1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2018 Joyent, Inc. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 /* 41 * VM - shared or copy-on-write from a vnode/anonymous memory. 42 */ 43 44 #include <sys/types.h> 45 #include <sys/param.h> 46 #include <sys/t_lock.h> 47 #include <sys/errno.h> 48 #include <sys/systm.h> 49 #include <sys/mman.h> 50 #include <sys/debug.h> 51 #include <sys/cred.h> 52 #include <sys/vmsystm.h> 53 #include <sys/tuneable.h> 54 #include <sys/bitmap.h> 55 #include <sys/swap.h> 56 #include <sys/kmem.h> 57 #include <sys/sysmacros.h> 58 #include <sys/vtrace.h> 59 #include <sys/cmn_err.h> 60 #include <sys/callb.h> 61 #include <sys/vm.h> 62 #include <sys/dumphdr.h> 63 #include <sys/lgrp.h> 64 65 #include <vm/hat.h> 66 #include <vm/as.h> 67 #include <vm/seg.h> 68 #include <vm/seg_vn.h> 69 #include <vm/pvn.h> 70 #include <vm/anon.h> 71 #include <vm/page.h> 72 #include <vm/vpage.h> 73 #include <sys/proc.h> 74 #include <sys/task.h> 75 #include <sys/project.h> 76 #include <sys/zone.h> 77 #include <sys/shm_impl.h> 78 79 /* 80 * segvn_fault needs a temporary page list array. To avoid calling kmem all 81 * the time, it creates a small (PVN_GETPAGE_NUM entry) array and uses it if 82 * it can. In the rare case when this page list is not large enough, it 83 * goes and gets a large enough array from kmem. 84 * 85 * This small page list array covers either 8 pages or 64kB worth of pages - 86 * whichever is smaller. 87 */ 88 #define PVN_MAX_GETPAGE_SZ 0x10000 89 #define PVN_MAX_GETPAGE_NUM 0x8 90 91 #if PVN_MAX_GETPAGE_SZ > PVN_MAX_GETPAGE_NUM * PAGESIZE 92 #define PVN_GETPAGE_SZ ptob(PVN_MAX_GETPAGE_NUM) 93 #define PVN_GETPAGE_NUM PVN_MAX_GETPAGE_NUM 94 #else 95 #define PVN_GETPAGE_SZ PVN_MAX_GETPAGE_SZ 96 #define PVN_GETPAGE_NUM btop(PVN_MAX_GETPAGE_SZ) 97 #endif 98 99 /* 100 * Private seg op routines. 101 */ 102 static int segvn_dup(struct seg *seg, struct seg *newseg); 103 static int segvn_unmap(struct seg *seg, caddr_t addr, size_t len); 104 static void segvn_free(struct seg *seg); 105 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg, 106 caddr_t addr, size_t len, enum fault_type type, 107 enum seg_rw rw); 108 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr); 109 static int segvn_setprot(struct seg *seg, caddr_t addr, 110 size_t len, uint_t prot); 111 static int segvn_checkprot(struct seg *seg, caddr_t addr, 112 size_t len, uint_t prot); 113 static int segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta); 114 static size_t segvn_swapout(struct seg *seg); 115 static int segvn_sync(struct seg *seg, caddr_t addr, size_t len, 116 int attr, uint_t flags); 117 static size_t segvn_incore(struct seg *seg, caddr_t addr, size_t len, 118 char *vec); 119 static int segvn_lockop(struct seg *seg, caddr_t addr, size_t len, 120 int attr, int op, ulong_t *lockmap, size_t pos); 121 static int segvn_getprot(struct seg *seg, caddr_t addr, size_t len, 122 uint_t *protv); 123 static u_offset_t segvn_getoffset(struct seg *seg, caddr_t addr); 124 static int segvn_gettype(struct seg *seg, caddr_t addr); 125 static int segvn_getvp(struct seg *seg, caddr_t addr, 126 struct vnode **vpp); 127 static int segvn_advise(struct seg *seg, caddr_t addr, size_t len, 128 uint_t behav); 129 static void segvn_dump(struct seg *seg); 130 static int segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, 131 struct page ***ppp, enum lock_type type, enum seg_rw rw); 132 static int segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, 133 uint_t szc); 134 static int segvn_getmemid(struct seg *seg, caddr_t addr, 135 memid_t *memidp); 136 static lgrp_mem_policy_info_t *segvn_getpolicy(struct seg *, caddr_t); 137 static int segvn_capable(struct seg *seg, segcapability_t capable); 138 static int segvn_inherit(struct seg *, caddr_t, size_t, uint_t); 139 140 struct seg_ops segvn_ops = { 141 segvn_dup, 142 segvn_unmap, 143 segvn_free, 144 segvn_fault, 145 segvn_faulta, 146 segvn_setprot, 147 segvn_checkprot, 148 segvn_kluster, 149 segvn_swapout, 150 segvn_sync, 151 segvn_incore, 152 segvn_lockop, 153 segvn_getprot, 154 segvn_getoffset, 155 segvn_gettype, 156 segvn_getvp, 157 segvn_advise, 158 segvn_dump, 159 segvn_pagelock, 160 segvn_setpagesize, 161 segvn_getmemid, 162 segvn_getpolicy, 163 segvn_capable, 164 segvn_inherit 165 }; 166 167 /* 168 * Common zfod structures, provided as a shorthand for others to use. 169 */ 170 static segvn_crargs_t zfod_segvn_crargs = 171 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 172 static segvn_crargs_t kzfod_segvn_crargs = 173 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER, 174 PROT_ALL & ~PROT_USER); 175 static segvn_crargs_t stack_noexec_crargs = 176 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL); 177 178 caddr_t zfod_argsp = (caddr_t)&zfod_segvn_crargs; /* user zfod argsp */ 179 caddr_t kzfod_argsp = (caddr_t)&kzfod_segvn_crargs; /* kernel zfod argsp */ 180 caddr_t stack_exec_argsp = (caddr_t)&zfod_segvn_crargs; /* executable stack */ 181 caddr_t stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */ 182 183 #define vpgtob(n) ((n) * sizeof (struct vpage)) /* For brevity */ 184 185 size_t segvn_comb_thrshld = UINT_MAX; /* patchable -- see 1196681 */ 186 187 size_t segvn_pglock_comb_thrshld = (1UL << 16); /* 64K */ 188 size_t segvn_pglock_comb_balign = (1UL << 16); /* 64K */ 189 uint_t segvn_pglock_comb_bshift; 190 size_t segvn_pglock_comb_palign; 191 192 static int segvn_concat(struct seg *, struct seg *, int); 193 static int segvn_extend_prev(struct seg *, struct seg *, 194 struct segvn_crargs *, size_t); 195 static int segvn_extend_next(struct seg *, struct seg *, 196 struct segvn_crargs *, size_t); 197 static void segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw); 198 static void segvn_pagelist_rele(page_t **); 199 static void segvn_setvnode_mpss(vnode_t *); 200 static void segvn_relocate_pages(page_t **, page_t *); 201 static int segvn_full_szcpages(page_t **, uint_t, int *, uint_t *); 202 static int segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t, 203 uint_t, page_t **, page_t **, uint_t *, int *); 204 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t, 205 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int); 206 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t, 207 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int); 208 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t, 209 u_offset_t, struct vpage *, page_t **, uint_t, 210 enum fault_type, enum seg_rw, int); 211 static void segvn_vpage(struct seg *); 212 static size_t segvn_count_swap_by_vpages(struct seg *); 213 214 static void segvn_purge(struct seg *seg); 215 static int segvn_reclaim(void *, caddr_t, size_t, struct page **, 216 enum seg_rw, int); 217 static int shamp_reclaim(void *, caddr_t, size_t, struct page **, 218 enum seg_rw, int); 219 220 static int sameprot(struct seg *, caddr_t, size_t); 221 222 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t); 223 static int segvn_clrszc(struct seg *); 224 static struct seg *segvn_split_seg(struct seg *, caddr_t); 225 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t, 226 ulong_t, uint_t); 227 228 static void segvn_hat_rgn_unload_callback(caddr_t, caddr_t, caddr_t, 229 size_t, void *, u_offset_t); 230 231 static struct kmem_cache *segvn_cache; 232 static struct kmem_cache **segvn_szc_cache; 233 234 #ifdef VM_STATS 235 static struct segvnvmstats_str { 236 ulong_t fill_vp_pages[31]; 237 ulong_t fltvnpages[49]; 238 ulong_t fullszcpages[10]; 239 ulong_t relocatepages[3]; 240 ulong_t fltanpages[17]; 241 ulong_t pagelock[2]; 242 ulong_t demoterange[3]; 243 } segvnvmstats; 244 #endif /* VM_STATS */ 245 246 #define SDR_RANGE 1 /* demote entire range */ 247 #define SDR_END 2 /* demote non aligned ends only */ 248 249 #define CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) { \ 250 if ((len) != 0) { \ 251 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz); \ 252 ASSERT(lpgaddr >= (seg)->s_base); \ 253 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) + \ 254 (len)), pgsz); \ 255 ASSERT(lpgeaddr > lpgaddr); \ 256 ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size); \ 257 } else { \ 258 lpgeaddr = lpgaddr = (addr); \ 259 } \ 260 } 261 262 /*ARGSUSED*/ 263 static int 264 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags) 265 { 266 struct segvn_data *svd = buf; 267 268 rw_init(&svd->lock, NULL, RW_DEFAULT, NULL); 269 mutex_init(&svd->segfree_syncmtx, NULL, MUTEX_DEFAULT, NULL); 270 svd->svn_trnext = svd->svn_trprev = NULL; 271 return (0); 272 } 273 274 /*ARGSUSED1*/ 275 static void 276 segvn_cache_destructor(void *buf, void *cdrarg) 277 { 278 struct segvn_data *svd = buf; 279 280 rw_destroy(&svd->lock); 281 mutex_destroy(&svd->segfree_syncmtx); 282 } 283 284 /*ARGSUSED*/ 285 static int 286 svntr_cache_constructor(void *buf, void *cdrarg, int kmflags) 287 { 288 bzero(buf, sizeof (svntr_t)); 289 return (0); 290 } 291 292 /* 293 * Patching this variable to non-zero allows the system to run with 294 * stacks marked as "not executable". It's a bit of a kludge, but is 295 * provided as a tweakable for platforms that export those ABIs 296 * (e.g. sparc V8) that have executable stacks enabled by default. 297 * There are also some restrictions for platforms that don't actually 298 * implement 'noexec' protections. 299 * 300 * Once enabled, the system is (therefore) unable to provide a fully 301 * ABI-compliant execution environment, though practically speaking, 302 * most everything works. The exceptions are generally some interpreters 303 * and debuggers that create executable code on the stack and jump 304 * into it (without explicitly mprotecting the address range to include 305 * PROT_EXEC). 306 * 307 * One important class of applications that are disabled are those 308 * that have been transformed into malicious agents using one of the 309 * numerous "buffer overflow" attacks. See 4007890. 310 */ 311 int noexec_user_stack = 0; 312 int noexec_user_stack_log = 1; 313 314 int segvn_lpg_disable = 0; 315 uint_t segvn_maxpgszc = 0; 316 317 ulong_t segvn_vmpss_clrszc_cnt; 318 ulong_t segvn_vmpss_clrszc_err; 319 ulong_t segvn_fltvnpages_clrszc_cnt; 320 ulong_t segvn_fltvnpages_clrszc_err; 321 ulong_t segvn_setpgsz_align_err; 322 ulong_t segvn_setpgsz_anon_align_err; 323 ulong_t segvn_setpgsz_getattr_err; 324 ulong_t segvn_setpgsz_eof_err; 325 ulong_t segvn_faultvnmpss_align_err1; 326 ulong_t segvn_faultvnmpss_align_err2; 327 ulong_t segvn_faultvnmpss_align_err3; 328 ulong_t segvn_faultvnmpss_align_err4; 329 ulong_t segvn_faultvnmpss_align_err5; 330 ulong_t segvn_vmpss_pageio_deadlk_err; 331 332 int segvn_use_regions = 1; 333 334 /* 335 * Segvn supports text replication optimization for NUMA platforms. Text 336 * replica's are represented by anon maps (amp). There's one amp per text file 337 * region per lgroup. A process chooses the amp for each of its text mappings 338 * based on the lgroup assignment of its main thread (t_tid = 1). All 339 * processes that want a replica on a particular lgroup for the same text file 340 * mapping share the same amp. amp's are looked up in svntr_hashtab hash table 341 * with vp,off,size,szc used as a key. Text replication segments are read only 342 * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by 343 * forcing COW faults from vnode to amp and mapping amp pages instead of vnode 344 * pages. Replication amp is assigned to a segment when it gets its first 345 * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread 346 * rechecks periodically if the process still maps an amp local to the main 347 * thread. If not async thread forces process to remap to an amp in the new 348 * home lgroup of the main thread. Current text replication implementation 349 * only provides the benefit to workloads that do most of their work in the 350 * main thread of a process or all the threads of a process run in the same 351 * lgroup. To extend text replication benefit to different types of 352 * multithreaded workloads further work would be needed in the hat layer to 353 * allow the same virtual address in the same hat to simultaneously map 354 * different physical addresses (i.e. page table replication would be needed 355 * for x86). 356 * 357 * amp pages are used instead of vnode pages as long as segment has a very 358 * simple life cycle. It's created via segvn_create(), handles S_EXEC 359 * (S_READ) pagefaults and is fully unmapped. If anything more complicated 360 * happens such as protection is changed, real COW fault happens, pagesize is 361 * changed, MC_LOCK is requested or segment is partially unmapped we turn off 362 * text replication by converting the segment back to vnode only segment 363 * (unmap segment's address range and set svd->amp to NULL). 364 * 365 * The original file can be changed after amp is inserted into 366 * svntr_hashtab. Processes that are launched after the file is already 367 * changed can't use the replica's created prior to the file change. To 368 * implement this functionality hash entries are timestamped. Replica's can 369 * only be used if current file modification time is the same as the timestamp 370 * saved when hash entry was created. However just timestamps alone are not 371 * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We 372 * deal with file changes via MAP_SHARED mappings differently. When writable 373 * MAP_SHARED mappings are created to vnodes marked as executable we mark all 374 * existing replica's for this vnode as not usable for future text 375 * mappings. And we don't create new replica's for files that currently have 376 * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is 377 * true). 378 */ 379 380 #define SEGVN_TEXTREPL_MAXBYTES_FACTOR (20) 381 size_t segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR; 382 383 static ulong_t svntr_hashtab_sz = 512; 384 static svntr_bucket_t *svntr_hashtab = NULL; 385 static struct kmem_cache *svntr_cache; 386 static svntr_stats_t *segvn_textrepl_stats; 387 static ksema_t segvn_trasync_sem; 388 389 int segvn_disable_textrepl = 1; 390 size_t textrepl_size_thresh = (size_t)-1; 391 size_t segvn_textrepl_bytes = 0; 392 size_t segvn_textrepl_max_bytes = 0; 393 clock_t segvn_update_textrepl_interval = 0; 394 int segvn_update_tr_time = 10; 395 int segvn_disable_textrepl_update = 0; 396 397 static void segvn_textrepl(struct seg *); 398 static void segvn_textunrepl(struct seg *, int); 399 static void segvn_inval_trcache(vnode_t *); 400 static void segvn_trasync_thread(void); 401 static void segvn_trupdate_wakeup(void *); 402 static void segvn_trupdate(void); 403 static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *, 404 ulong_t); 405 406 /* 407 * Initialize segvn data structures 408 */ 409 void 410 segvn_init(void) 411 { 412 uint_t maxszc; 413 uint_t szc; 414 size_t pgsz; 415 416 segvn_cache = kmem_cache_create("segvn_cache", 417 sizeof (struct segvn_data), 0, 418 segvn_cache_constructor, segvn_cache_destructor, NULL, 419 NULL, NULL, 0); 420 421 if (segvn_lpg_disable == 0) { 422 szc = maxszc = page_num_pagesizes() - 1; 423 if (szc == 0) { 424 segvn_lpg_disable = 1; 425 } 426 if (page_get_pagesize(0) != PAGESIZE) { 427 panic("segvn_init: bad szc 0"); 428 /*NOTREACHED*/ 429 } 430 while (szc != 0) { 431 pgsz = page_get_pagesize(szc); 432 if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) { 433 panic("segvn_init: bad szc %d", szc); 434 /*NOTREACHED*/ 435 } 436 szc--; 437 } 438 if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc) 439 segvn_maxpgszc = maxszc; 440 } 441 442 if (segvn_maxpgszc) { 443 segvn_szc_cache = (struct kmem_cache **)kmem_alloc( 444 (segvn_maxpgszc + 1) * sizeof (struct kmem_cache *), 445 KM_SLEEP); 446 } 447 448 for (szc = 1; szc <= segvn_maxpgszc; szc++) { 449 char str[32]; 450 451 (void) sprintf(str, "segvn_szc_cache%d", szc); 452 segvn_szc_cache[szc] = kmem_cache_create(str, 453 page_get_pagecnt(szc) * sizeof (page_t *), 0, 454 NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 455 } 456 457 458 if (segvn_use_regions && !hat_supported(HAT_SHARED_REGIONS, NULL)) 459 segvn_use_regions = 0; 460 461 /* 462 * For now shared regions and text replication segvn support 463 * are mutually exclusive. This is acceptable because 464 * currently significant benefit from text replication was 465 * only observed on AMD64 NUMA platforms (due to relatively 466 * small L2$ size) and currently we don't support shared 467 * regions on x86. 468 */ 469 if (segvn_use_regions && !segvn_disable_textrepl) { 470 segvn_disable_textrepl = 1; 471 } 472 473 #if defined(_LP64) 474 if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 && 475 !segvn_disable_textrepl) { 476 ulong_t i; 477 size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t); 478 479 svntr_cache = kmem_cache_create("svntr_cache", 480 sizeof (svntr_t), 0, svntr_cache_constructor, NULL, 481 NULL, NULL, NULL, 0); 482 svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP); 483 for (i = 0; i < svntr_hashtab_sz; i++) { 484 mutex_init(&svntr_hashtab[i].tr_lock, NULL, 485 MUTEX_DEFAULT, NULL); 486 } 487 segvn_textrepl_max_bytes = ptob(physmem) / 488 segvn_textrepl_max_bytes_factor; 489 segvn_textrepl_stats = kmem_zalloc(NCPU * 490 sizeof (svntr_stats_t), KM_SLEEP); 491 sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL); 492 (void) thread_create(NULL, 0, segvn_trasync_thread, 493 NULL, 0, &p0, TS_RUN, minclsyspri); 494 } 495 #endif 496 497 if (!ISP2(segvn_pglock_comb_balign) || 498 segvn_pglock_comb_balign < PAGESIZE) { 499 segvn_pglock_comb_balign = 1UL << 16; /* 64K */ 500 } 501 segvn_pglock_comb_bshift = highbit(segvn_pglock_comb_balign) - 1; 502 segvn_pglock_comb_palign = btop(segvn_pglock_comb_balign); 503 } 504 505 #define SEGVN_PAGEIO ((void *)0x1) 506 #define SEGVN_NOPAGEIO ((void *)0x2) 507 508 static void 509 segvn_setvnode_mpss(vnode_t *vp) 510 { 511 int err; 512 513 ASSERT(vp->v_mpssdata == NULL || 514 vp->v_mpssdata == SEGVN_PAGEIO || 515 vp->v_mpssdata == SEGVN_NOPAGEIO); 516 517 if (vp->v_mpssdata == NULL) { 518 if (vn_vmpss_usepageio(vp)) { 519 err = VOP_PAGEIO(vp, (page_t *)NULL, 520 (u_offset_t)0, 0, 0, CRED(), NULL); 521 } else { 522 err = ENOSYS; 523 } 524 /* 525 * set v_mpssdata just once per vnode life 526 * so that it never changes. 527 */ 528 mutex_enter(&vp->v_lock); 529 if (vp->v_mpssdata == NULL) { 530 if (err == EINVAL) { 531 vp->v_mpssdata = SEGVN_PAGEIO; 532 } else { 533 vp->v_mpssdata = SEGVN_NOPAGEIO; 534 } 535 } 536 mutex_exit(&vp->v_lock); 537 } 538 } 539 540 int 541 segvn_create(struct seg **segpp, void *argsp) 542 { 543 struct seg *seg = *segpp; 544 extern lgrp_mem_policy_t lgrp_mem_default_policy; 545 struct segvn_crargs *a = (struct segvn_crargs *)argsp; 546 struct segvn_data *svd; 547 size_t swresv = 0; 548 struct cred *cred; 549 struct anon_map *amp; 550 int error = 0; 551 size_t pgsz; 552 lgrp_mem_policy_t mpolicy = lgrp_mem_default_policy; 553 int use_rgn = 0; 554 int trok = 0; 555 556 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 557 558 if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) { 559 panic("segvn_create type"); 560 /*NOTREACHED*/ 561 } 562 563 /* 564 * Check arguments. If a shared anon structure is given then 565 * it is illegal to also specify a vp. 566 */ 567 if (a->amp != NULL && a->vp != NULL) { 568 panic("segvn_create anon_map"); 569 /*NOTREACHED*/ 570 } 571 572 if (a->type == MAP_PRIVATE && (a->flags & MAP_TEXT) && 573 a->vp != NULL && a->prot == (PROT_USER | PROT_READ | PROT_EXEC) && 574 segvn_use_regions) { 575 use_rgn = 1; 576 } 577 578 /* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */ 579 if (a->type == MAP_SHARED) 580 a->flags &= ~MAP_NORESERVE; 581 582 if (a->szc != 0) { 583 if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) || 584 (a->amp != NULL && a->type == MAP_PRIVATE) || 585 (a->flags & MAP_NORESERVE) || seg->s_as == &kas) { 586 a->szc = 0; 587 } else { 588 if (a->szc > segvn_maxpgszc) 589 a->szc = segvn_maxpgszc; 590 pgsz = page_get_pagesize(a->szc); 591 if (!IS_P2ALIGNED(seg->s_base, pgsz) || 592 !IS_P2ALIGNED(seg->s_size, pgsz)) { 593 a->szc = 0; 594 } else if (a->vp != NULL) { 595 if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) { 596 /* 597 * paranoid check. 598 * hat_page_demote() is not supported 599 * on swapfs pages. 600 */ 601 a->szc = 0; 602 } else if (map_addr_vacalign_check(seg->s_base, 603 a->offset & PAGEMASK)) { 604 a->szc = 0; 605 } 606 } else if (a->amp != NULL) { 607 pgcnt_t anum = btopr(a->offset); 608 pgcnt_t pgcnt = page_get_pagecnt(a->szc); 609 if (!IS_P2ALIGNED(anum, pgcnt)) { 610 a->szc = 0; 611 } 612 } 613 } 614 } 615 616 /* 617 * If segment may need private pages, reserve them now. 618 */ 619 if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) || 620 (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) { 621 if (anon_resv_zone(seg->s_size, 622 seg->s_as->a_proc->p_zone) == 0) 623 return (EAGAIN); 624 swresv = seg->s_size; 625 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 626 seg, swresv, 1); 627 } 628 629 /* 630 * Reserve any mapping structures that may be required. 631 * 632 * Don't do it for segments that may use regions. It's currently a 633 * noop in the hat implementations anyway. 634 */ 635 if (!use_rgn) { 636 hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP); 637 } 638 639 if (a->cred) { 640 cred = a->cred; 641 crhold(cred); 642 } else { 643 crhold(cred = CRED()); 644 } 645 646 /* Inform the vnode of the new mapping */ 647 if (a->vp != NULL) { 648 error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK, 649 seg->s_as, seg->s_base, seg->s_size, a->prot, 650 a->maxprot, a->type, cred, NULL); 651 if (error) { 652 if (swresv != 0) { 653 anon_unresv_zone(swresv, 654 seg->s_as->a_proc->p_zone); 655 TRACE_3(TR_FAC_VM, TR_ANON_PROC, 656 "anon proc:%p %lu %u", seg, swresv, 0); 657 } 658 crfree(cred); 659 if (!use_rgn) { 660 hat_unload(seg->s_as->a_hat, seg->s_base, 661 seg->s_size, HAT_UNLOAD_UNMAP); 662 } 663 return (error); 664 } 665 /* 666 * svntr_hashtab will be NULL if we support shared regions. 667 */ 668 trok = ((a->flags & MAP_TEXT) && 669 (seg->s_size > textrepl_size_thresh || 670 (a->flags & _MAP_TEXTREPL)) && 671 lgrp_optimizations() && svntr_hashtab != NULL && 672 a->type == MAP_PRIVATE && swresv == 0 && 673 !(a->flags & MAP_NORESERVE) && 674 seg->s_as != &kas && a->vp->v_type == VREG); 675 676 ASSERT(!trok || !use_rgn); 677 } 678 679 /* 680 * MAP_NORESERVE mappings don't count towards the VSZ of a process 681 * until we fault the pages in. 682 */ 683 if ((a->vp == NULL || a->vp->v_type != VREG) && 684 a->flags & MAP_NORESERVE) { 685 seg->s_as->a_resvsize -= seg->s_size; 686 } 687 688 /* 689 * If more than one segment in the address space, and they're adjacent 690 * virtually, try to concatenate them. Don't concatenate if an 691 * explicit anon_map structure was supplied (e.g., SystemV shared 692 * memory) or if we'll use text replication for this segment. 693 */ 694 if (a->amp == NULL && !use_rgn && !trok) { 695 struct seg *pseg, *nseg; 696 struct segvn_data *psvd, *nsvd; 697 lgrp_mem_policy_t ppolicy, npolicy; 698 uint_t lgrp_mem_policy_flags = 0; 699 700 /* 701 * Memory policy flags (lgrp_mem_policy_flags) is valid when 702 * extending stack/heap segments. 703 */ 704 if ((a->vp == NULL) && (a->type == MAP_PRIVATE) && 705 !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) { 706 lgrp_mem_policy_flags = a->lgrp_mem_policy_flags; 707 } else { 708 /* 709 * Get policy when not extending it from another segment 710 */ 711 mpolicy = lgrp_mem_policy_default(seg->s_size, a->type); 712 } 713 714 /* 715 * First, try to concatenate the previous and new segments 716 */ 717 pseg = AS_SEGPREV(seg->s_as, seg); 718 if (pseg != NULL && 719 pseg->s_base + pseg->s_size == seg->s_base && 720 pseg->s_ops == &segvn_ops) { 721 /* 722 * Get memory allocation policy from previous segment. 723 * When extension is specified (e.g. for heap) apply 724 * this policy to the new segment regardless of the 725 * outcome of segment concatenation. Extension occurs 726 * for non-default policy otherwise default policy is 727 * used and is based on extended segment size. 728 */ 729 psvd = (struct segvn_data *)pseg->s_data; 730 ppolicy = psvd->policy_info.mem_policy; 731 if (lgrp_mem_policy_flags == 732 LGRP_MP_FLAG_EXTEND_UP) { 733 if (ppolicy != lgrp_mem_default_policy) { 734 mpolicy = ppolicy; 735 } else { 736 mpolicy = lgrp_mem_policy_default( 737 pseg->s_size + seg->s_size, 738 a->type); 739 } 740 } 741 742 if (mpolicy == ppolicy && 743 (pseg->s_size + seg->s_size <= 744 segvn_comb_thrshld || psvd->amp == NULL) && 745 segvn_extend_prev(pseg, seg, a, swresv) == 0) { 746 /* 747 * success! now try to concatenate 748 * with following seg 749 */ 750 crfree(cred); 751 nseg = AS_SEGNEXT(pseg->s_as, pseg); 752 if (nseg != NULL && 753 nseg != pseg && 754 nseg->s_ops == &segvn_ops && 755 pseg->s_base + pseg->s_size == 756 nseg->s_base) 757 (void) segvn_concat(pseg, nseg, 0); 758 ASSERT(pseg->s_szc == 0 || 759 (a->szc == pseg->s_szc && 760 IS_P2ALIGNED(pseg->s_base, pgsz) && 761 IS_P2ALIGNED(pseg->s_size, pgsz))); 762 /* 763 * Communicate out the newly concatenated 764 * segment as part of the result. 765 */ 766 *segpp = pseg; 767 return (0); 768 } 769 } 770 771 /* 772 * Failed, so try to concatenate with following seg 773 */ 774 nseg = AS_SEGNEXT(seg->s_as, seg); 775 if (nseg != NULL && 776 seg->s_base + seg->s_size == nseg->s_base && 777 nseg->s_ops == &segvn_ops) { 778 /* 779 * Get memory allocation policy from next segment. 780 * When extension is specified (e.g. for stack) apply 781 * this policy to the new segment regardless of the 782 * outcome of segment concatenation. Extension occurs 783 * for non-default policy otherwise default policy is 784 * used and is based on extended segment size. 785 */ 786 nsvd = (struct segvn_data *)nseg->s_data; 787 npolicy = nsvd->policy_info.mem_policy; 788 if (lgrp_mem_policy_flags == 789 LGRP_MP_FLAG_EXTEND_DOWN) { 790 if (npolicy != lgrp_mem_default_policy) { 791 mpolicy = npolicy; 792 } else { 793 mpolicy = lgrp_mem_policy_default( 794 nseg->s_size + seg->s_size, 795 a->type); 796 } 797 } 798 799 if (mpolicy == npolicy && 800 segvn_extend_next(seg, nseg, a, swresv) == 0) { 801 crfree(cred); 802 ASSERT(nseg->s_szc == 0 || 803 (a->szc == nseg->s_szc && 804 IS_P2ALIGNED(nseg->s_base, pgsz) && 805 IS_P2ALIGNED(nseg->s_size, pgsz))); 806 /* 807 * Communicate out the newly concatenated 808 * segment as part of the result. 809 */ 810 *segpp = nseg; 811 return (0); 812 } 813 } 814 } 815 816 if (a->vp != NULL) { 817 VN_HOLD(a->vp); 818 if (a->type == MAP_SHARED) 819 lgrp_shm_policy_init(NULL, a->vp); 820 } 821 svd = kmem_cache_alloc(segvn_cache, KM_SLEEP); 822 823 seg->s_ops = &segvn_ops; 824 seg->s_data = (void *)svd; 825 seg->s_szc = a->szc; 826 827 svd->seg = seg; 828 svd->vp = a->vp; 829 /* 830 * Anonymous mappings have no backing file so the offset is meaningless. 831 */ 832 svd->offset = a->vp ? (a->offset & PAGEMASK) : 0; 833 svd->prot = a->prot; 834 svd->maxprot = a->maxprot; 835 svd->pageprot = 0; 836 svd->type = a->type; 837 svd->vpage = NULL; 838 svd->cred = cred; 839 svd->advice = MADV_NORMAL; 840 svd->pageadvice = 0; 841 svd->flags = (ushort_t)a->flags; 842 svd->softlockcnt = 0; 843 svd->softlockcnt_sbase = 0; 844 svd->softlockcnt_send = 0; 845 svd->svn_inz = 0; 846 svd->rcookie = HAT_INVALID_REGION_COOKIE; 847 svd->pageswap = 0; 848 849 if (a->szc != 0 && a->vp != NULL) { 850 segvn_setvnode_mpss(a->vp); 851 } 852 if (svd->type == MAP_SHARED && svd->vp != NULL && 853 (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) { 854 ASSERT(vn_is_mapped(svd->vp, V_WRITE)); 855 segvn_inval_trcache(svd->vp); 856 } 857 858 amp = a->amp; 859 if ((svd->amp = amp) == NULL) { 860 svd->anon_index = 0; 861 if (svd->type == MAP_SHARED) { 862 svd->swresv = 0; 863 /* 864 * Shared mappings to a vp need no other setup. 865 * If we have a shared mapping to an anon_map object 866 * which hasn't been allocated yet, allocate the 867 * struct now so that it will be properly shared 868 * by remembering the swap reservation there. 869 */ 870 if (a->vp == NULL) { 871 svd->amp = anonmap_alloc(seg->s_size, swresv, 872 ANON_SLEEP); 873 svd->amp->a_szc = seg->s_szc; 874 } 875 } else { 876 /* 877 * Private mapping (with or without a vp). 878 * Allocate anon_map when needed. 879 */ 880 svd->swresv = swresv; 881 } 882 } else { 883 pgcnt_t anon_num; 884 885 /* 886 * Mapping to an existing anon_map structure without a vp. 887 * For now we will insure that the segment size isn't larger 888 * than the size - offset gives us. Later on we may wish to 889 * have the anon array dynamically allocated itself so that 890 * we don't always have to allocate all the anon pointer slots. 891 * This of course involves adding extra code to check that we 892 * aren't trying to use an anon pointer slot beyond the end 893 * of the currently allocated anon array. 894 */ 895 if ((amp->size - a->offset) < seg->s_size) { 896 panic("segvn_create anon_map size"); 897 /*NOTREACHED*/ 898 } 899 900 anon_num = btopr(a->offset); 901 902 if (a->type == MAP_SHARED) { 903 /* 904 * SHARED mapping to a given anon_map. 905 */ 906 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 907 amp->refcnt++; 908 if (a->szc > amp->a_szc) { 909 amp->a_szc = a->szc; 910 } 911 ANON_LOCK_EXIT(&->a_rwlock); 912 svd->anon_index = anon_num; 913 svd->swresv = 0; 914 } else { 915 /* 916 * PRIVATE mapping to a given anon_map. 917 * Make sure that all the needed anon 918 * structures are created (so that we will 919 * share the underlying pages if nothing 920 * is written by this mapping) and then 921 * duplicate the anon array as is done 922 * when a privately mapped segment is dup'ed. 923 */ 924 struct anon *ap; 925 caddr_t addr; 926 caddr_t eaddr; 927 ulong_t anon_idx; 928 int hat_flag = HAT_LOAD; 929 930 if (svd->flags & MAP_TEXT) { 931 hat_flag |= HAT_LOAD_TEXT; 932 } 933 934 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP); 935 svd->amp->a_szc = seg->s_szc; 936 svd->anon_index = 0; 937 svd->swresv = swresv; 938 939 /* 940 * Prevent 2 threads from allocating anon 941 * slots simultaneously. 942 */ 943 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 944 eaddr = seg->s_base + seg->s_size; 945 946 for (anon_idx = anon_num, addr = seg->s_base; 947 addr < eaddr; addr += PAGESIZE, anon_idx++) { 948 page_t *pp; 949 950 if ((ap = anon_get_ptr(amp->ahp, 951 anon_idx)) != NULL) 952 continue; 953 954 /* 955 * Allocate the anon struct now. 956 * Might as well load up translation 957 * to the page while we're at it... 958 */ 959 pp = anon_zero(seg, addr, &ap, cred); 960 if (ap == NULL || pp == NULL) { 961 panic("segvn_create anon_zero"); 962 /*NOTREACHED*/ 963 } 964 965 /* 966 * Re-acquire the anon_map lock and 967 * initialize the anon array entry. 968 */ 969 ASSERT(anon_get_ptr(amp->ahp, 970 anon_idx) == NULL); 971 (void) anon_set_ptr(amp->ahp, anon_idx, ap, 972 ANON_SLEEP); 973 974 ASSERT(seg->s_szc == 0); 975 ASSERT(!IS_VMODSORT(pp->p_vnode)); 976 977 ASSERT(use_rgn == 0); 978 hat_memload(seg->s_as->a_hat, addr, pp, 979 svd->prot & ~PROT_WRITE, hat_flag); 980 981 page_unlock(pp); 982 } 983 ASSERT(seg->s_szc == 0); 984 anon_dup(amp->ahp, anon_num, svd->amp->ahp, 985 0, seg->s_size); 986 ANON_LOCK_EXIT(&->a_rwlock); 987 } 988 } 989 990 /* 991 * Set default memory allocation policy for segment 992 * 993 * Always set policy for private memory at least for initialization 994 * even if this is a shared memory segment 995 */ 996 (void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size); 997 998 if (svd->type == MAP_SHARED) 999 (void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index, 1000 svd->vp, svd->offset, seg->s_size); 1001 1002 if (use_rgn) { 1003 ASSERT(!trok); 1004 ASSERT(svd->amp == NULL); 1005 svd->rcookie = hat_join_region(seg->s_as->a_hat, seg->s_base, 1006 seg->s_size, (void *)svd->vp, svd->offset, svd->prot, 1007 (uchar_t)seg->s_szc, segvn_hat_rgn_unload_callback, 1008 HAT_REGION_TEXT); 1009 } 1010 1011 ASSERT(!trok || !