, &s_sys) == SMB_ERR ||
626 smbios_info_common(shp, s_sys.smbstr_id, &sys) == SMB_ERR)
627 (void) memset(&sys, '\0', sizeof (sys));
628 if (smbios_lookup_type(shp, SMB_TYPE_BASEBOARD, &s_mb) == SMB_ERR ||
629 smbios_info_common(shp, s_mb.smbstr_id, &mb) == SMB_ERR)
630 (void) memset(&mb, '\0', sizeof (mb));
631
632 while (fgets(buf, sizeof (buf), fp) != NULL) {
633 char *tok, *val, *end;
634
635 tok = buf + strspn(buf, " \t");
636 if (*tok == '#')
637 continue;
638 while (*tok != '\0') {
639 tok += strspn(tok, " \t");
640 if ((val = strchr(tok, '=')) == NULL)
641 break;
642 *val++ = '\0';
643 if (*val == '"')
644 end = strchr(++val, '"');
645 else
646 end = strpbrk(val, " \t\n");
647 if (end == NULL)
648 break;
649 *end++ = '\0';
650
651 if (strcmp(tok, "sys.manufacturer") == 0 &&
652 (sys.smbi_manufacturer == NULL ||
653 strcasecmp(val, sys.smbi_manufacturer)))
654 break;
655 if (strcmp(tok, "sys.product") == 0 &&
656 (sys.smbi_product == NULL ||
657 strcasecmp(val, sys.smbi_product)))
658 break;
659 if (strcmp(tok, "sys.version") == 0 &&
660 (sys.smbi_version == NULL ||
661 strcasecmp(val, sys.smbi_version)))
662 break;
663 if (strcmp(tok, "mb.manufacturer") == 0 &&
664 (mb.smbi_manufacturer == NULL ||
665 strcasecmp(val, mb.smbi_manufacturer)))
666 break;
667 if (strcmp(tok, "mb.product") == 0 &&
668 (mb.smbi_product == NULL ||
669 strcasecmp(val, mb.smbi_product)))
670 break;
671 if (strcmp(tok, "mb.version") == 0 &&
672 (mb.smbi_version == NULL ||
673 strcasecmp(val, mb.smbi_version)))
674 break;
675
676 if (strcmp(tok, "pmbr_slot") == 0) {
677 *slot = atoi(val);
678 if (*slot < 0 || *slot > 3)
679 *slot = 0;
680 if (efi_debug)
681 (void) fprintf(stderr,
682 "Using slot %d\n", *slot);
683 }
684
685 if (strcmp(tok, "pmbr_active") == 0) {
686 *active = atoi(val);
687 if (*active < 0 || *active > 1)
688 *active = 0;
689 if (efi_debug)
690 (void) fprintf(stderr,
691 "Using active %d\n", *active);
692 }
693
694 tok = end;
695 }
696 }
697 (void) fclose(fp);
698 smbios_close(shp);
699 }
700
701 /* writes a "protective" MBR */
702 static int
703 write_pmbr(int fd, struct dk_gpt *vtoc)
704 {
705 dk_efi_t dk_ioc;
706 struct mboot mb;
707 uchar_t *cp;
708 diskaddr_t size_in_lba;
709 uchar_t *buf;
710 int len, slot, active;
711
712 slot = active = 0;
713
714 hardware_workarounds(&slot, &active);
715
716 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
717 buf = calloc(len, 1);
718
719 /*
720 * Preserve any boot code and disk signature if the first block is
721 * already an MBR.
