1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 1990 Mentat Inc.
25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26 * Copyright (c) 2016 by Delphix. All rights reserved.
27 * Copyright (c) 2018 Joyent, Inc. All rights reserved.
28 */
29
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/sysmacros.h>
35 #include <sys/strsubr.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/zone.h>
39 #define _SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/xti_inet.h>
42 #include <sys/ddi.h>
43 #include <sys/suntpi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/kobj.h>
47 #include <sys/modctl.h>
48 #include <sys/atomic.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/taskq.h>
52
53 #include <sys/systm.h>
54 #include <sys/param.h>
55 #include <sys/kmem.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/vtrace.h>
59 #include <sys/isa_defs.h>
60 #include <sys/mac.h>
61 #include <net/if.h>
62 #include <net/if_arp.h>
63 #include <net/route.h>
64 #include <sys/sockio.h>
65 #include <netinet/in.h>
66 #include <net/if_dl.h>
67
68 #include <inet/common.h>
69 #include <inet/mi.h>
70 #include <inet/mib2.h>
71 #include <inet/nd.h>
72 #include <inet/arp.h>
73 #include <inet/snmpcom.h>
74 #include <inet/optcom.h>
75 #include <inet/kstatcom.h>
76
77 #include <netinet/igmp_var.h>
78 #include <netinet/ip6.h>
79 #include <netinet/icmp6.h>
80 #include <netinet/sctp.h>
81
82 #include <inet/ip.h>
83 #include <inet/ip_impl.h>
84 #include <inet/ip6.h>
85 #include <inet/ip6_asp.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/ip_multi.h>
89 #include <inet/ip_if.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_rts.h>
93 #include <inet/ip_ndp.h>
94 #include <inet/ip_listutils.h>
95 #include <netinet/igmp.h>
96 #include <netinet/ip_mroute.h>
97 #include <inet/ipp_common.h>
98
99 #include <net/pfkeyv2.h>
100 #include <inet/sadb.h>
101 #include <inet/ipsec_impl.h>
102 #include <inet/iptun/iptun_impl.h>
103 #include <inet/ipdrop.h>
104 #include <inet/ip_netinfo.h>
105 #include <inet/ilb_ip.h>
106
107 #include <sys/ethernet.h>
108 #include <net/if_types.h>
109 #include <sys/cpuvar.h>
110
111 #include <ipp/ipp.h>
112 #include <ipp/ipp_impl.h>
113 #include <ipp/ipgpc/ipgpc.h>
114
115 #include <sys/pattr.h>
116 #include <inet/ipclassifier.h>
117 #include <inet/sctp_ip.h>
118 #include <inet/sctp/sctp_impl.h>
119 #include <inet/udp_impl.h>
120 #include <inet/rawip_impl.h>
121 #include <inet/rts_impl.h>
122
123 #include <sys/tsol/label.h>
124 #include <sys/tsol/tnet.h>
125
126 #include <sys/squeue_impl.h>
127 #include <inet/ip_arp.h>
128
129 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */
130
131 /*
132 * Values for squeue switch:
133 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
134 * IP_SQUEUE_ENTER: SQ_PROCESS
135 * IP_SQUEUE_FILL: SQ_FILL
136 */
137 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */
138
139 int ip_squeue_flag;
140
141 /*
142 * Setable in /etc/system
143 */
144 int ip_poll_normal_ms = 100;
145 int ip_poll_normal_ticks = 0;
146 int ip_modclose_ackwait_ms = 3000;
147
148 /*
149 * It would be nice to have these present only in DEBUG systems, but the
150 * current design of the global symbol checking logic requires them to be
151 * unconditionally present.
152 */
153 uint_t ip_thread_data; /* TSD key for debug support */
154 krwlock_t ip_thread_rwlock;
155 list_t ip_thread_list;
156
157 /*
158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
159 */
160
161 struct listptr_s {
162 mblk_t *lp_head; /* pointer to the head of the list */
163 mblk_t *lp_tail; /* pointer to the tail of the list */
164 };
165
166 typedef struct listptr_s listptr_t;
167
168 /*
169 * This is used by ip_snmp_get_mib2_ip_route_media and
170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
171 */
172 typedef struct iproutedata_s {
173 uint_t ird_idx;
174 uint_t ird_flags; /* see below */
175 listptr_t ird_route; /* ipRouteEntryTable */
176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */
177 listptr_t ird_attrs; /* ipRouteAttributeTable */
178 } iproutedata_t;
179
180 /* Include ire_testhidden and IRE_IF_CLONE routes */
181 #define IRD_REPORT_ALL 0x01
182
183 /*
184 * Cluster specific hooks. These should be NULL when booted as a non-cluster
185 */
186
187 /*
188 * Hook functions to enable cluster networking
189 * On non-clustered systems these vectors must always be NULL.
190 *
191 * Hook function to Check ip specified ip address is a shared ip address
192 * in the cluster
193 *
194 */
195 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
196 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
197
198 /*
199 * Hook function to generate cluster wide ip fragment identifier
200 */
201 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
202 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
203 void *args) = NULL;
204
205 /*
206 * Hook function to generate cluster wide SPI.
207 */
208 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
209 void *) = NULL;
210
211 /*
212 * Hook function to verify if the SPI is already utlized.
213 */
214
215 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
216
217 /*
218 * Hook function to delete the SPI from the cluster wide repository.
219 */
220
221 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
222
223 /*
224 * Hook function to inform the cluster when packet received on an IDLE SA
225 */
226
227 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
228 in6_addr_t, in6_addr_t, void *) = NULL;
229
230 /*
231 * Synchronization notes:
232 *
233 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
234 * MT level protection given by STREAMS. IP uses a combination of its own
235 * internal serialization mechanism and standard Solaris locking techniques.
236 * The internal serialization is per phyint. This is used to serialize
237 * plumbing operations, IPMP operations, most set ioctls, etc.
238 *
239 * Plumbing is a long sequence of operations involving message
240 * exchanges between IP, ARP and device drivers. Many set ioctls are typically
241 * involved in plumbing operations. A natural model is to serialize these
242 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
243 * parallel without any interference. But various set ioctls on hme0 are best
244 * serialized, along with IPMP operations and processing of DLPI control
245 * messages received from drivers on a per phyint basis. This serialization is
246 * provided by the ipsq_t and primitives operating on this. Details can
247 * be found in ip_if.c above the core primitives operating on ipsq_t.
248 *
249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
250 * Simiarly lookup of an ire by a thread also returns a refheld ire.
251 * In addition ipif's and ill's referenced by the ire are also indirectly
252 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
253 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
254 * address of an ipif has to go through the ipsq_t. This ensures that only
255 * one such exclusive operation proceeds at any time on the ipif. It then
256 * waits for all refcnts
257 * associated with this ipif to come down to zero. The address is changed
258 * only after the ipif has been quiesced. Then the ipif is brought up again.
259 * More details are described above the comment in ip_sioctl_flags.
260 *
261 * Packet processing is based mostly on IREs and are fully multi-threaded
262 * using standard Solaris MT techniques.
263 *
264 * There are explicit locks in IP to handle:
265 * - The ip_g_head list maintained by mi_open_link() and friends.
266 *
267 * - The reassembly data structures (one lock per hash bucket)
268 *
269 * - conn_lock is meant to protect conn_t fields. The fields actually
270 * protected by conn_lock are documented in the conn_t definition.
271 *
272 * - ire_lock to protect some of the fields of the ire, IRE tables
273 * (one lock per hash bucket). Refer to ip_ire.c for details.
274 *
275 * - ndp_g_lock and ncec_lock for protecting NCEs.
276 *
277 * - ill_lock protects fields of the ill and ipif. Details in ip.h
278 *
279 * - ill_g_lock: This is a global reader/writer lock. Protects the following
280 * * The AVL tree based global multi list of all ills.
281 * * The linked list of all ipifs of an ill
282 * * The <ipsq-xop> mapping
283 * * <ill-phyint> association
284 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif
285 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the
286 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
287 * writer for the actual duration of the insertion/deletion/change.
288 *
289 * - ill_lock: This is a per ill mutex.
290 * It protects some members of the ill_t struct; see ip.h for details.
291 * It also protects the <ill-phyint> assoc.
292 * It also protects the list of ipifs hanging off the ill.
293 *
294 * - ipsq_lock: This is a per ipsq_t mutex lock.
295 * This protects some members of the ipsq_t struct; see ip.h for details.
296 * It also protects the <ipsq-ipxop> mapping
297 *
298 * - ipx_lock: This is a per ipxop_t mutex lock.
299 * This protects some members of the ipxop_t struct; see ip.h for details.
300 *
301 * - phyint_lock: This is a per phyint mutex lock. Protects just the
302 * phyint_flags
303 *
304 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
305 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
306 * uniqueness check also done atomically.
307 *
308 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
309 * group list linked by ill_usesrc_grp_next. It also protects the
310 * ill_usesrc_ifindex field. It is taken as a writer when a member of the
311 * group is being added or deleted. This lock is taken as a reader when
312 * walking the list/group(eg: to get the number of members in a usesrc group).
313 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next
314 * field is changing state i.e from NULL to non-NULL or vice-versa. For
315 * example, it is not necessary to take this lock in the initial portion
316 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
317 * operations are executed exclusively and that ensures that the "usesrc
318 * group state" cannot change. The "usesrc group state" change can happen
319 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
320 *
321 * Changing <ill-phyint>, <ipsq-xop> assocications:
322 *
323 * To change the <ill-phyint> association, the ill_g_lock must be held
324 * as writer, and the ill_locks of both the v4 and v6 instance of the ill
325 * must be held.
326 *
327 * To change the <ipsq-xop> association, the ill_g_lock must be held as
328 * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
329 * This is only done when ills are added or removed from IPMP groups.
330 *
331 * To add or delete an ipif from the list of ipifs hanging off the ill,
332 * ill_g_lock (writer) and ill_lock must be held and the thread must be
333 * a writer on the associated ipsq.
334 *
335 * To add or delete an ill to the system, the ill_g_lock must be held as
336 * writer and the thread must be a writer on the associated ipsq.
337 *
338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread
339 * must be a writer on the associated ipsq.
340 *
341 * Lock hierarchy
342 *
343 * Some lock hierarchy scenarios are listed below.
344 *
345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
346 * ill_g_lock -> ill_lock(s) -> phyint_lock
347 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
348 * ill_g_lock -> ip_addr_avail_lock
349 * conn_lock -> irb_lock -> ill_lock -> ire_lock
350 * ill_g_lock -> ip_g_nd_lock
351 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
352 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
353 * arl_lock -> ill_lock
354 * ips_ire_dep_lock -> irb_lock
355 *
356 * When more than 1 ill lock is needed to be held, all ill lock addresses
357 * are sorted on address and locked starting from highest addressed lock
358 * downward.
359 *
360 * Multicast scenarios
361 * ips_ill_g_lock -> ill_mcast_lock
362 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
363 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
364 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
365 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
366 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
367 *
368 * IPsec scenarios
369 *
370 * ipsa_lock -> ill_g_lock -> ill_lock
371 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
372 *
373 * Trusted Solaris scenarios
374 *
375 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
376 * igsa_lock -> gcdb_lock
377 * gcgrp_rwlock -> ire_lock
378 * gcgrp_rwlock -> gcdb_lock
379 *
380 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
381 *
382 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
383 * sq_lock -> conn_lock -> QLOCK(q)
384 * ill_lock -> ft_lock -> fe_lock
385 *
386 * Routing/forwarding table locking notes:
387 *
388 * Lock acquisition order: Radix tree lock, irb_lock.
389 * Requirements:
390 * i. Walker must not hold any locks during the walker callback.
391 * ii Walker must not see a truncated tree during the walk because of any node
392 * deletion.
393 * iii Existing code assumes ire_bucket is valid if it is non-null and is used
394 * in many places in the code to walk the irb list. Thus even if all the
395 * ires in a bucket have been deleted, we still can't free the radix node
396 * until the ires have actually been inactive'd (freed).
397 *
398 * Tree traversal - Need to hold the global tree lock in read mode.
399 * Before dropping the global tree lock, need to either increment the ire_refcnt
400 * to ensure that the radix node can't be deleted.
401 *
402 * Tree add - Need to hold the global tree lock in write mode to add a
403 * radix node. To prevent the node from being deleted, increment the
404 * irb_refcnt, after the node is added to the tree. The ire itself is
405 * added later while holding the irb_lock, but not the tree lock.
406 *
407 * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
408 * All associated ires must be inactive (i.e. freed), and irb_refcnt
409 * must be zero.
410 *
411 * Walker - Increment irb_refcnt before calling the walker callback. Hold the
412 * global tree lock (read mode) for traversal.
413 *
414 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
415 * hence we will acquire irb_lock while holding ips_ire_dep_lock.
416 *
417 * IPsec notes :
418 *
419 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
420 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
421 * ip_xmit_attr_t has the
422 * information used by the IPsec code for applying the right level of
423 * protection. The information initialized by IP in the ip_xmit_attr_t
424 * is determined by the per-socket policy or global policy in the system.
425 * For inbound datagrams, the ip_recv_attr_t
426 * starts out with nothing in it. It gets filled
427 * with the right information if it goes through the AH/ESP code, which
428 * happens if the incoming packet is secure. The information initialized
429 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
430 * the policy requirements needed by per-socket policy or global policy
431 * is met or not.
432 *
433 * For fully connected sockets i.e dst, src [addr, port] is known,
434 * conn_policy_cached is set indicating that policy has been cached.
435 * conn_in_enforce_policy may or may not be set depending on whether
436 * there is a global policy match or per-socket policy match.
437 * Policy inheriting happpens in ip_policy_set once the destination is known.
438 * Once the right policy is set on the conn_t, policy cannot change for
439 * this socket. This makes life simpler for TCP (UDP ?) where
440 * re-transmissions go out with the same policy. For symmetry, policy
441 * is cached for fully connected UDP sockets also. Thus if policy is cached,
442 * it also implies that policy is latched i.e policy cannot change
443 * on these sockets. As we have the right policy on the conn, we don't
444 * have to lookup global policy for every outbound and inbound datagram
445 * and thus serving as an optimization. Note that a global policy change
446 * does not affect fully connected sockets if they have policy. If fully
447 * connected sockets did not have any policy associated with it, global
448 * policy change may affect them.
449 *
450 * IP Flow control notes:
451 * ---------------------
452 * Non-TCP streams are flow controlled by IP. The way this is accomplished
453 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
454 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
455 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
456 * functions.
457 *
458 * Per Tx ring udp flow control:
459 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
460 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
461 *
462 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
463 * To achieve best performance, outgoing traffic need to be fanned out among
464 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
465 * traffic out of the NIC and it takes a fanout hint. UDP connections pass
466 * the address of connp as fanout hint to mac_tx(). Under flow controlled
467 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
468 * cookie points to a specific Tx ring that is blocked. The cookie is used to
469 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
470 * point to drain_lists (idl_t's). These drain list will store the blocked UDP
471 * connp's. The drain list is not a single list but a configurable number of
472 * lists.
473 *
474 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
475 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
476 * which is equal to 128. This array in turn contains a pointer to idl_t[],
477 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
478 * list will point to the list of connp's that are flow controlled.
479 *
480 * --------------- ------- ------- -------
481 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
482 * | --------------- ------- ------- -------
483 * | --------------- ------- ------- -------
484 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
485 * ---------------- | --------------- ------- ------- -------
486 * |idl_tx_list[0]|->| --------------- ------- ------- -------
487 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
488 * | --------------- ------- ------- -------
489 * . . . . .
490 * | --------------- ------- ------- -------
491 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
492 * --------------- ------- ------- -------
493 * --------------- ------- ------- -------
494 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
495 * | --------------- ------- ------- -------
496 * | --------------- ------- ------- -------
497 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
498 * |idl_tx_list[1]|->| --------------- ------- ------- -------
499 * ---------------- | . . . .
500 * | --------------- ------- ------- -------
501 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
502 * --------------- ------- ------- -------
503 * .....
504 * ----------------
505 * |idl_tx_list[n]|-> ...
506 * ----------------
507 *
508 * When mac_tx() returns a cookie, the cookie is hashed into an index into
509 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
510 * to insert the conn onto. conn_drain_insert() asserts flow control for the
511 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
512 * Further, conn_blocked is set to indicate that the conn is blocked.
513 *
514 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie
515 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
516 * is again hashed to locate the appropriate idl_tx_list, which is then
517 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in
518 * the drain list and calls conn_drain_remove() to clear flow control (via
519 * calling su_txq_full() or clearing QFULL), and remove the conn from the
520 * drain list.
521 *
522 * Note that the drain list is not a single list but a (configurable) array of
523 * lists (8 elements by default). Synchronization between drain insertion and
524 * flow control wakeup is handled by using idl_txl->txl_lock, and only
525 * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
526 *
527 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
528 * On the send side, if the packet cannot be sent down to the driver by IP
529 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
530 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
531 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow
532 * control has been relieved, the blocked conns in the 0'th drain list are
533 * drained as in the non-STREAMS case.
534 *
535 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
536 * is done when the conn is inserted into the drain list (conn_drain_insert())
537 * and cleared when the conn is removed from the it (conn_drain_remove()).
538 *
539 * IPQOS notes:
540 *
541 * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
542 * and IPQoS modules. IPPF includes hooks in IP at different control points
543 * (callout positions) which direct packets to IPQoS modules for policy
544 * processing. Policies, if present, are global.
545 *
546 * The callout positions are located in the following paths:
547 * o local_in (packets destined for this host)
548 * o local_out (packets orginating from this host )
549 * o fwd_in (packets forwarded by this m/c - inbound)
550 * o fwd_out (packets forwarded by this m/c - outbound)
551 * Hooks at these callout points can be enabled/disabled using the ndd variable
552 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
553 * By default all the callout positions are enabled.
554 *
555 * Outbound (local_out)
556 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
557 *
558 * Inbound (local_in)
559 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
560 *
561 * Forwarding (in and out)
562 * Hooks are placed in ire_recv_forward_v4/v6.
563 *
564 * IP Policy Framework processing (IPPF processing)
565 * Policy processing for a packet is initiated by ip_process, which ascertains
566 * that the classifier (ipgpc) is loaded and configured, failing which the
567 * packet resumes normal processing in IP. If the clasifier is present, the
568 * packet is acted upon by one or more IPQoS modules (action instances), per
569 * filters configured in ipgpc and resumes normal IP processing thereafter.
570 * An action instance can drop a packet in course of its processing.
571 *
572 * Zones notes:
573 *
574 * The partitioning rules for networking are as follows:
575 * 1) Packets coming from a zone must have a source address belonging to that
576 * zone.
577 * 2) Packets coming from a zone can only be sent on a physical interface on
578 * which the zone has an IP address.
579 * 3) Between two zones on the same machine, packet delivery is only allowed if
580 * there's a matching route for the destination and zone in the forwarding
581 * table.
582 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
583 * different zones can bind to the same port with the wildcard address
584 * (INADDR_ANY).
585 *
586 * The granularity of interface partitioning is at the logical interface level.
587 * Therefore, every zone has its own IP addresses, and incoming packets can be
588 * attributed to a zone unambiguously. A logical interface is placed into a zone
589 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
590 * structure. Rule (1) is implemented by modifying the source address selection
591 * algorithm so that the list of eligible addresses is filtered based on the
592 * sending process zone.
593 *
594 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
595 * across all zones, depending on their type. Here is the break-up:
596 *
597 * IRE type Shared/exclusive
598 * -------- ----------------
599 * IRE_BROADCAST Exclusive
600 * IRE_DEFAULT (default routes) Shared (*)
601 * IRE_LOCAL Exclusive (x)
602 * IRE_LOOPBACK Exclusive
603 * IRE_PREFIX (net routes) Shared (*)
604 * IRE_IF_NORESOLVER (interface routes) Exclusive
605 * IRE_IF_RESOLVER (interface routes) Exclusive
606 * IRE_IF_CLONE (interface routes) Exclusive
607 * IRE_HOST (host routes) Shared (*)
608 *
609 * (*) A zone can only use a default or off-subnet route if the gateway is
610 * directly reachable from the zone, that is, if the gateway's address matches
611 * one of the zone's logical interfaces.
612 *
613 * (x) IRE_LOCAL are handled a bit differently.
614 * When ip_restrict_interzone_loopback is set (the default),
615 * ire_route_recursive restricts loopback using an IRE_LOCAL
616 * between zone to the case when L2 would have conceptually looped the packet
617 * back, i.e. the loopback which is required since neither Ethernet drivers
618 * nor Ethernet hardware loops them back. This is the case when the normal
619 * routes (ignoring IREs with different zoneids) would send out the packet on
620 * the same ill as the ill with which is IRE_LOCAL is associated.
621 *
622 * Multiple zones can share a common broadcast address; typically all zones
623 * share the 255.255.255.255 address. Incoming as well as locally originated
624 * broadcast packets must be dispatched to all the zones on the broadcast
625 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
626 * since some zones may not be on the 10.16.72/24 network. To handle this, each
627 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
628 * sent to every zone that has an IRE_BROADCAST entry for the destination
629 * address on the input ill, see ip_input_broadcast().
630 *
631 * Applications in different zones can join the same multicast group address.
632 * The same logic applies for multicast as for broadcast. ip_input_multicast
633 * dispatches packets to all zones that have members on the physical interface.
634 */
635
636 /*
637 * Squeue Fanout flags:
638 * 0: No fanout.
639 * 1: Fanout across all squeues
640 */
641 boolean_t ip_squeue_fanout = 0;
642
643 /*
644 * Maximum dups allowed per packet.
645 */
646 uint_t ip_max_frag_dups = 10;
647
648 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
649 cred_t *credp, boolean_t isv6);
650 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
651
652 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
653 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
654 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
655 ip_recv_attr_t *);
656 static void icmp_options_update(ipha_t *);
657 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *);
658 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
659 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
660 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
661 ip_recv_attr_t *);
662 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
663 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
664 ip_recv_attr_t *);
665
666 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
667 char *ip_dot_addr(ipaddr_t, char *);
668 mblk_t *ip_carve_mp(mblk_t **, ssize_t);
669 static char *ip_dot_saddr(uchar_t *, char *);
670 static int ip_lrput(queue_t *, mblk_t *);
671 ipaddr_t ip_net_mask(ipaddr_t);
672 char *ip_nv_lookup(nv_t *, int);
673 int ip_rput(queue_t *, mblk_t *);
674 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
675 void *dummy_arg);
676 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
677 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
678 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
679 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
680 ip_stack_t *, boolean_t);
681 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
682 boolean_t);
683 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
684 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
685 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
687 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
688 ip_stack_t *ipst, boolean_t);
689 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
690 ip_stack_t *ipst, boolean_t);
691 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
692 ip_stack_t *ipst);
693 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
694 ip_stack_t *ipst);
695 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
696 ip_stack_t *ipst);
697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
698 ip_stack_t *ipst);
699 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
700 ip_stack_t *ipst);
701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
702 ip_stack_t *ipst);
703 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
704 ip_stack_t *ipst);
705 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
706 ip_stack_t *ipst);
707 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *);
708 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
709 static void ip_snmp_get2_v4_media(ncec_t *, void *);
710 static void ip_snmp_get2_v6_media(ncec_t *, void *);
711 int ip_snmp_set(queue_t *, int, int, uchar_t *, int);
712
713 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
714 mblk_t *);
715
716 static void conn_drain_init(ip_stack_t *);
717 static void conn_drain_fini(ip_stack_t *);
718 static void conn_drain(conn_t *connp, boolean_t closing);
719
720 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
721 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
722
723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns);
724 static void ip_stack_shutdown(netstackid_t stackid, void *arg);
725 static void ip_stack_fini(netstackid_t stackid, void *arg);
726
727 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
728 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
729 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t,
730 const in6_addr_t *);
731
732 static int ip_squeue_switch(int);
733
734 static void *ip_kstat_init(netstackid_t, ip_stack_t *);
735 static void ip_kstat_fini(netstackid_t, kstat_t *);
736 static int ip_kstat_update(kstat_t *kp, int rw);
737 static void *icmp_kstat_init(netstackid_t);
738 static void icmp_kstat_fini(netstackid_t, kstat_t *);
739 static int icmp_kstat_update(kstat_t *kp, int rw);
740 static void *ip_kstat2_init(netstackid_t, ip_stat_t *);
741 static void ip_kstat2_fini(netstackid_t, kstat_t *);
742
743 static void ipobs_init(ip_stack_t *);
744 static void ipobs_fini(ip_stack_t *);
745
746 static int ip_tp_cpu_update(cpu_setup_t, int, void *);
747
748 ipaddr_t ip_g_all_ones = IP_HOST_MASK;
749
750 static long ip_rput_pullups;
751 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */
752
753 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
754 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
755
756 int ip_debug;
757
758 /*
759 * Multirouting/CGTP stuff
760 */
761 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */
762
763 /*
764 * IP tunables related declarations. Definitions are in ip_tunables.c
765 */
766 extern mod_prop_info_t ip_propinfo_tbl[];
767 extern int ip_propinfo_count;
768
769 /*
770 * Table of IP ioctls encoding the various properties of the ioctl and
771 * indexed based on the last byte of the ioctl command. Occasionally there
772 * is a clash, and there is more than 1 ioctl with the same last byte.
773 * In such a case 1 ioctl is encoded in the ndx table and the remaining
774 * ioctls are encoded in the misc table. An entry in the ndx table is
775 * retrieved by indexing on the last byte of the ioctl command and comparing
776 * the ioctl command with the value in the ndx table. In the event of a
777 * mismatch the misc table is then searched sequentially for the desired
778 * ioctl command.
779 *
780 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
781 */
782 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
783 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
784 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
785 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
793
794 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV,
795 MISC_CMD, ip_siocaddrt, NULL },
796 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV,
797 MISC_CMD, ip_siocdelrt, NULL },
798
799 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
800 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
801 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
802 IF_CMD, ip_sioctl_get_addr, NULL },
803
804 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
805 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
806 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
807 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
808
809 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
810 IPI_PRIV | IPI_WR,
811 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
812 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
813 IPI_MODOK | IPI_GET_CMD,
814 IF_CMD, ip_sioctl_get_flags, NULL },
815
816 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
817 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
818
819 /* copyin size cannot be coded for SIOCGIFCONF */
820 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
821 MISC_CMD, ip_sioctl_get_ifconf, NULL },
822
823 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
824 IF_CMD, ip_sioctl_mtu, NULL },
825 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
826 IF_CMD, ip_sioctl_get_mtu, NULL },
827 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
828 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
829 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
830 IF_CMD, ip_sioctl_brdaddr, NULL },
831 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
832 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
833 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
834 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
835 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
836 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
837 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
838 IF_CMD, ip_sioctl_metric, NULL },
839 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
840
841 /* See 166-168 below for extended SIOC*XARP ioctls */
842 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
843 ARP_CMD, ip_sioctl_arp, NULL },
844 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
845 ARP_CMD, ip_sioctl_arp, NULL },
846 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
847 ARP_CMD, ip_sioctl_arp, NULL },
848
849 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
850 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
851 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870
871 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
872 MISC_CMD, if_unitsel, if_unitsel_restart },
873
874 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
875 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892
893 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
894 IPI_PRIV | IPI_WR | IPI_MODOK,
895 IF_CMD, ip_sioctl_sifname, NULL },
896
897 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
898 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910
911 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
912 MISC_CMD, ip_sioctl_get_ifnum, NULL },
913 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
914 IF_CMD, ip_sioctl_get_muxid, NULL },
915 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
916 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
917
918 /* Both if and lif variants share same func */
919 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
920 IF_CMD, ip_sioctl_get_lifindex, NULL },
921 /* Both if and lif variants share same func */
922 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
923 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
924
925 /* copyin size cannot be coded for SIOCGIFCONF */
926 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
927 MISC_CMD, ip_sioctl_get_ifconf, NULL },
928 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
929 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
930 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945
946 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
947 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
948 ip_sioctl_removeif_restart },
949 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
950 IPI_GET_CMD | IPI_PRIV | IPI_WR,
951 LIF_CMD, ip_sioctl_addif, NULL },
952 #define SIOCLIFADDR_NDX 112
953 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
954 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
955 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
956 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
957 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
958 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
959 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
960 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
961 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
962 IPI_PRIV | IPI_WR,
963 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
964 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
965 IPI_GET_CMD | IPI_MODOK,
966 LIF_CMD, ip_sioctl_get_flags, NULL },
967
968 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
969 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
970
971 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
972 ip_sioctl_get_lifconf, NULL },
973 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
974 LIF_CMD, ip_sioctl_mtu, NULL },
975 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
976 LIF_CMD, ip_sioctl_get_mtu, NULL },
977 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
978 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
979 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
980 LIF_CMD, ip_sioctl_brdaddr, NULL },
981 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
982 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
983 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
984 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
985 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
986 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
987 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
988 LIF_CMD, ip_sioctl_metric, NULL },
989 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
990 IPI_PRIV | IPI_WR | IPI_MODOK,
991 LIF_CMD, ip_sioctl_slifname,
992 ip_sioctl_slifname_restart },
993
994 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
995 MISC_CMD, ip_sioctl_get_lifnum, NULL },
996 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
997 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
998 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
999 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1000 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1001 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1002 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1003 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1004 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1005 LIF_CMD, ip_sioctl_token, NULL },
1006 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1007 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1008 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1009 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1010 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1011 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1012 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1013 LIF_CMD, ip_sioctl_lnkinfo, NULL },
1014
1015 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1016 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1017 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1018 LIF_CMD, ip_siocdelndp_v6, NULL },
1019 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1020 LIF_CMD, ip_siocqueryndp_v6, NULL },
1021 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1022 LIF_CMD, ip_siocsetndp_v6, NULL },
1023 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1024 MISC_CMD, ip_sioctl_tmyaddr, NULL },
1025 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1026 MISC_CMD, ip_sioctl_tonlink, NULL },
1027 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1028 MISC_CMD, ip_sioctl_tmysite, NULL },
1029 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031
1032 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1033 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1034 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037
1038 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1039
1040 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1041 LIF_CMD, ip_sioctl_get_binding, NULL },
1042 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1043 IPI_PRIV | IPI_WR,
1044 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1045 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1046 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1047 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1048 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1049
1050 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1051 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054
1055 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1056
1057 /* These are handled in ip_sioctl_copyin_setup itself */
1058 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1059 MISC_CMD, NULL, NULL },
1060 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1061 MISC_CMD, NULL, NULL },
1062 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1063
1064 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1065 ip_sioctl_get_lifconf, NULL },
1066
1067 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1068 XARP_CMD, ip_sioctl_arp, NULL },
1069 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1070 XARP_CMD, ip_sioctl_arp, NULL },
1071 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1072 XARP_CMD, ip_sioctl_arp, NULL },
1073
1074 /* SIOCPOPSOCKFS is not handled by IP */
1075 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1076
1077 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1078 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1079 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1080 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1081 ip_sioctl_slifzone_restart },
1082 /* 172-174 are SCTP ioctls and not handled by IP */
1083 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1084 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1087 IPI_GET_CMD, LIF_CMD,
1088 ip_sioctl_get_lifusesrc, 0 },
1089 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1090 IPI_PRIV | IPI_WR,
1091 LIF_CMD, ip_sioctl_slifusesrc,
1092 NULL },
1093 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1094 ip_sioctl_get_lifsrcof, NULL },
1095 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1096 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1097 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1098 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1100 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1102 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1103 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1104 /* SIOCSENABLESDP is handled by SDP */
1105 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1106 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1107 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1108 IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1109 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1110 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1111 ip_sioctl_ilb_cmd, NULL },
1112 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1113 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1114 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1115 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1116 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1117 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1118 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1119 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1120 };
1121
1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1123
1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1125 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 { ND_GET, 0, 0, 0, NULL, NULL },
1130 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1131 { IP_IOCTL, 0, 0, 0, NULL, NULL },
1132 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1133 MISC_CMD, mrt_ioctl},
1134 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1135 MISC_CMD, mrt_ioctl},
1136 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1137 MISC_CMD, mrt_ioctl}
1138 };
1139
1140 int ip_misc_ioctl_count =
1141 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1142
1143 int conn_drain_nthreads; /* Number of drainers reqd. */
1144 /* Settable in /etc/system */
1145 /* Defined in ip_ire.c */
1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1149
1150 static nv_t ire_nv_arr[] = {
1151 { IRE_BROADCAST, "BROADCAST" },
1152 { IRE_LOCAL, "LOCAL" },
1153 { IRE_LOOPBACK, "LOOPBACK" },
1154 { IRE_DEFAULT, "DEFAULT" },
1155 { IRE_PREFIX, "PREFIX" },
1156 { IRE_IF_NORESOLVER, "IF_NORESOL" },
1157 { IRE_IF_RESOLVER, "IF_RESOLV" },
1158 { IRE_IF_CLONE, "IF_CLONE" },
1159 { IRE_HOST, "HOST" },
1160 { IRE_MULTICAST, "MULTICAST" },
1161 { IRE_NOROUTE, "NOROUTE" },
1162 { 0 }
1163 };
1164
1165 nv_t *ire_nv_tbl = ire_nv_arr;
1166
1167 /* Simple ICMP IP Header Template */
1168 static ipha_t icmp_ipha = {
1169 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1170 };
1171
1172 struct module_info ip_mod_info = {
1173 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1174 IP_MOD_LOWAT
1175 };
1176
1177 /*
1178 * Duplicate static symbols within a module confuses mdb; so we avoid the
1179 * problem by making the symbols here distinct from those in udp.c.
1180 */
1181
1182 /*
1183 * Entry points for IP as a device and as a module.
1184 * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1185 */
1186 static struct qinit iprinitv4 = {
1187 ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1188 };
1189
1190 struct qinit iprinitv6 = {
1191 ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info
1192 };
1193
1194 static struct qinit ipwinit = {
1195 ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info
1196 };
1197
1198 static struct qinit iplrinit = {
1199 ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1200 };
1201
1202 static struct qinit iplwinit = {
1203 ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info
1204 };
1205
1206 /* For AF_INET aka /dev/ip */
1207 struct streamtab ipinfov4 = {
1208 &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1209 };
1210
1211 /* For AF_INET6 aka /dev/ip6 */
1212 struct streamtab ipinfov6 = {
1213 &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1214 };
1215
1216 #ifdef DEBUG
1217 boolean_t skip_sctp_cksum = B_FALSE;
1218 #endif
1219
1220 /*
1221 * Generate an ICMP fragmentation needed message.
1222 * When called from ip_output side a minimal ip_recv_attr_t needs to be
1223 * constructed by the caller.
1224 */
1225 void
1226 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1227 {
1228 icmph_t icmph;
1229 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
1230
1231 mp = icmp_pkt_err_ok(mp, ira);
1232 if (mp == NULL)
1233 return;
1234
1235 bzero(&icmph, sizeof (icmph_t));
1236 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1237 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1238 icmph.icmph_du_mtu = htons((uint16_t)mtu);
1239 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1240 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1241
1242 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1243 }
1244
1245 /*
1246 * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1247 * If the ICMP message is consumed by IP, i.e., it should not be delivered
1248 * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1249 * Likewise, if the ICMP error is misformed (too short, etc), then it
1250 * returns NULL. The caller uses this to determine whether or not to send
1251 * to raw sockets.
1252 *
1253 * All error messages are passed to the matching transport stream.
1254 *
1255 * The following cases are handled by icmp_inbound:
1256 * 1) It needs to send a reply back and possibly delivering it
1257 * to the "interested" upper clients.
1258 * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1259 * 3) It needs to change some values in IP only.
1260 * 4) It needs to change some values in IP and upper layers e.g TCP
1261 * by delivering an error to the upper layers.
1262 *
1263 * We handle the above three cases in the context of IPsec in the
1264 * following way :
1265 *
1266 * 1) Send the reply back in the same way as the request came in.
1267 * If it came in encrypted, it goes out encrypted. If it came in
1268 * clear, it goes out in clear. Thus, this will prevent chosen
1269 * plain text attack.
1270 * 2) The client may or may not expect things to come in secure.
1271 * If it comes in secure, the policy constraints are checked
1272 * before delivering it to the upper layers. If it comes in
1273 * clear, ipsec_inbound_accept_clear will decide whether to
1274 * accept this in clear or not. In both the cases, if the returned
1275 * message (IP header + 8 bytes) that caused the icmp message has
1276 * AH/ESP headers, it is sent up to AH/ESP for validation before
1277 * sending up. If there are only 8 bytes of returned message, then
1278 * upper client will not be notified.
1279 * 3) Check with global policy to see whether it matches the constaints.
1280 * But this will be done only if icmp_accept_messages_in_clear is
1281 * zero.
1282 * 4) If we need to change both in IP and ULP, then the decision taken
1283 * while affecting the values in IP and while delivering up to TCP
1284 * should be the same.
1285 *
1286 * There are two cases.
1287 *
1288 * a) If we reject data at the IP layer (ipsec_check_global_policy()
1289 * failed), we will not deliver it to the ULP, even though they
1290 * are *willing* to accept in *clear*. This is fine as our global
1291 * disposition to icmp messages asks us reject the datagram.
1292 *
1293 * b) If we accept data at the IP layer (ipsec_check_global_policy()
1294 * succeeded or icmp_accept_messages_in_clear is 1), and not able
1295 * to deliver it to ULP (policy failed), it can lead to
1296 * consistency problems. The cases known at this time are
1297 * ICMP_DESTINATION_UNREACHABLE messages with following code
1298 * values :
1299 *
1300 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1301 * and Upper layer rejects. Then the communication will
1302 * come to a stop. This is solved by making similar decisions
1303 * at both levels. Currently, when we are unable to deliver
1304 * to the Upper Layer (due to policy failures) while IP has
1305 * adjusted dce_pmtu, the next outbound datagram would
1306 * generate a local ICMP_FRAGMENTATION_NEEDED message - which
1307 * will be with the right level of protection. Thus the right
1308 * value will be communicated even if we are not able to
1309 * communicate when we get from the wire initially. But this
1310 * assumes there would be at least one outbound datagram after
1311 * IP has adjusted its dce_pmtu value. To make things
1312 * simpler, we accept in clear after the validation of
1313 * AH/ESP headers.
1314 *
1315 * - Other ICMP ERRORS : We may not be able to deliver it to the
1316 * upper layer depending on the level of protection the upper
1317 * layer expects and the disposition in ipsec_inbound_accept_clear().
1318 * ipsec_inbound_accept_clear() decides whether a given ICMP error
1319 * should be accepted in clear when the Upper layer expects secure.
1320 * Thus the communication may get aborted by some bad ICMP
1321 * packets.
1322 */
1323 mblk_t *
1324 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1325 {
1326 icmph_t *icmph;
1327 ipha_t *ipha; /* Outer header */
1328 int ip_hdr_length; /* Outer header length */
1329 boolean_t interested;
1330 ipif_t *ipif;
1331 uint32_t ts;
1332 uint32_t *tsp;
1333 timestruc_t now;
1334 ill_t *ill = ira->ira_ill;
1335 ip_stack_t *ipst = ill->ill_ipst;
1336 zoneid_t zoneid = ira->ira_zoneid;
1337 int len_needed;
1338 mblk_t *mp_ret = NULL;
1339
1340 ipha = (ipha_t *)mp->b_rptr;
1341
1342 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1343
1344 ip_hdr_length = ira->ira_ip_hdr_length;
1345 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1346 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1348 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1349 freemsg(mp);
1350 return (NULL);
1351 }
1352 /* Last chance to get real. */
1353 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1354 if (ipha == NULL) {
1355 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1356 freemsg(mp);
1357 return (NULL);
1358 }
1359 }
1360
1361 /* The IP header will always be a multiple of four bytes */
1362 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1363 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1364 icmph->icmph_code));
1365
1366 /*
1367 * We will set "interested" to "true" if we should pass a copy to
1368 * the transport or if we handle the packet locally.
1369 */
1370 interested = B_FALSE;
1371 switch (icmph->icmph_type) {
1372 case ICMP_ECHO_REPLY:
1373 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1374 break;
1375 case ICMP_DEST_UNREACHABLE:
1376 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1377 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1378 interested = B_TRUE; /* Pass up to transport */
1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1380 break;
1381 case ICMP_SOURCE_QUENCH:
1382 interested = B_TRUE; /* Pass up to transport */
1383 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1384 break;
1385 case ICMP_REDIRECT:
1386 if (!ipst->ips_ip_ignore_redirect)
1387 interested = B_TRUE;
1388 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1389 break;
1390 case ICMP_ECHO_REQUEST:
1391 /*
1392 * Whether to respond to echo requests that come in as IP
1393 * broadcasts or as IP multicast is subject to debate
1394 * (what isn't?). We aim to please, you pick it.
1395 * Default is do it.
1396 */
1397 if (ira->ira_flags & IRAF_MULTICAST) {
1398 /* multicast: respond based on tunable */
1399 interested = ipst->ips_ip_g_resp_to_echo_mcast;
1400 } else if (ira->ira_flags & IRAF_BROADCAST) {
1401 /* broadcast: respond based on tunable */
1402 interested = ipst->ips_ip_g_resp_to_echo_bcast;
1403 } else {
1404 /* unicast: always respond */
1405 interested = B_TRUE;
1406 }
1407 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1408 if (!interested) {
1409 /* We never pass these to RAW sockets */
1410 freemsg(mp);
1411 return (NULL);
1412 }
1413
1414 /* Check db_ref to make sure we can modify the packet. */
1415 if (mp->b_datap->db_ref > 1) {
1416 mblk_t *mp1;
1417
1418 mp1 = copymsg(mp);
1419 freemsg(mp);
1420 if (!mp1) {
1421 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1422 return (NULL);
1423 }
1424 mp = mp1;
1425 ipha = (ipha_t *)mp->b_rptr;
1426 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1427 }
1428 icmph->icmph_type = ICMP_ECHO_REPLY;
1429 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1430 icmp_send_reply_v4(mp, ipha, icmph, ira);
1431 return (NULL);
1432
1433 case ICMP_ROUTER_ADVERTISEMENT:
1434 case ICMP_ROUTER_SOLICITATION:
1435 break;
1436 case ICMP_TIME_EXCEEDED:
1437 interested = B_TRUE; /* Pass up to transport */
1438 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1439 break;
1440 case ICMP_PARAM_PROBLEM:
1441 interested = B_TRUE; /* Pass up to transport */
1442 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1443 break;
1444 case ICMP_TIME_STAMP_REQUEST:
1445 /* Response to Time Stamp Requests is local policy. */
1446 if (ipst->ips_ip_g_resp_to_timestamp) {
1447 if (ira->ira_flags & IRAF_MULTIBROADCAST)
1448 interested =
1449 ipst->ips_ip_g_resp_to_timestamp_bcast;
1450 else
1451 interested = B_TRUE;
1452 }
1453 if (!interested) {
1454 /* We never pass these to RAW sockets */
1455 freemsg(mp);
1456 return (NULL);
1457 }
1458
1459 /* Make sure we have enough of the packet */
1460 len_needed = ip_hdr_length + ICMPH_SIZE +
1461 3 * sizeof (uint32_t);
1462
1463 if (mp->b_wptr - mp->b_rptr < len_needed) {
1464 ipha = ip_pullup(mp, len_needed, ira);
1465 if (ipha == NULL) {
1466 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1467 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1468 mp, ill);
1469 freemsg(mp);
1470 return (NULL);
1471 }
1472 /* Refresh following the pullup. */
1473 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1474 }
1475 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1476 /* Check db_ref to make sure we can modify the packet. */
1477 if (mp->b_datap->db_ref > 1) {
1478 mblk_t *mp1;
1479
1480 mp1 = copymsg(mp);
1481 freemsg(mp);
1482 if (!mp1) {
1483 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1484 return (NULL);
1485 }
1486 mp = mp1;
1487 ipha = (ipha_t *)mp->b_rptr;
1488 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1489 }
1490 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1491 tsp = (uint32_t *)&icmph[1];
1492 tsp++; /* Skip past 'originate time' */
1493 /* Compute # of milliseconds since midnight */
1494 gethrestime(&now);
1495 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1496 NSEC2MSEC(now.tv_nsec);
1497 *tsp++ = htonl(ts); /* Lay in 'receive time' */
1498 *tsp++ = htonl(ts); /* Lay in 'send time' */
1499 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1500 icmp_send_reply_v4(mp, ipha, icmph, ira);
1501 return (NULL);
1502
1503 case ICMP_TIME_STAMP_REPLY:
1504 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1505 break;
1506 case ICMP_INFO_REQUEST:
1507 /* Per RFC 1122 3.2.2.7, ignore this. */
1508 case ICMP_INFO_REPLY:
1509 break;
1510 case ICMP_ADDRESS_MASK_REQUEST:
1511 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1512 interested =
1513 ipst->ips_ip_respond_to_address_mask_broadcast;
1514 } else {
1515 interested = B_TRUE;
1516 }
1517 if (!interested) {
1518 /* We never pass these to RAW sockets */
1519 freemsg(mp);
1520 return (NULL);
1521 }
1522 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1523 if (mp->b_wptr - mp->b_rptr < len_needed) {
1524 ipha = ip_pullup(mp, len_needed, ira);
1525 if (ipha == NULL) {
1526 BUMP_MIB(ill->ill_ip_mib,
1527 ipIfStatsInTruncatedPkts);
1528 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1529 ill);
1530 freemsg(mp);
1531 return (NULL);
1532 }
1533 /* Refresh following the pullup. */
1534 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1535 }
1536 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1537 /* Check db_ref to make sure we can modify the packet. */
1538 if (mp->b_datap->db_ref > 1) {
1539 mblk_t *mp1;
1540
1541 mp1 = copymsg(mp);
1542 freemsg(mp);
1543 if (!mp1) {
1544 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1545 return (NULL);
1546 }
1547 mp = mp1;
1548 ipha = (ipha_t *)mp->b_rptr;
1549 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1550 }
1551 /*
1552 * Need the ipif with the mask be the same as the source
1553 * address of the mask reply. For unicast we have a specific
1554 * ipif. For multicast/broadcast we only handle onlink
1555 * senders, and use the source address to pick an ipif.
1556 */
1557 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1558 if (ipif == NULL) {
1559 /* Broadcast or multicast */
1560 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1561 if (ipif == NULL) {
1562 freemsg(mp);
1563 return (NULL);
1564 }
1565 }
1566 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1567 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1568 ipif_refrele(ipif);
1569 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1570 icmp_send_reply_v4(mp, ipha, icmph, ira);
1571 return (NULL);
1572
1573 case ICMP_ADDRESS_MASK_REPLY:
1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1575 break;
1576 default:
1577 interested = B_TRUE; /* Pass up to transport */
1578 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1579 break;
1580 }
1581 /*
1582 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1583 * if there isn't one.
1584 */
1585 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1586 /* If there is an ICMP client and we want one too, copy it. */
1587
1588 if (!interested) {
1589 /* Caller will deliver to RAW sockets */
1590 return (mp);
1591 }
1592 mp_ret = copymsg(mp);
1593 if (mp_ret == NULL) {
1594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1595 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1596 }
1597 } else if (!interested) {
1598 /* Neither we nor raw sockets are interested. Drop packet now */
1599 freemsg(mp);
1600 return (NULL);
1601 }
1602
1603 /*
1604 * ICMP error or redirect packet. Make sure we have enough of
1605 * the header and that db_ref == 1 since we might end up modifying
1606 * the packet.
1607 */
1608 if (mp->b_cont != NULL) {
1609 if (ip_pullup(mp, -1, ira) == NULL) {
1610 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1611 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1612 mp, ill);
1613 freemsg(mp);
1614 return (mp_ret);
1615 }
1616 }
1617
1618 if (mp->b_datap->db_ref > 1) {
1619 mblk_t *mp1;
1620
1621 mp1 = copymsg(mp);
1622 if (mp1 == NULL) {
1623 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1624 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1625 freemsg(mp);
1626 return (mp_ret);
1627 }
1628 freemsg(mp);
1629 mp = mp1;
1630 }
1631
1632 /*
1633 * In case mp has changed, verify the message before any further
1634 * processes.
1635 */
1636 ipha = (ipha_t *)mp->b_rptr;
1637 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1638 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1639 freemsg(mp);
1640 return (mp_ret);
1641 }
1642
1643 switch (icmph->icmph_type) {
1644 case ICMP_REDIRECT:
1645 icmp_redirect_v4(mp, ipha, icmph, ira);
1646 break;
1647 case ICMP_DEST_UNREACHABLE:
1648 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1649 /* Update DCE and adjust MTU is icmp header if needed */
1650 icmp_inbound_too_big_v4(icmph, ira);
1651 }
1652 /* FALLTHROUGH */
1653 default:
1654 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1655 break;
1656 }
1657 return (mp_ret);
1658 }
1659
1660 /*
1661 * Send an ICMP echo, timestamp or address mask reply.
1662 * The caller has already updated the payload part of the packet.
1663 * We handle the ICMP checksum, IP source address selection and feed
1664 * the packet into ip_output_simple.
1665 */
1666 static void
1667 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1668 ip_recv_attr_t *ira)
1669 {
1670 uint_t ip_hdr_length = ira->ira_ip_hdr_length;
1671 ill_t *ill = ira->ira_ill;
1672 ip_stack_t *ipst = ill->ill_ipst;
1673 ip_xmit_attr_t ixas;
1674
1675 /* Send out an ICMP packet */
1676 icmph->icmph_checksum = 0;
1677 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1678 /* Reset time to live. */
1679 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1680 {
1681 /* Swap source and destination addresses */
1682 ipaddr_t tmp;
1683
1684 tmp = ipha->ipha_src;
1685 ipha->ipha_src = ipha->ipha_dst;
1686 ipha->ipha_dst = tmp;
1687 }
1688 ipha->ipha_ident = 0;
1689 if (!IS_SIMPLE_IPH(ipha))
1690 icmp_options_update(ipha);
1691
1692 bzero(&ixas, sizeof (ixas));
1693 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1694 ixas.ixa_zoneid = ira->ira_zoneid;
1695 ixas.ixa_cred = kcred;
1696 ixas.ixa_cpid = NOPID;
1697 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1698 ixas.ixa_ifindex = 0;
1699 ixas.ixa_ipst = ipst;
1700 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1701
1702 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1703 /*
1704 * This packet should go out the same way as it
1705 * came in i.e in clear, independent of the IPsec policy
1706 * for transmitting packets.
1707 */
1708 ixas.ixa_flags |= IXAF_NO_IPSEC;
1709 } else {
1710 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1712 /* Note: mp already consumed and ip_drop_packet done */
1713 return;
1714 }
1715 }
1716 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1717 /*
1718 * Not one or our addresses (IRE_LOCALs), thus we let
1719 * ip_output_simple pick the source.
1720 */
1721 ipha->ipha_src = INADDR_ANY;
1722 ixas.ixa_flags |= IXAF_SET_SOURCE;
1723 }
1724 /* Should we send with DF and use dce_pmtu? */
1725 if (ipst->ips_ipv4_icmp_return_pmtu) {
1726 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1727 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1728 }
1729
1730 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1731
1732 (void) ip_output_simple(mp, &ixas);
1733 ixa_cleanup(&ixas);
1734 }
1735
1736 /*
1737 * Verify the ICMP messages for either for ICMP error or redirect packet.
1738 * The caller should have fully pulled up the message. If it's a redirect
1739 * packet, only basic checks on IP header will be done; otherwise, verify
1740 * the packet by looking at the included ULP header.
1741 *
1742 * Called before icmp_inbound_error_fanout_v4 is called.
1743 */
1744 static boolean_t
1745 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1746 {
1747 ill_t *ill = ira->ira_ill;
1748 int hdr_length;
1749 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
1750 conn_t *connp;
1751 ipha_t *ipha; /* Inner IP header */
1752
1753 ipha = (ipha_t *)&icmph[1];
1754 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1755 goto truncated;
1756
1757 hdr_length = IPH_HDR_LENGTH(ipha);
1758
1759 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1760 goto discard_pkt;
1761
1762 if (hdr_length < sizeof (ipha_t))
1763 goto truncated;
1764
1765 if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1766 goto truncated;
1767
1768 /*
1769 * Stop here for ICMP_REDIRECT.
1770 */
1771 if (icmph->icmph_type == ICMP_REDIRECT)
1772 return (B_TRUE);
1773
1774 /*
1775 * ICMP errors only.
1776 */
1777 switch (ipha->ipha_protocol) {
1778 case IPPROTO_UDP:
1779 /*
1780 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1781 * transport header.
1782 */
1783 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1784 mp->b_wptr)
1785 goto truncated;
1786 break;
1787 case IPPROTO_TCP: {
1788 tcpha_t *tcpha;
1789
1790 /*
1791 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1792 * transport header.
1793 */
1794 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1795 mp->b_wptr)
1796 goto truncated;
1797
1798 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1799 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1800 ipst);
1801 if (connp == NULL)
1802 goto discard_pkt;
1803
1804 if ((connp->conn_verifyicmp != NULL) &&
1805 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1806 CONN_DEC_REF(connp);
1807 goto discard_pkt;
1808 }
1809 CONN_DEC_REF(connp);
1810 break;
1811 }
1812 case IPPROTO_SCTP:
1813 /*
1814 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1815 * transport header.
1816 */
1817 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1818 mp->b_wptr)
1819 goto truncated;
1820 break;
1821 case IPPROTO_ESP:
1822 case IPPROTO_AH:
1823 break;
1824 case IPPROTO_ENCAP:
1825 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1826 mp->b_wptr)
1827 goto truncated;
1828 break;
1829 default:
1830 break;
1831 }
1832
1833 return (B_TRUE);
1834
1835 discard_pkt:
1836 /* Bogus ICMP error. */
1837 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1838 return (B_FALSE);
1839
1840 truncated:
1841 /* We pulled up everthing already. Must be truncated */
1842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1843 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1844 return (B_FALSE);
1845 }
1846
1847 /* Table from RFC 1191 */
1848 static int icmp_frag_size_table[] =
1849 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1850
1851 /*
1852 * Process received ICMP Packet too big.
1853 * Just handles the DCE create/update, including using the above table of
1854 * PMTU guesses. The caller is responsible for validating the packet before
1855 * passing it in and also to fanout the ICMP error to any matching transport
1856 * conns. Assumes the message has been fully pulled up and verified.
1857 *
1858 * Before getting here, the caller has called icmp_inbound_verify_v4()
1859 * that should have verified with ULP to prevent undoing the changes we're
1860 * going to make to DCE. For example, TCP might have verified that the packet
1861 * which generated error is in the send window.
1862 *
1863 * In some cases modified this MTU in the ICMP header packet; the caller
1864 * should pass to the matching ULP after this returns.
1865 */
1866 static void
1867 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1868 {
1869 dce_t *dce;
1870 int old_mtu;
1871 int mtu, orig_mtu;
1872 ipaddr_t dst;
1873 boolean_t disable_pmtud;
1874 ill_t *ill = ira->ira_ill;
1875 ip_stack_t *ipst = ill->ill_ipst;
1876 uint_t hdr_length;
1877 ipha_t *ipha;
1878
1879 /* Caller already pulled up everything. */
1880 ipha = (ipha_t *)&icmph[1];
1881 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1882 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1883 ASSERT(ill != NULL);
1884
1885 hdr_length = IPH_HDR_LENGTH(ipha);
1886
1887 /*
1888 * We handle path MTU for source routed packets since the DCE
1889 * is looked up using the final destination.
1890 */
1891 dst = ip_get_dst(ipha);
1892
1893 dce = dce_lookup_and_add_v4(dst, ipst);
1894 if (dce == NULL) {
1895 /* Couldn't add a unique one - ENOMEM */
1896 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1897 ntohl(dst)));
1898 return;
1899 }
1900
1901 /* Check for MTU discovery advice as described in RFC 1191 */
1902 mtu = ntohs(icmph->icmph_du_mtu);
1903 orig_mtu = mtu;
1904 disable_pmtud = B_FALSE;
1905
1906 mutex_enter(&dce->dce_lock);
1907 if (dce->dce_flags & DCEF_PMTU)
1908 old_mtu = dce->dce_pmtu;
1909 else
1910 old_mtu = ill->ill_mtu;
1911
1912 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1913 uint32_t length;
1914 int i;
1915
1916 /*
1917 * Use the table from RFC 1191 to figure out
1918 * the next "plateau" based on the length in
1919 * the original IP packet.
1920 */
1921 length = ntohs(ipha->ipha_length);
1922 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1923 uint32_t, length);
1924 if (old_mtu <= length &&
1925 old_mtu >= length - hdr_length) {
1926 /*
1927 * Handle broken BSD 4.2 systems that
1928 * return the wrong ipha_length in ICMP
1929 * errors.
1930 */
1931 ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1932 length, old_mtu));
1933 length -= hdr_length;
1934 }
1935 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1936 if (length > icmp_frag_size_table[i])
1937 break;
1938 }
1939 if (i == A_CNT(icmp_frag_size_table)) {
1940 /* Smaller than IP_MIN_MTU! */
1941 ip1dbg(("Too big for packet size %d\n",
1942 length));
1943 disable_pmtud = B_TRUE;
1944 mtu = ipst->ips_ip_pmtu_min;
1945 } else {
1946 mtu = icmp_frag_size_table[i];
1947 ip1dbg(("Calculated mtu %d, packet size %d, "
1948 "before %d\n", mtu, length, old_mtu));
1949 if (mtu < ipst->ips_ip_pmtu_min) {
1950 mtu = ipst->ips_ip_pmtu_min;
1951 disable_pmtud = B_TRUE;
1952 }
1953 }
1954 }
1955 if (disable_pmtud)
1956 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1957 else
1958 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1959
1960 dce->dce_pmtu = MIN(old_mtu, mtu);
1961 /* Prepare to send the new max frag size for the ULP. */
1962 icmph->icmph_du_zero = 0;
1963 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu);
1964 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1965 dce, int, orig_mtu, int, mtu);
1966
1967 /* We now have a PMTU for sure */
1968 dce->dce_flags |= DCEF_PMTU;
1969 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1970 mutex_exit(&dce->dce_lock);
1971 /*
1972 * After dropping the lock the new value is visible to everyone.
1973 * Then we bump the generation number so any cached values reinspect
1974 * the dce_t.
1975 */
1976 dce_increment_generation(dce);
1977 dce_refrele(dce);
1978 }
1979
1980 /*
1981 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1982 * calls this function.
1983 */
1984 static mblk_t *
1985 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1986 {
1987 int length;
1988
1989 ASSERT(mp->b_datap->db_type == M_DATA);
1990
1991 /* icmp_inbound_v4 has already pulled up the whole error packet */
1992 ASSERT(mp->b_cont == NULL);
1993
1994 /*
1995 * The length that we want to overlay is the inner header
1996 * and what follows it.