(svd->prot & PROT_WRITE)); 1012 svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF; 1013 1014 return (0); 1015 } 1016 1017 /* 1018 * Concatenate two existing segments, if possible. 1019 * Return 0 on success, -1 if two segments are not compatible 1020 * or -2 on memory allocation failure. 1021 * If amp_cat == 1 then try and concat segments with anon maps 1022 */ 1023 static int 1024 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat) 1025 { 1026 struct segvn_data *svd1 = seg1->s_data; 1027 struct segvn_data *svd2 = seg2->s_data; 1028 struct anon_map *amp1 = svd1->amp; 1029 struct anon_map *amp2 = svd2->amp; 1030 struct vpage *vpage1 = svd1->vpage; 1031 struct vpage *vpage2 = svd2->vpage, *nvpage = NULL; 1032 size_t size, nvpsize; 1033 pgcnt_t npages1, npages2; 1034 1035 ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as); 1036 ASSERT(AS_WRITE_HELD(seg1->s_as)); 1037 ASSERT(seg1->s_ops == seg2->s_ops); 1038 1039 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie) || 1040 HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) { 1041 return (-1); 1042 } 1043 1044 /* both segments exist, try to merge them */ 1045 #define incompat(x) (svd1->x != svd2->x) 1046 if (incompat(vp) || incompat(maxprot) || 1047 (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) || 1048 (!svd1->pageprot && !svd2->pageprot && incompat(prot)) || 1049 incompat(type) || incompat(cred) || incompat(flags) || 1050 seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) || 1051 (svd2->softlockcnt > 0) || svd1->softlockcnt_send > 0) 1052 return (-1); 1053 #undef incompat 1054 1055 /* 1056 * vp == NULL implies zfod, offset doesn't matter 1057 */ 1058 if (svd1->vp != NULL && 1059 svd1->offset + seg1->s_size != svd2->offset) { 1060 return (-1); 1061 } 1062 1063 /* 1064 * Don't concatenate if either segment uses text replication. 1065 */ 1066 if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) { 1067 return (-1); 1068 } 1069 1070 /* 1071 * Fail early if we're not supposed to concatenate 1072 * segments with non NULL amp. 1073 */ 1074 if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) { 1075 return (-1); 1076 } 1077 1078 if (svd1->vp == NULL && svd1->type == MAP_SHARED) { 1079 if (amp1 != amp2) { 1080 return (-1); 1081 } 1082 if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) != 1083 svd2->anon_index) { 1084 return (-1); 1085 } 1086 ASSERT(amp1 == NULL || amp1->refcnt >= 2); 1087 } 1088 1089 /* 1090 * If either seg has vpages, create a new merged vpage array. 1091 */ 1092 if (vpage1 != NULL || vpage2 != NULL) { 1093 struct vpage *vp, *evp; 1094 1095 npages1 = seg_pages(seg1); 1096 npages2 = seg_pages(seg2); 1097 nvpsize = vpgtob(npages1 + npages2); 1098 1099 if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) { 1100 return (-2); 1101 } 1102 1103 if (vpage1 != NULL) { 1104 bcopy(vpage1, nvpage, vpgtob(npages1)); 1105 } else { 1106 evp = nvpage + npages1; 1107 for (vp = nvpage; vp < evp; vp++) { 1108 VPP_SETPROT(vp, svd1->prot); 1109 VPP_SETADVICE(vp, svd1->advice); 1110 } 1111 } 1112 1113 if (vpage2 != NULL) { 1114 bcopy(vpage2, nvpage + npages1, vpgtob(npages2)); 1115 } else { 1116 evp = nvpage + npages1 + npages2; 1117 for (vp = nvpage + npages1; vp < evp; vp++) { 1118 VPP_SETPROT(vp, svd2->prot); 1119 VPP_SETADVICE(vp, svd2->advice); 1120 } 1121 } 1122 1123 if (svd2->pageswap && (!svd1->pageswap && svd1->swresv)) { 1124 ASSERT(svd1->swresv == seg1->s_size); 1125 ASSERT(!(svd1->flags & MAP_NORESERVE)); 1126 ASSERT(!(svd2->flags & MAP_NORESERVE)); 1127 evp = nvpage + npages1; 1128 for (vp = nvpage; vp < evp; vp++) { 1129 VPP_SETSWAPRES(vp); 1130 } 1131 } 1132 1133 if (svd1->pageswap && (!svd2->pageswap && svd2->swresv)) { 1134 ASSERT(svd2->swresv == seg2->s_size); 1135 ASSERT(!(svd1->flags & MAP_NORESERVE)); 1136 ASSERT(!(svd2->flags & MAP_NORESERVE)); 1137 vp = nvpage + npages1; 1138 evp = vp + npages2; 1139 for (; vp < evp; vp++) { 1140 VPP_SETSWAPRES(vp); 1141 } 1142 } 1143 } 1144 ASSERT((vpage1 != NULL || vpage2 != NULL) || 1145 (svd1->pageswap == 0 && svd2->pageswap == 0)); 1146 1147 /* 1148 * If either segment has private pages, create a new merged anon 1149 * array. If mergeing shared anon segments just decrement anon map's 1150 * refcnt. 1151 */ 1152 if (amp1 != NULL && svd1->type == MAP_SHARED) { 1153 ASSERT(amp1 == amp2 && svd1->vp == NULL); 1154 ANON_LOCK_ENTER(&1->a_rwlock, RW_WRITER); 1155 ASSERT(amp1->refcnt >= 2); 1156 amp1->refcnt--; 1157 ANON_LOCK_EXIT(&1->a_rwlock); 1158 svd2->amp = NULL; 1159 } else if (amp1 != NULL || amp2 != NULL) { 1160 struct anon_hdr *nahp; 1161 struct anon_map *namp = NULL; 1162 size_t asize; 1163 1164 ASSERT(svd1->type == MAP_PRIVATE); 1165 1166 asize = seg1->s_size + seg2->s_size; 1167 if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) { 1168 if (nvpage != NULL) { 1169 kmem_free(nvpage, nvpsize); 1170 } 1171 return (-2); 1172 } 1173 if (amp1 != NULL) { 1174 /* 1175 * XXX anon rwlock is not really needed because 1176 * this is a private segment and we are writers. 1177 */ 1178 ANON_LOCK_ENTER(&1->a_rwlock, RW_WRITER); 1179 ASSERT(amp1->refcnt == 1); 1180 if (anon_copy_ptr(amp1->ahp, svd1->anon_index, 1181 nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) { 1182 anon_release(nahp, btop(asize)); 1183 ANON_LOCK_EXIT(&1->a_rwlock); 1184 if (nvpage != NULL) { 1185 kmem_free(nvpage, nvpsize); 1186 } 1187 return (-2); 1188 } 1189 } 1190 if (amp2 != NULL) { 1191 ANON_LOCK_ENTER(&2->a_rwlock, RW_WRITER); 1192 ASSERT(amp2->refcnt == 1); 1193 if (anon_copy_ptr(amp2->ahp, svd2->anon_index, 1194 nahp, btop(seg1->s_size), btop(seg2->s_size), 1195 ANON_NOSLEEP)) { 1196 anon_release(nahp, btop(asize)); 1197 ANON_LOCK_EXIT(&2->a_rwlock); 1198 if (amp1 != NULL) { 1199 ANON_LOCK_EXIT(&1->a_rwlock); 1200 } 1201 if (nvpage != NULL) { 1202 kmem_free(nvpage, nvpsize); 1203 } 1204 return (-2); 1205 } 1206 } 1207 if (amp1 != NULL) { 1208 namp = amp1; 1209 anon_release(amp1->ahp, btop(amp1->size)); 1210 } 1211 if (amp2 != NULL) { 1212 if (namp == NULL) { 1213 ASSERT(amp1 == NULL); 1214 namp = amp2; 1215 anon_release(amp2->ahp, btop(amp2->size)); 1216 } else { 1217 amp2->refcnt--; 1218 ANON_LOCK_EXIT(&2->a_rwlock); 1219 anonmap_free(amp2); 1220 } 1221 svd2->amp = NULL; /* needed for seg_free */ 1222 } 1223 namp->ahp = nahp; 1224 namp->size = asize; 1225 svd1->amp = namp; 1226 svd1->anon_index = 0; 1227 ANON_LOCK_EXIT(&namp->a_rwlock); 1228 } 1229 /* 1230 * Now free the old vpage structures. 1231 */ 1232 if (nvpage != NULL) { 1233 if (vpage1 != NULL) { 1234 kmem_free(vpage1, vpgtob(npages1)); 1235 } 1236 if (vpage2 != NULL) { 1237 svd2->vpage = NULL; 1238 kmem_free(vpage2, vpgtob(npages2)); 1239 } 1240 if (svd2->pageprot) { 1241 svd1->pageprot = 1; 1242 } 1243 if (svd2->pageadvice) { 1244 svd1->pageadvice = 1; 1245 } 1246 if (svd2->pageswap) { 1247 svd1->pageswap = 1; 1248 } 1249 svd1->vpage = nvpage; 1250 } 1251 1252 /* all looks ok, merge segments */ 1253 svd1->swresv += svd2->swresv; 1254 svd2->swresv = 0; /* so seg_free doesn't release swap space */ 1255 size = seg2->s_size; 1256 seg_free(seg2); 1257 seg1->s_size += size; 1258 return (0); 1259 } 1260 1261 /* 1262 * Extend the previous segment (seg1) to include the 1263 * new segment (seg2 + a), if possible. 1264 * Return 0 on success. 1265 */ 1266 static int 1267 segvn_extend_prev(struct seg *seg1, struct seg *seg2, struct segvn_crargs *a, 1268 size_t swresv) 1269 { 1270 struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data; 1271 size_t size; 1272 struct anon_map *amp1; 1273 struct vpage *new_vpage; 1274 1275 /* 1276 * We don't need any segment level locks for "segvn" data 1277 * since the address space is "write" locked. 1278 */ 1279 ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as)); 1280 1281 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie)) { 1282 return (-1); 1283 } 1284 1285 /* second segment is new, try to extend first */ 1286 /* XXX - should also check cred */ 1287 if (svd1->vp != a->vp || svd1->maxprot != a->maxprot || 1288 (!svd1->pageprot && (svd1->prot != a->prot)) || 1289 svd1->type != a->type || svd1->flags != a->flags || 1290 seg1->s_szc != a->szc || svd1->softlockcnt_send > 0) 1291 return (-1); 1292 1293 /* vp == NULL implies zfod, offset doesn't matter */ 1294 if (svd1->vp != NULL && 1295 svd1->offset + seg1->s_size != (a->offset & PAGEMASK)) 1296 return (-1); 1297 1298 if (svd1->tr_state != SEGVN_TR_OFF) { 1299 return (-1); 1300 } 1301 1302 amp1 = svd1->amp; 1303 if (amp1) { 1304 pgcnt_t newpgs; 1305 1306 /* 1307 * Segment has private pages, can data structures 1308 * be expanded? 1309 * 1310 * Acquire the anon_map lock to prevent it from changing, 1311 * if it is shared. This ensures that the anon_map 1312 * will not change while a thread which has a read/write 1313 * lock on an address space references it. 1314 * XXX - Don't need the anon_map lock at all if "refcnt" 1315 * is 1. 1316 * 1317 * Can't grow a MAP_SHARED segment with an anonmap because 1318 * there may be existing anon slots where we want to extend 1319 * the segment and we wouldn't know what to do with them 1320 * (e.g., for tmpfs right thing is to just leave them there, 1321 * for /dev/zero they should be cleared out). 1322 */ 1323 if (svd1->type == MAP_SHARED) 1324 return (-1); 1325 1326 ANON_LOCK_ENTER(&1->a_rwlock, RW_WRITER); 1327 if (amp1->refcnt > 1) { 1328 ANON_LOCK_EXIT(&1->a_rwlock); 1329 return (-1); 1330 } 1331 newpgs = anon_grow(amp1->ahp, &svd1->anon_index, 1332 btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP); 1333 1334 if (newpgs == 0) { 1335 ANON_LOCK_EXIT(&1->a_rwlock); 1336 return (-1); 1337 } 1338 amp1->size = ptob(newpgs); 1339 ANON_LOCK_EXIT(&1->a_rwlock); 1340 } 1341 if (svd1->vpage != NULL) { 1342 struct vpage *vp, *evp; 1343 new_vpage = 1344 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)), 1345 KM_NOSLEEP); 1346 if (new_vpage == NULL) 1347 return (-1); 1348 bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1))); 1349 kmem_free(svd1->vpage, vpgtob(seg_pages(seg1))); 1350 svd1->vpage = new_vpage; 1351 1352 vp = new_vpage + seg_pages(seg1); 1353 evp = vp + seg_pages(seg2); 1354 for (; vp < evp; vp++) 1355 VPP_SETPROT(vp, a->prot); 1356 if (svd1->pageswap && swresv) { 1357 ASSERT(!(svd1->flags & MAP_NORESERVE)); 1358 ASSERT(swresv == seg2->s_size); 1359 vp = new_vpage + seg_pages(seg1); 1360 for (; vp < evp; vp++) { 1361 VPP_SETSWAPRES(vp); 1362 } 1363 } 1364 } 1365 ASSERT(svd1->vpage != NULL || svd1->pageswap == 0); 1366 size = seg2->s_size; 1367 seg_free(seg2); 1368 seg1->s_size += size; 1369 svd1->swresv += swresv; 1370 if (svd1->pageprot && (a->prot & PROT_WRITE) && 1371 svd1->type == MAP_SHARED && svd1->vp != NULL && 1372 (svd1->vp->v_flag & VVMEXEC)) { 1373 ASSERT(vn_is_mapped(svd1->vp, V_WRITE)); 1374 segvn_inval_trcache(svd1->vp); 1375 } 1376 return (0); 1377 } 1378 1379 /* 1380 * Extend the next segment (seg2) to include the 1381 * new segment (seg1 + a), if possible. 1382 * Return 0 on success. 1383 */ 1384 static int 1385 segvn_extend_next(struct seg *seg1, struct seg *seg2, struct segvn_crargs *a, 1386 size_t swresv) 1387 { 1388 struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data; 1389 size_t size; 1390 struct anon_map *amp2; 1391 struct vpage *new_vpage; 1392 1393 /* 1394 * We don't need any segment level locks for "segvn" data 1395 * since the address space is "write" locked. 1396 */ 1397 ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as)); 1398 1399 if (HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) { 1400 return (-1); 1401 } 1402 1403 /* first segment is new, try to extend second */ 1404 /* XXX - should also check cred */ 1405 if (svd2->vp != a->vp || svd2->maxprot != a->maxprot || 1406 (!svd2->pageprot && (svd2->prot != a->prot)) || 1407 svd2->type != a->type || svd2->flags != a->flags || 1408 seg2->s_szc != a->szc || svd2->softlockcnt_sbase > 0) 1409 return (-1); 1410 /* vp == NULL implies zfod, offset doesn't matter */ 1411 if (svd2->vp != NULL && 1412 (a->offset & PAGEMASK) + seg1->s_size != svd2->offset) 1413 return (-1); 1414 1415 if (svd2->tr_state != SEGVN_TR_OFF) { 1416 return (-1); 1417 } 1418 1419 amp2 = svd2->amp; 1420 if (amp2) { 1421 pgcnt_t newpgs; 1422 1423 /* 1424 * Segment has private pages, can data structures 1425 * be expanded? 1426 * 1427 * Acquire the anon_map lock to prevent it from changing, 1428 * if it is shared. This ensures that the anon_map 1429 * will not change while a thread which has a read/write 1430 * lock on an address space references it. 1431 * 1432 * XXX - Don't need the anon_map lock at all if "refcnt" 1433 * is 1. 1434 */ 1435 if (svd2->type == MAP_SHARED) 1436 return (-1); 1437 1438 ANON_LOCK_ENTER(&2->a_rwlock, RW_WRITER); 1439 if (amp2->refcnt > 1) { 1440 ANON_LOCK_EXIT(&2->a_rwlock); 1441 return (-1); 1442 } 1443 newpgs = anon_grow(amp2->ahp, &svd2->anon_index, 1444 btop(seg2->s_size), btop(seg1->s_size), 1445 ANON_NOSLEEP | ANON_GROWDOWN); 1446 1447 if (newpgs == 0) { 1448 ANON_LOCK_EXIT(&2->a_rwlock); 1449 return (-1); 1450 } 1451 amp2->size = ptob(newpgs); 1452 ANON_LOCK_EXIT(&2->a_rwlock); 1453 } 1454 if (svd2->vpage != NULL) { 1455 struct vpage *vp, *evp; 1456 new_vpage = 1457 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)), 1458 KM_NOSLEEP); 1459 if (new_vpage == NULL) { 1460 /* Not merging segments so adjust anon_index back */ 1461 if (amp2) 1462 svd2->anon_index += seg_pages(seg1); 1463 return (-1); 1464 } 1465 bcopy(svd2->vpage, new_vpage + seg_pages(seg1), 1466 vpgtob(seg_pages(seg2))); 1467 kmem_free(svd2->vpage, vpgtob(seg_pages(seg2))); 1468 svd2->vpage = new_vpage; 1469 1470 vp = new_vpage; 1471 evp = vp + seg_pages(seg1); 1472 for (; vp < evp; vp++) 1473 VPP_SETPROT(vp, a->prot); 1474 if (svd2->pageswap && swresv) { 1475 ASSERT(!(svd2->flags & MAP_NORESERVE)); 1476 ASSERT(swresv == seg1->s_size); 1477 vp = new_vpage; 1478 for (; vp < evp; vp++) { 1479 VPP_SETSWAPRES(vp); 1480 } 1481 } 1482 } 1483 ASSERT(svd2->vpage != NULL || svd2->pageswap == 0); 1484 size = seg1->s_size; 1485 seg_free(seg1); 1486 seg2->s_size += size; 1487 seg2->s_base -= size; 1488 svd2->offset -= size; 1489 svd2->swresv += swresv; 1490 if (svd2->pageprot && (a->prot & PROT_WRITE) && 1491 svd2->type == MAP_SHARED && svd2->vp != NULL && 1492 (svd2->vp->v_flag & VVMEXEC)) { 1493 ASSERT(vn_is_mapped(svd2->vp, V_WRITE)); 1494 segvn_inval_trcache(svd2->vp); 1495 } 1496 return (0); 1497 } 1498 1499 /* 1500 * Duplicate all the pages in the segment. This may break COW sharing for a 1501 * given page. If the page is marked with inherit zero set, then instead of 1502 * duplicating the page, we zero the page. 1503 */ 1504 static int 1505 segvn_dup_pages(struct seg *seg, struct seg *newseg) 1506 { 1507 int error; 1508 uint_t prot; 1509 page_t *pp; 1510 struct anon *ap, *newap; 1511 size_t i; 1512 caddr_t addr; 1513 1514 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 1515 struct segvn_data *newsvd = (struct segvn_data *)newseg->s_data; 1516 ulong_t old_idx = svd->anon_index; 1517 ulong_t new_idx = 0; 1518 1519 i = btopr(seg->s_size); 1520 addr = seg->s_base; 1521 1522 /* 1523 * XXX break cow sharing using PAGESIZE 1524 * pages. They will be relocated into larger 1525 * pages at fault time. 1526 */ 1527 while (i-- > 0) { 1528 if ((ap = anon_get_ptr(svd->amp->ahp, old_idx)) != NULL) { 1529 struct vpage *vpp; 1530 1531 vpp = &svd->vpage[seg_page(seg, addr)]; 1532 1533 /* 1534 * prot need not be computed below 'cause anon_private 1535 * is going to ignore it anyway as child doesn't inherit 1536 * pagelock from parent. 1537 */ 1538 prot = svd->pageprot ? VPP_PROT(vpp) : svd->prot; 1539 1540 /* 1541 * Check whether we should zero this or dup it. 1542 */ 1543 if (svd->svn_inz == SEGVN_INZ_ALL || 1544 (svd->svn_inz == SEGVN_INZ_VPP && 1545 VPP_ISINHZERO(vpp))) { 1546 pp = anon_zero(newseg, addr, &newap, 1547 newsvd->cred); 1548 } else { 1549 page_t *anon_pl[1+1]; 1550 uint_t vpprot; 1551 error = anon_getpage(&ap, &vpprot, anon_pl, 1552 PAGESIZE, seg, addr, S_READ, svd->cred); 1553 if (error != 0) 1554 return (error); 1555 1556 pp = anon_private(&newap, newseg, addr, prot, 1557 anon_pl[0], 0, newsvd->cred); 1558 } 1559 if (pp == NULL) { 1560 return (ENOMEM); 1561 } 1562 (void) anon_set_ptr(newsvd->amp->ahp, new_idx, newap, 1563 ANON_SLEEP); 1564 page_unlock(pp); 1565 } 1566 addr += PAGESIZE; 1567 old_idx++; 1568 new_idx++; 1569 } 1570 1571 return (0); 1572 } 1573 1574 static int 1575 segvn_dup(struct seg *seg, struct seg *newseg) 1576 { 1577 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 1578 struct segvn_data *newsvd; 1579 pgcnt_t npages = seg_pages(seg); 1580 int error = 0; 1581 size_t len; 1582 struct anon_map *amp; 1583 1584 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 1585 ASSERT(newseg->s_as->a_proc->p_parent == curproc); 1586 1587 /* 1588 * If segment has anon reserved, reserve more for the new seg. 1589 * For a MAP_NORESERVE segment swresv will be a count of all the 1590 * allocated anon slots; thus we reserve for the child as many slots 1591 * as the parent has allocated. This semantic prevents the child or 1592 * parent from dieing during a copy-on-write fault caused by trying 1593 * to write a shared pre-existing anon page. 1594 */ 1595 if ((len = svd->swresv) != 0) { 1596 if (anon_resv(svd->swresv) == 0) 1597 return (ENOMEM); 1598 1599 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 1600 seg, len, 0); 1601 } 1602 1603 newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP); 1604 1605 newseg->s_ops = &segvn_ops; 1606 newseg->s_data = (void *)newsvd; 1607 newseg->s_szc = seg->s_szc; 1608 1609 newsvd->seg = newseg; 1610 if ((newsvd->vp = svd->vp) != NULL) { 1611 VN_HOLD(svd->vp); 1612 if (svd->type == MAP_SHARED) 1613 lgrp_shm_policy_init(NULL, svd->vp); 1614 } 1615 newsvd->offset = svd->offset; 1616 newsvd->prot = svd->prot; 1617 newsvd->maxprot = svd->maxprot; 1618 newsvd->pageprot = svd->pageprot; 1619 newsvd->type = svd->type; 1620 newsvd->cred = svd->cred; 1621 crhold(newsvd->cred); 1622 newsvd->advice = svd->advice; 1623 newsvd->pageadvice = svd->pageadvice; 1624 newsvd->svn_inz = svd->svn_inz; 1625 newsvd->swresv = svd->swresv; 1626 newsvd->pageswap = svd->pageswap; 1627 newsvd->flags = svd->flags; 1628 newsvd->softlockcnt = 0; 1629 newsvd->softlockcnt_sbase = 0; 1630 newsvd->softlockcnt_send = 0; 1631 newsvd->policy_info = svd->policy_info; 1632 newsvd->rcookie = HAT_INVALID_REGION_COOKIE; 1633 1634 if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) { 1635 /* 1636 * Not attaching to a shared anon object. 1637 */ 1638 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie) || 1639 svd->tr_state == SEGVN_TR_OFF); 1640 if (svd->tr_state == SEGVN_TR_ON) { 1641 ASSERT(newsvd->vp != NULL && amp != NULL); 1642 newsvd->tr_state = SEGVN_TR_INIT; 1643 } else { 1644 newsvd->tr_state = svd->tr_state; 1645 } 1646 newsvd->amp = NULL; 1647 newsvd->anon_index = 0; 1648 } else { 1649 /* regions for now are only used on pure vnode segments */ 1650 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 1651 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1652 newsvd->tr_state = SEGVN_TR_OFF; 1653 if (svd->type == MAP_SHARED) { 1654 ASSERT(svd->svn_inz == SEGVN_INZ_NONE); 1655 newsvd->amp = amp; 1656 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 1657 amp->refcnt++; 1658 ANON_LOCK_EXIT(&->a_rwlock); 1659 newsvd->anon_index = svd->anon_index; 1660 } else { 1661 int reclaim = 1; 1662 1663 /* 1664 * Allocate and initialize new anon_map structure. 1665 */ 1666 newsvd->amp = anonmap_alloc(newseg->s_size, 0, 1667 ANON_SLEEP); 1668 newsvd->amp->a_szc = newseg->s_szc; 1669 newsvd->anon_index = 0; 1670 ASSERT(svd->svn_inz == SEGVN_INZ_NONE || 1671 svd->svn_inz == SEGVN_INZ_ALL || 1672 svd->svn_inz == SEGVN_INZ_VPP); 1673 1674 /* 1675 * We don't have to acquire the anon_map lock 1676 * for the new segment (since it belongs to an 1677 * address space that is still not associated 1678 * with any process), or the segment in the old 1679 * address space (since all threads in it 1680 * are stopped while duplicating the address space). 1681 */ 1682 1683 /* 1684 * The goal of the following code is to make sure that 1685 * softlocked pages do not end up as copy on write 1686 * pages. This would cause problems where one 1687 * thread writes to a page that is COW and a different 1688 * thread in the same process has softlocked it. The 1689 * softlock lock would move away from this process 1690 * because the write would cause this process to get 1691 * a copy (without the softlock). 1692 * 1693 * The strategy here is to just break the 1694 * sharing on pages that could possibly be 1695 * softlocked. 1696 * 1697 * In addition, if any pages have been marked that they 1698 * should be inherited as zero, then we immediately go 1699 * ahead and break COW and zero them. In the case of a 1700 * softlocked page that should be inherited zero, we 1701 * break COW and just get a zero page. 1702 */ 1703 retry: 1704 if (svd->softlockcnt || 1705 svd->svn_inz != SEGVN_INZ_NONE) { 1706 /* 1707 * The softlock count might be non zero 1708 * because some pages are still stuck in the 1709 * cache for lazy reclaim. Flush the cache 1710 * now. This should drop the count to zero. 1711 * [or there is really I/O going on to these 1712 * pages]. Note, we have the writers lock so 1713 * nothing gets inserted during the flush. 1714 */ 1715 if (svd->softlockcnt && reclaim == 1) { 1716 segvn_purge(seg); 1717 reclaim = 0; 1718 goto retry; 1719 } 1720 1721 error = segvn_dup_pages(seg, newseg); 1722 if (error != 0) { 1723 newsvd->vpage = NULL; 1724 goto out; 1725 } 1726 } else { /* common case */ 1727 if (seg->s_szc != 0) { 1728 /* 1729 * If at least one of anon slots of a 1730 * large page exists then make sure 1731 * all anon slots of a large page 1732 * exist to avoid partial cow sharing 1733 * of a large page in the future. 1734 */ 1735 anon_dup_fill_holes(amp->ahp, 1736 svd->anon_index, newsvd->amp->ahp, 1737 0, seg->s_size, seg->s_szc, 1738 svd->vp != NULL); 1739 } else { 1740 anon_dup(amp->ahp, svd->anon_index, 1741 newsvd->amp->ahp, 0, seg->s_size); 1742 } 1743 1744 hat_clrattr(seg->s_as->a_hat, seg->s_base, 1745 seg->s_size, PROT_WRITE); 1746 } 1747 } 1748 } 1749 /* 1750 * If necessary, create a vpage structure for the new segment. 1751 * Do not copy any page lock indications. 1752 */ 1753 if (svd->vpage != NULL) { 1754 uint_t i; 1755 struct vpage *ovp = svd->vpage; 1756 struct vpage *nvp; 1757 1758 nvp = newsvd->vpage = 1759 kmem_alloc(vpgtob(npages), KM_SLEEP); 1760 for (i = 0; i < npages; i++) { 1761 *nvp = *ovp++; 1762 VPP_CLRPPLOCK(nvp++); 1763 } 1764 } else 1765 newsvd->vpage = NULL; 1766 1767 /* Inform the vnode of the new mapping */ 1768 if (newsvd->vp != NULL) { 1769 error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset, 1770 newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot, 1771 newsvd->maxprot, newsvd->type, newsvd->cred, NULL); 1772 } 1773 out: 1774 if (error == 0 && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 1775 ASSERT(newsvd->amp == NULL); 1776 ASSERT(newsvd->tr_state == SEGVN_TR_OFF); 1777 newsvd->rcookie = svd->rcookie; 1778 hat_dup_region(newseg->s_as->a_hat, newsvd->rcookie); 1779 } 1780 return (error); 1781 } 1782 1783 1784 /* 1785 * callback function to invoke free_vp_pages() for only those pages actually 1786 * processed by the HAT when a shared region is destroyed. 1787 */ 1788 extern int free_pages; 1789 1790 static void 1791 segvn_hat_rgn_unload_callback(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr, 1792 size_t r_size, void *r_obj, u_offset_t r_objoff) 1793 { 1794 u_offset_t off; 1795 size_t len; 1796 vnode_t *vp = (vnode_t *)r_obj; 1797 1798 ASSERT(eaddr > saddr); 1799 ASSERT(saddr >= r_saddr); 1800 ASSERT(saddr < r_saddr + r_size); 1801 ASSERT(eaddr > r_saddr); 1802 ASSERT(eaddr <= r_saddr + r_size); 1803 ASSERT(vp != NULL); 1804 1805 if (!free_pages) { 1806 return; 1807 } 1808 1809 len = eaddr - saddr; 1810 off = (saddr - r_saddr) + r_objoff; 1811 free_vp_pages(vp, off, len); 1812 } 1813 1814 /* 1815 * callback function used by segvn_unmap to invoke free_vp_pages() for only 1816 * those pages actually processed by the HAT 1817 */ 1818 static void 1819 segvn_hat_unload_callback(hat_callback_t *cb) 1820 { 1821 struct seg *seg = cb->hcb_data; 1822 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 1823 size_t len; 1824 u_offset_t off; 1825 1826 ASSERT(svd->vp != NULL); 1827 ASSERT(cb->hcb_end_addr > cb->hcb_start_addr); 1828 ASSERT(cb->hcb_start_addr >= seg->s_base); 1829 1830 len = cb->hcb_end_addr - cb->hcb_start_addr; 1831 off = cb->hcb_start_addr - seg->s_base; 1832 free_vp_pages(svd->vp, svd->offset + off, len); 1833 } 1834 1835 /* 1836 * This function determines the number of bytes of swap reserved by 1837 * a segment for which per-page accounting is present. It is used to 1838 * calculate the correct value of a segvn_data's swresv. 1839 */ 1840 static size_t 1841 segvn_count_swap_by_vpages(struct seg *seg) 1842 { 1843 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 1844 struct vpage *vp, *evp; 1845 size_t nswappages = 0; 1846 1847 ASSERT(svd->pageswap); 1848 ASSERT(svd->vpage != NULL); 1849 1850 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)]; 1851 1852 for (vp = svd->vpage; vp < evp; vp++) { 1853 if (VPP_ISSWAPRES(vp)) 1854 nswappages++; 1855 } 1856 1857 return (nswappages << PAGESHIFT); 1858 } 1859 1860 static int 1861 segvn_unmap(struct seg *seg, caddr_t addr, size_t len) 1862 { 1863 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 1864 struct segvn_data *nsvd; 1865 struct seg *nseg; 1866 struct anon_map *amp; 1867 pgcnt_t opages; /* old segment size in pages */ 1868 pgcnt_t npages; /* new segment size in pages */ 1869 pgcnt_t dpages; /* pages being deleted (unmapped) */ 1870 hat_callback_t callback; /* used for free_vp_pages() */ 1871 hat_callback_t *cbp = NULL; 1872 caddr_t nbase; 1873 size_t nsize; 1874 size_t oswresv; 1875 int reclaim = 1; 1876 1877 /* 1878 * We don't need any segment level locks for "segvn" data 1879 * since the address space is "write" locked. 1880 */ 1881 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 1882 1883 /* 1884 * Fail the unmap if pages are SOFTLOCKed through this mapping. 1885 * softlockcnt is protected from change by the as write lock. 1886 */ 1887 retry: 1888 if (svd->softlockcnt > 0) { 1889 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1890 1891 /* 1892 * If this is shared segment non 0 softlockcnt 1893 * means locked pages are still in use. 1894 */ 1895 if (svd->type == MAP_SHARED) { 1896 return (EAGAIN); 1897 } 1898 1899 /* 1900 * since we do have the writers lock nobody can fill 1901 * the cache during the purge. The flush either succeeds 1902 * or we still have pending I/Os. 1903 */ 1904 if (reclaim == 1) { 1905 segvn_purge(seg); 1906 reclaim = 0; 1907 goto retry; 1908 } 1909 return (EAGAIN); 1910 } 1911 1912 /* 1913 * Check for bad sizes 1914 */ 1915 if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size || 1916 (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) { 1917 panic("segvn_unmap"); 1918 /*NOTREACHED*/ 1919 } 1920 1921 if (seg->s_szc != 0) { 1922 size_t pgsz = page_get_pagesize(seg->s_szc); 1923 int err; 1924 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) { 1925 ASSERT(seg->s_base != addr || seg->s_size != len); 1926 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 1927 ASSERT(svd->amp == NULL); 1928 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1929 hat_leave_region(seg->s_as->a_hat, 1930 svd->rcookie, HAT_REGION_TEXT); 1931 svd->rcookie = HAT_INVALID_REGION_COOKIE; 1932 /* 1933 * could pass a flag to segvn_demote_range() 1934 * below to tell it not to do any unloads but 1935 * this case is rare enough to not bother for 1936 * now. 1937 */ 1938 } else if (svd->tr_state == SEGVN_TR_INIT) { 1939 svd->tr_state = SEGVN_TR_OFF; 1940 } else if (svd->tr_state == SEGVN_TR_ON) { 1941 ASSERT(svd->amp != NULL); 1942 segvn_textunrepl(seg, 1); 1943 ASSERT(svd->amp == NULL); 1944 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1945 } 1946 VM_STAT_ADD(segvnvmstats.demoterange[0]); 1947 err = segvn_demote_range(seg, addr, len, SDR_END, 0); 1948 if (err == 0) { 1949 return (IE_RETRY); 1950 } 1951 return (err); 1952 } 1953 } 1954 1955 /* Inform the vnode of the unmapping. */ 1956 if (svd->vp) { 1957 int error; 1958 1959 error = VOP_DELMAP(svd->vp, 1960 (offset_t)svd->offset + (uintptr_t)(addr - seg->s_base), 1961 seg->s_as, addr, len, svd->prot, svd->maxprot, 1962 svd->type, svd->cred, NULL); 1963 1964 if (error == EAGAIN) 1965 return (error); 1966 } 1967 1968 /* 1969 * Remove any page locks set through this mapping. 1970 * If text replication is not off no page locks could have been 1971 * established via this mapping. 1972 */ 1973 if (svd->tr_state == SEGVN_TR_OFF) { 1974 (void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0); 1975 } 1976 1977 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 1978 ASSERT(svd->amp == NULL); 1979 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1980 ASSERT(svd->type == MAP_PRIVATE); 1981 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 1982 HAT_REGION_TEXT); 1983 svd->rcookie = HAT_INVALID_REGION_COOKIE; 1984 } else if (svd->tr_state == SEGVN_TR_ON) { 1985 ASSERT(svd->amp != NULL); 1986 ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE)); 1987 segvn_textunrepl(seg, 1); 1988 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 1989 } else { 1990 if (svd->tr_state != SEGVN_TR_OFF) { 1991 ASSERT(svd->tr_state == SEGVN_TR_INIT); 1992 svd->tr_state = SEGVN_TR_OFF; 1993 } 1994 /* 1995 * Unload any hardware translations in the range to be taken 1996 * out. Use a callback to invoke free_vp_pages() effectively. 1997 */ 1998 if (svd->vp != NULL && free_pages != 0) { 1999 callback.hcb_data = seg; 2000 callback.hcb_function = segvn_hat_unload_callback; 2001 cbp = &callback; 2002 } 2003 hat_unload_callback(seg->s_as->a_hat, addr, len, 2004 HAT_UNLOAD_UNMAP, cbp); 2005 2006 if (svd->type == MAP_SHARED && svd->vp != NULL && 2007 (svd->vp->v_flag & VVMEXEC) && 2008 ((svd->prot & PROT_WRITE) || svd->pageprot)) { 2009 segvn_inval_trcache(svd->vp); 2010 } 2011 } 2012 2013 /* 2014 * Check for entire segment 2015 */ 2016 if (addr == seg->s_base && len == seg->s_size) { 2017 seg_free(seg); 2018 return (0); 2019 } 2020 2021 opages = seg_pages(seg); 2022 dpages = btop(len); 2023 npages = opages - dpages; 2024 amp = svd->amp; 2025 ASSERT(amp == NULL || amp->a_szc >= seg->s_szc); 2026 2027 /* 2028 * Check for beginning of segment 2029 */ 2030 if (addr == seg->s_base) { 2031 if (svd->vpage != NULL) { 2032 size_t nbytes; 2033 struct vpage *ovpage; 2034 2035 ovpage = svd->vpage; /* keep pointer to vpage */ 2036 2037 nbytes = vpgtob(npages); 2038 svd->vpage = kmem_alloc(nbytes, KM_SLEEP); 2039 bcopy(&ovpage[dpages], svd->vpage, nbytes); 2040 2041 /* free up old vpage */ 2042 kmem_free(ovpage, vpgtob(opages)); 2043 } 2044 if (amp != NULL) { 2045 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2046 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) { 2047 /* 2048 * Shared anon map is no longer in use. Before 2049 * freeing its pages purge all entries from 2050 * pcache that belong to this amp. 2051 */ 2052 if (svd->type == MAP_SHARED) { 2053 ASSERT(amp->refcnt == 1); 2054 ASSERT(svd->softlockcnt == 0); 2055 anonmap_purge(amp); 2056 } 2057 /* 2058 * Free up now unused parts of anon_map array. 