722 */
723 dk_ioc.dki_lba = 0;
724 dk_ioc.dki_length = len;
725 /* LINTED -- always longlong aligned */
726 dk_ioc.dki_data = (efi_gpt_t *)buf;
727 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
728 (void) memcpy(&mb, buf, sizeof (mb));
729 bzero(&mb, sizeof (mb));
730 mb.signature = LE_16(MBB_MAGIC);
731 } else {
732 (void) memcpy(&mb, buf, sizeof (mb));
733 if (mb.signature != LE_16(MBB_MAGIC)) {
734 bzero(&mb, sizeof (mb));
735 mb.signature = LE_16(MBB_MAGIC);
736 }
737 }
738
739 bzero(&mb.parts, sizeof (mb.parts));
740 cp = (uchar_t *)&mb.parts[slot * sizeof (struct ipart)];
741 /* bootable or not */
742 *cp++ = active ? ACTIVE : NOTACTIVE;
743 /* beginning CHS; 0xffffff if not representable */
744 *cp++ = 0xff;
745 *cp++ = 0xff;
746 *cp++ = 0xff;
747 /* OS type */
748 *cp++ = EFI_PMBR;
749 /* ending CHS; 0xffffff if not representable */
750 *cp++ = 0xff;
751 *cp++ = 0xff;
752 *cp++ = 0xff;
753 /* starting LBA: 1 (little endian format) by EFI definition */
754 *cp++ = 0x01;
755 *cp++ = 0x00;
756 *cp++ = 0x00;
757 *cp++ = 0x00;
758 /* ending LBA: last block on the disk (little endian format) */
759 size_in_lba = vtoc->efi_last_lba;
760 if (size_in_lba < 0xffffffff) {
761 *cp++ = (size_in_lba & 0x000000ff);
762 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
763 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
764 *cp++ = (size_in_lba & 0xff000000) >> 24;
765 } else {
766 *cp++ = 0xff;
767 *cp++ = 0xff;
768 *cp++ = 0xff;
769 *cp++ = 0xff;
770 }
771
772 (void) memcpy(buf, &mb, sizeof (mb));
773 /* LINTED -- always longlong aligned */
774 dk_ioc.dki_data = (efi_gpt_t *)buf;
775 dk_ioc.dki_lba = 0;
776 dk_ioc.dki_length = len;
777 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
778 free(buf);
779 switch (errno) {
780 case EIO:
781 return (VT_EIO);
782 case EINVAL:
783 return (VT_EINVAL);
784 default:
785 return (VT_ERROR);
786 }
787 }
788 free(buf);
789 return (0);
790 }
791
792 /* make sure the user specified something reasonable */
793 static int
794 check_input(struct dk_gpt *vtoc)
795 {
796 int resv_part = -1;
797 int i, j;
798 diskaddr_t istart, jstart, isize, jsize, endsect;
799
800 /*
801 * Sanity-check the input (make sure no partitions overlap)
802 */
803 for (i = 0; i < vtoc->efi_nparts; i++) {
804 /* It can't be unassigned and have an actual size */
805 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
806 (vtoc->efi_parts[i].p_size != 0)) {
807 if (efi_debug) {
808 (void) fprintf(stderr,
809 "partition %d is \"unassigned\" but has a size of %llu",
810 i,
811 vtoc->efi_parts[i].p_size);
812 }
813 return (VT_EINVAL);
814 }
815 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
816 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
817 continue;
818 /* we have encountered an unknown uuid */
819 vtoc->efi_parts[i].p_tag = 0xff;
820 }
821 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
822 if (resv_part != -1) {
823 if (efi_debug) {
824 (void) fprintf(stderr,
825 "found duplicate reserved partition at %d\n",
826 i);
827 }
828 return (VT_EINVAL);
829 }
830 resv_part = i;
831 }
832 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
833 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
834 if (efi_debug) {
835 (void) fprintf(stderr,
836 "Partition %d starts at %llu. ",
837 i,
838 vtoc->efi_parts[i].p_start);
839 (void) fprintf(stderr,
840 "It must be between %llu and %llu.\n",
841 vtoc->efi_first_u_lba,
842 vtoc->efi_last_u_lba);
843 }
844 return (VT_EINVAL);
845 }
846 if ((vtoc->efi_parts[i].p_start +
847 vtoc->efi_parts[i].p_size <
848 vtoc->efi_first_u_lba) ||
849 (vtoc->efi_parts[i].p_start +
850 vtoc->efi_parts[i].p_size >
851 vtoc->efi_last_u_lba + 1)) {
852 if (efi_debug) {
853 (void) fprintf(stderr,
854 "Partition %d ends at %llu. ",
855 i,
856 vtoc->efi_parts[i].p_start +
857 vtoc->efi_parts[i].p_size);
858 (void) fprintf(stderr,
859 "It must be between %llu and %llu.\n",
860 vtoc->efi_first_u_lba,
861 vtoc->efi_last_u_lba);
862 }
863 return (VT_EINVAL);
864 }
865
866 for (j = 0; j < vtoc->efi_nparts; j++) {
867 isize = vtoc->efi_parts[i].p_size;
868 jsize = vtoc->efi_parts[j].p_size;
869 istart = vtoc->efi_parts[i].p_start;
870 jstart = vtoc->efi_parts[j].p_start;
871 if ((i != j) && (isize != 0) && (jsize != 0)) {
872 endsect = jstart + jsize -1;
873 if ((jstart <= istart) &&
874 (istart <= endsect)) {
875 if (efi_debug) {
876 (void) fprintf(stderr,
877 "Partition %d overlaps partition %d.",
878 i, j);
879 }
880 return (VT_EINVAL);
881 }
882 }
883 }
884 }
885 /* just a warning for now */
886 if ((resv_part == -1) && efi_debug) {
887 (void) fprintf(stderr,
888 "no reserved partition found\n");
889 }
890 return (0);
891 }
892
893 /*
894 * add all the unallocated space to the current label
895 */
896 int
897 efi_use_whole_disk(int fd)
898 {
899 struct dk_gpt *efi_label;
900 int rval;
901 int i;
902 uint_t phy_last_slice = 0;
903 diskaddr_t pl_start = 0;
904 diskaddr_t pl_size;
905
906 rval = efi_alloc_and_read(fd, &efi_label);
907 if (rval < 0) {
908 return (rval);
909 }
910
911 /* find the last physically non-zero partition */
912 for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
913 if (pl_start < efi_label->efi_parts[i].p_start) {
914 pl_start = efi_label->efi_parts[i].p_start;
915 phy_last_slice = i;
916 }
917 }
918 pl_size = efi_label->efi_parts[phy_last_slice].p_size;
919
920 /*
921 * If alter_lba is 1, we are using the backup label.