1997 */
1998 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
1999
2000 /*
2001 * Overlay the inner header and whatever follows it over the
2002 * outer header.
2003 */
2004 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2005
2006 /* Adjust for what we removed */
2007 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2008 return (mp);
2009 }
2010
2011 /*
2012 * Try to pass the ICMP message upstream in case the ULP cares.
2013 *
2014 * If the packet that caused the ICMP error is secure, we send
2015 * it to AH/ESP to make sure that the attached packet has a
2016 * valid association. ipha in the code below points to the
2017 * IP header of the packet that caused the error.
2018 *
2019 * For IPsec cases, we let the next-layer-up (which has access to
2020 * cached policy on the conn_t, or can query the SPD directly)
2021 * subtract out any IPsec overhead if they must. We therefore make no
2022 * adjustments here for IPsec overhead.
2023 *
2024 * IFN could have been generated locally or by some router.
2025 *
2026 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2027 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2028 * This happens because IP adjusted its value of MTU on an
2029 * earlier IFN message and could not tell the upper layer,
2030 * the new adjusted value of MTU e.g. Packet was encrypted
2031 * or there was not enough information to fanout to upper
2032 * layers. Thus on the next outbound datagram, ire_send_wire
2033 * generates the IFN, where IPsec processing has *not* been
2034 * done.
2035 *
2036 * Note that we retain ixa_fragsize across IPsec thus once
2037 * we have picking ixa_fragsize and entered ipsec_out_process we do
2038 * no change the fragsize even if the path MTU changes before
2039 * we reach ip_output_post_ipsec.
2040 *
2041 * In the local case, IRAF_LOOPBACK will be set indicating
2042 * that IFN was generated locally.
2043 *
2044 * ROUTER : IFN could be secure or non-secure.
2045 *
2046 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2047 * packet in error has AH/ESP headers to validate the AH/ESP
2048 * headers. AH/ESP will verify whether there is a valid SA or
2049 * not and send it back. We will fanout again if we have more
2050 * data in the packet.
2051 *
2052 * If the packet in error does not have AH/ESP, we handle it
2053 * like any other case.
2054 *
2055 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2056 * up to AH/ESP for validation. AH/ESP will verify whether there is a
2057 * valid SA or not and send it back. We will fanout again if
2058 * we have more data in the packet.
2059 *
2060 * If the packet in error does not have AH/ESP, we handle it
2061 * like any other case.
2062 *
2063 * The caller must have called icmp_inbound_verify_v4.
2064 */
2065 static void
2066 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2067 {
2068 uint16_t *up; /* Pointer to ports in ULP header */
2069 uint32_t ports; /* reversed ports for fanout */
2070 ipha_t ripha; /* With reversed addresses */
2071 ipha_t *ipha; /* Inner IP header */
2072 uint_t hdr_length; /* Inner IP header length */
2073 tcpha_t *tcpha;
2074 conn_t *connp;
2075 ill_t *ill = ira->ira_ill;
2076 ip_stack_t *ipst = ill->ill_ipst;
2077 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
2078 ill_t *rill = ira->ira_rill;
2079
2080 /* Caller already pulled up everything. */
2081 ipha = (ipha_t *)&icmph[1];
2082 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2083 ASSERT(mp->b_cont == NULL);
2084
2085 hdr_length = IPH_HDR_LENGTH(ipha);
2086 ira->ira_protocol = ipha->ipha_protocol;
2087
2088 /*
2089 * We need a separate IP header with the source and destination
2090 * addresses reversed to do fanout/classification because the ipha in
2091 * the ICMP error is in the form we sent it out.
2092 */
2093 ripha.ipha_src = ipha->ipha_dst;
2094 ripha.ipha_dst = ipha->ipha_src;
2095 ripha.ipha_protocol = ipha->ipha_protocol;
2096 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2097
2098 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2099 ripha.ipha_protocol, ntohl(ipha->ipha_src),
2100 ntohl(ipha->ipha_dst),
2101 icmph->icmph_type, icmph->icmph_code));
2102
2103 switch (ipha->ipha_protocol) {
2104 case IPPROTO_UDP:
2105 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2106
2107 /* Attempt to find a client stream based on port. */
2108 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2109 ntohs(up[0]), ntohs(up[1])));
2110
2111 /* Note that we send error to all matches. */
2112 ira->ira_flags |= IRAF_ICMP_ERROR;
2113 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2114 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2115 return;
2116
2117 case IPPROTO_TCP:
2118 /*
2119 * Find a TCP client stream for this packet.
2120 * Note that we do a reverse lookup since the header is
2121 * in the form we sent it out.
2122 */
2123 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2124 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2125 ipst);
2126 if (connp == NULL)
2127 goto discard_pkt;
2128
2129 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2130 (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2131 mp = ipsec_check_inbound_policy(mp, connp,
2132 ipha, NULL, ira);
2133 if (mp == NULL) {
2134 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2135 /* Note that mp is NULL */
2136 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2137 CONN_DEC_REF(connp);
2138 return;
2139 }
2140 }
2141
2142 ira->ira_flags |= IRAF_ICMP_ERROR;
2143 ira->ira_ill = ira->ira_rill = NULL;
2144 if (IPCL_IS_TCP(connp)) {
2145 SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2146 connp->conn_recvicmp, connp, ira, SQ_FILL,
2147 SQTAG_TCP_INPUT_ICMP_ERR);
2148 } else {
2149 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2150 (connp->conn_recv)(connp, mp, NULL, ira);
2151 CONN_DEC_REF(connp);
2152 }
2153 ira->ira_ill = ill;
2154 ira->ira_rill = rill;
2155 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2156 return;
2157
2158 case IPPROTO_SCTP:
2159 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2160 /* Find a SCTP client stream for this packet. */
2161 ((uint16_t *)&ports)[0] = up[1];
2162 ((uint16_t *)&ports)[1] = up[0];
2163
2164 ira->ira_flags |= IRAF_ICMP_ERROR;
2165 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2166 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2167 return;
2168
2169 case IPPROTO_ESP:
2170 case IPPROTO_AH:
2171 if (!ipsec_loaded(ipss)) {
2172 ip_proto_not_sup(mp, ira);
2173 return;
2174 }
2175
2176 if (ipha->ipha_protocol == IPPROTO_ESP)
2177 mp = ipsecesp_icmp_error(mp, ira);
2178 else
2179 mp = ipsecah_icmp_error(mp, ira);
2180 if (mp == NULL)
2181 return;
2182
2183 /* Just in case ipsec didn't preserve the NULL b_cont */
2184 if (mp->b_cont != NULL) {
2185 if (!pullupmsg(mp, -1))
2186 goto discard_pkt;
2187 }
2188
2189 /*
2190 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2191 * correct, but we don't use them any more here.
2192 *
2193 * If succesful, the mp has been modified to not include
2194 * the ESP/AH header so we can fanout to the ULP's icmp
2195 * error handler.
2196 */
2197 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2198 goto truncated;
2199
2200 /* Verify the modified message before any further processes. */
2201 ipha = (ipha_t *)mp->b_rptr;
2202 hdr_length = IPH_HDR_LENGTH(ipha);
2203 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2204 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2205 freemsg(mp);
2206 return;
2207 }
2208
2209 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2210 return;
2211
2212 case IPPROTO_ENCAP: {
2213 /* Look for self-encapsulated packets that caused an error */
2214 ipha_t *in_ipha;
2215
2216 /*
2217 * Caller has verified that length has to be
2218 * at least the size of IP header.
2219 */
2220 ASSERT(hdr_length >= sizeof (ipha_t));
2221 /*
2222 * Check the sanity of the inner IP header like
2223 * we did for the outer header.
2224 */
2225 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2226 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2227 goto discard_pkt;
2228 }
2229 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2230 goto discard_pkt;
2231 }
2232 /* Check for Self-encapsulated tunnels */
2233 if (in_ipha->ipha_src == ipha->ipha_src &&
2234 in_ipha->ipha_dst == ipha->ipha_dst) {
2235
2236 mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2237 in_ipha);
2238 if (mp == NULL)
2239 goto discard_pkt;
2240
2241 /*
2242 * Just in case self_encap didn't preserve the NULL
2243 * b_cont
2244 */
2245 if (mp->b_cont != NULL) {
2246 if (!pullupmsg(mp, -1))
2247 goto discard_pkt;
2248 }
2249 /*
2250 * Note that ira_pktlen and ira_ip_hdr_length are no
2251 * longer correct, but we don't use them any more here.
2252 */
2253 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2254 goto truncated;
2255
2256 /*
2257 * Verify the modified message before any further
2258 * processes.
2259 */
2260 ipha = (ipha_t *)mp->b_rptr;
2261 hdr_length = IPH_HDR_LENGTH(ipha);
2262 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2263 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2264 freemsg(mp);
2265 return;
2266 }
2267
2268 /*
2269 * The packet in error is self-encapsualted.
2270 * And we are finding it further encapsulated
2271 * which we could not have possibly generated.
2272 */
2273 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2274 goto discard_pkt;
2275 }
2276 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2277 return;
2278 }
2279 /* No self-encapsulated */
2280 }
2281 /* FALLTHROUGH */
2282 case IPPROTO_IPV6:
2283 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2284 &ripha.ipha_dst, ipst)) != NULL) {
2285 ira->ira_flags |= IRAF_ICMP_ERROR;
2286 connp->conn_recvicmp(connp, mp, NULL, ira);
2287 CONN_DEC_REF(connp);
2288 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2289 return;
2290 }
2291 /*
2292 * No IP tunnel is interested, fallthrough and see
2293 * if a raw socket will want it.
2294 */
2295 /* FALLTHROUGH */
2296 default:
2297 ira->ira_flags |= IRAF_ICMP_ERROR;
2298 ip_fanout_proto_v4(mp, &ripha, ira);
2299 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2300 return;
2301 }
2302 /* NOTREACHED */
2303 discard_pkt:
2304 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2305 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2306 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2307 freemsg(mp);
2308 return;
2309
2310 truncated:
2311 /* We pulled up everthing already. Must be truncated */
2312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2313 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2314 freemsg(mp);
2315 }
2316
2317 /*
2318 * Common IP options parser.
2319 *
2320 * Setup routine: fill in *optp with options-parsing state, then
2321 * tail-call ipoptp_next to return the first option.
2322 */
2323 uint8_t
2324 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2325 {
2326 uint32_t totallen; /* total length of all options */
2327
2328 totallen = ipha->ipha_version_and_hdr_length -
2329 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2330 totallen <<= 2;
2331 optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2332 optp->ipoptp_end = optp->ipoptp_next + totallen;
2333 optp->ipoptp_flags = 0;
2334 return (ipoptp_next(optp));
2335 }
2336
2337 /* Like above but without an ipha_t */
2338 uint8_t
2339 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2340 {
2341 optp->ipoptp_next = opt;
2342 optp->ipoptp_end = optp->ipoptp_next + totallen;
2343 optp->ipoptp_flags = 0;
2344 return (ipoptp_next(optp));
2345 }
2346
2347 /*
2348 * Common IP options parser: extract next option.
2349 */
2350 uint8_t
2351 ipoptp_next(ipoptp_t *optp)
2352 {
2353 uint8_t *end = optp->ipoptp_end;
2354 uint8_t *cur = optp->ipoptp_next;
2355 uint8_t opt, len, pointer;
2356
2357 /*
2358 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2359 * has been corrupted.
2360 */
2361 ASSERT(cur <= end);
2362
2363 if (cur == end)
2364 return (IPOPT_EOL);
2365
2366 opt = cur[IPOPT_OPTVAL];
2367
2368 /*
2369 * Skip any NOP options.
2370 */
2371 while (opt == IPOPT_NOP) {
2372 cur++;
2373 if (cur == end)
2374 return (IPOPT_EOL);
2375 opt = cur[IPOPT_OPTVAL];
2376 }
2377
2378 if (opt == IPOPT_EOL)
2379 return (IPOPT_EOL);
2380
2381 /*
2382 * Option requiring a length.
2383 */
2384 if ((cur + 1) >= end) {
2385 optp->ipoptp_flags |= IPOPTP_ERROR;
2386 return (IPOPT_EOL);
2387 }
2388 len = cur[IPOPT_OLEN];
2389 if (len < 2) {
2390 optp->ipoptp_flags |= IPOPTP_ERROR;
2391 return (IPOPT_EOL);
2392 }
2393 optp->ipoptp_cur = cur;
2394 optp->ipoptp_len = len;
2395 optp->ipoptp_next = cur + len;
2396 if (cur + len > end) {
2397 optp->ipoptp_flags |= IPOPTP_ERROR;
2398 return (IPOPT_EOL);
2399 }
2400
2401 /*
2402 * For the options which require a pointer field, make sure
2403 * its there, and make sure it points to either something
2404 * inside this option, or the end of the option.
2405 */
2406 switch (opt) {
2407 case IPOPT_RR:
2408 case IPOPT_TS:
2409 case IPOPT_LSRR:
2410 case IPOPT_SSRR:
2411 if (len <= IPOPT_OFFSET) {
2412 optp->ipoptp_flags |= IPOPTP_ERROR;
2413 return (opt);
2414 }
2415 pointer = cur[IPOPT_OFFSET];
2416 if (pointer - 1 > len) {
2417 optp->ipoptp_flags |= IPOPTP_ERROR;
2418 return (opt);
2419 }
2420 break;
2421 }
2422
2423 /*
2424 * Sanity check the pointer field based on the type of the
2425 * option.
2426 */
2427 switch (opt) {
2428 case IPOPT_RR:
2429 case IPOPT_SSRR:
2430 case IPOPT_LSRR:
2431 if (pointer < IPOPT_MINOFF_SR)
2432 optp->ipoptp_flags |= IPOPTP_ERROR;
2433 break;
2434 case IPOPT_TS:
2435 if (pointer < IPOPT_MINOFF_IT)
2436 optp->ipoptp_flags |= IPOPTP_ERROR;
2437 /*
2438 * Note that the Internet Timestamp option also
2439 * contains two four bit fields (the Overflow field,
2440 * and the Flag field), which follow the pointer
2441 * field. We don't need to check that these fields
2442 * fall within the length of the option because this
2443 * was implicitely done above. We've checked that the
2444 * pointer value is at least IPOPT_MINOFF_IT, and that
2445 * it falls within the option. Since IPOPT_MINOFF_IT >
2446 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2447 */
2448 ASSERT(len > IPOPT_POS_OV_FLG);
2449 break;
2450 }
2451
2452 return (opt);
2453 }
2454
2455 /*
2456 * Use the outgoing IP header to create an IP_OPTIONS option the way
2457 * it was passed down from the application.
2458 *
2459 * This is compatible with BSD in that it returns
2460 * the reverse source route with the final destination
2461 * as the last entry. The first 4 bytes of the option
2462 * will contain the final destination.
2463 */
2464 int
2465 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2466 {
2467 ipoptp_t opts;
2468 uchar_t *opt;
2469 uint8_t optval;
2470 uint8_t optlen;
2471 uint32_t len = 0;
2472 uchar_t *buf1 = buf;
2473 uint32_t totallen;
2474 ipaddr_t dst;
2475 ip_pkt_t *ipp = &connp->conn_xmit_ipp;
2476
2477 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2478 return (0);
2479
2480 totallen = ipp->ipp_ipv4_options_len;
2481 if (totallen & 0x3)
2482 return (0);
2483
2484 buf += IP_ADDR_LEN; /* Leave room for final destination */
2485 len += IP_ADDR_LEN;
2486 bzero(buf1, IP_ADDR_LEN);
2487
2488 dst = connp->conn_faddr_v4;
2489
2490 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2491 optval != IPOPT_EOL;
2492 optval = ipoptp_next(&opts)) {
2493 int off;
2494
2495 opt = opts.ipoptp_cur;
2496 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2497 break;
2498 }
2499 optlen = opts.ipoptp_len;
2500
2501 switch (optval) {
2502 case IPOPT_SSRR:
2503 case IPOPT_LSRR:
2504
2505 /*
2506 * Insert destination as the first entry in the source
2507 * route and move down the entries on step.
2508 * The last entry gets placed at buf1.
2509 */
2510 buf[IPOPT_OPTVAL] = optval;
2511 buf[IPOPT_OLEN] = optlen;
2512 buf[IPOPT_OFFSET] = optlen;
2513
2514 off = optlen - IP_ADDR_LEN;
2515 if (off < 0) {
2516 /* No entries in source route */
2517 break;
2518 }
2519 /* Last entry in source route if not already set */
2520 if (dst == INADDR_ANY)
2521 bcopy(opt + off, buf1, IP_ADDR_LEN);
2522 off -= IP_ADDR_LEN;
2523
2524 while (off > 0) {
2525 bcopy(opt + off,
2526 buf + off + IP_ADDR_LEN,
2527 IP_ADDR_LEN);
2528 off -= IP_ADDR_LEN;
2529 }
2530 /* ipha_dst into first slot */
2531 bcopy(&dst, buf + off + IP_ADDR_LEN,
2532 IP_ADDR_LEN);
2533 buf += optlen;
2534 len += optlen;
2535 break;
2536
2537 default:
2538 bcopy(opt, buf, optlen);
2539 buf += optlen;
2540 len += optlen;
2541 break;
2542 }
2543 }
2544 done:
2545 /* Pad the resulting options */
2546 while (len & 0x3) {
2547 *buf++ = IPOPT_EOL;
2548 len++;
2549 }
2550 return (len);
2551 }
2552
2553 /*
2554 * Update any record route or timestamp options to include this host.
2555 * Reverse any source route option.
2556 * This routine assumes that the options are well formed i.e. that they
2557 * have already been checked.
2558 */
2559 static void
2560 icmp_options_update(ipha_t *ipha)
2561 {
2562 ipoptp_t opts;
2563 uchar_t *opt;
2564 uint8_t optval;
2565 ipaddr_t src; /* Our local address */
2566 ipaddr_t dst;
2567
2568 ip2dbg(("icmp_options_update\n"));
2569 src = ipha->ipha_src;
2570 dst = ipha->ipha_dst;
2571
2572 for (optval = ipoptp_first(&opts, ipha);
2573 optval != IPOPT_EOL;
2574 optval = ipoptp_next(&opts)) {
2575 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2576 opt = opts.ipoptp_cur;
2577 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2578 optval, opts.ipoptp_len));
2579 switch (optval) {
2580 int off1, off2;
2581 case IPOPT_SSRR:
2582 case IPOPT_LSRR:
2583 /*
2584 * Reverse the source route. The first entry
2585 * should be the next to last one in the current
2586 * source route (the last entry is our address).
2587 * The last entry should be the final destination.
2588 */
2589 off1 = IPOPT_MINOFF_SR - 1;
2590 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2591 if (off2 < 0) {
2592 /* No entries in source route */
2593 ip1dbg((
2594 "icmp_options_update: bad src route\n"));
2595 break;
2596 }
2597 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2598 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2599 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2600 off2 -= IP_ADDR_LEN;
2601
2602 while (off1 < off2) {
2603 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2604 bcopy((char *)opt + off2, (char *)opt + off1,
2605 IP_ADDR_LEN);
2606 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2607 off1 += IP_ADDR_LEN;
2608 off2 -= IP_ADDR_LEN;
2609 }
2610 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2611 break;
2612 }
2613 }
2614 }
2615
2616 /*
2617 * Process received ICMP Redirect messages.
2618 * Assumes the caller has verified that the headers are in the pulled up mblk.
2619 * Consumes mp.
2620 */
2621 static void
2622 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2623 {
2624 ire_t *ire, *nire;
2625 ire_t *prev_ire;
2626 ipaddr_t src, dst, gateway;
2627 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2628 ipha_t *inner_ipha; /* Inner IP header */
2629
2630 /* Caller already pulled up everything. */
2631 inner_ipha = (ipha_t *)&icmph[1];
2632 src = ipha->ipha_src;
2633 dst = inner_ipha->ipha_dst;
2634 gateway = icmph->icmph_rd_gateway;
2635 /* Make sure the new gateway is reachable somehow. */
2636 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2637 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2638 /*
2639 * Make sure we had a route for the dest in question and that
2640 * that route was pointing to the old gateway (the source of the
2641 * redirect packet.)
2642 * We do longest match and then compare ire_gateway_addr below.
2643 */
2644 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2645 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2646 /*
2647 * Check that
2648 * the redirect was not from ourselves
2649 * the new gateway and the old gateway are directly reachable
2650 */
2651 if (prev_ire == NULL || ire == NULL ||
2652 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2653 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2654 !(ire->ire_type & IRE_IF_ALL) ||
2655 prev_ire->ire_gateway_addr != src) {
2656 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2657 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2658 freemsg(mp);
2659 if (ire != NULL)
2660 ire_refrele(ire);
2661 if (prev_ire != NULL)
2662 ire_refrele(prev_ire);
2663 return;
2664 }
2665
2666 ire_refrele(prev_ire);
2667 ire_refrele(ire);
2668
2669 /*
2670 * TODO: more precise handling for cases 0, 2, 3, the latter two
2671 * require TOS routing
2672 */
2673 switch (icmph->icmph_code) {
2674 case 0:
2675 case 1:
2676 /* TODO: TOS specificity for cases 2 and 3 */
2677 case 2:
2678 case 3:
2679 break;
2680 default:
2681 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2682 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2683 freemsg(mp);
2684 return;
2685 }
2686 /*
2687 * Create a Route Association. This will allow us to remember that
2688 * someone we believe told us to use the particular gateway.
2689 */
2690 ire = ire_create(
2691 (uchar_t *)&dst, /* dest addr */
2692 (uchar_t *)&ip_g_all_ones, /* mask */
2693 (uchar_t *)&gateway, /* gateway addr */
2694 IRE_HOST,
2695 NULL, /* ill */
2696 ALL_ZONES,
2697 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2698 NULL, /* tsol_gc_t */
2699 ipst);
2700
2701 if (ire == NULL) {
2702 freemsg(mp);
2703 return;
2704 }
2705 nire = ire_add(ire);
2706 /* Check if it was a duplicate entry */
2707 if (nire != NULL && nire != ire) {
2708 ASSERT(nire->ire_identical_ref > 1);
2709 ire_delete(nire);
2710 ire_refrele(nire);
2711 nire = NULL;
2712 }
2713 ire = nire;
2714 if (ire != NULL) {
2715 ire_refrele(ire); /* Held in ire_add */
2716
2717 /* tell routing sockets that we received a redirect */
2718 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2719 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2720 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2721 }
2722
2723 /*
2724 * Delete any existing IRE_HOST type redirect ires for this destination.
2725 * This together with the added IRE has the effect of
2726 * modifying an existing redirect.
2727 */
2728 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2729 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2730 if (prev_ire != NULL) {
2731 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2732 ire_delete(prev_ire);
2733 ire_refrele(prev_ire);
2734 }
2735
2736 freemsg(mp);
2737 }
2738
2739 /*
2740 * Generate an ICMP parameter problem message.
2741 * When called from ip_output side a minimal ip_recv_attr_t needs to be
2742 * constructed by the caller.
2743 */
2744 static void
2745 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2746 {
2747 icmph_t icmph;
2748 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2749
2750 mp = icmp_pkt_err_ok(mp, ira);
2751 if (mp == NULL)
2752 return;
2753
2754 bzero(&icmph, sizeof (icmph_t));
2755 icmph.icmph_type = ICMP_PARAM_PROBLEM;
2756 icmph.icmph_pp_ptr = ptr;
2757 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2758 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2759 }
2760
2761 /*
2762 * Build and ship an IPv4 ICMP message using the packet data in mp, and
2763 * the ICMP header pointed to by "stuff". (May be called as writer.)
2764 * Note: assumes that icmp_pkt_err_ok has been called to verify that
2765 * an icmp error packet can be sent.
2766 * Assigns an appropriate source address to the packet. If ipha_dst is
2767 * one of our addresses use it for source. Otherwise let ip_output_simple
2768 * pick the source address.
2769 */
2770 static void
2771 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2772 {
2773 ipaddr_t dst;
2774 icmph_t *icmph;
2775 ipha_t *ipha;
2776 uint_t len_needed;
2777 size_t msg_len;
2778 mblk_t *mp1;
2779 ipaddr_t src;
2780 ire_t *ire;
2781 ip_xmit_attr_t ixas;
2782 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2783
2784 ipha = (ipha_t *)mp->b_rptr;
2785
2786 bzero(&ixas, sizeof (ixas));
2787 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2788 ixas.ixa_zoneid = ira->ira_zoneid;
2789 ixas.ixa_ifindex = 0;
2790 ixas.ixa_ipst = ipst;
2791 ixas.ixa_cred = kcred;
2792 ixas.ixa_cpid = NOPID;
2793 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2794 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2795
2796 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2797 /*
2798 * Apply IPsec based on how IPsec was applied to
2799 * the packet that had the error.
2800 *
2801 * If it was an outbound packet that caused the ICMP
2802 * error, then the caller will have setup the IRA
2803 * appropriately.
2804 */
2805 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2806 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2807 /* Note: mp already consumed and ip_drop_packet done */
2808 return;
2809 }
2810 } else {
2811 /*
2812 * This is in clear. The icmp message we are building
2813 * here should go out in clear, independent of our policy.
2814 */
2815 ixas.ixa_flags |= IXAF_NO_IPSEC;
2816 }
2817
2818 /* Remember our eventual destination */
2819 dst = ipha->ipha_src;
2820
2821 /*
2822 * If the packet was for one of our unicast addresses, make
2823 * sure we respond with that as the source. Otherwise
2824 * have ip_output_simple pick the source address.
2825 */
2826 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2827 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2828 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2829 if (ire != NULL) {
2830 ire_refrele(ire);
2831 src = ipha->ipha_dst;
2832 } else {
2833 src = INADDR_ANY;
2834 ixas.ixa_flags |= IXAF_SET_SOURCE;
2835 }
2836
2837 /*
2838 * Check if we can send back more then 8 bytes in addition to
2839 * the IP header. We try to send 64 bytes of data and the internal
2840 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2841 */
2842 len_needed = IPH_HDR_LENGTH(ipha);
2843 if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2844 ipha->ipha_protocol == IPPROTO_IPV6) {
2845 if (!pullupmsg(mp, -1)) {
2846 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2847 ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2848 freemsg(mp);
2849 return;
2850 }
2851 ipha = (ipha_t *)mp->b_rptr;
2852
2853 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2854 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2855 len_needed));
2856 } else {
2857 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2858
2859 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2860 len_needed += ip_hdr_length_v6(mp, ip6h);
2861 }
2862 }
2863 len_needed += ipst->ips_ip_icmp_return;
2864 msg_len = msgdsize(mp);
2865 if (msg_len > len_needed) {
2866 (void) adjmsg(mp, len_needed - msg_len);
2867 msg_len = len_needed;
2868 }
2869 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2870 if (mp1 == NULL) {
2871 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2872 freemsg(mp);
2873 return;
2874 }
2875 mp1->b_cont = mp;
2876 mp = mp1;
2877
2878 /*
2879 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2880 * node generates be accepted in peace by all on-host destinations.
2881 * If we do NOT assume that all on-host destinations trust
2882 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2883 * (Look for IXAF_TRUSTED_ICMP).
2884 */
2885 ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2886
2887 ipha = (ipha_t *)mp->b_rptr;
2888 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2889 *ipha = icmp_ipha;
2890 ipha->ipha_src = src;
2891 ipha->ipha_dst = dst;
2892 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2893 msg_len += sizeof (icmp_ipha) + len;
2894 if (msg_len > IP_MAXPACKET) {
2895 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2896 msg_len = IP_MAXPACKET;
2897 }
2898 ipha->ipha_length = htons((uint16_t)msg_len);
2899 icmph = (icmph_t *)&ipha[1];
2900 bcopy(stuff, icmph, len);
2901 icmph->icmph_checksum = 0;
2902 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2903 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2904
2905 (void) ip_output_simple(mp, &ixas);
2906 ixa_cleanup(&ixas);
2907 }
2908
2909 /*
2910 * Determine if an ICMP error packet can be sent given the rate limit.
2911 * The limit consists of an average frequency (icmp_pkt_err_interval measured
2912 * in milliseconds) and a burst size. Burst size number of packets can
2913 * be sent arbitrarely closely spaced.
2914 * The state is tracked using two variables to implement an approximate
2915 * token bucket filter:
2916 * icmp_pkt_err_last - lbolt value when the last burst started
2917 * icmp_pkt_err_sent - number of packets sent in current burst
2918 */
2919 boolean_t
2920 icmp_err_rate_limit(ip_stack_t *ipst)
2921 {
2922 clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2923 uint_t refilled; /* Number of packets refilled in tbf since last */
2924 /* Guard against changes by loading into local variable */
2925 uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2926
2927 if (err_interval == 0)
2928 return (B_FALSE);
2929
2930 if (ipst->ips_icmp_pkt_err_last > now) {
2931 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2932 ipst->ips_icmp_pkt_err_last = 0;
2933 ipst->ips_icmp_pkt_err_sent = 0;
2934 }
2935 /*
2936 * If we are in a burst update the token bucket filter.
2937 * Update the "last" time to be close to "now" but make sure
2938 * we don't loose precision.
2939 */
2940 if (ipst->ips_icmp_pkt_err_sent != 0) {
2941 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2942 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2943 ipst->ips_icmp_pkt_err_sent = 0;
2944 } else {
2945 ipst->ips_icmp_pkt_err_sent -= refilled;
2946 ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2947 }
2948 }
2949 if (ipst->ips_icmp_pkt_err_sent == 0) {
2950 /* Start of new burst */
2951 ipst->ips_icmp_pkt_err_last = now;
2952 }
2953 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2954 ipst->ips_icmp_pkt_err_sent++;
2955 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2956 ipst->ips_icmp_pkt_err_sent));
2957 return (B_FALSE);
2958 }
2959 ip1dbg(("icmp_err_rate_limit: dropped\n"));
2960 return (B_TRUE);
2961 }
2962
2963 /*
2964 * Check if it is ok to send an IPv4 ICMP error packet in
2965 * response to the IPv4 packet in mp.
2966 * Free the message and return null if no
2967 * ICMP error packet should be sent.
2968 */
2969 static mblk_t *
2970 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2971 {
2972 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2973 icmph_t *icmph;
2974 ipha_t *ipha;
2975 uint_t len_needed;
2976
2977 if (!mp)
2978 return (NULL);
2979 ipha = (ipha_t *)mp->b_rptr;
2980 if (ip_csum_hdr(ipha)) {
2981 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2982 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2983 freemsg(mp);
2984 return (NULL);
2985 }
2986 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2987 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2988 CLASSD(ipha->ipha_dst) ||
2989 CLASSD(ipha->ipha_src) ||
2990 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2991 /* Note: only errors to the fragment with offset 0 */
2992 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2993 freemsg(mp);
2994 return (NULL);
2995 }
2996 if (ipha->ipha_protocol == IPPROTO_ICMP) {
2997 /*
2998 * Check the ICMP type. RFC 1122 sez: don't send ICMP
2999 * errors in response to any ICMP errors.
3000 */
3001 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3002 if (mp->b_wptr - mp->b_rptr < len_needed) {
3003 if (!pullupmsg(mp, len_needed)) {
3004 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3005 freemsg(mp);
3006 return (NULL);
3007 }
3008 ipha = (ipha_t *)mp->b_rptr;
3009 }
3010 icmph = (icmph_t *)
3011 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3012 switch (icmph->icmph_type) {
3013 case ICMP_DEST_UNREACHABLE:
3014 case ICMP_SOURCE_QUENCH:
3015 case ICMP_TIME_EXCEEDED:
3016 case ICMP_PARAM_PROBLEM:
3017 case ICMP_REDIRECT:
3018 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3019 freemsg(mp);
3020 return (NULL);
3021 default:
3022 break;
3023 }
3024 }
3025 /*
3026 * If this is a labeled system, then check to see if we're allowed to
3027 * send a response to this particular sender. If not, then just drop.
3028 */
3029 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3030 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3031 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3032 freemsg(mp);
3033 return (NULL);
3034 }
3035 if (icmp_err_rate_limit(ipst)) {
3036 /*
3037 * Only send ICMP error packets every so often.
3038 * This should be done on a per port/source basis,
3039 * but for now this will suffice.
3040 */
3041 freemsg(mp);
3042 return (NULL);
3043 }
3044 return (mp);
3045 }
3046
3047 /*
3048 * Called when a packet was sent out the same link that it arrived on.
3049 * Check if it is ok to send a redirect and then send it.
3050 */
3051 void
3052 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3053 ip_recv_attr_t *ira)
3054 {
3055 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3056 ipaddr_t src, nhop;
3057 mblk_t *mp1;
3058 ire_t *nhop_ire;
3059
3060 /*
3061 * Check the source address to see if it originated
3062 * on the same logical subnet it is going back out on.
3063 * If so, we should be able to send it a redirect.
3064 * Avoid sending a redirect if the destination
3065 * is directly connected (i.e., we matched an IRE_ONLINK),
3066 * or if the packet was source routed out this interface.
3067 *
3068 * We avoid sending a redirect if the
3069 * destination is directly connected
3070 * because it is possible that multiple
3071 * IP subnets may have been configured on
3072 * the link, and the source may not
3073 * be on the same subnet as ip destination,
3074 * even though they are on the same
3075 * physical link.
3076 */
3077 if ((ire->ire_type & IRE_ONLINK) ||
3078 ip_source_routed(ipha, ipst))
3079 return;
3080
3081 nhop_ire = ire_nexthop(ire);
3082 if (nhop_ire == NULL)
3083 return;
3084
3085 nhop = nhop_ire->ire_addr;
3086
3087 if (nhop_ire->ire_type & IRE_IF_CLONE) {
3088 ire_t *ire2;
3089
3090 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3091 mutex_enter(&nhop_ire->ire_lock);
3092 ire2 = nhop_ire->ire_dep_parent;
3093 if (ire2 != NULL)
3094 ire_refhold(ire2);
3095 mutex_exit(&nhop_ire->ire_lock);
3096 ire_refrele(nhop_ire);
3097 nhop_ire = ire2;
3098 }
3099 if (nhop_ire == NULL)
3100 return;
3101
3102 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3103
3104 src = ipha->ipha_src;
3105
3106 /*
3107 * We look at the interface ire for the nexthop,
3108 * to see if ipha_src is in the same subnet
3109 * as the nexthop.
3110 */
3111 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3112 /*
3113 * The source is directly connected.
3114 */
3115 mp1 = copymsg(mp);
3116 if (mp1 != NULL) {
3117 icmp_send_redirect(mp1, nhop, ira);
3118 }
3119 }
3120 ire_refrele(nhop_ire);
3121 }
3122
3123 /*
3124 * Generate an ICMP redirect message.
3125 */
3126 static void
3127 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3128 {
3129 icmph_t icmph;
3130 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3131
3132 mp = icmp_pkt_err_ok(mp, ira);
3133 if (mp == NULL)
3134 return;
3135
3136 bzero(&icmph, sizeof (icmph_t));
3137 icmph.icmph_type = ICMP_REDIRECT;
3138 icmph.icmph_code = 1;
3139 icmph.icmph_rd_gateway = gateway;
3140 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3141 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3142 }
3143
3144 /*
3145 * Generate an ICMP time exceeded message.
3146 */
3147 void
3148 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3149 {
3150 icmph_t icmph;
3151 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3152
3153 mp = icmp_pkt_err_ok(mp, ira);
3154 if (mp == NULL)
3155 return;
3156
3157 bzero(&icmph, sizeof (icmph_t));
3158 icmph.icmph_type = ICMP_TIME_EXCEEDED;
3159 icmph.icmph_code = code;
3160 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3161 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3162 }
3163
3164 /*
3165 * Generate an ICMP unreachable message.
3166 * When called from ip_output side a minimal ip_recv_attr_t needs to be
3167 * constructed by the caller.
3168 */
3169 void
3170 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3171 {
3172 icmph_t icmph;
3173 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3174
3175 mp = icmp_pkt_err_ok(mp, ira);
3176 if (mp == NULL)
3177 return;
3178
3179 bzero(&icmph, sizeof (icmph_t));
3180 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3181 icmph.icmph_code = code;
3182 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3183 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3184 }
3185
3186 /*
3187 * Latch in the IPsec state for a stream based the policy in the listener
3188 * and the actions in the ip_recv_attr_t.
3189 * Called directly from TCP and SCTP.
3190 */
3191 boolean_t
3192 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3193 {
3194 ASSERT(lconnp->conn_policy != NULL);
3195 ASSERT(connp->conn_policy == NULL);
3196
3197 IPPH_REFHOLD(lconnp->conn_policy);
3198 connp->conn_policy = lconnp->conn_policy;
3199
3200 if (ira->ira_ipsec_action != NULL) {
3201 if (connp->conn_latch == NULL) {
3202 connp->conn_latch = iplatch_create();
3203 if (connp->conn_latch == NULL)
3204 return (B_FALSE);
3205 }
3206 ipsec_latch_inbound(connp, ira);
3207 }
3208 return (B_TRUE);
3209 }
3210
3211 /*
3212 * Verify whether or not the IP address is a valid local address.
3213 * Could be a unicast, including one for a down interface.
3214 * If allow_mcbc then a multicast or broadcast address is also
3215 * acceptable.
3216 *
3217 * In the case of a broadcast/multicast address, however, the
3218 * upper protocol is expected to reset the src address
3219 * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3220 * no packets are emitted with broadcast/multicast address as
3221 * source address (that violates hosts requirements RFC 1122)
3222 * The addresses valid for bind are:
3223 * (1) - INADDR_ANY (0)
3224 * (2) - IP address of an UP interface
3225 * (3) - IP address of a DOWN interface
3226 * (4) - valid local IP broadcast addresses. In this case
3227 * the conn will only receive packets destined to
3228 * the specified broadcast address.
3229 * (5) - a multicast address. In this case
3230 * the conn will only receive packets destined to
3231 * the specified multicast address. Note: the
3232 * application still has to issue an
3233 * IP_ADD_MEMBERSHIP socket option.
3234 *
3235 * In all the above cases, the bound address must be valid in the current zone.
3236 * When the address is loopback, multicast or broadcast, there might be many
3237 * matching IREs so bind has to look up based on the zone.
3238 */
3239 ip_laddr_t
3240 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3241 ip_stack_t *ipst, boolean_t allow_mcbc)
3242 {
3243 ire_t *src_ire;
3244
3245 ASSERT(src_addr != INADDR_ANY);
3246
3247 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3248 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3249
3250 /*
3251 * If an address other than in6addr_any is requested,
3252 * we verify that it is a valid address for bind
3253 * Note: Following code is in if-else-if form for
3254 * readability compared to a condition check.
3255 */
3256 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3257 /*
3258 * (2) Bind to address of local UP interface
3259 */
3260 ire_refrele(src_ire);
3261 return (IPVL_UNICAST_UP);
3262 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3263 /*
3264 * (4) Bind to broadcast address
3265 */
3266 ire_refrele(src_ire);
3267 if (allow_mcbc)
3268 return (IPVL_BCAST);
3269 else
3270 return (IPVL_BAD);
3271 } else if (CLASSD(src_addr)) {
3272 /* (5) bind to multicast address. */
3273 if (src_ire != NULL)
3274 ire_refrele(src_ire);
3275
3276 if (allow_mcbc)
3277 return (IPVL_MCAST);
3278 else
3279 return (IPVL_BAD);
3280 } else {
3281 ipif_t *ipif;
3282
3283 /*
3284 * (3) Bind to address of local DOWN interface?
3285 * (ipif_lookup_addr() looks up all interfaces
3286 * but we do not get here for UP interfaces
3287 * - case (2) above)
3288 */
3289 if (src_ire != NULL)
3290 ire_refrele(src_ire);
3291
3292 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3293 if (ipif == NULL)
3294 return (IPVL_BAD);
3295
3296 /* Not a useful source? */
3297 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3298 ipif_refrele(ipif);
3299 return (IPVL_BAD);
3300 }
3301 ipif_refrele(ipif);
3302 return (IPVL_UNICAST_DOWN);
3303 }
3304 }
3305
3306 /*
3307 * Insert in the bind fanout for IPv4 and IPv6.
3308 * The caller should already have used ip_laddr_verify_v*() before calling
3309 * this.
3310 */
3311 int
3312 ip_laddr_fanout_insert(conn_t *connp)
3313 {
3314 int error;
3315
3316 /*
3317 * Allow setting new policies. For example, disconnects result
3318 * in us being called. As we would have set conn_policy_cached
3319 * to B_TRUE before, we should set it to B_FALSE, so that policy
3320 * can change after the disconnect.
3321 */
3322 connp->conn_policy_cached = B_FALSE;
3323
3324 error = ipcl_bind_insert(connp);
3325 if (error != 0) {
3326 if (connp->conn_anon_port) {
3327 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3328 connp->conn_mlp_type, connp->conn_proto,
3329 ntohs(connp->conn_lport), B_FALSE);
3330 }
3331 connp->conn_mlp_type = mlptSingle;
3332 }
3333 return (error);
3334 }
3335
3336 /*
3337 * Verify that both the source and destination addresses are valid. If
3338 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3339 * i.e. have no route to it. Protocols like TCP want to verify destination
3340 * reachability, while tunnels do not.
3341 *
3342 * Determine the route, the interface, and (optionally) the source address
3343 * to use to reach a given destination.
3344 * Note that we allow connect to broadcast and multicast addresses when
3345 * IPDF_ALLOW_MCBC is set.
3346 * first_hop and dst_addr are normally the same, but if source routing
3347 * they will differ; in that case the first_hop is what we'll use for the
3348 * routing lookup but the dce and label checks will be done on dst_addr,
3349 *
3350 * If uinfo is set, then we fill in the best available information
3351 * we have for the destination. This is based on (in priority order) any
3352 * metrics and path MTU stored in a dce_t, route metrics, and finally the
3353 * ill_mtu/ill_mc_mtu.
3354 *
3355 * Tsol note: If we have a source route then dst_addr != firsthop. But we
3356 * always do the label check on dst_addr.
3357 */
3358 int
3359 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3360 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3361 {
3362 ire_t *ire = NULL;
3363 int error = 0;
3364 ipaddr_t setsrc; /* RTF_SETSRC */
3365 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */
3366 ip_stack_t *ipst = ixa->ixa_ipst;
3367 dce_t *dce;
3368 uint_t pmtu;
3369 uint_t generation;
3370 nce_t *nce;
3371 ill_t *ill = NULL;
3372 boolean_t multirt = B_FALSE;
3373
3374 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3375
3376 /*
3377 * We never send to zero; the ULPs map it to the loopback address.
3378 * We can't allow it since we use zero to mean unitialized in some
3379 * places.
3380 */
3381 ASSERT(dst_addr != INADDR_ANY);
3382
3383 if (is_system_labeled()) {
3384 ts_label_t *tsl = NULL;
3385
3386 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3387 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3388 if (error != 0)
3389 return (error);
3390 if (tsl != NULL) {
3391 /* Update the label */
3392 ip_xmit_attr_replace_tsl(ixa, tsl);
3393 }
3394 }
3395
3396 setsrc = INADDR_ANY;
3397 /*
3398 * Select a route; For IPMP interfaces, we would only select
3399 * a "hidden" route (i.e., going through a specific under_ill)
3400 * if ixa_ifindex has been specified.
3401 */
3402 ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3403 &generation, &setsrc, &error, &multirt);
3404 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */
3405 if (error != 0)
3406 goto bad_addr;
3407
3408 /*
3409 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3410 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3411 * Otherwise the destination needn't be reachable.
3412 *
3413 * If we match on a reject or black hole, then we've got a
3414 * local failure. May as well fail out the connect() attempt,
3415 * since it's never going to succeed.
3416 */
3417 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3418 /*
3419 * If we're verifying destination reachability, we always want
3420 * to complain here.
3421 *
3422 * If we're not verifying destination reachability but the
3423 * destination has a route, we still want to fail on the
3424 * temporary address and broadcast address tests.
3425 *
3426 * In both cases do we let the code continue so some reasonable
3427 * information is returned to the caller. That enables the
3428 * caller to use (and even cache) the IRE. conn_ip_ouput will
3429 * use the generation mismatch path to check for the unreachable
3430 * case thereby avoiding any specific check in the main path.
3431 */
3432 ASSERT(generation == IRE_GENERATION_VERIFY);
3433 if (flags & IPDF_VERIFY_DST) {
3434 /*
3435 * Set errno but continue to set up ixa_ire to be
3436 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3437 * That allows callers to use ip_output to get an
3438 * ICMP error back.
3439 */
3440 if (!(ire->ire_type & IRE_HOST))
3441 error = ENETUNREACH;
3442 else
3443 error = EHOSTUNREACH;
3444 }
3445 }
3446
3447 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3448 !(flags & IPDF_ALLOW_MCBC)) {
3449 ire_refrele(ire);
3450 ire = ire_reject(ipst, B_FALSE);
3451 generation = IRE_GENERATION_VERIFY;
3452 error = ENETUNREACH;
3453 }
3454
3455 /* Cache things */
3456 if (ixa->ixa_ire != NULL)
3457 ire_refrele_notr(ixa->ixa_ire);
3458 #ifdef DEBUG
3459 ire_refhold_notr(ire);
3460 ire_refrele(ire);
3461 #endif
3462 ixa->ixa_ire = ire;
3463 ixa->ixa_ire_generation = generation;
3464
3465 /*
3466 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3467 * since some callers will send a packet to conn_ip_output() even if
3468 * there's an error.
3469 */
3470 if (flags & IPDF_UNIQUE_DCE) {
3471 /* Fallback to the default dce if allocation fails */
3472 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3473 if (dce != NULL)
3474 generation = dce->dce_generation;
3475 else
3476 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3477 } else {
3478 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3479 }
3480 ASSERT(dce != NULL);
3481 if (ixa->ixa_dce != NULL)
3482 dce_refrele_notr(ixa->ixa_dce);
3483 #ifdef DEBUG
3484 dce_refhold_notr(dce);
3485 dce_refrele(dce);
3486 #endif
3487 ixa->ixa_dce = dce;
3488 ixa->ixa_dce_generation = generation;
3489
3490 /*
3491 * For multicast with multirt we have a flag passed back from
3492 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3493 * possible multicast address.
3494 * We also need a flag for multicast since we can't check
3495 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3496 */
3497 if (multirt) {
3498 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3499 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3500 } else {
3501 ixa->ixa_postfragfn = ire->ire_postfragfn;
3502 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3503 }
3504 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3505 /* Get an nce to cache. */
3506 nce = ire_to_nce(ire, firsthop, NULL);
3507 if (nce == NULL) {
3508 /* Allocation failure? */
3509 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3510 } else {
3511 if (ixa->ixa_nce != NULL)
3512 nce_refrele(ixa->ixa_nce);
3513 ixa->ixa_nce = nce;
3514 }
3515 }
3516
3517 /*
3518 * If the source address is a loopback address, the
3519 * destination had best be local or multicast.
3520 * If we are sending to an IRE_LOCAL using a loopback source then
3521 * it had better be the same zoneid.
3522 */
3523 if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3524 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3525 ire = NULL; /* Stored in ixa_ire */
3526 error = EADDRNOTAVAIL;
3527 goto bad_addr;
3528 }
3529 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3530 ire = NULL; /* Stored in ixa_ire */
3531 error = EADDRNOTAVAIL;
3532 goto bad_addr;
3533 }
3534 }
3535 if (ire->ire_type & IRE_BROADCAST) {
3536 /*
3537 * If the ULP didn't have a specified source, then we
3538 * make sure we reselect the source when sending
3539 * broadcasts out different interfaces.
3540 */
3541 if (flags & IPDF_SELECT_SRC)
3542 ixa->ixa_flags |= IXAF_SET_SOURCE;
3543 else
3544 ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3545 }
3546
3547 /*
3548 * Does the caller want us to pick a source address?
3549 */
3550 if (flags & IPDF_SELECT_SRC) {
3551 ipaddr_t src_addr;
3552
3553 /*
3554 * We use use ire_nexthop_ill to avoid the under ipmp
3555 * interface for source address selection. Note that for ipmp
3556 * probe packets, ixa_ifindex would have been specified, and
3557 * the ip_select_route() invocation would have picked an ire
3558 * will ire_ill pointing at an under interface.
3559 */
3560 ill = ire_nexthop_ill(ire);
3561
3562 /* If unreachable we have no ill but need some source */
3563 if (ill == NULL) {
3564 src_addr = htonl(INADDR_LOOPBACK);
3565 /* Make sure we look for a better source address */
3566 generation = SRC_GENERATION_VERIFY;
3567 } else {
3568 error = ip_select_source_v4(ill, setsrc, dst_addr,
3569 ixa->ixa_multicast_ifaddr, zoneid,
3570 ipst, &src_addr, &generation, NULL);
3571 if (error != 0) {
3572 ire = NULL; /* Stored in ixa_ire */
3573 goto bad_addr;
3574 }
3575 }
3576
3577 /*
3578 * We allow the source address to to down.
3579 * However, we check that we don't use the loopback address
3580 * as a source when sending out on the wire.
3581 */
3582 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3583 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3584 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3585 ire = NULL; /* Stored in ixa_ire */
3586 error = EADDRNOTAVAIL;
3587 goto bad_addr;
3588 }
3589
3590 *src_addrp = src_addr;
3591 ixa->ixa_src_generation = generation;
3592 }
3593
3594 /*
3595 * Make sure we don't leave an unreachable ixa_nce in place
3596 * since ip_select_route is used when we unplumb i.e., remove
3597 * references on ixa_ire, ixa_nce, and ixa_dce.
3598 */
3599 nce = ixa->ixa_nce;
3600 if (nce != NULL && nce->nce_is_condemned) {
3601 nce_refrele(nce);
3602 ixa->ixa_nce = NULL;
3603 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3604 }
3605
3606 /*
3607 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3608 * However, we can't do it for IPv4 multicast or broadcast.
3609 */
3610 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3611 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3612
3613 /*
3614 * Set initial value for fragmentation limit. Either conn_ip_output
3615 * or ULP might updates it when there are routing changes.
3616 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3617 */
3618 pmtu = ip_get_pmtu(ixa);
3619 ixa->ixa_fragsize = pmtu;
3620 /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3621 if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3622 ixa->ixa_pmtu = pmtu;
3623
3624 /*
3625 * Extract information useful for some transports.
3626 * First we look for DCE metrics. Then we take what we have in
3627 * the metrics in the route, where the offlink is used if we have
3628 * one.
3629 */
3630 if (uinfo != NULL) {
3631 bzero(uinfo, sizeof (*uinfo));
3632
3633 if (dce->dce_flags & DCEF_UINFO)
3634 *uinfo = dce->dce_uinfo;
3635
3636 rts_merge_metrics(uinfo, &ire->ire_metrics);
3637
3638 /* Allow ire_metrics to decrease the path MTU from above */
3639 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3640 uinfo->iulp_mtu = pmtu;
3641
3642 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3643 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3644 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3645 }
3646
3647 if (ill != NULL)
3648 ill_refrele(ill);
3649
3650 return (error);
3651
3652 bad_addr:
3653 if (ire != NULL)
3654 ire_refrele(ire);
3655
3656 if (ill != NULL)
3657 ill_refrele(ill);
3658
3659 /*
3660 * Make sure we don't leave an unreachable ixa_nce in place
3661 * since ip_select_route is used when we unplumb i.e., remove
3662 * references on ixa_ire, ixa_nce, and ixa_dce.
3663 */
3664 nce = ixa->ixa_nce;
3665 if (nce != NULL && nce->nce_is_condemned) {
3666 nce_refrele(nce);
3667 ixa->ixa_nce = NULL;
3668 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3669 }
3670
3671 return (error);
3672 }
3673
3674
3675 /*
3676 * Get the base MTU for the case when path MTU discovery is not used.
3677 * Takes the MTU of the IRE into account.
3678 */
3679 uint_t
3680 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3681 {
3682 uint_t mtu;
3683 uint_t iremtu = ire->ire_metrics.iulp_mtu;
3684
3685 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3686 mtu = ill->ill_mc_mtu;
3687 else
3688 mtu = ill->ill_mtu;
3689
3690 if (iremtu != 0 && iremtu < mtu)
3691 mtu = iremtu;
3692
3693 return (mtu);
3694 }
3695
3696 /*
3697 * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3698 * Assumes that ixa_ire, dce, and nce have already been set up.
3699 *
3700 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3701 * We avoid path MTU discovery if it is disabled with ndd.
3702 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3703 *
3704 * NOTE: We also used to turn it off for source routed packets. That
3705 * is no longer required since the dce is per final destination.
3706 */
3707 uint_t
3708 ip_get_pmtu(ip_xmit_attr_t *ixa)
3709 {
3710 ip_stack_t *ipst = ixa->ixa_ipst;
3711 dce_t *dce;
3712 nce_t *nce;
3713 ire_t *ire;
3714 uint_t pmtu;
3715
3716 ire = ixa->ixa_ire;
3717 dce = ixa->ixa_dce;
3718 nce = ixa->ixa_nce;
3719
3720 /*
3721 * If path MTU discovery has been turned off by ndd, then we ignore
3722 * any dce_pmtu and for IPv4 we will not set DF.
3723 */
3724 if (!ipst->ips_ip_path_mtu_discovery)
3725 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3726
3727 pmtu = IP_MAXPACKET;
3728 /*
3729 * Decide whether whether IPv4 sets DF
3730 * For IPv6 "no DF" means to use the 1280 mtu
3731 */
3732 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3733 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3734 } else {
3735 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3736 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3737 pmtu = IPV6_MIN_MTU;
3738 }
3739
3740 /* Check if the PMTU is to old before we use it */
3741 if ((dce->dce_flags & DCEF_PMTU) &&
3742 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3743 ipst->ips_ip_pathmtu_interval) {
3744 /*
3745 * Older than 20 minutes. Drop the path MTU information.
3746 */
3747 mutex_enter(&dce->dce_lock);
3748 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3749 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3750 mutex_exit(&dce->dce_lock);
3751 dce_increment_generation(dce);
3752 }
3753
3754 /* The metrics on the route can lower the path MTU */
3755 if (ire->ire_metrics.iulp_mtu != 0 &&
3756 ire->ire_metrics.iulp_mtu < pmtu)
3757 pmtu = ire->ire_metrics.iulp_mtu;
3758
3759 /*
3760 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3761 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3762 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3763 */
3764 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3765 if (dce->dce_flags & DCEF_PMTU) {
3766 if (dce->dce_pmtu < pmtu)
3767 pmtu = dce->dce_pmtu;
3768
3769 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3770 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3771 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3772 } else {
3773 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3774 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3775 }
3776 } else {
3777 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3778 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3779 }
3780 }
3781
3782 /*
3783 * If we have an IRE_LOCAL we use the loopback mtu instead of
3784 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3785 * mtu as IRE_LOOPBACK.
3786 */
3787 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3788 uint_t loopback_mtu;
3789
3790 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3791 ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3792
3793 if (loopback_mtu < pmtu)
3794 pmtu = loopback_mtu;
3795 } else if (nce != NULL) {
3796 /*
3797 * Make sure we don't exceed the interface MTU.
3798 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3799 * an ill. We'd use the above IP_MAXPACKET in that case just
3800 * to tell the transport something larger than zero.
3801 */
3802 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3803 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3804 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3805 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3806 nce->nce_ill->ill_mc_mtu < pmtu) {
3807 /*
3808 * for interfaces in an IPMP group, the mtu of
3809 * the nce_ill (under_ill) could be different
3810 * from the mtu of the ncec_ill, so we take the
3811 * min of the two.
3812 */
3813 pmtu = nce->nce_ill->ill_mc_mtu;
3814 }
3815 } else {
3816 if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3817 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3818 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3819 nce->nce_ill->ill_mtu < pmtu) {
3820 /*
3821 * for interfaces in an IPMP group, the mtu of
3822 * the nce_ill (under_ill) could be different
3823 * from the mtu of the ncec_ill, so we take the
3824 * min of the two.
3825 */
3826 pmtu = nce->nce_ill->ill_mtu;
3827 }
3828 }
3829 }
3830
3831 /*
3832 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3833 * Only applies to IPv6.
3834 */
3835 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3836 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3837 switch (ixa->ixa_use_min_mtu) {
3838 case IPV6_USE_MIN_MTU_MULTICAST:
3839 if (ire->ire_type & IRE_MULTICAST)
3840 pmtu = IPV6_MIN_MTU;
3841 break;
3842 case IPV6_USE_MIN_MTU_ALWAYS:
3843 pmtu = IPV6_MIN_MTU;
3844 break;
3845 case IPV6_USE_MIN_MTU_NEVER:
3846 break;
3847 }
3848 } else {
3849 /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3850 if (ire->ire_type & IRE_MULTICAST)
3851 pmtu = IPV6_MIN_MTU;
3852 }
3853 }
3854
3855 /*
3856 * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3857 * fragment header in every packet. We compensate for those cases by
3858 * returning a smaller path MTU to the ULP.
3859 *
3860 * In the case of CGTP then ip_output will add a fragment header.
3861 * Make sure there is room for it by telling a smaller number
3862 * to the transport.
3863 *
3864 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3865 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3866 * which is the size of the packets it can send.
3867 */
3868 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3869 if ((ire->ire_flags & RTF_MULTIRT) ||
3870 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3871 pmtu -= sizeof (ip6_frag_t);
3872 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3873 }
3874 }
3875
3876 return (pmtu);
3877 }
3878
3879 /*
3880 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3881 * the final piece where we don't. Return a pointer to the first mblk in the
3882 * result, and update the pointer to the next mblk to chew on. If anything
3883 * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3884 * NULL pointer.
3885 */
3886 mblk_t *
3887 ip_carve_mp(mblk_t **mpp, ssize_t len)
3888 {
3889 mblk_t *mp0;
3890 mblk_t *mp1;
3891 mblk_t *mp2;
3892
3893 if (!len || !mpp || !(mp0 = *mpp))
3894 return (NULL);
3895 /* If we aren't going to consume the first mblk, we need a dup. */
3896 if (mp0->b_wptr - mp0->b_rptr > len) {
3897 mp1 = dupb(mp0);
3898 if (mp1) {
3899 /* Partition the data between the two mblks. */
3900 mp1->b_wptr = mp1->b_rptr + len;
3901 mp0->b_rptr = mp1->b_wptr;
3902 /*
3903 * after adjustments if mblk not consumed is now
3904 * unaligned, try to align it. If this fails free
3905 * all messages and let upper layer recover.
3906 */
3907 if (!OK_32PTR(mp0->b_rptr)) {
3908 if (!pullupmsg(mp0, -1)) {
3909 freemsg(mp0);
3910 freemsg(mp1);
3911 *mpp = NULL;
3912 return (NULL);
3913 }
3914 }
3915 }
3916 return (mp1);
3917 }
3918 /* Eat through as many mblks as we need to get len bytes. */
3919 len -= mp0->b_wptr - mp0->b_rptr;
3920 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3921 if (mp2->b_wptr - mp2->b_rptr > len) {
3922 /*
3923 * We won't consume the entire last mblk. Like
3924 * above, dup and partition it.