2059 */ 2060 if (amp->a_szc == seg->s_szc) { 2061 if (seg->s_szc != 0) { 2062 anon_free_pages(amp->ahp, 2063 svd->anon_index, len, 2064 seg->s_szc); 2065 } else { 2066 anon_free(amp->ahp, 2067 svd->anon_index, 2068 len); 2069 } 2070 } else { 2071 ASSERT(svd->type == MAP_SHARED); 2072 ASSERT(amp->a_szc > seg->s_szc); 2073 anon_shmap_free_pages(amp, 2074 svd->anon_index, len); 2075 } 2076 2077 /* 2078 * Unreserve swap space for the 2079 * unmapped chunk of this segment in 2080 * case it's MAP_SHARED 2081 */ 2082 if (svd->type == MAP_SHARED) { 2083 anon_unresv_zone(len, 2084 seg->s_as->a_proc->p_zone); 2085 amp->swresv -= len; 2086 } 2087 } 2088 ANON_LOCK_EXIT(&->a_rwlock); 2089 svd->anon_index += dpages; 2090 } 2091 if (svd->vp != NULL) 2092 svd->offset += len; 2093 2094 seg->s_base += len; 2095 seg->s_size -= len; 2096 2097 if (svd->swresv) { 2098 if (svd->flags & MAP_NORESERVE) { 2099 ASSERT(amp); 2100 oswresv = svd->swresv; 2101 2102 svd->swresv = ptob(anon_pages(amp->ahp, 2103 svd->anon_index, npages)); 2104 anon_unresv_zone(oswresv - svd->swresv, 2105 seg->s_as->a_proc->p_zone); 2106 if (SEG_IS_PARTIAL_RESV(seg)) 2107 seg->s_as->a_resvsize -= oswresv - 2108 svd->swresv; 2109 } else { 2110 size_t unlen; 2111 2112 if (svd->pageswap) { 2113 oswresv = svd->swresv; 2114 svd->swresv = 2115 segvn_count_swap_by_vpages(seg); 2116 ASSERT(oswresv >= svd->swresv); 2117 unlen = oswresv - svd->swresv; 2118 } else { 2119 svd->swresv -= len; 2120 ASSERT(svd->swresv == seg->s_size); 2121 unlen = len; 2122 } 2123 anon_unresv_zone(unlen, 2124 seg->s_as->a_proc->p_zone); 2125 } 2126 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 2127 seg, len, 0); 2128 } 2129 2130 return (0); 2131 } 2132 2133 /* 2134 * Check for end of segment 2135 */ 2136 if (addr + len == seg->s_base + seg->s_size) { 2137 if (svd->vpage != NULL) { 2138 size_t nbytes; 2139 struct vpage *ovpage; 2140 2141 ovpage = svd->vpage; /* keep pointer to vpage */ 2142 2143 nbytes = vpgtob(npages); 2144 svd->vpage = kmem_alloc(nbytes, KM_SLEEP); 2145 bcopy(ovpage, svd->vpage, nbytes); 2146 2147 /* free up old vpage */ 2148 kmem_free(ovpage, vpgtob(opages)); 2149 2150 } 2151 if (amp != NULL) { 2152 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2153 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) { 2154 /* 2155 * Free up now unused parts of anon_map array. 2156 */ 2157 ulong_t an_idx = svd->anon_index + npages; 2158 2159 /* 2160 * Shared anon map is no longer in use. Before 2161 * freeing its pages purge all entries from 2162 * pcache that belong to this amp. 2163 */ 2164 if (svd->type == MAP_SHARED) { 2165 ASSERT(amp->refcnt == 1); 2166 ASSERT(svd->softlockcnt == 0); 2167 anonmap_purge(amp); 2168 } 2169 2170 if (amp->a_szc == seg->s_szc) { 2171 if (seg->s_szc != 0) { 2172 anon_free_pages(amp->ahp, 2173 an_idx, len, 2174 seg->s_szc); 2175 } else { 2176 anon_free(amp->ahp, an_idx, 2177 len); 2178 } 2179 } else { 2180 ASSERT(svd->type == MAP_SHARED); 2181 ASSERT(amp->a_szc > seg->s_szc); 2182 anon_shmap_free_pages(amp, 2183 an_idx, len); 2184 } 2185 2186 /* 2187 * Unreserve swap space for the 2188 * unmapped chunk of this segment in 2189 * case it's MAP_SHARED 2190 */ 2191 if (svd->type == MAP_SHARED) { 2192 anon_unresv_zone(len, 2193 seg->s_as->a_proc->p_zone); 2194 amp->swresv -= len; 2195 } 2196 } 2197 ANON_LOCK_EXIT(&->a_rwlock); 2198 } 2199 2200 seg->s_size -= len; 2201 2202 if (svd->swresv) { 2203 if (svd->flags & MAP_NORESERVE) { 2204 ASSERT(amp); 2205 oswresv = svd->swresv; 2206 svd->swresv = ptob(anon_pages(amp->ahp, 2207 svd->anon_index, npages)); 2208 anon_unresv_zone(oswresv - svd->swresv, 2209 seg->s_as->a_proc->p_zone); 2210 if (SEG_IS_PARTIAL_RESV(seg)) 2211 seg->s_as->a_resvsize -= oswresv - 2212 svd->swresv; 2213 } else { 2214 size_t unlen; 2215 2216 if (svd->pageswap) { 2217 oswresv = svd->swresv; 2218 svd->swresv = 2219 segvn_count_swap_by_vpages(seg); 2220 ASSERT(oswresv >= svd->swresv); 2221 unlen = oswresv - svd->swresv; 2222 } else { 2223 svd->swresv -= len; 2224 ASSERT(svd->swresv == seg->s_size); 2225 unlen = len; 2226 } 2227 anon_unresv_zone(unlen, 2228 seg->s_as->a_proc->p_zone); 2229 } 2230 TRACE_3(TR_FAC_VM, TR_ANON_PROC, 2231 "anon proc:%p %lu %u", seg, len, 0); 2232 } 2233 2234 return (0); 2235 } 2236 2237 /* 2238 * The section to go is in the middle of the segment, 2239 * have to make it into two segments. nseg is made for 2240 * the high end while seg is cut down at the low end. 2241 */ 2242 nbase = addr + len; /* new seg base */ 2243 nsize = (seg->s_base + seg->s_size) - nbase; /* new seg size */ 2244 seg->s_size = addr - seg->s_base; /* shrink old seg */ 2245 nseg = seg_alloc(seg->s_as, nbase, nsize); 2246 if (nseg == NULL) { 2247 panic("segvn_unmap seg_alloc"); 2248 /*NOTREACHED*/ 2249 } 2250 nseg->s_ops = seg->s_ops; 2251 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP); 2252 nseg->s_data = (void *)nsvd; 2253 nseg->s_szc = seg->s_szc; 2254 *nsvd = *svd; 2255 nsvd->seg = nseg; 2256 nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base); 2257 nsvd->swresv = 0; 2258 nsvd->softlockcnt = 0; 2259 nsvd->softlockcnt_sbase = 0; 2260 nsvd->softlockcnt_send = 0; 2261 nsvd->svn_inz = svd->svn_inz; 2262 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE); 2263 2264 if (svd->vp != NULL) { 2265 VN_HOLD(nsvd->vp); 2266 if (nsvd->type == MAP_SHARED) 2267 lgrp_shm_policy_init(NULL, nsvd->vp); 2268 } 2269 crhold(svd->cred); 2270 2271 if (svd->vpage == NULL) { 2272 nsvd->vpage = NULL; 2273 } else { 2274 /* need to split vpage into two arrays */ 2275 size_t nbytes; 2276 struct vpage *ovpage; 2277 2278 ovpage = svd->vpage; /* keep pointer to vpage */ 2279 2280 npages = seg_pages(seg); /* seg has shrunk */ 2281 nbytes = vpgtob(npages); 2282 svd->vpage = kmem_alloc(nbytes, KM_SLEEP); 2283 2284 bcopy(ovpage, svd->vpage, nbytes); 2285 2286 npages = seg_pages(nseg); 2287 nbytes = vpgtob(npages); 2288 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP); 2289 2290 bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes); 2291 2292 /* free up old vpage */ 2293 kmem_free(ovpage, vpgtob(opages)); 2294 } 2295 2296 if (amp == NULL) { 2297 nsvd->amp = NULL; 2298 nsvd->anon_index = 0; 2299 } else { 2300 /* 2301 * Need to create a new anon map for the new segment. 2302 * We'll also allocate a new smaller array for the old 2303 * smaller segment to save space. 2304 */ 2305 opages = btop((uintptr_t)(addr - seg->s_base)); 2306 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2307 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) { 2308 /* 2309 * Free up now unused parts of anon_map array. 2310 */ 2311 ulong_t an_idx = svd->anon_index + opages; 2312 2313 /* 2314 * Shared anon map is no longer in use. Before 2315 * freeing its pages purge all entries from 2316 * pcache that belong to this amp. 2317 */ 2318 if (svd->type == MAP_SHARED) { 2319 ASSERT(amp->refcnt == 1); 2320 ASSERT(svd->softlockcnt == 0); 2321 anonmap_purge(amp); 2322 } 2323 2324 if (amp->a_szc == seg->s_szc) { 2325 if (seg->s_szc != 0) { 2326 anon_free_pages(amp->ahp, an_idx, len, 2327 seg->s_szc); 2328 } else { 2329 anon_free(amp->ahp, an_idx, 2330 len); 2331 } 2332 } else { 2333 ASSERT(svd->type == MAP_SHARED); 2334 ASSERT(amp->a_szc > seg->s_szc); 2335 anon_shmap_free_pages(amp, an_idx, len); 2336 } 2337 2338 /* 2339 * Unreserve swap space for the 2340 * unmapped chunk of this segment in 2341 * case it's MAP_SHARED 2342 */ 2343 if (svd->type == MAP_SHARED) { 2344 anon_unresv_zone(len, 2345 seg->s_as->a_proc->p_zone); 2346 amp->swresv -= len; 2347 } 2348 } 2349 nsvd->anon_index = svd->anon_index + 2350 btop((uintptr_t)(nseg->s_base - seg->s_base)); 2351 if (svd->type == MAP_SHARED) { 2352 amp->refcnt++; 2353 nsvd->amp = amp; 2354 } else { 2355 struct anon_map *namp; 2356 struct anon_hdr *nahp; 2357 2358 ASSERT(svd->type == MAP_PRIVATE); 2359 nahp = anon_create(btop(seg->s_size), ANON_SLEEP); 2360 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP); 2361 namp->a_szc = seg->s_szc; 2362 (void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp, 2363 0, btop(seg->s_size), ANON_SLEEP); 2364 (void) anon_copy_ptr(amp->ahp, nsvd->anon_index, 2365 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP); 2366 anon_release(amp->ahp, btop(amp->size)); 2367 svd->anon_index = 0; 2368 nsvd->anon_index = 0; 2369 amp->ahp = nahp; 2370 amp->size = seg->s_size; 2371 nsvd->amp = namp; 2372 } 2373 ANON_LOCK_EXIT(&->a_rwlock); 2374 } 2375 if (svd->swresv) { 2376 if (svd->flags & MAP_NORESERVE) { 2377 ASSERT(amp); 2378 oswresv = svd->swresv; 2379 svd->swresv = ptob(anon_pages(amp->ahp, 2380 svd->anon_index, btop(seg->s_size))); 2381 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp, 2382 nsvd->anon_index, btop(nseg->s_size))); 2383 ASSERT(oswresv >= (svd->swresv + nsvd->swresv)); 2384 anon_unresv_zone(oswresv - (svd->swresv + nsvd->swresv), 2385 seg->s_as->a_proc->p_zone); 2386 if (SEG_IS_PARTIAL_RESV(seg)) 2387 seg->s_as->a_resvsize -= oswresv - 2388 (svd->swresv + nsvd->swresv); 2389 } else { 2390 size_t unlen; 2391 2392 if (svd->pageswap) { 2393 oswresv = svd->swresv; 2394 svd->swresv = segvn_count_swap_by_vpages(seg); 2395 nsvd->swresv = segvn_count_swap_by_vpages(nseg); 2396 ASSERT(oswresv >= (svd->swresv + nsvd->swresv)); 2397 unlen = oswresv - (svd->swresv + nsvd->swresv); 2398 } else { 2399 if (seg->s_size + nseg->s_size + len != 2400 svd->swresv) { 2401 panic("segvn_unmap: cannot split " 2402 "swap reservation"); 2403 /*NOTREACHED*/ 2404 } 2405 svd->swresv = seg->s_size; 2406 nsvd->swresv = nseg->s_size; 2407 unlen = len; 2408 } 2409 anon_unresv_zone(unlen, 2410 seg->s_as->a_proc->p_zone); 2411 } 2412 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 2413 seg, len, 0); 2414 } 2415 2416 return (0); /* I'm glad that's all over with! */ 2417 } 2418 2419 static void 2420 segvn_free(struct seg *seg) 2421 { 2422 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 2423 pgcnt_t npages = seg_pages(seg); 2424 struct anon_map *amp; 2425 size_t len; 2426 2427 /* 2428 * We don't need any segment level locks for "segvn" data 2429 * since the address space is "write" locked. 2430 */ 2431 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 2432 ASSERT(svd->tr_state == SEGVN_TR_OFF); 2433 2434 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 2435 2436 /* 2437 * Be sure to unlock pages. XXX Why do things get free'ed instead 2438 * of unmapped? XXX 2439 */ 2440 (void) segvn_lockop(seg, seg->s_base, seg->s_size, 2441 0, MC_UNLOCK, NULL, 0); 2442 2443 /* 2444 * Deallocate the vpage and anon pointers if necessary and possible. 2445 */ 2446 if (svd->vpage != NULL) { 2447 kmem_free(svd->vpage, vpgtob(npages)); 2448 svd->vpage = NULL; 2449 } 2450 if ((amp = svd->amp) != NULL) { 2451 /* 2452 * If there are no more references to this anon_map 2453 * structure, then deallocate the structure after freeing 2454 * up all the anon slot pointers that we can. 2455 */ 2456 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2457 ASSERT(amp->a_szc >= seg->s_szc); 2458 if (--amp->refcnt == 0) { 2459 if (svd->type == MAP_PRIVATE) { 2460 /* 2461 * Private - we only need to anon_free 2462 * the part that this segment refers to. 2463 */ 2464 if (seg->s_szc != 0) { 2465 anon_free_pages(amp->ahp, 2466 svd->anon_index, seg->s_size, 2467 seg->s_szc); 2468 } else { 2469 anon_free(amp->ahp, svd->anon_index, 2470 seg->s_size); 2471 } 2472 } else { 2473 2474 /* 2475 * Shared anon map is no longer in use. Before 2476 * freeing its pages purge all entries from 2477 * pcache that belong to this amp. 2478 */ 2479 ASSERT(svd->softlockcnt == 0); 2480 anonmap_purge(amp); 2481 2482 /* 2483 * Shared - anon_free the entire 2484 * anon_map's worth of stuff and 2485 * release any swap reservation. 2486 */ 2487 if (amp->a_szc != 0) { 2488 anon_shmap_free_pages(amp, 0, 2489 amp->size); 2490 } else { 2491 anon_free(amp->ahp, 0, amp->size); 2492 } 2493 if ((len = amp->swresv) != 0) { 2494 anon_unresv_zone(len, 2495 seg->s_as->a_proc->p_zone); 2496 TRACE_3(TR_FAC_VM, TR_ANON_PROC, 2497 "anon proc:%p %lu %u", seg, len, 0); 2498 } 2499 } 2500 svd->amp = NULL; 2501 ANON_LOCK_EXIT(&->a_rwlock); 2502 anonmap_free(amp); 2503 } else if (svd->type == MAP_PRIVATE) { 2504 /* 2505 * We had a private mapping which still has 2506 * a held anon_map so just free up all the 2507 * anon slot pointers that we were using. 2508 */ 2509 if (seg->s_szc != 0) { 2510 anon_free_pages(amp->ahp, svd->anon_index, 2511 seg->s_size, seg->s_szc); 2512 } else { 2513 anon_free(amp->ahp, svd->anon_index, 2514 seg->s_size); 2515 } 2516 ANON_LOCK_EXIT(&->a_rwlock); 2517 } else { 2518 ANON_LOCK_EXIT(&->a_rwlock); 2519 } 2520 } 2521 2522 /* 2523 * Release swap reservation. 2524 */ 2525 if ((len = svd->swresv) != 0) { 2526 anon_unresv_zone(svd->swresv, 2527 seg->s_as->a_proc->p_zone); 2528 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 2529 seg, len, 0); 2530 if (SEG_IS_PARTIAL_RESV(seg)) 2531 seg->s_as->a_resvsize -= svd->swresv; 2532 svd->swresv = 0; 2533 } 2534 /* 2535 * Release claim on vnode, credentials, and finally free the 2536 * private data. 2537 */ 2538 if (svd->vp != NULL) { 2539 if (svd->type == MAP_SHARED) 2540 lgrp_shm_policy_fini(NULL, svd->vp); 2541 VN_RELE(svd->vp); 2542 svd->vp = NULL; 2543 } 2544 crfree(svd->cred); 2545 svd->pageprot = 0; 2546 svd->pageadvice = 0; 2547 svd->pageswap = 0; 2548 svd->cred = NULL; 2549 2550 /* 2551 * Take segfree_syncmtx lock to let segvn_reclaim() finish if it's 2552 * still working with this segment without holding as lock (in case 2553 * it's called by pcache async thread). 2554 */ 2555 ASSERT(svd->softlockcnt == 0); 2556 mutex_enter(&svd->segfree_syncmtx); 2557 mutex_exit(&svd->segfree_syncmtx); 2558 2559 seg->s_data = NULL; 2560 kmem_cache_free(segvn_cache, svd); 2561 } 2562 2563 /* 2564 * Do a F_SOFTUNLOCK call over the range requested. The range must have 2565 * already been F_SOFTLOCK'ed. 2566 * Caller must always match addr and len of a softunlock with a previous 2567 * softlock with exactly the same addr and len. 2568 */ 2569 static void 2570 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw) 2571 { 2572 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 2573 page_t *pp; 2574 caddr_t adr; 2575 struct vnode *vp; 2576 u_offset_t offset; 2577 ulong_t anon_index; 2578 struct anon_map *amp; 2579 struct anon *ap = NULL; 2580 2581 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 2582 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 2583 2584 if ((amp = svd->amp) != NULL) 2585 anon_index = svd->anon_index + seg_page(seg, addr); 2586 2587 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 2588 ASSERT(svd->tr_state == SEGVN_TR_OFF); 2589 hat_unlock_region(seg->s_as->a_hat, addr, len, svd->rcookie); 2590 } else { 2591 hat_unlock(seg->s_as->a_hat, addr, len); 2592 } 2593 for (adr = addr; adr < addr + len; adr += PAGESIZE) { 2594 if (amp != NULL) { 2595 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 2596 if ((ap = anon_get_ptr(amp->ahp, anon_index++)) 2597 != NULL) { 2598 swap_xlate(ap, &vp, &offset); 2599 } else { 2600 vp = svd->vp; 2601 offset = svd->offset + 2602 (uintptr_t)(adr - seg->s_base); 2603 } 2604 ANON_LOCK_EXIT(&->a_rwlock); 2605 } else { 2606 vp = svd->vp; 2607 offset = svd->offset + 2608 (uintptr_t)(adr - seg->s_base); 2609 } 2610 2611 /* 2612 * Use page_find() instead of page_lookup() to 2613 * find the page since we know that it is locked. 2614 */ 2615 pp = page_find(vp, offset); 2616 if (pp == NULL) { 2617 panic( 2618 "segvn_softunlock: addr %p, ap %p, vp %p, off %llx", 2619 (void *)adr, (void *)ap, (void *)vp, offset); 2620 /*NOTREACHED*/ 2621 } 2622 2623 if (rw == S_WRITE) { 2624 hat_setrefmod(pp); 2625 if (seg->s_as->a_vbits) 2626 hat_setstat(seg->s_as, adr, PAGESIZE, 2627 P_REF | P_MOD); 2628 } else if (rw != S_OTHER) { 2629 hat_setref(pp); 2630 if (seg->s_as->a_vbits) 2631 hat_setstat(seg->s_as, adr, PAGESIZE, P_REF); 2632 } 2633 TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT, 2634 "segvn_fault:pp %p vp %p offset %llx", pp, vp, offset); 2635 page_unlock(pp); 2636 } 2637 ASSERT(svd->softlockcnt >= btop(len)); 2638 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -btop(len))) { 2639 /* 2640 * All SOFTLOCKS are gone. Wakeup any waiting 2641 * unmappers so they can try again to unmap. 2642 * Check for waiters first without the mutex 2643 * held so we don't always grab the mutex on 2644 * softunlocks. 2645 */ 2646 if (AS_ISUNMAPWAIT(seg->s_as)) { 2647 mutex_enter(&seg->s_as->a_contents); 2648 if (AS_ISUNMAPWAIT(seg->s_as)) { 2649 AS_CLRUNMAPWAIT(seg->s_as); 2650 cv_broadcast(&seg->s_as->a_cv); 2651 } 2652 mutex_exit(&seg->s_as->a_contents); 2653 } 2654 } 2655 } 2656 2657 #define PAGE_HANDLED ((page_t *)-1) 2658 2659 /* 2660 * Release all the pages in the NULL terminated ppp list 2661 * which haven't already been converted to PAGE_HANDLED. 2662 */ 2663 static void 2664 segvn_pagelist_rele(page_t **ppp) 2665 { 2666 for (; *ppp != NULL; ppp++) { 2667 if (*ppp != PAGE_HANDLED) 2668 page_unlock(*ppp); 2669 } 2670 } 2671 2672 static int stealcow = 1; 2673 2674 /* 2675 * Workaround for viking chip bug. See bug id 1220902. 2676 * To fix this down in pagefault() would require importing so 2677 * much as and segvn code as to be unmaintainable. 2678 */ 2679 int enable_mbit_wa = 0; 2680 2681 /* 2682 * Handles all the dirty work of getting the right 2683 * anonymous pages and loading up the translations. 2684 * This routine is called only from segvn_fault() 2685 * when looping over the range of addresses requested. 2686 * 2687 * The basic algorithm here is: 2688 * If this is an anon_zero case 2689 * Call anon_zero to allocate page 2690 * Load up translation 2691 * Return 2692 * endif 2693 * If this is an anon page 2694 * Use anon_getpage to get the page 2695 * else 2696 * Find page in pl[] list passed in 2697 * endif 2698 * If not a cow 2699 * Load up the translation to the page 2700 * return 2701 * endif 2702 * Call anon_private to handle cow 2703 * Load up (writable) translation to new page 2704 */ 2705 static faultcode_t 2706 segvn_faultpage( 2707 struct hat *hat, /* the hat to use for mapping */ 2708 struct seg *seg, /* seg_vn of interest */ 2709 caddr_t addr, /* address in as */ 2710 u_offset_t off, /* offset in vp */ 2711 struct vpage *vpage, /* pointer to vpage for vp, off */ 2712 page_t *pl[], /* object source page pointer */ 2713 uint_t vpprot, /* access allowed to object pages */ 2714 enum fault_type type, /* type of fault */ 2715 enum seg_rw rw, /* type of access at fault */ 2716 int brkcow) /* we may need to break cow */ 2717 { 2718 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 2719 page_t *pp, **ppp; 2720 uint_t pageflags = 0; 2721 page_t *anon_pl[1 + 1]; 2722 page_t *opp = NULL; /* original page */ 2723 uint_t prot; 2724 int err; 2725 int cow; 2726 int claim; 2727 int steal = 0; 2728 ulong_t anon_index; 2729 struct anon *ap, *oldap; 2730 struct anon_map *amp; 2731 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD; 2732 int anon_lock = 0; 2733 anon_sync_obj_t cookie; 2734 2735 if (svd->flags & MAP_TEXT) { 2736 hat_flag |= HAT_LOAD_TEXT; 2737 } 2738 2739 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock)); 2740 ASSERT(seg->s_szc == 0); 2741 ASSERT(svd->tr_state != SEGVN_TR_INIT); 2742 2743 /* 2744 * Initialize protection value for this page. 2745 * If we have per page protection values check it now. 2746 */ 2747 if (svd->pageprot) { 2748 uint_t protchk; 2749 2750 switch (rw) { 2751 case S_READ: 2752 protchk = PROT_READ; 2753 break; 2754 case S_WRITE: 2755 protchk = PROT_WRITE; 2756 break; 2757 case S_EXEC: 2758 protchk = PROT_EXEC; 2759 break; 2760 case S_OTHER: 2761 default: 2762 protchk = PROT_READ | PROT_WRITE | PROT_EXEC; 2763 break; 2764 } 2765 2766 prot = VPP_PROT(vpage); 2767 if ((prot & protchk) == 0) 2768 return (FC_PROT); /* illegal access type */ 2769 } else { 2770 prot = svd->prot; 2771 } 2772 2773 if (type == F_SOFTLOCK) { 2774 atomic_inc_ulong((ulong_t *)&svd->softlockcnt); 2775 } 2776 2777 /* 2778 * Always acquire the anon array lock to prevent 2 threads from 2779 * allocating separate anon slots for the same "addr". 2780 */ 2781 2782 if ((amp = svd->amp) != NULL) { 2783 ASSERT(RW_READ_HELD(&->a_rwlock)); 2784 anon_index = svd->anon_index + seg_page(seg, addr); 2785 anon_array_enter(amp, anon_index, &cookie); 2786 anon_lock = 1; 2787 } 2788 2789 if (svd->vp == NULL && amp != NULL) { 2790 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) { 2791 /* 2792 * Allocate a (normally) writable anonymous page of 2793 * zeroes. If no advance reservations, reserve now. 2794 */ 2795 if (svd->flags & MAP_NORESERVE) { 2796 if (anon_resv_zone(ptob(1), 2797 seg->s_as->a_proc->p_zone)) { 2798 atomic_add_long(&svd->swresv, ptob(1)); 2799 atomic_add_long(&seg->s_as->a_resvsize, 2800 ptob(1)); 2801 } else { 2802 err = ENOMEM; 2803 goto out; 2804 } 2805 } 2806 if ((pp = anon_zero(seg, addr, &ap, 2807 svd->cred)) == NULL) { 2808 err = ENOMEM; 2809 goto out; /* out of swap space */ 2810 } 2811 /* 2812 * Re-acquire the anon_map lock and 2813 * initialize the anon array entry. 2814 */ 2815 (void) anon_set_ptr(amp->ahp, anon_index, ap, 2816 ANON_SLEEP); 2817 2818 ASSERT(pp->p_szc == 0); 2819 2820 /* 2821 * Handle pages that have been marked for migration 2822 */ 2823 if (lgrp_optimizations()) 2824 page_migrate(seg, addr, &pp, 1); 2825 2826 if (enable_mbit_wa) { 2827 if (rw == S_WRITE) 2828 hat_setmod(pp); 2829 else if (!hat_ismod(pp)) 2830 prot &= ~PROT_WRITE; 2831 } 2832 /* 2833 * If AS_PAGLCK is set in a_flags (via memcntl(2) 2834 * with MC_LOCKAS, MCL_FUTURE) and this is a 2835 * MAP_NORESERVE segment, we may need to 2836 * permanently lock the page as it is being faulted 2837 * for the first time. The following text applies 2838 * only to MAP_NORESERVE segments: 2839 * 2840 * As per memcntl(2), if this segment was created 2841 * after MCL_FUTURE was applied (a "future" 2842 * segment), its pages must be locked. If this 2843 * segment existed at MCL_FUTURE application (a 2844 * "past" segment), the interface is unclear. 2845 * 2846 * We decide to lock only if vpage is present: 2847 * 2848 * - "future" segments will have a vpage array (see 2849 * as_map), and so will be locked as required 2850 * 2851 * - "past" segments may not have a vpage array, 2852 * depending on whether events (such as 2853 * mprotect) have occurred. Locking if vpage 2854 * exists will preserve legacy behavior. Not 2855 * locking if vpage is absent, will not break 2856 * the interface or legacy behavior. Note that 2857 * allocating vpage here if it's absent requires 2858 * upgrading the segvn reader lock, the cost of 2859 * which does not seem worthwhile. 2860 * 2861 * Usually testing and setting VPP_ISPPLOCK and 2862 * VPP_SETPPLOCK requires holding the segvn lock as 2863 * writer, but in this case all readers are 2864 * serializing on the anon array lock. 2865 */ 2866 if (AS_ISPGLCK(seg->s_as) && vpage != NULL && 2867 (svd->flags & MAP_NORESERVE) && 2868 !VPP_ISPPLOCK(vpage)) { 2869 proc_t *p = seg->s_as->a_proc; 2870 ASSERT(svd->type == MAP_PRIVATE); 2871 mutex_enter(&p->p_lock); 2872 if (rctl_incr_locked_mem(p, NULL, PAGESIZE, 2873 1) == 0) { 2874 claim = VPP_PROT(vpage) & PROT_WRITE; 2875 if (page_pp_lock(pp, claim, 0)) { 2876 VPP_SETPPLOCK(vpage); 2877 } else { 2878 rctl_decr_locked_mem(p, NULL, 2879 PAGESIZE, 1); 2880 } 2881 } 2882 mutex_exit(&p->p_lock); 2883 } 2884 2885 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 2886 hat_memload(hat, addr, pp, prot, hat_flag); 2887 2888 if (!(hat_flag & HAT_LOAD_LOCK)) 2889 page_unlock(pp); 2890 2891 anon_array_exit(&cookie); 2892 return (0); 2893 } 2894 } 2895 2896 /* 2897 * Obtain the page structure via anon_getpage() if it is 2898 * a private copy of an object (the result of a previous 2899 * copy-on-write). 2900 */ 2901 if (amp != NULL) { 2902 if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) { 2903 err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE, 2904 seg, addr, rw, svd->cred); 2905 if (err) 2906 goto out; 2907 2908 if (svd->type == MAP_SHARED) { 2909 /* 2910 * If this is a shared mapping to an 2911 * anon_map, then ignore the write 2912 * permissions returned by anon_getpage(). 2913 * They apply to the private mappings 2914 * of this anon_map. 2915 */ 2916 vpprot |= PROT_WRITE; 2917 } 2918 opp = anon_pl[0]; 2919 } 2920 } 2921 2922 /* 2923 * Search the pl[] list passed in if it is from the 2924 * original object (i.e., not a private copy). 2925 */ 2926 if (opp == NULL) { 2927 /* 2928 * Find original page. We must be bringing it in 2929 * from the list in pl[]. 2930 */ 2931 for (ppp = pl; (opp = *ppp) != NULL; ppp++) { 2932 if (opp == PAGE_HANDLED) 2933 continue; 2934 ASSERT(opp->p_vnode == svd->vp); /* XXX */ 2935 if (opp->p_offset == off) 2936 break; 2937 } 2938 if (opp == NULL) { 2939 panic("segvn_faultpage not found"); 2940 /*NOTREACHED*/ 2941 } 2942 *ppp = PAGE_HANDLED; 2943 2944 } 2945 2946 ASSERT(PAGE_LOCKED(opp)); 2947 2948 TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT, 2949 "segvn_fault:pp %p vp %p offset %llx", opp, NULL, 0); 2950 2951 /* 2952 * The fault is treated as a copy-on-write fault if a 2953 * write occurs on a private segment and the object 2954 * page (i.e., mapping) is write protected. We assume 2955 * that fatal protection checks have already been made. 2956 */ 2957 2958 if (brkcow) { 2959 ASSERT(svd->tr_state == SEGVN_TR_OFF); 2960 cow = !(vpprot & PROT_WRITE); 2961 } else if (svd->tr_state == SEGVN_TR_ON) { 2962 /* 2963 * If we are doing text replication COW on first touch. 2964 */ 2965 ASSERT(amp != NULL); 2966 ASSERT(svd->vp != NULL); 2967 ASSERT(rw != S_WRITE); 2968 cow = (ap == NULL); 2969 } else { 2970 cow = 0; 2971 } 2972 2973 /* 2974 * If not a copy-on-write case load the translation 2975 * and return. 2976 */ 2977 if (cow == 0) { 2978 2979 /* 2980 * Handle pages that have been marked for migration 2981 */ 2982 if (lgrp_optimizations()) 2983 page_migrate(seg, addr, &opp, 1); 2984 2985 if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) { 2986 if (rw == S_WRITE) 2987 hat_setmod(opp); 2988 else if (rw != S_OTHER && !hat_ismod(opp)) 2989 prot &= ~PROT_WRITE; 2990 } 2991 2992 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE || 2993 (!svd->pageprot && svd->prot == (prot & vpprot))); 2994 ASSERT(amp == NULL || 2995 svd->rcookie == HAT_INVALID_REGION_COOKIE); 2996 hat_memload_region(hat, addr, opp, prot & vpprot, hat_flag, 2997 svd->rcookie); 2998 2999 if (!(hat_flag & HAT_LOAD_LOCK)) 3000 page_unlock(opp); 3001 3002 if (anon_lock) { 3003 anon_array_exit(&cookie); 3004 } 3005 return (0); 3006 } 3007 3008 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 3009 3010 hat_setref(opp); 3011 3012 ASSERT(amp != NULL && anon_lock); 3013 3014 /* 3015 * Steal the page only if it isn't a private page 3016 * since stealing a private page is not worth the effort. 3017 */ 3018 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) 3019 steal = 1; 3020 3021 /* 3022 * Steal the original page if the following conditions are true: 3023 * 3024 * We are low on memory, the page is not private, page is not large, 3025 * not shared, not modified, not `locked' or if we have it `locked' 3026 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies 3027 * that the page is not shared) and if it doesn't have any 3028 * translations. page_struct_lock isn't needed to look at p_cowcnt 3029 * and p_lckcnt because we first get exclusive lock on page. 3030 */ 3031 (void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD); 3032 3033 if (stealcow && freemem < minfree && steal && opp->p_szc == 0 && 3034 page_tryupgrade(opp) && !hat_ismod(opp) && 3035 ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) || 3036 (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 && 3037 vpage != NULL && VPP_ISPPLOCK(vpage)))) { 3038 /* 3039 * Check if this page has other translations 3040 * after unloading our translation. 3041 */ 3042 if (hat_page_is_mapped(opp)) { 3043 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 3044 hat_unload(seg->s_as->a_hat, addr, PAGESIZE, 3045 HAT_UNLOAD); 3046 } 3047 3048 /* 3049 * hat_unload() might sync back someone else's recent 3050 * modification, so check again. 3051 */ 3052 if (!hat_ismod(opp) && !hat_page_is_mapped(opp)) 3053 pageflags |= STEAL_PAGE; 3054 } 3055 3056 /* 3057 * If we have a vpage pointer, see if it indicates that we have 3058 * ``locked'' the page we map -- if so, tell anon_private to 3059 * transfer the locking resource to the new page. 3060 * 3061 * See Statement at the beginning of segvn_lockop regarding 3062 * the way lockcnts/cowcnts are handled during COW. 3063 * 3064 */ 3065 if (vpage != NULL && VPP_ISPPLOCK(vpage)) 3066 pageflags |= LOCK_PAGE; 3067 3068 /* 3069 * Allocate a private page and perform the copy. 3070 * For MAP_NORESERVE reserve swap space now, unless this 3071 * is a cow fault on an existing anon page in which case 3072 * MAP_NORESERVE will have made advance reservations. 3073 */ 3074 if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) { 3075 if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) { 3076 atomic_add_long(&svd->swresv, ptob(1)); 3077 atomic_add_long(&seg->s_as->a_resvsize, ptob(1)); 3078 } else { 3079 page_unlock(opp); 3080 err = ENOMEM; 3081 goto out; 3082 } 3083 } 3084 oldap = ap; 3085 pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred); 3086 if (pp == NULL) { 3087 err = ENOMEM; /* out of swap space */ 3088 goto out; 3089 } 3090 3091 /* 3092 * If we copied away from an anonymous page, then 3093 * we are one step closer to freeing up an anon slot. 3094 * 3095 * NOTE: The original anon slot must be released while 3096 * holding the "anon_map" lock. This is necessary to prevent 3097 * other threads from obtaining a pointer to the anon slot 3098 * which may be freed if its "refcnt" is 1. 3099 */ 3100 if (oldap != NULL) 3101 anon_decref(oldap); 3102 3103 (void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP); 3104 3105 /* 3106 * Handle pages that have been marked for migration 3107 */ 3108 if (lgrp_optimizations()) 3109 page_migrate(seg, addr, &pp, 1); 3110 3111 ASSERT(pp->p_szc == 0); 3112 3113 ASSERT(!IS_VMODSORT(pp->p_vnode)); 3114 if (enable_mbit_wa) { 3115 if (rw == S_WRITE) 3116 hat_setmod(pp); 3117 else if (!hat_ismod(pp)) 3118 prot &= ~PROT_WRITE; 3119 } 3120 3121 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 3122 hat_memload(hat, addr, pp, prot, hat_flag); 3123 3124 if (!(hat_flag & HAT_LOAD_LOCK)) 3125 page_unlock(pp); 3126 3127 ASSERT(anon_lock); 3128 anon_array_exit(&cookie); 3129 return (0); 3130 out: 3131 if (anon_lock) 3132 anon_array_exit(&cookie); 3133 3134 if (type == F_SOFTLOCK) { 3135 atomic_dec_ulong((ulong_t *)&svd->softlockcnt); 3136 } 3137 return (FC_MAKE_ERR(err)); 3138 } 3139 3140 /* 3141 * relocate a bunch of smaller targ pages into one large repl page. all targ 3142 * pages must be complete pages smaller than replacement pages. 