922 * Since we can locate the backup label by disk capacity,
923 * there must be no unallocated space.
924 */
925 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
926 >= efi_label->efi_last_lba)) {
927 if (efi_debug) {
928 (void) fprintf(stderr,
929 "efi_use_whole_disk: requested space not found\n");
930 }
931 efi_free(efi_label);
932 return (VT_ENOSPC);
933 }
934
935 /*
936 * If there is space between the last physically non-zero partition
937 * and the reserved partition, just add the unallocated space to this
938 * area. Otherwise, the unallocated space is added to the last
939 * physically non-zero partition.
940 */
941 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
942 EFI_MIN_RESV_SIZE) {
943 efi_label->efi_parts[phy_last_slice].p_size +=
944 efi_label->efi_last_lba - efi_label->efi_altern_lba;
945 }
946
947 /*
948 * Move the reserved partition. There is currently no data in
949 * here except fabricated devids (which get generated via
950 * efi_write()). So there is no need to copy data.
951 */
952 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
953 efi_label->efi_last_lba - efi_label->efi_altern_lba;
954 efi_label->efi_last_u_lba += efi_label->efi_last_lba
955 - efi_label->efi_altern_lba;
956
957 rval = efi_write(fd, efi_label);
958 if (rval < 0) {
959 if (efi_debug) {
960 (void) fprintf(stderr,
961 "efi_use_whole_disk:fail to write label, rval=%d\n",
962 rval);
963 }
964 efi_free(efi_label);
965 return (rval);
966 }
967
968 efi_free(efi_label);
969 return (0);
970 }
971
972
973 /*
974 * write EFI label and backup label
975 */
976 int
977 efi_write(int fd, struct dk_gpt *vtoc)
978 {
979 dk_efi_t dk_ioc;
980 efi_gpt_t *efi;
981 efi_gpe_t *efi_parts;
982 int i, j;
983 struct dk_cinfo dki_info;
984 int nblocks;
985 diskaddr_t lba_backup_gpt_hdr;
986
987 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
988 if (efi_debug)
989 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
990 switch (errno) {
991 case EIO:
992 return (VT_EIO);
993 case EINVAL:
994 return (VT_EINVAL);
995 default:
996 return (VT_ERROR);
997 }
998 }
999
1000 if (check_input(vtoc))
1001 return (VT_EINVAL);
1002
1003 dk_ioc.dki_lba = 1;
1004 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1005 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1006 } else {
1007 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1008 vtoc->efi_lbasize) *
1009 vtoc->efi_lbasize;
1010 }
1011
1012 /*
1013 * the number of blocks occupied by GUID partition entry array
1014 */
1015 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1016
1017 /*
1018 * Backup GPT header is located on the block after GUID
1019 * partition entry array. Here, we calculate the address
1020 * for backup GPT header.