3925 */
3926 mp1->b_cont = dupb(mp2);
3927 mp1 = mp1->b_cont;
3928 if (!mp1) {
3929 /*
3930 * Trouble. Rather than go to a lot of
3931 * trouble to clean up, we free the messages.
3932 * This won't be any worse than losing it on
3933 * the wire.
3934 */
3935 freemsg(mp0);
3936 freemsg(mp2);
3937 *mpp = NULL;
3938 return (NULL);
3939 }
3940 mp1->b_wptr = mp1->b_rptr + len;
3941 mp2->b_rptr = mp1->b_wptr;
3942 /*
3943 * after adjustments if mblk not consumed is now
3944 * unaligned, try to align it. If this fails free
3945 * all messages and let upper layer recover.
3946 */
3947 if (!OK_32PTR(mp2->b_rptr)) {
3948 if (!pullupmsg(mp2, -1)) {
3949 freemsg(mp0);
3950 freemsg(mp2);
3951 *mpp = NULL;
3952 return (NULL);
3953 }
3954 }
3955 *mpp = mp2;
3956 return (mp0);
3957 }
3958 /* Decrement len by the amount we just got. */
3959 len -= mp2->b_wptr - mp2->b_rptr;
3960 }
3961 /*
3962 * len should be reduced to zero now. If not our caller has
3963 * screwed up.
3964 */
3965 if (len) {
3966 /* Shouldn't happen! */
3967 freemsg(mp0);
3968 *mpp = NULL;
3969 return (NULL);
3970 }
3971 /*
3972 * We consumed up to exactly the end of an mblk. Detach the part
3973 * we are returning from the rest of the chain.
3974 */
3975 mp1->b_cont = NULL;
3976 *mpp = mp2;
3977 return (mp0);
3978 }
3979
3980 /* The ill stream is being unplumbed. Called from ip_close */
3981 int
3982 ip_modclose(ill_t *ill)
3983 {
3984 boolean_t success;
3985 ipsq_t *ipsq;
3986 ipif_t *ipif;
3987 queue_t *q = ill->ill_rq;
3988 ip_stack_t *ipst = ill->ill_ipst;
3989 int i;
3990 arl_ill_common_t *ai = ill->ill_common;
3991
3992 /*
3993 * The punlink prior to this may have initiated a capability
3994 * negotiation. But ipsq_enter will block until that finishes or
3995 * times out.
3996 */
3997 success = ipsq_enter(ill, B_FALSE, NEW_OP);
3998
3999 /*
4000 * Open/close/push/pop is guaranteed to be single threaded
4001 * per stream by STREAMS. FS guarantees that all references
4002 * from top are gone before close is called. So there can't
4003 * be another close thread that has set CONDEMNED on this ill.
4004 * and cause ipsq_enter to return failure.
4005 */
4006 ASSERT(success);
4007 ipsq = ill->ill_phyint->phyint_ipsq;
4008
4009 /*
4010 * Mark it condemned. No new reference will be made to this ill.
4011 * Lookup functions will return an error. Threads that try to
4012 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4013 * that the refcnt will drop down to zero.
4014 */
4015 mutex_enter(&ill->ill_lock);
4016 ill->ill_state_flags |= ILL_CONDEMNED;
4017 for (ipif = ill->ill_ipif; ipif != NULL;
4018 ipif = ipif->ipif_next) {
4019 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4020 }
4021 /*
4022 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4023 * returns error if ILL_CONDEMNED is set
4024 */
4025 cv_broadcast(&ill->ill_cv);
4026 mutex_exit(&ill->ill_lock);
4027
4028 /*
4029 * Send all the deferred DLPI messages downstream which came in
4030 * during the small window right before ipsq_enter(). We do this
4031 * without waiting for the ACKs because all the ACKs for M_PROTO
4032 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4033 */
4034 ill_dlpi_send_deferred(ill);
4035
4036 /*
4037 * Shut down fragmentation reassembly.
4038 * ill_frag_timer won't start a timer again.
4039 * Now cancel any existing timer
4040 */
4041 (void) untimeout(ill->ill_frag_timer_id);
4042 (void) ill_frag_timeout(ill, 0);
4043
4044 /*
4045 * Call ill_delete to bring down the ipifs, ilms and ill on
4046 * this ill. Then wait for the refcnts to drop to zero.
4047 * ill_is_freeable checks whether the ill is really quiescent.
4048 * Then make sure that threads that are waiting to enter the
4049 * ipsq have seen the error returned by ipsq_enter and have
4050 * gone away. Then we call ill_delete_tail which does the
4051 * DL_UNBIND_REQ with the driver and then qprocsoff.
4052 */
4053 ill_delete(ill);
4054 mutex_enter(&ill->ill_lock);
4055 while (!ill_is_freeable(ill))
4056 cv_wait(&ill->ill_cv, &ill->ill_lock);
4057
4058 while (ill->ill_waiters)
4059 cv_wait(&ill->ill_cv, &ill->ill_lock);
4060
4061 mutex_exit(&ill->ill_lock);
4062
4063 /*
4064 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4065 * it held until the end of the function since the cleanup
4066 * below needs to be able to use the ip_stack_t.
4067 */
4068 netstack_hold(ipst->ips_netstack);
4069
4070 /* qprocsoff is done via ill_delete_tail */
4071 ill_delete_tail(ill);
4072 /*
4073 * synchronously wait for arp stream to unbind. After this, we
4074 * cannot get any data packets up from the driver.
4075 */
4076 arp_unbind_complete(ill);
4077 ASSERT(ill->ill_ipst == NULL);
4078
4079 /*
4080 * Walk through all conns and qenable those that have queued data.
4081 * Close synchronization needs this to
4082 * be done to ensure that all upper layers blocked
4083 * due to flow control to the closing device
4084 * get unblocked.
4085 */
4086 ip1dbg(("ip_wsrv: walking\n"));
4087 for (i = 0; i < TX_FANOUT_SIZE; i++) {
4088 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4089 }
4090
4091 /*
4092 * ai can be null if this is an IPv6 ill, or if the IPv4
4093 * stream is being torn down before ARP was plumbed (e.g.,
4094 * /sbin/ifconfig plumbing a stream twice, and encountering
4095 * an error
4096 */
4097 if (ai != NULL) {
4098 ASSERT(!ill->ill_isv6);
4099 mutex_enter(&ai->ai_lock);
4100 ai->ai_ill = NULL;
4101 if (ai->ai_arl == NULL) {
4102 mutex_destroy(&ai->ai_lock);
4103 kmem_free(ai, sizeof (*ai));
4104 } else {
4105 cv_signal(&ai->ai_ill_unplumb_done);
4106 mutex_exit(&ai->ai_lock);
4107 }
4108 }
4109
4110 mutex_enter(&ipst->ips_ip_mi_lock);
4111 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4112 mutex_exit(&ipst->ips_ip_mi_lock);
4113
4114 /*
4115 * credp could be null if the open didn't succeed and ip_modopen
4116 * itself calls ip_close.
4117 */
4118 if (ill->ill_credp != NULL)
4119 crfree(ill->ill_credp);
4120
4121 mutex_destroy(&ill->ill_saved_ire_lock);
4122 mutex_destroy(&ill->ill_lock);
4123 rw_destroy(&ill->ill_mcast_lock);
4124 mutex_destroy(&ill->ill_mcast_serializer);
4125 list_destroy(&ill->ill_nce);
4126
4127 /*
4128 * Now we are done with the module close pieces that
4129 * need the netstack_t.
4130 */
4131 netstack_rele(ipst->ips_netstack);
4132
4133 mi_close_free((IDP)ill);
4134 q->q_ptr = WR(q)->q_ptr = NULL;
4135
4136 ipsq_exit(ipsq);
4137
4138 return (0);
4139 }
4140
4141 /*
4142 * This is called as part of close() for IP, UDP, ICMP, and RTS
4143 * in order to quiesce the conn.
4144 */
4145 void
4146 ip_quiesce_conn(conn_t *connp)
4147 {
4148 boolean_t drain_cleanup_reqd = B_FALSE;
4149 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
4150 boolean_t ilg_cleanup_reqd = B_FALSE;
4151 ip_stack_t *ipst;
4152
4153 ASSERT(!IPCL_IS_TCP(connp));
4154 ipst = connp->conn_netstack->netstack_ip;
4155
4156 /*
4157 * Mark the conn as closing, and this conn must not be
4158 * inserted in future into any list. Eg. conn_drain_insert(),
4159 * won't insert this conn into the conn_drain_list.
4160 *
4161 * conn_idl, and conn_ilg cannot get set henceforth.
4162 */
4163 mutex_enter(&connp->conn_lock);
4164 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4165 connp->conn_state_flags |= CONN_CLOSING;
4166 if (connp->conn_idl != NULL)
4167 drain_cleanup_reqd = B_TRUE;
4168 if (connp->conn_oper_pending_ill != NULL)
4169 conn_ioctl_cleanup_reqd = B_TRUE;
4170 if (connp->conn_dhcpinit_ill != NULL) {
4171 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4172 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4173 ill_set_inputfn(connp->conn_dhcpinit_ill);
4174 connp->conn_dhcpinit_ill = NULL;
4175 }
4176 if (connp->conn_ilg != NULL)
4177 ilg_cleanup_reqd = B_TRUE;
4178 mutex_exit(&connp->conn_lock);
4179
4180 if (conn_ioctl_cleanup_reqd)
4181 conn_ioctl_cleanup(connp);
4182
4183 if (is_system_labeled() && connp->conn_anon_port) {
4184 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4185 connp->conn_mlp_type, connp->conn_proto,
4186 ntohs(connp->conn_lport), B_FALSE);
4187 connp->conn_anon_port = 0;
4188 }
4189 connp->conn_mlp_type = mlptSingle;
4190
4191 /*
4192 * Remove this conn from any fanout list it is on.
4193 * and then wait for any threads currently operating
4194 * on this endpoint to finish
4195 */
4196 ipcl_hash_remove(connp);
4197
4198 /*
4199 * Remove this conn from the drain list, and do any other cleanup that
4200 * may be required. (TCP conns are never flow controlled, and
4201 * conn_idl will be NULL.)
4202 */
4203 if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4204 idl_t *idl = connp->conn_idl;
4205
4206 mutex_enter(&idl->idl_lock);
4207 conn_drain(connp, B_TRUE);
4208 mutex_exit(&idl->idl_lock);
4209 }
4210
4211 if (connp == ipst->ips_ip_g_mrouter)
4212 (void) ip_mrouter_done(ipst);
4213
4214 if (ilg_cleanup_reqd)
4215 ilg_delete_all(connp);
4216
4217 /*
4218 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4219 * callers from write side can't be there now because close
4220 * is in progress. The only other caller is ipcl_walk
4221 * which checks for the condemned flag.
4222 */
4223 mutex_enter(&connp->conn_lock);
4224 connp->conn_state_flags |= CONN_CONDEMNED;
4225 while (connp->conn_ref != 1)
4226 cv_wait(&connp->conn_cv, &connp->conn_lock);
4227 connp->conn_state_flags |= CONN_QUIESCED;
4228 mutex_exit(&connp->conn_lock);
4229 }
4230
4231 /* ARGSUSED */
4232 int
4233 ip_close(queue_t *q, int flags, cred_t *credp __unused)
4234 {
4235 conn_t *connp;
4236
4237 /*
4238 * Call the appropriate delete routine depending on whether this is
4239 * a module or device.
4240 */
4241 if (WR(q)->q_next != NULL) {
4242 /* This is a module close */
4243 return (ip_modclose((ill_t *)q->q_ptr));
4244 }
4245
4246 connp = q->q_ptr;
4247 ip_quiesce_conn(connp);
4248
4249 qprocsoff(q);
4250
4251 /*
4252 * Now we are truly single threaded on this stream, and can
4253 * delete the things hanging off the connp, and finally the connp.
4254 * We removed this connp from the fanout list, it cannot be
4255 * accessed thru the fanouts, and we already waited for the
4256 * conn_ref to drop to 0. We are already in close, so
4257 * there cannot be any other thread from the top. qprocsoff
4258 * has completed, and service has completed or won't run in
4259 * future.
4260 */
4261 ASSERT(connp->conn_ref == 1);
4262
4263 inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4264
4265 connp->conn_ref--;
4266 ipcl_conn_destroy(connp);
4267
4268 q->q_ptr = WR(q)->q_ptr = NULL;
4269 return (0);
4270 }
4271
4272 /*
4273 * Wapper around putnext() so that ip_rts_request can merely use
4274 * conn_recv.
4275 */
4276 /*ARGSUSED2*/
4277 static void
4278 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4279 {
4280 conn_t *connp = (conn_t *)arg1;
4281
4282 putnext(connp->conn_rq, mp);
4283 }
4284
4285 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4286 /* ARGSUSED */
4287 static void
4288 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4289 {
4290 freemsg(mp);
4291 }
4292
4293 /*
4294 * Called when the module is about to be unloaded
4295 */
4296 void
4297 ip_ddi_destroy(void)
4298 {
4299 /* This needs to be called before destroying any transports. */
4300 mutex_enter(&cpu_lock);
4301 unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4302 mutex_exit(&cpu_lock);
4303
4304 tnet_fini();
4305
4306 icmp_ddi_g_destroy();
4307 rts_ddi_g_destroy();
4308 udp_ddi_g_destroy();
4309 sctp_ddi_g_destroy();
4310 tcp_ddi_g_destroy();
4311 ilb_ddi_g_destroy();
4312 dce_g_destroy();
4313 ipsec_policy_g_destroy();
4314 ipcl_g_destroy();
4315 ip_net_g_destroy();
4316 ip_ire_g_fini();
4317 inet_minor_destroy(ip_minor_arena_sa);
4318 #if defined(_LP64)
4319 inet_minor_destroy(ip_minor_arena_la);
4320 #endif
4321
4322 #ifdef DEBUG
4323 list_destroy(&ip_thread_list);
4324 rw_destroy(&ip_thread_rwlock);
4325 tsd_destroy(&ip_thread_data);
4326 #endif
4327
4328 netstack_unregister(NS_IP);
4329 }
4330
4331 /*
4332 * First step in cleanup.
4333 */
4334 /* ARGSUSED */
4335 static void
4336 ip_stack_shutdown(netstackid_t stackid, void *arg)
4337 {
4338 ip_stack_t *ipst = (ip_stack_t *)arg;
4339 kt_did_t ktid;
4340
4341 #ifdef NS_DEBUG
4342 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4343 #endif
4344
4345 /*
4346 * Perform cleanup for special interfaces (loopback and IPMP).
4347 */
4348 ip_interface_cleanup(ipst);
4349
4350 /*
4351 * The *_hook_shutdown()s start the process of notifying any
4352 * consumers that things are going away.... nothing is destroyed.
4353 */
4354 ipv4_hook_shutdown(ipst);
4355 ipv6_hook_shutdown(ipst);
4356 arp_hook_shutdown(ipst);
4357
4358 mutex_enter(&ipst->ips_capab_taskq_lock);
4359 ktid = ipst->ips_capab_taskq_thread->t_did;
4360 ipst->ips_capab_taskq_quit = B_TRUE;
4361 cv_signal(&ipst->ips_capab_taskq_cv);
4362 mutex_exit(&ipst->ips_capab_taskq_lock);
4363
4364 /*
4365 * In rare occurrences, particularly on virtual hardware where CPUs can
4366 * be de-scheduled, the thread that we just signaled will not run until
4367 * after we have gotten through parts of ip_stack_fini. If that happens
4368 * then we'll try to grab the ips_capab_taskq_lock as part of returning
4369 * from cv_wait which no longer exists.
4370 */
4371 thread_join(ktid);
4372 }
4373
4374 /*
4375 * Free the IP stack instance.
4376 */
4377 static void
4378 ip_stack_fini(netstackid_t stackid, void *arg)
4379 {
4380 ip_stack_t *ipst = (ip_stack_t *)arg;
4381 int ret;
4382
4383 #ifdef NS_DEBUG
4384 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4385 #endif
4386 /*
4387 * At this point, all of the notifications that the events and
4388 * protocols are going away have been run, meaning that we can
4389 * now set about starting to clean things up.
4390 */
4391 ipobs_fini(ipst);
4392 ipv4_hook_destroy(ipst);
4393 ipv6_hook_destroy(ipst);
4394 arp_hook_destroy(ipst);
4395 ip_net_destroy(ipst);
4396
4397 ipmp_destroy(ipst);
4398
4399 ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4400 ipst->ips_ip_mibkp = NULL;
4401 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4402 ipst->ips_icmp_mibkp = NULL;
4403 ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4404 ipst->ips_ip_kstat = NULL;
4405 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4406 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4407 ipst->ips_ip6_kstat = NULL;
4408 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4409
4410 kmem_free(ipst->ips_propinfo_tbl,
4411 ip_propinfo_count * sizeof (mod_prop_info_t));
4412 ipst->ips_propinfo_tbl = NULL;
4413
4414 dce_stack_destroy(ipst);
4415 ip_mrouter_stack_destroy(ipst);
4416
4417 /*
4418 * Quiesce all of our timers. Note we set the quiesce flags before we
4419 * call untimeout. The slowtimers may actually kick off another instance
4420 * of the non-slow timers.
4421 */
4422 mutex_enter(&ipst->ips_igmp_timer_lock);
4423 ipst->ips_igmp_timer_quiesce = B_TRUE;
4424 mutex_exit(&ipst->ips_igmp_timer_lock);
4425
4426 mutex_enter(&ipst->ips_mld_timer_lock);
4427 ipst->ips_mld_timer_quiesce = B_TRUE;
4428 mutex_exit(&ipst->ips_mld_timer_lock);
4429
4430 mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4431 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4432 mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4433
4434 mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4435 ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4436 mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4437
4438 ret = untimeout(ipst->ips_igmp_timeout_id);
4439 if (ret == -1) {
4440 ASSERT(ipst->ips_igmp_timeout_id == 0);
4441 } else {
4442 ASSERT(ipst->ips_igmp_timeout_id != 0);
4443 ipst->ips_igmp_timeout_id = 0;
4444 }
4445 ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4446 if (ret == -1) {
4447 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4448 } else {
4449 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4450 ipst->ips_igmp_slowtimeout_id = 0;
4451 }
4452 ret = untimeout(ipst->ips_mld_timeout_id);
4453 if (ret == -1) {
4454 ASSERT(ipst->ips_mld_timeout_id == 0);
4455 } else {
4456 ASSERT(ipst->ips_mld_timeout_id != 0);
4457 ipst->ips_mld_timeout_id = 0;
4458 }
4459 ret = untimeout(ipst->ips_mld_slowtimeout_id);
4460 if (ret == -1) {
4461 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4462 } else {
4463 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4464 ipst->ips_mld_slowtimeout_id = 0;
4465 }
4466
4467 ip_ire_fini(ipst);
4468 ip6_asp_free(ipst);
4469 conn_drain_fini(ipst);
4470 ipcl_destroy(ipst);
4471
4472 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4473 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4474 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4475 ipst->ips_ndp4 = NULL;
4476 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4477 ipst->ips_ndp6 = NULL;
4478
4479 if (ipst->ips_loopback_ksp != NULL) {
4480 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4481 ipst->ips_loopback_ksp = NULL;
4482 }
4483
4484 mutex_destroy(&ipst->ips_capab_taskq_lock);
4485 cv_destroy(&ipst->ips_capab_taskq_cv);
4486
4487 rw_destroy(&ipst->ips_srcid_lock);
4488
4489 mutex_destroy(&ipst->ips_ip_mi_lock);
4490 rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4491
4492 mutex_destroy(&ipst->ips_igmp_timer_lock);
4493 mutex_destroy(&ipst->ips_mld_timer_lock);
4494 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4495 mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4496 mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4497 rw_destroy(&ipst->ips_ill_g_lock);
4498
4499 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4500 ipst->ips_phyint_g_list = NULL;
4501 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4502 ipst->ips_ill_g_heads = NULL;
4503
4504 ldi_ident_release(ipst->ips_ldi_ident);
4505 kmem_free(ipst, sizeof (*ipst));
4506 }
4507
4508 /*
4509 * This function is called from the TSD destructor, and is used to debug
4510 * reference count issues in IP. See block comment in <inet/ip_if.h> for
4511 * details.
4512 */
4513 static void
4514 ip_thread_exit(void *phash)
4515 {
4516 th_hash_t *thh = phash;
4517
4518 rw_enter(&ip_thread_rwlock, RW_WRITER);
4519 list_remove(&ip_thread_list, thh);
4520 rw_exit(&ip_thread_rwlock);
4521 mod_hash_destroy_hash(thh->thh_hash);
4522 kmem_free(thh, sizeof (*thh));
4523 }
4524
4525 /*
4526 * Called when the IP kernel module is loaded into the kernel
4527 */
4528 void
4529 ip_ddi_init(void)
4530 {
4531 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4532
4533 /*
4534 * For IP and TCP the minor numbers should start from 2 since we have 4
4535 * initial devices: ip, ip6, tcp, tcp6.
4536 */
4537 /*
4538 * If this is a 64-bit kernel, then create two separate arenas -
4539 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4540 * other for socket apps in the range 2^^18 through 2^^32-1.
4541 */
4542 ip_minor_arena_la = NULL;
4543 ip_minor_arena_sa = NULL;
4544 #if defined(_LP64)
4545 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4546 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4547 cmn_err(CE_PANIC,
4548 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4549 }
4550 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4551 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4552 cmn_err(CE_PANIC,
4553 "ip_ddi_init: ip_minor_arena_la creation failed\n");
4554 }
4555 #else
4556 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4557 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4558 cmn_err(CE_PANIC,
4559 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4560 }
4561 #endif
4562 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4563
4564 ipcl_g_init();
4565 ip_ire_g_init();
4566 ip_net_g_init();
4567
4568 #ifdef DEBUG
4569 tsd_create(&ip_thread_data, ip_thread_exit);
4570 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4571 list_create(&ip_thread_list, sizeof (th_hash_t),
4572 offsetof(th_hash_t, thh_link));
4573 #endif
4574 ipsec_policy_g_init();
4575 tcp_ddi_g_init();
4576 sctp_ddi_g_init();
4577 dce_g_init();
4578
4579 /*
4580 * We want to be informed each time a stack is created or
4581 * destroyed in the kernel, so we can maintain the
4582 * set of udp_stack_t's.
4583 */
4584 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4585 ip_stack_fini);
4586
4587 tnet_init();
4588
4589 udp_ddi_g_init();
4590 rts_ddi_g_init();
4591 icmp_ddi_g_init();
4592 ilb_ddi_g_init();
4593
4594 /* This needs to be called after all transports are initialized. */
4595 mutex_enter(&cpu_lock);
4596 register_cpu_setup_func(ip_tp_cpu_update, NULL);
4597 mutex_exit(&cpu_lock);
4598 }
4599
4600 /*
4601 * Initialize the IP stack instance.
4602 */
4603 static void *
4604 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4605 {
4606 ip_stack_t *ipst;
4607 size_t arrsz;
4608 major_t major;
4609
4610 #ifdef NS_DEBUG
4611 printf("ip_stack_init(stack %d)\n", stackid);
4612 #endif
4613
4614 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4615 ipst->ips_netstack = ns;
4616
4617 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4618 KM_SLEEP);
4619 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4620 KM_SLEEP);
4621 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4622 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4623 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4624 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4625
4626 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4627 ipst->ips_igmp_deferred_next = INFINITY;
4628 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4629 ipst->ips_mld_deferred_next = INFINITY;
4630 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4631 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4632 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4633 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4634 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4635 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4636
4637 ipcl_init(ipst);
4638 ip_ire_init(ipst);
4639 ip6_asp_init(ipst);
4640 ipif_init(ipst);
4641 conn_drain_init(ipst);
4642 ip_mrouter_stack_init(ipst);
4643 dce_stack_init(ipst);
4644
4645 ipst->ips_ip_multirt_log_interval = 1000;
4646
4647 ipst->ips_ill_index = 1;
4648
4649 ipst->ips_saved_ip_forwarding = -1;
4650 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */
4651
4652 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4653 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4654 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4655
4656 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4657 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4658 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4659 ipst->ips_ip6_kstat =
4660 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4661
4662 ipst->ips_ip_src_id = 1;
4663 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4664
4665 ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4666
4667 ip_net_init(ipst, ns);
4668 ipv4_hook_init(ipst);
4669 ipv6_hook_init(ipst);
4670 arp_hook_init(ipst);
4671 ipmp_init(ipst);
4672 ipobs_init(ipst);
4673
4674 /*
4675 * Create the taskq dispatcher thread and initialize related stuff.
4676 */
4677 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4678 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4679 ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4680 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4681
4682 major = mod_name_to_major(INET_NAME);
4683 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4684 return (ipst);
4685 }
4686
4687 /*
4688 * Allocate and initialize a DLPI template of the specified length. (May be
4689 * called as writer.)
4690 */
4691 mblk_t *
4692 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4693 {
4694 mblk_t *mp;
4695
4696 mp = allocb(len, BPRI_MED);
4697 if (!mp)
4698 return (NULL);
4699
4700 /*
4701 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4702 * of which we don't seem to use) are sent with M_PCPROTO, and
4703 * that other DLPI are M_PROTO.
4704 */
4705 if (prim == DL_INFO_REQ) {
4706 mp->b_datap->db_type = M_PCPROTO;
4707 } else {
4708 mp->b_datap->db_type = M_PROTO;
4709 }
4710
4711 mp->b_wptr = mp->b_rptr + len;
4712 bzero(mp->b_rptr, len);
4713 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4714 return (mp);
4715 }
4716
4717 /*
4718 * Allocate and initialize a DLPI notification. (May be called as writer.)
4719 */
4720 mblk_t *
4721 ip_dlnotify_alloc(uint_t notification, uint_t data)
4722 {
4723 dl_notify_ind_t *notifyp;
4724 mblk_t *mp;
4725
4726 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4727 return (NULL);
4728
4729 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4730 notifyp->dl_notification = notification;
4731 notifyp->dl_data = data;
4732 return (mp);
4733 }
4734
4735 mblk_t *
4736 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4737 {
4738 dl_notify_ind_t *notifyp;
4739 mblk_t *mp;
4740
4741 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4742 return (NULL);
4743
4744 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4745 notifyp->dl_notification = notification;
4746 notifyp->dl_data1 = data1;
4747 notifyp->dl_data2 = data2;
4748 return (mp);
4749 }
4750
4751 /*
4752 * Debug formatting routine. Returns a character string representation of the
4753 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address
4754 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4755 *
4756 * Once the ndd table-printing interfaces are removed, this can be changed to
4757 * standard dotted-decimal form.
4758 */
4759 char *
4760 ip_dot_addr(ipaddr_t addr, char *buf)
4761 {
4762 uint8_t *ap = (uint8_t *)&addr;
4763
4764 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4765 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4766 return (buf);
4767 }
4768
4769 /*
4770 * Write the given MAC address as a printable string in the usual colon-
4771 * separated format.
4772 */
4773 const char *
4774 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4775 {
4776 char *bp;
4777
4778 if (alen == 0 || buflen < 4)
4779 return ("?");
4780 bp = buf;
4781 for (;;) {
4782 /*
4783 * If there are more MAC address bytes available, but we won't
4784 * have any room to print them, then add "..." to the string
4785 * instead. See below for the 'magic number' explanation.
4786 */
4787 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4788 (void) strcpy(bp, "...");
4789 break;
4790 }
4791 (void) sprintf(bp, "%02x", *addr++);
4792 bp += 2;
4793 if (--alen == 0)
4794 break;
4795 *bp++ = ':';
4796 buflen -= 3;
4797 /*
4798 * At this point, based on the first 'if' statement above,
4799 * either alen == 1 and buflen >= 3, or alen > 1 and
4800 * buflen >= 4. The first case leaves room for the final "xx"
4801 * number and trailing NUL byte. The second leaves room for at
4802 * least "...". Thus the apparently 'magic' numbers chosen for
4803 * that statement.
4804 */
4805 }
4806 return (buf);
4807 }
4808
4809 /*
4810 * Called when it is conceptually a ULP that would sent the packet
4811 * e.g., port unreachable and protocol unreachable. Check that the packet
4812 * would have passed the IPsec global policy before sending the error.
4813 *
4814 * Send an ICMP error after patching up the packet appropriately.
4815 * Uses ip_drop_input and bumps the appropriate MIB.
4816 */
4817 void
4818 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4819 ip_recv_attr_t *ira)
4820 {
4821 ipha_t *ipha;
4822 boolean_t secure;
4823 ill_t *ill = ira->ira_ill;
4824 ip_stack_t *ipst = ill->ill_ipst;
4825 netstack_t *ns = ipst->ips_netstack;
4826 ipsec_stack_t *ipss = ns->netstack_ipsec;
4827
4828 secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4829
4830 /*
4831 * We are generating an icmp error for some inbound packet.
4832 * Called from all ip_fanout_(udp, tcp, proto) functions.
4833 * Before we generate an error, check with global policy
4834 * to see whether this is allowed to enter the system. As
4835 * there is no "conn", we are checking with global policy.
4836 */
4837 ipha = (ipha_t *)mp->b_rptr;
4838 if (secure || ipss->ipsec_inbound_v4_policy_present) {
4839 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4840 if (mp == NULL)
4841 return;
4842 }
4843
4844 /* We never send errors for protocols that we do implement */
4845 if (ira->ira_protocol == IPPROTO_ICMP ||
4846 ira->ira_protocol == IPPROTO_IGMP) {
4847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4848 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4849 freemsg(mp);
4850 return;
4851 }
4852 /*
4853 * Have to correct checksum since
4854 * the packet might have been
4855 * fragmented and the reassembly code in ip_rput
4856 * does not restore the IP checksum.
4857 */
4858 ipha->ipha_hdr_checksum = 0;
4859 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4860
4861 switch (icmp_type) {
4862 case ICMP_DEST_UNREACHABLE:
4863 switch (icmp_code) {
4864 case ICMP_PROTOCOL_UNREACHABLE:
4865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4866 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4867 break;
4868 case ICMP_PORT_UNREACHABLE:
4869 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4870 ip_drop_input("ipIfStatsNoPorts", mp, ill);
4871 break;
4872 }
4873
4874 icmp_unreachable(mp, icmp_code, ira);
4875 break;
4876 default:
4877 #ifdef DEBUG
4878 panic("ip_fanout_send_icmp_v4: wrong type");
4879 /*NOTREACHED*/
4880 #else
4881 freemsg(mp);
4882 break;
4883 #endif
4884 }
4885 }
4886
4887 /*
4888 * Used to send an ICMP error message when a packet is received for
4889 * a protocol that is not supported. The mblk passed as argument
4890 * is consumed by this function.
4891 */
4892 void
4893 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4894 {
4895 ipha_t *ipha;
4896
4897 ipha = (ipha_t *)mp->b_rptr;
4898 if (ira->ira_flags & IRAF_IS_IPV4) {
4899 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4900 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4901 ICMP_PROTOCOL_UNREACHABLE, ira);
4902 } else {
4903 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4904 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4905 ICMP6_PARAMPROB_NEXTHEADER, ira);
4906 }
4907 }
4908
4909 /*
4910 * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4911 * Handles IPv4 and IPv6.
4912 * We are responsible for disposing of mp, such as by freemsg() or putnext()
4913 * Caller is responsible for dropping references to the conn.
4914 */
4915 void
4916 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4917 ip_recv_attr_t *ira)
4918 {
4919 ill_t *ill = ira->ira_ill;
4920 ip_stack_t *ipst = ill->ill_ipst;
4921 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
4922 boolean_t secure;
4923 uint_t protocol = ira->ira_protocol;
4924 iaflags_t iraflags = ira->ira_flags;
4925 queue_t *rq;
4926
4927 secure = iraflags & IRAF_IPSEC_SECURE;
4928
4929 rq = connp->conn_rq;
4930 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4931 switch (protocol) {
4932 case IPPROTO_ICMPV6:
4933 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4934 break;
4935 case IPPROTO_ICMP:
4936 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4937 break;
4938 default:
4939 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4940 break;
4941 }
4942 freemsg(mp);
4943 return;
4944 }
4945
4946 ASSERT(!(IPCL_IS_IPTUN(connp)));
4947
4948 if (((iraflags & IRAF_IS_IPV4) ?
4949 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4950 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4951 secure) {
4952 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4953 ip6h, ira);
4954 if (mp == NULL) {
4955 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4956 /* Note that mp is NULL */
4957 ip_drop_input("ipIfStatsInDiscards", mp, ill);
4958 return;
4959 }
4960 }
4961
4962 if (iraflags & IRAF_ICMP_ERROR) {
4963 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4964 } else {
4965 ill_t *rill = ira->ira_rill;
4966
4967 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4968 ira->ira_ill = ira->ira_rill = NULL;
4969 /* Send it upstream */
4970 (connp->conn_recv)(connp, mp, NULL, ira);
4971 ira->ira_ill = ill;
4972 ira->ira_rill = rill;
4973 }
4974 }
4975
4976 /*
4977 * Handle protocols with which IP is less intimate. There
4978 * can be more than one stream bound to a particular
4979 * protocol. When this is the case, normally each one gets a copy
4980 * of any incoming packets.
4981 *
4982 * IPsec NOTE :
4983 *
4984 * Don't allow a secure packet going up a non-secure connection.
4985 * We don't allow this because
4986 *
4987 * 1) Reply might go out in clear which will be dropped at
4988 * the sending side.
4989 * 2) If the reply goes out in clear it will give the
4990 * adversary enough information for getting the key in
4991 * most of the cases.
4992 *
4993 * Moreover getting a secure packet when we expect clear
4994 * implies that SA's were added without checking for
4995 * policy on both ends. This should not happen once ISAKMP
4996 * is used to negotiate SAs as SAs will be added only after
4997 * verifying the policy.
4998 *
4999 * Zones notes:
5000 * Earlier in ip_input on a system with multiple shared-IP zones we
5001 * duplicate the multicast and broadcast packets and send them up
5002 * with each explicit zoneid that exists on that ill.
5003 * This means that here we can match the zoneid with SO_ALLZONES being special.
5004 */
5005 void
5006 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5007 {
5008 mblk_t *mp1;
5009 ipaddr_t laddr;
5010 conn_t *connp, *first_connp, *next_connp;
5011 connf_t *connfp;
5012 ill_t *ill = ira->ira_ill;
5013 ip_stack_t *ipst = ill->ill_ipst;
5014
5015 laddr = ipha->ipha_dst;
5016
5017 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5018 mutex_enter(&connfp->connf_lock);
5019 connp = connfp->connf_head;
5020 for (connp = connfp->connf_head; connp != NULL;
5021 connp = connp->conn_next) {
5022 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5023 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5024 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5025 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5026 break;
5027 }
5028 }
5029
5030 if (connp == NULL) {
5031 /*
5032 * No one bound to these addresses. Is
5033 * there a client that wants all
5034 * unclaimed datagrams?
5035 */
5036 mutex_exit(&connfp->connf_lock);
5037 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5038 ICMP_PROTOCOL_UNREACHABLE, ira);
5039 return;
5040 }
5041
5042 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5043
5044 CONN_INC_REF(connp);
5045 first_connp = connp;
5046 connp = connp->conn_next;
5047
5048 for (;;) {
5049 while (connp != NULL) {
5050 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5051 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5052 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5053 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5054 ira, connp)))
5055 break;
5056 connp = connp->conn_next;
5057 }
5058
5059 if (connp == NULL) {
5060 /* No more interested clients */
5061 connp = first_connp;
5062 break;
5063 }
5064 if (((mp1 = dupmsg(mp)) == NULL) &&
5065 ((mp1 = copymsg(mp)) == NULL)) {
5066 /* Memory allocation failed */
5067 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5068 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5069 connp = first_connp;
5070 break;
5071 }
5072
5073 CONN_INC_REF(connp);
5074 mutex_exit(&connfp->connf_lock);
5075
5076 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5077 ira);
5078
5079 mutex_enter(&connfp->connf_lock);
5080 /* Follow the next pointer before releasing the conn. */
5081 next_connp = connp->conn_next;
5082 CONN_DEC_REF(connp);
5083 connp = next_connp;
5084 }
5085
5086 /* Last one. Send it upstream. */
5087 mutex_exit(&connfp->connf_lock);
5088
5089 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5090
5091 CONN_DEC_REF(connp);
5092 }
5093
5094 /*
5095 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5096 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk
5097 * is not consumed.
5098 *
5099 * One of three things can happen, all of which affect the passed-in mblk:
5100 *
5101 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk..
5102 *
5103 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5104 * ESP packet, and is passed along to ESP for consumption. Return NULL.
5105 *
5106 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL.
5107 */
5108 mblk_t *
5109 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5110 {
5111 int shift, plen, iph_len;
5112 ipha_t *ipha;
5113 udpha_t *udpha;
5114 uint32_t *spi;
5115 uint32_t esp_ports;
5116 uint8_t *orptr;
5117 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
5118 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
5119
5120 ipha = (ipha_t *)mp->b_rptr;
5121 iph_len = ira->ira_ip_hdr_length;
5122 plen = ira->ira_pktlen;
5123
5124 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5125 /*
5126 * Most likely a keepalive for the benefit of an intervening
5127 * NAT. These aren't for us, per se, so drop it.
5128 *
5129 * RFC 3947/8 doesn't say for sure what to do for 2-3
5130 * byte packets (keepalives are 1-byte), but we'll drop them
5131 * also.
5132 */
5133 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5134 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5135 return (NULL);
5136 }
5137
5138 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5139 /* might as well pull it all up - it might be ESP. */
5140 if (!pullupmsg(mp, -1)) {
5141 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5142 DROPPER(ipss, ipds_esp_nomem),
5143 &ipss->ipsec_dropper);
5144 return (NULL);
5145 }
5146
5147 ipha = (ipha_t *)mp->b_rptr;
5148 }
5149 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5150 if (*spi == 0) {
5151 /* UDP packet - remove 0-spi. */
5152 shift = sizeof (uint32_t);
5153 } else {
5154 /* ESP-in-UDP packet - reduce to ESP. */
5155 ipha->ipha_protocol = IPPROTO_ESP;
5156 shift = sizeof (udpha_t);
5157 }
5158
5159 /* Fix IP header */
5160 ira->ira_pktlen = (plen - shift);
5161 ipha->ipha_length = htons(ira->ira_pktlen);
5162 ipha->ipha_hdr_checksum = 0;
5163
5164 orptr = mp->b_rptr;
5165 mp->b_rptr += shift;
5166
5167 udpha = (udpha_t *)(orptr + iph_len);
5168 if (*spi == 0) {
5169 ASSERT((uint8_t *)ipha == orptr);
5170 udpha->uha_length = htons(plen - shift - iph_len);
5171 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */
5172 esp_ports = 0;
5173 } else {
5174 esp_ports = *((uint32_t *)udpha);
5175 ASSERT(esp_ports != 0);
5176 }
5177 ovbcopy(orptr, orptr + shift, iph_len);
5178 if (esp_ports != 0) /* Punt up for ESP processing. */ {
5179 ipha = (ipha_t *)(orptr + shift);
5180
5181 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5182 ira->ira_esp_udp_ports = esp_ports;
5183 ip_fanout_v4(mp, ipha, ira);
5184 return (NULL);
5185 }
5186 return (mp);
5187 }
5188
5189 /*
5190 * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5191 * Handles IPv4 and IPv6.
5192 * We are responsible for disposing of mp, such as by freemsg() or putnext()
5193 * Caller is responsible for dropping references to the conn.
5194 */
5195 void
5196 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5197 ip_recv_attr_t *ira)
5198 {
5199 ill_t *ill = ira->ira_ill;
5200 ip_stack_t *ipst = ill->ill_ipst;
5201 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
5202 boolean_t secure;
5203 iaflags_t iraflags = ira->ira_flags;
5204
5205 secure = iraflags & IRAF_IPSEC_SECURE;
5206
5207 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5208 !canputnext(connp->conn_rq)) {
5209 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5210 freemsg(mp);
5211 return;
5212 }
5213
5214 if (((iraflags & IRAF_IS_IPV4) ?
5215 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5216 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5217 secure) {
5218 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5219 ip6h, ira);
5220 if (mp == NULL) {
5221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5222 /* Note that mp is NULL */
5223 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5224 return;
5225 }
5226 }
5227
5228 /*
5229 * Since this code is not used for UDP unicast we don't need a NAT_T
5230 * check. Only ip_fanout_v4 has that check.
5231 */
5232 if (ira->ira_flags & IRAF_ICMP_ERROR) {
5233 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5234 } else {
5235 ill_t *rill = ira->ira_rill;
5236
5237 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5238 ira->ira_ill = ira->ira_rill = NULL;
5239 /* Send it upstream */
5240 (connp->conn_recv)(connp, mp, NULL, ira);
5241 ira->ira_ill = ill;
5242 ira->ira_rill = rill;
5243 }
5244 }
5245
5246 /*
5247 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5248 * (Unicast fanout is handled in ip_input_v4.)
5249 *
5250 * If SO_REUSEADDR is set all multicast and broadcast packets
5251 * will be delivered to all conns bound to the same port.
5252 *
5253 * If there is at least one matching AF_INET receiver, then we will
5254 * ignore any AF_INET6 receivers.
5255 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5256 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5257 * packets.
5258 *
5259 * Zones notes:
5260 * Earlier in ip_input on a system with multiple shared-IP zones we
5261 * duplicate the multicast and broadcast packets and send them up
5262 * with each explicit zoneid that exists on that ill.
5263 * This means that here we can match the zoneid with SO_ALLZONES being special.
5264 */
5265 void
5266 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5267 ip_recv_attr_t *ira)
5268 {
5269 ipaddr_t laddr;
5270 in6_addr_t v6faddr;
5271 conn_t *connp;
5272 connf_t *connfp;
5273 ipaddr_t faddr;
5274 ill_t *ill = ira->ira_ill;
5275 ip_stack_t *ipst = ill->ill_ipst;
5276
5277 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5278
5279 laddr = ipha->ipha_dst;
5280 faddr = ipha->ipha_src;
5281
5282 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5283 mutex_enter(&connfp->connf_lock);
5284 connp = connfp->connf_head;
5285
5286 /*
5287 * If SO_REUSEADDR has been set on the first we send the
5288 * packet to all clients that have joined the group and
5289 * match the port.
5290 */
5291 while (connp != NULL) {
5292 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5293 conn_wantpacket(connp, ira, ipha) &&
5294 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5295 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5296 break;
5297 connp = connp->conn_next;
5298 }
5299
5300 if (connp == NULL)
5301 goto notfound;
5302
5303 CONN_INC_REF(connp);
5304
5305 if (connp->conn_reuseaddr) {
5306 conn_t *first_connp = connp;
5307 conn_t *next_connp;
5308 mblk_t *mp1;
5309
5310 connp = connp->conn_next;
5311 for (;;) {
5312 while (connp != NULL) {
5313 if (IPCL_UDP_MATCH(connp, lport, laddr,
5314 fport, faddr) &&
5315 conn_wantpacket(connp, ira, ipha) &&
5316 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5317 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5318 ira, connp)))
5319 break;
5320 connp = connp->conn_next;
5321 }
5322 if (connp == NULL) {
5323 /* No more interested clients */
5324 connp = first_connp;
5325 break;
5326 }
5327 if (((mp1 = dupmsg(mp)) == NULL) &&
5328 ((mp1 = copymsg(mp)) == NULL)) {
5329 /* Memory allocation failed */
5330 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5331 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5332 connp = first_connp;
5333 break;
5334 }
5335 CONN_INC_REF(connp);
5336 mutex_exit(&connfp->connf_lock);
5337
5338 IP_STAT(ipst, ip_udp_fanmb);
5339 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5340 NULL, ira);
5341 mutex_enter(&connfp->connf_lock);
5342 /* Follow the next pointer before releasing the conn */
5343 next_connp = connp->conn_next;
5344 CONN_DEC_REF(connp);
5345 connp = next_connp;
5346 }
5347 }
5348
5349 /* Last one. Send it upstream. */
5350 mutex_exit(&connfp->connf_lock);
5351 IP_STAT(ipst, ip_udp_fanmb);
5352 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5353 CONN_DEC_REF(connp);
5354 return;
5355
5356 notfound:
5357 mutex_exit(&connfp->connf_lock);
5358 /*
5359 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5360 * have already been matched above, since they live in the IPv4
5361 * fanout tables. This implies we only need to
5362 * check for IPv6 in6addr_any endpoints here.
5363 * Thus we compare using ipv6_all_zeros instead of the destination
5364 * address, except for the multicast group membership lookup which
5365 * uses the IPv4 destination.
5366 */
5367 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5368 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5369 mutex_enter(&connfp->connf_lock);
5370 connp = connfp->connf_head;
5371 /*
5372 * IPv4 multicast packet being delivered to an AF_INET6
5373 * in6addr_any endpoint.
5374 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5375 * and not conn_wantpacket_v6() since any multicast membership is
5376 * for an IPv4-mapped multicast address.
5377 */
5378 while (connp != NULL) {
5379 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5380 fport, v6faddr) &&
5381 conn_wantpacket(connp, ira, ipha) &&
5382 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5383 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5384 break;
5385 connp = connp->conn_next;
5386 }
5387
5388 if (connp == NULL) {
5389 /*
5390 * No one bound to this port. Is
5391 * there a client that wants all
5392 * unclaimed datagrams?
5393 */
5394 mutex_exit(&connfp->connf_lock);
5395
5396 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5397 NULL) {
5398 ASSERT(ira->ira_protocol == IPPROTO_UDP);
5399 ip_fanout_proto_v4(mp, ipha, ira);
5400 } else {
5401 /*
5402 * We used to attempt to send an icmp error here, but
5403 * since this is known to be a multicast packet
5404 * and we don't send icmp errors in response to
5405 * multicast, just drop the packet and give up sooner.
5406 */
5407 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5408 freemsg(mp);
5409 }
5410 return;
5411 }
5412 CONN_INC_REF(connp);
5413 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5414
5415 /*
5416 * If SO_REUSEADDR has been set on the first we send the
5417 * packet to all clients that have joined the group and
5418 * match the port.
5419 */
5420 if (connp->conn_reuseaddr) {
5421 conn_t *first_connp = connp;
5422 conn_t *next_connp;
5423 mblk_t *mp1;
5424
5425 connp = connp->conn_next;
5426 for (;;) {
5427 while (connp != NULL) {
5428 if (IPCL_UDP_MATCH_V6(connp, lport,
5429 ipv6_all_zeros, fport, v6faddr) &&
5430 conn_wantpacket(connp, ira, ipha) &&
5431 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5432 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5433 ira, connp)))
5434 break;
5435 connp = connp->conn_next;
5436 }
5437 if (connp == NULL) {
5438 /* No more interested clients */
5439 connp = first_connp;
5440 break;
5441 }
5442 if (((mp1 = dupmsg(mp)) == NULL) &&
5443 ((mp1 = copymsg(mp)) == NULL)) {
5444 /* Memory allocation failed */
5445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5446 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5447 connp = first_connp;
5448 break;
5449 }
5450 CONN_INC_REF(connp);
5451 mutex_exit(&connfp->connf_lock);
5452
5453 IP_STAT(ipst, ip_udp_fanmb);
5454 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5455 NULL, ira);
5456 mutex_enter(&connfp->connf_lock);
5457 /* Follow the next pointer before releasing the conn */
5458 next_connp = connp->conn_next;
5459 CONN_DEC_REF(connp);
5460 connp = next_connp;
5461 }
5462 }
5463
5464 /* Last one. Send it upstream. */
5465 mutex_exit(&connfp->connf_lock);
5466 IP_STAT(ipst, ip_udp_fanmb);
5467 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5468 CONN_DEC_REF(connp);
5469 }
5470
5471 /*
5472 * Split an incoming packet's IPv4 options into the label and the other options.
5473 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5474 * clearing out any leftover label or options.
5475 * Otherwise it just makes ipp point into the packet.
5476 *
5477 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5478 */
5479 int
5480 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5481 {
5482 uchar_t *opt;
5483 uint32_t totallen;
5484 uint32_t optval;
5485 uint32_t optlen;
5486
5487 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5488 ipp->ipp_hoplimit = ipha->ipha_ttl;
5489 ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5490 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5491
5492 /*
5493 * Get length (in 4 byte octets) of IP header options.
5494 */
5495 totallen = ipha->ipha_version_and_hdr_length -
5496 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5497
5498 if (totallen == 0) {
5499 if (!allocate)
5500 return (0);
5501
5502 /* Clear out anything from a previous packet */
5503 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5504 kmem_free(ipp->ipp_ipv4_options,
5505 ipp->ipp_ipv4_options_len);
5506 ipp->ipp_ipv4_options = NULL;
5507 ipp->ipp_ipv4_options_len = 0;
5508 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5509 }
5510 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5511 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5512 ipp->ipp_label_v4 = NULL;
5513 ipp->ipp_label_len_v4 = 0;
5514 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5515 }
5516 return (0);
5517 }
5518
5519 totallen <<= 2;
5520 opt = (uchar_t *)&ipha[1];
5521 if (!is_system_labeled()) {
5522
5523 copyall:
5524 if (!allocate) {
5525 if (totallen != 0) {
5526 ipp->ipp_ipv4_options = opt;
5527 ipp->ipp_ipv4_options_len = totallen;
5528 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5529 }
5530 return (0);
5531 }
5532 /* Just copy all of options */
5533 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5534 if (totallen == ipp->ipp_ipv4_options_len) {
5535 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5536 return (0);
5537 }
5538 kmem_free(ipp->ipp_ipv4_options,
5539 ipp->ipp_ipv4_options_len);
5540 ipp->ipp_ipv4_options = NULL;
5541 ipp->ipp_ipv4_options_len = 0;
5542 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5543 }
5544 if (totallen == 0)
5545 return (0);
5546
5547 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5548 if (ipp->ipp_ipv4_options == NULL)
5549 return (ENOMEM);
5550 ipp->ipp_ipv4_options_len = totallen;
5551 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5552 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5553 return (0);
5554 }
5555
5556 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5557 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5558 ipp->ipp_label_v4 = NULL;
5559 ipp->ipp_label_len_v4 = 0;
5560 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5561 }
5562
5563 /*
5564 * Search for CIPSO option.
5565 * We assume CIPSO is first in options if it is present.
5566 * If it isn't, then ipp_opt_ipv4_options will not include the options
5567 * prior to the CIPSO option.
5568 */
5569 while (totallen != 0) {
5570 switch (optval = opt[IPOPT_OPTVAL]) {
5571 case IPOPT_EOL:
5572 return (0);
5573 case IPOPT_NOP:
5574 optlen = 1;
5575 break;
5576 default:
5577 if (totallen <= IPOPT_OLEN)
5578 return (EINVAL);
5579 optlen = opt[IPOPT_OLEN];
5580 if (optlen < 2)
5581 return (EINVAL);
5582 }
5583 if (optlen > totallen)
5584 return (EINVAL);
5585
5586 switch (optval) {
5587 case IPOPT_COMSEC:
5588 if (!allocate) {
5589 ipp->ipp_label_v4 = opt;
5590 ipp->ipp_label_len_v4 = optlen;
5591 ipp->ipp_fields |= IPPF_LABEL_V4;
5592 } else {
5593 ipp->ipp_label_v4 = kmem_alloc(optlen,
5594 KM_NOSLEEP);
5595 if (ipp->ipp_label_v4 == NULL)
5596 return (ENOMEM);
5597 ipp->ipp_label_len_v4 = optlen;
5598 ipp->ipp_fields |= IPPF_LABEL_V4;
5599 bcopy(opt, ipp->ipp_label_v4, optlen);
5600 }
5601 totallen -= optlen;
5602 opt += optlen;
5603
5604 /* Skip padding bytes until we get to a multiple of 4 */
5605 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5606 totallen--;
5607 opt++;
5608 }
5609 /* Remaining as ipp_ipv4_options */
5610 goto copyall;
5611 }
5612 totallen -= optlen;
5613 opt += optlen;
5614 }
5615 /* No CIPSO found; return everything as ipp_ipv4_options */
5616 totallen = ipha->ipha_version_and_hdr_length -
5617 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5618 totallen <<= 2;
5619 opt = (uchar_t *)&ipha[1];
5620 goto copyall;
5621 }
5622
5623 /*
5624 * Efficient versions of lookup for an IRE when we only
5625 * match the address.
5626 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5627 * Does not handle multicast addresses.
5628 */
5629 uint_t
5630 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5631 {
5632 ire_t *ire;
5633 uint_t result;
5634
5635 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5636 ASSERT(ire != NULL);
5637 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5638 result = IRE_NOROUTE;
5639 else
5640 result = ire->ire_type;
5641 ire_refrele(ire);
5642 return (result);
5643 }
5644
5645 /*
5646 * Efficient versions of lookup for an IRE when we only
5647 * match the address.
5648 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5649 * Does not handle multicast addresses.
5650 */
5651 uint_t
5652 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5653 {
5654 ire_t *ire;
5655 uint_t result;
5656
5657 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5658 ASSERT(ire != NULL);
5659 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5660 result = IRE_NOROUTE;
5661 else
5662 result = ire->ire_type;
5663 ire_refrele(ire);
5664 return (result);
5665 }
5666
5667 /*
5668 * Nobody should be sending
5669 * packets up this stream
5670 */
5671 static int
5672 ip_lrput(queue_t *q, mblk_t *mp)
5673 {
5674 switch (mp->b_datap->db_type) {
5675 case M_FLUSH:
5676 /* Turn around */
5677 if (*mp->b_rptr & FLUSHW) {
5678 *mp->b_rptr &= ~FLUSHR;
5679 qreply(q, mp);
5680 return (0);
5681 }
5682 break;
5683 }
5684 freemsg(mp);
5685 return (0);
5686 }
5687
5688 /* Nobody should be sending packets down this stream */
5689 /* ARGSUSED */
5690 int
5691 ip_lwput(queue_t *q, mblk_t *mp)
5692 {
5693 freemsg(mp);
5694 return (0);
5695 }
5696
5697 /*
5698 * Move the first hop in any source route to ipha_dst and remove that part of
5699 * the source route. Called by other protocols. Errors in option formatting
5700 * are ignored - will be handled by ip_output_options. Return the final
5701 * destination (either ipha_dst or the last entry in a source route.)
5702 */
5703 ipaddr_t
5704 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5705 {
5706 ipoptp_t opts;
5707 uchar_t *opt;
5708 uint8_t optval;
5709 uint8_t optlen;
5710 ipaddr_t dst;
5711 int i;
5712 ip_stack_t *ipst = ns->netstack_ip;
5713
5714 ip2dbg(("ip_massage_options\n"));
5715 dst = ipha->ipha_dst;
5716 for (optval = ipoptp_first(&opts, ipha);
5717 optval != IPOPT_EOL;
5718 optval = ipoptp_next(&opts)) {
5719 opt = opts.ipoptp_cur;
5720 switch (optval) {
5721 uint8_t off;
5722 case IPOPT_SSRR:
5723 case IPOPT_LSRR:
5724 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5725 ip1dbg(("ip_massage_options: bad src route\n"));
5726 break;
5727 }
5728 optlen = opts.ipoptp_len;
5729 off = opt[IPOPT_OFFSET];
5730 off--;
5731 redo_srr:
5732 if (optlen < IP_ADDR_LEN ||
5733 off > optlen - IP_ADDR_LEN) {
5734 /* End of source route */
5735 ip1dbg(("ip_massage_options: end of SR\n"));
5736 break;
5737 }
5738 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5739 ip1dbg(("ip_massage_options: next hop 0x%x\n",
5740 ntohl(dst)));
5741 /*
5742 * Check if our address is present more than
5743 * once as consecutive hops in source route.
5744 * XXX verify per-interface ip_forwarding
5745 * for source route?
5746 */
5747 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5748 off += IP_ADDR_LEN;
5749 goto redo_srr;
5750 }
5751 if (dst == htonl(INADDR_LOOPBACK)) {
5752 ip1dbg(("ip_massage_options: loopback addr in "
5753 "source route!\n"));
5754 break;
5755 }
5756 /*
5757 * Update ipha_dst to be the first hop and remove the
5758 * first hop from the source route (by overwriting
5759 * part of the option with NOP options).
5760 */
5761 ipha->ipha_dst = dst;
5762 /* Put the last entry in dst */
5763 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5764 3;
5765 bcopy(&opt[off], &dst, IP_ADDR_LEN);
5766
5767 ip1dbg(("ip_massage_options: last hop 0x%x\n",
5768 ntohl(dst)));
5769 /* Move down and overwrite */
5770 opt[IP_ADDR_LEN] = opt[0];
5771 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5772 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5773 for (i = 0; i < IP_ADDR_LEN; i++)
5774 opt[i] = IPOPT_NOP;
5775 break;
5776 }
5777 }
5778 return (dst);
5779 }
5780
5781 /*
5782 * Return the network mask
5783 * associated with the specified address.
5784 */
5785 ipaddr_t
5786 ip_net_mask(ipaddr_t addr)
5787 {
5788 uchar_t *up = (uchar_t *)&addr;
5789 ipaddr_t mask = 0;
5790 uchar_t *maskp = (uchar_t *)&mask;
5791
5792 #if defined(__i386) || defined(__amd64)
5793 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5794 #endif
5795 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER
5796 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5797 #endif
5798 if (CLASSD(addr)) {
5799 maskp[0] = 0xF0;
5800 return (mask);
5801 }
5802
5803 /* We assume Class E default netmask to be 32 */
5804 if (CLASSE(addr))
5805 return (0xffffffffU);
5806
5807 if (addr == 0)
5808 return (0);
5809 maskp[0] = 0xFF;
5810 if ((up[0] & 0x80) == 0)
5811 return (mask);
5812
5813 maskp[1] = 0xFF;
5814 if ((up[0] & 0xC0) == 0x80)
5815 return (mask);
5816
5817 maskp[2] = 0xFF;
5818 if ((up[0] & 0xE0) == 0xC0)
5819 return (mask);
5820
5821 /* Otherwise return no mask */
5822 return ((ipaddr_t)0);
5823 }
5824
5825 /* Name/Value Table Lookup Routine */
5826 char *
5827 ip_nv_lookup(nv_t *nv, int value)
5828 {
5829 if (!nv)
5830 return (NULL);
5831 for (; nv->nv_name; nv++) {
5832 if (nv->nv_value == value)
5833 return (nv->nv_name);
5834 }
5835 return ("unknown");
5836 }
5837
5838 static int
5839 ip_wait_for_info_ack(ill_t *ill)
5840 {
5841 int err;
5842
5843 mutex_enter(&ill->ill_lock);
5844 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5845 /*
5846 * Return value of 0 indicates a pending signal.