3143 * it's assumed that no page's szc can change since they are all PAGESIZE or 3144 * complete large pages locked SHARED. 3145 */ 3146 static void 3147 segvn_relocate_pages(page_t **targ, page_t *replacement) 3148 { 3149 page_t *pp; 3150 pgcnt_t repl_npgs, curnpgs; 3151 pgcnt_t i; 3152 uint_t repl_szc = replacement->p_szc; 3153 page_t *first_repl = replacement; 3154 page_t *repl; 3155 spgcnt_t npgs; 3156 3157 VM_STAT_ADD(segvnvmstats.relocatepages[0]); 3158 3159 ASSERT(repl_szc != 0); 3160 npgs = repl_npgs = page_get_pagecnt(repl_szc); 3161 3162 i = 0; 3163 while (repl_npgs) { 3164 spgcnt_t nreloc; 3165 int err; 3166 ASSERT(replacement != NULL); 3167 pp = targ[i]; 3168 ASSERT(pp->p_szc < repl_szc); 3169 ASSERT(PAGE_EXCL(pp)); 3170 ASSERT(!PP_ISFREE(pp)); 3171 curnpgs = page_get_pagecnt(pp->p_szc); 3172 if (curnpgs == 1) { 3173 VM_STAT_ADD(segvnvmstats.relocatepages[1]); 3174 repl = replacement; 3175 page_sub(&replacement, repl); 3176 ASSERT(PAGE_EXCL(repl)); 3177 ASSERT(!PP_ISFREE(repl)); 3178 ASSERT(repl->p_szc == repl_szc); 3179 } else { 3180 page_t *repl_savepp; 3181 int j; 3182 VM_STAT_ADD(segvnvmstats.relocatepages[2]); 3183 repl_savepp = replacement; 3184 for (j = 0; j < curnpgs; j++) { 3185 repl = replacement; 3186 page_sub(&replacement, repl); 3187 ASSERT(PAGE_EXCL(repl)); 3188 ASSERT(!PP_ISFREE(repl)); 3189 ASSERT(repl->p_szc == repl_szc); 3190 ASSERT(page_pptonum(targ[i + j]) == 3191 page_pptonum(targ[i]) + j); 3192 } 3193 repl = repl_savepp; 3194 ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs)); 3195 } 3196 err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL); 3197 if (err || nreloc != curnpgs) { 3198 panic("segvn_relocate_pages: " 3199 "page_relocate failed err=%d curnpgs=%ld " 3200 "nreloc=%ld", err, curnpgs, nreloc); 3201 } 3202 ASSERT(curnpgs <= repl_npgs); 3203 repl_npgs -= curnpgs; 3204 i += curnpgs; 3205 } 3206 ASSERT(replacement == NULL); 3207 3208 repl = first_repl; 3209 repl_npgs = npgs; 3210 for (i = 0; i < repl_npgs; i++) { 3211 ASSERT(PAGE_EXCL(repl)); 3212 ASSERT(!PP_ISFREE(repl)); 3213 targ[i] = repl; 3214 page_downgrade(targ[i]); 3215 repl++; 3216 } 3217 } 3218 3219 /* 3220 * Check if all pages in ppa array are complete smaller than szc pages and 3221 * their roots will still be aligned relative to their current size if the 3222 * entire ppa array is relocated into one szc page. If these conditions are 3223 * not met return 0. 3224 * 3225 * If all pages are properly aligned attempt to upgrade their locks 3226 * to exclusive mode. If it fails set *upgrdfail to 1 and return 0. 3227 * upgrdfail was set to 0 by caller. 3228 * 3229 * Return 1 if all pages are aligned and locked exclusively. 3230 * 3231 * If all pages in ppa array happen to be physically contiguous to make one 3232 * szc page and all exclusive locks are successfully obtained promote the page 3233 * size to szc and set *pszc to szc. Return 1 with pages locked shared. 3234 */ 3235 static int 3236 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc) 3237 { 3238 page_t *pp; 3239 pfn_t pfn; 3240 pgcnt_t totnpgs = page_get_pagecnt(szc); 3241 pfn_t first_pfn; 3242 int contig = 1; 3243 pgcnt_t i; 3244 pgcnt_t j; 3245 uint_t curszc; 3246 pgcnt_t curnpgs; 3247 int root = 0; 3248 3249 ASSERT(szc > 0); 3250 3251 VM_STAT_ADD(segvnvmstats.fullszcpages[0]); 3252 3253 for (i = 0; i < totnpgs; i++) { 3254 pp = ppa[i]; 3255 ASSERT(PAGE_SHARED(pp)); 3256 ASSERT(!PP_ISFREE(pp)); 3257 pfn = page_pptonum(pp); 3258 if (i == 0) { 3259 if (!IS_P2ALIGNED(pfn, totnpgs)) { 3260 contig = 0; 3261 } else { 3262 first_pfn = pfn; 3263 } 3264 } else if (contig && pfn != first_pfn + i) { 3265 contig = 0; 3266 } 3267 if (pp->p_szc == 0) { 3268 if (root) { 3269 VM_STAT_ADD(segvnvmstats.fullszcpages[1]); 3270 return (0); 3271 } 3272 } else if (!root) { 3273 if ((curszc = pp->p_szc) >= szc) { 3274 VM_STAT_ADD(segvnvmstats.fullszcpages[2]); 3275 return (0); 3276 } 3277 if (curszc == 0) { 3278 /* 3279 * p_szc changed means we don't have all pages 3280 * locked. return failure. 3281 */ 3282 VM_STAT_ADD(segvnvmstats.fullszcpages[3]); 3283 return (0); 3284 } 3285 curnpgs = page_get_pagecnt(curszc); 3286 if (!IS_P2ALIGNED(pfn, curnpgs) || 3287 !IS_P2ALIGNED(i, curnpgs)) { 3288 VM_STAT_ADD(segvnvmstats.fullszcpages[4]); 3289 return (0); 3290 } 3291 root = 1; 3292 } else { 3293 ASSERT(i > 0); 3294 VM_STAT_ADD(segvnvmstats.fullszcpages[5]); 3295 if (pp->p_szc != curszc) { 3296 VM_STAT_ADD(segvnvmstats.fullszcpages[6]); 3297 return (0); 3298 } 3299 if (pfn - 1 != page_pptonum(ppa[i - 1])) { 3300 panic("segvn_full_szcpages: " 3301 "large page not physically contiguous"); 3302 } 3303 if (P2PHASE(pfn, curnpgs) == curnpgs - 1) { 3304 root = 0; 3305 } 3306 } 3307 } 3308 3309 for (i = 0; i < totnpgs; i++) { 3310 ASSERT(ppa[i]->p_szc < szc); 3311 if (!page_tryupgrade(ppa[i])) { 3312 for (j = 0; j < i; j++) { 3313 page_downgrade(ppa[j]); 3314 } 3315 *pszc = ppa[i]->p_szc; 3316 *upgrdfail = 1; 3317 VM_STAT_ADD(segvnvmstats.fullszcpages[7]); 3318 return (0); 3319 } 3320 } 3321 3322 /* 3323 * When a page is put a free cachelist its szc is set to 0. if file 3324 * system reclaimed pages from cachelist targ pages will be physically 3325 * contiguous with 0 p_szc. in this case just upgrade szc of targ 3326 * pages without any relocations. 3327 * To avoid any hat issues with previous small mappings 3328 * hat_pageunload() the target pages first. 3329 */ 3330 if (contig) { 3331 VM_STAT_ADD(segvnvmstats.fullszcpages[8]); 3332 for (i = 0; i < totnpgs; i++) { 3333 (void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD); 3334 } 3335 for (i = 0; i < totnpgs; i++) { 3336 ppa[i]->p_szc = szc; 3337 } 3338 for (i = 0; i < totnpgs; i++) { 3339 ASSERT(PAGE_EXCL(ppa[i])); 3340 page_downgrade(ppa[i]); 3341 } 3342 if (pszc != NULL) { 3343 *pszc = szc; 3344 } 3345 } 3346 VM_STAT_ADD(segvnvmstats.fullszcpages[9]); 3347 return (1); 3348 } 3349 3350 /* 3351 * Create physically contiguous pages for [vp, off] - [vp, off + 3352 * page_size(szc)) range and for private segment return them in ppa array. 3353 * Pages are created either via IO or relocations. 3354 * 3355 * Return 1 on success and 0 on failure. 3356 * 3357 * If physically contiguous pages already exist for this range return 1 without 3358 * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa 3359 * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE(). 3360 */ 3361 3362 static int 3363 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off, 3364 uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc, 3365 int *downsize) 3366 { 3367 page_t *pplist = *ppplist; 3368 size_t pgsz = page_get_pagesize(szc); 3369 pgcnt_t pages = btop(pgsz); 3370 ulong_t start_off = off; 3371 u_offset_t eoff = off + pgsz; 3372 spgcnt_t nreloc; 3373 u_offset_t io_off = off; 3374 size_t io_len; 3375 page_t *io_pplist = NULL; 3376 page_t *done_pplist = NULL; 3377 pgcnt_t pgidx = 0; 3378 page_t *pp; 3379 page_t *newpp; 3380 page_t *targpp; 3381 int io_err = 0; 3382 int i; 3383 pfn_t pfn; 3384 ulong_t ppages; 3385 page_t *targ_pplist = NULL; 3386 page_t *repl_pplist = NULL; 3387 page_t *tmp_pplist; 3388 int nios = 0; 3389 uint_t pszc; 3390 struct vattr va; 3391 3392 VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]); 3393 3394 ASSERT(szc != 0); 3395 ASSERT(pplist->p_szc == szc); 3396 3397 /* 3398 * downsize will be set to 1 only if we fail to lock pages. this will 3399 * allow subsequent faults to try to relocate the page again. If we 3400 * fail due to misalignment don't downsize and let the caller map the 3401 * whole region with small mappings to avoid more faults into the area 3402 * where we can't get large pages anyway. 3403 */ 3404 *downsize = 0; 3405 3406 while (off < eoff) { 3407 newpp = pplist; 3408 ASSERT(newpp != NULL); 3409 ASSERT(PAGE_EXCL(newpp)); 3410 ASSERT(!PP_ISFREE(newpp)); 3411 /* 3412 * we pass NULL for nrelocp to page_lookup_create() 3413 * so that it doesn't relocate. We relocate here 3414 * later only after we make sure we can lock all 3415 * pages in the range we handle and they are all 3416 * aligned. 3417 */ 3418 pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0); 3419 ASSERT(pp != NULL); 3420 ASSERT(!PP_ISFREE(pp)); 3421 ASSERT(pp->p_vnode == vp); 3422 ASSERT(pp->p_offset == off); 3423 if (pp == newpp) { 3424 VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]); 3425 page_sub(&pplist, pp); 3426 ASSERT(PAGE_EXCL(pp)); 3427 ASSERT(page_iolock_assert(pp)); 3428 page_list_concat(&io_pplist, &pp); 3429 off += PAGESIZE; 3430 continue; 3431 } 3432 VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]); 3433 pfn = page_pptonum(pp); 3434 pszc = pp->p_szc; 3435 if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL && 3436 IS_P2ALIGNED(pfn, pages)) { 3437 ASSERT(repl_pplist == NULL); 3438 ASSERT(done_pplist == NULL); 3439 ASSERT(pplist == *ppplist); 3440 page_unlock(pp); 3441 page_free_replacement_page(pplist); 3442 page_create_putback(pages); 3443 *ppplist = NULL; 3444 VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]); 3445 return (1); 3446 } 3447 if (pszc >= szc) { 3448 page_unlock(pp); 3449 segvn_faultvnmpss_align_err1++; 3450 goto out; 3451 } 3452 ppages = page_get_pagecnt(pszc); 3453 if (!IS_P2ALIGNED(pfn, ppages)) { 3454 ASSERT(pszc > 0); 3455 /* 3456 * sizing down to pszc won't help. 3457 */ 3458 page_unlock(pp); 3459 segvn_faultvnmpss_align_err2++; 3460 goto out; 3461 } 3462 pfn = page_pptonum(newpp); 3463 if (!IS_P2ALIGNED(pfn, ppages)) { 3464 ASSERT(pszc > 0); 3465 /* 3466 * sizing down to pszc won't help. 3467 */ 3468 page_unlock(pp); 3469 segvn_faultvnmpss_align_err3++; 3470 goto out; 3471 } 3472 if (!PAGE_EXCL(pp)) { 3473 VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]); 3474 page_unlock(pp); 3475 *downsize = 1; 3476 *ret_pszc = pp->p_szc; 3477 goto out; 3478 } 3479 targpp = pp; 3480 if (io_pplist != NULL) { 3481 VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]); 3482 io_len = off - io_off; 3483 /* 3484 * Some file systems like NFS don't check EOF 3485 * conditions in VOP_PAGEIO(). Check it here 3486 * now that pages are locked SE_EXCL. Any file 3487 * truncation will wait until the pages are 3488 * unlocked so no need to worry that file will 3489 * be truncated after we check its size here. 3490 * XXX fix NFS to remove this check. 3491 */ 3492 va.va_mask = AT_SIZE; 3493 if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL)) { 3494 VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]); 3495 page_unlock(targpp); 3496 goto out; 3497 } 3498 if (btopr(va.va_size) < btopr(io_off + io_len)) { 3499 VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]); 3500 *downsize = 1; 3501 *ret_pszc = 0; 3502 page_unlock(targpp); 3503 goto out; 3504 } 3505 io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len, 3506 B_READ, svd->cred, NULL); 3507 if (io_err) { 3508 VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]); 3509 page_unlock(targpp); 3510 if (io_err == EDEADLK) { 3511 segvn_vmpss_pageio_deadlk_err++; 3512 } 3513 goto out; 3514 } 3515 nios++; 3516 VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]); 3517 while (io_pplist != NULL) { 3518 pp = io_pplist; 3519 page_sub(&io_pplist, pp); 3520 ASSERT(page_iolock_assert(pp)); 3521 page_io_unlock(pp); 3522 pgidx = (pp->p_offset - start_off) >> 3523 PAGESHIFT; 3524 ASSERT(pgidx < pages); 3525 ppa[pgidx] = pp; 3526 page_list_concat(&done_pplist, &pp); 3527 } 3528 } 3529 pp = targpp; 3530 ASSERT(PAGE_EXCL(pp)); 3531 ASSERT(pp->p_szc <= pszc); 3532 if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) { 3533 VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]); 3534 page_unlock(pp); 3535 *downsize = 1; 3536 *ret_pszc = pp->p_szc; 3537 goto out; 3538 } 3539 VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]); 3540 /* 3541 * page szc chould have changed before the entire group was 3542 * locked. reread page szc. 3543 */ 3544 pszc = pp->p_szc; 3545 ppages = page_get_pagecnt(pszc); 3546 3547 /* link just the roots */ 3548 page_list_concat(&targ_pplist, &pp); 3549 page_sub(&pplist, newpp); 3550 page_list_concat(&repl_pplist, &newpp); 3551 off += PAGESIZE; 3552 while (--ppages != 0) { 3553 newpp = pplist; 3554 page_sub(&pplist, newpp); 3555 off += PAGESIZE; 3556 } 3557 io_off = off; 3558 } 3559 if (io_pplist != NULL) { 3560 VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]); 3561 io_len = eoff - io_off; 3562 va.va_mask = AT_SIZE; 3563 if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL) != 0) { 3564 VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]); 3565 goto out; 3566 } 3567 if (btopr(va.va_size) < btopr(io_off + io_len)) { 3568 VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]); 3569 *downsize = 1; 3570 *ret_pszc = 0; 3571 goto out; 3572 } 3573 io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len, 3574 B_READ, svd->cred, NULL); 3575 if (io_err) { 3576 VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]); 3577 if (io_err == EDEADLK) { 3578 segvn_vmpss_pageio_deadlk_err++; 3579 } 3580 goto out; 3581 } 3582 nios++; 3583 while (io_pplist != NULL) { 3584 pp = io_pplist; 3585 page_sub(&io_pplist, pp); 3586 ASSERT(page_iolock_assert(pp)); 3587 page_io_unlock(pp); 3588 pgidx = (pp->p_offset - start_off) >> PAGESHIFT; 3589 ASSERT(pgidx < pages); 3590 ppa[pgidx] = pp; 3591 } 3592 } 3593 /* 3594 * we're now bound to succeed or panic. 3595 * remove pages from done_pplist. it's not needed anymore. 3596 */ 3597 while (done_pplist != NULL) { 3598 pp = done_pplist; 3599 page_sub(&done_pplist, pp); 3600 } 3601 VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]); 3602 ASSERT(pplist == NULL); 3603 *ppplist = NULL; 3604 while (targ_pplist != NULL) { 3605 int ret; 3606 VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]); 3607 ASSERT(repl_pplist); 3608 pp = targ_pplist; 3609 page_sub(&targ_pplist, pp); 3610 pgidx = (pp->p_offset - start_off) >> PAGESHIFT; 3611 newpp = repl_pplist; 3612 page_sub(&repl_pplist, newpp); 3613 #ifdef DEBUG 3614 pfn = page_pptonum(pp); 3615 pszc = pp->p_szc; 3616 ppages = page_get_pagecnt(pszc); 3617 ASSERT(IS_P2ALIGNED(pfn, ppages)); 3618 pfn = page_pptonum(newpp); 3619 ASSERT(IS_P2ALIGNED(pfn, ppages)); 3620 ASSERT(P2PHASE(pfn, pages) == pgidx); 3621 #endif 3622 nreloc = 0; 3623 ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL); 3624 if (ret != 0 || nreloc == 0) { 3625 panic("segvn_fill_vp_pages: " 3626 "page_relocate failed"); 3627 } 3628 pp = newpp; 3629 while (nreloc-- != 0) { 3630 ASSERT(PAGE_EXCL(pp)); 3631 ASSERT(pp->p_vnode == vp); 3632 ASSERT(pgidx == 3633 ((pp->p_offset - start_off) >> PAGESHIFT)); 3634 ppa[pgidx++] = pp; 3635 pp++; 3636 } 3637 } 3638 3639 if (svd->type == MAP_PRIVATE) { 3640 VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]); 3641 for (i = 0; i < pages; i++) { 3642 ASSERT(ppa[i] != NULL); 3643 ASSERT(PAGE_EXCL(ppa[i])); 3644 ASSERT(ppa[i]->p_vnode == vp); 3645 ASSERT(ppa[i]->p_offset == 3646 start_off + (i << PAGESHIFT)); 3647 page_downgrade(ppa[i]); 3648 } 3649 ppa[pages] = NULL; 3650 } else { 3651 VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]); 3652 /* 3653 * the caller will still call VOP_GETPAGE() for shared segments 3654 * to check FS write permissions. For private segments we map 3655 * file read only anyway. so no VOP_GETPAGE is needed. 3656 */ 3657 for (i = 0; i < pages; i++) { 3658 ASSERT(ppa[i] != NULL); 3659 ASSERT(PAGE_EXCL(ppa[i])); 3660 ASSERT(ppa[i]->p_vnode == vp); 3661 ASSERT(ppa[i]->p_offset == 3662 start_off + (i << PAGESHIFT)); 3663 page_unlock(ppa[i]); 3664 } 3665 ppa[0] = NULL; 3666 } 3667 3668 return (1); 3669 out: 3670 /* 3671 * Do the cleanup. Unlock target pages we didn't relocate. They are 3672 * linked on targ_pplist by root pages. reassemble unused replacement 3673 * and io pages back to pplist. 3674 */ 3675 if (io_pplist != NULL) { 3676 VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]); 3677 pp = io_pplist; 3678 do { 3679 ASSERT(pp->p_vnode == vp); 3680 ASSERT(pp->p_offset == io_off); 3681 ASSERT(page_iolock_assert(pp)); 3682 page_io_unlock(pp); 3683 page_hashout(pp, NULL); 3684 io_off += PAGESIZE; 3685 } while ((pp = pp->p_next) != io_pplist); 3686 page_list_concat(&io_pplist, &pplist); 3687 pplist = io_pplist; 3688 } 3689 tmp_pplist = NULL; 3690 while (targ_pplist != NULL) { 3691 VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]); 3692 pp = targ_pplist; 3693 ASSERT(PAGE_EXCL(pp)); 3694 page_sub(&targ_pplist, pp); 3695 3696 pszc = pp->p_szc; 3697 ppages = page_get_pagecnt(pszc); 3698 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages)); 3699 3700 if (pszc != 0) { 3701 group_page_unlock(pp); 3702 } 3703 page_unlock(pp); 3704 3705 pp = repl_pplist; 3706 ASSERT(pp != NULL); 3707 ASSERT(PAGE_EXCL(pp)); 3708 ASSERT(pp->p_szc == szc); 3709 page_sub(&repl_pplist, pp); 3710 3711 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages)); 3712 3713 /* relink replacement page */ 3714 page_list_concat(&tmp_pplist, &pp); 3715 while (--ppages != 0) { 3716 VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]); 3717 pp++; 3718 ASSERT(PAGE_EXCL(pp)); 3719 ASSERT(pp->p_szc == szc); 3720 page_list_concat(&tmp_pplist, &pp); 3721 } 3722 } 3723 if (tmp_pplist != NULL) { 3724 VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]); 3725 page_list_concat(&tmp_pplist, &pplist); 3726 pplist = tmp_pplist; 3727 } 3728 /* 3729 * at this point all pages are either on done_pplist or 3730 * pplist. They can't be all on done_pplist otherwise 3731 * we'd've been done. 3732 */ 3733 ASSERT(pplist != NULL); 3734 if (nios != 0) { 3735 VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]); 3736 pp = pplist; 3737 do { 3738 VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]); 3739 ASSERT(pp->p_szc == szc); 3740 ASSERT(PAGE_EXCL(pp)); 3741 ASSERT(pp->p_vnode != vp); 3742 pp->p_szc = 0; 3743 } while ((pp = pp->p_next) != pplist); 3744 3745 pp = done_pplist; 3746 do { 3747 VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]); 3748 ASSERT(pp->p_szc == szc); 3749 ASSERT(PAGE_EXCL(pp)); 3750 ASSERT(pp->p_vnode == vp); 3751 pp->p_szc = 0; 3752 } while ((pp = pp->p_next) != done_pplist); 3753 3754 while (pplist != NULL) { 3755 VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]); 3756 pp = pplist; 3757 page_sub(&pplist, pp); 3758 page_free(pp, 0); 3759 } 3760 3761 while (done_pplist != NULL) { 3762 VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]); 3763 pp = done_pplist; 3764 page_sub(&done_pplist, pp); 3765 page_unlock(pp); 3766 } 3767 *ppplist = NULL; 3768 return (0); 3769 } 3770 ASSERT(pplist == *ppplist); 3771 if (io_err) { 3772 VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]); 3773 /* 3774 * don't downsize on io error. 3775 * see if vop_getpage succeeds. 3776 * pplist may still be used in this case 3777 * for relocations. 3778 */ 3779 return (0); 3780 } 3781 VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]); 3782 page_free_replacement_page(pplist); 3783 page_create_putback(pages); 3784 *ppplist = NULL; 3785 return (0); 3786 } 3787 3788 int segvn_anypgsz = 0; 3789 3790 #define SEGVN_RESTORE_SOFTLOCK_VP(type, pages) \ 3791 if ((type) == F_SOFTLOCK) { \ 3792 atomic_add_long((ulong_t *)&(svd)->softlockcnt, \ 3793 -(pages)); \ 3794 } 3795 3796 #define SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot) \ 3797 if (IS_VMODSORT((ppa)[0]->p_vnode)) { \ 3798 if ((rw) == S_WRITE) { \ 3799 for (i = 0; i < (pages); i++) { \ 3800 ASSERT((ppa)[i]->p_vnode == \ 3801 (ppa)[0]->p_vnode); \ 3802 hat_setmod((ppa)[i]); \ 3803 } \ 3804 } else if ((rw) != S_OTHER && \ 3805 ((prot) & (vpprot) & PROT_WRITE)) { \ 3806 for (i = 0; i < (pages); i++) { \ 3807 ASSERT((ppa)[i]->p_vnode == \ 3808 (ppa)[0]->p_vnode); \ 3809 if (!hat_ismod((ppa)[i])) { \ 3810 prot &= ~PROT_WRITE; \ 3811 break; \ 3812 } \ 3813 } \ 3814 } \ 3815 } 3816 3817 #ifdef VM_STATS 3818 3819 #define SEGVN_VMSTAT_FLTVNPAGES(idx) \ 3820 VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]); 3821 3822 #else /* VM_STATS */ 3823 3824 #define SEGVN_VMSTAT_FLTVNPAGES(idx) 3825 3826 #endif 3827 3828 static faultcode_t 3829 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr, 3830 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr, 3831 caddr_t eaddr, int brkcow) 3832 { 3833 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 3834 struct anon_map *amp = svd->amp; 3835 uchar_t segtype = svd->type; 3836 uint_t szc = seg->s_szc; 3837 size_t pgsz = page_get_pagesize(szc); 3838 size_t maxpgsz = pgsz; 3839 pgcnt_t pages = btop(pgsz); 3840 pgcnt_t maxpages = pages; 3841 size_t ppasize = (pages + 1) * sizeof (page_t *); 3842 caddr_t a = lpgaddr; 3843 caddr_t maxlpgeaddr = lpgeaddr; 3844 u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base); 3845 ulong_t aindx = svd->anon_index + seg_page(seg, a); 3846 struct vpage *vpage = (svd->vpage != NULL) ? 3847 &svd->vpage[seg_page(seg, a)] : NULL; 3848 vnode_t *vp = svd->vp; 3849 page_t **ppa; 3850 uint_t pszc; 3851 size_t ppgsz; 3852 pgcnt_t ppages; 3853 faultcode_t err = 0; 3854 int ierr; 3855 int vop_size_err = 0; 3856 uint_t protchk, prot, vpprot; 3857 ulong_t i; 3858 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD; 3859 anon_sync_obj_t an_cookie; 3860 enum seg_rw arw; 3861 int alloc_failed = 0; 3862 int adjszc_chk; 3863 struct vattr va; 3864 page_t *pplist; 3865 pfn_t pfn; 3866 int physcontig; 3867 int upgrdfail; 3868 int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */ 3869 int tron = (svd->tr_state == SEGVN_TR_ON); 3870 3871 ASSERT(szc != 0); 3872 ASSERT(vp != NULL); 3873 ASSERT(brkcow == 0 || amp != NULL); 3874 ASSERT(tron == 0 || amp != NULL); 3875 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */ 3876 ASSERT(!(svd->flags & MAP_NORESERVE)); 3877 ASSERT(type != F_SOFTUNLOCK); 3878 ASSERT(IS_P2ALIGNED(a, maxpgsz)); 3879 ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages)); 3880 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 3881 ASSERT(seg->s_szc < NBBY * sizeof (int)); 3882 ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz); 3883 ASSERT(svd->tr_state != SEGVN_TR_INIT); 3884 3885 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]); 3886 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]); 3887 3888 if (svd->flags & MAP_TEXT) { 3889 hat_flag |= HAT_LOAD_TEXT; 3890 } 3891 3892 if (svd->pageprot) { 3893 switch (rw) { 3894 case S_READ: 3895 protchk = PROT_READ; 3896 break; 3897 case S_WRITE: 3898 protchk = PROT_WRITE; 3899 break; 3900 case S_EXEC: 3901 protchk = PROT_EXEC; 3902 break; 3903 case S_OTHER: 3904 default: 3905 protchk = PROT_READ | PROT_WRITE | PROT_EXEC; 3906 break; 3907 } 3908 } else { 3909 prot = svd->prot; 3910 /* caller has already done segment level protection check. */ 3911 } 3912 3913 if (rw == S_WRITE && segtype == MAP_PRIVATE) { 3914 SEGVN_VMSTAT_FLTVNPAGES(2); 3915 arw = S_READ; 3916 } else { 3917 arw = rw; 3918 } 3919 3920 ppa = kmem_alloc(ppasize, KM_SLEEP); 3921 3922 VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]); 3923 3924 for (;;) { 3925 adjszc_chk = 0; 3926 for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) { 3927 if (adjszc_chk) { 3928 while (szc < seg->s_szc) { 3929 uintptr_t e; 3930 uint_t tszc; 3931 tszc = segvn_anypgsz_vnode ? szc + 1 : 3932 seg->s_szc; 3933 ppgsz = page_get_pagesize(tszc); 3934 if (!IS_P2ALIGNED(a, ppgsz) || 3935 ((alloc_failed >> tszc) & 0x1)) { 3936 break; 3937 } 3938 SEGVN_VMSTAT_FLTVNPAGES(4); 3939 szc = tszc; 3940 pgsz = ppgsz; 3941 pages = btop(pgsz); 3942 e = P2ROUNDUP((uintptr_t)eaddr, pgsz); 3943 lpgeaddr = (caddr_t)e; 3944 } 3945 } 3946 3947 again: 3948 if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) { 3949 ASSERT(IS_P2ALIGNED(aindx, maxpages)); 3950 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 3951 anon_array_enter(amp, aindx, &an_cookie); 3952 if (anon_get_ptr(amp->ahp, aindx) != NULL) { 3953 SEGVN_VMSTAT_FLTVNPAGES(5); 3954 ASSERT(anon_pages(amp->ahp, aindx, 3955 maxpages) == maxpages); 3956 anon_array_exit(&an_cookie); 3957 ANON_LOCK_EXIT(&->a_rwlock); 3958 err = segvn_fault_anonpages(hat, seg, 3959 a, a + maxpgsz, type, rw, 3960 MAX(a, addr), 3961 MIN(a + maxpgsz, eaddr), brkcow); 3962 if (err != 0) { 3963 SEGVN_VMSTAT_FLTVNPAGES(6); 3964 goto out; 3965 } 3966 if (szc < seg->s_szc) { 3967 szc = seg->s_szc; 3968 pgsz = maxpgsz; 3969 pages = maxpages; 3970 lpgeaddr = maxlpgeaddr; 3971 } 3972 goto next; 3973 } else { 3974 ASSERT(anon_pages(amp->ahp, aindx, 3975 maxpages) == 0); 3976 SEGVN_VMSTAT_FLTVNPAGES(7); 3977 anon_array_exit(&an_cookie); 3978 ANON_LOCK_EXIT(&->a_rwlock); 3979 } 3980 } 3981 ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz)); 3982 ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz)); 3983 3984 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) { 3985 ASSERT(vpage != NULL); 3986 prot = VPP_PROT(vpage); 3987 ASSERT(sameprot(seg, a, maxpgsz)); 3988 if ((prot & protchk) == 0) { 3989 SEGVN_VMSTAT_FLTVNPAGES(8); 3990 err = FC_PROT; 3991 goto out; 3992 } 3993 } 3994 if (type == F_SOFTLOCK) { 3995 atomic_add_long((ulong_t *)&svd->softlockcnt, 3996 pages); 3997 } 3998 3999 pplist = NULL; 4000 physcontig = 0; 4001 ppa[0] = NULL; 4002 if (!brkcow && !tron && szc && 4003 !page_exists_physcontig(vp, off, szc, 4004 segtype == MAP_PRIVATE ? ppa : NULL)) { 4005 SEGVN_VMSTAT_FLTVNPAGES(9); 4006 if (page_alloc_pages(vp, seg, a, &pplist, NULL, 4007 szc, 0, 0) && type != F_SOFTLOCK) { 4008 SEGVN_VMSTAT_FLTVNPAGES(10); 4009 pszc = 0; 4010 ierr = -1; 4011 alloc_failed |= (1 << szc); 4012 break; 4013 } 4014 if (pplist != NULL && 4015 vp->v_mpssdata == SEGVN_PAGEIO) { 4016 int downsize; 4017 SEGVN_VMSTAT_FLTVNPAGES(11); 4018 physcontig = segvn_fill_vp_pages(svd, 4019 vp, off, szc, ppa, &pplist, 4020 &pszc, &downsize); 4021 ASSERT(!physcontig || pplist == NULL); 4022 if (!physcontig && downsize && 4023 type != F_SOFTLOCK) { 4024 ASSERT(pplist == NULL); 4025 SEGVN_VMSTAT_FLTVNPAGES(12); 4026 ierr = -1; 4027 break; 4028 } 4029 ASSERT(!physcontig || 4030 segtype == MAP_PRIVATE || 4031 ppa[0] == NULL); 4032 if (physcontig && ppa[0] == NULL) { 4033 physcontig = 0; 4034 } 4035 } 4036 } else if (!brkcow && !tron && szc && ppa[0] != NULL) { 4037 SEGVN_VMSTAT_FLTVNPAGES(13); 4038 ASSERT(segtype == MAP_PRIVATE); 4039 physcontig = 1; 4040 } 4041 4042 if (!physcontig) { 4043 SEGVN_VMSTAT_FLTVNPAGES(14); 4044 ppa[0] = NULL; 4045 ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz, 4046 &vpprot, ppa, pgsz, seg, a, arw, 4047 svd->cred, NULL); 4048 #ifdef DEBUG 4049 if (ierr == 0) { 4050 for (i = 0; i < pages; i++) { 4051 ASSERT(PAGE_LOCKED(ppa[i])); 4052 ASSERT(!PP_ISFREE(ppa[i])); 4053 ASSERT(ppa[i]->p_vnode == vp); 4054 ASSERT(ppa[i]->p_offset == 4055 off + (i << PAGESHIFT)); 4056 } 4057 } 4058 #endif /* DEBUG */ 4059 if (segtype == MAP_PRIVATE) { 4060 SEGVN_VMSTAT_FLTVNPAGES(15); 4061 vpprot &= ~PROT_WRITE; 4062 } 4063 } else { 4064 ASSERT(segtype == MAP_PRIVATE); 4065 SEGVN_VMSTAT_FLTVNPAGES(16); 4066 vpprot = PROT_ALL & ~PROT_WRITE; 4067 ierr = 0; 4068 } 4069 4070 if (ierr != 0) { 4071 SEGVN_VMSTAT_FLTVNPAGES(17); 4072 if (pplist != NULL) { 4073 SEGVN_VMSTAT_FLTVNPAGES(18); 4074 page_free_replacement_page(pplist); 4075 page_create_putback(pages); 4076 } 4077 SEGVN_RESTORE_SOFTLOCK_VP(type, pages); 4078 if (a + pgsz <= eaddr) { 4079 SEGVN_VMSTAT_FLTVNPAGES(19); 4080 err = FC_MAKE_ERR(ierr); 4081 goto out; 4082 } 4083 va.va_mask = AT_SIZE; 4084 if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL)) { 4085 SEGVN_VMSTAT_FLTVNPAGES(20); 4086 err = FC_MAKE_ERR(EIO); 4087 goto out; 4088 } 4089 if (btopr(va.va_size) >= btopr(off + pgsz)) { 4090 SEGVN_VMSTAT_FLTVNPAGES(21); 4091 err = FC_MAKE_ERR(ierr); 4092 goto out; 4093 } 4094 if (btopr(va.va_size) < 4095 btopr(off + (eaddr - a))) { 4096 SEGVN_VMSTAT_FLTVNPAGES(22); 4097 err = FC_MAKE_ERR(ierr); 4098 goto out; 4099 } 4100 if (brkcow || tron || type == F_SOFTLOCK) { 4101 /* can't reduce map area */ 4102 SEGVN_VMSTAT_FLTVNPAGES(23); 4103 vop_size_err = 1; 4104 goto out; 4105 } 4106 SEGVN_VMSTAT_FLTVNPAGES(24); 4107 ASSERT(szc != 0); 4108 pszc = 0; 4109 ierr = -1; 4110 break; 4111 } 4112 4113 if (amp != NULL) { 4114 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 4115 anon_array_enter(amp, aindx, &an_cookie); 4116 } 4117 if (amp != NULL && 4118 anon_get_ptr(amp->ahp, aindx) != NULL) { 4119 ulong_t taindx = P2ALIGN(aindx, maxpages); 4120 4121 SEGVN_VMSTAT_FLTVNPAGES(25); 4122 ASSERT(anon_pages(amp->ahp, taindx, 4123 maxpages) == maxpages); 4124 for (i = 0; i < pages; i++) { 4125 page_unlock(ppa[i]); 4126 } 4127 anon_array_exit(&an_cookie); 4128 ANON_LOCK_EXIT(&->a_rwlock); 4129 if (pplist != NULL) { 4130 page_free_replacement_page(pplist); 4131 page_create_putback(pages); 4132 } 4133 SEGVN_RESTORE_SOFTLOCK_VP(type, pages); 4134 if (szc < seg->s_szc) { 4135 SEGVN_VMSTAT_FLTVNPAGES(26); 4136 /* 4137 * For private segments SOFTLOCK 4138 * either always breaks cow (any rw 4139 * type except S_READ_NOCOW) or 4140 * address space is locked as writer 4141 * (S_READ_NOCOW case) and anon slots 4142 * can't show up on second check. 4143 * Therefore if we are here for 4144 * SOFTLOCK case it must be a cow 4145 * break but cow break never reduces 4146 * szc. text replication (tron) in 4147 * this case works as cow break. 4148 * Thus the assert below. 4149 */ 4150 ASSERT(!brkcow && !tron && 4151 type != F_SOFTLOCK); 4152 pszc = seg->s_szc; 4153 ierr = -2; 4154 break; 4155 } 4156 ASSERT(IS_P2ALIGNED(a, maxpgsz)); 4157 goto again; 4158 } 4159 #ifdef DEBUG 4160 if (amp != NULL) { 4161 ulong_t taindx = P2ALIGN(aindx, maxpages); 4162 ASSERT(!anon_pages(amp->ahp, taindx, maxpages)); 4163 } 4164 #endif /* DEBUG */ 4165 4166 if (brkcow || tron) { 4167 ASSERT(amp != NULL); 4168 ASSERT(pplist == NULL); 4169 ASSERT(szc == seg->s_szc); 4170 ASSERT(IS_P2ALIGNED(a, maxpgsz)); 4171 ASSERT(IS_P2ALIGNED(aindx, maxpages)); 4172 SEGVN_VMSTAT_FLTVNPAGES(27); 4173 ierr = anon_map_privatepages(amp, aindx, szc, 4174 seg, a, prot, ppa, vpage, segvn_anypgsz, 4175 tron ? PG_LOCAL : 0, svd->cred); 4176 if (ierr != 0) { 4177 SEGVN_VMSTAT_FLTVNPAGES(28); 4178 anon_array_exit(&an_cookie); 4179 ANON_LOCK_EXIT(&->a_rwlock); 4180 SEGVN_RESTORE_SOFTLOCK_VP(type, pages); 4181 err = FC_MAKE_ERR(ierr); 4182 goto out; 4183 } 4184 4185 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode)); 4186 /* 4187 * p_szc can't be changed for locked 4188 * swapfs pages. 4189 */ 4190 ASSERT(svd->rcookie == 4191 HAT_INVALID_REGION_COOKIE); 4192 hat_memload_array(hat, a, pgsz, ppa, prot, 4193 hat_flag); 4194 4195 if (!(hat_flag & HAT_LOAD_LOCK)) { 4196 SEGVN_VMSTAT_FLTVNPAGES(29); 4197 for (i = 0; i < pages; i++) { 4198 page_unlock(ppa[i]); 4199 } 4200 } 4201 anon_array_exit(&an_cookie); 4202 ANON_LOCK_EXIT(&->a_rwlock); 4203 goto next; 4204 } 4205 4206 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE || 4207 (!svd->pageprot && svd->prot == (prot & vpprot))); 4208 4209 pfn = page_pptonum(ppa[0]); 4210 /* 4211 * hat_page_demote() needs an SE_EXCL lock on one of 4212 * constituent page_t's and it decreases root's p_szc 4213 * last. This means if root's p_szc is equal szc and 4214 * all its constituent pages are locked 4215 * hat_page_demote() that could have changed p_szc to 4216 * szc is already done and no new have page_demote() 4217 * can start for this large page. 4218 */ 4219 4220 /* 4221 * we need to make sure same mapping size is used for 4222 * the same address range if there's a possibility the 4223 * adddress is already mapped because hat layer panics 4224 * when translation is loaded for the range already 4225 * mapped with a different page size. We achieve it 4226 * by always using largest page size possible subject 4227 * to the constraints of page size, segment page size 4228 * and page alignment. Since mappings are invalidated 4229 * when those constraints change and make it 4230 * impossible to use previously used mapping size no 4231 * mapping size conflicts should happen. 