1021 */
1022 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1023 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL)
1024 return (VT_ERROR);
1025
1026 efi = dk_ioc.dki_data;
1027
1028 /* stuff user's input into EFI struct */
1029 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1030 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1031 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
1032 efi->efi_gpt_Reserved1 = 0;
1033 efi->efi_gpt_MyLBA = LE_64(1ULL);
1034 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1035 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1036 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1037 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1038 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1039 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1040 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1041
1042 /* LINTED -- always longlong aligned */
1043 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1044
1045 for (i = 0; i < vtoc->efi_nparts; i++) {
1046 for (j = 0;
1047 j < sizeof (conversion_array) /
1048 sizeof (struct uuid_to_ptag); j++) {
1049
1050 if (vtoc->efi_parts[i].p_tag ==
1051 conversion_array[j].p_tag) {
1052 UUID_LE_CONVERT(
1053 efi_parts[i].efi_gpe_PartitionTypeGUID,
1054 conversion_array[j].uuid);
1055 break;
1056 }
1057 }
1058
1059 if (j == sizeof (conversion_array) /
1060 sizeof (struct uuid_to_ptag)) {
1061 /*
1062 * If we didn't have a matching uuid match, bail here.
1063 * Don't write a label with unknown uuid.
1064 */
1065 if (efi_debug) {
1066 (void) fprintf(stderr,
1067 "Unknown uuid for p_tag %d\n",
1068 vtoc->efi_parts[i].p_tag);
1069 }
1070 return (VT_EINVAL);
1071 }
1072
1073 efi_parts[i].efi_gpe_StartingLBA =
1074 LE_64(vtoc->efi_parts[i].p_start);
1075 efi_parts[i].efi_gpe_EndingLBA =
1076 LE_64(vtoc->efi_parts[i].p_start +
1077 vtoc->efi_parts[i].p_size - 1);
1078 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1079 LE_16(vtoc->efi_parts[i].p_flag);
1080 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1081 efi_parts[i].efi_gpe_PartitionName[j] =
1082 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1083 }
1084 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1085 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1086 (void) uuid_generate((uchar_t *)
1087 &vtoc->efi_parts[i].p_uguid);
1088 }
1089 bcopy(&vtoc->efi_parts[i].p_uguid,
1090 &efi_parts[i].efi_gpe_UniquePartitionGUID,
1091 sizeof (uuid_t));
1092 }
1093 efi->efi_gpt_PartitionEntryArrayCRC32 =
1094 LE_32(efi_crc32((unsigned char *)efi_parts,
1095 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1096 efi->efi_gpt_HeaderCRC32 =
1097 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
1098
1099 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1100 free(dk_ioc.dki_data);
1101 switch (errno) {
1102 case EIO:
1103 return (VT_EIO);
1104 case EINVAL:
1105 return (VT_EINVAL);
1106 default:
1107 return (VT_ERROR);
1108 }
1109 }
1110
1111 /* write backup partition array */
1112 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1113 dk_ioc.dki_length -= vtoc->efi_lbasize;
1114 /* LINTED */
1115 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1116 vtoc->efi_lbasize);
1117
1118 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1119 /*
1120 * we wrote the primary label okay, so don't fail
1121 */
1122 if (efi_debug) {
1123 (void) fprintf(stderr,
1124 "write of backup partitions to block %llu "
1125 "failed, errno %d\n",
1126 vtoc->efi_last_u_lba + 1,
1127 errno);
1128 }
1129 }
1130 /*
1131 * now swap MyLBA and AlternateLBA fields and write backup
1132 * partition table header
1133 */
1134 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1135 dk_ioc.dki_length = vtoc->efi_lbasize;
1136 /* LINTED */
1137 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1138 vtoc->efi_lbasize);
1139 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1140 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1141 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1142 efi->efi_gpt_HeaderCRC32 = 0;
1143 efi->efi_gpt_HeaderCRC32 =
1144 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1145 sizeof (struct efi_gpt)));
1146
1147 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1148 if (efi_debug) {
1149 (void) fprintf(stderr,
1150 "write of backup header to block %llu failed, "
1151 "errno %d\n",
1152 lba_backup_gpt_hdr,
1153 errno);
1154 }
1155 }
1156 /* write the PMBR */
1157 (void) write_pmbr(fd, vtoc);
1158 free(dk_ioc.dki_data);
1159 return (0);
1160 }
1161
1162 void
1163 efi_free(struct dk_gpt *ptr)
1164 {
1165 free(ptr);
1166 }
1167
1168 /*
1169 * Input: File descriptor
1170 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1171 * Otherwise 0.