5847 */
5848 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5849 if (err == 0) {
5850 mutex_exit(&ill->ill_lock);
5851 return (EINTR);
5852 }
5853 }
5854 mutex_exit(&ill->ill_lock);
5855 /*
5856 * ip_rput_other could have set an error in ill_error on
5857 * receipt of M_ERROR.
5858 */
5859 return (ill->ill_error);
5860 }
5861
5862 /*
5863 * This is a module open, i.e. this is a control stream for access
5864 * to a DLPI device. We allocate an ill_t as the instance data in
5865 * this case.
5866 */
5867 static int
5868 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5869 {
5870 ill_t *ill;
5871 int err;
5872 zoneid_t zoneid;
5873 netstack_t *ns;
5874 ip_stack_t *ipst;
5875
5876 /*
5877 * Prevent unprivileged processes from pushing IP so that
5878 * they can't send raw IP.
5879 */
5880 if (secpolicy_net_rawaccess(credp) != 0)
5881 return (EPERM);
5882
5883 ns = netstack_find_by_cred(credp);
5884 ASSERT(ns != NULL);
5885 ipst = ns->netstack_ip;
5886 ASSERT(ipst != NULL);
5887
5888 /*
5889 * For exclusive stacks we set the zoneid to zero
5890 * to make IP operate as if in the global zone.
5891 */
5892 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5893 zoneid = GLOBAL_ZONEID;
5894 else
5895 zoneid = crgetzoneid(credp);
5896
5897 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5898 q->q_ptr = WR(q)->q_ptr = ill;
5899 ill->ill_ipst = ipst;
5900 ill->ill_zoneid = zoneid;
5901
5902 /*
5903 * ill_init initializes the ill fields and then sends down
5904 * down a DL_INFO_REQ after calling qprocson.
5905 */
5906 err = ill_init(q, ill);
5907
5908 if (err != 0) {
5909 mi_free(ill);
5910 netstack_rele(ipst->ips_netstack);
5911 q->q_ptr = NULL;
5912 WR(q)->q_ptr = NULL;
5913 return (err);
5914 }
5915
5916 /*
5917 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5918 *
5919 * ill_init initializes the ipsq marking this thread as
5920 * writer
5921 */
5922 ipsq_exit(ill->ill_phyint->phyint_ipsq);
5923 err = ip_wait_for_info_ack(ill);
5924 if (err == 0)
5925 ill->ill_credp = credp;
5926 else
5927 goto fail;
5928
5929 crhold(credp);
5930
5931 mutex_enter(&ipst->ips_ip_mi_lock);
5932 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5933 sflag, credp);
5934 mutex_exit(&ipst->ips_ip_mi_lock);
5935 fail:
5936 if (err) {
5937 (void) ip_close(q, 0, credp);
5938 return (err);
5939 }
5940 return (0);
5941 }
5942
5943 /* For /dev/ip aka AF_INET open */
5944 int
5945 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5946 {
5947 return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5948 }
5949
5950 /* For /dev/ip6 aka AF_INET6 open */
5951 int
5952 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5953 {
5954 return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5955 }
5956
5957 /* IP open routine. */
5958 int
5959 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5960 boolean_t isv6)
5961 {
5962 conn_t *connp;
5963 major_t maj;
5964 zoneid_t zoneid;
5965 netstack_t *ns;
5966 ip_stack_t *ipst;
5967
5968 /* Allow reopen. */
5969 if (q->q_ptr != NULL)
5970 return (0);
5971
5972 if (sflag & MODOPEN) {
5973 /* This is a module open */
5974 return (ip_modopen(q, devp, flag, sflag, credp));
5975 }
5976
5977 if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5978 /*
5979 * Non streams based socket looking for a stream
5980 * to access IP
5981 */
5982 return (ip_helper_stream_setup(q, devp, flag, sflag,
5983 credp, isv6));
5984 }
5985
5986 ns = netstack_find_by_cred(credp);
5987 ASSERT(ns != NULL);
5988 ipst = ns->netstack_ip;
5989 ASSERT(ipst != NULL);
5990
5991 /*
5992 * For exclusive stacks we set the zoneid to zero
5993 * to make IP operate as if in the global zone.
5994 */
5995 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5996 zoneid = GLOBAL_ZONEID;
5997 else
5998 zoneid = crgetzoneid(credp);
5999
6000 /*
6001 * We are opening as a device. This is an IP client stream, and we
6002 * allocate an conn_t as the instance data.
6003 */
6004 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6005
6006 /*
6007 * ipcl_conn_create did a netstack_hold. Undo the hold that was
6008 * done by netstack_find_by_cred()
6009 */
6010 netstack_rele(ipst->ips_netstack);
6011
6012 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6013 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6014 connp->conn_ixa->ixa_zoneid = zoneid;
6015 connp->conn_zoneid = zoneid;
6016
6017 connp->conn_rq = q;
6018 q->q_ptr = WR(q)->q_ptr = connp;
6019
6020 /* Minor tells us which /dev entry was opened */
6021 if (isv6) {
6022 connp->conn_family = AF_INET6;
6023 connp->conn_ipversion = IPV6_VERSION;
6024 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6025 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6026 } else {
6027 connp->conn_family = AF_INET;
6028 connp->conn_ipversion = IPV4_VERSION;
6029 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6030 }
6031
6032 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6033 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6034 connp->conn_minor_arena = ip_minor_arena_la;
6035 } else {
6036 /*
6037 * Either minor numbers in the large arena were exhausted
6038 * or a non socket application is doing the open.
6039 * Try to allocate from the small arena.
6040 */
6041 if ((connp->conn_dev =
6042 inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6043 /* CONN_DEC_REF takes care of netstack_rele() */
6044 q->q_ptr = WR(q)->q_ptr = NULL;
6045 CONN_DEC_REF(connp);
6046 return (EBUSY);
6047 }
6048 connp->conn_minor_arena = ip_minor_arena_sa;
6049 }
6050
6051 maj = getemajor(*devp);
6052 *devp = makedevice(maj, (minor_t)connp->conn_dev);
6053
6054 /*
6055 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6056 */
6057 connp->conn_cred = credp;
6058 connp->conn_cpid = curproc->p_pid;
6059 /* Cache things in ixa without an extra refhold */
6060 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6061 connp->conn_ixa->ixa_cred = connp->conn_cred;
6062 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6063 if (is_system_labeled())
6064 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6065
6066 /*
6067 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6068 */
6069 connp->conn_recv = ip_conn_input;
6070 connp->conn_recvicmp = ip_conn_input_icmp;
6071
6072 crhold(connp->conn_cred);
6073
6074 /*
6075 * If the caller has the process-wide flag set, then default to MAC
6076 * exempt mode. This allows read-down to unlabeled hosts.
6077 */
6078 if (getpflags(NET_MAC_AWARE, credp) != 0)
6079 connp->conn_mac_mode = CONN_MAC_AWARE;
6080
6081 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6082
6083 connp->conn_rq = q;
6084 connp->conn_wq = WR(q);
6085
6086 /* Non-zero default values */
6087 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6088
6089 /*
6090 * Make the conn globally visible to walkers
6091 */
6092 ASSERT(connp->conn_ref == 1);
6093 mutex_enter(&connp->conn_lock);
6094 connp->conn_state_flags &= ~CONN_INCIPIENT;
6095 mutex_exit(&connp->conn_lock);
6096
6097 qprocson(q);
6098
6099 return (0);
6100 }
6101
6102 /*
6103 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6104 * all of them are copied to the conn_t. If the req is "zero", the policy is
6105 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6106 * fields.
6107 * We keep only the latest setting of the policy and thus policy setting
6108 * is not incremental/cumulative.
6109 *
6110 * Requests to set policies with multiple alternative actions will
6111 * go through a different API.
6112 */
6113 int
6114 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6115 {
6116 uint_t ah_req = 0;
6117 uint_t esp_req = 0;
6118 uint_t se_req = 0;
6119 ipsec_act_t *actp = NULL;
6120 uint_t nact;
6121 ipsec_policy_head_t *ph;
6122 boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6123 int error = 0;
6124 netstack_t *ns = connp->conn_netstack;
6125 ip_stack_t *ipst = ns->netstack_ip;
6126 ipsec_stack_t *ipss = ns->netstack_ipsec;
6127
6128 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6129
6130 /*
6131 * The IP_SEC_OPT option does not allow variable length parameters,
6132 * hence a request cannot be NULL.
6133 */
6134 if (req == NULL)
6135 return (EINVAL);
6136
6137 ah_req = req->ipsr_ah_req;
6138 esp_req = req->ipsr_esp_req;
6139 se_req = req->ipsr_self_encap_req;
6140
6141 /* Don't allow setting self-encap without one or more of AH/ESP. */
6142 if (se_req != 0 && esp_req == 0 && ah_req == 0)
6143 return (EINVAL);
6144
6145 /*
6146 * Are we dealing with a request to reset the policy (i.e.
6147 * zero requests).
6148 */
6149 is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6150 (esp_req & REQ_MASK) == 0 &&
6151 (se_req & REQ_MASK) == 0);
6152
6153 if (!is_pol_reset) {
6154 /*
6155 * If we couldn't load IPsec, fail with "protocol
6156 * not supported".
6157 * IPsec may not have been loaded for a request with zero
6158 * policies, so we don't fail in this case.
6159 */
6160 mutex_enter(&ipss->ipsec_loader_lock);
6161 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6162 mutex_exit(&ipss->ipsec_loader_lock);
6163 return (EPROTONOSUPPORT);
6164 }
6165 mutex_exit(&ipss->ipsec_loader_lock);
6166
6167 /*
6168 * Test for valid requests. Invalid algorithms
6169 * need to be tested by IPsec code because new
6170 * algorithms can be added dynamically.
6171 */
6172 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6173 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6174 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6175 return (EINVAL);
6176 }
6177
6178 /*
6179 * Only privileged users can issue these
6180 * requests.
6181 */
6182 if (((ah_req & IPSEC_PREF_NEVER) ||
6183 (esp_req & IPSEC_PREF_NEVER) ||
6184 (se_req & IPSEC_PREF_NEVER)) &&
6185 secpolicy_ip_config(cr, B_FALSE) != 0) {
6186 return (EPERM);
6187 }
6188
6189 /*
6190 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6191 * are mutually exclusive.
6192 */
6193 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6194 ((esp_req & REQ_MASK) == REQ_MASK) ||
6195 ((se_req & REQ_MASK) == REQ_MASK)) {
6196 /* Both of them are set */
6197 return (EINVAL);
6198 }
6199 }
6200
6201 ASSERT(MUTEX_HELD(&connp->conn_lock));
6202
6203 /*
6204 * If we have already cached policies in conn_connect(), don't
6205 * let them change now. We cache policies for connections
6206 * whose src,dst [addr, port] is known.
6207 */
6208 if (connp->conn_policy_cached) {
6209 return (EINVAL);
6210 }
6211
6212 /*
6213 * We have a zero policies, reset the connection policy if already
6214 * set. This will cause the connection to inherit the
6215 * global policy, if any.
6216 */
6217 if (is_pol_reset) {
6218 if (connp->conn_policy != NULL) {
6219 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6220 connp->conn_policy = NULL;
6221 }
6222 connp->conn_in_enforce_policy = B_FALSE;
6223 connp->conn_out_enforce_policy = B_FALSE;
6224 return (0);
6225 }
6226
6227 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6228 ipst->ips_netstack);
6229 if (ph == NULL)
6230 goto enomem;
6231
6232 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6233 if (actp == NULL)
6234 goto enomem;
6235
6236 /*
6237 * Always insert IPv4 policy entries, since they can also apply to
6238 * ipv6 sockets being used in ipv4-compat mode.
6239 */
6240 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6241 IPSEC_TYPE_INBOUND, ns))
6242 goto enomem;
6243 is_pol_inserted = B_TRUE;
6244 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6245 IPSEC_TYPE_OUTBOUND, ns))
6246 goto enomem;
6247
6248 /*
6249 * We're looking at a v6 socket, also insert the v6-specific
6250 * entries.
6251 */
6252 if (connp->conn_family == AF_INET6) {
6253 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6254 IPSEC_TYPE_INBOUND, ns))
6255 goto enomem;
6256 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6257 IPSEC_TYPE_OUTBOUND, ns))
6258 goto enomem;
6259 }
6260
6261 ipsec_actvec_free(actp, nact);
6262
6263 /*
6264 * If the requests need security, set enforce_policy.
6265 * If the requests are IPSEC_PREF_NEVER, one should
6266 * still set conn_out_enforce_policy so that ip_set_destination
6267 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6268 * for connections that we don't cache policy in at connect time,
6269 * if global policy matches in ip_output_attach_policy, we
6270 * don't wrongly inherit global policy. Similarly, we need
6271 * to set conn_in_enforce_policy also so that we don't verify
6272 * policy wrongly.
6273 */
6274 if ((ah_req & REQ_MASK) != 0 ||
6275 (esp_req & REQ_MASK) != 0 ||
6276 (se_req & REQ_MASK) != 0) {
6277 connp->conn_in_enforce_policy = B_TRUE;
6278 connp->conn_out_enforce_policy = B_TRUE;
6279 }
6280
6281 return (error);
6282 #undef REQ_MASK
6283
6284 /*
6285 * Common memory-allocation-failure exit path.
6286 */
6287 enomem:
6288 if (actp != NULL)
6289 ipsec_actvec_free(actp, nact);
6290 if (is_pol_inserted)
6291 ipsec_polhead_flush(ph, ns);
6292 return (ENOMEM);
6293 }
6294
6295 /*
6296 * Set socket options for joining and leaving multicast groups.
6297 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6298 * The caller has already check that the option name is consistent with
6299 * the address family of the socket.
6300 */
6301 int
6302 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6303 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6304 {
6305 int *i1 = (int *)invalp;
6306 int error = 0;
6307 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6308 struct ip_mreq *v4_mreqp;
6309 struct ipv6_mreq *v6_mreqp;
6310 struct group_req *greqp;
6311 ire_t *ire;
6312 boolean_t done = B_FALSE;
6313 ipaddr_t ifaddr;
6314 in6_addr_t v6group;
6315 uint_t ifindex;
6316 boolean_t mcast_opt = B_TRUE;
6317 mcast_record_t fmode;
6318 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6319 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6320
6321 switch (name) {
6322 case IP_ADD_MEMBERSHIP:
6323 case IPV6_JOIN_GROUP:
6324 mcast_opt = B_FALSE;
6325 /* FALLTHROUGH */
6326 case MCAST_JOIN_GROUP:
6327 fmode = MODE_IS_EXCLUDE;
6328 optfn = ip_opt_add_group;
6329 break;
6330
6331 case IP_DROP_MEMBERSHIP:
6332 case IPV6_LEAVE_GROUP:
6333 mcast_opt = B_FALSE;
6334 /* FALLTHROUGH */
6335 case MCAST_LEAVE_GROUP:
6336 fmode = MODE_IS_INCLUDE;
6337 optfn = ip_opt_delete_group;
6338 break;
6339 default:
6340 ASSERT(0);
6341 }
6342
6343 if (mcast_opt) {
6344 struct sockaddr_in *sin;
6345 struct sockaddr_in6 *sin6;
6346
6347 greqp = (struct group_req *)i1;
6348 if (greqp->gr_group.ss_family == AF_INET) {
6349 sin = (struct sockaddr_in *)&(greqp->gr_group);
6350 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6351 } else {
6352 if (!inet6)
6353 return (EINVAL); /* Not on INET socket */
6354
6355 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6356 v6group = sin6->sin6_addr;
6357 }
6358 ifaddr = INADDR_ANY;
6359 ifindex = greqp->gr_interface;
6360 } else if (inet6) {
6361 v6_mreqp = (struct ipv6_mreq *)i1;
6362 v6group = v6_mreqp->ipv6mr_multiaddr;
6363 ifaddr = INADDR_ANY;
6364 ifindex = v6_mreqp->ipv6mr_interface;
6365 } else {
6366 v4_mreqp = (struct ip_mreq *)i1;
6367 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6368 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6369 ifindex = 0;
6370 }
6371
6372 /*
6373 * In the multirouting case, we need to replicate
6374 * the request on all interfaces that will take part
6375 * in replication. We do so because multirouting is
6376 * reflective, thus we will probably receive multi-
6377 * casts on those interfaces.
6378 * The ip_multirt_apply_membership() succeeds if
6379 * the operation succeeds on at least one interface.
6380 */
6381 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6382 ipaddr_t group;
6383
6384 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6385
6386 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6387 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6388 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6389 } else {
6390 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6391 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6392 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6393 }
6394 if (ire != NULL) {
6395 if (ire->ire_flags & RTF_MULTIRT) {
6396 error = ip_multirt_apply_membership(optfn, ire, connp,
6397 checkonly, &v6group, fmode, &ipv6_all_zeros);
6398 done = B_TRUE;
6399 }
6400 ire_refrele(ire);
6401 }
6402
6403 if (!done) {
6404 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6405 fmode, &ipv6_all_zeros);
6406 }
6407 return (error);
6408 }
6409
6410 /*
6411 * Set socket options for joining and leaving multicast groups
6412 * for specific sources.
6413 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6414 * The caller has already check that the option name is consistent with
6415 * the address family of the socket.
6416 */
6417 int
6418 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6419 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6420 {
6421 int *i1 = (int *)invalp;
6422 int error = 0;
6423 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6424 struct ip_mreq_source *imreqp;
6425 struct group_source_req *gsreqp;
6426 in6_addr_t v6group, v6src;
6427 uint32_t ifindex;
6428 ipaddr_t ifaddr;
6429 boolean_t mcast_opt = B_TRUE;
6430 mcast_record_t fmode;
6431 ire_t *ire;
6432 boolean_t done = B_FALSE;
6433 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6434 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6435
6436 switch (name) {
6437 case IP_BLOCK_SOURCE:
6438 mcast_opt = B_FALSE;
6439 /* FALLTHROUGH */
6440 case MCAST_BLOCK_SOURCE:
6441 fmode = MODE_IS_EXCLUDE;
6442 optfn = ip_opt_add_group;
6443 break;
6444
6445 case IP_UNBLOCK_SOURCE:
6446 mcast_opt = B_FALSE;
6447 /* FALLTHROUGH */
6448 case MCAST_UNBLOCK_SOURCE:
6449 fmode = MODE_IS_EXCLUDE;
6450 optfn = ip_opt_delete_group;
6451 break;
6452
6453 case IP_ADD_SOURCE_MEMBERSHIP:
6454 mcast_opt = B_FALSE;
6455 /* FALLTHROUGH */
6456 case MCAST_JOIN_SOURCE_GROUP:
6457 fmode = MODE_IS_INCLUDE;
6458 optfn = ip_opt_add_group;
6459 break;
6460
6461 case IP_DROP_SOURCE_MEMBERSHIP:
6462 mcast_opt = B_FALSE;
6463 /* FALLTHROUGH */
6464 case MCAST_LEAVE_SOURCE_GROUP:
6465 fmode = MODE_IS_INCLUDE;
6466 optfn = ip_opt_delete_group;
6467 break;
6468 default:
6469 ASSERT(0);
6470 }
6471
6472 if (mcast_opt) {
6473 gsreqp = (struct group_source_req *)i1;
6474 ifindex = gsreqp->gsr_interface;
6475 if (gsreqp->gsr_group.ss_family == AF_INET) {
6476 struct sockaddr_in *s;
6477 s = (struct sockaddr_in *)&gsreqp->gsr_group;
6478 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6479 s = (struct sockaddr_in *)&gsreqp->gsr_source;
6480 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6481 } else {
6482 struct sockaddr_in6 *s6;
6483
6484 if (!inet6)
6485 return (EINVAL); /* Not on INET socket */
6486
6487 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6488 v6group = s6->sin6_addr;
6489 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6490 v6src = s6->sin6_addr;
6491 }
6492 ifaddr = INADDR_ANY;
6493 } else {
6494 imreqp = (struct ip_mreq_source *)i1;
6495 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6496 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6497 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6498 ifindex = 0;
6499 }
6500
6501 /*
6502 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6503 */
6504 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6505 v6src = ipv6_all_zeros;
6506
6507 /*
6508 * In the multirouting case, we need to replicate
6509 * the request as noted in the mcast cases above.
6510 */
6511 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6512 ipaddr_t group;
6513
6514 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6515
6516 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6517 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6518 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6519 } else {
6520 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6521 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6522 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6523 }
6524 if (ire != NULL) {
6525 if (ire->ire_flags & RTF_MULTIRT) {
6526 error = ip_multirt_apply_membership(optfn, ire, connp,
6527 checkonly, &v6group, fmode, &v6src);
6528 done = B_TRUE;
6529 }
6530 ire_refrele(ire);
6531 }
6532 if (!done) {
6533 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6534 fmode, &v6src);
6535 }
6536 return (error);
6537 }
6538
6539 /*
6540 * Given a destination address and a pointer to where to put the information
6541 * this routine fills in the mtuinfo.
6542 * The socket must be connected.
6543 * For sctp conn_faddr is the primary address.
6544 */
6545 int
6546 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6547 {
6548 uint32_t pmtu = IP_MAXPACKET;
6549 uint_t scopeid;
6550
6551 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6552 return (-1);
6553
6554 /* In case we never sent or called ip_set_destination_v4/v6 */
6555 if (ixa->ixa_ire != NULL)
6556 pmtu = ip_get_pmtu(ixa);
6557
6558 if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6559 scopeid = ixa->ixa_scopeid;
6560 else
6561 scopeid = 0;
6562
6563 bzero(mtuinfo, sizeof (*mtuinfo));
6564 mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6565 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6566 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6567 mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6568 mtuinfo->ip6m_mtu = pmtu;
6569
6570 return (sizeof (struct ip6_mtuinfo));
6571 }
6572
6573 /*
6574 * When the src multihoming is changed from weak to [strong, preferred]
6575 * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6576 * and identify routes that were created by user-applications in the
6577 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6578 * currently defined. These routes are then 'rebound', i.e., their ire_ill
6579 * is selected by finding an interface route for the gateway.
6580 */
6581 /* ARGSUSED */
6582 void
6583 ip_ire_rebind_walker(ire_t *ire, void *notused)
6584 {
6585 if (!ire->ire_unbound || ire->ire_ill != NULL)
6586 return;
6587 ire_rebind(ire);
6588 ire_delete(ire);
6589 }
6590
6591 /*
6592 * When the src multihoming is changed from [strong, preferred] to weak,
6593 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6594 * set any entries that were created by user-applications in the unbound state
6595 * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6596 */
6597 /* ARGSUSED */
6598 void
6599 ip_ire_unbind_walker(ire_t *ire, void *notused)
6600 {
6601 ire_t *new_ire;
6602
6603 if (!ire->ire_unbound || ire->ire_ill == NULL)
6604 return;
6605 if (ire->ire_ipversion == IPV6_VERSION) {
6606 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6607 &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6608 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6609 } else {
6610 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6611 (uchar_t *)&ire->ire_mask,
6612 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6613 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6614 }
6615 if (new_ire == NULL)
6616 return;
6617 new_ire->ire_unbound = B_TRUE;
6618 /*
6619 * The bound ire must first be deleted so that we don't return
6620 * the existing one on the attempt to add the unbound new_ire.
6621 */
6622 ire_delete(ire);
6623 new_ire = ire_add(new_ire);
6624 if (new_ire != NULL)
6625 ire_refrele(new_ire);
6626 }
6627
6628 /*
6629 * When the settings of ip*_strict_src_multihoming tunables are changed,
6630 * all cached routes need to be recomputed. This recomputation needs to be
6631 * done when going from weaker to stronger modes so that the cached ire
6632 * for the connection does not violate the current ip*_strict_src_multihoming
6633 * setting. It also needs to be done when going from stronger to weaker modes,
6634 * so that we fall back to matching on the longest-matching-route (as opposed
6635 * to a shorter match that may have been selected in the strong mode
6636 * to satisfy src_multihoming settings).
6637 *
6638 * The cached ixa_ire entires for all conn_t entries are marked as
6639 * "verify" so that they will be recomputed for the next packet.
6640 */
6641 void
6642 conn_ire_revalidate(conn_t *connp, void *arg)
6643 {
6644 boolean_t isv6 = (boolean_t)arg;
6645
6646 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6647 (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6648 return;
6649 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6650 }
6651
6652 /*
6653 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6654 * When an ipf is passed here for the first time, if
6655 * we already have in-order fragments on the queue, we convert from the fast-
6656 * path reassembly scheme to the hard-case scheme. From then on, additional
6657 * fragments are reassembled here. We keep track of the start and end offsets
6658 * of each piece, and the number of holes in the chain. When the hole count
6659 * goes to zero, we are done!
6660 *
6661 * The ipf_count will be updated to account for any mblk(s) added (pointed to
6662 * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6663 * ipfb_count and ill_frag_count by the difference of ipf_count before and
6664 * after the call to ip_reassemble().
6665 */
6666 int
6667 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6668 size_t msg_len)
6669 {
6670 uint_t end;
6671 mblk_t *next_mp;
6672 mblk_t *mp1;
6673 uint_t offset;
6674 boolean_t incr_dups = B_TRUE;
6675 boolean_t offset_zero_seen = B_FALSE;
6676 boolean_t pkt_boundary_checked = B_FALSE;
6677
6678 /* If start == 0 then ipf_nf_hdr_len has to be set. */
6679 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6680
6681 /* Add in byte count */
6682 ipf->ipf_count += msg_len;
6683 if (ipf->ipf_end) {
6684 /*
6685 * We were part way through in-order reassembly, but now there
6686 * is a hole. We walk through messages already queued, and
6687 * mark them for hard case reassembly. We know that up till
6688 * now they were in order starting from offset zero.
6689 */
6690 offset = 0;
6691 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6692 IP_REASS_SET_START(mp1, offset);
6693 if (offset == 0) {
6694 ASSERT(ipf->ipf_nf_hdr_len != 0);
6695 offset = -ipf->ipf_nf_hdr_len;
6696 }
6697 offset += mp1->b_wptr - mp1->b_rptr;
6698 IP_REASS_SET_END(mp1, offset);
6699 }
6700 /* One hole at the end. */
6701 ipf->ipf_hole_cnt = 1;
6702 /* Brand it as a hard case, forever. */
6703 ipf->ipf_end = 0;
6704 }
6705 /* Walk through all the new pieces. */
6706 do {
6707 end = start + (mp->b_wptr - mp->b_rptr);
6708 /*
6709 * If start is 0, decrease 'end' only for the first mblk of
6710 * the fragment. Otherwise 'end' can get wrong value in the
6711 * second pass of the loop if first mblk is exactly the
6712 * size of ipf_nf_hdr_len.
6713 */
6714 if (start == 0 && !offset_zero_seen) {
6715 /* First segment */
6716 ASSERT(ipf->ipf_nf_hdr_len != 0);
6717 end -= ipf->ipf_nf_hdr_len;
6718 offset_zero_seen = B_TRUE;
6719 }
6720 next_mp = mp->b_cont;
6721 /*
6722 * We are checking to see if there is any interesing data
6723 * to process. If there isn't and the mblk isn't the
6724 * one which carries the unfragmentable header then we
6725 * drop it. It's possible to have just the unfragmentable
6726 * header come through without any data. That needs to be
6727 * saved.
6728 *
6729 * If the assert at the top of this function holds then the
6730 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code
6731 * is infrequently traveled enough that the test is left in
6732 * to protect against future code changes which break that
6733 * invariant.
6734 */
6735 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6736 /* Empty. Blast it. */
6737 IP_REASS_SET_START(mp, 0);
6738 IP_REASS_SET_END(mp, 0);
6739 /*
6740 * If the ipf points to the mblk we are about to free,
6741 * update ipf to point to the next mblk (or NULL
6742 * if none).
6743 */
6744 if (ipf->ipf_mp->b_cont == mp)
6745 ipf->ipf_mp->b_cont = next_mp;
6746 freeb(mp);
6747 continue;
6748 }
6749 mp->b_cont = NULL;
6750 IP_REASS_SET_START(mp, start);
6751 IP_REASS_SET_END(mp, end);
6752 if (!ipf->ipf_tail_mp) {
6753 ipf->ipf_tail_mp = mp;
6754 ipf->ipf_mp->b_cont = mp;
6755 if (start == 0 || !more) {
6756 ipf->ipf_hole_cnt = 1;
6757 /*
6758 * if the first fragment comes in more than one
6759 * mblk, this loop will be executed for each
6760 * mblk. Need to adjust hole count so exiting
6761 * this routine will leave hole count at 1.
6762 */
6763 if (next_mp)
6764 ipf->ipf_hole_cnt++;
6765 } else
6766 ipf->ipf_hole_cnt = 2;
6767 continue;
6768 } else if (ipf->ipf_last_frag_seen && !more &&
6769 !pkt_boundary_checked) {
6770 /*
6771 * We check datagram boundary only if this fragment
6772 * claims to be the last fragment and we have seen a
6773 * last fragment in the past too. We do this only
6774 * once for a given fragment.
6775 *
6776 * start cannot be 0 here as fragments with start=0
6777 * and MF=0 gets handled as a complete packet. These
6778 * fragments should not reach here.
6779 */
6780
6781 if (start + msgdsize(mp) !=
6782 IP_REASS_END(ipf->ipf_tail_mp)) {
6783 /*
6784 * We have two fragments both of which claim
6785 * to be the last fragment but gives conflicting
6786 * information about the whole datagram size.
6787 * Something fishy is going on. Drop the
6788 * fragment and free up the reassembly list.
6789 */
6790 return (IP_REASS_FAILED);
6791 }
6792
6793 /*
6794 * We shouldn't come to this code block again for this
6795 * particular fragment.
6796 */
6797 pkt_boundary_checked = B_TRUE;
6798 }
6799
6800 /* New stuff at or beyond tail? */
6801 offset = IP_REASS_END(ipf->ipf_tail_mp);
6802 if (start >= offset) {
6803 if (ipf->ipf_last_frag_seen) {
6804 /* current fragment is beyond last fragment */
6805 return (IP_REASS_FAILED);
6806 }
6807 /* Link it on end. */
6808 ipf->ipf_tail_mp->b_cont = mp;
6809 ipf->ipf_tail_mp = mp;
6810 if (more) {
6811 if (start != offset)
6812 ipf->ipf_hole_cnt++;
6813 } else if (start == offset && next_mp == NULL)
6814 ipf->ipf_hole_cnt--;
6815 continue;
6816 }
6817 mp1 = ipf->ipf_mp->b_cont;
6818 offset = IP_REASS_START(mp1);
6819 /* New stuff at the front? */
6820 if (start < offset) {
6821 if (start == 0) {
6822 if (end >= offset) {
6823 /* Nailed the hole at the begining. */
6824 ipf->ipf_hole_cnt--;
6825 }
6826 } else if (end < offset) {
6827 /*
6828 * A hole, stuff, and a hole where there used
6829 * to be just a hole.
6830 */
6831 ipf->ipf_hole_cnt++;
6832 }
6833 mp->b_cont = mp1;
6834 /* Check for overlap. */
6835 while (end > offset) {
6836 if (end < IP_REASS_END(mp1)) {
6837 mp->b_wptr -= end - offset;
6838 IP_REASS_SET_END(mp, offset);
6839 BUMP_MIB(ill->ill_ip_mib,
6840 ipIfStatsReasmPartDups);
6841 break;
6842 }
6843 /* Did we cover another hole? */
6844 if ((mp1->b_cont &&
6845 IP_REASS_END(mp1) !=
6846 IP_REASS_START(mp1->b_cont) &&
6847 end >= IP_REASS_START(mp1->b_cont)) ||
6848 (!ipf->ipf_last_frag_seen && !more)) {
6849 ipf->ipf_hole_cnt--;
6850 }
6851 /* Clip out mp1. */
6852 if ((mp->b_cont = mp1->b_cont) == NULL) {
6853 /*
6854 * After clipping out mp1, this guy
6855 * is now hanging off the end.
6856 */
6857 ipf->ipf_tail_mp = mp;
6858 }
6859 IP_REASS_SET_START(mp1, 0);
6860 IP_REASS_SET_END(mp1, 0);
6861 /* Subtract byte count */
6862 ipf->ipf_count -= mp1->b_datap->db_lim -
6863 mp1->b_datap->db_base;
6864 freeb(mp1);
6865 BUMP_MIB(ill->ill_ip_mib,
6866 ipIfStatsReasmPartDups);
6867 mp1 = mp->b_cont;
6868 if (!mp1)
6869 break;
6870 offset = IP_REASS_START(mp1);
6871 }
6872 ipf->ipf_mp->b_cont = mp;
6873 continue;
6874 }
6875 /*
6876 * The new piece starts somewhere between the start of the head
6877 * and before the end of the tail.
6878 */
6879 for (; mp1; mp1 = mp1->b_cont) {
6880 offset = IP_REASS_END(mp1);
6881 if (start < offset) {
6882 if (end <= offset) {
6883 /* Nothing new. */
6884 IP_REASS_SET_START(mp, 0);
6885 IP_REASS_SET_END(mp, 0);
6886 /* Subtract byte count */
6887 ipf->ipf_count -= mp->b_datap->db_lim -
6888 mp->b_datap->db_base;
6889 if (incr_dups) {
6890 ipf->ipf_num_dups++;
6891 incr_dups = B_FALSE;
6892 }
6893 freeb(mp);
6894 BUMP_MIB(ill->ill_ip_mib,
6895 ipIfStatsReasmDuplicates);
6896 break;
6897 }
6898 /*
6899 * Trim redundant stuff off beginning of new
6900 * piece.
6901 */
6902 IP_REASS_SET_START(mp, offset);
6903 mp->b_rptr += offset - start;
6904 BUMP_MIB(ill->ill_ip_mib,
6905 ipIfStatsReasmPartDups);
6906 start = offset;
6907 if (!mp1->b_cont) {
6908 /*
6909 * After trimming, this guy is now
6910 * hanging off the end.
6911 */
6912 mp1->b_cont = mp;
6913 ipf->ipf_tail_mp = mp;
6914 if (!more) {
6915 ipf->ipf_hole_cnt--;
6916 }
6917 break;
6918 }
6919 }
6920 if (start >= IP_REASS_START(mp1->b_cont))
6921 continue;
6922 /* Fill a hole */
6923 if (start > offset)
6924 ipf->ipf_hole_cnt++;
6925 mp->b_cont = mp1->b_cont;
6926 mp1->b_cont = mp;
6927 mp1 = mp->b_cont;
6928 offset = IP_REASS_START(mp1);
6929 if (end >= offset) {
6930 ipf->ipf_hole_cnt--;
6931 /* Check for overlap. */
6932 while (end > offset) {
6933 if (end < IP_REASS_END(mp1)) {
6934 mp->b_wptr -= end - offset;
6935 IP_REASS_SET_END(mp, offset);
6936 /*
6937 * TODO we might bump
6938 * this up twice if there is
6939 * overlap at both ends.
6940 */
6941 BUMP_MIB(ill->ill_ip_mib,
6942 ipIfStatsReasmPartDups);
6943 break;
6944 }
6945 /* Did we cover another hole? */
6946 if ((mp1->b_cont &&
6947 IP_REASS_END(mp1)
6948 != IP_REASS_START(mp1->b_cont) &&
6949 end >=
6950 IP_REASS_START(mp1->b_cont)) ||
6951 (!ipf->ipf_last_frag_seen &&
6952 !more)) {
6953 ipf->ipf_hole_cnt--;
6954 }
6955 /* Clip out mp1. */
6956 if ((mp->b_cont = mp1->b_cont) ==
6957 NULL) {
6958 /*
6959 * After clipping out mp1,
6960 * this guy is now hanging
6961 * off the end.
6962 */
6963 ipf->ipf_tail_mp = mp;
6964 }
6965 IP_REASS_SET_START(mp1, 0);
6966 IP_REASS_SET_END(mp1, 0);
6967 /* Subtract byte count */
6968 ipf->ipf_count -=
6969 mp1->b_datap->db_lim -
6970 mp1->b_datap->db_base;
6971 freeb(mp1);
6972 BUMP_MIB(ill->ill_ip_mib,
6973 ipIfStatsReasmPartDups);
6974 mp1 = mp->b_cont;
6975 if (!mp1)
6976 break;
6977 offset = IP_REASS_START(mp1);
6978 }
6979 }
6980 break;
6981 }
6982 } while (start = end, mp = next_mp);
6983
6984 /* Fragment just processed could be the last one. Remember this fact */
6985 if (!more)
6986 ipf->ipf_last_frag_seen = B_TRUE;
6987
6988 /* Still got holes? */
6989 if (ipf->ipf_hole_cnt)
6990 return (IP_REASS_PARTIAL);
6991 /* Clean up overloaded fields to avoid upstream disasters. */
6992 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6993 IP_REASS_SET_START(mp1, 0);
6994 IP_REASS_SET_END(mp1, 0);
6995 }
6996 return (IP_REASS_COMPLETE);
6997 }
6998
6999 /*
7000 * Fragmentation reassembly. Each ILL has a hash table for
7001 * queuing packets undergoing reassembly for all IPIFs
7002 * associated with the ILL. The hash is based on the packet
7003 * IP ident field. The ILL frag hash table was allocated
7004 * as a timer block at the time the ILL was created. Whenever
7005 * there is anything on the reassembly queue, the timer will
7006 * be running. Returns the reassembled packet if reassembly completes.
7007 */
7008 mblk_t *
7009 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7010 {
7011 uint32_t frag_offset_flags;
7012 mblk_t *t_mp;
7013 ipaddr_t dst;
7014 uint8_t proto = ipha->ipha_protocol;
7015 uint32_t sum_val;
7016 uint16_t sum_flags;
7017 ipf_t *ipf;
7018 ipf_t **ipfp;
7019 ipfb_t *ipfb;
7020 uint16_t ident;
7021 uint32_t offset;
7022 ipaddr_t src;
7023 uint_t hdr_length;
7024 uint32_t end;
7025 mblk_t *mp1;
7026 mblk_t *tail_mp;
7027 size_t count;
7028 size_t msg_len;
7029 uint8_t ecn_info = 0;
7030 uint32_t packet_size;
7031 boolean_t pruned = B_FALSE;
7032 ill_t *ill = ira->ira_ill;
7033 ip_stack_t *ipst = ill->ill_ipst;
7034
7035 /*
7036 * Drop the fragmented as early as possible, if
7037 * we don't have resource(s) to re-assemble.
7038 */
7039 if (ipst->ips_ip_reass_queue_bytes == 0) {
7040 freemsg(mp);
7041 return (NULL);
7042 }
7043
7044 /* Check for fragmentation offset; return if there's none */
7045 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7046 (IPH_MF | IPH_OFFSET)) == 0)
7047 return (mp);
7048
7049 /*
7050 * We utilize hardware computed checksum info only for UDP since
7051 * IP fragmentation is a normal occurrence for the protocol. In
7052 * addition, checksum offload support for IP fragments carrying
7053 * UDP payload is commonly implemented across network adapters.
7054 */
7055 ASSERT(ira->ira_rill != NULL);
7056 if (proto == IPPROTO_UDP && dohwcksum &&
7057 ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7058 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7059 mblk_t *mp1 = mp->b_cont;
7060 int32_t len;
7061
7062 /* Record checksum information from the packet */
7063 sum_val = (uint32_t)DB_CKSUM16(mp);
7064 sum_flags = DB_CKSUMFLAGS(mp);
7065
7066 /* IP payload offset from beginning of mblk */
7067 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7068
7069 if ((sum_flags & HCK_PARTIALCKSUM) &&
7070 (mp1 == NULL || mp1->b_cont == NULL) &&
7071 offset >= DB_CKSUMSTART(mp) &&
7072 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7073 uint32_t adj;
7074 /*
7075 * Partial checksum has been calculated by hardware
7076 * and attached to the packet; in addition, any
7077 * prepended extraneous data is even byte aligned.
7078 * If any such data exists, we adjust the checksum;
7079 * this would also handle any postpended data.
7080 */
7081 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7082 mp, mp1, len, adj);
7083
7084 /* One's complement subtract extraneous checksum */
7085 if (adj >= sum_val)
7086 sum_val = ~(adj - sum_val) & 0xFFFF;
7087 else
7088 sum_val -= adj;
7089 }
7090 } else {
7091 sum_val = 0;
7092 sum_flags = 0;
7093 }
7094
7095 /* Clear hardware checksumming flag */
7096 DB_CKSUMFLAGS(mp) = 0;
7097
7098 ident = ipha->ipha_ident;
7099 offset = (frag_offset_flags << 3) & 0xFFFF;
7100 src = ipha->ipha_src;
7101 dst = ipha->ipha_dst;
7102 hdr_length = IPH_HDR_LENGTH(ipha);
7103 end = ntohs(ipha->ipha_length) - hdr_length;
7104
7105 /* If end == 0 then we have a packet with no data, so just free it */
7106 if (end == 0) {
7107 freemsg(mp);
7108 return (NULL);
7109 }
7110
7111 /* Record the ECN field info. */
7112 ecn_info = (ipha->ipha_type_of_service & 0x3);
7113 if (offset != 0) {
7114 /*
7115 * If this isn't the first piece, strip the header, and
7116 * add the offset to the end value.
7117 */
7118 mp->b_rptr += hdr_length;
7119 end += offset;
7120 }
7121
7122 /* Handle vnic loopback of fragments */
7123 if (mp->b_datap->db_ref > 2)
7124 msg_len = 0;
7125 else
7126 msg_len = MBLKSIZE(mp);
7127
7128 tail_mp = mp;
7129 while (tail_mp->b_cont != NULL) {
7130 tail_mp = tail_mp->b_cont;
7131 if (tail_mp->b_datap->db_ref <= 2)
7132 msg_len += MBLKSIZE(tail_mp);
7133 }
7134
7135 /* If the reassembly list for this ILL will get too big, prune it */
7136 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7137 ipst->ips_ip_reass_queue_bytes) {
7138 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7139 uint_t, ill->ill_frag_count,
7140 uint_t, ipst->ips_ip_reass_queue_bytes);
7141 ill_frag_prune(ill,
7142 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7143 (ipst->ips_ip_reass_queue_bytes - msg_len));
7144 pruned = B_TRUE;
7145 }
7146
7147 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7148 mutex_enter(&ipfb->ipfb_lock);
7149
7150 ipfp = &ipfb->ipfb_ipf;
7151 /* Try to find an existing fragment queue for this packet. */
7152 for (;;) {
7153 ipf = ipfp[0];
7154 if (ipf != NULL) {
7155 /*
7156 * It has to match on ident and src/dst address.
7157 */
7158 if (ipf->ipf_ident == ident &&
7159 ipf->ipf_src == src &&
7160 ipf->ipf_dst == dst &&
7161 ipf->ipf_protocol == proto) {
7162 /*
7163 * If we have received too many
7164 * duplicate fragments for this packet
7165 * free it.
7166 */
7167 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7168 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7169 freemsg(mp);
7170 mutex_exit(&ipfb->ipfb_lock);
7171 return (NULL);
7172 }
7173 /* Found it. */
7174 break;
7175 }
7176 ipfp = &ipf->ipf_hash_next;
7177 continue;
7178 }
7179
7180 /*
7181 * If we pruned the list, do we want to store this new
7182 * fragment?. We apply an optimization here based on the
7183 * fact that most fragments will be received in order.
7184 * So if the offset of this incoming fragment is zero,
7185 * it is the first fragment of a new packet. We will
7186 * keep it. Otherwise drop the fragment, as we have
7187 * probably pruned the packet already (since the
7188 * packet cannot be found).
7189 */
7190 if (pruned && offset != 0) {
7191 mutex_exit(&ipfb->ipfb_lock);
7192 freemsg(mp);
7193 return (NULL);
7194 }
7195
7196 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) {
7197 /*
7198 * Too many fragmented packets in this hash
7199 * bucket. Free the oldest.
7200 */
7201 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7202 }
7203
7204 /* New guy. Allocate a frag message. */
7205 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7206 if (mp1 == NULL) {
7207 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7208 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7209 freemsg(mp);
7210 reass_done:
7211 mutex_exit(&ipfb->ipfb_lock);
7212 return (NULL);
7213 }
7214
7215 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7216 mp1->b_cont = mp;
7217
7218 /* Initialize the fragment header. */
7219 ipf = (ipf_t *)mp1->b_rptr;
7220 ipf->ipf_mp = mp1;
7221 ipf->ipf_ptphn = ipfp;
7222 ipfp[0] = ipf;
7223 ipf->ipf_hash_next = NULL;
7224 ipf->ipf_ident = ident;
7225 ipf->ipf_protocol = proto;
7226 ipf->ipf_src = src;
7227 ipf->ipf_dst = dst;
7228 ipf->ipf_nf_hdr_len = 0;
7229 /* Record reassembly start time. */
7230 ipf->ipf_timestamp = gethrestime_sec();
7231 /* Record ipf generation and account for frag header */
7232 ipf->ipf_gen = ill->ill_ipf_gen++;
7233 ipf->ipf_count = MBLKSIZE(mp1);
7234 ipf->ipf_last_frag_seen = B_FALSE;
7235 ipf->ipf_ecn = ecn_info;
7236 ipf->ipf_num_dups = 0;
7237 ipfb->ipfb_frag_pkts++;
7238 ipf->ipf_checksum = 0;
7239 ipf->ipf_checksum_flags = 0;
7240
7241 /* Store checksum value in fragment header */
7242 if (sum_flags != 0) {
7243 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7244 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7245 ipf->ipf_checksum = sum_val;
7246 ipf->ipf_checksum_flags = sum_flags;
7247 }
7248
7249 /*
7250 * We handle reassembly two ways. In the easy case,
7251 * where all the fragments show up in order, we do
7252 * minimal bookkeeping, and just clip new pieces on
7253 * the end. If we ever see a hole, then we go off
7254 * to ip_reassemble which has to mark the pieces and
7255 * keep track of the number of holes, etc. Obviously,
7256 * the point of having both mechanisms is so we can
7257 * handle the easy case as efficiently as possible.
7258 */
7259 if (offset == 0) {
7260 /* Easy case, in-order reassembly so far. */
7261 ipf->ipf_count += msg_len;
7262 ipf->ipf_tail_mp = tail_mp;
7263 /*
7264 * Keep track of next expected offset in
7265 * ipf_end.
7266 */
7267 ipf->ipf_end = end;
7268 ipf->ipf_nf_hdr_len = hdr_length;
7269 } else {
7270 /* Hard case, hole at the beginning. */
7271 ipf->ipf_tail_mp = NULL;
7272 /*
7273 * ipf_end == 0 means that we have given up
7274 * on easy reassembly.
7275 */
7276 ipf->ipf_end = 0;
7277
7278 /* Forget checksum offload from now on */
7279 ipf->ipf_checksum_flags = 0;
7280
7281 /*
7282 * ipf_hole_cnt is set by ip_reassemble.
7283 * ipf_count is updated by ip_reassemble.
7284 * No need to check for return value here
7285 * as we don't expect reassembly to complete
7286 * or fail for the first fragment itself.
7287 */
7288 (void) ip_reassemble(mp, ipf,
7289 (frag_offset_flags & IPH_OFFSET) << 3,
7290 (frag_offset_flags & IPH_MF), ill, msg_len);
7291 }
7292 /* Update per ipfb and ill byte counts */
7293 ipfb->ipfb_count += ipf->ipf_count;
7294 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7295 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7296 /* If the frag timer wasn't already going, start it. */
7297 mutex_enter(&ill->ill_lock);
7298 ill_frag_timer_start(ill);
7299 mutex_exit(&ill->ill_lock);
7300 goto reass_done;
7301 }
7302
7303 /*
7304 * If the packet's flag has changed (it could be coming up
7305 * from an interface different than the previous, therefore
7306 * possibly different checksum capability), then forget about
7307 * any stored checksum states. Otherwise add the value to
7308 * the existing one stored in the fragment header.
7309 */
7310 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7311 sum_val += ipf->ipf_checksum;
7312 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7313 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7314 ipf->ipf_checksum = sum_val;
7315 } else if (ipf->ipf_checksum_flags != 0) {
7316 /* Forget checksum offload from now on */
7317 ipf->ipf_checksum_flags = 0;
7318 }
7319
7320 /*
7321 * We have a new piece of a datagram which is already being
7322 * reassembled. Update the ECN info if all IP fragments
7323 * are ECN capable. If there is one which is not, clear
7324 * all the info. If there is at least one which has CE
7325 * code point, IP needs to report that up to transport.
7326 */
7327 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7328 if (ecn_info == IPH_ECN_CE)
7329 ipf->ipf_ecn = IPH_ECN_CE;
7330 } else {
7331 ipf->ipf_ecn = IPH_ECN_NECT;
7332 }
7333 if (offset && ipf->ipf_end == offset) {
7334 /* The new fragment fits at the end */
7335 ipf->ipf_tail_mp->b_cont = mp;
7336 /* Update the byte count */
7337 ipf->ipf_count += msg_len;
7338 /* Update per ipfb and ill byte counts */
7339 ipfb->ipfb_count += msg_len;
7340 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7341 atomic_add_32(&ill->ill_frag_count, msg_len);
7342 if (frag_offset_flags & IPH_MF) {
7343 /* More to come. */
7344 ipf->ipf_end = end;
7345 ipf->ipf_tail_mp = tail_mp;
7346 goto reass_done;
7347 }
7348 } else {
7349 /* Go do the hard cases. */
7350 int ret;
7351
7352 if (offset == 0)
7353 ipf->ipf_nf_hdr_len = hdr_length;
7354
7355 /* Save current byte count */
7356 count = ipf->ipf_count;
7357 ret = ip_reassemble(mp, ipf,
7358 (frag_offset_flags & IPH_OFFSET) << 3,
7359 (frag_offset_flags & IPH_MF), ill, msg_len);
7360 /* Count of bytes added and subtracted (freeb()ed) */
7361 count = ipf->ipf_count - count;
7362 if (count) {
7363 /* Update per ipfb and ill byte counts */
7364 ipfb->ipfb_count += count;
7365 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7366 atomic_add_32(&ill->ill_frag_count, count);
7367 }
7368 if (ret == IP_REASS_PARTIAL) {
7369 goto reass_done;
7370 } else if (ret == IP_REASS_FAILED) {
7371 /* Reassembly failed. Free up all resources */
7372 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7373 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7374 IP_REASS_SET_START(t_mp, 0);
7375 IP_REASS_SET_END(t_mp, 0);
7376 }
7377 freemsg(mp);
7378 goto reass_done;
7379 }
7380 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7381 }
7382 /*
7383 * We have completed reassembly. Unhook the frag header from
7384 * the reassembly list.
7385 *
7386 * Before we free the frag header, record the ECN info
7387 * to report back to the transport.
7388 */
7389 ecn_info = ipf->ipf_ecn;
7390 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7391 ipfp = ipf->ipf_ptphn;
7392
7393 /* We need to supply these to caller */
7394 if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7395 sum_val = ipf->ipf_checksum;
7396 else
7397 sum_val = 0;
7398
7399 mp1 = ipf->ipf_mp;
7400 count = ipf->ipf_count;
7401 ipf = ipf->ipf_hash_next;
7402 if (ipf != NULL)
7403 ipf->ipf_ptphn = ipfp;
7404 ipfp[0] = ipf;
7405 atomic_add_32(&ill->ill_frag_count, -count);
7406 ASSERT(ipfb->ipfb_count >= count);
7407 ipfb->ipfb_count -= count;
7408 ipfb->ipfb_frag_pkts--;
7409 mutex_exit(&ipfb->ipfb_lock);
7410 /* Ditch the frag header. */
7411 mp = mp1->b_cont;
7412
7413 freeb(mp1);
7414
7415 /* Restore original IP length in header. */
7416 packet_size = (uint32_t)msgdsize(mp);
7417 if (packet_size > IP_MAXPACKET) {
7418 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7419 ip_drop_input("Reassembled packet too large", mp, ill);
7420 freemsg(mp);
7421 return (NULL);
7422 }
7423
7424 if (DB_REF(mp) > 1) {
7425 mblk_t *mp2 = copymsg(mp);
7426
7427 if (mp2 == NULL) {
7428 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7429 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7430 freemsg(mp);
7431 return (NULL);
7432 }
7433 freemsg(mp);
7434 mp = mp2;
7435 }
7436 ipha = (ipha_t *)mp->b_rptr;
7437
7438 ipha->ipha_length = htons((uint16_t)packet_size);
7439 /* We're now complete, zip the frag state */
7440 ipha->ipha_fragment_offset_and_flags = 0;
7441 /* Record the ECN info. */
7442 ipha->ipha_type_of_service &= 0xFC;
7443 ipha->ipha_type_of_service |= ecn_info;
7444
7445 /* Update the receive attributes */
7446 ira->ira_pktlen = packet_size;
7447 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7448
7449 /* Reassembly is successful; set checksum information in packet */
7450 DB_CKSUM16(mp) = (uint16_t)sum_val;
7451 DB_CKSUMFLAGS(mp) = sum_flags;
7452 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7453
7454 return (mp);
7455 }
7456
7457 /*
7458 * Pullup function that should be used for IP input in order to
7459 * ensure we do not loose the L2 source address; we need the l2 source
7460 * address for IP_RECVSLLA and for ndp_input.
7461 *
7462 * We return either NULL or b_rptr.
7463 */
7464 void *
7465 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7466 {
7467 ill_t *ill = ira->ira_ill;
7468
7469 if (ip_rput_pullups++ == 0) {
7470 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7471 "ip_pullup: %s forced us to "
7472 " pullup pkt, hdr len %ld, hdr addr %p",
7473 ill->ill_name, len, (void *)mp->b_rptr);
7474 }
7475 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7476 ip_setl2src(mp, ira, ira->ira_rill);
7477 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7478 if (!pullupmsg(mp, len))
7479 return (NULL);
7480 else
7481 return (mp->b_rptr);
7482 }
7483
7484 /*
7485 * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7486 * When called from the ULP ira_rill will be NULL hence the caller has to
7487 * pass in the ill.
7488 */
7489 /* ARGSUSED */
7490 void
7491 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7492 {
7493 const uchar_t *addr;
7494 int alen;
7495
7496 if (ira->ira_flags & IRAF_L2SRC_SET)
7497 return;
7498
7499 ASSERT(ill != NULL);
7500 alen = ill->ill_phys_addr_length;
7501 ASSERT(alen <= sizeof (ira->ira_l2src));
7502 if (ira->ira_mhip != NULL &&
7503 (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7504 bcopy(addr, ira->ira_l2src, alen);
7505 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7506 (addr = ill->ill_phys_addr) != NULL) {
7507 bcopy(addr, ira->ira_l2src, alen);
7508 } else {
7509 bzero(ira->ira_l2src, alen);
7510 }
7511 ira->ira_flags |= IRAF_L2SRC_SET;
7512 }
7513
7514 /*
7515 * check ip header length and align it.
7516 */
7517 mblk_t *
7518 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7519 {
7520 ill_t *ill = ira->ira_ill;
7521 ssize_t len;
7522
7523 len = MBLKL(mp);
7524
7525 if (!OK_32PTR(mp->b_rptr))
7526 IP_STAT(ill->ill_ipst, ip_notaligned);
7527 else
7528 IP_STAT(ill->ill_ipst, ip_recv_pullup);
7529
7530 /* Guard against bogus device drivers */
7531 if (len < 0) {
7532 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7533 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7534 freemsg(mp);
7535 return (NULL);
7536 }
7537
7538 if (len == 0) {
7539 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7540 mblk_t *mp1 = mp->b_cont;
7541
7542 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7543 ip_setl2src(mp, ira, ira->ira_rill);
7544 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7545
7546 freeb(mp);
7547 mp = mp1;
7548 if (mp == NULL)
7549 return (NULL);
7550
7551 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7552 return (mp);
7553 }
7554 if (ip_pullup(mp, min_size, ira) == NULL) {
7555 if (msgdsize(mp) < min_size) {
7556 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7557 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7558 } else {
7559 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7560 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7561 }
7562 freemsg(mp);
7563 return (NULL);
7564 }
7565 return (mp);
7566 }
7567
7568 /*
7569 * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7570 */
7571 mblk_t *
7572 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7573 uint_t min_size, ip_recv_attr_t *ira)
7574 {
7575 ill_t *ill = ira->ira_ill;
7576
7577 /*
7578 * Make sure we have data length consistent
7579 * with the IP header.
7580 */
7581 if (mp->b_cont == NULL) {
7582 /* pkt_len is based on ipha_len, not the mblk length */
7583 if (pkt_len < min_size) {
7584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7585 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7586 freemsg(mp);
7587 return (NULL);
7588 }
7589 if (len < 0) {
7590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7591 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7592 freemsg(mp);
7593 return (NULL);
7594 }
7595 /* Drop any pad */
7596 mp->b_wptr = rptr + pkt_len;
7597 } else if ((len += msgdsize(mp->b_cont)) != 0) {
7598 ASSERT(pkt_len >= min_size);
7599 if (pkt_len < min_size) {
7600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7601 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7602 freemsg(mp);
7603 return (NULL);
7604 }
7605 if (len < 0) {
7606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7607 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7608 freemsg(mp);
7609 return (NULL);
7610 }
7611 /* Drop any pad */
7612 (void) adjmsg(mp, -len);
7613 /*
7614 * adjmsg may have freed an mblk from the chain, hence
7615 * invalidate any hw checksum here. This will force IP to
7616 * calculate the checksum in sw, but only for this packet.
7617 */
7618 DB_CKSUMFLAGS(mp) = 0;
7619 IP_STAT(ill->ill_ipst, ip_multimblk);
7620 }
7621 return (mp);
7622 }
7623
7624 /*
7625 * Check that the IPv4 opt_len is consistent with the packet and pullup
7626 * the options.
7627 */
7628 mblk_t *
7629 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7630 ip_recv_attr_t *ira)
7631 {
7632 ill_t *ill = ira->ira_ill;
7633 ssize_t len;
7634
7635 /* Assume no IPv6 packets arrive over the IPv4 queue */
7636 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7639 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7640 freemsg(mp);
7641 return (NULL);
7642 }
7643
7644 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7645 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7646 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7647 freemsg(mp);
7648 return (NULL);
7649 }
7650 /*
7651 * Recompute complete header length and make sure we
7652 * have access to all of it.
7653 */
7654 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7655 if (len > (mp->b_wptr - mp->b_rptr)) {
7656 if (len > pkt_len) {
7657 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7658 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7659 freemsg(mp);
7660 return (NULL);
7661 }
7662 if (ip_pullup(mp, len, ira) == NULL) {
7663 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7664 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7665 freemsg(mp);
7666 return (NULL);
7667 }
7668 }
7669 return (mp);
7670 }
7671
7672 /*
7673 * Returns a new ire, or the same ire, or NULL.