4232 */ 4233 4234 chkszc: 4235 if ((pszc = ppa[0]->p_szc) == szc && 4236 IS_P2ALIGNED(pfn, pages)) { 4237 4238 SEGVN_VMSTAT_FLTVNPAGES(30); 4239 #ifdef DEBUG 4240 for (i = 0; i < pages; i++) { 4241 ASSERT(PAGE_LOCKED(ppa[i])); 4242 ASSERT(!PP_ISFREE(ppa[i])); 4243 ASSERT(page_pptonum(ppa[i]) == 4244 pfn + i); 4245 ASSERT(ppa[i]->p_szc == szc); 4246 ASSERT(ppa[i]->p_vnode == vp); 4247 ASSERT(ppa[i]->p_offset == 4248 off + (i << PAGESHIFT)); 4249 } 4250 #endif /* DEBUG */ 4251 /* 4252 * All pages are of szc we need and they are 4253 * all locked so they can't change szc. load 4254 * translations. 4255 * 4256 * if page got promoted since last check 4257 * we don't need pplist. 4258 */ 4259 if (pplist != NULL) { 4260 page_free_replacement_page(pplist); 4261 page_create_putback(pages); 4262 } 4263 if (PP_ISMIGRATE(ppa[0])) { 4264 page_migrate(seg, a, ppa, pages); 4265 } 4266 SEGVN_UPDATE_MODBITS(ppa, pages, rw, 4267 prot, vpprot); 4268 hat_memload_array_region(hat, a, pgsz, 4269 ppa, prot & vpprot, hat_flag, 4270 svd->rcookie); 4271 4272 if (!(hat_flag & HAT_LOAD_LOCK)) { 4273 for (i = 0; i < pages; i++) { 4274 page_unlock(ppa[i]); 4275 } 4276 } 4277 if (amp != NULL) { 4278 anon_array_exit(&an_cookie); 4279 ANON_LOCK_EXIT(&->a_rwlock); 4280 } 4281 goto next; 4282 } 4283 4284 /* 4285 * See if upsize is possible. 4286 */ 4287 if (pszc > szc && szc < seg->s_szc && 4288 (segvn_anypgsz_vnode || pszc >= seg->s_szc)) { 4289 pgcnt_t aphase; 4290 uint_t pszc1 = MIN(pszc, seg->s_szc); 4291 ppgsz = page_get_pagesize(pszc1); 4292 ppages = btop(ppgsz); 4293 aphase = btop(P2PHASE((uintptr_t)a, ppgsz)); 4294 4295 ASSERT(type != F_SOFTLOCK); 4296 4297 SEGVN_VMSTAT_FLTVNPAGES(31); 4298 if (aphase != P2PHASE(pfn, ppages)) { 4299 segvn_faultvnmpss_align_err4++; 4300 } else { 4301 SEGVN_VMSTAT_FLTVNPAGES(32); 4302 if (pplist != NULL) { 4303 page_t *pl = pplist; 4304 page_free_replacement_page(pl); 4305 page_create_putback(pages); 4306 } 4307 for (i = 0; i < pages; i++) { 4308 page_unlock(ppa[i]); 4309 } 4310 if (amp != NULL) { 4311 anon_array_exit(&an_cookie); 4312 ANON_LOCK_EXIT(&->a_rwlock); 4313 } 4314 pszc = pszc1; 4315 ierr = -2; 4316 break; 4317 } 4318 } 4319 4320 /* 4321 * check if we should use smallest mapping size. 4322 */ 4323 upgrdfail = 0; 4324 if (szc == 0 || 4325 (pszc >= szc && 4326 !IS_P2ALIGNED(pfn, pages)) || 4327 (pszc < szc && 4328 !segvn_full_szcpages(ppa, szc, &upgrdfail, 4329 &pszc))) { 4330 4331 if (upgrdfail && type != F_SOFTLOCK) { 4332 /* 4333 * segvn_full_szcpages failed to lock 4334 * all pages EXCL. Size down. 4335 */ 4336 ASSERT(pszc < szc); 4337 4338 SEGVN_VMSTAT_FLTVNPAGES(33); 4339 4340 if (pplist != NULL) { 4341 page_t *pl = pplist; 4342 page_free_replacement_page(pl); 4343 page_create_putback(pages); 4344 } 4345 4346 for (i = 0; i < pages; i++) { 4347 page_unlock(ppa[i]); 4348 } 4349 if (amp != NULL) { 4350 anon_array_exit(&an_cookie); 4351 ANON_LOCK_EXIT(&->a_rwlock); 4352 } 4353 ierr = -1; 4354 break; 4355 } 4356 if (szc != 0 && !upgrdfail) { 4357 segvn_faultvnmpss_align_err5++; 4358 } 4359 SEGVN_VMSTAT_FLTVNPAGES(34); 4360 if (pplist != NULL) { 4361 page_free_replacement_page(pplist); 4362 page_create_putback(pages); 4363 } 4364 SEGVN_UPDATE_MODBITS(ppa, pages, rw, 4365 prot, vpprot); 4366 if (upgrdfail && segvn_anypgsz_vnode) { 4367 /* SOFTLOCK case */ 4368 hat_memload_array_region(hat, a, pgsz, 4369 ppa, prot & vpprot, hat_flag, 4370 svd->rcookie); 4371 } else { 4372 for (i = 0; i < pages; i++) { 4373 hat_memload_region(hat, 4374 a + (i << PAGESHIFT), 4375 ppa[i], prot & vpprot, 4376 hat_flag, svd->rcookie); 4377 } 4378 } 4379 if (!(hat_flag & HAT_LOAD_LOCK)) { 4380 for (i = 0; i < pages; i++) { 4381 page_unlock(ppa[i]); 4382 } 4383 } 4384 if (amp != NULL) { 4385 anon_array_exit(&an_cookie); 4386 ANON_LOCK_EXIT(&->a_rwlock); 4387 } 4388 goto next; 4389 } 4390 4391 if (pszc == szc) { 4392 /* 4393 * segvn_full_szcpages() upgraded pages szc. 4394 */ 4395 ASSERT(pszc == ppa[0]->p_szc); 4396 ASSERT(IS_P2ALIGNED(pfn, pages)); 4397 goto chkszc; 4398 } 4399 4400 if (pszc > szc) { 4401 kmutex_t *szcmtx; 4402 SEGVN_VMSTAT_FLTVNPAGES(35); 4403 /* 4404 * p_szc of ppa[0] can change since we haven't 4405 * locked all constituent pages. Call 4406 * page_lock_szc() to prevent szc changes. 4407 * This should be a rare case that happens when 4408 * multiple segments use a different page size 4409 * to map the same file offsets. 4410 */ 4411 szcmtx = page_szc_lock(ppa[0]); 4412 pszc = ppa[0]->p_szc; 4413 ASSERT(szcmtx != NULL || pszc == 0); 4414 ASSERT(ppa[0]->p_szc <= pszc); 4415 if (pszc <= szc) { 4416 SEGVN_VMSTAT_FLTVNPAGES(36); 4417 if (szcmtx != NULL) { 4418 mutex_exit(szcmtx); 4419 } 4420 goto chkszc; 4421 } 4422 if (pplist != NULL) { 4423 /* 4424 * page got promoted since last check. 4425 * we don't need preaalocated large 4426 * page. 4427 */ 4428 SEGVN_VMSTAT_FLTVNPAGES(37); 4429 page_free_replacement_page(pplist); 4430 page_create_putback(pages); 4431 } 4432 SEGVN_UPDATE_MODBITS(ppa, pages, rw, 4433 prot, vpprot); 4434 hat_memload_array_region(hat, a, pgsz, ppa, 4435 prot & vpprot, hat_flag, svd->rcookie); 4436 mutex_exit(szcmtx); 4437 if (!(hat_flag & HAT_LOAD_LOCK)) { 4438 for (i = 0; i < pages; i++) { 4439 page_unlock(ppa[i]); 4440 } 4441 } 4442 if (amp != NULL) { 4443 anon_array_exit(&an_cookie); 4444 ANON_LOCK_EXIT(&->a_rwlock); 4445 } 4446 goto next; 4447 } 4448 4449 /* 4450 * if page got demoted since last check 4451 * we could have not allocated larger page. 4452 * allocate now. 4453 */ 4454 if (pplist == NULL && 4455 page_alloc_pages(vp, seg, a, &pplist, NULL, 4456 szc, 0, 0) && type != F_SOFTLOCK) { 4457 SEGVN_VMSTAT_FLTVNPAGES(38); 4458 for (i = 0; i < pages; i++) { 4459 page_unlock(ppa[i]); 4460 } 4461 if (amp != NULL) { 4462 anon_array_exit(&an_cookie); 4463 ANON_LOCK_EXIT(&->a_rwlock); 4464 } 4465 ierr = -1; 4466 alloc_failed |= (1 << szc); 4467 break; 4468 } 4469 4470 SEGVN_VMSTAT_FLTVNPAGES(39); 4471 4472 if (pplist != NULL) { 4473 segvn_relocate_pages(ppa, pplist); 4474 #ifdef DEBUG 4475 } else { 4476 ASSERT(type == F_SOFTLOCK); 4477 SEGVN_VMSTAT_FLTVNPAGES(40); 4478 #endif /* DEBUG */ 4479 } 4480 4481 SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot); 4482 4483 if (pplist == NULL && segvn_anypgsz_vnode == 0) { 4484 ASSERT(type == F_SOFTLOCK); 4485 for (i = 0; i < pages; i++) { 4486 ASSERT(ppa[i]->p_szc < szc); 4487 hat_memload_region(hat, 4488 a + (i << PAGESHIFT), 4489 ppa[i], prot & vpprot, hat_flag, 4490 svd->rcookie); 4491 } 4492 } else { 4493 ASSERT(pplist != NULL || type == F_SOFTLOCK); 4494 hat_memload_array_region(hat, a, pgsz, ppa, 4495 prot & vpprot, hat_flag, svd->rcookie); 4496 } 4497 if (!(hat_flag & HAT_LOAD_LOCK)) { 4498 for (i = 0; i < pages; i++) { 4499 ASSERT(PAGE_SHARED(ppa[i])); 4500 page_unlock(ppa[i]); 4501 } 4502 } 4503 if (amp != NULL) { 4504 anon_array_exit(&an_cookie); 4505 ANON_LOCK_EXIT(&->a_rwlock); 4506 } 4507 4508 next: 4509 if (vpage != NULL) { 4510 vpage += pages; 4511 } 4512 adjszc_chk = 1; 4513 } 4514 if (a == lpgeaddr) 4515 break; 4516 ASSERT(a < lpgeaddr); 4517 4518 ASSERT(!brkcow && !tron && type != F_SOFTLOCK); 4519 4520 /* 4521 * ierr == -1 means we failed to map with a large page. 4522 * (either due to allocation/relocation failures or 4523 * misalignment with other mappings to this file. 4524 * 4525 * ierr == -2 means some other thread allocated a large page 4526 * after we gave up tp map with a large page. retry with 4527 * larger mapping. 4528 */ 4529 ASSERT(ierr == -1 || ierr == -2); 4530 ASSERT(ierr == -2 || szc != 0); 4531 ASSERT(ierr == -1 || szc < seg->s_szc); 4532 if (ierr == -2) { 4533 SEGVN_VMSTAT_FLTVNPAGES(41); 4534 ASSERT(pszc > szc && pszc <= seg->s_szc); 4535 szc = pszc; 4536 } else if (segvn_anypgsz_vnode) { 4537 SEGVN_VMSTAT_FLTVNPAGES(42); 4538 szc--; 4539 } else { 4540 SEGVN_VMSTAT_FLTVNPAGES(43); 4541 ASSERT(pszc < szc); 4542 /* 4543 * other process created pszc large page. 4544 * but we still have to drop to 0 szc. 4545 */ 4546 szc = 0; 4547 } 4548 4549 pgsz = page_get_pagesize(szc); 4550 pages = btop(pgsz); 4551 if (ierr == -2) { 4552 /* 4553 * Size up case. Note lpgaddr may only be needed for 4554 * softlock case so we don't adjust it here. 4555 */ 4556 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz); 4557 ASSERT(a >= lpgaddr); 4558 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz); 4559 off = svd->offset + (uintptr_t)(a - seg->s_base); 4560 aindx = svd->anon_index + seg_page(seg, a); 4561 vpage = (svd->vpage != NULL) ? 4562 &svd->vpage[seg_page(seg, a)] : NULL; 4563 } else { 4564 /* 4565 * Size down case. Note lpgaddr may only be needed for 4566 * softlock case so we don't adjust it here. 4567 */ 4568 ASSERT(IS_P2ALIGNED(a, pgsz)); 4569 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz)); 4570 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz); 4571 ASSERT(a < lpgeaddr); 4572 if (a < addr) { 4573 SEGVN_VMSTAT_FLTVNPAGES(44); 4574 /* 4575 * The beginning of the large page region can 4576 * be pulled to the right to make a smaller 4577 * region. We haven't yet faulted a single 4578 * page. 4579 */ 4580 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz); 4581 ASSERT(a >= lpgaddr); 4582 off = svd->offset + 4583 (uintptr_t)(a - seg->s_base); 4584 aindx = svd->anon_index + seg_page(seg, a); 4585 vpage = (svd->vpage != NULL) ? 4586 &svd->vpage[seg_page(seg, a)] : NULL; 4587 } 4588 } 4589 } 4590 out: 4591 kmem_free(ppa, ppasize); 4592 if (!err && !vop_size_err) { 4593 SEGVN_VMSTAT_FLTVNPAGES(45); 4594 return (0); 4595 } 4596 if (type == F_SOFTLOCK && a > lpgaddr) { 4597 SEGVN_VMSTAT_FLTVNPAGES(46); 4598 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER); 4599 } 4600 if (!vop_size_err) { 4601 SEGVN_VMSTAT_FLTVNPAGES(47); 4602 return (err); 4603 } 4604 ASSERT(brkcow || tron || type == F_SOFTLOCK); 4605 /* 4606 * Large page end is mapped beyond the end of file and it's a cow 4607 * fault (can be a text replication induced cow) or softlock so we can't 4608 * reduce the map area. For now just demote the segment. This should 4609 * really only happen if the end of the file changed after the mapping 4610 * was established since when large page segments are created we make 4611 * sure they don't extend beyond the end of the file. 4612 */ 4613 SEGVN_VMSTAT_FLTVNPAGES(48); 4614 4615 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4616 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 4617 err = 0; 4618 if (seg->s_szc != 0) { 4619 segvn_fltvnpages_clrszc_cnt++; 4620 ASSERT(svd->softlockcnt == 0); 4621 err = segvn_clrszc(seg); 4622 if (err != 0) { 4623 segvn_fltvnpages_clrszc_err++; 4624 } 4625 } 4626 ASSERT(err || seg->s_szc == 0); 4627 SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock); 4628 /* segvn_fault will do its job as if szc had been zero to begin with */ 4629 return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err)); 4630 } 4631 4632 /* 4633 * This routine will attempt to fault in one large page. 4634 * it will use smaller pages if that fails. 4635 * It should only be called for pure anonymous segments. 4636 */ 4637 static faultcode_t 4638 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr, 4639 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr, 4640 caddr_t eaddr, int brkcow) 4641 { 4642 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 4643 struct anon_map *amp = svd->amp; 4644 uchar_t segtype = svd->type; 4645 uint_t szc = seg->s_szc; 4646 size_t pgsz = page_get_pagesize(szc); 4647 size_t maxpgsz = pgsz; 4648 pgcnt_t pages = btop(pgsz); 4649 uint_t ppaszc = szc; 4650 caddr_t a = lpgaddr; 4651 ulong_t aindx = svd->anon_index + seg_page(seg, a); 4652 struct vpage *vpage = (svd->vpage != NULL) ? 4653 &svd->vpage[seg_page(seg, a)] : NULL; 4654 page_t **ppa; 4655 uint_t ppa_szc; 4656 faultcode_t err; 4657 int ierr; 4658 uint_t protchk, prot, vpprot; 4659 ulong_t i; 4660 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD; 4661 anon_sync_obj_t cookie; 4662 int adjszc_chk; 4663 int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0; 4664 4665 ASSERT(szc != 0); 4666 ASSERT(amp != NULL); 4667 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */ 4668 ASSERT(!(svd->flags & MAP_NORESERVE)); 4669 ASSERT(type != F_SOFTUNLOCK); 4670 ASSERT(IS_P2ALIGNED(a, maxpgsz)); 4671 ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF); 4672 ASSERT(svd->tr_state != SEGVN_TR_INIT); 4673 4674 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 4675 4676 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]); 4677 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]); 4678 4679 if (svd->flags & MAP_TEXT) { 4680 hat_flag |= HAT_LOAD_TEXT; 4681 } 4682 4683 if (svd->pageprot) { 4684 switch (rw) { 4685 case S_READ: 4686 protchk = PROT_READ; 4687 break; 4688 case S_WRITE: 4689 protchk = PROT_WRITE; 4690 break; 4691 case S_EXEC: 4692 protchk = PROT_EXEC; 4693 break; 4694 case S_OTHER: 4695 default: 4696 protchk = PROT_READ | PROT_WRITE | PROT_EXEC; 4697 break; 4698 } 4699 VM_STAT_ADD(segvnvmstats.fltanpages[2]); 4700 } else { 4701 prot = svd->prot; 4702 /* caller has already done segment level protection check. */ 4703 } 4704 4705 ppa = kmem_cache_alloc(segvn_szc_cache[ppaszc], KM_SLEEP); 4706 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 4707 for (;;) { 4708 adjszc_chk = 0; 4709 for (; a < lpgeaddr; a += pgsz, aindx += pages) { 4710 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) { 4711 VM_STAT_ADD(segvnvmstats.fltanpages[3]); 4712 ASSERT(vpage != NULL); 4713 prot = VPP_PROT(vpage); 4714 ASSERT(sameprot(seg, a, maxpgsz)); 4715 if ((prot & protchk) == 0) { 4716 err = FC_PROT; 4717 goto error; 4718 } 4719 } 4720 if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) && 4721 pgsz < maxpgsz) { 4722 ASSERT(a > lpgaddr); 4723 szc = seg->s_szc; 4724 pgsz = maxpgsz; 4725 pages = btop(pgsz); 4726 ASSERT(IS_P2ALIGNED(aindx, pages)); 4727 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, 4728 pgsz); 4729 } 4730 if (type == F_SOFTLOCK) { 4731 atomic_add_long((ulong_t *)&svd->softlockcnt, 4732 pages); 4733 } 4734 anon_array_enter(amp, aindx, &cookie); 4735 ppa_szc = (uint_t)-1; 4736 ierr = anon_map_getpages(amp, aindx, szc, seg, a, 4737 prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow, 4738 segvn_anypgsz, pgflags, svd->cred); 4739 if (ierr != 0) { 4740 anon_array_exit(&cookie); 4741 VM_STAT_ADD(segvnvmstats.fltanpages[4]); 4742 if (type == F_SOFTLOCK) { 4743 atomic_add_long( 4744 (ulong_t *)&svd->softlockcnt, 4745 -pages); 4746 } 4747 if (ierr > 0) { 4748 VM_STAT_ADD(segvnvmstats.fltanpages[6]); 4749 err = FC_MAKE_ERR(ierr); 4750 goto error; 4751 } 4752 break; 4753 } 4754 4755 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode)); 4756 4757 ASSERT(segtype == MAP_SHARED || 4758 ppa[0]->p_szc <= szc); 4759 ASSERT(segtype == MAP_PRIVATE || 4760 ppa[0]->p_szc >= szc); 4761 4762 /* 4763 * Handle pages that have been marked for migration 4764 */ 4765 if (lgrp_optimizations()) 4766 page_migrate(seg, a, ppa, pages); 4767 4768 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 4769 4770 if (segtype == MAP_SHARED) { 4771 vpprot |= PROT_WRITE; 4772 } 4773 4774 hat_memload_array(hat, a, pgsz, ppa, 4775 prot & vpprot, hat_flag); 4776 4777 if (hat_flag & HAT_LOAD_LOCK) { 4778 VM_STAT_ADD(segvnvmstats.fltanpages[7]); 4779 } else { 4780 VM_STAT_ADD(segvnvmstats.fltanpages[8]); 4781 for (i = 0; i < pages; i++) 4782 page_unlock(ppa[i]); 4783 } 4784 if (vpage != NULL) 4785 vpage += pages; 4786 4787 anon_array_exit(&cookie); 4788 adjszc_chk = 1; 4789 } 4790 if (a == lpgeaddr) 4791 break; 4792 ASSERT(a < lpgeaddr); 4793 /* 4794 * ierr == -1 means we failed to allocate a large page. 4795 * so do a size down operation. 4796 * 4797 * ierr == -2 means some other process that privately shares 4798 * pages with this process has allocated a larger page and we 4799 * need to retry with larger pages. So do a size up 4800 * operation. This relies on the fact that large pages are 4801 * never partially shared i.e. if we share any constituent 4802 * page of a large page with another process we must share the 4803 * entire large page. Note this cannot happen for SOFTLOCK 4804 * case, unless current address (a) is at the beginning of the 4805 * next page size boundary because the other process couldn't 4806 * have relocated locked pages. 4807 */ 4808 ASSERT(ierr == -1 || ierr == -2); 4809 4810 if (segvn_anypgsz) { 4811 ASSERT(ierr == -2 || szc != 0); 4812 ASSERT(ierr == -1 || szc < seg->s_szc); 4813 szc = (ierr == -1) ? szc - 1 : szc + 1; 4814 } else { 4815 /* 4816 * For non COW faults and segvn_anypgsz == 0 4817 * we need to be careful not to loop forever 4818 * if existing page is found with szc other 4819 * than 0 or seg->s_szc. This could be due 4820 * to page relocations on behalf of DR or 4821 * more likely large page creation. For this 4822 * case simply re-size to existing page's szc 4823 * if returned by anon_map_getpages(). 4824 */ 4825 if (ppa_szc == (uint_t)-1) { 4826 szc = (ierr == -1) ? 0 : seg->s_szc; 4827 } else { 4828 ASSERT(ppa_szc <= seg->s_szc); 4829 ASSERT(ierr == -2 || ppa_szc < szc); 4830 ASSERT(ierr == -1 || ppa_szc > szc); 4831 szc = ppa_szc; 4832 } 4833 } 4834 4835 pgsz = page_get_pagesize(szc); 4836 pages = btop(pgsz); 4837 ASSERT(type != F_SOFTLOCK || ierr == -1 || 4838 (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz))); 4839 if (type == F_SOFTLOCK) { 4840 /* 4841 * For softlocks we cannot reduce the fault area 4842 * (calculated based on the largest page size for this 4843 * segment) for size down and a is already next 4844 * page size aligned as assertted above for size 4845 * ups. Therefore just continue in case of softlock. 4846 */ 4847 VM_STAT_ADD(segvnvmstats.fltanpages[9]); 4848 continue; /* keep lint happy */ 4849 } else if (ierr == -2) { 4850 4851 /* 4852 * Size up case. Note lpgaddr may only be needed for 4853 * softlock case so we don't adjust it here. 4854 */ 4855 VM_STAT_ADD(segvnvmstats.fltanpages[10]); 4856 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz); 4857 ASSERT(a >= lpgaddr); 4858 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz); 4859 aindx = svd->anon_index + seg_page(seg, a); 4860 vpage = (svd->vpage != NULL) ? 4861 &svd->vpage[seg_page(seg, a)] : NULL; 4862 } else { 4863 /* 4864 * Size down case. Note lpgaddr may only be needed for 4865 * softlock case so we don't adjust it here. 4866 */ 4867 VM_STAT_ADD(segvnvmstats.fltanpages[11]); 4868 ASSERT(IS_P2ALIGNED(a, pgsz)); 4869 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz)); 4870 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz); 4871 ASSERT(a < lpgeaddr); 4872 if (a < addr) { 4873 /* 4874 * The beginning of the large page region can 4875 * be pulled to the right to make a smaller 4876 * region. We haven't yet faulted a single 4877 * page. 4878 */ 4879 VM_STAT_ADD(segvnvmstats.fltanpages[12]); 4880 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz); 4881 ASSERT(a >= lpgaddr); 4882 aindx = svd->anon_index + seg_page(seg, a); 4883 vpage = (svd->vpage != NULL) ? 4884 &svd->vpage[seg_page(seg, a)] : NULL; 4885 } 4886 } 4887 } 4888 VM_STAT_ADD(segvnvmstats.fltanpages[13]); 4889 ANON_LOCK_EXIT(&->a_rwlock); 4890 kmem_cache_free(segvn_szc_cache[ppaszc], ppa); 4891 return (0); 4892 error: 4893 VM_STAT_ADD(segvnvmstats.fltanpages[14]); 4894 ANON_LOCK_EXIT(&->a_rwlock); 4895 kmem_cache_free(segvn_szc_cache[ppaszc], ppa); 4896 if (type == F_SOFTLOCK && a > lpgaddr) { 4897 VM_STAT_ADD(segvnvmstats.fltanpages[15]); 4898 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER); 4899 } 4900 return (err); 4901 } 4902 4903 int fltadvice = 1; /* set to free behind pages for sequential access */ 4904 4905 /* 4906 * This routine is called via a machine specific fault handling routine. 4907 * It is also called by software routines wishing to lock or unlock 4908 * a range of addresses. 4909 * 4910 * Here is the basic algorithm: 4911 * If unlocking 4912 * Call segvn_softunlock 4913 * Return 4914 * endif 4915 * Checking and set up work 4916 * If we will need some non-anonymous pages 4917 * Call VOP_GETPAGE over the range of non-anonymous pages 4918 * endif 4919 * Loop over all addresses requested 4920 * Call segvn_faultpage passing in page list 4921 * to load up translations and handle anonymous pages 4922 * endloop 4923 * Load up translation to any additional pages in page list not 4924 * already handled that fit into this segment 4925 */ 4926 static faultcode_t 4927 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len, 4928 enum fault_type type, enum seg_rw rw) 4929 { 4930 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 4931 page_t **plp, **ppp, *pp; 4932 u_offset_t off; 4933 caddr_t a; 4934 struct vpage *vpage; 4935 uint_t vpprot, prot; 4936 int err; 4937 page_t *pl[PVN_GETPAGE_NUM + 1]; 4938 size_t plsz, pl_alloc_sz; 4939 size_t page; 4940 ulong_t anon_index; 4941 struct anon_map *amp; 4942 int dogetpage = 0; 4943 caddr_t lpgaddr, lpgeaddr; 4944 size_t pgsz; 4945 anon_sync_obj_t cookie; 4946 int brkcow = BREAK_COW_SHARE(rw, type, svd->type); 4947 4948 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 4949 ASSERT(svd->amp == NULL || svd->rcookie == HAT_INVALID_REGION_COOKIE); 4950 4951 /* 4952 * First handle the easy stuff 4953 */ 4954 if (type == F_SOFTUNLOCK) { 4955 if (rw == S_READ_NOCOW) { 4956 rw = S_READ; 4957 ASSERT(AS_WRITE_HELD(seg->s_as)); 4958 } 4959 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 4960 pgsz = (seg->s_szc == 0) ? PAGESIZE : 4961 page_get_pagesize(seg->s_szc); 4962 VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]); 4963 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr); 4964 segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw); 4965 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4966 return (0); 4967 } 4968 4969 ASSERT(svd->tr_state == SEGVN_TR_OFF || 4970 !HAT_IS_REGION_COOKIE_VALID(svd->rcookie)); 4971 if (brkcow == 0) { 4972 if (svd->tr_state == SEGVN_TR_INIT) { 4973 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 4974 if (svd->tr_state == SEGVN_TR_INIT) { 4975 ASSERT(svd->vp != NULL && svd->amp == NULL); 4976 ASSERT(svd->flags & MAP_TEXT); 4977 ASSERT(svd->type == MAP_PRIVATE); 4978 segvn_textrepl(seg); 4979 ASSERT(svd->tr_state != SEGVN_TR_INIT); 4980 ASSERT(svd->tr_state != SEGVN_TR_ON || 4981 svd->amp != NULL); 4982 } 4983 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4984 } 4985 } else if (svd->tr_state != SEGVN_TR_OFF) { 4986 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 4987 4988 if (rw == S_WRITE && svd->tr_state != SEGVN_TR_OFF) { 4989 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE)); 4990 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4991 return (FC_PROT); 4992 } 4993 4994 if (svd->tr_state == SEGVN_TR_ON) { 4995 ASSERT(svd->vp != NULL && svd->amp != NULL); 4996 segvn_textunrepl(seg, 0); 4997 ASSERT(svd->amp == NULL && 4998 svd->tr_state == SEGVN_TR_OFF); 4999 } else if (svd->tr_state != SEGVN_TR_OFF) { 5000 svd->tr_state = SEGVN_TR_OFF; 5001 } 5002 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 5003 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5004 } 5005 5006 top: 5007 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 5008 5009 /* 5010 * If we have the same protections for the entire segment, 5011 * insure that the access being attempted is legitimate. 5012 */ 5013 5014 if (svd->pageprot == 0) { 5015 uint_t protchk; 5016 5017 switch (rw) { 5018 case S_READ: 5019 case S_READ_NOCOW: 5020 protchk = PROT_READ; 5021 break; 5022 case S_WRITE: 5023 protchk = PROT_WRITE; 5024 break; 5025 case S_EXEC: 5026 protchk = PROT_EXEC; 5027 break; 5028 case S_OTHER: 5029 default: 5030 protchk = PROT_READ | PROT_WRITE | PROT_EXEC; 5031 break; 5032 } 5033 5034 if ((svd->prot & protchk) == 0) { 5035 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5036 return (FC_PROT); /* illegal access type */ 5037 } 5038 } 5039 5040 if (brkcow && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 5041 /* this must be SOFTLOCK S_READ fault */ 5042 ASSERT(svd->amp == NULL); 5043 ASSERT(svd->tr_state == SEGVN_TR_OFF); 5044 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5045 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 5046 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 5047 /* 5048 * this must be the first ever non S_READ_NOCOW 5049 * softlock for this segment. 5050 */ 5051 ASSERT(svd->softlockcnt == 0); 5052 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 5053 HAT_REGION_TEXT); 5054 svd->rcookie = HAT_INVALID_REGION_COOKIE; 5055 } 5056 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5057 goto top; 5058 } 5059 5060 /* 5061 * We can't allow the long term use of softlocks for vmpss segments, 5062 * because in some file truncation cases we should be able to demote 5063 * the segment, which requires that there are no softlocks. The 5064 * only case where it's ok to allow a SOFTLOCK fault against a vmpss 5065 * segment is S_READ_NOCOW, where the caller holds the address space 5066 * locked as writer and calls softunlock before dropping the as lock. 5067 * S_READ_NOCOW is used by /proc to read memory from another user. 5068 * 5069 * Another deadlock between SOFTLOCK and file truncation can happen 5070 * because segvn_fault_vnodepages() calls the FS one pagesize at 5071 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages() 5072 * can cause a deadlock because the first set of page_t's remain 5073 * locked SE_SHARED. To avoid this, we demote segments on a first 5074 * SOFTLOCK if they have a length greater than the segment's 5075 * page size. 5076 * 5077 * So for now, we only avoid demoting a segment on a SOFTLOCK when 5078 * the access type is S_READ_NOCOW and the fault length is less than 5079 * or equal to the segment's page size. While this is quite restrictive, 5080 * it should be the most common case of SOFTLOCK against a vmpss 5081 * segment. 5082 * 5083 * For S_READ_NOCOW, it's safe not to do a copy on write because the 5084 * caller makes sure no COW will be caused by another thread for a 5085 * softlocked page. 5086 */ 5087 if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) { 5088 int demote = 0; 5089 5090 if (rw != S_READ_NOCOW) { 5091 demote = 1; 5092 } 5093 if (!demote && len > PAGESIZE) { 5094 pgsz = page_get_pagesize(seg->s_szc); 5095 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, 5096 lpgeaddr); 5097 if (lpgeaddr - lpgaddr > pgsz) { 5098 demote = 1; 5099 } 5100 } 5101 5102 ASSERT(demote || AS_WRITE_HELD(seg->s_as)); 5103 5104 if (demote) { 5105 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5106 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 5107 if (seg->s_szc != 0) { 5108 segvn_vmpss_clrszc_cnt++; 5109 ASSERT(svd->softlockcnt == 0); 5110 err = segvn_clrszc(seg); 5111 if (err) { 5112 segvn_vmpss_clrszc_err++; 5113 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5114 return (FC_MAKE_ERR(err)); 5115 } 5116 } 5117 ASSERT(seg->s_szc == 0); 5118 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5119 goto top; 5120 } 5121 } 5122 5123 /* 5124 * Check to see if we need to allocate an anon_map structure. 5125 */ 5126 if (svd->amp == NULL && (svd->vp == NULL || brkcow)) { 5127 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 5128 /* 5129 * Drop the "read" lock on the segment and acquire 5130 * the "write" version since we have to allocate the 5131 * anon_map. 5132 */ 5133 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5134 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 5135 5136 if (svd->amp == NULL) { 5137 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP); 5138 svd->amp->a_szc = seg->s_szc; 5139 } 5140 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5141 5142 /* 5143 * Start all over again since segment protections 5144 * may have changed after we dropped the "read" lock. 5145 */ 5146 goto top; 5147 } 5148 5149 /* 5150 * S_READ_NOCOW vs S_READ distinction was 5151 * only needed for the code above. After 5152 * that we treat it as S_READ. 5153 */ 5154 if (rw == S_READ_NOCOW) { 5155 ASSERT(type == F_SOFTLOCK); 5156 ASSERT(AS_WRITE_HELD(seg->s_as)); 5157 rw = S_READ; 5158 } 5159 5160 amp = svd->amp; 5161 5162 /* 5163 * MADV_SEQUENTIAL work is ignored for large page segments. 5164 */ 5165 if (seg->s_szc != 0) { 5166 pgsz = page_get_pagesize(seg->s_szc); 5167 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 5168 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr); 5169 if (svd->vp == NULL) { 5170 err = segvn_fault_anonpages(hat, seg, lpgaddr, 5171 lpgeaddr, type, rw, addr, addr + len, brkcow); 5172 } else { 5173 err = segvn_fault_vnodepages(hat, seg, lpgaddr, 5174 lpgeaddr, type, rw, addr, addr + len, brkcow); 5175 if (err == IE_RETRY) { 5176 ASSERT(seg->s_szc == 0); 5177 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock)); 5178 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5179 goto top; 5180 } 5181 } 5182 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5183 return (err); 5184 } 5185 5186 page = seg_page(seg, addr); 5187 if (amp != NULL) { 5188 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 5189 anon_index = svd->anon_index + page; 5190 5191 if (type == F_PROT && rw == S_READ && 5192 svd->tr_state == SEGVN_TR_OFF && 5193 svd->type == MAP_PRIVATE && svd->pageprot == 0) { 5194 size_t index = anon_index; 5195 struct anon *ap; 5196 5197 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5198 /* 5199 * The fast path could apply to S_WRITE also, except 5200 * that the protection fault could be caused by lazy 5201 * tlb flush when ro->rw. In this case, the pte is 5202 * RW already. But RO in the other cpu's tlb causes 5203 * the fault. Since hat_chgprot won't do anything if 5204 * pte doesn't change, we may end up faulting 5205 * indefinitely until the RO tlb entry gets replaced. 