1172 */
1173 int
1174 efi_type(int fd)
1175 {
1176 struct vtoc vtoc;
1177 struct extvtoc extvtoc;
1178
1179 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1180 if (errno == ENOTSUP)
1181 return (1);
1182 else if (errno == ENOTTY) {
1183 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1184 if (errno == ENOTSUP)
1185 return (1);
1186 }
1187 }
1188 return (0);
1189 }
1190
1191 void
1192 efi_err_check(struct dk_gpt *vtoc)
1193 {
1194 int resv_part = -1;
1195 int i, j;
1196 diskaddr_t istart, jstart, isize, jsize, endsect;
1197 int overlap = 0;
1198
1199 /*
1200 * make sure no partitions overlap
1201 */
1202 for (i = 0; i < vtoc->efi_nparts; i++) {
1203 /* It can't be unassigned and have an actual size */
1204 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1205 (vtoc->efi_parts[i].p_size != 0)) {
1206 (void) fprintf(stderr,
1207 "partition %d is \"unassigned\" but has a size "
1208 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1209 }
1210 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1211 continue;
1212 }
1213 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1214 if (resv_part != -1) {
1215 (void) fprintf(stderr,
1216 "found duplicate reserved partition at "
1217 "%d\n", i);
1218 }
1219 resv_part = i;
1220 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1221 (void) fprintf(stderr,
1222 "Warning: reserved partition size must "
1223 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1224 }
1225 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1226 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1227 (void) fprintf(stderr,
1228 "Partition %d starts at %llu\n",
1229 i,
1230 vtoc->efi_parts[i].p_start);
1231 (void) fprintf(stderr,
1232 "It must be between %llu and %llu.\n",
1233 vtoc->efi_first_u_lba,
1234 vtoc->efi_last_u_lba);
1235 }
1236 if ((vtoc->efi_parts[i].p_start +
1237 vtoc->efi_parts[i].p_size <
1238 vtoc->efi_first_u_lba) ||
1239 (vtoc->efi_parts[i].p_start +
1240 vtoc->efi_parts[i].p_size >
1241 vtoc->efi_last_u_lba + 1)) {
1242 (void) fprintf(stderr,
1243 "Partition %d ends at %llu\n",
1244 i,
1245 vtoc->efi_parts[i].p_start +
1246 vtoc->efi_parts[i].p_size);
1247 (void) fprintf(stderr,
1248 "It must be between %llu and %llu.\n",
1249 vtoc->efi_first_u_lba,
1250 vtoc->efi_last_u_lba);
1251 }
1252
1253 for (j = 0; j < vtoc->efi_nparts; j++) {
1254 isize = vtoc->efi_parts[i].p_size;
1255 jsize = vtoc->efi_parts[j].p_size;
1256 istart = vtoc->efi_parts[i].p_start;
1257 jstart = vtoc->efi_parts[j].p_start;
1258 if ((i != j) && (isize != 0) && (jsize != 0)) {
1259 endsect = jstart + jsize -1;
1260 if ((jstart <= istart) &&
1261 (istart <= endsect)) {
1262 if (!overlap) {
1263 (void) fprintf(stderr,
1264 "label error: EFI Labels do not "
1265 "support overlapping partitions\n");
1266 }
1267 (void) fprintf(stderr,
1268 "Partition %d overlaps partition "
1269 "%d.\n", i, j);
1270 overlap = 1;
1271 }
1272 }
1273 }
1274 }
1275 /* make sure there is a reserved partition */
1276 if (resv_part == -1) {
1277 (void) fprintf(stderr,
1278 "no reserved partition found\n");
1279 }
1280 }
1281
1282 /*
1283 * We need to get information necessary to construct a *new* efi
1284 * label type
1285 */
1286 int
1287 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1288 {
1289
1290 int i;
1291
1292 /*
1293 * Now build the default partition table
1294 */
1295 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1296 if (efi_debug) {
1297 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1298 }
1299 return (-1);
1300 }
1301
1302 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1303 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1304 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1305 (*vtoc)->efi_parts[i].p_start = 0;
1306 (*vtoc)->efi_parts[i].p_size = 0;
1307 }
1308 /*
1309 * Make constants first
1310 * and variable partitions later
1311 */
1312
1313 /* root partition - s0 128 MB */
1314 (*vtoc)->efi_parts[0].p_start = 34;
1315 (*vtoc)->efi_parts[0].p_size = 262144;
1316
1317 /* partition - s1 128 MB */
1318 (*vtoc)->efi_parts[1].p_start = 262178;
1319 (*vtoc)->efi_parts[1].p_size = 262144;
1320
1321 /* partition -s2 is NOT the Backup disk */
1322 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1323
1324 /* partition -s6 /usr partition - HOG */
1325 (*vtoc)->efi_parts[6].p_start = 524322;
1326 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1327 - (1024 * 16);
1328
1329 /* efi reserved partition - s9 16K */
1330 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1331 (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1332 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1333 return (0);
1334 }