7674 * If a different IRE is returned, then it is held; the caller
7675 * needs to release it.
7676 * In no case is there any hold/release on the ire argument.
7677 */
7678 ire_t *
7679 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7680 {
7681 ire_t *new_ire;
7682 ill_t *ire_ill;
7683 uint_t ifindex;
7684 ip_stack_t *ipst = ill->ill_ipst;
7685 boolean_t strict_check = B_FALSE;
7686
7687 /*
7688 * IPMP common case: if IRE and ILL are in the same group, there's no
7689 * issue (e.g. packet received on an underlying interface matched an
7690 * IRE_LOCAL on its associated group interface).
7691 */
7692 ASSERT(ire->ire_ill != NULL);
7693 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7694 return (ire);
7695
7696 /*
7697 * Do another ire lookup here, using the ingress ill, to see if the
7698 * interface is in a usesrc group.
7699 * As long as the ills belong to the same group, we don't consider
7700 * them to be arriving on the wrong interface. Thus, if the switch
7701 * is doing inbound load spreading, we won't drop packets when the
7702 * ip*_strict_dst_multihoming switch is on.
7703 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7704 * where the local address may not be unique. In this case we were
7705 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7706 * actually returned. The new lookup, which is more specific, should
7707 * only find the IRE_LOCAL associated with the ingress ill if one
7708 * exists.
7709 */
7710 if (ire->ire_ipversion == IPV4_VERSION) {
7711 if (ipst->ips_ip_strict_dst_multihoming)
7712 strict_check = B_TRUE;
7713 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7714 IRE_LOCAL, ill, ALL_ZONES, NULL,
7715 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7716 } else {
7717 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7718 if (ipst->ips_ipv6_strict_dst_multihoming)
7719 strict_check = B_TRUE;
7720 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7721 IRE_LOCAL, ill, ALL_ZONES, NULL,
7722 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7723 }
7724 /*
7725 * If the same ire that was returned in ip_input() is found then this
7726 * is an indication that usesrc groups are in use. The packet
7727 * arrived on a different ill in the group than the one associated with
7728 * the destination address. If a different ire was found then the same
7729 * IP address must be hosted on multiple ills. This is possible with
7730 * unnumbered point2point interfaces. We switch to use this new ire in
7731 * order to have accurate interface statistics.
7732 */
7733 if (new_ire != NULL) {
7734 /* Note: held in one case but not the other? Caller handles */
7735 if (new_ire != ire)
7736 return (new_ire);
7737 /* Unchanged */
7738 ire_refrele(new_ire);
7739 return (ire);
7740 }
7741
7742 /*
7743 * Chase pointers once and store locally.
7744 */
7745 ASSERT(ire->ire_ill != NULL);
7746 ire_ill = ire->ire_ill;
7747 ifindex = ill->ill_usesrc_ifindex;
7748
7749 /*
7750 * Check if it's a legal address on the 'usesrc' interface.
7751 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7752 * can just check phyint_ifindex.
7753 */
7754 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7755 return (ire);
7756 }
7757
7758 /*
7759 * If the ip*_strict_dst_multihoming switch is on then we can
7760 * only accept this packet if the interface is marked as routing.
7761 */
7762 if (!(strict_check))
7763 return (ire);
7764
7765 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7766 return (ire);
7767 }
7768 return (NULL);
7769 }
7770
7771 /*
7772 * This function is used to construct a mac_header_info_s from a
7773 * DL_UNITDATA_IND message.
7774 * The address fields in the mhi structure points into the message,
7775 * thus the caller can't use those fields after freeing the message.
7776 *
7777 * We determine whether the packet received is a non-unicast packet
7778 * and in doing so, determine whether or not it is broadcast vs multicast.
7779 * For it to be a broadcast packet, we must have the appropriate mblk_t
7780 * hanging off the ill_t. If this is either not present or doesn't match
7781 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7782 * to be multicast. Thus NICs that have no broadcast address (or no
7783 * capability for one, such as point to point links) cannot return as
7784 * the packet being broadcast.
7785 */
7786 void
7787 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7788 {
7789 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7790 mblk_t *bmp;
7791 uint_t extra_offset;
7792
7793 bzero(mhip, sizeof (struct mac_header_info_s));
7794
7795 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7796
7797 if (ill->ill_sap_length < 0)
7798 extra_offset = 0;
7799 else
7800 extra_offset = ill->ill_sap_length;
7801
7802 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7803 extra_offset;
7804 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7805 extra_offset;
7806
7807 if (!ind->dl_group_address)
7808 return;
7809
7810 /* Multicast or broadcast */
7811 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7812
7813 if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7814 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7815 (bmp = ill->ill_bcast_mp) != NULL) {
7816 dl_unitdata_req_t *dlur;
7817 uint8_t *bphys_addr;
7818
7819 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7820 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7821 extra_offset;
7822
7823 if (bcmp(mhip->mhi_daddr, bphys_addr,
7824 ind->dl_dest_addr_length) == 0)
7825 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7826 }
7827 }
7828
7829 /*
7830 * This function is used to construct a mac_header_info_s from a
7831 * M_DATA fastpath message from a DLPI driver.
7832 * The address fields in the mhi structure points into the message,
7833 * thus the caller can't use those fields after freeing the message.
7834 *
7835 * We determine whether the packet received is a non-unicast packet
7836 * and in doing so, determine whether or not it is broadcast vs multicast.
7837 * For it to be a broadcast packet, we must have the appropriate mblk_t
7838 * hanging off the ill_t. If this is either not present or doesn't match
7839 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7840 * to be multicast. Thus NICs that have no broadcast address (or no
7841 * capability for one, such as point to point links) cannot return as
7842 * the packet being broadcast.
7843 */
7844 void
7845 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7846 {
7847 mblk_t *bmp;
7848 struct ether_header *pether;
7849
7850 bzero(mhip, sizeof (struct mac_header_info_s));
7851
7852 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7853
7854 pether = (struct ether_header *)((char *)mp->b_rptr
7855 - sizeof (struct ether_header));
7856
7857 /*
7858 * Make sure the interface is an ethernet type, since we don't
7859 * know the header format for anything but Ethernet. Also make
7860 * sure we are pointing correctly above db_base.
7861 */
7862 if (ill->ill_type != IFT_ETHER)
7863 return;
7864
7865 retry:
7866 if ((uchar_t *)pether < mp->b_datap->db_base)
7867 return;
7868
7869 /* Is there a VLAN tag? */
7870 if (ill->ill_isv6) {
7871 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7872 pether = (struct ether_header *)((char *)pether - 4);
7873 goto retry;
7874 }
7875 } else {
7876 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7877 pether = (struct ether_header *)((char *)pether - 4);
7878 goto retry;
7879 }
7880 }
7881 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7882 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7883
7884 if (!(mhip->mhi_daddr[0] & 0x01))
7885 return;
7886
7887 /* Multicast or broadcast */
7888 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7889
7890 if ((bmp = ill->ill_bcast_mp) != NULL) {
7891 dl_unitdata_req_t *dlur;
7892 uint8_t *bphys_addr;
7893 uint_t addrlen;
7894
7895 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7896 addrlen = dlur->dl_dest_addr_length;
7897 if (ill->ill_sap_length < 0) {
7898 bphys_addr = (uchar_t *)dlur +
7899 dlur->dl_dest_addr_offset;
7900 addrlen += ill->ill_sap_length;
7901 } else {
7902 bphys_addr = (uchar_t *)dlur +
7903 dlur->dl_dest_addr_offset +
7904 ill->ill_sap_length;
7905 addrlen -= ill->ill_sap_length;
7906 }
7907 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7908 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7909 }
7910 }
7911
7912 /*
7913 * Handle anything but M_DATA messages
7914 * We see the DL_UNITDATA_IND which are part
7915 * of the data path, and also the other messages from the driver.
7916 */
7917 void
7918 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7919 {
7920 mblk_t *first_mp;
7921 struct iocblk *iocp;
7922 struct mac_header_info_s mhi;
7923
7924 switch (DB_TYPE(mp)) {
7925 case M_PROTO:
7926 case M_PCPROTO: {
7927 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7928 DL_UNITDATA_IND) {
7929 /* Go handle anything other than data elsewhere. */
7930 ip_rput_dlpi(ill, mp);
7931 return;
7932 }
7933
7934 first_mp = mp;
7935 mp = first_mp->b_cont;
7936 first_mp->b_cont = NULL;
7937
7938 if (mp == NULL) {
7939 freeb(first_mp);
7940 return;
7941 }
7942 ip_dlur_to_mhi(ill, first_mp, &mhi);
7943 if (ill->ill_isv6)
7944 ip_input_v6(ill, NULL, mp, &mhi);
7945 else
7946 ip_input(ill, NULL, mp, &mhi);
7947
7948 /* Ditch the DLPI header. */
7949 freeb(first_mp);
7950 return;
7951 }
7952 case M_IOCACK:
7953 iocp = (struct iocblk *)mp->b_rptr;
7954 switch (iocp->ioc_cmd) {
7955 case DL_IOC_HDR_INFO:
7956 ill_fastpath_ack(ill, mp);
7957 return;
7958 default:
7959 putnext(ill->ill_rq, mp);
7960 return;
7961 }
7962 /* FALLTHROUGH */
7963 case M_ERROR:
7964 case M_HANGUP:
7965 mutex_enter(&ill->ill_lock);
7966 if (ill->ill_state_flags & ILL_CONDEMNED) {
7967 mutex_exit(&ill->ill_lock);
7968 freemsg(mp);
7969 return;
7970 }
7971 ill_refhold_locked(ill);
7972 mutex_exit(&ill->ill_lock);
7973 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7974 B_FALSE);
7975 return;
7976 case M_CTL:
7977 putnext(ill->ill_rq, mp);
7978 return;
7979 case M_IOCNAK:
7980 ip1dbg(("got iocnak "));
7981 iocp = (struct iocblk *)mp->b_rptr;
7982 switch (iocp->ioc_cmd) {
7983 case DL_IOC_HDR_INFO:
7984 ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7985 return;
7986 default:
7987 break;
7988 }
7989 /* FALLTHROUGH */
7990 default:
7991 putnext(ill->ill_rq, mp);
7992 return;
7993 }
7994 }
7995
7996 /* Read side put procedure. Packets coming from the wire arrive here. */
7997 int
7998 ip_rput(queue_t *q, mblk_t *mp)
7999 {
8000 ill_t *ill;
8001 union DL_primitives *dl;
8002
8003 ill = (ill_t *)q->q_ptr;
8004
8005 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8006 /*
8007 * If things are opening or closing, only accept high-priority
8008 * DLPI messages. (On open ill->ill_ipif has not yet been
8009 * created; on close, things hanging off the ill may have been
8010 * freed already.)
8011 */
8012 dl = (union DL_primitives *)mp->b_rptr;
8013 if (DB_TYPE(mp) != M_PCPROTO ||
8014 dl->dl_primitive == DL_UNITDATA_IND) {
8015 inet_freemsg(mp);
8016 return (0);
8017 }
8018 }
8019 if (DB_TYPE(mp) == M_DATA) {
8020 struct mac_header_info_s mhi;
8021
8022 ip_mdata_to_mhi(ill, mp, &mhi);
8023 ip_input(ill, NULL, mp, &mhi);
8024 } else {
8025 ip_rput_notdata(ill, mp);
8026 }
8027 return (0);
8028 }
8029
8030 /*
8031 * Move the information to a copy.
8032 */
8033 mblk_t *
8034 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8035 {
8036 mblk_t *mp1;
8037 ill_t *ill = ira->ira_ill;
8038 ip_stack_t *ipst = ill->ill_ipst;
8039
8040 IP_STAT(ipst, ip_db_ref);
8041
8042 /* Make sure we have ira_l2src before we loose the original mblk */
8043 if (!(ira->ira_flags & IRAF_L2SRC_SET))
8044 ip_setl2src(mp, ira, ira->ira_rill);
8045
8046 mp1 = copymsg(mp);
8047 if (mp1 == NULL) {
8048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8049 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8050 freemsg(mp);
8051 return (NULL);
8052 }
8053 /* preserve the hardware checksum flags and data, if present */
8054 if (DB_CKSUMFLAGS(mp) != 0) {
8055 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8056 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8057 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8058 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8059 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8060 }
8061 freemsg(mp);
8062 return (mp1);
8063 }
8064
8065 static void
8066 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8067 t_uscalar_t err)
8068 {
8069 if (dl_err == DL_SYSERR) {
8070 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8071 "%s: %s failed: DL_SYSERR (errno %u)\n",
8072 ill->ill_name, dl_primstr(prim), err);
8073 return;
8074 }
8075
8076 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8077 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8078 dl_errstr(dl_err));
8079 }
8080
8081 /*
8082 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8083 * than DL_UNITDATA_IND messages. If we need to process this message
8084 * exclusively, we call qwriter_ip, in which case we also need to call
8085 * ill_refhold before that, since qwriter_ip does an ill_refrele.
8086 */
8087 void
8088 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8089 {
8090 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8091 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8092 queue_t *q = ill->ill_rq;
8093 t_uscalar_t prim = dloa->dl_primitive;
8094 t_uscalar_t reqprim = DL_PRIM_INVAL;
8095
8096 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8097 char *, dl_primstr(prim), ill_t *, ill);
8098 ip1dbg(("ip_rput_dlpi"));
8099
8100 /*
8101 * If we received an ACK but didn't send a request for it, then it
8102 * can't be part of any pending operation; discard up-front.
8103 */
8104 switch (prim) {
8105 case DL_ERROR_ACK:
8106 reqprim = dlea->dl_error_primitive;
8107 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8108 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8109 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8110 dlea->dl_unix_errno));
8111 break;
8112 case DL_OK_ACK:
8113 reqprim = dloa->dl_correct_primitive;
8114 break;
8115 case DL_INFO_ACK:
8116 reqprim = DL_INFO_REQ;
8117 break;
8118 case DL_BIND_ACK:
8119 reqprim = DL_BIND_REQ;
8120 break;
8121 case DL_PHYS_ADDR_ACK:
8122 reqprim = DL_PHYS_ADDR_REQ;
8123 break;
8124 case DL_NOTIFY_ACK:
8125 reqprim = DL_NOTIFY_REQ;
8126 break;
8127 case DL_CAPABILITY_ACK:
8128 reqprim = DL_CAPABILITY_REQ;
8129 break;
8130 }
8131
8132 if (prim != DL_NOTIFY_IND) {
8133 if (reqprim == DL_PRIM_INVAL ||
8134 !ill_dlpi_pending(ill, reqprim)) {
8135 /* Not a DLPI message we support or expected */
8136 freemsg(mp);
8137 return;
8138 }
8139 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8140 dl_primstr(reqprim)));
8141 }
8142
8143 switch (reqprim) {
8144 case DL_UNBIND_REQ:
8145 /*
8146 * NOTE: we mark the unbind as complete even if we got a
8147 * DL_ERROR_ACK, since there's not much else we can do.
8148 */
8149 mutex_enter(&ill->ill_lock);
8150 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8151 cv_signal(&ill->ill_cv);
8152 mutex_exit(&ill->ill_lock);
8153 break;
8154
8155 case DL_ENABMULTI_REQ:
8156 if (prim == DL_OK_ACK) {
8157 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8158 ill->ill_dlpi_multicast_state = IDS_OK;
8159 }
8160 break;
8161 }
8162
8163 /*
8164 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8165 * need to become writer to continue to process it. Because an
8166 * exclusive operation doesn't complete until replies to all queued
8167 * DLPI messages have been received, we know we're in the middle of an
8168 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8169 *
8170 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8171 * Since this is on the ill stream we unconditionally bump up the
8172 * refcount without doing ILL_CAN_LOOKUP().
8173 */
8174 ill_refhold(ill);
8175 if (prim == DL_NOTIFY_IND)
8176 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8177 else
8178 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8179 }
8180
8181 /*
8182 * Handling of DLPI messages that require exclusive access to the ipsq.
8183 *
8184 * Need to do ipsq_pending_mp_get on ioctl completion, which could
8185 * happen here. (along with mi_copy_done)
8186 */
8187 /* ARGSUSED */
8188 static void
8189 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8190 {
8191 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8192 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8193 int err = 0;
8194 ill_t *ill = (ill_t *)q->q_ptr;
8195 ipif_t *ipif = NULL;
8196 mblk_t *mp1 = NULL;
8197 conn_t *connp = NULL;
8198 t_uscalar_t paddrreq;
8199 mblk_t *mp_hw;
8200 boolean_t success;
8201 boolean_t ioctl_aborted = B_FALSE;
8202 boolean_t log = B_TRUE;
8203
8204 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8205 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8206
8207 ip1dbg(("ip_rput_dlpi_writer .."));
8208 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8209 ASSERT(IAM_WRITER_ILL(ill));
8210
8211 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8212 /*
8213 * The current ioctl could have been aborted by the user and a new
8214 * ioctl to bring up another ill could have started. We could still
8215 * get a response from the driver later.
8216 */
8217 if (ipif != NULL && ipif->ipif_ill != ill)
8218 ioctl_aborted = B_TRUE;
8219
8220 switch (dloa->dl_primitive) {
8221 case DL_ERROR_ACK:
8222 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8223 dl_primstr(dlea->dl_error_primitive)));
8224
8225 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8226 char *, dl_primstr(dlea->dl_error_primitive),
8227 ill_t *, ill);
8228
8229 switch (dlea->dl_error_primitive) {
8230 case DL_DISABMULTI_REQ:
8231 ill_dlpi_done(ill, dlea->dl_error_primitive);
8232 break;
8233 case DL_PROMISCON_REQ:
8234 case DL_PROMISCOFF_REQ:
8235 case DL_UNBIND_REQ:
8236 case DL_ATTACH_REQ:
8237 case DL_INFO_REQ:
8238 ill_dlpi_done(ill, dlea->dl_error_primitive);
8239 break;
8240 case DL_NOTIFY_REQ:
8241 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8242 log = B_FALSE;
8243 break;
8244 case DL_PHYS_ADDR_REQ:
8245 /*
8246 * For IPv6 only, there are two additional
8247 * phys_addr_req's sent to the driver to get the
8248 * IPv6 token and lla. This allows IP to acquire
8249 * the hardware address format for a given interface
8250 * without having built in knowledge of the hardware
8251 * address. ill_phys_addr_pend keeps track of the last
8252 * DL_PAR sent so we know which response we are
8253 * dealing with. ill_dlpi_done will update
8254 * ill_phys_addr_pend when it sends the next req.
8255 * We don't complete the IOCTL until all three DL_PARs
8256 * have been attempted, so set *_len to 0 and break.
8257 */
8258 paddrreq = ill->ill_phys_addr_pend;
8259 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8260 if (paddrreq == DL_IPV6_TOKEN) {
8261 ill->ill_token_length = 0;
8262 log = B_FALSE;
8263 break;
8264 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8265 ill->ill_nd_lla_len = 0;
8266 log = B_FALSE;
8267 break;
8268 }
8269 /*
8270 * Something went wrong with the DL_PHYS_ADDR_REQ.
8271 * We presumably have an IOCTL hanging out waiting
8272 * for completion. Find it and complete the IOCTL
8273 * with the error noted.
8274 * However, ill_dl_phys was called on an ill queue
8275 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8276 * set. But the ioctl is known to be pending on ill_wq.
8277 */
8278 if (!ill->ill_ifname_pending)
8279 break;
8280 ill->ill_ifname_pending = 0;
8281 if (!ioctl_aborted)
8282 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8283 if (mp1 != NULL) {
8284 /*
8285 * This operation (SIOCSLIFNAME) must have
8286 * happened on the ill. Assert there is no conn
8287 */
8288 ASSERT(connp == NULL);
8289 q = ill->ill_wq;
8290 }
8291 break;
8292 case DL_BIND_REQ:
8293 ill_dlpi_done(ill, DL_BIND_REQ);
8294 if (ill->ill_ifname_pending)
8295 break;
8296 mutex_enter(&ill->ill_lock);
8297 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8298 mutex_exit(&ill->ill_lock);
8299 /*
8300 * Something went wrong with the bind. We presumably
8301 * have an IOCTL hanging out waiting for completion.
8302 * Find it, take down the interface that was coming
8303 * up, and complete the IOCTL with the error noted.
8304 */
8305 if (!ioctl_aborted)
8306 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8307 if (mp1 != NULL) {
8308 /*
8309 * This might be a result of a DL_NOTE_REPLUMB
8310 * notification. In that case, connp is NULL.
8311 */
8312 if (connp != NULL)
8313 q = CONNP_TO_WQ(connp);
8314
8315 (void) ipif_down(ipif, NULL, NULL);
8316 /* error is set below the switch */
8317 }
8318 break;
8319 case DL_ENABMULTI_REQ:
8320 ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8321
8322 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8323 ill->ill_dlpi_multicast_state = IDS_FAILED;
8324 if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8325
8326 printf("ip: joining multicasts failed (%d)"
8327 " on %s - will use link layer "
8328 "broadcasts for multicast\n",
8329 dlea->dl_errno, ill->ill_name);
8330
8331 /*
8332 * Set up for multi_bcast; We are the
8333 * writer, so ok to access ill->ill_ipif
8334 * without any lock.
8335 */
8336 mutex_enter(&ill->ill_phyint->phyint_lock);
8337 ill->ill_phyint->phyint_flags |=
8338 PHYI_MULTI_BCAST;
8339 mutex_exit(&ill->ill_phyint->phyint_lock);
8340
8341 }
8342 freemsg(mp); /* Don't want to pass this up */
8343 return;
8344 case DL_CAPABILITY_REQ:
8345 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8346 "DL_CAPABILITY REQ\n"));
8347 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8348 ill->ill_dlpi_capab_state = IDCS_FAILED;
8349 ill_capability_done(ill);
8350 freemsg(mp);
8351 return;
8352 }
8353 /*
8354 * Note the error for IOCTL completion (mp1 is set when
8355 * ready to complete ioctl). If ill_ifname_pending_err is
8356 * set, an error occured during plumbing (ill_ifname_pending),
8357 * so we want to report that error.
8358 *
8359 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8360 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8361 * expected to get errack'd if the driver doesn't support
8362 * these flags (e.g. ethernet). log will be set to B_FALSE
8363 * if these error conditions are encountered.
8364 */
8365 if (mp1 != NULL) {
8366 if (ill->ill_ifname_pending_err != 0) {
8367 err = ill->ill_ifname_pending_err;
8368 ill->ill_ifname_pending_err = 0;
8369 } else {
8370 err = dlea->dl_unix_errno ?
8371 dlea->dl_unix_errno : ENXIO;
8372 }
8373 /*
8374 * If we're plumbing an interface and an error hasn't already
8375 * been saved, set ill_ifname_pending_err to the error passed
8376 * up. Ignore the error if log is B_FALSE (see comment above).
8377 */
8378 } else if (log && ill->ill_ifname_pending &&
8379 ill->ill_ifname_pending_err == 0) {
8380 ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8381 dlea->dl_unix_errno : ENXIO;
8382 }
8383
8384 if (log)
8385 ip_dlpi_error(ill, dlea->dl_error_primitive,
8386 dlea->dl_errno, dlea->dl_unix_errno);
8387 break;
8388 case DL_CAPABILITY_ACK:
8389 ill_capability_ack(ill, mp);
8390 /*
8391 * The message has been handed off to ill_capability_ack
8392 * and must not be freed below
8393 */
8394 mp = NULL;
8395 break;
8396
8397 case DL_INFO_ACK:
8398 /* Call a routine to handle this one. */
8399 ill_dlpi_done(ill, DL_INFO_REQ);
8400 ip_ll_subnet_defaults(ill, mp);
8401 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8402 return;
8403 case DL_BIND_ACK:
8404 /*
8405 * We should have an IOCTL waiting on this unless
8406 * sent by ill_dl_phys, in which case just return
8407 */
8408 ill_dlpi_done(ill, DL_BIND_REQ);
8409
8410 if (ill->ill_ifname_pending) {
8411 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8412 ill_t *, ill, mblk_t *, mp);
8413 break;
8414 }
8415 mutex_enter(&ill->ill_lock);
8416 ill->ill_dl_up = 1;
8417 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8418 mutex_exit(&ill->ill_lock);
8419
8420 if (!ioctl_aborted)
8421 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8422 if (mp1 == NULL) {
8423 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8424 break;
8425 }
8426 /*
8427 * mp1 was added by ill_dl_up(). if that is a result of
8428 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8429 */
8430 if (connp != NULL)
8431 q = CONNP_TO_WQ(connp);
8432 /*
8433 * We are exclusive. So nothing can change even after
8434 * we get the pending mp.
8435 */
8436 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8437 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8438 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8439
8440 /*
8441 * Now bring up the resolver; when that is complete, we'll
8442 * create IREs. Note that we intentionally mirror what
8443 * ipif_up() would have done, because we got here by way of
8444 * ill_dl_up(), which stopped ipif_up()'s processing.
8445 */
8446 if (ill->ill_isv6) {
8447 /*
8448 * v6 interfaces.
8449 * Unlike ARP which has to do another bind
8450 * and attach, once we get here we are
8451 * done with NDP
8452 */
8453 (void) ipif_resolver_up(ipif, Res_act_initial);
8454 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8455 err = ipif_up_done_v6(ipif);
8456 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8457 /*
8458 * ARP and other v4 external resolvers.
8459 * Leave the pending mblk intact so that
8460 * the ioctl completes in ip_rput().
8461 */
8462 if (connp != NULL)
8463 mutex_enter(&connp->conn_lock);
8464 mutex_enter(&ill->ill_lock);
8465 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8466 mutex_exit(&ill->ill_lock);
8467 if (connp != NULL)
8468 mutex_exit(&connp->conn_lock);
8469 if (success) {
8470 err = ipif_resolver_up(ipif, Res_act_initial);
8471 if (err == EINPROGRESS) {
8472 freemsg(mp);
8473 return;
8474 }
8475 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8476 } else {
8477 /* The conn has started closing */
8478 err = EINTR;
8479 }
8480 } else {
8481 /*
8482 * This one is complete. Reply to pending ioctl.
8483 */
8484 (void) ipif_resolver_up(ipif, Res_act_initial);
8485 err = ipif_up_done(ipif);
8486 }
8487
8488 if ((err == 0) && (ill->ill_up_ipifs)) {
8489 err = ill_up_ipifs(ill, q, mp1);
8490 if (err == EINPROGRESS) {
8491 freemsg(mp);
8492 return;
8493 }
8494 }
8495
8496 /*
8497 * If we have a moved ipif to bring up, and everything has
8498 * succeeded to this point, bring it up on the IPMP ill.
8499 * Otherwise, leave it down -- the admin can try to bring it
8500 * up by hand if need be.
8501 */
8502 if (ill->ill_move_ipif != NULL) {
8503 if (err != 0) {
8504 ill->ill_move_ipif = NULL;
8505 } else {
8506 ipif = ill->ill_move_ipif;
8507 ill->ill_move_ipif = NULL;
8508 err = ipif_up(ipif, q, mp1);
8509 if (err == EINPROGRESS) {
8510 freemsg(mp);
8511 return;
8512 }
8513 }
8514 }
8515 break;
8516
8517 case DL_NOTIFY_IND: {
8518 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8519 uint_t orig_mtu, orig_mc_mtu;
8520
8521 switch (notify->dl_notification) {
8522 case DL_NOTE_PHYS_ADDR:
8523 err = ill_set_phys_addr(ill, mp);
8524 break;
8525
8526 case DL_NOTE_REPLUMB:
8527 /*
8528 * Directly return after calling ill_replumb().
8529 * Note that we should not free mp as it is reused
8530 * in the ill_replumb() function.
8531 */
8532 err = ill_replumb(ill, mp);
8533 return;
8534
8535 case DL_NOTE_FASTPATH_FLUSH:
8536 nce_flush(ill, B_FALSE);
8537 break;
8538
8539 case DL_NOTE_SDU_SIZE:
8540 case DL_NOTE_SDU_SIZE2:
8541 /*
8542 * The dce and fragmentation code can cope with
8543 * this changing while packets are being sent.
8544 * When packets are sent ip_output will discover
8545 * a change.
8546 *
8547 * Change the MTU size of the interface.
8548 */
8549 mutex_enter(&ill->ill_lock);
8550 orig_mtu = ill->ill_mtu;
8551 orig_mc_mtu = ill->ill_mc_mtu;
8552 switch (notify->dl_notification) {
8553 case DL_NOTE_SDU_SIZE:
8554 ill->ill_current_frag =
8555 (uint_t)notify->dl_data;
8556 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8557 break;
8558 case DL_NOTE_SDU_SIZE2:
8559 ill->ill_current_frag =
8560 (uint_t)notify->dl_data1;
8561 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8562 break;
8563 }
8564 if (ill->ill_current_frag > ill->ill_max_frag)
8565 ill->ill_max_frag = ill->ill_current_frag;
8566
8567 if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8568 ill->ill_mtu = ill->ill_current_frag;
8569
8570 /*
8571 * If ill_user_mtu was set (via
8572 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8573 */
8574 if (ill->ill_user_mtu != 0 &&
8575 ill->ill_user_mtu < ill->ill_mtu)
8576 ill->ill_mtu = ill->ill_user_mtu;
8577
8578 if (ill->ill_user_mtu != 0 &&
8579 ill->ill_user_mtu < ill->ill_mc_mtu)
8580 ill->ill_mc_mtu = ill->ill_user_mtu;
8581
8582 if (ill->ill_isv6) {
8583 if (ill->ill_mtu < IPV6_MIN_MTU)
8584 ill->ill_mtu = IPV6_MIN_MTU;
8585 if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8586 ill->ill_mc_mtu = IPV6_MIN_MTU;
8587 } else {
8588 if (ill->ill_mtu < IP_MIN_MTU)
8589 ill->ill_mtu = IP_MIN_MTU;
8590 if (ill->ill_mc_mtu < IP_MIN_MTU)
8591 ill->ill_mc_mtu = IP_MIN_MTU;
8592 }
8593 } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8594 ill->ill_mc_mtu = ill->ill_mtu;
8595 }
8596
8597 mutex_exit(&ill->ill_lock);
8598 /*
8599 * Make sure all dce_generation checks find out
8600 * that ill_mtu/ill_mc_mtu has changed.
8601 */
8602 if (orig_mtu != ill->ill_mtu ||
8603 orig_mc_mtu != ill->ill_mc_mtu) {
8604 dce_increment_all_generations(ill->ill_isv6,
8605 ill->ill_ipst);
8606 }
8607
8608 /*
8609 * Refresh IPMP meta-interface MTU if necessary.
8610 */
8611 if (IS_UNDER_IPMP(ill))
8612 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8613 break;
8614
8615 case DL_NOTE_LINK_UP:
8616 case DL_NOTE_LINK_DOWN: {
8617 /*
8618 * We are writer. ill / phyint / ipsq assocs stable.
8619 * The RUNNING flag reflects the state of the link.
8620 */
8621 phyint_t *phyint = ill->ill_phyint;
8622 uint64_t new_phyint_flags;
8623 boolean_t changed = B_FALSE;
8624 boolean_t went_up;
8625
8626 went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8627 mutex_enter(&phyint->phyint_lock);
8628
8629 new_phyint_flags = went_up ?
8630 phyint->phyint_flags | PHYI_RUNNING :
8631 phyint->phyint_flags & ~PHYI_RUNNING;
8632
8633 if (IS_IPMP(ill)) {
8634 new_phyint_flags = went_up ?
8635 new_phyint_flags & ~PHYI_FAILED :
8636 new_phyint_flags | PHYI_FAILED;
8637 }
8638
8639 if (new_phyint_flags != phyint->phyint_flags) {
8640 phyint->phyint_flags = new_phyint_flags;
8641 changed = B_TRUE;
8642 }
8643 mutex_exit(&phyint->phyint_lock);
8644 /*
8645 * ill_restart_dad handles the DAD restart and routing
8646 * socket notification logic.
8647 */
8648 if (changed) {
8649 ill_restart_dad(phyint->phyint_illv4, went_up);
8650 ill_restart_dad(phyint->phyint_illv6, went_up);
8651 }
8652 break;
8653 }
8654 case DL_NOTE_PROMISC_ON_PHYS: {
8655 phyint_t *phyint = ill->ill_phyint;
8656
8657 mutex_enter(&phyint->phyint_lock);
8658 phyint->phyint_flags |= PHYI_PROMISC;
8659 mutex_exit(&phyint->phyint_lock);
8660 break;
8661 }
8662 case DL_NOTE_PROMISC_OFF_PHYS: {
8663 phyint_t *phyint = ill->ill_phyint;
8664
8665 mutex_enter(&phyint->phyint_lock);
8666 phyint->phyint_flags &= ~PHYI_PROMISC;
8667 mutex_exit(&phyint->phyint_lock);
8668 break;
8669 }
8670 case DL_NOTE_CAPAB_RENEG:
8671 /*
8672 * Something changed on the driver side.
8673 * It wants us to renegotiate the capabilities
8674 * on this ill. One possible cause is the aggregation
8675 * interface under us where a port got added or
8676 * went away.
8677 *
8678 * If the capability negotiation is already done
8679 * or is in progress, reset the capabilities and
8680 * mark the ill's ill_capab_reneg to be B_TRUE,
8681 * so that when the ack comes back, we can start
8682 * the renegotiation process.
8683 *
8684 * Note that if ill_capab_reneg is already B_TRUE
8685 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8686 * the capability resetting request has been sent
8687 * and the renegotiation has not been started yet;
8688 * nothing needs to be done in this case.
8689 */
8690 ipsq_current_start(ipsq, ill->ill_ipif, 0);
8691 ill_capability_reset(ill, B_TRUE);
8692 ipsq_current_finish(ipsq);
8693 break;
8694
8695 case DL_NOTE_ALLOWED_IPS:
8696 ill_set_allowed_ips(ill, mp);
8697 break;
8698 default:
8699 ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8700 "type 0x%x for DL_NOTIFY_IND\n",
8701 notify->dl_notification));
8702 break;
8703 }
8704
8705 /*
8706 * As this is an asynchronous operation, we
8707 * should not call ill_dlpi_done
8708 */
8709 break;
8710 }
8711 case DL_NOTIFY_ACK: {
8712 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8713
8714 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8715 ill->ill_note_link = 1;
8716 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8717 break;
8718 }
8719 case DL_PHYS_ADDR_ACK: {
8720 /*
8721 * As part of plumbing the interface via SIOCSLIFNAME,
8722 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8723 * whose answers we receive here. As each answer is received,
8724 * we call ill_dlpi_done() to dispatch the next request as
8725 * we're processing the current one. Once all answers have
8726 * been received, we use ipsq_pending_mp_get() to dequeue the
8727 * outstanding IOCTL and reply to it. (Because ill_dl_phys()
8728 * is invoked from an ill queue, conn_oper_pending_ill is not
8729 * available, but we know the ioctl is pending on ill_wq.)
8730 */
8731 uint_t paddrlen, paddroff;
8732 uint8_t *addr;
8733
8734 paddrreq = ill->ill_phys_addr_pend;
8735 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8736 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8737 addr = mp->b_rptr + paddroff;
8738
8739 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8740 if (paddrreq == DL_IPV6_TOKEN) {
8741 /*
8742 * bcopy to low-order bits of ill_token
8743 *
8744 * XXX Temporary hack - currently, all known tokens
8745 * are 64 bits, so I'll cheat for the moment.
8746 */
8747 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8748 ill->ill_token_length = paddrlen;
8749 break;
8750 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8751 ASSERT(ill->ill_nd_lla_mp == NULL);
8752 ill_set_ndmp(ill, mp, paddroff, paddrlen);
8753 mp = NULL;
8754 break;
8755 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8756 ASSERT(ill->ill_dest_addr_mp == NULL);
8757 ill->ill_dest_addr_mp = mp;
8758 ill->ill_dest_addr = addr;
8759 mp = NULL;
8760 if (ill->ill_isv6) {
8761 ill_setdesttoken(ill);
8762 ipif_setdestlinklocal(ill->ill_ipif);
8763 }
8764 break;
8765 }
8766
8767 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8768 ASSERT(ill->ill_phys_addr_mp == NULL);
8769 if (!ill->ill_ifname_pending)
8770 break;
8771 ill->ill_ifname_pending = 0;
8772 if (!ioctl_aborted)
8773 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8774 if (mp1 != NULL) {
8775 ASSERT(connp == NULL);
8776 q = ill->ill_wq;
8777 }
8778 /*
8779 * If any error acks received during the plumbing sequence,
8780 * ill_ifname_pending_err will be set. Break out and send up
8781 * the error to the pending ioctl.
8782 */
8783 if (ill->ill_ifname_pending_err != 0) {
8784 err = ill->ill_ifname_pending_err;
8785 ill->ill_ifname_pending_err = 0;
8786 break;
8787 }
8788
8789 ill->ill_phys_addr_mp = mp;
8790 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8791 mp = NULL;
8792
8793 /*
8794 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8795 * provider doesn't support physical addresses. We check both
8796 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8797 * not have physical addresses, but historically adversises a
8798 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8799 * its DL_PHYS_ADDR_ACK.
8800 */
8801 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8802 ill->ill_phys_addr = NULL;
8803 } else if (paddrlen != ill->ill_phys_addr_length) {
8804 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8805 paddrlen, ill->ill_phys_addr_length));
8806 err = EINVAL;
8807 break;
8808 }
8809
8810 if (ill->ill_nd_lla_mp == NULL) {
8811 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8812 err = ENOMEM;
8813 break;
8814 }
8815 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8816 }
8817
8818 if (ill->ill_isv6) {
8819 ill_setdefaulttoken(ill);
8820 ipif_setlinklocal(ill->ill_ipif);
8821 }
8822 break;
8823 }
8824 case DL_OK_ACK:
8825 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8826 dl_primstr((int)dloa->dl_correct_primitive),
8827 dloa->dl_correct_primitive));
8828 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8829 char *, dl_primstr(dloa->dl_correct_primitive),
8830 ill_t *, ill);
8831
8832 switch (dloa->dl_correct_primitive) {
8833 case DL_ENABMULTI_REQ:
8834 case DL_DISABMULTI_REQ:
8835 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8836 break;
8837 case DL_PROMISCON_REQ:
8838 case DL_PROMISCOFF_REQ:
8839 case DL_UNBIND_REQ:
8840 case DL_ATTACH_REQ:
8841 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8842 break;
8843 }
8844 break;
8845 default:
8846 break;
8847 }
8848
8849 freemsg(mp);
8850 if (mp1 == NULL)
8851 return;
8852
8853 /*
8854 * The operation must complete without EINPROGRESS since
8855 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise,
8856 * the operation will be stuck forever inside the IPSQ.
8857 */
8858 ASSERT(err != EINPROGRESS);
8859
8860 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8861 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8862 ipif_t *, NULL);
8863
8864 switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8865 case 0:
8866 ipsq_current_finish(ipsq);
8867 break;
8868
8869 case SIOCSLIFNAME:
8870 case IF_UNITSEL: {
8871 ill_t *ill_other = ILL_OTHER(ill);
8872
8873 /*
8874 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8875 * ill has a peer which is in an IPMP group, then place ill
8876 * into the same group. One catch: although ifconfig plumbs
8877 * the appropriate IPMP meta-interface prior to plumbing this
8878 * ill, it is possible for multiple ifconfig applications to
8879 * race (or for another application to adjust plumbing), in
8880 * which case the IPMP meta-interface we need will be missing.
8881 * If so, kick the phyint out of the group.
8882 */
8883 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8884 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp;
8885 ipmp_illgrp_t *illg;
8886
8887 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8888 if (illg == NULL)
8889 ipmp_phyint_leave_grp(ill->ill_phyint);
8890 else
8891 ipmp_ill_join_illgrp(ill, illg);
8892 }
8893
8894 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8895 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8896 else
8897 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8898 break;
8899 }
8900 case SIOCLIFADDIF:
8901 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8902 break;
8903
8904 default:
8905 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8906 break;
8907 }
8908 }
8909
8910 /*
8911 * ip_rput_other is called by ip_rput to handle messages modifying the global
8912 * state in IP. If 'ipsq' is non-NULL, caller is writer on it.
8913 */
8914 /* ARGSUSED */
8915 void
8916 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8917 {
8918 ill_t *ill = q->q_ptr;
8919 struct iocblk *iocp;
8920
8921 ip1dbg(("ip_rput_other "));
8922 if (ipsq != NULL) {
8923 ASSERT(IAM_WRITER_IPSQ(ipsq));
8924 ASSERT(ipsq->ipsq_xop ==
8925 ill->ill_phyint->phyint_ipsq->ipsq_xop);
8926 }
8927
8928 switch (mp->b_datap->db_type) {
8929 case M_ERROR:
8930 case M_HANGUP:
8931 /*
8932 * The device has a problem. We force the ILL down. It can
8933 * be brought up again manually using SIOCSIFFLAGS (via
8934 * ifconfig or equivalent).
8935 */
8936 ASSERT(ipsq != NULL);
8937 if (mp->b_rptr < mp->b_wptr)
8938 ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8939 if (ill->ill_error == 0)
8940 ill->ill_error = ENXIO;
8941 if (!ill_down_start(q, mp))
8942 return;
8943 ipif_all_down_tail(ipsq, q, mp, NULL);
8944 break;
8945 case M_IOCNAK: {
8946 iocp = (struct iocblk *)mp->b_rptr;
8947
8948 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8949 /*
8950 * If this was the first attempt, turn off the fastpath
8951 * probing.
8952 */
8953 mutex_enter(&ill->ill_lock);
8954 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8955 ill->ill_dlpi_fastpath_state = IDS_FAILED;
8956 mutex_exit(&ill->ill_lock);
8957 /*
8958 * don't flush the nce_t entries: we use them
8959 * as an index to the ncec itself.
8960 */
8961 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8962 ill->ill_name));
8963 } else {
8964 mutex_exit(&ill->ill_lock);
8965 }
8966 freemsg(mp);
8967 break;
8968 }
8969 default:
8970 ASSERT(0);
8971 break;
8972 }
8973 }
8974
8975 /*
8976 * Update any source route, record route or timestamp options
8977 * When it fails it has consumed the message and BUMPed the MIB.
8978 */
8979 boolean_t
8980 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8981 ip_recv_attr_t *ira)
8982 {
8983 ipoptp_t opts;
8984 uchar_t *opt;
8985 uint8_t optval;
8986 uint8_t optlen;
8987 ipaddr_t dst;
8988 ipaddr_t ifaddr;
8989 uint32_t ts;
8990 timestruc_t now;
8991 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
8992
8993 ip2dbg(("ip_forward_options\n"));
8994 dst = ipha->ipha_dst;
8995 for (optval = ipoptp_first(&opts, ipha);
8996 optval != IPOPT_EOL;
8997 optval = ipoptp_next(&opts)) {
8998 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8999 opt = opts.ipoptp_cur;
9000 optlen = opts.ipoptp_len;
9001 ip2dbg(("ip_forward_options: opt %d, len %d\n",
9002 optval, opts.ipoptp_len));
9003 switch (optval) {
9004 uint32_t off;
9005 case IPOPT_SSRR:
9006 case IPOPT_LSRR:
9007 /* Check if adminstratively disabled */
9008 if (!ipst->ips_ip_forward_src_routed) {
9009 BUMP_MIB(dst_ill->ill_ip_mib,
9010 ipIfStatsForwProhibits);
9011 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9012 mp, dst_ill);
9013 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9014 ira);
9015 return (B_FALSE);
9016 }
9017 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9018 /*
9019 * Must be partial since ip_input_options
9020 * checked for strict.
9021 */
9022 break;
9023 }
9024 off = opt[IPOPT_OFFSET];
9025 off--;
9026 redo_srr:
9027 if (optlen < IP_ADDR_LEN ||
9028 off > optlen - IP_ADDR_LEN) {
9029 /* End of source route */
9030 ip1dbg((
9031 "ip_forward_options: end of SR\n"));
9032 break;
9033 }
9034 /* Pick a reasonable address on the outbound if */
9035 ASSERT(dst_ill != NULL);
9036 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9037 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9038 NULL) != 0) {
9039 /* No source! Shouldn't happen */
9040 ifaddr = INADDR_ANY;
9041 }
9042 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9043 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9044 ip1dbg(("ip_forward_options: next hop 0x%x\n",
9045 ntohl(dst)));
9046
9047 /*
9048 * Check if our address is present more than
9049 * once as consecutive hops in source route.
9050 */
9051 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9052 off += IP_ADDR_LEN;
9053 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9054 goto redo_srr;
9055 }
9056 ipha->ipha_dst = dst;
9057 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9058 break;
9059 case IPOPT_RR:
9060 off = opt[IPOPT_OFFSET];
9061 off--;
9062 if (optlen < IP_ADDR_LEN ||
9063 off > optlen - IP_ADDR_LEN) {
9064 /* No more room - ignore */
9065 ip1dbg((
9066 "ip_forward_options: end of RR\n"));
9067 break;
9068 }
9069 /* Pick a reasonable address on the outbound if */
9070 ASSERT(dst_ill != NULL);
9071 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9072 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9073 NULL) != 0) {
9074 /* No source! Shouldn't happen */
9075 ifaddr = INADDR_ANY;
9076 }
9077 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9078 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9079 break;
9080 case IPOPT_TS:
9081 /* Insert timestamp if there is room */
9082 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9083 case IPOPT_TS_TSONLY:
9084 off = IPOPT_TS_TIMELEN;
9085 break;
9086 case IPOPT_TS_PRESPEC:
9087 case IPOPT_TS_PRESPEC_RFC791:
9088 /* Verify that the address matched */
9089 off = opt[IPOPT_OFFSET] - 1;
9090 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9091 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9092 /* Not for us */
9093 break;
9094 }
9095 /* FALLTHROUGH */
9096 case IPOPT_TS_TSANDADDR:
9097 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9098 break;
9099 default:
9100 /*
9101 * ip_*put_options should have already
9102 * dropped this packet.
9103 */
9104 cmn_err(CE_PANIC, "ip_forward_options: "
9105 "unknown IT - bug in ip_input_options?\n");
9106 return (B_TRUE); /* Keep "lint" happy */
9107 }
9108 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9109 /* Increase overflow counter */
9110 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9111 opt[IPOPT_POS_OV_FLG] =
9112 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9113 (off << 4));
9114 break;
9115 }
9116 off = opt[IPOPT_OFFSET] - 1;
9117 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9118 case IPOPT_TS_PRESPEC:
9119 case IPOPT_TS_PRESPEC_RFC791:
9120 case IPOPT_TS_TSANDADDR:
9121 /* Pick a reasonable addr on the outbound if */
9122 ASSERT(dst_ill != NULL);
9123 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9124 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9125 NULL, NULL) != 0) {
9126 /* No source! Shouldn't happen */
9127 ifaddr = INADDR_ANY;
9128 }
9129 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9130 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9131 /* FALLTHROUGH */
9132 case IPOPT_TS_TSONLY:
9133 off = opt[IPOPT_OFFSET] - 1;
9134 /* Compute # of milliseconds since midnight */
9135 gethrestime(&now);
9136 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9137 NSEC2MSEC(now.tv_nsec);
9138 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9139 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9140 break;
9141 }
9142 break;
9143 }
9144 }
9145 return (B_TRUE);
9146 }
9147
9148 /*
9149 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9150 * returns 'true' if there are still fragments left on the queue, in
9151 * which case we restart the timer.
9152 */
9153 void
9154 ill_frag_timer(void *arg)
9155 {
9156 ill_t *ill = (ill_t *)arg;
9157 boolean_t frag_pending;
9158 ip_stack_t *ipst = ill->ill_ipst;
9159 time_t timeout;
9160
9161 mutex_enter(&ill->ill_lock);
9162 ASSERT(!ill->ill_fragtimer_executing);
9163 if (ill->ill_state_flags & ILL_CONDEMNED) {
9164 ill->ill_frag_timer_id = 0;
9165 mutex_exit(&ill->ill_lock);
9166 return;
9167 }
9168 ill->ill_fragtimer_executing = 1;
9169 mutex_exit(&ill->ill_lock);
9170
9171 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9172 ipst->ips_ip_reassembly_timeout);
9173
9174 frag_pending = ill_frag_timeout(ill, timeout);
9175
9176 /*
9177 * Restart the timer, if we have fragments pending or if someone
9178 * wanted us to be scheduled again.
9179 */
9180 mutex_enter(&ill->ill_lock);
9181 ill->ill_fragtimer_executing = 0;
9182 ill->ill_frag_timer_id = 0;
9183 if (frag_pending || ill->ill_fragtimer_needrestart)
9184 ill_frag_timer_start(ill);
9185 mutex_exit(&ill->ill_lock);
9186 }
9187
9188 void
9189 ill_frag_timer_start(ill_t *ill)
9190 {
9191 ip_stack_t *ipst = ill->ill_ipst;
9192 clock_t timeo_ms;
9193
9194 ASSERT(MUTEX_HELD(&ill->ill_lock));
9195
9196 /* If the ill is closing or opening don't proceed */
9197 if (ill->ill_state_flags & ILL_CONDEMNED)
9198 return;
9199
9200 if (ill->ill_fragtimer_executing) {
9201 /*
9202 * ill_frag_timer is currently executing. Just record the
9203 * the fact that we want the timer to be restarted.
9204 * ill_frag_timer will post a timeout before it returns,
9205 * ensuring it will be called again.
9206 */
9207 ill->ill_fragtimer_needrestart = 1;
9208 return;
9209 }
9210
9211 if (ill->ill_frag_timer_id == 0) {
9212 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9213 ipst->ips_ip_reassembly_timeout) * SECONDS;
9214
9215 /*
9216 * The timer is neither running nor is the timeout handler
9217 * executing. Post a timeout so that ill_frag_timer will be
9218 * called
9219 */
9220 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9221 MSEC_TO_TICK(timeo_ms >> 1));
9222 ill->ill_fragtimer_needrestart = 0;
9223 }
9224 }
9225
9226 /*
9227 * Update any source route, record route or timestamp options.
9228 * Check that we are at end of strict source route.
9229 * The options have already been checked for sanity in ip_input_options().
9230 */
9231 boolean_t
9232 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9233 {
9234 ipoptp_t opts;
9235 uchar_t *opt;
9236 uint8_t optval;
9237 uint8_t optlen;
9238 ipaddr_t dst;
9239 ipaddr_t ifaddr;
9240 uint32_t ts;
9241 timestruc_t now;
9242 ill_t *ill = ira->ira_ill;
9243 ip_stack_t *ipst = ill->ill_ipst;
9244
9245 ip2dbg(("ip_input_local_options\n"));
9246
9247 for (optval = ipoptp_first(&opts, ipha);
9248 optval != IPOPT_EOL;
9249 optval = ipoptp_next(&opts)) {
9250 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9251 opt = opts.ipoptp_cur;
9252 optlen = opts.ipoptp_len;
9253 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9254 optval, optlen));
9255 switch (optval) {
9256 uint32_t off;
9257 case IPOPT_SSRR:
9258 case IPOPT_LSRR:
9259 off = opt[IPOPT_OFFSET];
9260 off--;
9261 if (optlen < IP_ADDR_LEN ||
9262 off > optlen - IP_ADDR_LEN) {
9263 /* End of source route */
9264 ip1dbg(("ip_input_local_options: end of SR\n"));
9265 break;
9266 }
9267 /*
9268 * This will only happen if two consecutive entries
9269 * in the source route contains our address or if
9270 * it is a packet with a loose source route which
9271 * reaches us before consuming the whole source route
9272 */
9273 ip1dbg(("ip_input_local_options: not end of SR\n"));
9274 if (optval == IPOPT_SSRR) {
9275 goto bad_src_route;
9276 }
9277 /*
9278 * Hack: instead of dropping the packet truncate the
9279 * source route to what has been used by filling the
9280 * rest with IPOPT_NOP.
9281 */
9282 opt[IPOPT_OLEN] = (uint8_t)off;
9283 while (off < optlen) {
9284 opt[off++] = IPOPT_NOP;
9285 }
9286 break;
9287 case IPOPT_RR:
9288 off = opt[IPOPT_OFFSET];
9289 off--;
9290 if (optlen < IP_ADDR_LEN ||
9291 off > optlen - IP_ADDR_LEN) {
9292 /* No more room - ignore */
9293 ip1dbg((
9294 "ip_input_local_options: end of RR\n"));
9295 break;
9296 }
9297 /* Pick a reasonable address on the outbound if */
9298 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9299 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9300 NULL) != 0) {
9301 /* No source! Shouldn't happen */
9302 ifaddr = INADDR_ANY;
9303 }
9304 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9305 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9306 break;
9307 case IPOPT_TS:
9308 /* Insert timestamp if there is romm */
9309 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9310 case IPOPT_TS_TSONLY:
9311 off = IPOPT_TS_TIMELEN;
9312 break;
9313 case IPOPT_TS_PRESPEC:
9314 case IPOPT_TS_PRESPEC_RFC791:
9315 /* Verify that the address matched */
9316 off = opt[IPOPT_OFFSET] - 1;
9317 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9318 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9319 /* Not for us */
9320 break;
9321 }
9322 /* FALLTHROUGH */
9323 case IPOPT_TS_TSANDADDR:
9324 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9325 break;
9326 default:
9327 /*
9328 * ip_*put_options should have already
9329 * dropped this packet.
9330 */
9331 cmn_err(CE_PANIC, "ip_input_local_options: "
9332 "unknown IT - bug in ip_input_options?\n");
9333 return (B_TRUE); /* Keep "lint" happy */
9334 }
9335 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9336 /* Increase overflow counter */
9337 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9338 opt[IPOPT_POS_OV_FLG] =
9339 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9340 (off << 4));
9341 break;
9342 }
9343 off = opt[IPOPT_OFFSET] - 1;
9344 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9345 case IPOPT_TS_PRESPEC:
9346 case IPOPT_TS_PRESPEC_RFC791:
9347 case IPOPT_TS_TSANDADDR:
9348 /* Pick a reasonable addr on the outbound if */
9349 if (ip_select_source_v4(ill, INADDR_ANY,
9350 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9351 &ifaddr, NULL, NULL) != 0) {
9352 /* No source! Shouldn't happen */
9353 ifaddr = INADDR_ANY;
9354 }
9355 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9356 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9357 /* FALLTHROUGH */
9358 case IPOPT_TS_TSONLY:
9359 off = opt[IPOPT_OFFSET] - 1;
9360 /* Compute # of milliseconds since midnight */
9361 gethrestime(&now);
9362 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9363 NSEC2MSEC(now.tv_nsec);
9364 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9365 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9366 break;
9367 }
9368 break;
9369 }
9370 }
9371 return (B_TRUE);
9372
9373 bad_src_route:
9374 /* make sure we clear any indication of a hardware checksum */
9375 DB_CKSUMFLAGS(mp) = 0;
9376 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9377 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9378 return (B_FALSE);
9379
9380 }
9381
9382 /*
9383 * Process IP options in an inbound packet. Always returns the nexthop.
9384 * Normally this is the passed in nexthop, but if there is an option
9385 * that effects the nexthop (such as a source route) that will be returned.
9386 * Sets *errorp if there is an error, in which case an ICMP error has been sent
9387 * and mp freed.
9388 */
9389 ipaddr_t
9390 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9391 ip_recv_attr_t *ira, int *errorp)
9392 {
9393 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
9394 ipoptp_t opts;
9395 uchar_t *opt;
9396 uint8_t optval;
9397 uint8_t optlen;
9398 intptr_t code = 0;
9399 ire_t *ire;
9400
9401 ip2dbg(("ip_input_options\n"));
9402 *errorp = 0;
9403 for (optval = ipoptp_first(&opts, ipha);
9404 optval != IPOPT_EOL;
9405 optval = ipoptp_next(&opts)) {
9406 opt = opts.ipoptp_cur;
9407 optlen = opts.ipoptp_len;
9408 ip2dbg(("ip_input_options: opt %d, len %d\n",
9409 optval, optlen));
9410 /*
9411 * Note: we need to verify the checksum before we
9412 * modify anything thus this routine only extracts the next
9413 * hop dst from any source route.
9414 */
9415 switch (optval) {
9416 uint32_t off;
9417 case IPOPT_SSRR:
9418 case IPOPT_LSRR:
9419 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9420 if (optval == IPOPT_SSRR) {
9421 ip1dbg(("ip_input_options: not next"
9422 " strict source route 0x%x\n",
9423 ntohl(dst)));
9424 code = (char *)&ipha->ipha_dst -
9425 (char *)ipha;
9426 goto param_prob; /* RouterReq's */
9427 }
9428 ip2dbg(("ip_input_options: "
9429 "not next source route 0x%x\n",
9430 ntohl(dst)));
9431 break;
9432 }
9433
9434 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9435 ip1dbg((
9436 "ip_input_options: bad option offset\n"));
9437 code = (char *)&opt[IPOPT_OLEN] -
9438 (char *)ipha;
9439 goto param_prob;
9440 }
9441 off = opt[IPOPT_OFFSET];
9442 off--;
9443 redo_srr:
9444 if (optlen < IP_ADDR_LEN ||
9445 off > optlen - IP_ADDR_LEN) {
9446 /* End of source route */
9447 ip1dbg(("ip_input_options: end of SR\n"));
9448 break;
9449 }
9450 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9451 ip1dbg(("ip_input_options: next hop 0x%x\n",
9452 ntohl(dst)));
9453
9454 /*
9455 * Check if our address is present more than
9456 * once as consecutive hops in source route.
9457 * XXX verify per-interface ip_forwarding
9458 * for source route?
9459 */
9460 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9461 off += IP_ADDR_LEN;
9462 goto redo_srr;
9463 }
9464
9465 if (dst == htonl(INADDR_LOOPBACK)) {
9466 ip1dbg(("ip_input_options: loopback addr in "
9467 "source route!\n"));
9468 goto bad_src_route;
9469 }
9470 /*
9471 * For strict: verify that dst is directly
9472 * reachable.
9473 */
9474 if (optval == IPOPT_SSRR) {
9475 ire = ire_ftable_lookup_v4(dst, 0, 0,
9476 IRE_INTERFACE, NULL, ALL_ZONES,
9477 ira->ira_tsl,
9478 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9479 NULL);
9480 if (ire == NULL) {
9481 ip1dbg(("ip_input_options: SSRR not "
9482 "directly reachable: 0x%x\n",
9483 ntohl(dst)));
9484 goto bad_src_route;
9485 }
9486 ire_refrele(ire);
9487 }
9488 /*
9489 * Defer update of the offset and the record route
9490 * until the packet is forwarded.