5206 */ 5207 for (a = addr; a < addr + len; a += PAGESIZE, index++) { 5208 anon_array_enter(amp, index, &cookie); 5209 ap = anon_get_ptr(amp->ahp, index); 5210 anon_array_exit(&cookie); 5211 if ((ap == NULL) || (ap->an_refcnt != 1)) { 5212 ANON_LOCK_EXIT(&->a_rwlock); 5213 goto slow; 5214 } 5215 } 5216 hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot); 5217 ANON_LOCK_EXIT(&->a_rwlock); 5218 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5219 return (0); 5220 } 5221 } 5222 slow: 5223 5224 if (svd->vpage == NULL) 5225 vpage = NULL; 5226 else 5227 vpage = &svd->vpage[page]; 5228 5229 off = svd->offset + (uintptr_t)(addr - seg->s_base); 5230 5231 /* 5232 * If MADV_SEQUENTIAL has been set for the particular page we 5233 * are faulting on, free behind all pages in the segment and put 5234 * them on the free list. 5235 */ 5236 5237 if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) { 5238 struct vpage *vpp; 5239 ulong_t fanon_index; 5240 size_t fpage; 5241 u_offset_t pgoff, fpgoff; 5242 struct vnode *fvp; 5243 struct anon *fap = NULL; 5244 5245 if (svd->advice == MADV_SEQUENTIAL || 5246 (svd->pageadvice && 5247 VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) { 5248 pgoff = off - PAGESIZE; 5249 fpage = page - 1; 5250 if (vpage != NULL) 5251 vpp = &svd->vpage[fpage]; 5252 if (amp != NULL) 5253 fanon_index = svd->anon_index + fpage; 5254 5255 while (pgoff > svd->offset) { 5256 if (svd->advice != MADV_SEQUENTIAL && 5257 (!svd->pageadvice || (vpage && 5258 VPP_ADVICE(vpp) != MADV_SEQUENTIAL))) 5259 break; 5260 5261 /* 5262 * If this is an anon page, we must find the 5263 * correct <vp, offset> for it 5264 */ 5265 fap = NULL; 5266 if (amp != NULL) { 5267 ANON_LOCK_ENTER(&->a_rwlock, 5268 RW_READER); 5269 anon_array_enter(amp, fanon_index, 5270 &cookie); 5271 fap = anon_get_ptr(amp->ahp, 5272 fanon_index); 5273 if (fap != NULL) { 5274 swap_xlate(fap, &fvp, &fpgoff); 5275 } else { 5276 fpgoff = pgoff; 5277 fvp = svd->vp; 5278 } 5279 anon_array_exit(&cookie); 5280 ANON_LOCK_EXIT(&->a_rwlock); 5281 } else { 5282 fpgoff = pgoff; 5283 fvp = svd->vp; 5284 } 5285 if (fvp == NULL) 5286 break; /* XXX */ 5287 /* 5288 * Skip pages that are free or have an 5289 * "exclusive" lock. 5290 */ 5291 pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED); 5292 if (pp == NULL) 5293 break; 5294 /* 5295 * We don't need the page_struct_lock to test 5296 * as this is only advisory; even if we 5297 * acquire it someone might race in and lock 5298 * the page after we unlock and before the 5299 * PUTPAGE, then VOP_PUTPAGE will do nothing. 5300 */ 5301 if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) { 5302 /* 5303 * Hold the vnode before releasing 5304 * the page lock to prevent it from 5305 * being freed and re-used by some 5306 * other thread. 5307 */ 5308 VN_HOLD(fvp); 5309 page_unlock(pp); 5310 /* 5311 * We should build a page list 5312 * to kluster putpages XXX 5313 */ 5314 (void) VOP_PUTPAGE(fvp, 5315 (offset_t)fpgoff, PAGESIZE, 5316 (B_DONTNEED|B_FREE|B_ASYNC), 5317 svd->cred, NULL); 5318 VN_RELE(fvp); 5319 } else { 5320 /* 5321 * XXX - Should the loop terminate if 5322 * the page is `locked'? 5323 */ 5324 page_unlock(pp); 5325 } 5326 --vpp; 5327 --fanon_index; 5328 pgoff -= PAGESIZE; 5329 } 5330 } 5331 } 5332 5333 plp = pl; 5334 *plp = NULL; 5335 pl_alloc_sz = 0; 5336 5337 /* 5338 * See if we need to call VOP_GETPAGE for 5339 * *any* of the range being faulted on. 5340 * We can skip all of this work if there 5341 * was no original vnode. 5342 */ 5343 if (svd->vp != NULL) { 5344 u_offset_t vp_off; 5345 size_t vp_len; 5346 struct anon *ap; 5347 vnode_t *vp; 5348 5349 vp_off = off; 5350 vp_len = len; 5351 5352 if (amp == NULL) 5353 dogetpage = 1; 5354 else { 5355 /* 5356 * Only acquire reader lock to prevent amp->ahp 5357 * from being changed. It's ok to miss pages, 5358 * hence we don't do anon_array_enter 5359 */ 5360 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5361 ap = anon_get_ptr(amp->ahp, anon_index); 5362 5363 if (len <= PAGESIZE) 5364 /* inline non_anon() */ 5365 dogetpage = (ap == NULL); 5366 else 5367 dogetpage = non_anon(amp->ahp, anon_index, 5368 &vp_off, &vp_len); 5369 ANON_LOCK_EXIT(&->a_rwlock); 5370 } 5371 5372 if (dogetpage) { 5373 enum seg_rw arw; 5374 struct as *as = seg->s_as; 5375 5376 if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) { 5377 /* 5378 * Page list won't fit in local array, 5379 * allocate one of the needed size. 5380 */ 5381 pl_alloc_sz = 5382 (btop(len) + 1) * sizeof (page_t *); 5383 plp = kmem_alloc(pl_alloc_sz, KM_SLEEP); 5384 plp[0] = NULL; 5385 plsz = len; 5386 } else if (rw == S_WRITE && svd->type == MAP_PRIVATE || 5387 svd->tr_state == SEGVN_TR_ON || rw == S_OTHER || 5388 (((size_t)(addr + PAGESIZE) < 5389 (size_t)(seg->s_base + seg->s_size)) && 5390 hat_probe(as->a_hat, addr + PAGESIZE))) { 5391 /* 5392 * Ask VOP_GETPAGE to return the exact number 5393 * of pages if 5394 * (a) this is a COW fault, or 5395 * (b) this is a software fault, or 5396 * (c) next page is already mapped. 5397 */ 5398 plsz = len; 5399 } else { 5400 /* 5401 * Ask VOP_GETPAGE to return adjacent pages 5402 * within the segment. 5403 */ 5404 plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t) 5405 ((seg->s_base + seg->s_size) - addr)); 5406 ASSERT((addr + plsz) <= 5407 (seg->s_base + seg->s_size)); 5408 } 5409 5410 /* 5411 * Need to get some non-anonymous pages. 5412 * We need to make only one call to GETPAGE to do 5413 * this to prevent certain deadlocking conditions 5414 * when we are doing locking. In this case 5415 * non_anon() should have picked up the smallest 5416 * range which includes all the non-anonymous 5417 * pages in the requested range. We have to 5418 * be careful regarding which rw flag to pass in 5419 * because on a private mapping, the underlying 5420 * object is never allowed to be written. 5421 */ 5422 if (rw == S_WRITE && svd->type == MAP_PRIVATE) { 5423 arw = S_READ; 5424 } else { 5425 arw = rw; 5426 } 5427 vp = svd->vp; 5428 TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE, 5429 "segvn_getpage:seg %p addr %p vp %p", 5430 seg, addr, vp); 5431 err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len, 5432 &vpprot, plp, plsz, seg, addr + (vp_off - off), arw, 5433 svd->cred, NULL); 5434 if (err) { 5435 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5436 segvn_pagelist_rele(plp); 5437 if (pl_alloc_sz) 5438 kmem_free(plp, pl_alloc_sz); 5439 return (FC_MAKE_ERR(err)); 5440 } 5441 if (svd->type == MAP_PRIVATE) 5442 vpprot &= ~PROT_WRITE; 5443 } 5444 } 5445 5446 /* 5447 * N.B. at this time the plp array has all the needed non-anon 5448 * pages in addition to (possibly) having some adjacent pages. 5449 */ 5450 5451 /* 5452 * Always acquire the anon_array_lock to prevent 5453 * 2 threads from allocating separate anon slots for 5454 * the same "addr". 5455 * 5456 * If this is a copy-on-write fault and we don't already 5457 * have the anon_array_lock, acquire it to prevent the 5458 * fault routine from handling multiple copy-on-write faults 5459 * on the same "addr" in the same address space. 5460 * 5461 * Only one thread should deal with the fault since after 5462 * it is handled, the other threads can acquire a translation 5463 * to the newly created private page. This prevents two or 5464 * more threads from creating different private pages for the 5465 * same fault. 5466 * 5467 * We grab "serialization" lock here if this is a MAP_PRIVATE segment 5468 * to prevent deadlock between this thread and another thread 5469 * which has soft-locked this page and wants to acquire serial_lock. 5470 * ( bug 4026339 ) 5471 * 5472 * The fix for bug 4026339 becomes unnecessary when using the 5473 * locking scheme with per amp rwlock and a global set of hash 5474 * lock, anon_array_lock. If we steal a vnode page when low 5475 * on memory and upgrad the page lock through page_rename, 5476 * then the page is PAGE_HANDLED, nothing needs to be done 5477 * for this page after returning from segvn_faultpage. 5478 * 5479 * But really, the page lock should be downgraded after 5480 * the stolen page is page_rename'd. 5481 */ 5482 5483 if (amp != NULL) 5484 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5485 5486 /* 5487 * Ok, now loop over the address range and handle faults 5488 */ 5489 for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) { 5490 err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot, 5491 type, rw, brkcow); 5492 if (err) { 5493 if (amp != NULL) 5494 ANON_LOCK_EXIT(&->a_rwlock); 5495 if (type == F_SOFTLOCK && a > addr) { 5496 segvn_softunlock(seg, addr, (a - addr), 5497 S_OTHER); 5498 } 5499 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5500 segvn_pagelist_rele(plp); 5501 if (pl_alloc_sz) 5502 kmem_free(plp, pl_alloc_sz); 5503 return (err); 5504 } 5505 if (vpage) { 5506 vpage++; 5507 } else if (svd->vpage) { 5508 page = seg_page(seg, addr); 5509 vpage = &svd->vpage[++page]; 5510 } 5511 } 5512 5513 /* Didn't get pages from the underlying fs so we're done */ 5514 if (!dogetpage) 5515 goto done; 5516 5517 /* 5518 * Now handle any other pages in the list returned. 5519 * If the page can be used, load up the translations now. 5520 * Note that the for loop will only be entered if "plp" 5521 * is pointing to a non-NULL page pointer which means that 5522 * VOP_GETPAGE() was called and vpprot has been initialized. 5523 */ 5524 if (svd->pageprot == 0) 5525 prot = svd->prot & vpprot; 5526 5527 5528 /* 5529 * Large Files: diff should be unsigned value because we started 5530 * supporting > 2GB segment sizes from 2.5.1 and when a 5531 * large file of size > 2GB gets mapped to address space 5532 * the diff value can be > 2GB. 5533 */ 5534 5535 for (ppp = plp; (pp = *ppp) != NULL; ppp++) { 5536 size_t diff; 5537 struct anon *ap; 5538 int anon_index; 5539 anon_sync_obj_t cookie; 5540 int hat_flag = HAT_LOAD_ADV; 5541 5542 if (svd->flags & MAP_TEXT) { 5543 hat_flag |= HAT_LOAD_TEXT; 5544 } 5545 5546 if (pp == PAGE_HANDLED) 5547 continue; 5548 5549 if (svd->tr_state != SEGVN_TR_ON && 5550 pp->p_offset >= svd->offset && 5551 pp->p_offset < svd->offset + seg->s_size) { 5552 5553 diff = pp->p_offset - svd->offset; 5554 5555 /* 5556 * Large Files: Following is the assertion 5557 * validating the above cast. 5558 */ 5559 ASSERT(svd->vp == pp->p_vnode); 5560 5561 page = btop(diff); 5562 if (svd->pageprot) 5563 prot = VPP_PROT(&svd->vpage[page]) & vpprot; 5564 5565 /* 5566 * Prevent other threads in the address space from 5567 * creating private pages (i.e., allocating anon slots) 5568 * while we are in the process of loading translations 5569 * to additional pages returned by the underlying 5570 * object. 5571 */ 5572 if (amp != NULL) { 5573 anon_index = svd->anon_index + page; 5574 anon_array_enter(amp, anon_index, &cookie); 5575 ap = anon_get_ptr(amp->ahp, anon_index); 5576 } 5577 if ((amp == NULL) || (ap == NULL)) { 5578 if (IS_VMODSORT(pp->p_vnode) || 5579 enable_mbit_wa) { 5580 if (rw == S_WRITE) 5581 hat_setmod(pp); 5582 else if (rw != S_OTHER && 5583 !hat_ismod(pp)) 5584 prot &= ~PROT_WRITE; 5585 } 5586 /* 5587 * Skip mapping read ahead pages marked 5588 * for migration, so they will get migrated 5589 * properly on fault 5590 */ 5591 ASSERT(amp == NULL || 5592 svd->rcookie == HAT_INVALID_REGION_COOKIE); 5593 if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) { 5594 hat_memload_region(hat, 5595 seg->s_base + diff, 5596 pp, prot, hat_flag, 5597 svd->rcookie); 5598 } 5599 } 5600 if (amp != NULL) 5601 anon_array_exit(&cookie); 5602 } 5603 page_unlock(pp); 5604 } 5605 done: 5606 if (amp != NULL) 5607 ANON_LOCK_EXIT(&->a_rwlock); 5608 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5609 if (pl_alloc_sz) 5610 kmem_free(plp, pl_alloc_sz); 5611 return (0); 5612 } 5613 5614 /* 5615 * This routine is used to start I/O on pages asynchronously. XXX it will 5616 * only create PAGESIZE pages. At fault time they will be relocated into 5617 * larger pages. 5618 */ 5619 static faultcode_t 5620 segvn_faulta(struct seg *seg, caddr_t addr) 5621 { 5622 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 5623 int err; 5624 struct anon_map *amp; 5625 vnode_t *vp; 5626 5627 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 5628 5629 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 5630 if ((amp = svd->amp) != NULL) { 5631 struct anon *ap; 5632 5633 /* 5634 * Reader lock to prevent amp->ahp from being changed. 5635 * This is advisory, it's ok to miss a page, so 5636 * we don't do anon_array_enter lock. 5637 */ 5638 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5639 if ((ap = anon_get_ptr(amp->ahp, 5640 svd->anon_index + seg_page(seg, addr))) != NULL) { 5641 5642 err = anon_getpage(&ap, NULL, NULL, 5643 0, seg, addr, S_READ, svd->cred); 5644 5645 ANON_LOCK_EXIT(&->a_rwlock); 5646 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5647 if (err) 5648 return (FC_MAKE_ERR(err)); 5649 return (0); 5650 } 5651 ANON_LOCK_EXIT(&->a_rwlock); 5652 } 5653 5654 if (svd->vp == NULL) { 5655 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5656 return (0); /* zfod page - do nothing now */ 5657 } 5658 5659 vp = svd->vp; 5660 TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE, 5661 "segvn_getpage:seg %p addr %p vp %p", seg, addr, vp); 5662 err = VOP_GETPAGE(vp, 5663 (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)), 5664 PAGESIZE, NULL, NULL, 0, seg, addr, 5665 S_OTHER, svd->cred, NULL); 5666 5667 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5668 if (err) 5669 return (FC_MAKE_ERR(err)); 5670 return (0); 5671 } 5672 5673 static int 5674 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot) 5675 { 5676 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 5677 struct vpage *cvp, *svp, *evp; 5678 struct vnode *vp; 5679 size_t pgsz; 5680 pgcnt_t pgcnt; 5681 anon_sync_obj_t cookie; 5682 int unload_done = 0; 5683 5684 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 5685 5686 if ((svd->maxprot & prot) != prot) 5687 return (EACCES); /* violated maxprot */ 5688 5689 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 5690 5691 /* return if prot is the same */ 5692 if (!svd->pageprot && svd->prot == prot) { 5693 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5694 return (0); 5695 } 5696 5697 /* 5698 * Since we change protections we first have to flush the cache. 5699 * This makes sure all the pagelock calls have to recheck 5700 * protections. 5701 */ 5702 if (svd->softlockcnt > 0) { 5703 ASSERT(svd->tr_state == SEGVN_TR_OFF); 5704 5705 /* 5706 * If this is shared segment non 0 softlockcnt 5707 * means locked pages are still in use. 5708 */ 5709 if (svd->type == MAP_SHARED) { 5710 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5711 return (EAGAIN); 5712 } 5713 5714 /* 5715 * Since we do have the segvn writers lock nobody can fill 5716 * the cache with entries belonging to this seg during 5717 * the purge. The flush either succeeds or we still have 5718 * pending I/Os. 5719 */ 5720 segvn_purge(seg); 5721 if (svd->softlockcnt > 0) { 5722 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5723 return (EAGAIN); 5724 } 5725 } 5726 5727 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 5728 ASSERT(svd->amp == NULL); 5729 ASSERT(svd->tr_state == SEGVN_TR_OFF); 5730 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 5731 HAT_REGION_TEXT); 5732 svd->rcookie = HAT_INVALID_REGION_COOKIE; 5733 unload_done = 1; 5734 } else if (svd->tr_state == SEGVN_TR_INIT) { 5735 svd->tr_state = SEGVN_TR_OFF; 5736 } else if (svd->tr_state == SEGVN_TR_ON) { 5737 ASSERT(svd->amp != NULL); 5738 segvn_textunrepl(seg, 0); 5739 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 5740 unload_done = 1; 5741 } 5742 5743 if ((prot & PROT_WRITE) && svd->type == MAP_SHARED && 5744 svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) { 5745 ASSERT(vn_is_mapped(svd->vp, V_WRITE)); 5746 segvn_inval_trcache(svd->vp); 5747 } 5748 if (seg->s_szc != 0) { 5749 int err; 5750 pgsz = page_get_pagesize(seg->s_szc); 5751 pgcnt = pgsz >> PAGESHIFT; 5752 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 5753 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) { 5754 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5755 ASSERT(seg->s_base != addr || seg->s_size != len); 5756 /* 5757 * If we are holding the as lock as a reader then 5758 * we need to return IE_RETRY and let the as 5759 * layer drop and re-acquire the lock as a writer. 5760 */ 5761 if (AS_READ_HELD(seg->s_as)) 5762 return (IE_RETRY); 5763 VM_STAT_ADD(segvnvmstats.demoterange[1]); 5764 if (svd->type == MAP_PRIVATE || svd->vp != NULL) { 5765 err = segvn_demote_range(seg, addr, len, 5766 SDR_END, 0); 5767 } else { 5768 uint_t szcvec = map_pgszcvec(seg->s_base, 5769 pgsz, (uintptr_t)seg->s_base, 5770 (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0); 5771 err = segvn_demote_range(seg, addr, len, 5772 SDR_END, szcvec); 5773 } 5774 if (err == 0) 5775 return (IE_RETRY); 5776 if (err == ENOMEM) 5777 return (IE_NOMEM); 5778 return (err); 5779 } 5780 } 5781 5782 5783 /* 5784 * If it's a private mapping and we're making it writable then we 5785 * may have to reserve the additional swap space now. If we are 5786 * making writable only a part of the segment then we use its vpage 5787 * array to keep a record of the pages for which we have reserved 5788 * swap. In this case we set the pageswap field in the segment's 5789 * segvn structure to record this. 5790 * 5791 * If it's a private mapping to a file (i.e., vp != NULL) and we're 5792 * removing write permission on the entire segment and we haven't 5793 * modified any pages, we can release the swap space. 5794 */ 5795 if (svd->type == MAP_PRIVATE) { 5796 if (prot & PROT_WRITE) { 5797 if (!(svd->flags & MAP_NORESERVE) && 5798 !(svd->swresv && svd->pageswap == 0)) { 5799 size_t sz = 0; 5800 5801 /* 5802 * Start by determining how much swap 5803 * space is required. 5804 */ 5805 if (addr == seg->s_base && 5806 len == seg->s_size && 5807 svd->pageswap == 0) { 5808 /* The whole segment */ 5809 sz = seg->s_size; 5810 } else { 5811 /* 5812 * Make sure that the vpage array 5813 * exists, and make a note of the 5814 * range of elements corresponding 5815 * to len. 5816 */ 5817 segvn_vpage(seg); 5818 if (svd->vpage == NULL) { 5819 SEGVN_LOCK_EXIT(seg->s_as, 5820 &svd->lock); 5821 return (ENOMEM); 5822 } 5823 svp = &svd->vpage[seg_page(seg, addr)]; 5824 evp = &svd->vpage[seg_page(seg, 5825 addr + len)]; 5826 5827 if (svd->pageswap == 0) { 5828 /* 5829 * This is the first time we've 5830 * asked for a part of this 5831 * segment, so we need to 5832 * reserve everything we've 5833 * been asked for. 5834 */ 5835 sz = len; 5836 } else { 5837 /* 5838 * We have to count the number 5839 * of pages required. 5840 */ 5841 for (cvp = svp; cvp < evp; 5842 cvp++) { 5843 if (!VPP_ISSWAPRES(cvp)) 5844 sz++; 5845 } 5846 sz <<= PAGESHIFT; 5847 } 5848 } 5849 5850 /* Try to reserve the necessary swap. */ 5851 if (anon_resv_zone(sz, 5852 seg->s_as->a_proc->p_zone) == 0) { 5853 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5854 return (IE_NOMEM); 5855 } 5856 5857 /* 5858 * Make a note of how much swap space 5859 * we've reserved. 5860 */ 5861 if (svd->pageswap == 0 && sz == seg->s_size) { 5862 svd->swresv = sz; 5863 } else { 5864 ASSERT(svd->vpage != NULL); 5865 svd->swresv += sz; 5866 svd->pageswap = 1; 5867 for (cvp = svp; cvp < evp; cvp++) { 5868 if (!VPP_ISSWAPRES(cvp)) 5869 VPP_SETSWAPRES(cvp); 5870 } 5871 } 5872 } 5873 } else { 5874 /* 5875 * Swap space is released only if this segment 5876 * does not map anonymous memory, since read faults 5877 * on such segments still need an anon slot to read 5878 * in the data. 5879 */ 5880 if (svd->swresv != 0 && svd->vp != NULL && 5881 svd->amp == NULL && addr == seg->s_base && 5882 len == seg->s_size && svd->pageprot == 0) { 5883 ASSERT(svd->pageswap == 0); 5884 anon_unresv_zone(svd->swresv, 5885 seg->s_as->a_proc->p_zone); 5886 svd->swresv = 0; 5887 TRACE_3(TR_FAC_VM, TR_ANON_PROC, 5888 "anon proc:%p %lu %u", seg, 0, 0); 5889 } 5890 } 5891 } 5892 5893 if (addr == seg->s_base && len == seg->s_size && svd->vpage == NULL) { 5894 if (svd->prot == prot) { 5895 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5896 return (0); /* all done */ 5897 } 5898 svd->prot = (uchar_t)prot; 5899 } else if (svd->type == MAP_PRIVATE) { 5900 struct anon *ap = NULL; 5901 page_t *pp; 5902 u_offset_t offset, off; 5903 struct anon_map *amp; 5904 ulong_t anon_idx = 0; 5905 5906 /* 5907 * A vpage structure exists or else the change does not 5908 * involve the entire segment. Establish a vpage structure 5909 * if none is there. Then, for each page in the range, 5910 * adjust its individual permissions. Note that write- 5911 * enabling a MAP_PRIVATE page can affect the claims for 5912 * locked down memory. Overcommitting memory terminates 5913 * the operation. 5914 */ 5915 segvn_vpage(seg); 5916 if (svd->vpage == NULL) { 5917 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5918 return (ENOMEM); 5919 } 5920 svd->pageprot = 1; 5921 if ((amp = svd->amp) != NULL) { 5922 anon_idx = svd->anon_index + seg_page(seg, addr); 5923 ASSERT(seg->s_szc == 0 || 5924 IS_P2ALIGNED(anon_idx, pgcnt)); 5925 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5926 } 5927 5928 offset = svd->offset + (uintptr_t)(addr - seg->s_base); 5929 evp = &svd->vpage[seg_page(seg, addr + len)]; 5930 5931 /* 5932 * See Statement at the beginning of segvn_lockop regarding 5933 * the way cowcnts and lckcnts are handled. 5934 */ 5935 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) { 5936 5937 if (seg->s_szc != 0) { 5938 if (amp != NULL) { 5939 anon_array_enter(amp, anon_idx, 5940 &cookie); 5941 } 5942 if (IS_P2ALIGNED(anon_idx, pgcnt) && 5943 !segvn_claim_pages(seg, svp, offset, 5944 anon_idx, prot)) { 5945 if (amp != NULL) { 5946 anon_array_exit(&cookie); 5947 } 5948 break; 5949 } 5950 if (amp != NULL) { 5951 anon_array_exit(&cookie); 5952 } 5953 anon_idx++; 5954 } else { 5955 if (amp != NULL) { 5956 anon_array_enter(amp, anon_idx, 5957 &cookie); 5958 ap = anon_get_ptr(amp->ahp, anon_idx++); 5959 } 5960 5961 if (VPP_ISPPLOCK(svp) && 5962 VPP_PROT(svp) != prot) { 5963 5964 if (amp == NULL || ap == NULL) { 5965 vp = svd->vp; 5966 off = offset; 5967 } else 5968 swap_xlate(ap, &vp, &off); 5969 if (amp != NULL) 5970 anon_array_exit(&cookie); 5971 5972 if ((pp = page_lookup(vp, off, 5973 SE_SHARED)) == NULL) { 5974 panic("segvn_setprot: no page"); 5975 /*NOTREACHED*/ 5976 } 5977 ASSERT(seg->s_szc == 0); 5978 if ((VPP_PROT(svp) ^ prot) & 5979 PROT_WRITE) { 5980 if (prot & PROT_WRITE) { 5981 if (!page_addclaim( 5982 pp)) { 5983 page_unlock(pp); 5984 break; 5985 } 5986 } else { 5987 if (!page_subclaim( 5988 pp)) { 5989 page_unlock(pp); 5990 break; 5991 } 5992 } 5993 } 5994 page_unlock(pp); 5995 } else if (amp != NULL) 5996 anon_array_exit(&cookie); 5997 } 5998 VPP_SETPROT(svp, prot); 5999 offset += PAGESIZE; 6000 } 6001 if (amp != NULL) 6002 ANON_LOCK_EXIT(&->a_rwlock); 6003 6004 /* 6005 * Did we terminate prematurely? If so, simply unload 6006 * the translations to the things we've updated so far. 6007 */ 6008 if (svp != evp) { 6009 if (unload_done) { 6010 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6011 return (IE_NOMEM); 6012 } 6013 len = (svp - &svd->vpage[seg_page(seg, addr)]) * 6014 PAGESIZE; 6015 ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz)); 6016 if (len != 0) 6017 hat_unload(seg->s_as->a_hat, addr, 6018 len, HAT_UNLOAD); 6019 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6020 return (IE_NOMEM); 6021 } 6022 } else { 6023 segvn_vpage(seg); 6024 if (svd->vpage == NULL) { 6025 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6026 return (ENOMEM); 6027 } 6028 svd->pageprot = 1; 6029 evp = &svd->vpage[seg_page(seg, addr + len)]; 6030 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) { 6031 VPP_SETPROT(svp, prot); 6032 } 6033 } 6034 6035 if (unload_done) { 6036 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6037 return (0); 6038 } 6039 6040 if (((prot & PROT_WRITE) != 0 && 6041 (svd->vp != NULL || svd->type == MAP_PRIVATE)) || 6042 (prot & ~PROT_USER) == PROT_NONE) { 6043 /* 6044 * Either private or shared data with write access (in 6045 * which case we need to throw out all former translations 6046 * so that we get the right translations set up on fault 6047 * and we don't allow write access to any copy-on-write pages 6048 * that might be around or to prevent write access to pages 6049 * representing holes in a file), or we don't have permission 6050 * to access the memory at all (in which case we have to 6051 * unload any current translations that might exist). 6052 */ 6053 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD); 6054 } else { 6055 /* 6056 * A shared mapping or a private mapping in which write 6057 * protection is going to be denied - just change all the 6058 * protections over the range of addresses in question. 6059 * segvn does not support any other attributes other 6060 * than prot so we can use hat_chgattr. 6061 */ 6062 hat_chgattr(seg->s_as->a_hat, addr, len, prot); 6063 } 6064 6065 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6066 6067 return (0); 6068 } 6069 6070 /* 6071 * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize, 6072 * to determine if the seg is capable of mapping the requested szc. 6073 */ 6074 static int 6075 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc) 6076 { 6077 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6078 struct segvn_data *nsvd; 6079 struct anon_map *amp = svd->amp; 6080 struct seg *nseg; 6081 caddr_t eaddr = addr + len, a; 6082 size_t pgsz = page_get_pagesize(szc); 6083 pgcnt_t pgcnt = page_get_pagecnt(szc); 6084 int err; 6085 u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base); 6086 6087 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 6088 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size); 6089 6090 if (seg->s_szc == szc || segvn_lpg_disable != 0) { 6091 return (0); 6092 } 6093 6094 /* 6095 * addr should always be pgsz aligned but eaddr may be misaligned if 6096 * it's at the end of the segment. 6097 * 6098 * XXX we should assert this condition since as_setpagesize() logic 6099 * guarantees it. 6100 */ 6101 if (!IS_P2ALIGNED(addr, pgsz) || 6102 (!IS_P2ALIGNED(eaddr, pgsz) && 6103 eaddr != seg->s_base + seg->s_size)) { 6104 6105 segvn_setpgsz_align_err++; 6106 return (EINVAL); 6107 } 6108 6109 if (amp != NULL && svd->type == MAP_SHARED) { 6110 ulong_t an_idx = svd->anon_index + seg_page(seg, addr); 6111 if (!IS_P2ALIGNED(an_idx, pgcnt)) { 6112 6113 segvn_setpgsz_anon_align_err++; 6114 return (EINVAL); 6115 } 6116 } 6117 6118 if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas || 6119 szc > segvn_maxpgszc) { 6120 return (EINVAL); 6121 } 6122 6123 /* paranoid check */ 6124 if (svd->vp != NULL && 6125 (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) { 6126 return (EINVAL); 6127 } 6128 6129 if (seg->s_szc == 0 && svd->vp != NULL && 6130 map_addr_vacalign_check(addr, off)) { 6131 return (EINVAL); 6132 } 6133 6134 /* 6135 * Check that protections are the same within new page 6136 * size boundaries. 6137 */ 6138 if (svd->pageprot) { 6139 for (a = addr; a < eaddr; a += pgsz) { 6140 if ((a + pgsz) > eaddr) { 6141 if (!sameprot(seg, a, eaddr - a)) { 6142 return (EINVAL); 6143 } 6144 } else { 6145 if (!sameprot(seg, a, pgsz)) { 6146 return (EINVAL); 6147 } 6148 } 6149 } 6150 } 6151 6152 /* 6153 * Since we are changing page size we first have to flush 6154 * the cache. This makes sure all the pagelock calls have 6155 * to recheck protections. 6156 */ 6157 if (svd->softlockcnt > 0) { 6158 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6159 6160 /* 6161 * If this is shared segment non 0 softlockcnt 6162 * means locked pages are still in use. 6163 */ 6164 if (svd->type == MAP_SHARED) { 6165 return (EAGAIN); 6166 } 6167 6168 /* 6169 * Since we do have the segvn writers lock nobody can fill 6170 * the cache with entries belonging to this seg during 6171 * the purge. The flush either succeeds or we still have 6172 * pending I/Os. 6173 */ 6174 segvn_purge(seg); 6175 if (svd->softlockcnt > 0) { 6176 return (EAGAIN); 6177 } 6178 } 6179 6180 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 6181 ASSERT(svd->amp == NULL); 6182 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6183 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 6184 HAT_REGION_TEXT); 6185 svd->rcookie = HAT_INVALID_REGION_COOKIE; 6186 } else if (svd->tr_state == SEGVN_TR_INIT) { 6187 svd->tr_state = SEGVN_TR_OFF; 6188 } else if (svd->tr_state == SEGVN_TR_ON) { 6189 ASSERT(svd->amp != NULL); 6190 segvn_textunrepl(seg, 1); 6191 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 6192 amp = NULL; 6193 } 6194 6195 /* 6196 * Operation for sub range of existing segment. 6197 */ 6198 if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) { 6199 if (szc < seg->s_szc) { 6200 VM_STAT_ADD(segvnvmstats.demoterange[2]); 6201 err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0); 6202 if (err == 0) { 6203 return (IE_RETRY); 6204 } 6205 if (err == ENOMEM) { 6206 return (IE_NOMEM); 6207 } 6208 return (err); 6209 } 6210 if (addr != seg->s_base) { 6211 nseg = segvn_split_seg(seg, addr); 6212 if (eaddr != (nseg->s_base + nseg->s_size)) { 6213 /* eaddr is szc aligned */ 6214 (void) segvn_split_seg(nseg, eaddr); 6215 } 6216 return (IE_RETRY); 6217 } 6218 if (eaddr != (seg->s_base + seg->s_size)) { 6219 /* eaddr is szc aligned */ 6220 (void) segvn_split_seg(seg, eaddr); 6221 } 6222 return (IE_RETRY); 6223 } 6224 6225 /* 6226 * Break any low level sharing and reset seg->s_szc to 0. 6227 */ 6228 if ((err = segvn_clrszc(seg)) != 0) { 6229 if (err == ENOMEM) { 6230 err = IE_NOMEM; 6231 } 6232 return (err); 6233 } 6234 ASSERT(seg->s_szc == 0); 6235 6236 /* 6237 * If the end of the current segment is not pgsz aligned 6238 * then attempt to concatenate with the next segment. 6239 */ 6240 if (!IS_P2ALIGNED(eaddr, pgsz)) { 6241 nseg = AS_SEGNEXT(seg->s_as, seg); 6242 if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) { 6243 return (ENOMEM); 6244 } 6245 if (nseg->s_ops != &segvn_ops) { 6246 return (EINVAL); 6247 } 6248 nsvd = (struct segvn_data *)nseg->s_data; 6249 if (nsvd->softlockcnt > 0) { 6250 /* 6251 * If this is shared segment non 0 softlockcnt 6252 * means locked pages are still in use. 6253 */ 6254 if (nsvd->type == MAP_SHARED) { 6255 return (EAGAIN); 6256 } 6257 segvn_purge(nseg); 6258 if (nsvd->softlockcnt > 0) { 6259 return (EAGAIN); 6260 } 6261 } 6262 err = segvn_clrszc(nseg); 6263 if (err == ENOMEM) { 6264 err = IE_NOMEM; 6265 } 6266 if (err != 0) { 6267 return (err); 6268 } 6269 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE); 6270 err = segvn_concat(seg, nseg, 1); 6271 if (err == -1) { 6272 return (EINVAL); 6273 } 6274 if (err == -2) { 6275 return (IE_NOMEM); 6276 } 6277 return (IE_RETRY); 6278 } 6279 6280 /* 6281 * May need to re-align anon array to 6282 * new szc. 6283 */ 6284 if (amp != NULL) { 6285 if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) { 6286 struct anon_hdr *nahp; 6287 6288 ASSERT(svd->type == MAP_PRIVATE); 6289 6290 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 6291 ASSERT(amp->refcnt == 1); 6292 nahp = anon_create(btop(amp->size), ANON_NOSLEEP); 6293 if (nahp == NULL) { 6294 ANON_LOCK_EXIT(&->a_rwlock); 6295 return (IE_NOMEM); 6296 } 6297 if (anon_copy_ptr(amp->ahp, svd->anon_index, 6298 nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) { 6299 anon_release(nahp, btop(amp->size)); 6300 ANON_LOCK_EXIT(&->a_rwlock); 6301 return (IE_NOMEM); 6302 } 6303 anon_release(amp->ahp, btop(amp->size)); 6304 amp->ahp = nahp; 6305 svd->anon_index = 0; 6306 ANON_LOCK_EXIT(&->a_rwlock); 6307 } 6308 } 6309 if (svd->vp != NULL && szc != 0) { 6310 struct vattr va; 6311 u_offset_t eoffpage = svd->offset; 6312 va.va_mask = AT_SIZE; 6313 eoffpage += seg->s_size; 6314 eoffpage = btopr(eoffpage); 6315 if (VOP_GETATTR(svd->vp, &va, 0, svd->cred, NULL) != 0) { 6316 segvn_setpgsz_getattr_err++; 6317 return (EINVAL); 6318 } 6319 if (btopr(va.va_size) < eoffpage) { 6320 segvn_setpgsz_eof_err++; 6321 return (EINVAL); 6322 } 6323 if (amp != NULL) { 6324 /* 6325 * anon_fill_cow_holes() may call VOP_GETPAGE(). 6326 * don't take anon map lock here to avoid holding it 6327 * across VOP_GETPAGE() calls that may call back into 6328 * segvn for klsutering checks. We don't really need 6329 * anon map lock here since it's a private segment and 6330 * we hold as level lock as writers. 