9491 */
9492 break;
9493 case IPOPT_RR:
9494 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9495 ip1dbg((
9496 "ip_input_options: bad option offset\n"));
9497 code = (char *)&opt[IPOPT_OLEN] -
9498 (char *)ipha;
9499 goto param_prob;
9500 }
9501 break;
9502 case IPOPT_TS:
9503 /*
9504 * Verify that length >= 5 and that there is either
9505 * room for another timestamp or that the overflow
9506 * counter is not maxed out.
9507 */
9508 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9509 if (optlen < IPOPT_MINLEN_IT) {
9510 goto param_prob;
9511 }
9512 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9513 ip1dbg((
9514 "ip_input_options: bad option offset\n"));
9515 code = (char *)&opt[IPOPT_OFFSET] -
9516 (char *)ipha;
9517 goto param_prob;
9518 }
9519 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9520 case IPOPT_TS_TSONLY:
9521 off = IPOPT_TS_TIMELEN;
9522 break;
9523 case IPOPT_TS_TSANDADDR:
9524 case IPOPT_TS_PRESPEC:
9525 case IPOPT_TS_PRESPEC_RFC791:
9526 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9527 break;
9528 default:
9529 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9530 (char *)ipha;
9531 goto param_prob;
9532 }
9533 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9534 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9535 /*
9536 * No room and the overflow counter is 15
9537 * already.
9538 */
9539 goto param_prob;
9540 }
9541 break;
9542 }
9543 }
9544
9545 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9546 return (dst);
9547 }
9548
9549 ip1dbg(("ip_input_options: error processing IP options."));
9550 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9551
9552 param_prob:
9553 /* make sure we clear any indication of a hardware checksum */
9554 DB_CKSUMFLAGS(mp) = 0;
9555 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9556 icmp_param_problem(mp, (uint8_t)code, ira);
9557 *errorp = -1;
9558 return (dst);
9559
9560 bad_src_route:
9561 /* make sure we clear any indication of a hardware checksum */
9562 DB_CKSUMFLAGS(mp) = 0;
9563 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9564 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9565 *errorp = -1;
9566 return (dst);
9567 }
9568
9569 /*
9570 * IP & ICMP info in >=14 msg's ...
9571 * - ip fixed part (mib2_ip_t)
9572 * - icmp fixed part (mib2_icmp_t)
9573 * - ipAddrEntryTable (ip 20) all IPv4 ipifs
9574 * - ipRouteEntryTable (ip 21) all IPv4 IREs
9575 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries
9576 * - ipRouteAttributeTable (ip 102) labeled routes
9577 * - ip multicast membership (ip_member_t)
9578 * - ip multicast source filtering (ip_grpsrc_t)
9579 * - igmp fixed part (struct igmpstat)
9580 * - multicast routing stats (struct mrtstat)
9581 * - multicast routing vifs (array of struct vifctl)
9582 * - multicast routing routes (array of struct mfcctl)
9583 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9584 * One per ill plus one generic
9585 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9586 * One per ill plus one generic
9587 * - ipv6RouteEntry all IPv6 IREs
9588 * - ipv6RouteAttributeTable (ip6 102) labeled routes
9589 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries
9590 * - ipv6AddrEntry all IPv6 ipifs
9591 * - ipv6 multicast membership (ipv6_member_t)
9592 * - ipv6 multicast source filtering (ipv6_grpsrc_t)
9593 *
9594 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9595 * already filled in by the caller.
9596 * If legacy_req is true then MIB structures needs to be truncated to their
9597 * legacy sizes before being returned.
9598 * Return value of 0 indicates that no messages were sent and caller
9599 * should free mpctl.
9600 */
9601 int
9602 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9603 {
9604 ip_stack_t *ipst;
9605 sctp_stack_t *sctps;
9606
9607 if (q->q_next != NULL) {
9608 ipst = ILLQ_TO_IPST(q);
9609 } else {
9610 ipst = CONNQ_TO_IPST(q);
9611 }
9612 ASSERT(ipst != NULL);
9613 sctps = ipst->ips_netstack->netstack_sctp;
9614
9615 if (mpctl == NULL || mpctl->b_cont == NULL) {
9616 return (0);
9617 }
9618
9619 /*
9620 * For the purposes of the (broken) packet shell use
9621 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9622 * to make TCP and UDP appear first in the list of mib items.
9623 * TBD: We could expand this and use it in netstat so that
9624 * the kernel doesn't have to produce large tables (connections,
9625 * routes, etc) when netstat only wants the statistics or a particular
9626 * table.
9627 */
9628 if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9629 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9630 return (1);
9631 }
9632 }
9633
9634 if (level != MIB2_TCP) {
9635 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9636 return (1);
9637 }
9638 }
9639
9640 if (level != MIB2_UDP) {
9641 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9642 return (1);
9643 }
9644 }
9645
9646 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9647 ipst, legacy_req)) == NULL) {
9648 return (1);
9649 }
9650
9651 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9652 legacy_req)) == NULL) {
9653 return (1);
9654 }
9655
9656 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9657 return (1);
9658 }
9659
9660 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9661 return (1);
9662 }
9663
9664 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9665 return (1);
9666 }
9667
9668 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9669 return (1);
9670 }
9671
9672 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9673 legacy_req)) == NULL) {
9674 return (1);
9675 }
9676
9677 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9678 legacy_req)) == NULL) {
9679 return (1);
9680 }
9681
9682 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9683 return (1);
9684 }
9685
9686 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9687 return (1);
9688 }
9689
9690 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9691 return (1);
9692 }
9693
9694 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9695 return (1);
9696 }
9697
9698 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9699 return (1);
9700 }
9701
9702 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9703 return (1);
9704 }
9705
9706 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9707 if (mpctl == NULL)
9708 return (1);
9709
9710 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9711 if (mpctl == NULL)
9712 return (1);
9713
9714 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9715 return (1);
9716 }
9717 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9718 return (1);
9719 }
9720 freemsg(mpctl);
9721 return (1);
9722 }
9723
9724 /* Get global (legacy) IPv4 statistics */
9725 static mblk_t *
9726 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9727 ip_stack_t *ipst, boolean_t legacy_req)
9728 {
9729 mib2_ip_t old_ip_mib;
9730 struct opthdr *optp;
9731 mblk_t *mp2ctl;
9732 mib2_ipAddrEntry_t mae;
9733
9734 /*
9735 * make a copy of the original message
9736 */
9737 mp2ctl = copymsg(mpctl);
9738
9739 /* fixed length IP structure... */
9740 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9741 optp->level = MIB2_IP;
9742 optp->name = 0;
9743 SET_MIB(old_ip_mib.ipForwarding,
9744 (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9745 SET_MIB(old_ip_mib.ipDefaultTTL,
9746 (uint32_t)ipst->ips_ip_def_ttl);
9747 SET_MIB(old_ip_mib.ipReasmTimeout,
9748 ipst->ips_ip_reassembly_timeout);
9749 SET_MIB(old_ip_mib.ipAddrEntrySize,
9750 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9751 sizeof (mib2_ipAddrEntry_t));
9752 SET_MIB(old_ip_mib.ipRouteEntrySize,
9753 sizeof (mib2_ipRouteEntry_t));
9754 SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9755 sizeof (mib2_ipNetToMediaEntry_t));
9756 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9757 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9758 SET_MIB(old_ip_mib.ipRouteAttributeSize,
9759 sizeof (mib2_ipAttributeEntry_t));
9760 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9761 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9762
9763 /*
9764 * Grab the statistics from the new IP MIB
9765 */
9766 SET_MIB(old_ip_mib.ipInReceives,
9767 (uint32_t)ipmib->ipIfStatsHCInReceives);
9768 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9769 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9770 SET_MIB(old_ip_mib.ipForwDatagrams,
9771 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9772 SET_MIB(old_ip_mib.ipInUnknownProtos,
9773 ipmib->ipIfStatsInUnknownProtos);
9774 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9775 SET_MIB(old_ip_mib.ipInDelivers,
9776 (uint32_t)ipmib->ipIfStatsHCInDelivers);
9777 SET_MIB(old_ip_mib.ipOutRequests,
9778 (uint32_t)ipmib->ipIfStatsHCOutRequests);
9779 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9780 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9781 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9782 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9783 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9784 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9785 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9786 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9787
9788 /* ipRoutingDiscards is not being used */
9789 SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9790 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9791 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9792 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9793 SET_MIB(old_ip_mib.ipReasmDuplicates,
9794 ipmib->ipIfStatsReasmDuplicates);
9795 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9796 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9797 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9798 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9799 SET_MIB(old_ip_mib.rawipInOverflows,
9800 ipmib->rawipIfStatsInOverflows);
9801
9802 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9803 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9804 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9805 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9806 SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9807 ipmib->ipIfStatsOutSwitchIPVersion);
9808
9809 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9810 (int)sizeof (old_ip_mib))) {
9811 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9812 (uint_t)sizeof (old_ip_mib)));
9813 }
9814
9815 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9816 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9817 (int)optp->level, (int)optp->name, (int)optp->len));
9818 qreply(q, mpctl);
9819 return (mp2ctl);
9820 }
9821
9822 /* Per interface IPv4 statistics */
9823 static mblk_t *
9824 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9825 boolean_t legacy_req)
9826 {
9827 struct opthdr *optp;
9828 mblk_t *mp2ctl;
9829 ill_t *ill;
9830 ill_walk_context_t ctx;
9831 mblk_t *mp_tail = NULL;
9832 mib2_ipIfStatsEntry_t global_ip_mib;
9833 mib2_ipAddrEntry_t mae;
9834
9835 /*
9836 * Make a copy of the original message
9837 */
9838 mp2ctl = copymsg(mpctl);
9839
9840 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9841 optp->level = MIB2_IP;
9842 optp->name = MIB2_IP_TRAFFIC_STATS;
9843 /* Include "unknown interface" ip_mib */
9844 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9845 ipst->ips_ip_mib.ipIfStatsIfIndex =
9846 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9847 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9848 (ipst->ips_ip_forwarding ? 1 : 2));
9849 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9850 (uint32_t)ipst->ips_ip_def_ttl);
9851 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9852 sizeof (mib2_ipIfStatsEntry_t));
9853 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9854 sizeof (mib2_ipAddrEntry_t));
9855 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9856 sizeof (mib2_ipRouteEntry_t));
9857 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9858 sizeof (mib2_ipNetToMediaEntry_t));
9859 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9860 sizeof (ip_member_t));
9861 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9862 sizeof (ip_grpsrc_t));
9863
9864 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9865
9866 if (legacy_req) {
9867 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9868 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9869 }
9870
9871 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9872 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9873 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9874 "failed to allocate %u bytes\n",
9875 (uint_t)sizeof (global_ip_mib)));
9876 }
9877
9878 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9879 ill = ILL_START_WALK_V4(&ctx, ipst);
9880 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9881 ill->ill_ip_mib->ipIfStatsIfIndex =
9882 ill->ill_phyint->phyint_ifindex;
9883 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9884 (ipst->ips_ip_forwarding ? 1 : 2));
9885 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9886 (uint32_t)ipst->ips_ip_def_ttl);
9887
9888 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9889 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9890 (char *)ill->ill_ip_mib,
9891 (int)sizeof (*ill->ill_ip_mib))) {
9892 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9893 "failed to allocate %u bytes\n",
9894 (uint_t)sizeof (*ill->ill_ip_mib)));
9895 }
9896 }
9897 rw_exit(&ipst->ips_ill_g_lock);
9898
9899 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9900 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9901 "level %d, name %d, len %d\n",
9902 (int)optp->level, (int)optp->name, (int)optp->len));
9903 qreply(q, mpctl);
9904
9905 if (mp2ctl == NULL)
9906 return (NULL);
9907
9908 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9909 legacy_req));
9910 }
9911
9912 /* Global IPv4 ICMP statistics */
9913 static mblk_t *
9914 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9915 {
9916 struct opthdr *optp;
9917 mblk_t *mp2ctl;
9918
9919 /*
9920 * Make a copy of the original message
9921 */
9922 mp2ctl = copymsg(mpctl);
9923
9924 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9925 optp->level = MIB2_ICMP;
9926 optp->name = 0;
9927 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9928 (int)sizeof (ipst->ips_icmp_mib))) {
9929 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9930 (uint_t)sizeof (ipst->ips_icmp_mib)));
9931 }
9932 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9933 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9934 (int)optp->level, (int)optp->name, (int)optp->len));
9935 qreply(q, mpctl);
9936 return (mp2ctl);
9937 }
9938
9939 /* Global IPv4 IGMP statistics */
9940 static mblk_t *
9941 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9942 {
9943 struct opthdr *optp;
9944 mblk_t *mp2ctl;
9945
9946 /*
9947 * make a copy of the original message
9948 */
9949 mp2ctl = copymsg(mpctl);
9950
9951 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9952 optp->level = EXPER_IGMP;
9953 optp->name = 0;
9954 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9955 (int)sizeof (ipst->ips_igmpstat))) {
9956 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9957 (uint_t)sizeof (ipst->ips_igmpstat)));
9958 }
9959 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9960 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9961 (int)optp->level, (int)optp->name, (int)optp->len));
9962 qreply(q, mpctl);
9963 return (mp2ctl);
9964 }
9965
9966 /* Global IPv4 Multicast Routing statistics */
9967 static mblk_t *
9968 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9969 {
9970 struct opthdr *optp;
9971 mblk_t *mp2ctl;
9972
9973 /*
9974 * make a copy of the original message
9975 */
9976 mp2ctl = copymsg(mpctl);
9977
9978 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9979 optp->level = EXPER_DVMRP;
9980 optp->name = 0;
9981 if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9982 ip0dbg(("ip_mroute_stats: failed\n"));
9983 }
9984 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9985 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9986 (int)optp->level, (int)optp->name, (int)optp->len));
9987 qreply(q, mpctl);
9988 return (mp2ctl);
9989 }
9990
9991 /* IPv4 address information */
9992 static mblk_t *
9993 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9994 boolean_t legacy_req)
9995 {
9996 struct opthdr *optp;
9997 mblk_t *mp2ctl;
9998 mblk_t *mp_tail = NULL;
9999 ill_t *ill;
10000 ipif_t *ipif;
10001 uint_t bitval;
10002 mib2_ipAddrEntry_t mae;
10003 size_t mae_size;
10004 zoneid_t zoneid;
10005 ill_walk_context_t ctx;
10006
10007 /*
10008 * make a copy of the original message
10009 */
10010 mp2ctl = copymsg(mpctl);
10011
10012 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10013 sizeof (mib2_ipAddrEntry_t);
10014
10015 /* ipAddrEntryTable */
10016
10017 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10018 optp->level = MIB2_IP;
10019 optp->name = MIB2_IP_ADDR;
10020 zoneid = Q_TO_CONN(q)->conn_zoneid;
10021
10022 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10023 ill = ILL_START_WALK_V4(&ctx, ipst);
10024 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10025 for (ipif = ill->ill_ipif; ipif != NULL;
10026 ipif = ipif->ipif_next) {
10027 if (ipif->ipif_zoneid != zoneid &&
10028 ipif->ipif_zoneid != ALL_ZONES)
10029 continue;
10030 /* Sum of count from dead IRE_LO* and our current */
10031 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10032 if (ipif->ipif_ire_local != NULL) {
10033 mae.ipAdEntInfo.ae_ibcnt +=
10034 ipif->ipif_ire_local->ire_ib_pkt_count;
10035 }
10036 mae.ipAdEntInfo.ae_obcnt = 0;
10037 mae.ipAdEntInfo.ae_focnt = 0;
10038
10039 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10040 OCTET_LENGTH);
10041 mae.ipAdEntIfIndex.o_length =
10042 mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10043 mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10044 mae.ipAdEntNetMask = ipif->ipif_net_mask;
10045 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10046 mae.ipAdEntInfo.ae_subnet_len =
10047 ip_mask_to_plen(ipif->ipif_net_mask);
10048 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10049 for (bitval = 1;
10050 bitval &&
10051 !(bitval & ipif->ipif_brd_addr);
10052 bitval <<= 1)
10053 noop;
10054 mae.ipAdEntBcastAddr = bitval;
10055 mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10056 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10057 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric;
10058 mae.ipAdEntInfo.ae_broadcast_addr =
10059 ipif->ipif_brd_addr;
10060 mae.ipAdEntInfo.ae_pp_dst_addr =
10061 ipif->ipif_pp_dst_addr;
10062 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10063 ill->ill_flags | ill->ill_phyint->phyint_flags;
10064 mae.ipAdEntRetransmitTime =
10065 ill->ill_reachable_retrans_time;
10066
10067 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10068 (char *)&mae, (int)mae_size)) {
10069 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10070 "allocate %u bytes\n", (uint_t)mae_size));
10071 }
10072 }
10073 }
10074 rw_exit(&ipst->ips_ill_g_lock);
10075
10076 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10077 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10078 (int)optp->level, (int)optp->name, (int)optp->len));
10079 qreply(q, mpctl);
10080 return (mp2ctl);
10081 }
10082
10083 /* IPv6 address information */
10084 static mblk_t *
10085 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10086 boolean_t legacy_req)
10087 {
10088 struct opthdr *optp;
10089 mblk_t *mp2ctl;
10090 mblk_t *mp_tail = NULL;
10091 ill_t *ill;
10092 ipif_t *ipif;
10093 mib2_ipv6AddrEntry_t mae6;
10094 size_t mae6_size;
10095 zoneid_t zoneid;
10096 ill_walk_context_t ctx;
10097
10098 /*
10099 * make a copy of the original message
10100 */
10101 mp2ctl = copymsg(mpctl);
10102
10103 mae6_size = (legacy_req) ?
10104 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10105 sizeof (mib2_ipv6AddrEntry_t);
10106
10107 /* ipv6AddrEntryTable */
10108
10109 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10110 optp->level = MIB2_IP6;
10111 optp->name = MIB2_IP6_ADDR;
10112 zoneid = Q_TO_CONN(q)->conn_zoneid;
10113
10114 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10115 ill = ILL_START_WALK_V6(&ctx, ipst);
10116 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10117 for (ipif = ill->ill_ipif; ipif != NULL;
10118 ipif = ipif->ipif_next) {
10119 if (ipif->ipif_zoneid != zoneid &&
10120 ipif->ipif_zoneid != ALL_ZONES)
10121 continue;
10122 /* Sum of count from dead IRE_LO* and our current */
10123 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10124 if (ipif->ipif_ire_local != NULL) {
10125 mae6.ipv6AddrInfo.ae_ibcnt +=
10126 ipif->ipif_ire_local->ire_ib_pkt_count;
10127 }
10128 mae6.ipv6AddrInfo.ae_obcnt = 0;
10129 mae6.ipv6AddrInfo.ae_focnt = 0;
10130
10131 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10132 OCTET_LENGTH);
10133 mae6.ipv6AddrIfIndex.o_length =
10134 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10135 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10136 mae6.ipv6AddrPfxLength =
10137 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10138 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10139 mae6.ipv6AddrInfo.ae_subnet_len =
10140 mae6.ipv6AddrPfxLength;
10141 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10142
10143 /* Type: stateless(1), stateful(2), unknown(3) */
10144 if (ipif->ipif_flags & IPIF_ADDRCONF)
10145 mae6.ipv6AddrType = 1;
10146 else
10147 mae6.ipv6AddrType = 2;
10148 /* Anycast: true(1), false(2) */
10149 if (ipif->ipif_flags & IPIF_ANYCAST)
10150 mae6.ipv6AddrAnycastFlag = 1;
10151 else
10152 mae6.ipv6AddrAnycastFlag = 2;
10153
10154 /*
10155 * Address status: preferred(1), deprecated(2),
10156 * invalid(3), inaccessible(4), unknown(5)
10157 */
10158 if (ipif->ipif_flags & IPIF_NOLOCAL)
10159 mae6.ipv6AddrStatus = 3;
10160 else if (ipif->ipif_flags & IPIF_DEPRECATED)
10161 mae6.ipv6AddrStatus = 2;
10162 else
10163 mae6.ipv6AddrStatus = 1;
10164 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10165 mae6.ipv6AddrInfo.ae_metric =
10166 ipif->ipif_ill->ill_metric;
10167 mae6.ipv6AddrInfo.ae_pp_dst_addr =
10168 ipif->ipif_v6pp_dst_addr;
10169 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10170 ill->ill_flags | ill->ill_phyint->phyint_flags;
10171 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10172 mae6.ipv6AddrIdentifier = ill->ill_token;
10173 mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10174 mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10175 mae6.ipv6AddrRetransmitTime =
10176 ill->ill_reachable_retrans_time;
10177 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10178 (char *)&mae6, (int)mae6_size)) {
10179 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10180 "allocate %u bytes\n",
10181 (uint_t)mae6_size));
10182 }
10183 }
10184 }
10185 rw_exit(&ipst->ips_ill_g_lock);
10186
10187 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10188 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10189 (int)optp->level, (int)optp->name, (int)optp->len));
10190 qreply(q, mpctl);
10191 return (mp2ctl);
10192 }
10193
10194 /* IPv4 multicast group membership. */
10195 static mblk_t *
10196 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10197 {
10198 struct opthdr *optp;
10199 mblk_t *mp2ctl;
10200 ill_t *ill;
10201 ipif_t *ipif;
10202 ilm_t *ilm;
10203 ip_member_t ipm;
10204 mblk_t *mp_tail = NULL;
10205 ill_walk_context_t ctx;
10206 zoneid_t zoneid;
10207
10208 /*
10209 * make a copy of the original message
10210 */
10211 mp2ctl = copymsg(mpctl);
10212 zoneid = Q_TO_CONN(q)->conn_zoneid;
10213
10214 /* ipGroupMember table */
10215 optp = (struct opthdr *)&mpctl->b_rptr[
10216 sizeof (struct T_optmgmt_ack)];
10217 optp->level = MIB2_IP;
10218 optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10219
10220 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10221 ill = ILL_START_WALK_V4(&ctx, ipst);
10222 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10223 /* Make sure the ill isn't going away. */
10224 if (!ill_check_and_refhold(ill))
10225 continue;
10226 rw_exit(&ipst->ips_ill_g_lock);
10227 rw_enter(&ill->ill_mcast_lock, RW_READER);
10228 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10229 if (ilm->ilm_zoneid != zoneid &&
10230 ilm->ilm_zoneid != ALL_ZONES)
10231 continue;
10232
10233 /* Is there an ipif for ilm_ifaddr? */
10234 for (ipif = ill->ill_ipif; ipif != NULL;
10235 ipif = ipif->ipif_next) {
10236 if (!IPIF_IS_CONDEMNED(ipif) &&
10237 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10238 ilm->ilm_ifaddr != INADDR_ANY)
10239 break;
10240 }
10241 if (ipif != NULL) {
10242 ipif_get_name(ipif,
10243 ipm.ipGroupMemberIfIndex.o_bytes,
10244 OCTET_LENGTH);
10245 } else {
10246 ill_get_name(ill,
10247 ipm.ipGroupMemberIfIndex.o_bytes,
10248 OCTET_LENGTH);
10249 }
10250 ipm.ipGroupMemberIfIndex.o_length =
10251 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10252
10253 ipm.ipGroupMemberAddress = ilm->ilm_addr;
10254 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10255 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10256 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10257 (char *)&ipm, (int)sizeof (ipm))) {
10258 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10259 "failed to allocate %u bytes\n",
10260 (uint_t)sizeof (ipm)));
10261 }
10262 }
10263 rw_exit(&ill->ill_mcast_lock);
10264 ill_refrele(ill);
10265 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10266 }
10267 rw_exit(&ipst->ips_ill_g_lock);
10268 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10269 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10270 (int)optp->level, (int)optp->name, (int)optp->len));
10271 qreply(q, mpctl);
10272 return (mp2ctl);
10273 }
10274
10275 /* IPv6 multicast group membership. */
10276 static mblk_t *
10277 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10278 {
10279 struct opthdr *optp;
10280 mblk_t *mp2ctl;
10281 ill_t *ill;
10282 ilm_t *ilm;
10283 ipv6_member_t ipm6;
10284 mblk_t *mp_tail = NULL;
10285 ill_walk_context_t ctx;
10286 zoneid_t zoneid;
10287
10288 /*
10289 * make a copy of the original message
10290 */
10291 mp2ctl = copymsg(mpctl);
10292 zoneid = Q_TO_CONN(q)->conn_zoneid;
10293
10294 /* ip6GroupMember table */
10295 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10296 optp->level = MIB2_IP6;
10297 optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10298
10299 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10300 ill = ILL_START_WALK_V6(&ctx, ipst);
10301 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10302 /* Make sure the ill isn't going away. */
10303 if (!ill_check_and_refhold(ill))
10304 continue;
10305 rw_exit(&ipst->ips_ill_g_lock);
10306 /*
10307 * Normally we don't have any members on under IPMP interfaces.
10308 * We report them as a debugging aid.
10309 */
10310 rw_enter(&ill->ill_mcast_lock, RW_READER);
10311 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10312 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10313 if (ilm->ilm_zoneid != zoneid &&
10314 ilm->ilm_zoneid != ALL_ZONES)
10315 continue; /* not this zone */
10316 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10317 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10318 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10319 if (!snmp_append_data2(mpctl->b_cont,
10320 &mp_tail,
10321 (char *)&ipm6, (int)sizeof (ipm6))) {
10322 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10323 "failed to allocate %u bytes\n",
10324 (uint_t)sizeof (ipm6)));
10325 }
10326 }
10327 rw_exit(&ill->ill_mcast_lock);
10328 ill_refrele(ill);
10329 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10330 }
10331 rw_exit(&ipst->ips_ill_g_lock);
10332
10333 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10334 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10335 (int)optp->level, (int)optp->name, (int)optp->len));
10336 qreply(q, mpctl);
10337 return (mp2ctl);
10338 }
10339
10340 /* IP multicast filtered sources */
10341 static mblk_t *
10342 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10343 {
10344 struct opthdr *optp;
10345 mblk_t *mp2ctl;
10346 ill_t *ill;
10347 ipif_t *ipif;
10348 ilm_t *ilm;
10349 ip_grpsrc_t ips;
10350 mblk_t *mp_tail = NULL;
10351 ill_walk_context_t ctx;
10352 zoneid_t zoneid;
10353 int i;
10354 slist_t *sl;
10355
10356 /*
10357 * make a copy of the original message
10358 */
10359 mp2ctl = copymsg(mpctl);
10360 zoneid = Q_TO_CONN(q)->conn_zoneid;
10361
10362 /* ipGroupSource table */
10363 optp = (struct opthdr *)&mpctl->b_rptr[
10364 sizeof (struct T_optmgmt_ack)];
10365 optp->level = MIB2_IP;
10366 optp->name = EXPER_IP_GROUP_SOURCES;
10367
10368 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10369 ill = ILL_START_WALK_V4(&ctx, ipst);
10370 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10371 /* Make sure the ill isn't going away. */
10372 if (!ill_check_and_refhold(ill))
10373 continue;
10374 rw_exit(&ipst->ips_ill_g_lock);
10375 rw_enter(&ill->ill_mcast_lock, RW_READER);
10376 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10377 sl = ilm->ilm_filter;
10378 if (ilm->ilm_zoneid != zoneid &&
10379 ilm->ilm_zoneid != ALL_ZONES)
10380 continue;
10381 if (SLIST_IS_EMPTY(sl))
10382 continue;
10383
10384 /* Is there an ipif for ilm_ifaddr? */
10385 for (ipif = ill->ill_ipif; ipif != NULL;
10386 ipif = ipif->ipif_next) {
10387 if (!IPIF_IS_CONDEMNED(ipif) &&
10388 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10389 ilm->ilm_ifaddr != INADDR_ANY)
10390 break;
10391 }
10392 if (ipif != NULL) {
10393 ipif_get_name(ipif,
10394 ips.ipGroupSourceIfIndex.o_bytes,
10395 OCTET_LENGTH);
10396 } else {
10397 ill_get_name(ill,
10398 ips.ipGroupSourceIfIndex.o_bytes,
10399 OCTET_LENGTH);
10400 }
10401 ips.ipGroupSourceIfIndex.o_length =
10402 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10403
10404 ips.ipGroupSourceGroup = ilm->ilm_addr;
10405 for (i = 0; i < sl->sl_numsrc; i++) {
10406 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10407 continue;
10408 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10409 ips.ipGroupSourceAddress);
10410 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10411 (char *)&ips, (int)sizeof (ips)) == 0) {
10412 ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10413 " failed to allocate %u bytes\n",
10414 (uint_t)sizeof (ips)));
10415 }
10416 }
10417 }
10418 rw_exit(&ill->ill_mcast_lock);
10419 ill_refrele(ill);
10420 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10421 }
10422 rw_exit(&ipst->ips_ill_g_lock);
10423 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10424 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10425 (int)optp->level, (int)optp->name, (int)optp->len));
10426 qreply(q, mpctl);
10427 return (mp2ctl);
10428 }
10429
10430 /* IPv6 multicast filtered sources. */
10431 static mblk_t *
10432 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10433 {
10434 struct opthdr *optp;
10435 mblk_t *mp2ctl;
10436 ill_t *ill;
10437 ilm_t *ilm;
10438 ipv6_grpsrc_t ips6;
10439 mblk_t *mp_tail = NULL;
10440 ill_walk_context_t ctx;
10441 zoneid_t zoneid;
10442 int i;
10443 slist_t *sl;
10444
10445 /*
10446 * make a copy of the original message
10447 */
10448 mp2ctl = copymsg(mpctl);
10449 zoneid = Q_TO_CONN(q)->conn_zoneid;
10450
10451 /* ip6GroupMember table */
10452 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10453 optp->level = MIB2_IP6;
10454 optp->name = EXPER_IP6_GROUP_SOURCES;
10455
10456 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10457 ill = ILL_START_WALK_V6(&ctx, ipst);
10458 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10459 /* Make sure the ill isn't going away. */
10460 if (!ill_check_and_refhold(ill))
10461 continue;
10462 rw_exit(&ipst->ips_ill_g_lock);
10463 /*
10464 * Normally we don't have any members on under IPMP interfaces.
10465 * We report them as a debugging aid.
10466 */
10467 rw_enter(&ill->ill_mcast_lock, RW_READER);
10468 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10469 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10470 sl = ilm->ilm_filter;
10471 if (ilm->ilm_zoneid != zoneid &&
10472 ilm->ilm_zoneid != ALL_ZONES)
10473 continue;
10474 if (SLIST_IS_EMPTY(sl))
10475 continue;
10476 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10477 for (i = 0; i < sl->sl_numsrc; i++) {
10478 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10479 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10480 (char *)&ips6, (int)sizeof (ips6))) {
10481 ip1dbg(("ip_snmp_get_mib2_ip6_"
10482 "group_src: failed to allocate "
10483 "%u bytes\n",
10484 (uint_t)sizeof (ips6)));
10485 }
10486 }
10487 }
10488 rw_exit(&ill->ill_mcast_lock);
10489 ill_refrele(ill);
10490 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10491 }
10492 rw_exit(&ipst->ips_ill_g_lock);
10493
10494 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10495 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10496 (int)optp->level, (int)optp->name, (int)optp->len));
10497 qreply(q, mpctl);
10498 return (mp2ctl);
10499 }
10500
10501 /* Multicast routing virtual interface table. */
10502 static mblk_t *
10503 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10504 {
10505 struct opthdr *optp;
10506 mblk_t *mp2ctl;
10507
10508 /*
10509 * make a copy of the original message
10510 */
10511 mp2ctl = copymsg(mpctl);
10512
10513 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10514 optp->level = EXPER_DVMRP;
10515 optp->name = EXPER_DVMRP_VIF;
10516 if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10517 ip0dbg(("ip_mroute_vif: failed\n"));
10518 }
10519 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10520 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10521 (int)optp->level, (int)optp->name, (int)optp->len));
10522 qreply(q, mpctl);
10523 return (mp2ctl);
10524 }
10525
10526 /* Multicast routing table. */
10527 static mblk_t *
10528 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10529 {
10530 struct opthdr *optp;
10531 mblk_t *mp2ctl;
10532
10533 /*
10534 * make a copy of the original message
10535 */
10536 mp2ctl = copymsg(mpctl);
10537
10538 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10539 optp->level = EXPER_DVMRP;
10540 optp->name = EXPER_DVMRP_MRT;
10541 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10542 ip0dbg(("ip_mroute_mrt: failed\n"));
10543 }
10544 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10545 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10546 (int)optp->level, (int)optp->name, (int)optp->len));
10547 qreply(q, mpctl);
10548 return (mp2ctl);
10549 }
10550
10551 /*
10552 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10553 * in one IRE walk.
10554 */
10555 static mblk_t *
10556 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10557 ip_stack_t *ipst)
10558 {
10559 struct opthdr *optp;
10560 mblk_t *mp2ctl; /* Returned */
10561 mblk_t *mp3ctl; /* nettomedia */
10562 mblk_t *mp4ctl; /* routeattrs */
10563 iproutedata_t ird;
10564 zoneid_t zoneid;
10565
10566 /*
10567 * make copies of the original message
10568 * - mp2ctl is returned unchanged to the caller for its use
10569 * - mpctl is sent upstream as ipRouteEntryTable
10570 * - mp3ctl is sent upstream as ipNetToMediaEntryTable
10571 * - mp4ctl is sent upstream as ipRouteAttributeTable
10572 */
10573 mp2ctl = copymsg(mpctl);
10574 mp3ctl = copymsg(mpctl);
10575 mp4ctl = copymsg(mpctl);
10576 if (mp3ctl == NULL || mp4ctl == NULL) {
10577 freemsg(mp4ctl);
10578 freemsg(mp3ctl);
10579 freemsg(mp2ctl);
10580 freemsg(mpctl);
10581 return (NULL);
10582 }
10583
10584 bzero(&ird, sizeof (ird));
10585
10586 ird.ird_route.lp_head = mpctl->b_cont;
10587 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10588 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10589 /*
10590 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10591 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10592 * intended a temporary solution until a proper MIB API is provided
10593 * that provides complete filtering/caller-opt-in.
10594 */
10595 if (level == EXPER_IP_AND_ALL_IRES)
10596 ird.ird_flags |= IRD_REPORT_ALL;
10597
10598 zoneid = Q_TO_CONN(q)->conn_zoneid;
10599 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10600
10601 /* ipRouteEntryTable in mpctl */
10602 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10603 optp->level = MIB2_IP;
10604 optp->name = MIB2_IP_ROUTE;
10605 optp->len = msgdsize(ird.ird_route.lp_head);
10606 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10607 (int)optp->level, (int)optp->name, (int)optp->len));
10608 qreply(q, mpctl);
10609
10610 /* ipNetToMediaEntryTable in mp3ctl */
10611 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10612
10613 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10614 optp->level = MIB2_IP;
10615 optp->name = MIB2_IP_MEDIA;
10616 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10617 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10618 (int)optp->level, (int)optp->name, (int)optp->len));
10619 qreply(q, mp3ctl);
10620
10621 /* ipRouteAttributeTable in mp4ctl */
10622 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10623 optp->level = MIB2_IP;
10624 optp->name = EXPER_IP_RTATTR;
10625 optp->len = msgdsize(ird.ird_attrs.lp_head);
10626 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10627 (int)optp->level, (int)optp->name, (int)optp->len));
10628 if (optp->len == 0)
10629 freemsg(mp4ctl);
10630 else
10631 qreply(q, mp4ctl);
10632
10633 return (mp2ctl);
10634 }
10635
10636 /*
10637 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10638 * ipv6NetToMediaEntryTable in an NDP walk.
10639 */
10640 static mblk_t *
10641 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10642 ip_stack_t *ipst)
10643 {
10644 struct opthdr *optp;
10645 mblk_t *mp2ctl; /* Returned */
10646 mblk_t *mp3ctl; /* nettomedia */
10647 mblk_t *mp4ctl; /* routeattrs */
10648 iproutedata_t ird;
10649 zoneid_t zoneid;
10650
10651 /*
10652 * make copies of the original message
10653 * - mp2ctl is returned unchanged to the caller for its use
10654 * - mpctl is sent upstream as ipv6RouteEntryTable
10655 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10656 * - mp4ctl is sent upstream as ipv6RouteAttributeTable
10657 */
10658 mp2ctl = copymsg(mpctl);
10659 mp3ctl = copymsg(mpctl);
10660 mp4ctl = copymsg(mpctl);
10661 if (mp3ctl == NULL || mp4ctl == NULL) {
10662 freemsg(mp4ctl);
10663 freemsg(mp3ctl);
10664 freemsg(mp2ctl);
10665 freemsg(mpctl);
10666 return (NULL);
10667 }
10668
10669 bzero(&ird, sizeof (ird));
10670
10671 ird.ird_route.lp_head = mpctl->b_cont;
10672 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10673 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10674 /*
10675 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10676 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10677 * intended a temporary solution until a proper MIB API is provided
10678 * that provides complete filtering/caller-opt-in.
10679 */
10680 if (level == EXPER_IP_AND_ALL_IRES)
10681 ird.ird_flags |= IRD_REPORT_ALL;
10682
10683 zoneid = Q_TO_CONN(q)->conn_zoneid;
10684 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10685
10686 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10687 optp->level = MIB2_IP6;
10688 optp->name = MIB2_IP6_ROUTE;
10689 optp->len = msgdsize(ird.ird_route.lp_head);
10690 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10691 (int)optp->level, (int)optp->name, (int)optp->len));
10692 qreply(q, mpctl);
10693
10694 /* ipv6NetToMediaEntryTable in mp3ctl */
10695 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10696
10697 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10698 optp->level = MIB2_IP6;
10699 optp->name = MIB2_IP6_MEDIA;
10700 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10701 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10702 (int)optp->level, (int)optp->name, (int)optp->len));
10703 qreply(q, mp3ctl);
10704
10705 /* ipv6RouteAttributeTable in mp4ctl */
10706 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10707 optp->level = MIB2_IP6;
10708 optp->name = EXPER_IP_RTATTR;
10709 optp->len = msgdsize(ird.ird_attrs.lp_head);
10710 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10711 (int)optp->level, (int)optp->name, (int)optp->len));
10712 if (optp->len == 0)
10713 freemsg(mp4ctl);
10714 else
10715 qreply(q, mp4ctl);
10716
10717 return (mp2ctl);
10718 }
10719
10720 /*
10721 * IPv6 mib: One per ill
10722 */
10723 static mblk_t *
10724 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10725 boolean_t legacy_req)
10726 {
10727 struct opthdr *optp;
10728 mblk_t *mp2ctl;
10729 ill_t *ill;
10730 ill_walk_context_t ctx;
10731 mblk_t *mp_tail = NULL;
10732 mib2_ipv6AddrEntry_t mae6;
10733 mib2_ipIfStatsEntry_t *ise;
10734 size_t ise_size, iae_size;
10735
10736 /*
10737 * Make a copy of the original message
10738 */
10739 mp2ctl = copymsg(mpctl);
10740
10741 /* fixed length IPv6 structure ... */
10742
10743 if (legacy_req) {
10744 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10745 mib2_ipIfStatsEntry_t);
10746 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10747 } else {
10748 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10749 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10750 }
10751
10752 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10753 optp->level = MIB2_IP6;
10754 optp->name = 0;
10755 /* Include "unknown interface" ip6_mib */
10756 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10757 ipst->ips_ip6_mib.ipIfStatsIfIndex =
10758 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10759 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10760 ipst->ips_ipv6_forwarding ? 1 : 2);
10761 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10762 ipst->ips_ipv6_def_hops);
10763 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10764 sizeof (mib2_ipIfStatsEntry_t));
10765 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10766 sizeof (mib2_ipv6AddrEntry_t));
10767 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10768 sizeof (mib2_ipv6RouteEntry_t));
10769 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10770 sizeof (mib2_ipv6NetToMediaEntry_t));
10771 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10772 sizeof (ipv6_member_t));
10773 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10774 sizeof (ipv6_grpsrc_t));
10775
10776 /*
10777 * Synchronize 64- and 32-bit counters
10778 */
10779 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10780 ipIfStatsHCInReceives);
10781 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10782 ipIfStatsHCInDelivers);
10783 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10784 ipIfStatsHCOutRequests);
10785 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10786 ipIfStatsHCOutForwDatagrams);
10787 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10788 ipIfStatsHCOutMcastPkts);
10789 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10790 ipIfStatsHCInMcastPkts);
10791
10792 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10793 (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10794 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10795 (uint_t)ise_size));
10796 } else if (legacy_req) {
10797 /* Adjust the EntrySize fields for legacy requests. */
10798 ise =
10799 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10800 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10801 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10802 }
10803
10804 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10805 ill = ILL_START_WALK_V6(&ctx, ipst);
10806 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10807 ill->ill_ip_mib->ipIfStatsIfIndex =
10808 ill->ill_phyint->phyint_ifindex;
10809 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10810 ipst->ips_ipv6_forwarding ? 1 : 2);
10811 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10812 ill->ill_max_hops);
10813
10814 /*
10815 * Synchronize 64- and 32-bit counters
10816 */
10817 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10818 ipIfStatsHCInReceives);
10819 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10820 ipIfStatsHCInDelivers);
10821 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10822 ipIfStatsHCOutRequests);
10823 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10824 ipIfStatsHCOutForwDatagrams);
10825 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10826 ipIfStatsHCOutMcastPkts);
10827 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10828 ipIfStatsHCInMcastPkts);
10829
10830 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10831 (char *)ill->ill_ip_mib, (int)ise_size)) {
10832 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10833 "%u bytes\n", (uint_t)ise_size));
10834 } else if (legacy_req) {
10835 /* Adjust the EntrySize fields for legacy requests. */
10836 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10837 (int)ise_size);
10838 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10839 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10840 }
10841 }
10842 rw_exit(&ipst->ips_ill_g_lock);
10843
10844 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10845 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10846 (int)optp->level, (int)optp->name, (int)optp->len));
10847 qreply(q, mpctl);
10848 return (mp2ctl);
10849 }
10850
10851 /*
10852 * ICMPv6 mib: One per ill
10853 */
10854 static mblk_t *
10855 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10856 {
10857 struct opthdr *optp;
10858 mblk_t *mp2ctl;
10859 ill_t *ill;
10860 ill_walk_context_t ctx;
10861 mblk_t *mp_tail = NULL;
10862 /*
10863 * Make a copy of the original message
10864 */
10865 mp2ctl = copymsg(mpctl);
10866
10867 /* fixed length ICMPv6 structure ... */
10868
10869 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10870 optp->level = MIB2_ICMP6;
10871 optp->name = 0;
10872 /* Include "unknown interface" icmp6_mib */
10873 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10874 MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10875 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10876 sizeof (mib2_ipv6IfIcmpEntry_t);
10877 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10878 (char *)&ipst->ips_icmp6_mib,
10879 (int)sizeof (ipst->ips_icmp6_mib))) {
10880 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10881 (uint_t)sizeof (ipst->ips_icmp6_mib)));
10882 }
10883
10884 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10885 ill = ILL_START_WALK_V6(&ctx, ipst);
10886 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10887 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10888 ill->ill_phyint->phyint_ifindex;
10889 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10890 (char *)ill->ill_icmp6_mib,
10891 (int)sizeof (*ill->ill_icmp6_mib))) {
10892 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10893 "%u bytes\n",
10894 (uint_t)sizeof (*ill->ill_icmp6_mib)));
10895 }
10896 }
10897 rw_exit(&ipst->ips_ill_g_lock);
10898
10899 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10900 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10901 (int)optp->level, (int)optp->name, (int)optp->len));
10902 qreply(q, mpctl);
10903 return (mp2ctl);
10904 }
10905
10906 /*
10907 * ire_walk routine to create both ipRouteEntryTable and
10908 * ipRouteAttributeTable in one IRE walk
10909 */
10910 static void
10911 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10912 {
10913 ill_t *ill;
10914 mib2_ipRouteEntry_t *re;
10915 mib2_ipAttributeEntry_t iaes;
10916 tsol_ire_gw_secattr_t *attrp;
10917 tsol_gc_t *gc = NULL;
10918 tsol_gcgrp_t *gcgrp = NULL;
10919 ip_stack_t *ipst = ire->ire_ipst;
10920
10921 ASSERT(ire->ire_ipversion == IPV4_VERSION);
10922
10923 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10924 if (ire->ire_testhidden)
10925 return;
10926 if (ire->ire_type & IRE_IF_CLONE)
10927 return;
10928 }
10929
10930 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10931 return;
10932
10933 if ((attrp = ire->ire_gw_secattr) != NULL) {
10934 mutex_enter(&attrp->igsa_lock);
10935 if ((gc = attrp->igsa_gc) != NULL) {
10936 gcgrp = gc->gc_grp;
10937 ASSERT(gcgrp != NULL);
10938 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10939 }
10940 mutex_exit(&attrp->igsa_lock);
10941 }
10942 /*
10943 * Return all IRE types for route table... let caller pick and choose
10944 */
10945 re->ipRouteDest = ire->ire_addr;
10946 ill = ire->ire_ill;
10947 re->ipRouteIfIndex.o_length = 0;
10948 if (ill != NULL) {
10949 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10950 re->ipRouteIfIndex.o_length =
10951 mi_strlen(re->ipRouteIfIndex.o_bytes);
10952 }
10953 re->ipRouteMetric1 = -1;
10954 re->ipRouteMetric2 = -1;
10955 re->ipRouteMetric3 = -1;
10956 re->ipRouteMetric4 = -1;
10957
10958 re->ipRouteNextHop = ire->ire_gateway_addr;
10959 /* indirect(4), direct(3), or invalid(2) */
10960 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10961 re->ipRouteType = 2;
10962 else if (ire->ire_type & IRE_ONLINK)
10963 re->ipRouteType = 3;
10964 else
10965 re->ipRouteType = 4;
10966
10967 re->ipRouteProto = -1;
10968 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10969 re->ipRouteMask = ire->ire_mask;
10970 re->ipRouteMetric5 = -1;
10971 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10972 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10973 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10974
10975 re->ipRouteInfo.re_frag_flag = 0;
10976 re->ipRouteInfo.re_rtt = 0;
10977 re->ipRouteInfo.re_src_addr = 0;
10978 re->ipRouteInfo.re_ref = ire->ire_refcnt;
10979 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count;
10980 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
10981 re->ipRouteInfo.re_flags = ire->ire_flags;
10982
10983 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10984 if (ire->ire_type & IRE_INTERFACE) {
10985 ire_t *child;
10986
10987 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10988 child = ire->ire_dep_children;
10989 while (child != NULL) {
10990 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10991 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10992 child = child->ire_dep_sib_next;
10993 }
10994 rw_exit(&ipst->ips_ire_dep_lock);
10995 }
10996
10997 if (ire->ire_flags & RTF_DYNAMIC) {
10998 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT;
10999 } else {
11000 re->ipRouteInfo.re_ire_type = ire->ire_type;
11001 }
11002
11003 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11004 (char *)re, (int)sizeof (*re))) {
11005 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11006 (uint_t)sizeof (*re)));
11007 }
11008
11009 if (gc != NULL) {
11010 iaes.iae_routeidx = ird->ird_idx;
11011 iaes.iae_doi = gc->gc_db->gcdb_doi;
11012 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11013
11014 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11015 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11016 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11017 "bytes\n", (uint_t)sizeof (iaes)));
11018 }
11019 }
11020
11021 /* bump route index for next pass */
11022 ird->ird_idx++;
11023
11024 kmem_free(re, sizeof (*re));
11025 if (gcgrp != NULL)
11026 rw_exit(&gcgrp->gcgrp_rwlock);
11027 }
11028
11029 /*
11030 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11031 */
11032 static void
11033 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11034 {
11035 ill_t *ill;
11036 mib2_ipv6RouteEntry_t *re;
11037 mib2_ipAttributeEntry_t iaes;
11038 tsol_ire_gw_secattr_t *attrp;
11039 tsol_gc_t *gc = NULL;
11040 tsol_gcgrp_t *gcgrp = NULL;
11041 ip_stack_t *ipst = ire->ire_ipst;
11042
11043 ASSERT(ire->ire_ipversion == IPV6_VERSION);
11044
11045 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11046 if (ire->ire_testhidden)
11047 return;
11048 if (ire->ire_type & IRE_IF_CLONE)
11049 return;
11050 }
11051
11052 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11053 return;
11054
11055 if ((attrp = ire->ire_gw_secattr) != NULL) {
11056 mutex_enter(&attrp->igsa_lock);
11057 if ((gc = attrp->igsa_gc) != NULL) {
11058 gcgrp = gc->gc_grp;
11059 ASSERT(gcgrp != NULL);
11060 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11061 }
11062 mutex_exit(&attrp->igsa_lock);
11063 }
11064 /*
11065 * Return all IRE types for route table... let caller pick and choose
11066 */
11067 re->ipv6RouteDest = ire->ire_addr_v6;
11068 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11069 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */
11070 re->ipv6RouteIfIndex.o_length = 0;
11071 ill = ire->ire_ill;
11072 if (ill != NULL) {
11073 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11074 re->ipv6RouteIfIndex.o_length =
11075 mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11076 }
11077
11078 ASSERT(!(ire->ire_type & IRE_BROADCAST));
11079
11080 mutex_enter(&ire->ire_lock);
11081 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11082 mutex_exit(&ire->ire_lock);
11083
11084 /* remote(4), local(3), or discard(2) */
11085 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11086 re->ipv6RouteType = 2;
11087 else if (ire->ire_type & IRE_ONLINK)
11088 re->ipv6RouteType = 3;
11089 else
11090 re->ipv6RouteType = 4;
11091
11092 re->ipv6RouteProtocol = -1;
11093 re->ipv6RoutePolicy = 0;
11094 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time;
11095 re->ipv6RouteNextHopRDI = 0;
11096 re->ipv6RouteWeight = 0;
11097 re->ipv6RouteMetric = 0;
11098 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11099 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11100 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11101
11102 re->ipv6RouteInfo.re_frag_flag = 0;
11103 re->ipv6RouteInfo.re_rtt = 0;
11104 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros;
11105 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count;
11106 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
11107 re->ipv6RouteInfo.re_ref = ire->ire_refcnt;
11108 re->ipv6RouteInfo.re_flags = ire->ire_flags;
11109
11110 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11111 if (ire->ire_type & IRE_INTERFACE) {
11112 ire_t *child;
11113
11114 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11115 child = ire->ire_dep_children;
11116 while (child != NULL) {
11117 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11118 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11119 child = child->ire_dep_sib_next;
11120 }
11121 rw_exit(&ipst->ips_ire_dep_lock);
11122 }
11123 if (ire->ire_flags & RTF_DYNAMIC) {
11124 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT;
11125 } else {
11126 re->ipv6RouteInfo.re_ire_type = ire->ire_type;
11127 }
11128
11129 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11130 (char *)re, (int)sizeof (*re))) {
11131 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11132 (uint_t)sizeof (*re)));
11133 }
11134
11135 if (gc != NULL) {
11136 iaes.iae_routeidx = ird->ird_idx;
11137 iaes.iae_doi = gc->gc_db->gcdb_doi;
11138 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11139
11140 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11141 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11142 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11143 "bytes\n", (uint_t)sizeof (iaes)));
11144 }
11145 }
11146
11147 /* bump route index for next pass */
11148 ird->ird_idx++;
11149
11150 kmem_free(re, sizeof (*re));
11151 if (gcgrp != NULL)
11152 rw_exit(&gcgrp->gcgrp_rwlock);
11153 }
11154
11155 /*
11156 * ncec_walk routine to create ipv6NetToMediaEntryTable
11157 */
11158 static void
11159 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr)
11160 {
11161 iproutedata_t *ird = ptr;
11162 ill_t *ill;
11163 mib2_ipv6NetToMediaEntry_t ntme;
11164
11165 ill = ncec->ncec_ill;
11166 /* skip arpce entries, and loopback ncec entries */
11167 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11168 return;
11169 /*
11170 * Neighbor cache entry attached to IRE with on-link
11171 * destination.
11172 * We report all IPMP groups on ncec_ill which is normally the upper.
11173 */
11174 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11175 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11176 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11177 if (ncec->ncec_lladdr != NULL) {
11178 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11179 ntme.ipv6NetToMediaPhysAddress.o_length);
11180 }
11181 /*
11182 * Note: Returns ND_* states. Should be:
11183 * reachable(1), stale(2), delay(3), probe(4),
11184 * invalid(5), unknown(6)
11185 */
11186 ntme.ipv6NetToMediaState = ncec->ncec_state;
11187 ntme.ipv6NetToMediaLastUpdated = 0;
11188
11189 /* other(1), dynamic(2), static(3), local(4) */
11190 if (NCE_MYADDR(ncec)) {
11191 ntme.ipv6NetToMediaType = 4;
11192 } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11193 ntme.ipv6NetToMediaType = 1; /* proxy */
11194 } else if (ncec->ncec_flags & NCE_F_STATIC) {
11195 ntme.ipv6NetToMediaType = 3;
11196 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11197 ntme.ipv6NetToMediaType = 1;
11198 } else {
11199 ntme.ipv6NetToMediaType = 2;
11200 }
11201
11202 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11203 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11204 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11205 (uint_t)sizeof (ntme)));
11206 }
11207 }
11208
11209 int
11210 nce2ace(ncec_t *ncec)
11211 {
11212 int flags = 0;
11213
11214 if (NCE_ISREACHABLE(ncec))
11215 flags |= ACE_F_RESOLVED;
11216 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11217 flags |= ACE_F_AUTHORITY;
11218 if (ncec->ncec_flags & NCE_F_PUBLISH)
11219 flags |= ACE_F_PUBLISH;
11220 if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11221 flags |= ACE_F_PERMANENT;
11222 if (NCE_MYADDR(ncec))
11223 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11224 if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11225 flags |= ACE_F_UNVERIFIED;
11226 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11227 flags |= ACE_F_AUTHORITY;
11228 if (ncec->ncec_flags & NCE_F_DELAYED)
11229 flags |= ACE_F_DELAYED;
11230 return (flags);
11231 }
11232
11233 /*
11234 * ncec_walk routine to create ipNetToMediaEntryTable
11235 */
11236 static void
11237 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr)
11238 {
11239 iproutedata_t *ird = ptr;
11240 ill_t *ill;
11241 mib2_ipNetToMediaEntry_t ntme;
11242 const char *name = "unknown";
11243 ipaddr_t ncec_addr;
11244
11245 ill = ncec->ncec_ill;
11246 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11247 ill->ill_net_type == IRE_LOOPBACK)
11248 return;
11249
11250 /* We report all IPMP groups on ncec_ill which is normally the upper. */
11251 name = ill->ill_name;
11252 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11253 if (NCE_MYADDR(ncec)) {
11254 ntme.ipNetToMediaType = 4;
11255 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11256 ntme.ipNetToMediaType = 1;
11257 } else {
11258 ntme.ipNetToMediaType = 3;
11259 }
11260 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11261 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11262 ntme.ipNetToMediaIfIndex.o_length);
11263
11264 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11265 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11266
11267 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11268 ncec_addr = INADDR_BROADCAST;
11269 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11270 sizeof (ncec_addr));
11271 /*
11272 * map all the flags to the ACE counterpart.
11273 */
11274 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11275
11276 ntme.ipNetToMediaPhysAddress.o_length =
11277 MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11278
11279 if (!NCE_ISREACHABLE(ncec))
11280 ntme.ipNetToMediaPhysAddress.o_length = 0;
11281 else {
11282 if (ncec->ncec_lladdr != NULL) {
11283 bcopy(ncec->ncec_lladdr,
11284 ntme.ipNetToMediaPhysAddress.o_bytes,
11285 ntme.ipNetToMediaPhysAddress.o_length);
11286 }
11287 }
11288
11289 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11290 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11291 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11292 (uint_t)sizeof (ntme)));
11293 }
11294 }
11295
11296 /*
11297 * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11298 */
11299 /* ARGSUSED */
11300 int
11301 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11302 {
11303 switch (level) {
11304 case MIB2_IP:
11305 case MIB2_ICMP:
11306 switch (name) {
11307 default:
11308 break;
11309 }
11310 return (1);
11311 default:
11312 return (1);
11313 }
11314 }
11315
11316 /*
11317 * When there exists both a 64- and 32-bit counter of a particular type
11318 * (i.e., InReceives), only the 64-bit counters are added.
11319 */
11320 void
11321 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11322 {
11323 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11324 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11325 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11326 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11327 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11328 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11329 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11330 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11331 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11332 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11333 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11334 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11335 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11336 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11337 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11338 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11339 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11340 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11341 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11342 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11343 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11344 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11345 o2->ipIfStatsInWrongIPVersion);
11346 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11347 o2->ipIfStatsInWrongIPVersion);
11348 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11349 o2->ipIfStatsOutSwitchIPVersion);
11350 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11351 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11352 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11353 o2->ipIfStatsHCInForwDatagrams);
11354 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11355 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11356 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11357 o2->ipIfStatsHCOutForwDatagrams);
11358 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11359 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11360 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11361 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11362 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11363 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11364 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11365 o2->ipIfStatsHCOutMcastOctets);
11366 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11367 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11368 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11369 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11370 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11371 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11372 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11373 }
11374
11375 void
11376 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11377 {
11378 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11379 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11380 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11381 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11382 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11383 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11384 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11385 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11386 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11387 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11388 o2->ipv6IfIcmpInRouterSolicits);
11389 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11390 o2->ipv6IfIcmpInRouterAdvertisements);
11391 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11392 o2->ipv6IfIcmpInNeighborSolicits);
11393 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11394 o2->ipv6IfIcmpInNeighborAdvertisements);
11395 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11396 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11397 o2->ipv6IfIcmpInGroupMembQueries);
11398 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11399 o2->ipv6IfIcmpInGroupMembResponses);
11400 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11401 o2->ipv6IfIcmpInGroupMembReductions);
11402 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11403 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11404 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11405 o2->ipv6IfIcmpOutDestUnreachs);
11406 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11407 o2->ipv6IfIcmpOutAdminProhibs);
11408 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11409 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11410 o2->ipv6IfIcmpOutParmProblems);
11411 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11412 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11413 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11414 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11415 o2->ipv6IfIcmpOutRouterSolicits);
11416 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11417 o2->ipv6IfIcmpOutRouterAdvertisements);
11418 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11419 o2->ipv6IfIcmpOutNeighborSolicits);
11420 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11421 o2->ipv6IfIcmpOutNeighborAdvertisements);
11422 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11423 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11424 o2->ipv6IfIcmpOutGroupMembQueries);
11425 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11426 o2->ipv6IfIcmpOutGroupMembResponses);
11427 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11428 o2->ipv6IfIcmpOutGroupMembReductions);
11429 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11430 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11431 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11432 o2->ipv6IfIcmpInBadNeighborAdvertisements);
11433 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11434 o2->ipv6IfIcmpInBadNeighborSolicitations);
11435 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11436 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11437 o2->ipv6IfIcmpInGroupMembTotal);
11438 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11439 o2->ipv6IfIcmpInGroupMembBadQueries);
11440 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11441 o2->ipv6IfIcmpInGroupMembBadReports);
11442 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11443 o2->ipv6IfIcmpInGroupMembOurReports);
11444 }
11445
11446 /*
11447 * Called before the options are updated to check if this packet will
11448 * be source routed from here.
11449 * This routine assumes that the options are well formed i.e. that they
11450 * have already been checked.
11451 */
11452 boolean_t
11453 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11454 {
11455 ipoptp_t opts;
11456 uchar_t *opt;
11457 uint8_t optval;
11458 uint8_t optlen;
11459 ipaddr_t dst;
11460
11461 if (IS_SIMPLE_IPH(ipha)) {
11462 ip2dbg(("not source routed\n"));
11463 return (B_FALSE);
11464 }
11465 dst = ipha->ipha_dst;
11466 for (optval = ipoptp_first(&opts, ipha);
11467 optval != IPOPT_EOL;
11468 optval = ipoptp_next(&opts)) {
11469 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11470 opt = opts.ipoptp_cur;
11471 optlen = opts.ipoptp_len;
11472 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11473 optval, optlen));
11474 switch (optval) {
11475 uint32_t off;
11476 case IPOPT_SSRR:
11477 case IPOPT_LSRR:
11478 /*
11479 * If dst is one of our addresses and there are some
11480 * entries left in the source route return (true).
11481 */
11482 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11483 ip2dbg(("ip_source_routed: not next"
11484 " source route 0x%x\n",
11485 ntohl(dst)));
11486 return (B_FALSE);
11487 }
11488 off = opt[IPOPT_OFFSET];
11489 off--;
11490 if (optlen < IP_ADDR_LEN ||
11491 off > optlen - IP_ADDR_LEN) {
11492 /* End of source route */
11493 ip1dbg(("ip_source_routed: end of SR\n"));
11494 return (B_FALSE);
11495 }
11496 return (B_TRUE);
11497 }
11498 }
11499 ip2dbg(("not source routed\n"));
11500 return (B_FALSE);
11501 }
11502
11503 /*
11504 * ip_unbind is called by the transports to remove a conn from
11505 * the fanout table.
11506 */
11507 void
11508 ip_unbind(conn_t *connp)
11509 {
11510
11511 ASSERT(!MUTEX_HELD(&connp->conn_lock));
11512
11513 if (is_system_labeled() && connp->conn_anon_port) {
11514 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11515 connp->conn_mlp_type, connp->conn_proto,
11516 ntohs(connp->conn_lport), B_FALSE);
11517 connp->conn_anon_port = 0;
11518 }
11519 connp->conn_mlp_type = mlptSingle;
11520
11521 ipcl_hash_remove(connp);
11522 }
11523
11524 /*
11525 * Used for deciding the MSS size for the upper layer. Thus
11526 * we need to check the outbound policy values in the conn.
11527 */
11528 int
11529 conn_ipsec_length(conn_t *connp)
11530 {
11531 ipsec_latch_t *ipl;
11532
11533 ipl = connp->conn_latch;
11534 if (ipl == NULL)
11535 return (0);
11536
11537 if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11538 return (0);
11539
11540 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11541 }
11542
11543 /*
11544 * Returns an estimate of the IPsec headers size. This is used if
11545 * we don't want to call into IPsec to get the exact size.
11546 */
11547 int
11548 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11549 {
11550 ipsec_action_t *a;
11551
11552 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11553 return (0);
11554
11555 a = ixa->ixa_ipsec_action;
11556 if (a == NULL) {
11557 ASSERT(ixa->ixa_ipsec_policy != NULL);
11558 a = ixa->ixa_ipsec_policy->ipsp_act;
11559 }
11560 ASSERT(a != NULL);
11561
11562 return (a->ipa_ovhd);
11563 }
11564
11565 /*
11566 * If there are any source route options, return the true final
11567 * destination. Otherwise, return the destination.
11568 */
11569 ipaddr_t
11570 ip_get_dst(ipha_t *ipha)
11571 {
11572 ipoptp_t opts;
11573 uchar_t *opt;
11574 uint8_t optval;
11575 uint8_t optlen;
11576 ipaddr_t dst;
11577 uint32_t off;
11578
11579 dst = ipha->ipha_dst;
11580
11581 if (IS_SIMPLE_IPH(ipha))
11582 return (dst);
11583
11584 for (optval = ipoptp_first(&opts, ipha);
11585 optval != IPOPT_EOL;
11586 optval = ipoptp_next(&opts)) {
11587 opt = opts.ipoptp_cur;
11588 optlen = opts.ipoptp_len;
11589 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11590 switch (optval) {
11591 case IPOPT_SSRR:
11592 case IPOPT_LSRR:
11593 off = opt[IPOPT_OFFSET];
11594 /*
11595 * If one of the conditions is true, it means
11596 * end of options and dst already has the right
11597 * value.
11598 */
11599 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11600 off = optlen - IP_ADDR_LEN;
11601 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11602 }
11603 return (dst);
11604 default:
11605 break;
11606 }
11607 }
11608
11609 return (dst);
11610 }
11611
11612 /*
11613 * Outbound IP fragmentation routine.
11614 * Assumes the caller has checked whether or not fragmentation should
11615 * be allowed. Here we copy the DF bit from the header to all the generated
11616 * fragments.
11617 */
11618 int
11619 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11620 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11621 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11622 {
11623 int i1;
11624 int hdr_len;
11625 mblk_t *hdr_mp;
11626 ipha_t *ipha;
11627 int ip_data_end;
11628 int len;
11629 mblk_t *mp = mp_orig;
11630 int offset;
11631 ill_t *ill = nce->nce_ill;
11632 ip_stack_t *ipst = ill->ill_ipst;
11633 mblk_t *carve_mp;
11634 uint32_t frag_flag;
11635 uint_t priority = mp->b_band;
11636 int error = 0;
11637
11638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11639
11640 if (pkt_len != msgdsize(mp)) {
11641 ip0dbg(("Packet length mismatch: %d, %ld\n",
11642 pkt_len, msgdsize(mp)));
11643 freemsg(mp);
11644 return (EINVAL);
11645 }
11646
11647 if (max_frag == 0) {
11648 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11650 ip_drop_output("FragFails: zero max_frag", mp, ill);
11651 freemsg(mp);
11652 return (EINVAL);
11653 }
11654
11655 ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11656 ipha = (ipha_t *)mp->b_rptr;
11657 ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11658 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11659
11660 /*
11661 * Establish the starting offset. May not be zero if we are fragging
11662 * a fragment that is being forwarded.
11663 */
11664 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11665
11666 /* TODO why is this test needed? */
11667 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11668 /* TODO: notify ulp somehow */
11669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11670 ip_drop_output("FragFails: bad starting offset", mp, ill);
11671 freemsg(mp);
11672 return (EINVAL);
11673 }
11674
11675 hdr_len = IPH_HDR_LENGTH(ipha);
11676 ipha->ipha_hdr_checksum = 0;
11677
11678 /*
11679 * Establish the number of bytes maximum per frag, after putting
11680 * in the header.
11681 */
11682 len = (max_frag - hdr_len) & ~7;
11683
11684 /* Get a copy of the header for the trailing frags */
11685 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11686 mp);
11687 if (hdr_mp == NULL) {
11688 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11689 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11690 freemsg(mp);
11691 return (ENOBUFS);
11692 }
11693
11694 /* Store the starting offset, with the MoreFrags flag. */
11695 i1 = offset | IPH_MF | frag_flag;
11696 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11697
11698 /* Establish the ending byte offset, based on the starting offset. */
11699 offset <<= 3;
11700 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11701
11702 /* Store the length of the first fragment in the IP header. */
11703 i1 = len + hdr_len;
11704 ASSERT(i1 <= IP_MAXPACKET);
11705 ipha->ipha_length = htons((uint16_t)i1);
11706
11707 /*
11708 * Compute the IP header checksum for the first frag. We have to
11709 * watch out that we stop at the end of the header.
11710 */
11711 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11712
11713 /*
11714 * Now carve off the first frag. Note that this will include the
11715 * original IP header.
11716 */
11717 if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11719 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11720 freeb(hdr_mp);
11721 freemsg(mp_orig);
11722 return (ENOBUFS);
11723 }
11724
11725 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11726
11727 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11728 ixa_cookie);
11729 if (error != 0 && error != EWOULDBLOCK) {
11730 /* No point in sending the other fragments */
11731 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11732 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11733 freeb(hdr_mp);
11734 freemsg(mp_orig);
11735 return (error);
11736 }
11737
11738 /* No need to redo state machine in loop */
11739 ixaflags &= ~IXAF_REACH_CONF;
11740
11741 /* Advance the offset to the second frag starting point. */
11742 offset += len;
11743 /*
11744 * Update hdr_len from the copied header - there might be less options
11745 * in the later fragments.
11746 */
11747 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11748 /* Loop until done. */
11749 for (;;) {
11750 uint16_t offset_and_flags;
11751 uint16_t ip_len;
11752
11753 if (ip_data_end - offset > len) {
11754 /*
11755 * Carve off the appropriate amount from the original
11756 * datagram.
11757 */
11758 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11759 mp = NULL;
11760 break;
11761 }
11762 /*
11763 * More frags after this one. Get another copy
11764 * of the header.
11765 */
11766 if (carve_mp->b_datap->db_ref == 1 &&
11767 hdr_mp->b_wptr - hdr_mp->b_rptr <
11768 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11769 /* Inline IP header */
11770 carve_mp->b_rptr -= hdr_mp->b_wptr -
11771 hdr_mp->b_rptr;
11772 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11773 hdr_mp->b_wptr - hdr_mp->b_rptr);
11774 mp = carve_mp;
11775 } else {
11776 if (!(mp = copyb(hdr_mp))) {
11777 freemsg(carve_mp);
11778 break;
11779 }
11780 /* Get priority marking, if any. */
11781 mp->b_band = priority;
11782 mp->b_cont = carve_mp;
11783 }
11784 ipha = (ipha_t *)mp->b_rptr;
11785 offset_and_flags = IPH_MF;
11786 } else {
11787 /*
11788 * Last frag. Consume the header. Set len to
11789 * the length of this last piece.
11790 */
11791 len = ip_data_end - offset;
11792
11793 /*
11794 * Carve off the appropriate amount from the original
11795 * datagram.
11796 */
11797 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11798 mp = NULL;
11799 break;
11800 }
11801 if (carve_mp->b_datap->db_ref == 1 &&
11802 hdr_mp->b_wptr - hdr_mp->b_rptr <
11803 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11804 /* Inline IP header */
11805 carve_mp->b_rptr -= hdr_mp->b_wptr -
11806 hdr_mp->b_rptr;
11807 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11808 hdr_mp->b_wptr - hdr_mp->b_rptr);
11809 mp = carve_mp;
11810 freeb(hdr_mp);
11811 hdr_mp = mp;
11812 } else {
11813 mp = hdr_mp;
11814 /* Get priority marking, if any. */
11815 mp->b_band = priority;
11816 mp->b_cont = carve_mp;
11817 }
11818 ipha = (ipha_t *)mp->b_rptr;
11819 /* A frag of a frag might have IPH_MF non-zero */
11820 offset_and_flags =
11821 ntohs(ipha->ipha_fragment_offset_and_flags) &
11822 IPH_MF;
11823 }
11824 offset_and_flags |= (uint16_t)(offset >> 3);
11825 offset_and_flags |= (uint16_t)frag_flag;
11826 /* Store the offset and flags in the IP header. */
11827 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11828
11829 /* Store the length in the IP header. */
11830 ip_len = (uint16_t)(len + hdr_len);
11831 ipha->ipha_length = htons(ip_len);
11832
11833 /*
11834 * Set the IP header checksum. Note that mp is just
11835 * the header, so this is easy to pass to ip_csum.
11836 */
11837 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11838
11839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11840
11841 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11842 nolzid, ixa_cookie);
11843 /* All done if we just consumed the hdr_mp. */
11844 if (mp == hdr_mp) {
11845 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11846 return (error);
11847 }
11848 if (error != 0 && error != EWOULDBLOCK) {
11849 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11850 mblk_t *, hdr_mp);
11851 /* No point in sending the other fragments */
11852 break;
11853 }
11854
11855 /* Otherwise, advance and loop. */
11856 offset += len;
11857 }
11858 /* Clean up following allocation failure. */
11859 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11860 ip_drop_output("FragFails: loop ended", NULL, ill);
11861 if (mp != hdr_mp)
11862 freeb(hdr_mp);
11863 if (mp != mp_orig)
11864 freemsg(mp_orig);
11865 return (error);
11866 }
11867
11868 /*
11869 * Copy the header plus those options which have the copy bit set
11870 */
11871 static mblk_t *
11872 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11873 mblk_t *src)
11874 {
11875 mblk_t *mp;
11876 uchar_t *up;
11877
11878 /*
11879 * Quick check if we need to look for options without the copy bit
11880 * set
11881 */
11882 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11883 if (!mp)
11884 return (mp);
11885 mp->b_rptr += ipst->ips_ip_wroff_extra;
11886 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11887 bcopy(rptr, mp->b_rptr, hdr_len);
11888 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11889 return (mp);
11890 }
11891 up = mp->b_rptr;
11892 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11893 up += IP_SIMPLE_HDR_LENGTH;
11894 rptr += IP_SIMPLE_HDR_LENGTH;
11895 hdr_len -= IP_SIMPLE_HDR_LENGTH;
11896 while (hdr_len > 0) {
11897 uint32_t optval;
11898 uint32_t optlen;
11899
11900 optval = *rptr;
11901 if (optval == IPOPT_EOL)
11902 break;
11903 if (optval == IPOPT_NOP)
11904 optlen = 1;
11905 else
11906 optlen = rptr[1];
11907 if (optval & IPOPT_COPY) {
11908 bcopy(rptr, up, optlen);
11909 up += optlen;
11910 }
11911 rptr += optlen;
11912 hdr_len -= optlen;
11913 }
11914 /*
11915 * Make sure that we drop an even number of words by filling
11916 * with EOL to the next word boundary.
11917 */
11918 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11919 hdr_len & 0x3; hdr_len++)
11920 *up++ = IPOPT_EOL;
11921 mp->b_wptr = up;
11922 /* Update header length */
11923 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11924 return (mp);
11925 }
11926
11927 /*
11928 * Update any source route, record route, or timestamp options when
11929 * sending a packet back to ourselves.
11930 * Check that we are at end of strict source route.
11931 * The options have been sanity checked by ip_output_options().
11932 */
11933 void
11934 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11935 {
11936 ipoptp_t opts;
11937 uchar_t *opt;
11938 uint8_t optval;
11939 uint8_t optlen;
11940 ipaddr_t dst;
11941 uint32_t ts;
11942 timestruc_t now;
11943
11944 for (optval = ipoptp_first(&opts, ipha);
11945 optval != IPOPT_EOL;
11946 optval = ipoptp_next(&opts)) {
11947 opt = opts.ipoptp_cur;
11948 optlen = opts.ipoptp_len;
11949 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11950 switch (optval) {
11951 uint32_t off;
11952 case IPOPT_SSRR:
11953 case IPOPT_LSRR:
11954 off = opt[IPOPT_OFFSET];
11955 off--;
11956 if (optlen < IP_ADDR_LEN ||
11957 off > optlen - IP_ADDR_LEN) {
11958 /* End of source route */
11959 break;
11960 }
11961 /*
11962 * This will only happen if two consecutive entries
11963 * in the source route contains our address or if
11964 * it is a packet with a loose source route which
11965 * reaches us before consuming the whole source route
11966 */
11967
11968 if (optval == IPOPT_SSRR) {
11969 return;
11970 }
11971 /*
11972 * Hack: instead of dropping the packet truncate the
11973 * source route to what has been used by filling the
11974 * rest with IPOPT_NOP.
11975 */
11976 opt[IPOPT_OLEN] = (uint8_t)off;
11977 while (off < optlen) {
11978 opt[off++] = IPOPT_NOP;
11979 }
11980 break;
11981 case IPOPT_RR:
11982 off = opt[IPOPT_OFFSET];
11983 off--;
11984 if (optlen < IP_ADDR_LEN ||
11985 off > optlen - IP_ADDR_LEN) {
11986 /* No more room - ignore */
11987 ip1dbg((
11988 "ip_output_local_options: end of RR\n"));
11989 break;
11990 }
11991 dst = htonl(INADDR_LOOPBACK);
11992 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11993 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11994 break;
11995 case IPOPT_TS:
11996 /* Insert timestamp if there is romm */
11997 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11998 case IPOPT_TS_TSONLY:
11999 off = IPOPT_TS_TIMELEN;
12000 break;
12001 case IPOPT_TS_PRESPEC:
12002 case IPOPT_TS_PRESPEC_RFC791:
12003 /* Verify that the address matched */
12004 off = opt[IPOPT_OFFSET] - 1;
12005 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12006 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12007 /* Not for us */
12008 break;
12009 }
12010 /* FALLTHROUGH */
12011 case IPOPT_TS_TSANDADDR:
12012 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12013 break;
12014 default:
12015 /*
12016 * ip_*put_options should have already
12017 * dropped this packet.
12018 */
12019 cmn_err(CE_PANIC, "ip_output_local_options: "
12020 "unknown IT - bug in ip_output_options?\n");
12021 return; /* Keep "lint" happy */
12022 }
12023 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12024 /* Increase overflow counter */
12025 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12026 opt[IPOPT_POS_OV_FLG] = (uint8_t)
12027 (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12028 (off << 4);
12029 break;
12030 }
12031 off = opt[IPOPT_OFFSET] - 1;
12032 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12033 case IPOPT_TS_PRESPEC:
12034 case IPOPT_TS_PRESPEC_RFC791:
12035 case IPOPT_TS_TSANDADDR:
12036 dst = htonl(INADDR_LOOPBACK);
12037 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12038 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12039 /* FALLTHROUGH */
12040 case IPOPT_TS_TSONLY:
12041 off = opt[IPOPT_OFFSET] - 1;
12042 /* Compute # of milliseconds since midnight */
12043 gethrestime(&now);
12044 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12045 NSEC2MSEC(now.tv_nsec);
12046 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12047 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12048 break;
12049 }
12050 break;
12051 }
12052 }
12053 }
12054
12055 /*
12056 * Prepend an M_DATA fastpath header, and if none present prepend a
12057 * DL_UNITDATA_REQ. Frees the mblk on failure.
12058 *
12059 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12060 * If there is a change to them, the nce will be deleted (condemned) and
12061 * a new nce_t will be created when packets are sent. Thus we need no locks
12062 * to access those fields.
12063 *
12064 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12065 * we place b_band in dl_priority.dl_max.
12066 */
12067 static mblk_t *
12068 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12069 {
12070 uint_t hlen;
12071 mblk_t *mp1;
12072 uint_t priority;
12073 uchar_t *rptr;
12074
12075 rptr = mp->b_rptr;
12076
12077 ASSERT(DB_TYPE(mp) == M_DATA);
12078 priority = mp->b_band;
12079
12080 ASSERT(nce != NULL);
12081 if ((mp1 = nce->nce_fp_mp) != NULL) {
12082 hlen = MBLKL(mp1);
12083 /*
12084 * Check if we have enough room to prepend fastpath
12085 * header
12086 */
12087 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12088 rptr -= hlen;
12089 bcopy(mp1->b_rptr, rptr, hlen);
12090 /*
12091 * Set the b_rptr to the start of the link layer
12092 * header
12093 */
12094 mp->b_rptr = rptr;
12095 return (mp);
12096 }
12097 mp1 = copyb(mp1);
12098 if (mp1 == NULL) {
12099 ill_t *ill = nce->nce_ill;
12100
12101 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12102 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12103 freemsg(mp);
12104 return (NULL);
12105 }
12106 mp1->b_band = priority;
12107 mp1->b_cont = mp;
12108 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12109 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12110 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12111 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12112 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12113 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12114 /*
12115 * XXX disable ICK_VALID and compute checksum
12116 * here; can happen if nce_fp_mp changes and
12117 * it can't be copied now due to insufficient
12118 * space. (unlikely, fp mp can change, but it
12119 * does not increase in length)
12120 */
12121 return (mp1);
12122 }
12123 mp1 = copyb(nce->nce_dlur_mp);
12124
12125 if (mp1 == NULL) {
12126 ill_t *ill = nce->nce_ill;
12127
12128 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12129 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12130 freemsg(mp);
12131 return (NULL);
12132 }
12133 mp1->b_cont = mp;
12134 if (priority != 0) {
12135 mp1->b_band = priority;
12136 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12137 priority;
12138 }
12139 return (mp1);
12140 }
12141
12142 /*
12143 * Finish the outbound IPsec processing. This function is called from
12144 * ipsec_out_process() if the IPsec packet was processed
12145 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12146 * asynchronously.
12147 *
12148 * This is common to IPv4 and IPv6.
12149 */
12150 int
12151 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12152 {
12153 iaflags_t ixaflags = ixa->ixa_flags;
12154 uint_t pktlen;
12155
12156
12157 /* AH/ESP don't update ixa_pktlen when they modify the packet */
12158 if (ixaflags & IXAF_IS_IPV4) {
12159 ipha_t *ipha = (ipha_t *)mp->b_rptr;
12160
12161 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12162 pktlen = ntohs(ipha->ipha_length);
12163 } else {
12164 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
12165
12166 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12167 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12168 }
12169
12170 /*
12171 * We release any hard reference on the SAs here to make
12172 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12173 * on the SAs.
12174 * If in the future we want the hard latching of the SAs in the
12175 * ip_xmit_attr_t then we should remove this.
12176 */
12177 if (ixa->ixa_ipsec_esp_sa != NULL) {
12178 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12179 ixa->ixa_ipsec_esp_sa = NULL;
12180 }
12181 if (ixa->ixa_ipsec_ah_sa != NULL) {
12182 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12183 ixa->ixa_ipsec_ah_sa = NULL;
12184 }
12185
12186 /* Do we need to fragment? */
12187 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12188 pktlen > ixa->ixa_fragsize) {
12189 if (ixaflags & IXAF_IS_IPV4) {
12190 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12191 /*
12192 * We check for the DF case in ipsec_out_process
12193 * hence this only handles the non-DF case.
12194 */
12195 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12196 pktlen, ixa->ixa_fragsize,
12197 ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12198 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12199 &ixa->ixa_cookie));
12200 } else {
12201 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12202 if (mp == NULL) {
12203 /* MIB and ip_drop_output already done */
12204 return (ENOMEM);
12205 }
12206 pktlen += sizeof (ip6_frag_t);
12207 if (pktlen > ixa->ixa_fragsize) {
12208 return (ip_fragment_v6(mp, ixa->ixa_nce,
12209 ixa->ixa_flags, pktlen,
12210 ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12211 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12212 ixa->ixa_postfragfn, &ixa->ixa_cookie));
12213 }
12214 }
12215 }
12216 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12217 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12218 ixa->ixa_no_loop_zoneid, NULL));
12219 }
12220
12221 /*
12222 * Finish the inbound IPsec processing. This function is called from
12223 * ipsec_out_process() if the IPsec packet was processed
12224 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12225 * asynchronously.
12226 *
12227 * This is common to IPv4 and IPv6.
12228 */
12229 void
12230 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12231 {
12232 iaflags_t iraflags = ira->ira_flags;
12233
12234 /* Length might have changed */
12235 if (iraflags & IRAF_IS_IPV4) {
12236 ipha_t *ipha = (ipha_t *)mp->b_rptr;
12237
12238 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12239 ira->ira_pktlen = ntohs(ipha->ipha_length);
12240 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12241 ira->ira_protocol = ipha->ipha_protocol;
12242
12243 ip_fanout_v4(mp, ipha, ira);
12244 } else {
12245 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
12246 uint8_t *nexthdrp;
12247
12248 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12249 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12250 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12251 &nexthdrp)) {
12252 /* Malformed packet */
12253 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12254 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12255 freemsg(mp);
12256 return;
12257 }
12258 ira->ira_protocol = *nexthdrp;
12259 ip_fanout_v6(mp, ip6h, ira);
12260 }
12261 }
12262
12263 /*
12264 * Select which AH & ESP SA's to use (if any) for the outbound packet.
12265 *
12266 * If this function returns B_TRUE, the requested SA's have been filled
12267 * into the ixa_ipsec_*_sa pointers.
12268 *
12269 * If the function returns B_FALSE, the packet has been "consumed", most
12270 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12271 *
12272 * The SA references created by the protocol-specific "select"
12273 * function will be released in ip_output_post_ipsec.
12274 */
12275 static boolean_t
12276 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12277 {
12278 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12279 ipsec_policy_t *pp;
12280 ipsec_action_t *ap;
12281
12282 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12283 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12284 (ixa->ixa_ipsec_action != NULL));
12285
12286 ap = ixa->ixa_ipsec_action;
12287 if (ap == NULL) {
12288 pp = ixa->ixa_ipsec_policy;
12289 ASSERT(pp != NULL);
12290 ap = pp->ipsp_act;
12291 ASSERT(ap != NULL);
12292 }
12293
12294 /*
12295 * We have an action. now, let's select SA's.
12296 * A side effect of setting ixa_ipsec_*_sa is that it will
12297 * be cached in the conn_t.
12298 */
12299 if (ap->ipa_want_esp) {
12300 if (ixa->ixa_ipsec_esp_sa == NULL) {
12301 need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12302 IPPROTO_ESP);
12303 }
12304 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12305 }
12306
12307 if (ap->ipa_want_ah) {
12308 if (ixa->ixa_ipsec_ah_sa == NULL) {
12309 need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12310 IPPROTO_AH);
12311 }
12312 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12313 /*
12314 * The ESP and AH processing order needs to be preserved
12315 * when both protocols are required (ESP should be applied
12316 * before AH for an outbound packet). Force an ESP ACQUIRE
12317 * when both ESP and AH are required, and an AH ACQUIRE
12318 * is needed.
12319 */
12320 if (ap->ipa_want_esp && need_ah_acquire)
12321 need_esp_acquire = B_TRUE;
12322 }
12323
12324 /*
12325 * Send an ACQUIRE (extended, regular, or both) if we need one.
12326 * Release SAs that got referenced, but will not be used until we
12327 * acquire _all_ of the SAs we need.
12328 */
12329 if (need_ah_acquire || need_esp_acquire) {
12330 if (ixa->ixa_ipsec_ah_sa != NULL) {
12331 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12332 ixa->ixa_ipsec_ah_sa = NULL;
12333 }
12334 if (ixa->ixa_ipsec_esp_sa != NULL) {
12335 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12336 ixa->ixa_ipsec_esp_sa = NULL;
12337 }
12338
12339 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12340 return (B_FALSE);
12341 }
12342
12343 return (B_TRUE);
12344 }
12345
12346 /*
12347 * Handle IPsec output processing.
12348 * This function is only entered once for a given packet.
12349 * We try to do things synchronously, but if we need to have user-level
12350 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12351 * will be completed
12352 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12353 * - when asynchronous ESP is done it will do AH
12354 *
12355 * In all cases we come back in ip_output_post_ipsec() to fragment and
12356 * send out the packet.
12357 */
12358 int
12359 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12360 {
12361 ill_t *ill = ixa->ixa_nce->nce_ill;
12362 ip_stack_t *ipst = ixa->ixa_ipst;
12363 ipsec_stack_t *ipss;
12364 ipsec_policy_t *pp;
12365 ipsec_action_t *ap;
12366
12367 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12368
12369 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12370 (ixa->ixa_ipsec_action != NULL));
12371
12372 ipss = ipst->ips_netstack->netstack_ipsec;
12373 if (!ipsec_loaded(ipss)) {
12374 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12375 ip_drop_packet(mp, B_TRUE, ill,
12376 DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12377 &ipss->ipsec_dropper);
12378 return (ENOTSUP);
12379 }
12380
12381 ap = ixa->ixa_ipsec_action;
12382 if (ap == NULL) {
12383 pp = ixa->ixa_ipsec_policy;
12384 ASSERT(pp != NULL);
12385 ap = pp->ipsp_act;
12386 ASSERT(ap != NULL);
12387 }
12388
12389 /* Handle explicit drop action and bypass. */
12390 switch (ap->ipa_act.ipa_type) {
12391 case IPSEC_ACT_DISCARD:
12392 case IPSEC_ACT_REJECT:
12393 ip_drop_packet(mp, B_FALSE, ill,
12394 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12395 return (EHOSTUNREACH); /* IPsec policy failure */
12396 case IPSEC_ACT_BYPASS:
12397 return (ip_output_post_ipsec(mp, ixa));
12398 }
12399
12400 /*
12401 * The order of processing is first insert a IP header if needed.
12402 * Then insert the ESP header and then the AH header.
12403 */
12404 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12405 /*
12406 * First get the outer IP header before sending
12407 * it to ESP.
12408 */
12409 ipha_t *oipha, *iipha;
12410 mblk_t *outer_mp, *inner_mp;
12411
12412 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12413 (void) mi_strlog(ill->ill_rq, 0,
12414 SL_ERROR|SL_TRACE|SL_CONSOLE,
12415 "ipsec_out_process: "
12416 "Self-Encapsulation failed: Out of memory\n");
12417 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12418 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12419 freemsg(mp);
12420 return (ENOBUFS);
12421 }
12422 inner_mp = mp;
12423 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12424 oipha = (ipha_t *)outer_mp->b_rptr;
12425 iipha = (ipha_t *)inner_mp->b_rptr;
12426 *oipha = *iipha;
12427 outer_mp->b_wptr += sizeof (ipha_t);
12428 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12429 sizeof (ipha_t));
12430 oipha->ipha_protocol = IPPROTO_ENCAP;
12431 oipha->ipha_version_and_hdr_length =
12432 IP_SIMPLE_HDR_VERSION;
12433 oipha->ipha_hdr_checksum = 0;
12434 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12435 outer_mp->b_cont = inner_mp;
12436 mp = outer_mp;
12437
12438 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12439 }
12440
12441 /* If we need to wait for a SA then we can't return any errno */
12442 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12443 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12444 !ipsec_out_select_sa(mp, ixa))
12445 return (0);
12446
12447 /*
12448 * By now, we know what SA's to use. Toss over to ESP & AH
12449 * to do the heavy lifting.
12450 */
12451 if (ap->ipa_want_esp) {
12452 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12453
12454 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12455 if (mp == NULL) {
12456 /*
12457 * Either it failed or is pending. In the former case
12458 * ipIfStatsInDiscards was increased.
12459 */
12460 return (0);
12461 }
12462 }
12463
12464 if (ap->ipa_want_ah) {
12465 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12466
12467 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12468 if (mp == NULL) {
12469 /*
12470 * Either it failed or is pending. In the former case
12471 * ipIfStatsInDiscards was increased.
12472 */
12473 return (0);
12474 }
12475 }
12476 /*
12477 * We are done with IPsec processing. Send it over
12478 * the wire.
12479 */
12480 return (ip_output_post_ipsec(mp, ixa));
12481 }
12482
12483 /*
12484 * ioctls that go through a down/up sequence may need to wait for the down
12485 * to complete. This involves waiting for the ire and ipif refcnts to go down
12486 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12487 */
12488 /* ARGSUSED */
12489 void
12490 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12491 {
12492 struct iocblk *iocp;
12493 mblk_t *mp1;
12494 ip_ioctl_cmd_t *ipip;
12495 int err;
12496 sin_t *sin;
12497 struct lifreq *lifr;
12498 struct ifreq *ifr;
12499
12500 iocp = (struct iocblk *)mp->b_rptr;
12501 ASSERT(ipsq != NULL);
12502 /* Existence of mp1 verified in ip_wput_nondata */
12503 mp1 = mp->b_cont->b_cont;
12504 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12505 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12506 /*
12507 * Special case where ipx_current_ipif is not set:
12508 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12509 * We are here as were not able to complete the operation in
12510 * ipif_set_values because we could not become exclusive on
12511 * the new ipsq.
12512 */
12513 ill_t *ill = q->q_ptr;
12514 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12515 }
12516 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12517
12518 if (ipip->ipi_cmd_type == IF_CMD) {
12519 /* This a old style SIOC[GS]IF* command */
12520 ifr = (struct ifreq *)mp1->b_rptr;
12521 sin = (sin_t *)&ifr->ifr_addr;
12522 } else if (ipip->ipi_cmd_type == LIF_CMD) {
12523 /* This a new style SIOC[GS]LIF* command */
12524 lifr = (struct lifreq *)mp1->b_rptr;
12525 sin = (sin_t *)&lifr->lifr_addr;
12526 } else {
12527 sin = NULL;
12528 }
12529
12530 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12531 q, mp, ipip, mp1->b_rptr);
12532
12533 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12534 int, ipip->ipi_cmd,
12535 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12536 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12537
12538 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12539 }
12540
12541 /*
12542 * ioctl processing
12543 *
12544 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12545 * the ioctl command in the ioctl tables, determines the copyin data size
12546 * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12547 *
12548 * ioctl processing then continues when the M_IOCDATA makes its way down to
12549 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its
12550 * associated 'conn' is refheld till the end of the ioctl and the general
12551 * ioctl processing function ip_process_ioctl() is called to extract the
12552 * arguments and process the ioctl. To simplify extraction, ioctl commands
12553 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12554 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12555 * is used to extract the ioctl's arguments.
12556 *
12557 * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12558 * so goes thru the serialization primitive ipsq_try_enter. Then the
12559 * appropriate function to handle the ioctl is called based on the entry in
12560 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12561 * which also refreleases the 'conn' that was refheld at the start of the
12562 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12563 *
12564 * Many exclusive ioctls go thru an internal down up sequence as part of
12565 * the operation. For example an attempt to change the IP address of an
12566 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12567 * does all the cleanup such as deleting all ires that use this address.
12568 * Then we need to wait till all references to the interface go away.
12569 */
12570 void
12571 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12572 {
12573 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12574 ip_ioctl_cmd_t *ipip = arg;
12575 ip_extract_func_t *extract_funcp;
12576 cmd_info_t ci;
12577 int err;
12578 boolean_t entered_ipsq = B_FALSE;
12579
12580 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12581
12582 if (ipip == NULL)
12583 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12584
12585 /*
12586 * SIOCLIFADDIF needs to go thru a special path since the
12587 * ill may not exist yet. This happens in the case of lo0
12588 * which is created using this ioctl.
12589 */
12590 if (ipip->ipi_cmd == SIOCLIFADDIF) {
12591 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12592 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12593 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12594 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12595 return;
12596 }
12597
12598 ci.ci_ipif = NULL;
12599 switch (ipip->ipi_cmd_type) {
12600 case MISC_CMD:
12601 case MSFILT_CMD:
12602 /*
12603 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12604 */
12605 if (ipip->ipi_cmd == IF_UNITSEL) {
12606 /* ioctl comes down the ill */
12607 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12608 ipif_refhold(ci.ci_ipif);
12609 }
12610 err = 0;
12611 ci.ci_sin = NULL;
12612 ci.ci_sin6 = NULL;
12613 ci.ci_lifr = NULL;
12614 extract_funcp = NULL;
12615 break;
12616
12617 case IF_CMD:
12618 case LIF_CMD:
12619 extract_funcp = ip_extract_lifreq;
12620 break;
12621
12622 case ARP_CMD:
12623 case XARP_CMD:
12624 extract_funcp = ip_extract_arpreq;
12625 break;
12626
12627 default:
12628 ASSERT(0);
12629 }
12630
12631 if (extract_funcp != NULL) {
12632 err = (*extract_funcp)(q, mp, ipip, &ci);
12633 if (err != 0) {
12634 DTRACE_PROBE4(ipif__ioctl,
12635 char *, "ip_process_ioctl finish err",
12636 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12637 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12638 return;
12639 }
12640
12641 /*
12642 * All of the extraction functions return a refheld ipif.
12643 */
12644 ASSERT(ci.ci_ipif != NULL);
12645 }
12646
12647 if (!(ipip->ipi_flags & IPI_WR)) {
12648 /*
12649 * A return value of EINPROGRESS means the ioctl is
12650 * either queued and waiting for some reason or has
12651 * already completed.
12652 */
12653 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12654 ci.ci_lifr);
12655 if (ci.ci_ipif != NULL) {
12656 DTRACE_PROBE4(ipif__ioctl,
12657 char *, "ip_process_ioctl finish RD",
12658 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12659 ipif_t *, ci.ci_ipif);
12660 ipif_refrele(ci.ci_ipif);
12661 } else {
12662 DTRACE_PROBE4(ipif__ioctl,
12663 char *, "ip_process_ioctl finish RD",
12664 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12665 }
12666 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12667 return;
12668 }
12669
12670 ASSERT(ci.ci_ipif != NULL);
12671
12672 /*
12673 * If ipsq is non-NULL, we are already being called exclusively
12674 */
12675 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12676 if (ipsq == NULL) {
12677 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12678 NEW_OP, B_TRUE);
12679 if (ipsq == NULL) {
12680 ipif_refrele(ci.ci_ipif);
12681 return;
12682 }
12683 entered_ipsq = B_TRUE;
12684 }
12685 /*
12686 * Release the ipif so that ipif_down and friends that wait for
12687 * references to go away are not misled about the current ipif_refcnt
12688 * values. We are writer so we can access the ipif even after releasing
12689 * the ipif.
12690 */
12691 ipif_refrele(ci.ci_ipif);
12692
12693 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12694
12695 /*
12696 * A return value of EINPROGRESS means the ioctl is
12697 * either queued and waiting for some reason or has
12698 * already completed.
12699 */
12700 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12701
12702 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12703 int, ipip->ipi_cmd,
12704 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12705 ipif_t *, ci.ci_ipif);
12706 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12707
12708 if (entered_ipsq)
12709 ipsq_exit(ipsq);
12710 }
12711
12712 /*
12713 * Complete the ioctl. Typically ioctls use the mi package and need to
12714 * do mi_copyout/mi_copy_done.
12715 */
12716 void
12717 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12718 {
12719 conn_t *connp = NULL;
12720
12721 if (err == EINPROGRESS)
12722 return;
12723
12724 if (CONN_Q(q)) {
12725 connp = Q_TO_CONN(q);
12726 ASSERT(connp->conn_ref >= 2);
12727 }
12728
12729 switch (mode) {
12730 case COPYOUT:
12731 if (err == 0)
12732 mi_copyout(q, mp);
12733 else
12734 mi_copy_done(q, mp, err);
12735 break;
12736
12737 case NO_COPYOUT:
12738 mi_copy_done(q, mp, err);
12739 break;
12740
12741 default:
12742 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */
12743 break;
12744 }
12745
12746 /*
12747 * The conn refhold and ioctlref placed on the conn at the start of the
12748 * ioctl are released here.
12749 */
12750 if (connp != NULL) {
12751 CONN_DEC_IOCTLREF(connp);
12752 CONN_OPER_PENDING_DONE(connp);
12753 }
12754
12755 if (ipsq != NULL)
12756 ipsq_current_finish(ipsq);
12757 }
12758
12759 /* Handles all non data messages */
12760 int
12761 ip_wput_nondata(queue_t *q, mblk_t *mp)
12762 {
12763 mblk_t *mp1;
12764 struct iocblk *iocp;
12765 ip_ioctl_cmd_t *ipip;
12766 conn_t *connp;
12767 cred_t *cr;
12768 char *proto_str;
12769
12770 if (CONN_Q(q))
12771 connp = Q_TO_CONN(q);
12772 else
12773 connp = NULL;
12774
12775 switch (DB_TYPE(mp)) {
12776 case M_IOCTL:
12777 /*
12778 * IOCTL processing begins in ip_sioctl_copyin_setup which
12779 * will arrange to copy in associated control structures.
12780 */
12781 ip_sioctl_copyin_setup(q, mp);
12782 return (0);
12783 case M_IOCDATA:
12784 /*
12785 * Ensure that this is associated with one of our trans-
12786 * parent ioctls. If it's not ours, discard it if we're
12787 * running as a driver, or pass it on if we're a module.
12788 */
12789 iocp = (struct iocblk *)mp->b_rptr;
12790 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12791 if (ipip == NULL) {
12792 if (q->q_next == NULL) {
12793 goto nak;
12794 } else {
12795 putnext(q, mp);
12796 }
12797 return (0);
12798 }
12799 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12800 /*
12801 * The ioctl is one we recognise, but is not consumed
12802 * by IP as a module and we are a module, so we drop
12803 */
12804 goto nak;
12805 }
12806
12807 /* IOCTL continuation following copyin or copyout. */
12808 if (mi_copy_state(q, mp, NULL) == -1) {
12809 /*
12810 * The copy operation failed. mi_copy_state already
12811 * cleaned up, so we're out of here.
12812 */
12813 return (0);
12814 }
12815 /*
12816 * If we just completed a copy in, we become writer and
12817 * continue processing in ip_sioctl_copyin_done. If it
12818 * was a copy out, we call mi_copyout again. If there is
12819 * nothing more to copy out, it will complete the IOCTL.
12820 */
12821 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12822 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12823 mi_copy_done(q, mp, EPROTO);
12824 return (0);
12825 }
12826 /*
12827 * Check for cases that need more copying. A return
12828 * value of 0 means a second copyin has been started,
12829 * so we return; a return value of 1 means no more
12830 * copying is needed, so we continue.
12831 */
12832 if (ipip->ipi_cmd_type == MSFILT_CMD &&
12833 MI_COPY_COUNT(mp) == 1) {
12834 if (ip_copyin_msfilter(q, mp) == 0)
12835 return (0);
12836 }
12837 /*
12838 * Refhold the conn, till the ioctl completes. This is
12839 * needed in case the ioctl ends up in the pending mp
12840 * list. Every mp in the ipx_pending_mp list must have
12841 * a refhold on the conn to resume processing. The
12842 * refhold is released when the ioctl completes
12843 * (whether normally or abnormally). An ioctlref is also
12844 * placed on the conn to prevent TCP from removing the
12845 * queue needed to send the ioctl reply back.
12846 * In all cases ip_ioctl_finish is called to finish
12847 * the ioctl and release the refholds.
12848 */
12849 if (connp != NULL) {
12850 /* This is not a reentry */
12851 CONN_INC_REF(connp);
12852 CONN_INC_IOCTLREF(connp);
12853 } else {
12854 if (!(ipip->ipi_flags & IPI_MODOK)) {
12855 mi_copy_done(q, mp, EINVAL);
12856 return (0);
12857 }
12858 }
12859
12860 ip_process_ioctl(NULL, q, mp, ipip);
12861
12862 } else {
12863 mi_copyout(q, mp);
12864 }
12865 return (0);
12866
12867 case M_IOCNAK:
12868 /*
12869 * The only way we could get here is if a resolver didn't like
12870 * an IOCTL we sent it. This shouldn't happen.
12871 */
12872 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12873 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12874 ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12875 freemsg(mp);
12876 return (0);
12877 case M_IOCACK:
12878 /* /dev/ip shouldn't see this */
12879 goto nak;
12880 case M_FLUSH:
12881 if (*mp->b_rptr & FLUSHW)
12882 flushq(q, FLUSHALL);
12883 if (q->q_next) {
12884 putnext(q, mp);
12885 return (0);
12886 }
12887 if (*mp->b_rptr & FLUSHR) {
12888 *mp->b_rptr &= ~FLUSHW;
12889 qreply(q, mp);
12890 return (0);
12891 }
12892 freemsg(mp);
12893 return (0);
12894 case M_CTL:
12895 break;
12896 case M_PROTO:
12897 case M_PCPROTO:
12898 /*
12899 * The only PROTO messages we expect are SNMP-related.
12900 */
12901 switch (((union T_primitives *)mp->b_rptr)->type) {
12902 case T_SVR4_OPTMGMT_REQ:
12903 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12904 "flags %x\n",
12905 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12906
12907 if (connp == NULL) {
12908 proto_str = "T_SVR4_OPTMGMT_REQ";
12909 goto protonak;
12910 }
12911
12912 /*
12913 * All Solaris components should pass a db_credp
12914 * for this TPI message, hence we ASSERT.
12915 * But in case there is some other M_PROTO that looks
12916 * like a TPI message sent by some other kernel
12917 * component, we check and return an error.
12918 */
12919 cr = msg_getcred(mp, NULL);
12920 ASSERT(cr != NULL);
12921 if (cr == NULL) {
12922 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12923 if (mp != NULL)
12924 qreply(q, mp);
12925 return (0);
12926 }
12927
12928 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12929 proto_str = "Bad SNMPCOM request?";
12930 goto protonak;
12931 }
12932 return (0);
12933 default:
12934 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12935 (int)*(uint_t *)mp->b_rptr));
12936 freemsg(mp);
12937 return (0);
12938 }
12939 default:
12940 break;
12941 }
12942 if (q->q_next) {
12943 putnext(q, mp);
12944 } else
12945 freemsg(mp);
12946 return (0);
12947
12948 nak:
12949 iocp->ioc_error = EINVAL;
12950 mp->b_datap->db_type = M_IOCNAK;
12951 iocp->ioc_count = 0;
12952 qreply(q, mp);
12953 return (0);
12954
12955 protonak:
12956 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12957 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12958 qreply(q, mp);
12959 return (0);
12960 }
12961
12962 /*
12963 * Process IP options in an outbound packet. Verify that the nexthop in a
12964 * strict source route is onlink.
12965 * Returns non-zero if something fails in which case an ICMP error has been
12966 * sent and mp freed.
12967 *
12968 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12969 */
12970 int
12971 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12972 {
12973 ipoptp_t opts;
12974 uchar_t *opt;
12975 uint8_t optval;
12976 uint8_t optlen;
12977 ipaddr_t dst;
12978 intptr_t code = 0;
12979 ire_t *ire;
12980 ip_stack_t *ipst = ixa->ixa_ipst;
12981 ip_recv_attr_t iras;
12982
12983 ip2dbg(("ip_output_options\n"));
12984
12985 dst = ipha->ipha_dst;
12986 for (optval = ipoptp_first(&opts, ipha);
12987 optval != IPOPT_EOL;
12988 optval = ipoptp_next(&opts)) {
12989 opt = opts.ipoptp_cur;
12990 optlen = opts.ipoptp_len;
12991 ip2dbg(("ip_output_options: opt %d, len %d\n",
12992 optval, optlen));
12993 switch (optval) {
12994 uint32_t off;
12995 case IPOPT_SSRR:
12996 case IPOPT_LSRR:
12997 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12998 ip1dbg((
12999 "ip_output_options: bad option offset\n"));
13000 code = (char *)&opt[IPOPT_OLEN] -
13001 (char *)ipha;
13002 goto param_prob;
13003 }
13004 off = opt[IPOPT_OFFSET];
13005 ip1dbg(("ip_output_options: next hop 0x%x\n",
13006 ntohl(dst)));
13007 /*
13008 * For strict: verify that dst is directly
13009 * reachable.
13010 */
13011 if (optval == IPOPT_SSRR) {
13012 ire = ire_ftable_lookup_v4(dst, 0, 0,
13013 IRE_INTERFACE, NULL, ALL_ZONES,
13014 ixa->ixa_tsl,
13015 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13016 NULL);
13017 if (ire == NULL) {
13018 ip1dbg(("ip_output_options: SSRR not"
13019 " directly reachable: 0x%x\n",
13020 ntohl(dst)));
13021 goto bad_src_route;
13022 }
13023 ire_refrele(ire);
13024 }
13025 break;
13026 case IPOPT_RR:
13027 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13028 ip1dbg((
13029 "ip_output_options: bad option offset\n"));
13030 code = (char *)&opt[IPOPT_OLEN] -
13031 (char *)ipha;
13032 goto param_prob;
13033 }
13034 break;
13035 case IPOPT_TS:
13036 /*
13037 * Verify that length >=5 and that there is either
13038 * room for another timestamp or that the overflow
13039 * counter is not maxed out.
13040 */
13041 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13042 if (optlen < IPOPT_MINLEN_IT) {
13043 goto param_prob;
13044 }
13045 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13046 ip1dbg((
13047 "ip_output_options: bad option offset\n"));
13048 code = (char *)&opt[IPOPT_OFFSET] -
13049 (char *)ipha;
13050 goto param_prob;
13051 }
13052 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13053 case IPOPT_TS_TSONLY:
13054 off = IPOPT_TS_TIMELEN;
13055 break;
13056 case IPOPT_TS_TSANDADDR:
13057 case IPOPT_TS_PRESPEC:
13058 case IPOPT_TS_PRESPEC_RFC791:
13059 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13060 break;
13061 default:
13062 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13063 (char *)ipha;
13064 goto param_prob;
13065 }
13066 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13067 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13068 /*
13069 * No room and the overflow counter is 15
13070 * already.
13071 */
13072 goto param_prob;
13073 }
13074 break;
13075 }
13076 }
13077
13078 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13079 return (0);
13080
13081 ip1dbg(("ip_output_options: error processing IP options."));
13082 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13083
13084 param_prob:
13085 bzero(&iras, sizeof (iras));
13086 iras.ira_ill = iras.ira_rill = ill;
13087 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13088 iras.ira_rifindex = iras.ira_ruifindex;
13089 iras.ira_flags = IRAF_IS_IPV4;
13090
13091 ip_drop_output("ip_output_options", mp, ill);
13092 icmp_param_problem(mp, (uint8_t)code, &iras);
13093 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13094 return (-1);
13095
13096 bad_src_route:
13097 bzero(&iras, sizeof (iras));
13098 iras.ira_ill = iras.ira_rill = ill;
13099 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13100 iras.ira_rifindex = iras.ira_ruifindex;
13101 iras.ira_flags = IRAF_IS_IPV4;
13102
13103 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13104 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13105 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13106 return (-1);
13107 }
13108
13109 /*
13110 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13111 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13112 * thru /etc/system.
13113 */
13114 #define CONN_MAXDRAINCNT 64
13115
13116 static void
13117 conn_drain_init(ip_stack_t *ipst)
13118 {
13119 int i, j;
13120 idl_tx_list_t *itl_tx;
13121
13122 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13123
13124 if ((ipst->ips_conn_drain_list_cnt == 0) ||
13125 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13126 /*
13127 * Default value of the number of drainers is the
13128 * number of cpus, subject to maximum of 8 drainers.
13129 */
13130 if (boot_max_ncpus != -1)
13131 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13132 else
13133 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13134 }
13135
13136 ipst->ips_idl_tx_list =
13137 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13138 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13139 itl_tx = &ipst->ips_idl_tx_list[i];
13140 itl_tx->txl_drain_list =
13141 kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13142 sizeof (idl_t), KM_SLEEP);
13143 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13144 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13145 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13146 MUTEX_DEFAULT, NULL);
13147 itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13148 }
13149 }
13150 }
13151
13152 static void
13153 conn_drain_fini(ip_stack_t *ipst)
13154 {
13155 int i;
13156 idl_tx_list_t *itl_tx;
13157
13158 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13159 itl_tx = &ipst->ips_idl_tx_list[i];
13160 kmem_free(itl_tx->txl_drain_list,
13161 ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13162 }
13163 kmem_free(ipst->ips_idl_tx_list,
13164 TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13165 ipst->ips_idl_tx_list = NULL;
13166 }
13167
13168 /*
13169 * Flow control has blocked us from proceeding. Insert the given conn in one
13170 * of the conn drain lists. When flow control is unblocked, either ip_wsrv()
13171 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13172 * will call conn_walk_drain(). See the flow control notes at the top of this
13173 * file for more details.
13174 */
13175 void
13176 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13177 {
13178 idl_t *idl = tx_list->txl_drain_list;
13179 uint_t index;
13180 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
13181
13182 mutex_enter(&connp->conn_lock);
13183 if (connp->conn_state_flags & CONN_CLOSING) {
13184 /*
13185 * The conn is closing as a result of which CONN_CLOSING
13186 * is set. Return.
13187 */
13188 mutex_exit(&connp->conn_lock);
13189 return;
13190 } else if (connp->conn_idl == NULL) {
13191 /*
13192 * Assign the next drain list round robin. We dont' use
13193 * a lock, and thus it may not be strictly round robin.
13194 * Atomicity of load/stores is enough to make sure that
13195 * conn_drain_list_index is always within bounds.
13196 */
13197 index = tx_list->txl_drain_index;
13198 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13199 connp->conn_idl = &tx_list->txl_drain_list[index];
13200 index++;
13201 if (index == ipst->ips_conn_drain_list_cnt)
13202 index = 0;
13203 tx_list->txl_drain_index = index;
13204 } else {
13205 ASSERT(connp->conn_idl->idl_itl == tx_list);
13206 }
13207 mutex_exit(&connp->conn_lock);
13208
13209 idl = connp->conn_idl;
13210 mutex_enter(&idl->idl_lock);
13211 if ((connp->conn_drain_prev != NULL) ||
13212 (connp->conn_state_flags & CONN_CLOSING)) {
13213 /*
13214 * The conn is either already in the drain list or closing.
13215 * (We needed to check for CONN_CLOSING again since close can
13216 * sneak in between dropping conn_lock and acquiring idl_lock.)
13217 */
13218 mutex_exit(&idl->idl_lock);
13219 return;
13220 }
13221
13222 /*
13223 * The conn is not in the drain list. Insert it at the
13224 * tail of the drain list. The drain list is circular
13225 * and doubly linked. idl_conn points to the 1st element
13226 * in the list.
13227 */
13228 if (idl->idl_conn == NULL) {
13229 idl->idl_conn = connp;
13230 connp->conn_drain_next = connp;
13231 connp->conn_drain_prev = connp;
13232 } else {
13233 conn_t *head = idl->idl_conn;
13234
13235 connp->conn_drain_next = head;
13236 connp->conn_drain_prev = head->conn_drain_prev;
13237 head->conn_drain_prev->conn_drain_next = connp;
13238 head->conn_drain_prev = connp;
13239 }
13240 /*
13241 * For non streams based sockets assert flow control.
13242 */
13243 conn_setqfull(connp, NULL);
13244 mutex_exit(&idl->idl_lock);
13245 }
13246
13247 static void
13248 conn_drain_remove(conn_t *connp)
13249 {
13250 idl_t *idl = connp->conn_idl;
13251
13252 if (idl != NULL) {
13253 /*
13254 * Remove ourself from the drain list.
13255 */
13256 if (connp->conn_drain_next == connp) {
13257 /* Singleton in the list */
13258 ASSERT(connp->conn_drain_prev == connp);
13259 idl->idl_conn = NULL;
13260 } else {
13261 connp->conn_drain_prev->conn_drain_next =
13262 connp->conn_drain_next;
13263 connp->conn_drain_next->conn_drain_prev =
13264 connp->conn_drain_prev;
13265 if (idl->idl_conn == connp)
13266 idl->idl_conn = connp->conn_drain_next;
13267 }
13268
13269 /*
13270 * NOTE: because conn_idl is associated with a specific drain
13271 * list which in turn is tied to the index the TX ring
13272 * (txl_cookie) hashes to, and because the TX ring can change
13273 * over the lifetime of the conn_t, we must clear conn_idl so
13274 * a subsequent conn_drain_insert() will set conn_idl again
13275 * based on the latest txl_cookie.
13276 */
13277 connp->conn_idl = NULL;
13278 }
13279 connp->conn_drain_next = NULL;
13280 connp->conn_drain_prev = NULL;
13281
13282 conn_clrqfull(connp, NULL);
13283 /*
13284 * For streams based sockets open up flow control.
13285 */
13286 if (!IPCL_IS_NONSTR(connp))
13287 enableok(connp->conn_wq);
13288 }
13289
13290 /*
13291 * This conn is closing, and we are called from ip_close. OR
13292 * this conn is draining because flow-control on the ill has been relieved.
13293 *
13294 * We must also need to remove conn's on this idl from the list, and also
13295 * inform the sockfs upcalls about the change in flow-control.
13296 */
13297 static void
13298 conn_drain(conn_t *connp, boolean_t closing)
13299 {
13300 idl_t *idl;
13301 conn_t *next_connp;
13302
13303 /*
13304 * connp->conn_idl is stable at this point, and no lock is needed
13305 * to check it. If we are called from ip_close, close has already
13306 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13307 * called us only because conn_idl is non-null. If we are called thru
13308 * service, conn_idl could be null, but it cannot change because
13309 * service is single-threaded per queue, and there cannot be another
13310 * instance of service trying to call conn_drain_insert on this conn
13311 * now.
13312 */
13313 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13314
13315 /*
13316 * If the conn doesn't exist or is not on a drain list, bail.
13317 */
13318 if (connp == NULL || connp->conn_idl == NULL ||
13319 connp->conn_drain_prev == NULL) {
13320 return;
13321 }
13322
13323 idl = connp->conn_idl;
13324 ASSERT(MUTEX_HELD(&idl->idl_lock));
13325
13326 if (!closing) {
13327 next_connp = connp->conn_drain_next;
13328 while (next_connp != connp) {
13329 conn_t *delconnp = next_connp;
13330
13331 next_connp = next_connp->conn_drain_next;
13332 conn_drain_remove(delconnp);
13333 }
13334 ASSERT(connp->conn_drain_next == idl->idl_conn);
13335 }
13336 conn_drain_remove(connp);
13337 }
13338
13339 /*
13340 * Write service routine. Shared perimeter entry point.
13341 * The device queue's messages has fallen below the low water mark and STREAMS
13342 * has backenabled the ill_wq. Send sockfs notification about flow-control on
13343 * each waiting conn.
13344 */
13345 int
13346 ip_wsrv(queue_t *q)
13347 {
13348 ill_t *ill;
13349
13350 ill = (ill_t *)q->q_ptr;
13351 if (ill->ill_state_flags == 0) {
13352 ip_stack_t *ipst = ill->ill_ipst;
13353
13354 /*
13355 * The device flow control has opened up.
13356 * Walk through conn drain lists and qenable the
13357 * first conn in each list. This makes sense only
13358 * if the stream is fully plumbed and setup.
13359 * Hence the ill_state_flags check above.
13360 */
13361 ip1dbg(("ip_wsrv: walking\n"));
13362 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13363 enableok(ill->ill_wq);
13364 }
13365 return (0);
13366 }
13367
13368 /*
13369 * Callback to disable flow control in IP.
13370 *
13371 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13372 * is enabled.
13373 *
13374 * When MAC_TX() is not able to send any more packets, dld sets its queue
13375 * to QFULL and enable the STREAMS flow control. Later, when the underlying
13376 * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13377 * function and wakes up corresponding mac worker threads, which in turn
13378 * calls this callback function, and disables flow control.