6331 */ 6332 if ((err = anon_fill_cow_holes(seg, seg->s_base, 6333 amp->ahp, svd->anon_index, svd->vp, svd->offset, 6334 seg->s_size, szc, svd->prot, svd->vpage, 6335 svd->cred)) != 0) { 6336 return (EINVAL); 6337 } 6338 } 6339 segvn_setvnode_mpss(svd->vp); 6340 } 6341 6342 if (amp != NULL) { 6343 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 6344 if (svd->type == MAP_PRIVATE) { 6345 amp->a_szc = szc; 6346 } else if (szc > amp->a_szc) { 6347 amp->a_szc = szc; 6348 } 6349 ANON_LOCK_EXIT(&->a_rwlock); 6350 } 6351 6352 seg->s_szc = szc; 6353 6354 return (0); 6355 } 6356 6357 static int 6358 segvn_clrszc(struct seg *seg) 6359 { 6360 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6361 struct anon_map *amp = svd->amp; 6362 size_t pgsz; 6363 pgcnt_t pages; 6364 int err = 0; 6365 caddr_t a = seg->s_base; 6366 caddr_t ea = a + seg->s_size; 6367 ulong_t an_idx = svd->anon_index; 6368 vnode_t *vp = svd->vp; 6369 struct vpage *vpage = svd->vpage; 6370 page_t *anon_pl[1 + 1], *pp; 6371 struct anon *ap, *oldap; 6372 uint_t prot = svd->prot, vpprot; 6373 int pageflag = 0; 6374 6375 ASSERT(AS_WRITE_HELD(seg->s_as) || 6376 SEGVN_WRITE_HELD(seg->s_as, &svd->lock)); 6377 ASSERT(svd->softlockcnt == 0); 6378 6379 if (vp == NULL && amp == NULL) { 6380 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 6381 seg->s_szc = 0; 6382 return (0); 6383 } 6384 6385 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 6386 ASSERT(svd->amp == NULL); 6387 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6388 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 6389 HAT_REGION_TEXT); 6390 svd->rcookie = HAT_INVALID_REGION_COOKIE; 6391 } else if (svd->tr_state == SEGVN_TR_ON) { 6392 ASSERT(svd->amp != NULL); 6393 segvn_textunrepl(seg, 1); 6394 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 6395 amp = NULL; 6396 } else { 6397 if (svd->tr_state != SEGVN_TR_OFF) { 6398 ASSERT(svd->tr_state == SEGVN_TR_INIT); 6399 svd->tr_state = SEGVN_TR_OFF; 6400 } 6401 6402 /* 6403 * do HAT_UNLOAD_UNMAP since we are changing the pagesize. 6404 * unload argument is 0 when we are freeing the segment 6405 * and unload was already done. 6406 */ 6407 hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size, 6408 HAT_UNLOAD_UNMAP); 6409 } 6410 6411 if (amp == NULL || svd->type == MAP_SHARED) { 6412 seg->s_szc = 0; 6413 return (0); 6414 } 6415 6416 pgsz = page_get_pagesize(seg->s_szc); 6417 pages = btop(pgsz); 6418 6419 /* 6420 * XXX anon rwlock is not really needed because this is a 6421 * private segment and we are writers. 6422 */ 6423 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 6424 6425 for (; a < ea; a += pgsz, an_idx += pages) { 6426 if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) { 6427 ASSERT(vpage != NULL || svd->pageprot == 0); 6428 if (vpage != NULL) { 6429 ASSERT(sameprot(seg, a, pgsz)); 6430 prot = VPP_PROT(vpage); 6431 pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0; 6432 } 6433 if (seg->s_szc != 0) { 6434 ASSERT(vp == NULL || anon_pages(amp->ahp, 6435 an_idx, pages) == pages); 6436 if ((err = anon_map_demotepages(amp, an_idx, 6437 seg, a, prot, vpage, svd->cred)) != 0) { 6438 goto out; 6439 } 6440 } else { 6441 if (oldap->an_refcnt == 1) { 6442 continue; 6443 } 6444 if ((err = anon_getpage(&oldap, &vpprot, 6445 anon_pl, PAGESIZE, seg, a, S_READ, 6446 svd->cred))) { 6447 goto out; 6448 } 6449 if ((pp = anon_private(&ap, seg, a, prot, 6450 anon_pl[0], pageflag, svd->cred)) == NULL) { 6451 err = ENOMEM; 6452 goto out; 6453 } 6454 anon_decref(oldap); 6455 (void) anon_set_ptr(amp->ahp, an_idx, ap, 6456 ANON_SLEEP); 6457 page_unlock(pp); 6458 } 6459 } 6460 vpage = (vpage == NULL) ? NULL : vpage + pages; 6461 } 6462 6463 amp->a_szc = 0; 6464 seg->s_szc = 0; 6465 out: 6466 ANON_LOCK_EXIT(&->a_rwlock); 6467 return (err); 6468 } 6469 6470 static int 6471 segvn_claim_pages( 6472 struct seg *seg, 6473 struct vpage *svp, 6474 u_offset_t off, 6475 ulong_t anon_idx, 6476 uint_t prot) 6477 { 6478 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc); 6479 size_t ppasize = (pgcnt + 1) * sizeof (page_t *); 6480 page_t **ppa; 6481 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6482 struct anon_map *amp = svd->amp; 6483 struct vpage *evp = svp + pgcnt; 6484 caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT) 6485 + seg->s_base; 6486 struct anon *ap; 6487 struct vnode *vp = svd->vp; 6488 page_t *pp; 6489 pgcnt_t pg_idx, i; 6490 int err = 0; 6491 anoff_t aoff; 6492 int anon = (amp != NULL) ? 1 : 0; 6493 6494 ASSERT(svd->type == MAP_PRIVATE); 6495 ASSERT(svd->vpage != NULL); 6496 ASSERT(seg->s_szc != 0); 6497 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 6498 ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt)); 6499 ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT)); 6500 6501 if (VPP_PROT(svp) == prot) 6502 return (1); 6503 if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE)) 6504 return (1); 6505 6506 ppa = kmem_alloc(ppasize, KM_SLEEP); 6507 if (anon && vp != NULL) { 6508 if (anon_get_ptr(amp->ahp, anon_idx) == NULL) { 6509 anon = 0; 6510 ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt)); 6511 } 6512 ASSERT(!anon || 6513 anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt); 6514 } 6515 6516 for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) { 6517 if (!VPP_ISPPLOCK(svp)) 6518 continue; 6519 if (anon) { 6520 ap = anon_get_ptr(amp->ahp, anon_idx); 6521 if (ap == NULL) { 6522 panic("segvn_claim_pages: no anon slot"); 6523 } 6524 swap_xlate(ap, &vp, &aoff); 6525 off = (u_offset_t)aoff; 6526 } 6527 ASSERT(vp != NULL); 6528 if ((pp = page_lookup(vp, 6529 (u_offset_t)off, SE_SHARED)) == NULL) { 6530 panic("segvn_claim_pages: no page"); 6531 } 6532 ppa[pg_idx++] = pp; 6533 off += PAGESIZE; 6534 } 6535 6536 if (ppa[0] == NULL) { 6537 kmem_free(ppa, ppasize); 6538 return (1); 6539 } 6540 6541 ASSERT(pg_idx <= pgcnt); 6542 ppa[pg_idx] = NULL; 6543 6544 6545 /* Find each large page within ppa, and adjust its claim */ 6546 6547 /* Does ppa cover a single large page? */ 6548 if (ppa[0]->p_szc == seg->s_szc) { 6549 if (prot & PROT_WRITE) 6550 err = page_addclaim_pages(ppa); 6551 else 6552 err = page_subclaim_pages(ppa); 6553 } else { 6554 for (i = 0; ppa[i]; i += pgcnt) { 6555 ASSERT(IS_P2ALIGNED(page_pptonum(ppa[i]), pgcnt)); 6556 if (prot & PROT_WRITE) 6557 err = page_addclaim_pages(&ppa[i]); 6558 else 6559 err = page_subclaim_pages(&ppa[i]); 6560 if (err == 0) 6561 break; 6562 } 6563 } 6564 6565 for (i = 0; i < pg_idx; i++) { 6566 ASSERT(ppa[i] != NULL); 6567 page_unlock(ppa[i]); 6568 } 6569 6570 kmem_free(ppa, ppasize); 6571 return (err); 6572 } 6573 6574 /* 6575 * Returns right (upper address) segment if split occurred. 6576 * If the address is equal to the beginning or end of its segment it returns 6577 * the current segment. 6578 */ 6579 static struct seg * 6580 segvn_split_seg(struct seg *seg, caddr_t addr) 6581 { 6582 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6583 struct seg *nseg; 6584 size_t nsize; 6585 struct segvn_data *nsvd; 6586 6587 ASSERT(AS_WRITE_HELD(seg->s_as)); 6588 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6589 6590 ASSERT(addr >= seg->s_base); 6591 ASSERT(addr <= seg->s_base + seg->s_size); 6592 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 6593 6594 if (addr == seg->s_base || addr == seg->s_base + seg->s_size) 6595 return (seg); 6596 6597 nsize = seg->s_base + seg->s_size - addr; 6598 seg->s_size = addr - seg->s_base; 6599 nseg = seg_alloc(seg->s_as, addr, nsize); 6600 ASSERT(nseg != NULL); 6601 nseg->s_ops = seg->s_ops; 6602 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP); 6603 nseg->s_data = (void *)nsvd; 6604 nseg->s_szc = seg->s_szc; 6605 *nsvd = *svd; 6606 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE); 6607 nsvd->seg = nseg; 6608 rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL); 6609 6610 if (nsvd->vp != NULL) { 6611 VN_HOLD(nsvd->vp); 6612 nsvd->offset = svd->offset + 6613 (uintptr_t)(nseg->s_base - seg->s_base); 6614 if (nsvd->type == MAP_SHARED) 6615 lgrp_shm_policy_init(NULL, nsvd->vp); 6616 } else { 6617 /* 6618 * The offset for an anonymous segment has no signifigance in 6619 * terms of an offset into a file. If we were to use the above 6620 * calculation instead, the structures read out of 6621 * /proc/<pid>/xmap would be more difficult to decipher since 6622 * it would be unclear whether two seemingly contiguous 6623 * prxmap_t structures represented different segments or a 6624 * single segment that had been split up into multiple prxmap_t 6625 * structures (e.g. if some part of the segment had not yet 6626 * been faulted in). 6627 */ 6628 nsvd->offset = 0; 6629 } 6630 6631 ASSERT(svd->softlockcnt == 0); 6632 ASSERT(svd->softlockcnt_sbase == 0); 6633 ASSERT(svd->softlockcnt_send == 0); 6634 crhold(svd->cred); 6635 6636 if (svd->vpage != NULL) { 6637 size_t bytes = vpgtob(seg_pages(seg)); 6638 size_t nbytes = vpgtob(seg_pages(nseg)); 6639 struct vpage *ovpage = svd->vpage; 6640 6641 svd->vpage = kmem_alloc(bytes, KM_SLEEP); 6642 bcopy(ovpage, svd->vpage, bytes); 6643 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP); 6644 bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes); 6645 kmem_free(ovpage, bytes + nbytes); 6646 } 6647 if (svd->amp != NULL && svd->type == MAP_PRIVATE) { 6648 struct anon_map *oamp = svd->amp, *namp; 6649 struct anon_hdr *nahp; 6650 6651 ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER); 6652 ASSERT(oamp->refcnt == 1); 6653 nahp = anon_create(btop(seg->s_size), ANON_SLEEP); 6654 (void) anon_copy_ptr(oamp->ahp, svd->anon_index, 6655 nahp, 0, btop(seg->s_size), ANON_SLEEP); 6656 6657 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP); 6658 namp->a_szc = nseg->s_szc; 6659 (void) anon_copy_ptr(oamp->ahp, 6660 svd->anon_index + btop(seg->s_size), 6661 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP); 6662 anon_release(oamp->ahp, btop(oamp->size)); 6663 oamp->ahp = nahp; 6664 oamp->size = seg->s_size; 6665 svd->anon_index = 0; 6666 nsvd->amp = namp; 6667 nsvd->anon_index = 0; 6668 ANON_LOCK_EXIT(&oamp->a_rwlock); 6669 } else if (svd->amp != NULL) { 6670 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc); 6671 ASSERT(svd->amp == nsvd->amp); 6672 ASSERT(seg->s_szc <= svd->amp->a_szc); 6673 nsvd->anon_index = svd->anon_index + seg_pages(seg); 6674 ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt)); 6675 ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER); 6676 svd->amp->refcnt++; 6677 ANON_LOCK_EXIT(&svd->amp->a_rwlock); 6678 } 6679 6680 /* 6681 * Split the amount of swap reserved. 6682 */ 6683 if (svd->swresv) { 6684 /* 6685 * For MAP_NORESERVE, only allocate swap reserve for pages 6686 * being used. Other segments get enough to cover whole 6687 * segment. 6688 */ 6689 if (svd->flags & MAP_NORESERVE) { 6690 size_t oswresv; 6691 6692 ASSERT(svd->amp); 6693 oswresv = svd->swresv; 6694 svd->swresv = ptob(anon_pages(svd->amp->ahp, 6695 svd->anon_index, btop(seg->s_size))); 6696 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp, 6697 nsvd->anon_index, btop(nseg->s_size))); 6698 ASSERT(oswresv >= (svd->swresv + nsvd->swresv)); 6699 } else { 6700 if (svd->pageswap) { 6701 svd->swresv = segvn_count_swap_by_vpages(seg); 6702 ASSERT(nsvd->swresv >= svd->swresv); 6703 nsvd->swresv -= svd->swresv; 6704 } else { 6705 ASSERT(svd->swresv == seg->s_size + 6706 nseg->s_size); 6707 svd->swresv = seg->s_size; 6708 nsvd->swresv = nseg->s_size; 6709 } 6710 } 6711 } 6712 6713 return (nseg); 6714 } 6715 6716 /* 6717 * called on memory operations (unmap, setprot, setpagesize) for a subset 6718 * of a large page segment to either demote the memory range (SDR_RANGE) 6719 * or the ends (SDR_END) by addr/len. 6720 * 6721 * returns 0 on success. returns errno, including ENOMEM, on failure. 6722 */ 6723 static int 6724 segvn_demote_range( 6725 struct seg *seg, 6726 caddr_t addr, 6727 size_t len, 6728 int flag, 6729 uint_t szcvec) 6730 { 6731 caddr_t eaddr = addr + len; 6732 caddr_t lpgaddr, lpgeaddr; 6733 struct seg *nseg; 6734 struct seg *badseg1 = NULL; 6735 struct seg *badseg2 = NULL; 6736 size_t pgsz; 6737 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6738 int err; 6739 uint_t szc = seg->s_szc; 6740 uint_t tszcvec; 6741 6742 ASSERT(AS_WRITE_HELD(seg->s_as)); 6743 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6744 ASSERT(szc != 0); 6745 pgsz = page_get_pagesize(szc); 6746 ASSERT(seg->s_base != addr || seg->s_size != len); 6747 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size); 6748 ASSERT(svd->softlockcnt == 0); 6749 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 6750 ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED)); 6751 6752 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr); 6753 ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr); 6754 if (flag == SDR_RANGE) { 6755 /* demote entire range */ 6756 badseg1 = nseg = segvn_split_seg(seg, lpgaddr); 6757 (void) segvn_split_seg(nseg, lpgeaddr); 6758 ASSERT(badseg1->s_base == lpgaddr); 6759 ASSERT(badseg1->s_size == lpgeaddr - lpgaddr); 6760 } else if (addr != lpgaddr) { 6761 ASSERT(flag == SDR_END); 6762 badseg1 = nseg = segvn_split_seg(seg, lpgaddr); 6763 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz && 6764 eaddr < lpgaddr + 2 * pgsz) { 6765 (void) segvn_split_seg(nseg, lpgeaddr); 6766 ASSERT(badseg1->s_base == lpgaddr); 6767 ASSERT(badseg1->s_size == 2 * pgsz); 6768 } else { 6769 nseg = segvn_split_seg(nseg, lpgaddr + pgsz); 6770 ASSERT(badseg1->s_base == lpgaddr); 6771 ASSERT(badseg1->s_size == pgsz); 6772 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) { 6773 ASSERT(lpgeaddr - lpgaddr > 2 * pgsz); 6774 nseg = segvn_split_seg(nseg, lpgeaddr - pgsz); 6775 badseg2 = nseg; 6776 (void) segvn_split_seg(nseg, lpgeaddr); 6777 ASSERT(badseg2->s_base == lpgeaddr - pgsz); 6778 ASSERT(badseg2->s_size == pgsz); 6779 } 6780 } 6781 } else { 6782 ASSERT(flag == SDR_END); 6783 ASSERT(eaddr < lpgeaddr); 6784 badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz); 6785 (void) segvn_split_seg(nseg, lpgeaddr); 6786 ASSERT(badseg1->s_base == lpgeaddr - pgsz); 6787 ASSERT(badseg1->s_size == pgsz); 6788 } 6789 6790 ASSERT(badseg1 != NULL); 6791 ASSERT(badseg1->s_szc == szc); 6792 ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz || 6793 badseg1->s_size == 2 * pgsz); 6794 ASSERT(sameprot(badseg1, badseg1->s_base, pgsz)); 6795 ASSERT(badseg1->s_size == pgsz || 6796 sameprot(badseg1, badseg1->s_base + pgsz, pgsz)); 6797 if (err = segvn_clrszc(badseg1)) { 6798 return (err); 6799 } 6800 ASSERT(badseg1->s_szc == 0); 6801 6802 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) { 6803 uint_t tszc = highbit(tszcvec) - 1; 6804 caddr_t ta = MAX(addr, badseg1->s_base); 6805 caddr_t te; 6806 size_t tpgsz = page_get_pagesize(tszc); 6807 6808 ASSERT(svd->type == MAP_SHARED); 6809 ASSERT(flag == SDR_END); 6810 ASSERT(tszc < szc && tszc > 0); 6811 6812 if (eaddr > badseg1->s_base + badseg1->s_size) { 6813 te = badseg1->s_base + badseg1->s_size; 6814 } else { 6815 te = eaddr; 6816 } 6817 6818 ASSERT(ta <= te); 6819 badseg1->s_szc = tszc; 6820 if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) { 6821 if (badseg2 != NULL) { 6822 err = segvn_demote_range(badseg1, ta, te - ta, 6823 SDR_END, tszcvec); 6824 if (err != 0) { 6825 return (err); 6826 } 6827 } else { 6828 return (segvn_demote_range(badseg1, ta, 6829 te - ta, SDR_END, tszcvec)); 6830 } 6831 } 6832 } 6833 6834 if (badseg2 == NULL) 6835 return (0); 6836 ASSERT(badseg2->s_szc == szc); 6837 ASSERT(badseg2->s_size == pgsz); 6838 ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size)); 6839 if (err = segvn_clrszc(badseg2)) { 6840 return (err); 6841 } 6842 ASSERT(badseg2->s_szc == 0); 6843 6844 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) { 6845 uint_t tszc = highbit(tszcvec) - 1; 6846 size_t tpgsz = page_get_pagesize(tszc); 6847 6848 ASSERT(svd->type == MAP_SHARED); 6849 ASSERT(flag == SDR_END); 6850 ASSERT(tszc < szc && tszc > 0); 6851 ASSERT(badseg2->s_base > addr); 6852 ASSERT(eaddr > badseg2->s_base); 6853 ASSERT(eaddr < badseg2->s_base + badseg2->s_size); 6854 6855 badseg2->s_szc = tszc; 6856 if (!IS_P2ALIGNED(eaddr, tpgsz)) { 6857 return (segvn_demote_range(badseg2, badseg2->s_base, 6858 eaddr - badseg2->s_base, SDR_END, tszcvec)); 6859 } 6860 } 6861 6862 return (0); 6863 } 6864 6865 static int 6866 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot) 6867 { 6868 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6869 struct vpage *vp, *evp; 6870 6871 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 6872 6873 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 6874 /* 6875 * If segment protection can be used, simply check against them. 6876 */ 6877 if (svd->pageprot == 0) { 6878 int err; 6879 6880 err = ((svd->prot & prot) != prot) ? EACCES : 0; 6881 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6882 return (err); 6883 } 6884 6885 /* 6886 * Have to check down to the vpage level. 6887 */ 6888 evp = &svd->vpage[seg_page(seg, addr + len)]; 6889 for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) { 6890 if ((VPP_PROT(vp) & prot) != prot) { 6891 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6892 return (EACCES); 6893 } 6894 } 6895 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6896 return (0); 6897 } 6898 6899 static int 6900 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv) 6901 { 6902 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6903 size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1; 6904 6905 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 6906 6907 if (pgno != 0) { 6908 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 6909 if (svd->pageprot == 0) { 6910 do { 6911 protv[--pgno] = svd->prot; 6912 } while (pgno != 0); 6913 } else { 6914 size_t pgoff = seg_page(seg, addr); 6915 6916 do { 6917 pgno--; 6918 protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]); 6919 } while (pgno != 0); 6920 } 6921 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6922 } 6923 return (0); 6924 } 6925 6926 static u_offset_t 6927 segvn_getoffset(struct seg *seg, caddr_t addr) 6928 { 6929 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6930 6931 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 6932 6933 return (svd->offset + (uintptr_t)(addr - seg->s_base)); 6934 } 6935 6936 /*ARGSUSED*/ 6937 static int 6938 segvn_gettype(struct seg *seg, caddr_t addr) 6939 { 6940 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6941 6942 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 6943 6944 return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT | 6945 MAP_INITDATA))); 6946 } 6947 6948 /*ARGSUSED*/ 6949 static int 6950 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp) 6951 { 6952 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6953 6954 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 6955 6956 *vpp = svd->vp; 6957 return (0); 6958 } 6959 6960 /* 6961 * Check to see if it makes sense to do kluster/read ahead to 6962 * addr + delta relative to the mapping at addr. We assume here 6963 * that delta is a signed PAGESIZE'd multiple (which can be negative). 6964 * 6965 * For segvn, we currently "approve" of the action if we are 6966 * still in the segment and it maps from the same vp/off, 6967 * or if the advice stored in segvn_data or vpages allows it. 6968 * Currently, klustering is not allowed only if MADV_RANDOM is set. 6969 */ 6970 static int 6971 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 6972 { 6973 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6974 struct anon *oap, *ap; 6975 ssize_t pd; 6976 size_t page; 6977 struct vnode *vp1, *vp2; 6978 u_offset_t off1, off2; 6979 struct anon_map *amp; 6980 6981 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 6982 ASSERT(AS_WRITE_HELD(seg->s_as) || 6983 SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 6984 6985 if (addr + delta < seg->s_base || 6986 addr + delta >= (seg->s_base + seg->s_size)) 6987 return (-1); /* exceeded segment bounds */ 6988 6989 pd = delta / (ssize_t)PAGESIZE; /* divide to preserve sign bit */ 6990 page = seg_page(seg, addr); 6991 6992 /* 6993 * Check to see if either of the pages addr or addr + delta 6994 * have advice set that prevents klustering (if MADV_RANDOM advice 6995 * is set for entire segment, or MADV_SEQUENTIAL is set and delta 6996 * is negative). 6997 */ 6998 if (svd->advice == MADV_RANDOM || 6999 svd->advice == MADV_SEQUENTIAL && delta < 0) 7000 return (-1); 7001 else if (svd->pageadvice && svd->vpage) { 7002 struct vpage *bvpp, *evpp; 7003 7004 bvpp = &svd->vpage[page]; 7005 evpp = &svd->vpage[page + pd]; 7006 if (VPP_ADVICE(bvpp) == MADV_RANDOM || 7007 VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0) 7008 return (-1); 7009 if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) && 7010 VPP_ADVICE(evpp) == MADV_RANDOM) 7011 return (-1); 7012 } 7013 7014 if (svd->type == MAP_SHARED) 7015 return (0); /* shared mapping - all ok */ 7016 7017 if ((amp = svd->amp) == NULL) 7018 return (0); /* off original vnode */ 7019 7020 page += svd->anon_index; 7021 7022 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7023 7024 oap = anon_get_ptr(amp->ahp, page); 7025 ap = anon_get_ptr(amp->ahp, page + pd); 7026 7027 ANON_LOCK_EXIT(&->a_rwlock); 7028 7029 if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) { 7030 return (-1); /* one with and one without an anon */ 7031 } 7032 7033 if (oap == NULL) { /* implies that ap == NULL */ 7034 return (0); /* off original vnode */ 7035 } 7036 7037 /* 7038 * Now we know we have two anon pointers - check to 7039 * see if they happen to be properly allocated. 7040 */ 7041 7042 /* 7043 * XXX We cheat here and don't lock the anon slots. We can't because 7044 * we may have been called from the anon layer which might already 7045 * have locked them. We are holding a refcnt on the slots so they 7046 * can't disappear. The worst that will happen is we'll get the wrong 7047 * names (vp, off) for the slots and make a poor klustering decision. 7048 */ 7049 swap_xlate(ap, &vp1, &off1); 7050 swap_xlate(oap, &vp2, &off2); 7051 7052 7053 if (!VOP_CMP(vp1, vp2, NULL) || off1 - off2 != delta) 7054 return (-1); 7055 return (0); 7056 } 7057 7058 /* 7059 * Swap the pages of seg out to secondary storage, returning the 7060 * number of bytes of storage freed. 7061 * 7062 * The basic idea is first to unload all translations and then to call 7063 * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the 7064 * swap device. Pages to which other segments have mappings will remain 7065 * mapped and won't be swapped. Our caller (as_swapout) has already 7066 * performed the unloading step. 7067 * 7068 * The value returned is intended to correlate well with the process's 7069 * memory requirements. However, there are some caveats: 7070 * 1) When given a shared segment as argument, this routine will 7071 * only succeed in swapping out pages for the last sharer of the 7072 * segment. (Previous callers will only have decremented mapping 7073 * reference counts.) 7074 * 2) We assume that the hat layer maintains a large enough translation 7075 * cache to capture process reference patterns. 7076 */ 7077 static size_t 7078 segvn_swapout(struct seg *seg) 7079 { 7080 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 7081 struct anon_map *amp; 7082 pgcnt_t pgcnt = 0; 7083 pgcnt_t npages; 7084 pgcnt_t page; 7085 ulong_t anon_index; 7086 7087 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 7088 7089 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 7090 /* 7091 * Find pages unmapped by our caller and force them 7092 * out to the virtual swap device. 7093 */ 7094 if ((amp = svd->amp) != NULL) 7095 anon_index = svd->anon_index; 7096 npages = seg->s_size >> PAGESHIFT; 7097 for (page = 0; page < npages; page++) { 7098 page_t *pp; 7099 struct anon *ap; 7100 struct vnode *vp; 7101 u_offset_t off; 7102 anon_sync_obj_t cookie; 7103 7104 /* 7105 * Obtain <vp, off> pair for the page, then look it up. 7106 * 7107 * Note that this code is willing to consider regular 7108 * pages as well as anon pages. Is this appropriate here? 7109 */ 7110 ap = NULL; 7111 if (amp != NULL) { 7112 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7113 if (anon_array_try_enter(amp, anon_index + page, 7114 &cookie)) { 7115 ANON_LOCK_EXIT(&->a_rwlock); 7116 continue; 7117 } 7118 ap = anon_get_ptr(amp->ahp, anon_index + page); 7119 if (ap != NULL) { 7120 swap_xlate(ap, &vp, &off); 7121 } else { 7122 vp = svd->vp; 7123 off = svd->offset + ptob(page); 7124 } 7125 anon_array_exit(&cookie); 7126 ANON_LOCK_EXIT(&->a_rwlock); 7127 } else { 7128 vp = svd->vp; 7129 off = svd->offset + ptob(page); 7130 } 7131 if (vp == NULL) { /* untouched zfod page */ 7132 ASSERT(ap == NULL); 7133 continue; 7134 } 7135 7136 pp = page_lookup_nowait(vp, off, SE_SHARED); 7137 if (pp == NULL) 7138 continue; 7139 7140 7141 /* 7142 * Examine the page to see whether it can be tossed out, 7143 * keeping track of how many we've found. 7144 */ 7145 if (!page_tryupgrade(pp)) { 7146 /* 7147 * If the page has an i/o lock and no mappings, 7148 * it's very likely that the page is being 7149 * written out as a result of klustering. 7150 * Assume this is so and take credit for it here. 7151 */ 7152 if (!page_io_trylock(pp)) { 7153 if (!hat_page_is_mapped(pp)) 7154 pgcnt++; 7155 } else { 7156 page_io_unlock(pp); 7157 } 7158 page_unlock(pp); 7159 continue; 7160 } 7161 ASSERT(!page_iolock_assert(pp)); 7162 7163 7164 /* 7165 * Skip if page is locked or has mappings. 7166 * We don't need the page_struct_lock to look at lckcnt 7167 * and cowcnt because the page is exclusive locked. 7168 */ 7169 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 7170 hat_page_is_mapped(pp)) { 7171 page_unlock(pp); 7172 continue; 7173 } 7174 7175 /* 7176 * dispose skips large pages so try to demote first. 7177 */ 7178 if (pp->p_szc != 0 && !page_try_demote_pages(pp)) { 7179 page_unlock(pp); 7180 /* 7181 * XXX should skip the remaining page_t's of this 7182 * large page. 7183 */ 7184 continue; 7185 } 7186 7187 ASSERT(pp->p_szc == 0); 7188 7189 /* 7190 * No longer mapped -- we can toss it out. How 7191 * we do so depends on whether or not it's dirty. 7192 */ 7193 if (hat_ismod(pp) && pp->p_vnode) { 7194 /* 7195 * We must clean the page before it can be 7196 * freed. Setting B_FREE will cause pvn_done 7197 * to free the page when the i/o completes. 7198 * XXX: This also causes it to be accounted 7199 * as a pageout instead of a swap: need 7200 * B_SWAPOUT bit to use instead of B_FREE. 7201 * 7202 * Hold the vnode before releasing the page lock 7203 * to prevent it from being freed and re-used by 7204 * some other thread. 7205 */ 7206 VN_HOLD(vp); 7207 page_unlock(pp); 7208 7209 /* 7210 * Queue all i/o requests for the pageout thread 7211 * to avoid saturating the pageout devices. 7212 */ 7213 if (!queue_io_request(vp, off)) 7214 VN_RELE(vp); 7215 } else { 7216 /* 7217 * The page was clean, free it. 7218 * 7219 * XXX: Can we ever encounter modified pages 7220 * with no associated vnode here? 7221 */ 7222 ASSERT(pp->p_vnode != NULL); 7223 /*LINTED: constant in conditional context*/ 7224 VN_DISPOSE(pp, B_FREE, 0, kcred); 7225 } 7226 7227 /* 7228 * Credit now even if i/o is in progress. 7229 */ 7230 pgcnt++; 7231 } 7232 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7233 7234 /* 7235 * Wakeup pageout to initiate i/o on all queued requests. 7236 */ 7237 cv_signal_pageout(); 7238 return (ptob(pgcnt)); 7239 } 7240 7241 /* 7242 * Synchronize primary storage cache with real object in virtual memory. 7243 * 7244 * XXX - Anonymous pages should not be sync'ed out at all. 7245 */ 7246 static int 7247 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags) 7248 { 7249 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 7250 struct vpage *vpp; 7251 page_t *pp; 7252 u_offset_t offset; 7253 struct vnode *vp; 7254 u_offset_t off; 7255 caddr_t eaddr; 7256 int bflags; 7257 int err = 0; 7258 int segtype; 7259 int pageprot; 7260 int prot; 7261 ulong_t anon_index; 7262 struct anon_map *amp; 7263 struct anon *ap; 7264 anon_sync_obj_t cookie; 7265 7266 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 7267 7268 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 7269 7270 if (svd->softlockcnt > 0) { 7271 /* 7272 * If this is shared segment non 0 softlockcnt 7273 * means locked pages are still in use. 7274 */ 7275 if (svd->type == MAP_SHARED) { 7276 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7277 return (EAGAIN); 7278 } 7279 7280 /* 7281 * flush all pages from seg cache 7282 * otherwise we may deadlock in swap_putpage 7283 * for B_INVAL page (4175402). 7284 * 7285 * Even if we grab segvn WRITER's lock 7286 * here, there might be another thread which could've 7287 * successfully performed lookup/insert just before 7288 * we acquired the lock here. So, grabbing either 7289 * lock here is of not much use. Until we devise 7290 * a strategy at upper layers to solve the 7291 * synchronization issues completely, we expect 7292 * applications to handle this appropriately. 7293 */ 7294 segvn_purge(seg); 7295 if (svd->softlockcnt > 0) { 7296 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7297 return (EAGAIN); 7298 } 7299 } else if (svd->type == MAP_SHARED && svd->amp != NULL && 7300 svd->amp->a_softlockcnt > 0) { 7301 /* 7302 * Try to purge this amp's entries from pcache. It will 7303 * succeed only if other segments that share the amp have no 7304 * outstanding softlock's. 7305 */ 7306 segvn_purge(seg); 7307 if (svd->amp->a_softlockcnt > 0 || svd->softlockcnt > 0) { 7308 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7309 return (EAGAIN); 7310 } 7311 } 7312 7313 vpp = svd->vpage; 7314 offset = svd->offset + (uintptr_t)(addr - seg->s_base); 7315 bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) | 7316 ((flags & MS_INVALIDATE) ? B_INVAL : 0); 7317 7318 if (attr) { 7319 pageprot = attr & ~(SHARED|PRIVATE); 7320 segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE; 7321 7322 /* 7323 * We are done if the segment types don't match 7324 * or if we have segment level protections and 7325 * they don't match. 7326 */ 7327 if (svd->type != segtype) { 7328 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7329 return (0); 7330 } 7331 if (vpp == NULL) { 7332 if (svd->prot != pageprot) { 7333 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7334 return (0); 7335 } 7336 prot = svd->prot; 7337 } else 7338 vpp = &svd->vpage[seg_page(seg, addr)]; 7339 7340 } else if (svd->vp && svd->amp == NULL && 7341 (flags & MS_INVALIDATE) == 0) { 7342 7343 /* 7344 * No attributes, no anonymous pages and MS_INVALIDATE flag 7345 * is not on, just use one big request. 7346 */ 7347 err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len, 7348 bflags, svd->cred, NULL); 7349 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7350 return (err); 7351 } 7352 7353 if ((amp = svd->amp) != NULL) 7354 anon_index = svd->anon_index + seg_page(seg, addr); 7355 7356 for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) { 7357 ap = NULL; 7358 if (amp != NULL) { 7359 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7360 anon_array_enter(amp, anon_index, &cookie); 7361 ap = anon_get_ptr(amp->ahp, anon_index++); 7362 if (ap != NULL) { 7363 swap_xlate(ap, &vp, &off); 7364 } else { 7365 vp = svd->vp; 7366 off = offset; 7367 } 7368 anon_array_exit(&cookie); 7369 ANON_LOCK_EXIT(&->a_rwlock); 7370 } else { 7371 vp = svd->vp; 7372 off = offset; 7373 } 7374 offset += PAGESIZE; 7375 7376 if (vp == NULL) /* untouched zfod page */ 7377 continue; 7378 7379 if (attr) { 7380 if (vpp) { 7381 prot = VPP_PROT(vpp); 7382 vpp++; 7383 } 7384 if (prot != pageprot) { 7385 continue; 7386 } 7387 } 7388 7389 /* 7390 * See if any of these pages are locked -- if so, then we 7391 * will have to truncate an invalidate request at the first 7392 * locked one. We don't need the page_struct_lock to test 7393 * as this is only advisory; even if we acquire it someone 7394 * might race in and lock the page after we unlock and before 7395 * we do the PUTPAGE, then PUTPAGE simply does nothing. 