13379 */
13380 void
13381 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13382 {
13383 ill_t *ill = (ill_t *)arg;
13384 ip_stack_t *ipst = ill->ill_ipst;
13385 idl_tx_list_t *idl_txl;
13386
13387 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13388 mutex_enter(&idl_txl->txl_lock);
13389 /* add code to to set a flag to indicate idl_txl is enabled */
13390 conn_walk_drain(ipst, idl_txl);
13391 mutex_exit(&idl_txl->txl_lock);
13392 }
13393
13394 /*
13395 * Flow control has been relieved and STREAMS has backenabled us; drain
13396 * all the conn lists on `tx_list'.
13397 */
13398 static void
13399 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13400 {
13401 int i;
13402 idl_t *idl;
13403
13404 IP_STAT(ipst, ip_conn_walk_drain);
13405
13406 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13407 idl = &tx_list->txl_drain_list[i];
13408 mutex_enter(&idl->idl_lock);
13409 conn_drain(idl->idl_conn, B_FALSE);
13410 mutex_exit(&idl->idl_lock);
13411 }
13412 }
13413
13414 /*
13415 * Determine if the ill and multicast aspects of that packets
13416 * "matches" the conn.
13417 */
13418 boolean_t
13419 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13420 {
13421 ill_t *ill = ira->ira_rill;
13422 zoneid_t zoneid = ira->ira_zoneid;
13423 uint_t in_ifindex;
13424 ipaddr_t dst, src;
13425
13426 dst = ipha->ipha_dst;
13427 src = ipha->ipha_src;
13428
13429 /*
13430 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13431 * unicast, broadcast and multicast reception to
13432 * conn_incoming_ifindex.
13433 * conn_wantpacket is called for unicast, broadcast and
13434 * multicast packets.
13435 */
13436 in_ifindex = connp->conn_incoming_ifindex;
13437
13438 /* mpathd can bind to the under IPMP interface, which we allow */
13439 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13440 if (!IS_UNDER_IPMP(ill))
13441 return (B_FALSE);
13442
13443 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13444 return (B_FALSE);
13445 }
13446
13447 if (!IPCL_ZONE_MATCH(connp, zoneid))
13448 return (B_FALSE);
13449
13450 if (!(ira->ira_flags & IRAF_MULTICAST))
13451 return (B_TRUE);
13452
13453 if (connp->conn_multi_router) {
13454 /* multicast packet and multicast router socket: send up */
13455 return (B_TRUE);
13456 }
13457
13458 if (ipha->ipha_protocol == IPPROTO_PIM ||
13459 ipha->ipha_protocol == IPPROTO_RSVP)
13460 return (B_TRUE);
13461
13462 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13463 }
13464
13465 void
13466 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13467 {
13468 if (IPCL_IS_NONSTR(connp)) {
13469 (*connp->conn_upcalls->su_txq_full)
13470 (connp->conn_upper_handle, B_TRUE);
13471 if (flow_stopped != NULL)
13472 *flow_stopped = B_TRUE;
13473 } else {
13474 queue_t *q = connp->conn_wq;
13475
13476 ASSERT(q != NULL);
13477 if (!(q->q_flag & QFULL)) {
13478 mutex_enter(QLOCK(q));
13479 if (!(q->q_flag & QFULL)) {
13480 /* still need to set QFULL */
13481 q->q_flag |= QFULL;
13482 /* set flow_stopped to true under QLOCK */
13483 if (flow_stopped != NULL)
13484 *flow_stopped = B_TRUE;
13485 mutex_exit(QLOCK(q));
13486 } else {
13487 /* flow_stopped is left unchanged */
13488 mutex_exit(QLOCK(q));
13489 }
13490 }
13491 }
13492 }
13493
13494 void
13495 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13496 {
13497 if (IPCL_IS_NONSTR(connp)) {
13498 (*connp->conn_upcalls->su_txq_full)
13499 (connp->conn_upper_handle, B_FALSE);
13500 if (flow_stopped != NULL)
13501 *flow_stopped = B_FALSE;
13502 } else {
13503 queue_t *q = connp->conn_wq;
13504
13505 ASSERT(q != NULL);
13506 if (q->q_flag & QFULL) {
13507 mutex_enter(QLOCK(q));
13508 if (q->q_flag & QFULL) {
13509 q->q_flag &= ~QFULL;
13510 /* set flow_stopped to false under QLOCK */
13511 if (flow_stopped != NULL)
13512 *flow_stopped = B_FALSE;
13513 mutex_exit(QLOCK(q));
13514 if (q->q_flag & QWANTW)
13515 qbackenable(q, 0);
13516 } else {
13517 /* flow_stopped is left unchanged */
13518 mutex_exit(QLOCK(q));
13519 }
13520 }
13521 }
13522
13523 mutex_enter(&connp->conn_lock);
13524 connp->conn_blocked = B_FALSE;
13525 mutex_exit(&connp->conn_lock);
13526 }
13527
13528 /*
13529 * Return the length in bytes of the IPv4 headers (base header, label, and
13530 * other IP options) that will be needed based on the
13531 * ip_pkt_t structure passed by the caller.
13532 *
13533 * The returned length does not include the length of the upper level
13534 * protocol (ULP) header.
13535 * The caller needs to check that the length doesn't exceed the max for IPv4.
13536 */
13537 int
13538 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13539 {
13540 int len;
13541
13542 len = IP_SIMPLE_HDR_LENGTH;
13543 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13544 ASSERT(ipp->ipp_label_len_v4 != 0);
13545 /* We need to round up here */
13546 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13547 }
13548
13549 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13550 ASSERT(ipp->ipp_ipv4_options_len != 0);
13551 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13552 len += ipp->ipp_ipv4_options_len;
13553 }
13554 return (len);
13555 }
13556
13557 /*
13558 * All-purpose routine to build an IPv4 header with options based
13559 * on the abstract ip_pkt_t.
13560 *
13561 * The caller has to set the source and destination address as well as
13562 * ipha_length. The caller has to massage any source route and compensate
13563 * for the ULP pseudo-header checksum due to the source route.
13564 */
13565 void
13566 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13567 uint8_t protocol)
13568 {
13569 ipha_t *ipha = (ipha_t *)buf;
13570 uint8_t *cp;
13571
13572 /* Initialize IPv4 header */
13573 ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13574 ipha->ipha_length = 0; /* Caller will set later */
13575 ipha->ipha_ident = 0;
13576 ipha->ipha_fragment_offset_and_flags = 0;
13577 ipha->ipha_ttl = ipp->ipp_unicast_hops;
13578 ipha->ipha_protocol = protocol;
13579 ipha->ipha_hdr_checksum = 0;
13580
13581 if ((ipp->ipp_fields & IPPF_ADDR) &&
13582 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13583 ipha->ipha_src = ipp->ipp_addr_v4;
13584
13585 cp = (uint8_t *)&ipha[1];
13586 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13587 ASSERT(ipp->ipp_label_len_v4 != 0);
13588 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13589 cp += ipp->ipp_label_len_v4;
13590 /* We need to round up here */
13591 while ((uintptr_t)cp & 0x3) {
13592 *cp++ = IPOPT_NOP;
13593 }
13594 }
13595
13596 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13597 ASSERT(ipp->ipp_ipv4_options_len != 0);
13598 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13599 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13600 cp += ipp->ipp_ipv4_options_len;
13601 }
13602 ipha->ipha_version_and_hdr_length =
13603 (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13604
13605 ASSERT((int)(cp - buf) == buf_len);
13606 }
13607
13608 /* Allocate the private structure */
13609 static int
13610 ip_priv_alloc(void **bufp)
13611 {
13612 void *buf;
13613
13614 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13615 return (ENOMEM);
13616
13617 *bufp = buf;
13618 return (0);
13619 }
13620
13621 /* Function to delete the private structure */
13622 void
13623 ip_priv_free(void *buf)
13624 {
13625 ASSERT(buf != NULL);
13626 kmem_free(buf, sizeof (ip_priv_t));
13627 }
13628
13629 /*
13630 * The entry point for IPPF processing.
13631 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13632 * routine just returns.
13633 *
13634 * When called, ip_process generates an ipp_packet_t structure
13635 * which holds the state information for this packet and invokes the
13636 * the classifier (via ipp_packet_process). The classification, depending on
13637 * configured filters, results in a list of actions for this packet. Invoking
13638 * an action may cause the packet to be dropped, in which case we return NULL.
13639 * proc indicates the callout position for
13640 * this packet and ill is the interface this packet arrived on or will leave
13641 * on (inbound and outbound resp.).
13642 *
13643 * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13644 * on the ill corrsponding to the destination IP address.
13645 */
13646 mblk_t *
13647 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13648 {
13649 ip_priv_t *priv;
13650 ipp_action_id_t aid;
13651 int rc = 0;
13652 ipp_packet_t *pp;
13653
13654 /* If the classifier is not loaded, return */
13655 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13656 return (mp);
13657 }
13658
13659 ASSERT(mp != NULL);
13660
13661 /* Allocate the packet structure */
13662 rc = ipp_packet_alloc(&pp, "ip", aid);
13663 if (rc != 0)
13664 goto drop;
13665
13666 /* Allocate the private structure */
13667 rc = ip_priv_alloc((void **)&priv);
13668 if (rc != 0) {
13669 ipp_packet_free(pp);
13670 goto drop;
13671 }
13672 priv->proc = proc;
13673 priv->ill_index = ill_get_upper_ifindex(rill);
13674
13675 ipp_packet_set_private(pp, priv, ip_priv_free);
13676 ipp_packet_set_data(pp, mp);
13677
13678 /* Invoke the classifier */
13679 rc = ipp_packet_process(&pp);
13680 if (pp != NULL) {
13681 mp = ipp_packet_get_data(pp);
13682 ipp_packet_free(pp);
13683 if (rc != 0)
13684 goto drop;
13685 return (mp);
13686 } else {
13687 /* No mp to trace in ip_drop_input/ip_drop_output */
13688 mp = NULL;
13689 }
13690 drop:
13691 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13692 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13693 ip_drop_input("ip_process", mp, ill);
13694 } else {
13695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13696 ip_drop_output("ip_process", mp, ill);
13697 }
13698 freemsg(mp);
13699 return (NULL);
13700 }
13701
13702 /*
13703 * Propagate a multicast group membership operation (add/drop) on
13704 * all the interfaces crossed by the related multirt routes.
13705 * The call is considered successful if the operation succeeds
13706 * on at least one interface.
13707 *
13708 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13709 * multicast addresses with the ire argument being the first one.
13710 * We walk the bucket to find all the of those.
13711 *
13712 * Common to IPv4 and IPv6.
13713 */
13714 static int
13715 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13716 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13717 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13718 mcast_record_t fmode, const in6_addr_t *v6src)
13719 {
13720 ire_t *ire_gw;
13721 irb_t *irb;
13722 int ifindex;
13723 int error = 0;
13724 int result;
13725 ip_stack_t *ipst = ire->ire_ipst;
13726 ipaddr_t group;
13727 boolean_t isv6;
13728 int match_flags;
13729
13730 if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13731 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13732 isv6 = B_FALSE;
13733 } else {
13734 isv6 = B_TRUE;
13735 }
13736
13737 irb = ire->ire_bucket;
13738 ASSERT(irb != NULL);
13739
13740 result = 0;
13741 irb_refhold(irb);
13742 for (; ire != NULL; ire = ire->ire_next) {
13743 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13744 continue;
13745
13746 /* We handle -ifp routes by matching on the ill if set */
13747 match_flags = MATCH_IRE_TYPE;
13748 if (ire->ire_ill != NULL)
13749 match_flags |= MATCH_IRE_ILL;
13750
13751 if (isv6) {
13752 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13753 continue;
13754
13755 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13756 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13757 match_flags, 0, ipst, NULL);
13758 } else {
13759 if (ire->ire_addr != group)
13760 continue;
13761
13762 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13763 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13764 match_flags, 0, ipst, NULL);
13765 }
13766 /* No interface route exists for the gateway; skip this ire. */
13767 if (ire_gw == NULL)
13768 continue;
13769 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13770 ire_refrele(ire_gw);
13771 continue;
13772 }
13773 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */
13774 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13775
13776 /*
13777 * The operation is considered a success if
13778 * it succeeds at least once on any one interface.
13779 */
13780 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13781 fmode, v6src);
13782 if (error == 0)
13783 result = CGTP_MCAST_SUCCESS;
13784
13785 ire_refrele(ire_gw);
13786 }
13787 irb_refrele(irb);
13788 /*
13789 * Consider the call as successful if we succeeded on at least
13790 * one interface. Otherwise, return the last encountered error.
13791 */
13792 return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13793 }
13794
13795 /*
13796 * Return the expected CGTP hooks version number.
13797 */
13798 int
13799 ip_cgtp_filter_supported(void)
13800 {
13801 return (ip_cgtp_filter_rev);
13802 }
13803
13804 /*
13805 * CGTP hooks can be registered by invoking this function.
13806 * Checks that the version number matches.
13807 */
13808 int
13809 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13810 {
13811 netstack_t *ns;
13812 ip_stack_t *ipst;
13813
13814 if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13815 return (ENOTSUP);
13816
13817 ns = netstack_find_by_stackid(stackid);
13818 if (ns == NULL)
13819 return (EINVAL);
13820 ipst = ns->netstack_ip;
13821 ASSERT(ipst != NULL);
13822
13823 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13824 netstack_rele(ns);
13825 return (EALREADY);
13826 }
13827
13828 ipst->ips_ip_cgtp_filter_ops = ops;
13829
13830 ill_set_inputfn_all(ipst);
13831
13832 netstack_rele(ns);
13833 return (0);
13834 }
13835
13836 /*
13837 * CGTP hooks can be unregistered by invoking this function.
13838 * Returns ENXIO if there was no registration.
13839 * Returns EBUSY if the ndd variable has not been turned off.
13840 */
13841 int
13842 ip_cgtp_filter_unregister(netstackid_t stackid)
13843 {
13844 netstack_t *ns;
13845 ip_stack_t *ipst;
13846
13847 ns = netstack_find_by_stackid(stackid);
13848 if (ns == NULL)
13849 return (EINVAL);
13850 ipst = ns->netstack_ip;
13851 ASSERT(ipst != NULL);
13852
13853 if (ipst->ips_ip_cgtp_filter) {
13854 netstack_rele(ns);
13855 return (EBUSY);
13856 }
13857
13858 if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13859 netstack_rele(ns);
13860 return (ENXIO);
13861 }
13862 ipst->ips_ip_cgtp_filter_ops = NULL;
13863
13864 ill_set_inputfn_all(ipst);
13865
13866 netstack_rele(ns);
13867 return (0);
13868 }
13869
13870 /*
13871 * Check whether there is a CGTP filter registration.
13872 * Returns non-zero if there is a registration, otherwise returns zero.
13873 * Note: returns zero if bad stackid.
13874 */
13875 int
13876 ip_cgtp_filter_is_registered(netstackid_t stackid)
13877 {
13878 netstack_t *ns;
13879 ip_stack_t *ipst;
13880 int ret;
13881
13882 ns = netstack_find_by_stackid(stackid);
13883 if (ns == NULL)
13884 return (0);
13885 ipst = ns->netstack_ip;
13886 ASSERT(ipst != NULL);
13887
13888 if (ipst->ips_ip_cgtp_filter_ops != NULL)
13889 ret = 1;
13890 else
13891 ret = 0;
13892
13893 netstack_rele(ns);
13894 return (ret);
13895 }
13896
13897 static int
13898 ip_squeue_switch(int val)
13899 {
13900 int rval;
13901
13902 switch (val) {
13903 case IP_SQUEUE_ENTER_NODRAIN:
13904 rval = SQ_NODRAIN;
13905 break;
13906 case IP_SQUEUE_ENTER:
13907 rval = SQ_PROCESS;
13908 break;
13909 case IP_SQUEUE_FILL:
13910 default:
13911 rval = SQ_FILL;
13912 break;
13913 }
13914 return (rval);
13915 }
13916
13917 static void *
13918 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13919 {
13920 kstat_t *ksp;
13921
13922 ip_stat_t template = {
13923 { "ip_udp_fannorm", KSTAT_DATA_UINT64 },
13924 { "ip_udp_fanmb", KSTAT_DATA_UINT64 },
13925 { "ip_recv_pullup", KSTAT_DATA_UINT64 },
13926 { "ip_db_ref", KSTAT_DATA_UINT64 },
13927 { "ip_notaligned", KSTAT_DATA_UINT64 },
13928 { "ip_multimblk", KSTAT_DATA_UINT64 },
13929 { "ip_opt", KSTAT_DATA_UINT64 },
13930 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 },
13931 { "ip_conn_flputbq", KSTAT_DATA_UINT64 },
13932 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 },
13933 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 },
13934 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 },
13935 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 },
13936 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 },
13937 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 },
13938 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 },
13939 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 },
13940 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 },
13941 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 },
13942 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
13943 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13944 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13945 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
13946 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13947 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13948 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 },
13949 { "conn_in_recvopts", KSTAT_DATA_UINT64 },
13950 { "conn_in_recvif", KSTAT_DATA_UINT64 },
13951 { "conn_in_recvslla", KSTAT_DATA_UINT64 },
13952 { "conn_in_recvucred", KSTAT_DATA_UINT64 },
13953 { "conn_in_recvttl", KSTAT_DATA_UINT64 },
13954 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 },
13955 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 },
13956 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 },
13957 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 },
13958 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 },
13959 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 },
13960 { "conn_in_recvtclass", KSTAT_DATA_UINT64 },
13961 { "conn_in_timestamp", KSTAT_DATA_UINT64 },
13962 };
13963
13964 ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13965 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13966 KSTAT_FLAG_VIRTUAL, stackid);
13967
13968 if (ksp == NULL)
13969 return (NULL);
13970
13971 bcopy(&template, ip_statisticsp, sizeof (template));
13972 ksp->ks_data = (void *)ip_statisticsp;
13973 ksp->ks_private = (void *)(uintptr_t)stackid;
13974
13975 kstat_install(ksp);
13976 return (ksp);
13977 }
13978
13979 static void
13980 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13981 {
13982 if (ksp != NULL) {
13983 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13984 kstat_delete_netstack(ksp, stackid);
13985 }
13986 }
13987
13988 static void *
13989 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13990 {
13991 kstat_t *ksp;
13992
13993 ip_named_kstat_t template = {
13994 { "forwarding", KSTAT_DATA_UINT32, 0 },
13995 { "defaultTTL", KSTAT_DATA_UINT32, 0 },
13996 { "inReceives", KSTAT_DATA_UINT64, 0 },
13997 { "inHdrErrors", KSTAT_DATA_UINT32, 0 },
13998 { "inAddrErrors", KSTAT_DATA_UINT32, 0 },
13999 { "forwDatagrams", KSTAT_DATA_UINT64, 0 },
14000 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 },
14001 { "inDiscards", KSTAT_DATA_UINT32, 0 },
14002 { "inDelivers", KSTAT_DATA_UINT64, 0 },
14003 { "outRequests", KSTAT_DATA_UINT64, 0 },
14004 { "outDiscards", KSTAT_DATA_UINT32, 0 },
14005 { "outNoRoutes", KSTAT_DATA_UINT32, 0 },
14006 { "reasmTimeout", KSTAT_DATA_UINT32, 0 },
14007 { "reasmReqds", KSTAT_DATA_UINT32, 0 },
14008 { "reasmOKs", KSTAT_DATA_UINT32, 0 },
14009 { "reasmFails", KSTAT_DATA_UINT32, 0 },
14010 { "fragOKs", KSTAT_DATA_UINT32, 0 },
14011 { "fragFails", KSTAT_DATA_UINT32, 0 },
14012 { "fragCreates", KSTAT_DATA_UINT32, 0 },
14013 { "addrEntrySize", KSTAT_DATA_INT32, 0 },
14014 { "routeEntrySize", KSTAT_DATA_INT32, 0 },
14015 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 },
14016 { "routingDiscards", KSTAT_DATA_UINT32, 0 },
14017 { "inErrs", KSTAT_DATA_UINT32, 0 },
14018 { "noPorts", KSTAT_DATA_UINT32, 0 },
14019 { "inCksumErrs", KSTAT_DATA_UINT32, 0 },
14020 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 },
14021 { "reasmPartDups", KSTAT_DATA_UINT32, 0 },
14022 { "forwProhibits", KSTAT_DATA_UINT32, 0 },
14023 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 },
14024 { "udpInOverflows", KSTAT_DATA_UINT32, 0 },
14025 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 },
14026 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 },
14027 { "ipsecInFailed", KSTAT_DATA_INT32, 0 },
14028 { "memberEntrySize", KSTAT_DATA_INT32, 0 },
14029 { "inIPv6", KSTAT_DATA_UINT32, 0 },
14030 { "outIPv6", KSTAT_DATA_UINT32, 0 },
14031 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 },
14032 };
14033
14034 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14035 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14036 if (ksp == NULL || ksp->ks_data == NULL)
14037 return (NULL);
14038
14039 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14040 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14041 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14042 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14043 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14044
14045 template.netToMediaEntrySize.value.i32 =
14046 sizeof (mib2_ipNetToMediaEntry_t);
14047
14048 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14049
14050 bcopy(&template, ksp->ks_data, sizeof (template));
14051 ksp->ks_update = ip_kstat_update;
14052 ksp->ks_private = (void *)(uintptr_t)stackid;
14053
14054 kstat_install(ksp);
14055 return (ksp);
14056 }
14057
14058 static void
14059 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14060 {
14061 if (ksp != NULL) {
14062 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14063 kstat_delete_netstack(ksp, stackid);
14064 }
14065 }
14066
14067 static int
14068 ip_kstat_update(kstat_t *kp, int rw)
14069 {
14070 ip_named_kstat_t *ipkp;
14071 mib2_ipIfStatsEntry_t ipmib;
14072 ill_walk_context_t ctx;
14073 ill_t *ill;
14074 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14075 netstack_t *ns;
14076 ip_stack_t *ipst;
14077
14078 if (kp->ks_data == NULL)
14079 return (EIO);
14080
14081 if (rw == KSTAT_WRITE)
14082 return (EACCES);
14083
14084 ns = netstack_find_by_stackid(stackid);
14085 if (ns == NULL)
14086 return (-1);
14087 ipst = ns->netstack_ip;
14088 if (ipst == NULL) {
14089 netstack_rele(ns);
14090 return (-1);
14091 }
14092 ipkp = (ip_named_kstat_t *)kp->ks_data;
14093
14094 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14095 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14096 ill = ILL_START_WALK_V4(&ctx, ipst);
14097 for (; ill != NULL; ill = ill_next(&ctx, ill))
14098 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14099 rw_exit(&ipst->ips_ill_g_lock);
14100
14101 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding;
14102 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL;
14103 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives;
14104 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors;
14105 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors;
14106 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14107 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos;
14108 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards;
14109 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers;
14110 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests;
14111 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards;
14112 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes;
14113 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14114 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds;
14115 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs;
14116 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails;
14117 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs;
14118 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails;
14119 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates;
14120
14121 ipkp->routingDiscards.value.ui32 = 0;
14122 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs;
14123 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts;
14124 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs;
14125 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates;
14126 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups;
14127 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits;
14128 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs;
14129 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows;
14130 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows;
14131 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded;
14132 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed;
14133
14134 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion;
14135 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion;
14136 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14137
14138 netstack_rele(ns);
14139
14140 return (0);
14141 }
14142
14143 static void *
14144 icmp_kstat_init(netstackid_t stackid)
14145 {
14146 kstat_t *ksp;
14147
14148 icmp_named_kstat_t template = {
14149 { "inMsgs", KSTAT_DATA_UINT32 },
14150 { "inErrors", KSTAT_DATA_UINT32 },
14151 { "inDestUnreachs", KSTAT_DATA_UINT32 },
14152 { "inTimeExcds", KSTAT_DATA_UINT32 },
14153 { "inParmProbs", KSTAT_DATA_UINT32 },
14154 { "inSrcQuenchs", KSTAT_DATA_UINT32 },
14155 { "inRedirects", KSTAT_DATA_UINT32 },
14156 { "inEchos", KSTAT_DATA_UINT32 },
14157 { "inEchoReps", KSTAT_DATA_UINT32 },
14158 { "inTimestamps", KSTAT_DATA_UINT32 },
14159 { "inTimestampReps", KSTAT_DATA_UINT32 },
14160 { "inAddrMasks", KSTAT_DATA_UINT32 },
14161 { "inAddrMaskReps", KSTAT_DATA_UINT32 },
14162 { "outMsgs", KSTAT_DATA_UINT32 },
14163 { "outErrors", KSTAT_DATA_UINT32 },
14164 { "outDestUnreachs", KSTAT_DATA_UINT32 },
14165 { "outTimeExcds", KSTAT_DATA_UINT32 },
14166 { "outParmProbs", KSTAT_DATA_UINT32 },
14167 { "outSrcQuenchs", KSTAT_DATA_UINT32 },
14168 { "outRedirects", KSTAT_DATA_UINT32 },
14169 { "outEchos", KSTAT_DATA_UINT32 },
14170 { "outEchoReps", KSTAT_DATA_UINT32 },
14171 { "outTimestamps", KSTAT_DATA_UINT32 },
14172 { "outTimestampReps", KSTAT_DATA_UINT32 },
14173 { "outAddrMasks", KSTAT_DATA_UINT32 },
14174 { "outAddrMaskReps", KSTAT_DATA_UINT32 },
14175 { "inChksumErrs", KSTAT_DATA_UINT32 },
14176 { "inUnknowns", KSTAT_DATA_UINT32 },
14177 { "inFragNeeded", KSTAT_DATA_UINT32 },
14178 { "outFragNeeded", KSTAT_DATA_UINT32 },
14179 { "outDrops", KSTAT_DATA_UINT32 },
14180 { "inOverFlows", KSTAT_DATA_UINT32 },
14181 { "inBadRedirects", KSTAT_DATA_UINT32 },
14182 };
14183
14184 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14185 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14186 if (ksp == NULL || ksp->ks_data == NULL)
14187 return (NULL);
14188
14189 bcopy(&template, ksp->ks_data, sizeof (template));
14190
14191 ksp->ks_update = icmp_kstat_update;
14192 ksp->ks_private = (void *)(uintptr_t)stackid;
14193
14194 kstat_install(ksp);
14195 return (ksp);
14196 }
14197
14198 static void
14199 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14200 {
14201 if (ksp != NULL) {
14202 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14203 kstat_delete_netstack(ksp, stackid);
14204 }
14205 }
14206
14207 static int
14208 icmp_kstat_update(kstat_t *kp, int rw)
14209 {
14210 icmp_named_kstat_t *icmpkp;
14211 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14212 netstack_t *ns;
14213 ip_stack_t *ipst;
14214
14215 if (kp->ks_data == NULL)
14216 return (EIO);
14217
14218 if (rw == KSTAT_WRITE)
14219 return (EACCES);
14220
14221 ns = netstack_find_by_stackid(stackid);
14222 if (ns == NULL)
14223 return (-1);
14224 ipst = ns->netstack_ip;
14225 if (ipst == NULL) {
14226 netstack_rele(ns);
14227 return (-1);
14228 }
14229 icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14230
14231 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs;
14232 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors;
14233 icmpkp->inDestUnreachs.value.ui32 =
14234 ipst->ips_icmp_mib.icmpInDestUnreachs;
14235 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds;
14236 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs;
14237 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs;
14238 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects;
14239 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos;
14240 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps;
14241 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps;
14242 icmpkp->inTimestampReps.value.ui32 =
14243 ipst->ips_icmp_mib.icmpInTimestampReps;
14244 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks;
14245 icmpkp->inAddrMaskReps.value.ui32 =
14246 ipst->ips_icmp_mib.icmpInAddrMaskReps;
14247 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs;
14248 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors;
14249 icmpkp->outDestUnreachs.value.ui32 =
14250 ipst->ips_icmp_mib.icmpOutDestUnreachs;
14251 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds;
14252 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs;
14253 icmpkp->outSrcQuenchs.value.ui32 =
14254 ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14255 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects;
14256 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos;
14257 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps;
14258 icmpkp->outTimestamps.value.ui32 =
14259 ipst->ips_icmp_mib.icmpOutTimestamps;
14260 icmpkp->outTimestampReps.value.ui32 =
14261 ipst->ips_icmp_mib.icmpOutTimestampReps;
14262 icmpkp->outAddrMasks.value.ui32 =
14263 ipst->ips_icmp_mib.icmpOutAddrMasks;
14264 icmpkp->outAddrMaskReps.value.ui32 =
14265 ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14266 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs;
14267 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns;
14268 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded;
14269 icmpkp->outFragNeeded.value.ui32 =
14270 ipst->ips_icmp_mib.icmpOutFragNeeded;
14271 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops;
14272 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows;
14273 icmpkp->inBadRedirects.value.ui32 =
14274 ipst->ips_icmp_mib.icmpInBadRedirects;
14275
14276 netstack_rele(ns);
14277 return (0);
14278 }
14279
14280 /*
14281 * This is the fanout function for raw socket opened for SCTP. Note
14282 * that it is called after SCTP checks that there is no socket which
14283 * wants a packet. Then before SCTP handles this out of the blue packet,
14284 * this function is called to see if there is any raw socket for SCTP.
14285 * If there is and it is bound to the correct address, the packet will
14286 * be sent to that socket. Note that only one raw socket can be bound to
14287 * a port. This is assured in ipcl_sctp_hash_insert();
14288 */
14289 void
14290 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14291 ip_recv_attr_t *ira)
14292 {
14293 conn_t *connp;
14294 queue_t *rq;
14295 boolean_t secure;
14296 ill_t *ill = ira->ira_ill;
14297 ip_stack_t *ipst = ill->ill_ipst;
14298 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
14299 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp;
14300 iaflags_t iraflags = ira->ira_flags;
14301 ill_t *rill = ira->ira_rill;
14302
14303 secure = iraflags & IRAF_IPSEC_SECURE;
14304
14305 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14306 ira, ipst);
14307 if (connp == NULL) {
14308 /*
14309 * Although raw sctp is not summed, OOB chunks must be.
14310 * Drop the packet here if the sctp checksum failed.
14311 */
14312 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14313 SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14314 freemsg(mp);
14315 return;
14316 }
14317 ira->ira_ill = ira->ira_rill = NULL;
14318 sctp_ootb_input(mp, ira, ipst);
14319 ira->ira_ill = ill;
14320 ira->ira_rill = rill;
14321 return;
14322 }
14323 rq = connp->conn_rq;
14324 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14325 CONN_DEC_REF(connp);
14326 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14327 freemsg(mp);
14328 return;
14329 }
14330 if (((iraflags & IRAF_IS_IPV4) ?
14331 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14332 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14333 secure) {
14334 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14335 ip6h, ira);
14336 if (mp == NULL) {
14337 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14338 /* Note that mp is NULL */
14339 ip_drop_input("ipIfStatsInDiscards", mp, ill);
14340 CONN_DEC_REF(connp);
14341 return;
14342 }
14343 }
14344
14345 if (iraflags & IRAF_ICMP_ERROR) {
14346 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14347 } else {
14348 ill_t *rill = ira->ira_rill;
14349
14350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14351 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14352 ira->ira_ill = ira->ira_rill = NULL;
14353 (connp->conn_recv)(connp, mp, NULL, ira);
14354 ira->ira_ill = ill;
14355 ira->ira_rill = rill;
14356 }
14357 CONN_DEC_REF(connp);
14358 }
14359
14360 /*
14361 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14362 * header before the ip payload.
14363 */
14364 static void
14365 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14366 {
14367 int len = (mp->b_wptr - mp->b_rptr);
14368 mblk_t *ip_mp;
14369
14370 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14371 if (is_fp_mp || len != fp_mp_len) {
14372 if (len > fp_mp_len) {
14373 /*
14374 * fastpath header and ip header in the first mblk
14375 */
14376 mp->b_rptr += fp_mp_len;
14377 } else {
14378 /*
14379 * ip_xmit_attach_llhdr had to prepend an mblk to
14380 * attach the fastpath header before ip header.
14381 */
14382 ip_mp = mp->b_cont;
14383 freeb(mp);
14384 mp = ip_mp;
14385 mp->b_rptr += (fp_mp_len - len);
14386 }
14387 } else {
14388 ip_mp = mp->b_cont;
14389 freeb(mp);
14390 mp = ip_mp;
14391 }
14392 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14393 freemsg(mp);
14394 }
14395
14396 /*
14397 * Normal post fragmentation function.
14398 *
14399 * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14400 * using the same state machine.
14401 *
14402 * We return an error on failure. In particular we return EWOULDBLOCK
14403 * when the driver flow controls. In that case this ensures that ip_wsrv runs
14404 * (currently by canputnext failure resulting in backenabling from GLD.)
14405 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14406 * indication that they can flow control until ip_wsrv() tells then to restart.
14407 *
14408 * If the nce passed by caller is incomplete, this function
14409 * queues the packet and if necessary, sends ARP request and bails.
14410 * If the Neighbor Cache passed is fully resolved, we simply prepend
14411 * the link-layer header to the packet, do ipsec hw acceleration
14412 * work if necessary, and send the packet out on the wire.
14413 */
14414 /* ARGSUSED6 */
14415 int
14416 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14417 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14418 {
14419 queue_t *wq;
14420 ill_t *ill = nce->nce_ill;
14421 ip_stack_t *ipst = ill->ill_ipst;
14422 uint64_t delta;
14423 boolean_t isv6 = ill->ill_isv6;
14424 boolean_t fp_mp;
14425 ncec_t *ncec = nce->nce_common;
14426 int64_t now = LBOLT_FASTPATH64;
14427 boolean_t is_probe;
14428
14429 DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14430
14431 ASSERT(mp != NULL);
14432 ASSERT(mp->b_datap->db_type == M_DATA);
14433 ASSERT(pkt_len == msgdsize(mp));
14434
14435 /*
14436 * If we have already been here and are coming back after ARP/ND.
14437 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14438 * in that case since they have seen the packet when it came here
14439 * the first time.
14440 */
14441 if (ixaflags & IXAF_NO_TRACE)
14442 goto sendit;
14443
14444 if (ixaflags & IXAF_IS_IPV4) {
14445 ipha_t *ipha = (ipha_t *)mp->b_rptr;
14446
14447 ASSERT(!isv6);
14448 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14449 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14450 !(ixaflags & IXAF_NO_PFHOOK)) {
14451 int error;
14452
14453 FW_HOOKS(ipst->ips_ip4_physical_out_event,
14454 ipst->ips_ipv4firewall_physical_out,
14455 NULL, ill, ipha, mp, mp, 0, ipst, error);
14456 DTRACE_PROBE1(ip4__physical__out__end,
14457 mblk_t *, mp);
14458 if (mp == NULL)
14459 return (error);
14460
14461 /* The length could have changed */
14462 pkt_len = msgdsize(mp);
14463 }
14464 if (ipst->ips_ip4_observe.he_interested) {
14465 /*
14466 * Note that for TX the zoneid is the sending
14467 * zone, whether or not MLP is in play.
14468 * Since the szone argument is the IP zoneid (i.e.,
14469 * zero for exclusive-IP zones) and ipobs wants
14470 * the system zoneid, we map it here.
14471 */
14472 szone = IP_REAL_ZONEID(szone, ipst);
14473
14474 /*
14475 * On the outbound path the destination zone will be
14476 * unknown as we're sending this packet out on the
14477 * wire.
14478 */
14479 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14480 ill, ipst);
14481 }
14482 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14483 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill,
14484 ipha_t *, ipha, ip6_t *, NULL, int, 0);
14485 } else {
14486 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14487
14488 ASSERT(isv6);
14489 ASSERT(pkt_len ==
14490 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14491 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14492 !(ixaflags & IXAF_NO_PFHOOK)) {
14493 int error;
14494
14495 FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14496 ipst->ips_ipv6firewall_physical_out,
14497 NULL, ill, ip6h, mp, mp, 0, ipst, error);
14498 DTRACE_PROBE1(ip6__physical__out__end,
14499 mblk_t *, mp);
14500 if (mp == NULL)
14501 return (error);
14502
14503 /* The length could have changed */
14504 pkt_len = msgdsize(mp);
14505 }
14506 if (ipst->ips_ip6_observe.he_interested) {
14507 /* See above */
14508 szone = IP_REAL_ZONEID(szone, ipst);
14509
14510 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14511 ill, ipst);
14512 }
14513 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14514 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill,
14515 ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14516 }
14517
14518 sendit:
14519 /*
14520 * We check the state without a lock because the state can never
14521 * move "backwards" to initial or incomplete.
14522 */
14523 switch (ncec->ncec_state) {
14524 case ND_REACHABLE:
14525 case ND_STALE:
14526 case ND_DELAY:
14527 case ND_PROBE:
14528 mp = ip_xmit_attach_llhdr(mp, nce);
14529 if (mp == NULL) {
14530 /*
14531 * ip_xmit_attach_llhdr has increased
14532 * ipIfStatsOutDiscards and called ip_drop_output()
14533 */
14534 return (ENOBUFS);
14535 }
14536 /*
14537 * check if nce_fastpath completed and we tagged on a
14538 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14539 */
14540 fp_mp = (mp->b_datap->db_type == M_DATA);
14541
14542 if (fp_mp &&
14543 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14544 ill_dld_direct_t *idd;
14545
14546 idd = &ill->ill_dld_capab->idc_direct;
14547 /*
14548 * Send the packet directly to DLD, where it
14549 * may be queued depending on the availability
14550 * of transmit resources at the media layer.
14551 * Return value should be taken into
14552 * account and flow control the TCP.
14553 */
14554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14555 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14556 pkt_len);
14557
14558 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14559 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14560 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14561 } else {
14562 uintptr_t cookie;
14563
14564 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14565 mp, (uintptr_t)xmit_hint, 0)) != 0) {
14566 if (ixacookie != NULL)
14567 *ixacookie = cookie;
14568 return (EWOULDBLOCK);
14569 }
14570 }
14571 } else {
14572 wq = ill->ill_wq;
14573
14574 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14575 !canputnext(wq)) {
14576 if (ixacookie != NULL)
14577 *ixacookie = 0;
14578 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14579 nce->nce_fp_mp != NULL ?
14580 MBLKL(nce->nce_fp_mp) : 0);
14581 return (EWOULDBLOCK);
14582 }
14583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14584 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14585 pkt_len);
14586 putnext(wq, mp);
14587 }
14588
14589 /*
14590 * The rest of this function implements Neighbor Unreachability
14591 * detection. Determine if the ncec is eligible for NUD.
14592 */
14593 if (ncec->ncec_flags & NCE_F_NONUD)
14594 return (0);
14595
14596 ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14597
14598 /*
14599 * Check for upper layer advice
14600 */
14601 if (ixaflags & IXAF_REACH_CONF) {
14602 timeout_id_t tid;
14603
14604 /*
14605 * It should be o.k. to check the state without
14606 * a lock here, at most we lose an advice.
14607 */
14608 ncec->ncec_last = TICK_TO_MSEC(now);
14609 if (ncec->ncec_state != ND_REACHABLE) {
14610 mutex_enter(&ncec->ncec_lock);
14611 ncec->ncec_state = ND_REACHABLE;
14612 tid = ncec->ncec_timeout_id;
14613 ncec->ncec_timeout_id = 0;
14614 mutex_exit(&ncec->ncec_lock);
14615 (void) untimeout(tid);
14616 if (ip_debug > 2) {
14617 /* ip1dbg */
14618 pr_addr_dbg("ip_xmit: state"
14619 " for %s changed to"
14620 " REACHABLE\n", AF_INET6,
14621 &ncec->ncec_addr);
14622 }
14623 }
14624 return (0);
14625 }
14626
14627 delta = TICK_TO_MSEC(now) - ncec->ncec_last;
14628 ip1dbg(("ip_xmit: delta = %" PRId64
14629 " ill_reachable_time = %d \n", delta,
14630 ill->ill_reachable_time));
14631 if (delta > (uint64_t)ill->ill_reachable_time) {
14632 mutex_enter(&ncec->ncec_lock);
14633 switch (ncec->ncec_state) {
14634 case ND_REACHABLE:
14635 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14636 /* FALLTHROUGH */
14637 case ND_STALE:
14638 /*
14639 * ND_REACHABLE is identical to
14640 * ND_STALE in this specific case. If
14641 * reachable time has expired for this
14642 * neighbor (delta is greater than
14643 * reachable time), conceptually, the
14644 * neighbor cache is no longer in
14645 * REACHABLE state, but already in
14646 * STALE state. So the correct
14647 * transition here is to ND_DELAY.
14648 */
14649 ncec->ncec_state = ND_DELAY;
14650 mutex_exit(&ncec->ncec_lock);
14651 nce_restart_timer(ncec,
14652 ipst->ips_delay_first_probe_time);
14653 if (ip_debug > 3) {
14654 /* ip2dbg */
14655 pr_addr_dbg("ip_xmit: state"
14656 " for %s changed to"
14657 " DELAY\n", AF_INET6,
14658 &ncec->ncec_addr);
14659 }
14660 break;
14661 case ND_DELAY:
14662 case ND_PROBE:
14663 mutex_exit(&ncec->ncec_lock);
14664 /* Timers have already started */
14665 break;
14666 case ND_UNREACHABLE:
14667 /*
14668 * nce_timer has detected that this ncec
14669 * is unreachable and initiated deleting
14670 * this ncec.
14671 * This is a harmless race where we found the
14672 * ncec before it was deleted and have
14673 * just sent out a packet using this
14674 * unreachable ncec.
14675 */
14676 mutex_exit(&ncec->ncec_lock);
14677 break;
14678 default:
14679 ASSERT(0);
14680 mutex_exit(&ncec->ncec_lock);
14681 }
14682 }
14683 return (0);
14684
14685 case ND_INCOMPLETE:
14686 /*
14687 * the state could have changed since we didn't hold the lock.
14688 * Re-verify state under lock.
14689 */
14690 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14691 mutex_enter(&ncec->ncec_lock);
14692 if (NCE_ISREACHABLE(ncec)) {
14693 mutex_exit(&ncec->ncec_lock);
14694 goto sendit;
14695 }
14696 /* queue the packet */
14697 nce_queue_mp(ncec, mp, is_probe);
14698 mutex_exit(&ncec->ncec_lock);
14699 DTRACE_PROBE2(ip__xmit__incomplete,
14700 (ncec_t *), ncec, (mblk_t *), mp);
14701 return (0);
14702
14703 case ND_INITIAL:
14704 /*
14705 * State could have changed since we didn't hold the lock, so
14706 * re-verify state.
14707 */
14708 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14709 mutex_enter(&ncec->ncec_lock);
14710 if (NCE_ISREACHABLE(ncec)) {
14711 mutex_exit(&ncec->ncec_lock);
14712 goto sendit;
14713 }
14714 nce_queue_mp(ncec, mp, is_probe);
14715 if (ncec->ncec_state == ND_INITIAL) {
14716 ncec->ncec_state = ND_INCOMPLETE;
14717 mutex_exit(&ncec->ncec_lock);
14718 /*
14719 * figure out the source we want to use
14720 * and resolve it.
14721 */
14722 ip_ndp_resolve(ncec);
14723 } else {
14724 mutex_exit(&ncec->ncec_lock);
14725 }
14726 return (0);
14727
14728 case ND_UNREACHABLE:
14729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14730 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14731 mp, ill);
14732 freemsg(mp);
14733 return (0);
14734
14735 default:
14736 ASSERT(0);
14737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14738 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14739 mp, ill);
14740 freemsg(mp);
14741 return (ENETUNREACH);
14742 }
14743 }
14744
14745 /*
14746 * Return B_TRUE if the buffers differ in length or content.
14747 * This is used for comparing extension header buffers.
14748 * Note that an extension header would be declared different
14749 * even if all that changed was the next header value in that header i.e.
14750 * what really changed is the next extension header.
14751 */
14752 boolean_t
14753 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14754 uint_t blen)
14755 {
14756 if (!b_valid)
14757 blen = 0;
14758
14759 if (alen != blen)
14760 return (B_TRUE);
14761 if (alen == 0)
14762 return (B_FALSE); /* Both zero length */
14763 return (bcmp(abuf, bbuf, alen));
14764 }
14765
14766 /*
14767 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14768 * Return B_FALSE if memory allocation fails - don't change any state!
14769 */
14770 boolean_t
14771 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14772 const void *src, uint_t srclen)
14773 {
14774 void *dst;
14775
14776 if (!src_valid)
14777 srclen = 0;
14778
14779 ASSERT(*dstlenp == 0);
14780 if (src != NULL && srclen != 0) {
14781 dst = mi_alloc(srclen, BPRI_MED);
14782 if (dst == NULL)
14783 return (B_FALSE);
14784 } else {
14785 dst = NULL;
14786 }
14787 if (*dstp != NULL)
14788 mi_free(*dstp);
14789 *dstp = dst;
14790 *dstlenp = dst == NULL ? 0 : srclen;
14791 return (B_TRUE);
14792 }
14793
14794 /*
14795 * Replace what is in *dst, *dstlen with the source.
14796 * Assumes ip_allocbuf has already been called.
14797 */
14798 void
14799 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14800 const void *src, uint_t srclen)
14801 {
14802 if (!src_valid)
14803 srclen = 0;
14804
14805 ASSERT(*dstlenp == srclen);
14806 if (src != NULL && srclen != 0)
14807 bcopy(src, *dstp, srclen);
14808 }
14809
14810 /*
14811 * Free the storage pointed to by the members of an ip_pkt_t.
14812 */
14813 void
14814 ip_pkt_free(ip_pkt_t *ipp)
14815 {
14816 uint_t fields = ipp->ipp_fields;
14817
14818 if (fields & IPPF_HOPOPTS) {
14819 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14820 ipp->ipp_hopopts = NULL;
14821 ipp->ipp_hopoptslen = 0;
14822 }
14823 if (fields & IPPF_RTHDRDSTOPTS) {
14824 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14825 ipp->ipp_rthdrdstopts = NULL;
14826 ipp->ipp_rthdrdstoptslen = 0;
14827 }
14828 if (fields & IPPF_DSTOPTS) {
14829 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14830 ipp->ipp_dstopts = NULL;
14831 ipp->ipp_dstoptslen = 0;
14832 }
14833 if (fields & IPPF_RTHDR) {
14834 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14835 ipp->ipp_rthdr = NULL;
14836 ipp->ipp_rthdrlen = 0;
14837 }
14838 if (fields & IPPF_IPV4_OPTIONS) {
14839 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14840 ipp->ipp_ipv4_options = NULL;
14841 ipp->ipp_ipv4_options_len = 0;
14842 }
14843 if (fields & IPPF_LABEL_V4) {
14844 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14845 ipp->ipp_label_v4 = NULL;
14846 ipp->ipp_label_len_v4 = 0;
14847 }
14848 if (fields & IPPF_LABEL_V6) {
14849 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14850 ipp->ipp_label_v6 = NULL;
14851 ipp->ipp_label_len_v6 = 0;
14852 }
14853 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14854 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14855 }
14856
14857 /*
14858 * Copy from src to dst and allocate as needed.
14859 * Returns zero or ENOMEM.
14860 *
14861 * The caller must initialize dst to zero.
14862 */
14863 int
14864 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14865 {
14866 uint_t fields = src->ipp_fields;
14867
14868 /* Start with fields that don't require memory allocation */
14869 dst->ipp_fields = fields &
14870 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14871 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14872
14873 dst->ipp_addr = src->ipp_addr;
14874 dst->ipp_unicast_hops = src->ipp_unicast_hops;
14875 dst->ipp_hoplimit = src->ipp_hoplimit;
14876 dst->ipp_tclass = src->ipp_tclass;
14877 dst->ipp_type_of_service = src->ipp_type_of_service;
14878
14879 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14880 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14881 return (0);
14882
14883 if (fields & IPPF_HOPOPTS) {
14884 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14885 if (dst->ipp_hopopts == NULL) {
14886 ip_pkt_free(dst);
14887 return (ENOMEM);
14888 }
14889 dst->ipp_fields |= IPPF_HOPOPTS;
14890 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14891 src->ipp_hopoptslen);
14892 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14893 }
14894 if (fields & IPPF_RTHDRDSTOPTS) {
14895 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14896 kmflag);
14897 if (dst->ipp_rthdrdstopts == NULL) {
14898 ip_pkt_free(dst);
14899 return (ENOMEM);
14900 }
14901 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14902 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14903 src->ipp_rthdrdstoptslen);
14904 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14905 }
14906 if (fields & IPPF_DSTOPTS) {
14907 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14908 if (dst->ipp_dstopts == NULL) {
14909 ip_pkt_free(dst);
14910 return (ENOMEM);
14911 }
14912 dst->ipp_fields |= IPPF_DSTOPTS;
14913 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14914 src->ipp_dstoptslen);
14915 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14916 }
14917 if (fields & IPPF_RTHDR) {
14918 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14919 if (dst->ipp_rthdr == NULL) {
14920 ip_pkt_free(dst);
14921 return (ENOMEM);
14922 }
14923 dst->ipp_fields |= IPPF_RTHDR;
14924 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14925 src->ipp_rthdrlen);
14926 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14927 }
14928 if (fields & IPPF_IPV4_OPTIONS) {
14929 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14930 kmflag);
14931 if (dst->ipp_ipv4_options == NULL) {
14932 ip_pkt_free(dst);
14933 return (ENOMEM);
14934 }
14935 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14936 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14937 src->ipp_ipv4_options_len);
14938 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14939 }
14940 if (fields & IPPF_LABEL_V4) {
14941 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14942 if (dst->ipp_label_v4 == NULL) {
14943 ip_pkt_free(dst);
14944 return (ENOMEM);
14945 }
14946 dst->ipp_fields |= IPPF_LABEL_V4;
14947 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14948 src->ipp_label_len_v4);
14949 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14950 }
14951 if (fields & IPPF_LABEL_V6) {
14952 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14953 if (dst->ipp_label_v6 == NULL) {
14954 ip_pkt_free(dst);
14955 return (ENOMEM);
14956 }
14957 dst->ipp_fields |= IPPF_LABEL_V6;
14958 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14959 src->ipp_label_len_v6);
14960 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14961 }
14962 if (fields & IPPF_FRAGHDR) {
14963 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14964 if (dst->ipp_fraghdr == NULL) {
14965 ip_pkt_free(dst);
14966 return (ENOMEM);
14967 }
14968 dst->ipp_fields |= IPPF_FRAGHDR;
14969 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14970 src->ipp_fraghdrlen);
14971 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14972 }
14973 return (0);
14974 }
14975
14976 /*
14977 * Returns INADDR_ANY if no source route
14978 */
14979 ipaddr_t
14980 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14981 {
14982 ipaddr_t nexthop = INADDR_ANY;
14983 ipoptp_t opts;
14984 uchar_t *opt;
14985 uint8_t optval;
14986 uint8_t optlen;
14987 uint32_t totallen;
14988
14989 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14990 return (INADDR_ANY);
14991
14992 totallen = ipp->ipp_ipv4_options_len;
14993 if (totallen & 0x3)
14994 return (INADDR_ANY);
14995
14996 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14997 optval != IPOPT_EOL;
14998 optval = ipoptp_next(&opts)) {
14999 opt = opts.ipoptp_cur;
15000 switch (optval) {
15001 uint8_t off;
15002 case IPOPT_SSRR:
15003 case IPOPT_LSRR:
15004 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15005 break;
15006 }
15007 optlen = opts.ipoptp_len;
15008 off = opt[IPOPT_OFFSET];
15009 off--;
15010 if (optlen < IP_ADDR_LEN ||
15011 off > optlen - IP_ADDR_LEN) {
15012 /* End of source route */
15013 break;
15014 }
15015 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15016 if (nexthop == htonl(INADDR_LOOPBACK)) {
15017 /* Ignore */
15018 nexthop = INADDR_ANY;
15019 break;
15020 }
15021 break;
15022 }
15023 }
15024 return (nexthop);
15025 }
15026
15027 /*
15028 * Reverse a source route.
15029 */
15030 void
15031 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15032 {
15033 ipaddr_t tmp;
15034 ipoptp_t opts;
15035 uchar_t *opt;
15036 uint8_t optval;
15037 uint32_t totallen;
15038
15039 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15040 return;
15041
15042 totallen = ipp->ipp_ipv4_options_len;
15043 if (totallen & 0x3)
15044 return;
15045
15046 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15047 optval != IPOPT_EOL;
15048 optval = ipoptp_next(&opts)) {
15049 uint8_t off1, off2;
15050
15051 opt = opts.ipoptp_cur;
15052 switch (optval) {
15053 case IPOPT_SSRR:
15054 case IPOPT_LSRR:
15055 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15056 break;
15057 }
15058 off1 = IPOPT_MINOFF_SR - 1;
15059 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15060 while (off2 > off1) {
15061 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15062 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15063 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15064 off2 -= IP_ADDR_LEN;
15065 off1 += IP_ADDR_LEN;
15066 }
15067 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15068 break;
15069 }
15070 }
15071 }
15072
15073 /*
15074 * Returns NULL if no routing header
15075 */
15076 in6_addr_t *
15077 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15078 {
15079 in6_addr_t *nexthop = NULL;
15080 ip6_rthdr0_t *rthdr;
15081
15082 if (!(ipp->ipp_fields & IPPF_RTHDR))
15083 return (NULL);
15084
15085 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15086 if (rthdr->ip6r0_segleft == 0)
15087 return (NULL);
15088
15089 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15090 return (nexthop);
15091 }
15092
15093 zoneid_t
15094 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15095 zoneid_t lookup_zoneid)
15096 {
15097 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15098 ire_t *ire;
15099 int ire_flags = MATCH_IRE_TYPE;
15100 zoneid_t zoneid = ALL_ZONES;
15101
15102 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15103 return (ALL_ZONES);
15104
15105 if (lookup_zoneid != ALL_ZONES)
15106 ire_flags |= MATCH_IRE_ZONEONLY;
15107 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15108 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15109 if (ire != NULL) {
15110 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15111 ire_refrele(ire);
15112 }
15113 return (zoneid);
15114 }
15115
15116 zoneid_t
15117 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15118 ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15119 {
15120 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15121 ire_t *ire;
15122 int ire_flags = MATCH_IRE_TYPE;
15123 zoneid_t zoneid = ALL_ZONES;
15124
15125 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15126 return (ALL_ZONES);
15127
15128 if (IN6_IS_ADDR_LINKLOCAL(addr))
15129 ire_flags |= MATCH_IRE_ILL;
15130
15131 if (lookup_zoneid != ALL_ZONES)
15132 ire_flags |= MATCH_IRE_ZONEONLY;
15133 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15134 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15135 if (ire != NULL) {
15136 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15137 ire_refrele(ire);
15138 }
15139 return (zoneid);
15140 }
15141
15142 /*
15143 * IP obserability hook support functions.
15144 */
15145 static void
15146 ipobs_init(ip_stack_t *ipst)
15147 {
15148 netid_t id;
15149
15150 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15151
15152 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15153 VERIFY(ipst->ips_ip4_observe_pr != NULL);
15154
15155 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15156 VERIFY(ipst->ips_ip6_observe_pr != NULL);
15157 }
15158
15159 static void
15160 ipobs_fini(ip_stack_t *ipst)
15161 {
15162
15163 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15164 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15165 }
15166
15167 /*
15168 * hook_pkt_observe_t is composed in network byte order so that the
15169 * entire mblk_t chain handed into hook_run can be used as-is.
15170 * The caveat is that use of the fields, such as the zone fields,
15171 * requires conversion into host byte order first.
15172 */
15173 void
15174 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15175 const ill_t *ill, ip_stack_t *ipst)
15176 {
15177 hook_pkt_observe_t *hdr;
15178 uint64_t grifindex;
15179 mblk_t *imp;
15180
15181 imp = allocb(sizeof (*hdr), BPRI_HI);
15182 if (imp == NULL)
15183 return;
15184
15185 hdr = (hook_pkt_observe_t *)imp->b_rptr;
15186 /*
15187 * b_wptr is set to make the apparent size of the data in the mblk_t
15188 * to exclude the pointers at the end of hook_pkt_observer_t.
15189 */
15190 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15191 imp->b_cont = mp;
15192
15193 ASSERT(DB_TYPE(mp) == M_DATA);
15194
15195 if (IS_UNDER_IPMP(ill))
15196 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15197 else
15198 grifindex = 0;
15199
15200 hdr->hpo_version = 1;
15201 hdr->hpo_htype = htons(htype);
15202 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15203 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15204 hdr->hpo_grifindex = htonl(grifindex);
15205 hdr->hpo_zsrc = htonl(zsrc);
15206 hdr->hpo_zdst = htonl(zdst);
15207 hdr->hpo_pkt = imp;
15208 hdr->hpo_ctx = ipst->ips_netstack;
15209
15210 if (ill->ill_isv6) {
15211 hdr->hpo_family = AF_INET6;
15212 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15213 ipst->ips_ipv6observing, (hook_data_t)hdr);
15214 } else {
15215 hdr->hpo_family = AF_INET;
15216 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15217 ipst->ips_ipv4observing, (hook_data_t)hdr);
15218 }
15219
15220 imp->b_cont = NULL;
15221 freemsg(imp);
15222 }
15223
15224 /*
15225 * Utility routine that checks if `v4srcp' is a valid address on underlying
15226 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif
15227 * associated with `v4srcp' on success. NOTE: if this is not called from
15228 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15229 * group during or after this lookup.
15230 */
15231 boolean_t
15232 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15233 {
15234 ipif_t *ipif;
15235
15236 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15237 if (ipif != NULL) {
15238 if (ipifp != NULL)
15239 *ipifp = ipif;
15240 else
15241 ipif_refrele(ipif);
15242 return (B_TRUE);
15243 }
15244
15245 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15246 *v4srcp));
15247 return (B_FALSE);
15248 }
15249
15250 /*
15251 * Transport protocol call back function for CPU state change.
15252 */
15253 /* ARGSUSED */
15254 static int
15255 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15256 {
15257 processorid_t cpu_seqid;
15258 netstack_handle_t nh;
15259 netstack_t *ns;
15260
15261 ASSERT(MUTEX_HELD(&cpu_lock));
15262
15263 switch (what) {
15264 case CPU_CONFIG:
15265 case CPU_ON:
15266 case CPU_INIT:
15267 case CPU_CPUPART_IN:
15268 cpu_seqid = cpu[id]->cpu_seqid;
15269 netstack_next_init(&nh);
15270 while ((ns = netstack_next(&nh)) != NULL) {
15271 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15272 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15273 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15274 netstack_rele(ns);
15275 }
15276 netstack_next_fini(&nh);
15277 break;
15278 case CPU_UNCONFIG:
15279 case CPU_OFF:
15280 case CPU_CPUPART_OUT:
15281 /*
15282 * Nothing to do. We don't remove the per CPU stats from
15283 * the IP stack even when the CPU goes offline.
15284 */
15285 break;
15286 default:
15287 break;
15288 }
15289 return (0);
15290 }