7396 */ 7397 if (flags & MS_INVALIDATE) { 7398 if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) { 7399 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 7400 page_unlock(pp); 7401 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7402 return (EBUSY); 7403 } 7404 if (ap != NULL && pp->p_szc != 0 && 7405 page_tryupgrade(pp)) { 7406 if (pp->p_lckcnt == 0 && 7407 pp->p_cowcnt == 0) { 7408 /* 7409 * swapfs VN_DISPOSE() won't 7410 * invalidate large pages. 7411 * Attempt to demote. 7412 * XXX can't help it if it 7413 * fails. But for swapfs 7414 * pages it is no big deal. 7415 */ 7416 (void) page_try_demote_pages( 7417 pp); 7418 } 7419 } 7420 page_unlock(pp); 7421 } 7422 } else if (svd->type == MAP_SHARED && amp != NULL) { 7423 /* 7424 * Avoid writing out to disk ISM's large pages 7425 * because segspt_free_pages() relies on NULL an_pvp 7426 * of anon slots of such pages. 7427 */ 7428 7429 ASSERT(svd->vp == NULL); 7430 /* 7431 * swapfs uses page_lookup_nowait if not freeing or 7432 * invalidating and skips a page if 7433 * page_lookup_nowait returns NULL. 7434 */ 7435 pp = page_lookup_nowait(vp, off, SE_SHARED); 7436 if (pp == NULL) { 7437 continue; 7438 } 7439 if (pp->p_szc != 0) { 7440 page_unlock(pp); 7441 continue; 7442 } 7443 7444 /* 7445 * Note ISM pages are created large so (vp, off)'s 7446 * page cannot suddenly become large after we unlock 7447 * pp. 7448 */ 7449 page_unlock(pp); 7450 } 7451 /* 7452 * XXX - Should ultimately try to kluster 7453 * calls to VOP_PUTPAGE() for performance. 7454 */ 7455 VN_HOLD(vp); 7456 err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE, 7457 (bflags | (IS_SWAPFSVP(vp) ? B_PAGE_NOWAIT : 0)), 7458 svd->cred, NULL); 7459 7460 VN_RELE(vp); 7461 if (err) 7462 break; 7463 } 7464 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7465 return (err); 7466 } 7467 7468 /* 7469 * Determine if we have data corresponding to pages in the 7470 * primary storage virtual memory cache (i.e., "in core"). 7471 */ 7472 static size_t 7473 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec) 7474 { 7475 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 7476 struct vnode *vp, *avp; 7477 u_offset_t offset, aoffset; 7478 size_t p, ep; 7479 int ret; 7480 struct vpage *vpp; 7481 page_t *pp; 7482 uint_t start; 7483 struct anon_map *amp; /* XXX - for locknest */ 7484 struct anon *ap; 7485 uint_t attr; 7486 anon_sync_obj_t cookie; 7487 7488 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 7489 7490 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 7491 if (svd->amp == NULL && svd->vp == NULL) { 7492 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7493 bzero(vec, btopr(len)); 7494 return (len); /* no anonymous pages created yet */ 7495 } 7496 7497 p = seg_page(seg, addr); 7498 ep = seg_page(seg, addr + len); 7499 start = svd->vp ? SEG_PAGE_VNODEBACKED : 0; 7500 7501 amp = svd->amp; 7502 for (; p < ep; p++, addr += PAGESIZE) { 7503 vpp = (svd->vpage) ? &svd->vpage[p]: NULL; 7504 ret = start; 7505 ap = NULL; 7506 avp = NULL; 7507 /* Grab the vnode/offset for the anon slot */ 7508 if (amp != NULL) { 7509 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7510 anon_array_enter(amp, svd->anon_index + p, &cookie); 7511 ap = anon_get_ptr(amp->ahp, svd->anon_index + p); 7512 if (ap != NULL) { 7513 swap_xlate(ap, &avp, &aoffset); 7514 } 7515 anon_array_exit(&cookie); 7516 ANON_LOCK_EXIT(&->a_rwlock); 7517 } 7518 if ((avp != NULL) && page_exists(avp, aoffset)) { 7519 /* A page exists for the anon slot */ 7520 ret |= SEG_PAGE_INCORE; 7521 7522 /* 7523 * If page is mapped and writable 7524 */ 7525 attr = (uint_t)0; 7526 if ((hat_getattr(seg->s_as->a_hat, addr, 7527 &attr) != -1) && (attr & PROT_WRITE)) { 7528 ret |= SEG_PAGE_ANON; 7529 } 7530 /* 7531 * Don't get page_struct lock for lckcnt and cowcnt, 7532 * since this is purely advisory. 7533 */ 7534 if ((pp = page_lookup_nowait(avp, aoffset, 7535 SE_SHARED)) != NULL) { 7536 if (pp->p_lckcnt) 7537 ret |= SEG_PAGE_SOFTLOCK; 7538 if (pp->p_cowcnt) 7539 ret |= SEG_PAGE_HASCOW; 7540 page_unlock(pp); 7541 } 7542 } 7543 7544 /* Gather vnode statistics */ 7545 vp = svd->vp; 7546 offset = svd->offset + (uintptr_t)(addr - seg->s_base); 7547 7548 if (vp != NULL) { 7549 /* 7550 * Try to obtain a "shared" lock on the page 7551 * without blocking. If this fails, determine 7552 * if the page is in memory. 7553 */ 7554 pp = page_lookup_nowait(vp, offset, SE_SHARED); 7555 if ((pp == NULL) && (page_exists(vp, offset))) { 7556 /* Page is incore, and is named */ 7557 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE); 7558 } 7559 /* 7560 * Don't get page_struct lock for lckcnt and cowcnt, 7561 * since this is purely advisory. 7562 */ 7563 if (pp != NULL) { 7564 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE); 7565 if (pp->p_lckcnt) 7566 ret |= SEG_PAGE_SOFTLOCK; 7567 if (pp->p_cowcnt) 7568 ret |= SEG_PAGE_HASCOW; 7569 page_unlock(pp); 7570 } 7571 } 7572 7573 /* Gather virtual page information */ 7574 if (vpp) { 7575 if (VPP_ISPPLOCK(vpp)) 7576 ret |= SEG_PAGE_LOCKED; 7577 vpp++; 7578 } 7579 7580 *vec++ = (char)ret; 7581 } 7582 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7583 return (len); 7584 } 7585 7586 /* 7587 * Statement for p_cowcnts/p_lckcnts. 7588 * 7589 * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region 7590 * irrespective of the following factors or anything else: 7591 * 7592 * (1) anon slots are populated or not 7593 * (2) cow is broken or not 7594 * (3) refcnt on ap is 1 or greater than 1 7595 * 7596 * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock 7597 * and munlock. 7598 * 7599 * 7600 * Handling p_cowcnts/p_lckcnts during copy-on-write fault: 7601 * 7602 * if vpage has PROT_WRITE 7603 * transfer cowcnt on the oldpage -> cowcnt on the newpage 7604 * else 7605 * transfer lckcnt on the oldpage -> lckcnt on the newpage 7606 * 7607 * During copy-on-write, decrement p_cowcnt on the oldpage and increment 7608 * p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE. 7609 * 7610 * We may also break COW if softlocking on read access in the physio case. 7611 * In this case, vpage may not have PROT_WRITE. So, we need to decrement 7612 * p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the 7613 * vpage doesn't have PROT_WRITE. 7614 * 7615 * 7616 * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region: 7617 * 7618 * If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and 7619 * increment p_lckcnt by calling page_subclaim() which takes care of 7620 * availrmem accounting and p_lckcnt overflow. 7621 * 7622 * If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and 7623 * increment p_cowcnt by calling page_addclaim() which takes care of 7624 * availrmem availability and p_cowcnt overflow. 7625 */ 7626 7627 /* 7628 * Lock down (or unlock) pages mapped by this segment. 7629 * 7630 * XXX only creates PAGESIZE pages if anon slots are not initialized. 7631 * At fault time they will be relocated into larger pages. 7632 */ 7633 static int 7634 segvn_lockop(struct seg *seg, caddr_t addr, size_t len, 7635 int attr, int op, ulong_t *lockmap, size_t pos) 7636 { 7637 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 7638 struct vpage *vpp; 7639 struct vpage *evp; 7640 page_t *pp; 7641 u_offset_t offset; 7642 u_offset_t off; 7643 int segtype; 7644 int pageprot; 7645 int claim; 7646 struct vnode *vp; 7647 ulong_t anon_index; 7648 struct anon_map *amp; 7649 struct anon *ap; 7650 struct vattr va; 7651 anon_sync_obj_t cookie; 7652 struct kshmid *sp = NULL; 7653 struct proc *p = curproc; 7654 kproject_t *proj = NULL; 7655 int chargeproc = 1; 7656 size_t locked_bytes = 0; 7657 size_t unlocked_bytes = 0; 7658 int err = 0; 7659 7660 /* 7661 * Hold write lock on address space because may split or concatenate 7662 * segments 7663 */ 7664 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 7665 7666 /* 7667 * If this is a shm, use shm's project and zone, else use 7668 * project and zone of calling process 7669 */ 7670 7671 /* Determine if this segment backs a sysV shm */ 7672 if (svd->amp != NULL && svd->amp->a_sp != NULL) { 7673 ASSERT(svd->type == MAP_SHARED); 7674 ASSERT(svd->tr_state == SEGVN_TR_OFF); 7675 sp = svd->amp->a_sp; 7676 proj = sp->shm_perm.ipc_proj; 7677 chargeproc = 0; 7678 } 7679 7680 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 7681 if (attr) { 7682 pageprot = attr & ~(SHARED|PRIVATE); 7683 segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE; 7684 7685 /* 7686 * We are done if the segment types don't match 7687 * or if we have segment level protections and 7688 * they don't match. 7689 */ 7690 if (svd->type != segtype) { 7691 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7692 return (0); 7693 } 7694 if (svd->pageprot == 0 && svd->prot != pageprot) { 7695 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7696 return (0); 7697 } 7698 } 7699 7700 if (op == MC_LOCK) { 7701 if (svd->tr_state == SEGVN_TR_INIT) { 7702 svd->tr_state = SEGVN_TR_OFF; 7703 } else if (svd->tr_state == SEGVN_TR_ON) { 7704 ASSERT(svd->amp != NULL); 7705 segvn_textunrepl(seg, 0); 7706 ASSERT(svd->amp == NULL && 7707 svd->tr_state == SEGVN_TR_OFF); 7708 } 7709 } 7710 7711 /* 7712 * If we're locking, then we must create a vpage structure if 7713 * none exists. If we're unlocking, then check to see if there 7714 * is a vpage -- if not, then we could not have locked anything. 7715 */ 7716 7717 if ((vpp = svd->vpage) == NULL) { 7718 if (op == MC_LOCK) { 7719 segvn_vpage(seg); 7720 if (svd->vpage == NULL) { 7721 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7722 return (ENOMEM); 7723 } 7724 } else { 7725 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7726 return (0); 7727 } 7728 } 7729 7730 /* 7731 * The anonymous data vector (i.e., previously 7732 * unreferenced mapping to swap space) can be allocated 7733 * by lazily testing for its existence. 7734 */ 7735 if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) { 7736 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 7737 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP); 7738 svd->amp->a_szc = seg->s_szc; 7739 } 7740 7741 if ((amp = svd->amp) != NULL) { 7742 anon_index = svd->anon_index + seg_page(seg, addr); 7743 } 7744 7745 offset = svd->offset + (uintptr_t)(addr - seg->s_base); 7746 evp = &svd->vpage[seg_page(seg, addr + len)]; 7747 7748 if (sp != NULL) 7749 mutex_enter(&sp->shm_mlock); 7750 7751 /* determine number of unlocked bytes in range for lock operation */ 7752 if (op == MC_LOCK) { 7753 7754 if (sp == NULL) { 7755 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp; 7756 vpp++) { 7757 if (!VPP_ISPPLOCK(vpp)) 7758 unlocked_bytes += PAGESIZE; 7759 } 7760 } else { 7761 ulong_t i_idx, i_edx; 7762 anon_sync_obj_t i_cookie; 7763 struct anon *i_ap; 7764 struct vnode *i_vp; 7765 u_offset_t i_off; 7766 7767 /* Only count sysV pages once for locked memory */ 7768 i_edx = svd->anon_index + seg_page(seg, addr + len); 7769 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7770 for (i_idx = anon_index; i_idx < i_edx; i_idx++) { 7771 anon_array_enter(amp, i_idx, &i_cookie); 7772 i_ap = anon_get_ptr(amp->ahp, i_idx); 7773 if (i_ap == NULL) { 7774 unlocked_bytes += PAGESIZE; 7775 anon_array_exit(&i_cookie); 7776 continue; 7777 } 7778 swap_xlate(i_ap, &i_vp, &i_off); 7779 anon_array_exit(&i_cookie); 7780 pp = page_lookup(i_vp, i_off, SE_SHARED); 7781 if (pp == NULL) { 7782 unlocked_bytes += PAGESIZE; 7783 continue; 7784 } else if (pp->p_lckcnt == 0) 7785 unlocked_bytes += PAGESIZE; 7786 page_unlock(pp); 7787 } 7788 ANON_LOCK_EXIT(&->a_rwlock); 7789 } 7790 7791 mutex_enter(&p->p_lock); 7792 err = rctl_incr_locked_mem(p, proj, unlocked_bytes, 7793 chargeproc); 7794 mutex_exit(&p->p_lock); 7795 7796 if (err) { 7797 if (sp != NULL) 7798 mutex_exit(&sp->shm_mlock); 7799 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7800 return (err); 7801 } 7802 } 7803 /* 7804 * Loop over all pages in the range. Process if we're locking and 7805 * page has not already been locked in this mapping; or if we're 7806 * unlocking and the page has been locked. 7807 */ 7808 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp; 7809 vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) { 7810 if ((attr == 0 || VPP_PROT(vpp) == pageprot) && 7811 ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) || 7812 (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) { 7813 7814 if (amp != NULL) 7815 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7816 /* 7817 * If this isn't a MAP_NORESERVE segment and 7818 * we're locking, allocate anon slots if they 7819 * don't exist. The page is brought in later on. 7820 */ 7821 if (op == MC_LOCK && svd->vp == NULL && 7822 ((svd->flags & MAP_NORESERVE) == 0) && 7823 amp != NULL && 7824 ((ap = anon_get_ptr(amp->ahp, anon_index)) 7825 == NULL)) { 7826 anon_array_enter(amp, anon_index, &cookie); 7827 7828 if ((ap = anon_get_ptr(amp->ahp, 7829 anon_index)) == NULL) { 7830 pp = anon_zero(seg, addr, &ap, 7831 svd->cred); 7832 if (pp == NULL) { 7833 anon_array_exit(&cookie); 7834 ANON_LOCK_EXIT(&->a_rwlock); 7835 err = ENOMEM; 7836 goto out; 7837 } 7838 ASSERT(anon_get_ptr(amp->ahp, 7839 anon_index) == NULL); 7840 (void) anon_set_ptr(amp->ahp, 7841 anon_index, ap, ANON_SLEEP); 7842 page_unlock(pp); 7843 } 7844 anon_array_exit(&cookie); 7845 } 7846 7847 /* 7848 * Get name for page, accounting for 7849 * existence of private copy. 7850 */ 7851 ap = NULL; 7852 if (amp != NULL) { 7853 anon_array_enter(amp, anon_index, &cookie); 7854 ap = anon_get_ptr(amp->ahp, anon_index); 7855 if (ap != NULL) { 7856 swap_xlate(ap, &vp, &off); 7857 } else { 7858 if (svd->vp == NULL && 7859 (svd->flags & MAP_NORESERVE)) { 7860 anon_array_exit(&cookie); 7861 ANON_LOCK_EXIT(&->a_rwlock); 7862 continue; 7863 } 7864 vp = svd->vp; 7865 off = offset; 7866 } 7867 if (op != MC_LOCK || ap == NULL) { 7868 anon_array_exit(&cookie); 7869 ANON_LOCK_EXIT(&->a_rwlock); 7870 } 7871 } else { 7872 vp = svd->vp; 7873 off = offset; 7874 } 7875 7876 /* 7877 * Get page frame. It's ok if the page is 7878 * not available when we're unlocking, as this 7879 * may simply mean that a page we locked got 7880 * truncated out of existence after we locked it. 7881 * 7882 * Invoke VOP_GETPAGE() to obtain the page struct 7883 * since we may need to read it from disk if its 7884 * been paged out. 7885 */ 7886 if (op != MC_LOCK) 7887 pp = page_lookup(vp, off, SE_SHARED); 7888 else { 7889 page_t *pl[1 + 1]; 7890 int error; 7891 7892 ASSERT(vp != NULL); 7893 7894 error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, 7895 (uint_t *)NULL, pl, PAGESIZE, seg, addr, 7896 S_OTHER, svd->cred, NULL); 7897 7898 if (error && ap != NULL) { 7899 anon_array_exit(&cookie); 7900 ANON_LOCK_EXIT(&->a_rwlock); 7901 } 7902 7903 /* 7904 * If the error is EDEADLK then we must bounce 7905 * up and drop all vm subsystem locks and then 7906 * retry the operation later 7907 * This behavior is a temporary measure because 7908 * ufs/sds logging is badly designed and will 7909 * deadlock if we don't allow this bounce to 7910 * happen. The real solution is to re-design 7911 * the logging code to work properly. See bug 7912 * 4125102 for details of the problem. 7913 */ 7914 if (error == EDEADLK) { 7915 err = error; 7916 goto out; 7917 } 7918 /* 7919 * Quit if we fail to fault in the page. Treat 7920 * the failure as an error, unless the addr 7921 * is mapped beyond the end of a file. 7922 */ 7923 if (error && svd->vp) { 7924 va.va_mask = AT_SIZE; 7925 if (VOP_GETATTR(svd->vp, &va, 0, 7926 svd->cred, NULL) != 0) { 7927 err = EIO; 7928 goto out; 7929 } 7930 if (btopr(va.va_size) >= 7931 btopr(off + 1)) { 7932 err = EIO; 7933 goto out; 7934 } 7935 goto out; 7936 7937 } else if (error) { 7938 err = EIO; 7939 goto out; 7940 } 7941 pp = pl[0]; 7942 ASSERT(pp != NULL); 7943 } 7944 7945 /* 7946 * See Statement at the beginning of this routine. 7947 * 7948 * claim is always set if MAP_PRIVATE and PROT_WRITE 7949 * irrespective of following factors: 7950 * 7951 * (1) anon slots are populated or not 7952 * (2) cow is broken or not 7953 * (3) refcnt on ap is 1 or greater than 1 7954 * 7955 * See 4140683 for details 7956 */ 7957 claim = ((VPP_PROT(vpp) & PROT_WRITE) && 7958 (svd->type == MAP_PRIVATE)); 7959 7960 /* 7961 * Perform page-level operation appropriate to 7962 * operation. If locking, undo the SOFTLOCK 7963 * performed to bring the page into memory 7964 * after setting the lock. If unlocking, 7965 * and no page was found, account for the claim 7966 * separately. 7967 */ 7968 if (op == MC_LOCK) { 7969 int ret = 1; /* Assume success */ 7970 7971 ASSERT(!VPP_ISPPLOCK(vpp)); 7972 7973 ret = page_pp_lock(pp, claim, 0); 7974 if (ap != NULL) { 7975 if (ap->an_pvp != NULL) { 7976 anon_swap_free(ap, pp); 7977 } 7978 anon_array_exit(&cookie); 7979 ANON_LOCK_EXIT(&->a_rwlock); 7980 } 7981 if (ret == 0) { 7982 /* locking page failed */ 7983 page_unlock(pp); 7984 err = EAGAIN; 7985 goto out; 7986 } 7987 VPP_SETPPLOCK(vpp); 7988 if (sp != NULL) { 7989 if (pp->p_lckcnt == 1) 7990 locked_bytes += PAGESIZE; 7991 } else 7992 locked_bytes += PAGESIZE; 7993 7994 if (lockmap != (ulong_t *)NULL) 7995 BT_SET(lockmap, pos); 7996 7997 page_unlock(pp); 7998 } else { 7999 ASSERT(VPP_ISPPLOCK(vpp)); 8000 if (pp != NULL) { 8001 /* sysV pages should be locked */ 8002 ASSERT(sp == NULL || pp->p_lckcnt > 0); 8003 page_pp_unlock(pp, claim, 0); 8004 if (sp != NULL) { 8005 if (pp->p_lckcnt == 0) 8006 unlocked_bytes 8007 += PAGESIZE; 8008 } else 8009 unlocked_bytes += PAGESIZE; 8010 page_unlock(pp); 8011 } else { 8012 ASSERT(sp == NULL); 8013 unlocked_bytes += PAGESIZE; 8014 } 8015 VPP_CLRPPLOCK(vpp); 8016 } 8017 } 8018 } 8019 out: 8020 if (op == MC_LOCK) { 8021 /* Credit back bytes that did not get locked */ 8022 if ((unlocked_bytes - locked_bytes) > 0) { 8023 if (proj == NULL) 8024 mutex_enter(&p->p_lock); 8025 rctl_decr_locked_mem(p, proj, 8026 (unlocked_bytes - locked_bytes), chargeproc); 8027 if (proj == NULL) 8028 mutex_exit(&p->p_lock); 8029 } 8030 8031 } else { 8032 /* Account bytes that were unlocked */ 8033 if (unlocked_bytes > 0) { 8034 if (proj == NULL) 8035 mutex_enter(&p->p_lock); 8036 rctl_decr_locked_mem(p, proj, unlocked_bytes, 8037 chargeproc); 8038 if (proj == NULL) 8039 mutex_exit(&p->p_lock); 8040 } 8041 } 8042 if (sp != NULL) 8043 mutex_exit(&sp->shm_mlock); 8044 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8045 8046 return (err); 8047 } 8048 8049 /* 8050 * Set advice from user for specified pages 8051 * There are 10 types of advice: 8052 * MADV_NORMAL - Normal (default) behavior (whatever that is) 8053 * MADV_RANDOM - Random page references 8054 * do not allow readahead or 'klustering' 8055 * MADV_SEQUENTIAL - Sequential page references 8056 * Pages previous to the one currently being 8057 * accessed (determined by fault) are 'not needed' 8058 * and are freed immediately 8059 * MADV_WILLNEED - Pages are likely to be used (fault ahead in mctl) 8060 * MADV_DONTNEED - Pages are not needed (synced out in mctl) 8061 * MADV_FREE - Contents can be discarded 8062 * MADV_ACCESS_DEFAULT- Default access 8063 * MADV_ACCESS_LWP - Next LWP will access heavily 8064 * MADV_ACCESS_MANY- Many LWPs or processes will access heavily 8065 * MADV_PURGE - Contents will be immediately discarded 8066 */ 8067 static int 8068 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav) 8069 { 8070 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 8071 size_t page; 8072 int err = 0; 8073 int already_set; 8074 struct anon_map *amp; 8075 ulong_t anon_index; 8076 struct seg *next; 8077 lgrp_mem_policy_t policy; 8078 struct seg *prev; 8079 struct vnode *vp; 8080 8081 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 8082 8083 /* 8084 * In case of MADV_FREE/MADV_PURGE, we won't be modifying any segment 8085 * private data structures; so, we only need to grab READER's lock 8086 */ 8087 if (behav != MADV_FREE && behav != MADV_PURGE) { 8088 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 8089 if (svd->tr_state != SEGVN_TR_OFF) { 8090 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8091 return (0); 8092 } 8093 } else { 8094 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 8095 } 8096 8097 /* 8098 * Large pages are assumed to be only turned on when accesses to the 8099 * segment's address range have spatial and temporal locality. That 8100 * justifies ignoring MADV_SEQUENTIAL for large page segments. 8101 * Also, ignore advice affecting lgroup memory allocation 8102 * if don't need to do lgroup optimizations on this system 8103 */ 8104 8105 if ((behav == MADV_SEQUENTIAL && 8106 (seg->s_szc != 0 || HAT_IS_REGION_COOKIE_VALID(svd->rcookie))) || 8107 (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT || 8108 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) { 8109 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8110 return (0); 8111 } 8112 8113 if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT || 8114 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) { 8115 /* 8116 * Since we are going to unload hat mappings 8117 * we first have to flush the cache. Otherwise 8118 * this might lead to system panic if another 8119 * thread is doing physio on the range whose 8120 * mappings are unloaded by madvise(3C). 8121 */ 8122 if (svd->softlockcnt > 0) { 8123 /* 8124 * If this is shared segment non 0 softlockcnt 8125 * means locked pages are still in use. 8126 */ 8127 if (svd->type == MAP_SHARED) { 8128 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8129 return (EAGAIN); 8130 } 8131 /* 8132 * Since we do have the segvn writers lock 8133 * nobody can fill the cache with entries 8134 * belonging to this seg during the purge. 8135 * The flush either succeeds or we still 8136 * have pending I/Os. In the later case, 8137 * madvise(3C) fails. 8138 */ 8139 segvn_purge(seg); 8140 if (svd->softlockcnt > 0) { 8141 /* 8142 * Since madvise(3C) is advisory and 8143 * it's not part of UNIX98, madvise(3C) 8144 * failure here doesn't cause any hardship. 8145 * Note that we don't block in "as" layer. 8146 */ 8147 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8148 return (EAGAIN); 8149 } 8150 } else if (svd->type == MAP_SHARED && svd->amp != NULL && 8151 svd->amp->a_softlockcnt > 0) { 8152 /* 8153 * Try to purge this amp's entries from pcache. It 8154 * will succeed only if other segments that share the 8155 * amp have no outstanding softlock's. 8156 */ 8157 segvn_purge(seg); 8158 } 8159 } 8160 8161 amp = svd->amp; 8162 vp = svd->vp; 8163 if (behav == MADV_FREE || behav == MADV_PURGE) { 8164 pgcnt_t purged; 8165 8166 if (behav == MADV_FREE && (vp != NULL || amp == NULL)) { 8167 /* 8168 * MADV_FREE is not supported for segments with an 8169 * underlying object; if anonmap is NULL, anon slots 8170 * are not yet populated and there is nothing for us 8171 * to do. As MADV_FREE is advisory, we don't return an 8172 * error in either case. 8173 */ 8174 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8175 return (0); 8176 } 8177 8178 if (amp == NULL) { 8179 /* 8180 * If we're here with a NULL anonmap, it's because we 8181 * are doing a MADV_PURGE. We have nothing to do, but 8182 * because MADV_PURGE isn't merely advisory, we return 8183 * an error in this case. 8184 */ 8185 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8186 return (EBUSY); 8187 } 8188 8189 segvn_purge(seg); 8190 8191 page = seg_page(seg, addr); 8192 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 8193 err = anon_disclaim(amp, 8194 svd->anon_index + page, len, behav, &purged); 8195 8196 if (purged != 0 && (svd->flags & MAP_NORESERVE)) { 8197 /* 8198 * If we purged pages on a MAP_NORESERVE mapping, we 8199 * need to be sure to now unreserve our reserved swap. 8200 * (We use the atomic operations to manipulate our 8201 * segment and address space counters because we only 8202 * have the corresponding locks held as reader, not 8203 * writer.) 8204 */ 8205 ssize_t bytes = ptob(purged); 8206 8207 anon_unresv_zone(bytes, seg->s_as->a_proc->p_zone); 8208 atomic_add_long(&svd->swresv, -bytes); 8209 atomic_add_long(&seg->s_as->a_resvsize, -bytes); 8210 } 8211 8212 ANON_LOCK_EXIT(&->a_rwlock); 8213 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8214 8215 /* 8216 * MADV_PURGE and MADV_FREE differ in their return semantics: 8217 * because MADV_PURGE is designed to be bug-for-bug compatible 8218 * with its clumsy Linux forebear, it will fail where MADV_FREE 8219 * does not. 8220 */ 8221 return (behav == MADV_PURGE ? err : 0); 8222 } 8223 8224 /* 8225 * If advice is to be applied to entire segment, 8226 * use advice field in seg_data structure 8227 * otherwise use appropriate vpage entry. 8228 */ 8229 if ((addr == seg->s_base) && (len == seg->s_size)) { 8230 switch (behav) { 8231 case MADV_ACCESS_LWP: 8232 case MADV_ACCESS_MANY: 8233 case MADV_ACCESS_DEFAULT: 8234 /* 8235 * Set memory allocation policy for this segment 8236 */ 8237 policy = lgrp_madv_to_policy(behav, len, svd->type); 8238 if (svd->type == MAP_SHARED) 8239 already_set = lgrp_shm_policy_set(policy, amp, 8240 svd->anon_index, vp, svd->offset, len); 8241 else { 8242 /* 8243 * For private memory, need writers lock on 8244 * address space because the segment may be 8245 * split or concatenated when changing policy 8246 */ 8247 if (AS_READ_HELD(seg->s_as)) { 8248 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8249 return (IE_RETRY); 8250 } 8251 8252 already_set = lgrp_privm_policy_set(policy, 8253 &svd->policy_info, len); 8254 } 8255 8256 /* 8257 * If policy set already and it shouldn't be reapplied, 8258 * don't do anything. 8259 */ 8260 if (already_set && 8261 !LGRP_MEM_POLICY_REAPPLICABLE(policy)) 8262 break; 8263 8264 /* 8265 * Mark any existing pages in given range for 8266 * migration 8267 */ 8268 page_mark_migrate(seg, addr, len, amp, svd->anon_index, 8269 vp, svd->offset, 1); 8270 8271 /* 8272 * If same policy set already or this is a shared 8273 * memory segment, don't need to try to concatenate 8274 * segment with adjacent ones. 8275 */ 8276 if (already_set || svd->type == MAP_SHARED) 8277 break; 8278 8279 /* 8280 * Try to concatenate this segment with previous 8281 * one and next one, since we changed policy for 8282 * this one and it may be compatible with adjacent 8283 * ones now. 8284 */ 8285 prev = AS_SEGPREV(seg->s_as, seg); 8286 next = AS_SEGNEXT(seg->s_as, seg); 8287 8288 if (next && next->s_ops == &segvn_ops && 8289 addr + len == next->s_base) 8290 (void) segvn_concat(seg, next, 1); 8291 8292 if (prev && prev->s_ops == &segvn_ops && 8293 addr == prev->s_base + prev->s_size) { 8294 /* 8295 * Drop lock for private data of current 8296 * segment before concatenating (deleting) it 8297 * and return IE_REATTACH to tell as_ctl() that 8298 * current segment has changed 8299 */ 8300 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8301 if (!segvn_concat(prev, seg, 1)) 8302 err = IE_REATTACH; 8303 8304 return (err); 8305 } 8306 break; 8307 8308 case MADV_SEQUENTIAL: 8309 /* 8310 * unloading mapping guarantees 8311 * detection in segvn_fault 8312 */ 8313 ASSERT(seg->s_szc == 0); 8314 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 8315 hat_unload(seg->s_as->a_hat, addr, len, 8316 HAT_UNLOAD); 8317 /* FALLTHROUGH */ 8318 case MADV_NORMAL: 8319 case MADV_RANDOM: 8320 svd->advice = (uchar_t)behav; 8321 svd->pageadvice = 0; 8322 break; 8323 case MADV_WILLNEED: /* handled in memcntl */ 8324 case MADV_DONTNEED: /* handled in memcntl */ 8325 case MADV_FREE: /* handled above */ 8326 case MADV_PURGE: /* handled above */ 8327 break; 8328 default: 8329 err = EINVAL; 8330 } 8331 } else { 8332 caddr_t eaddr; 8333 struct seg *new_seg; 8334 struct segvn_data *new_svd; 8335 u_offset_t off; 8336 caddr_t oldeaddr; 8337 8338 page = seg_page(seg, addr); 8339 8340 segvn_vpage(seg); 8341 if (svd->vpage == NULL) { 8342 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8343 return (ENOMEM); 8344 } 8345 8346 switch (behav) { 8347 struct vpage *bvpp, *evpp; 8348 8349 case MADV_ACCESS_LWP: 8350 case MADV_ACCESS_MANY: 8351 case MADV_ACCESS_DEFAULT: 8352 /* 8353 * Set memory allocation policy for portion of this 8354 * segment 8355 */ 8356 8357 /* 8358 * Align address and length of advice to page 8359 * boundaries for large pages 8360 */ 8361 if (seg->s_szc != 0) { 8362 size_t pgsz; 8363 8364 pgsz = page_get_pagesize(seg->s_szc); 8365 addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz); 8366 len = P2ROUNDUP(len, pgsz); 8367 } 8368 8369 /* 8370 * Check to see whether policy is set already 8371 */ 8372 policy = lgrp_madv_to_policy(behav, len, svd->type); 8373 8374 anon_index = svd->anon_index + page; 8375 off = svd->offset + (uintptr_t)(addr - seg->s_base); 8376 8377 if (svd->type == MAP_SHARED) 8378 already_set = lgrp_shm_policy_set(policy, amp, 8379 anon_index, vp, off, len); 8380 else 8381 already_set = 8382 (policy == svd->policy_info.mem_policy); 8383 8384 /* 8385 * If policy set already and it shouldn't be reapplied, 8386 * don't do anything. 8387 */ 8388 if (already_set && 8389 !LGRP_MEM_POLICY_REAPPLICABLE(policy)) 8390 break; 8391 8392 /* 8393 * For private memory, need writers lock on 8394 * address space because the segment may be 8395 * split or concatenated when changing policy 8396 */ 8397 if (svd->type == MAP_PRIVATE && 8398 AS_READ_HELD(seg->s_as)) { 8399 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8400 return (IE_RETRY); 8401 } 8402 8403 /* 8404 * Mark any existing pages in given range for 8405 * migration 8406 */ 8407 page_mark_migrate(seg, addr, len, amp, svd->anon_index, 8408 vp, svd->offset, 1); 8409 8410 /* 8411 * Don't need to try to split or concatenate 8412 * segments, since policy is same or this is a shared 8413 * memory segment 8414 */ 8415 if (already_set || svd->type == MAP_SHARED) 8416 break; 8417 8418 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 8419 ASSERT(svd->amp == NULL); 8420 ASSERT(svd->tr_state == SEGVN_TR_OFF); 8421 ASSERT(svd->softlockcnt == 0); 8422 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 8423 HAT_REGION_TEXT); 8424 svd->rcookie = HAT_INVALID_REGION_COOKIE; 8425 } 8426 8427 /* 8428 * Split off new segment if advice only applies to a 8429 * portion of existing segment starting in middle 8430 */ 8431 new_seg = NULL; 8432 eaddr = addr + len; 8433 oldeaddr = seg->s_base + seg->s_size; 8434 if (addr > seg->s_base) { 8435 /* 8436 * Must flush I/O page cache 8437 * before splitting segment 8438 */ 8439 if (svd->softlockcnt > 0) 8440 segvn_purge(seg); 8441 8442 /* 8443 * Split segment and return IE_REATTACH to tell 8444 * as_ctl() that current segment changed 8445 */ 8446 new_seg = segvn_split_seg(seg, addr); 8447 new_svd = (struct segvn_data *)new_seg->s_data; 8448 err = IE_REATTACH; 8449 8450 /* 8451 * If new segment ends where old one 8452 * did, try to concatenate the new 8453 * segment with next one. 8454 */ 8455 if (eaddr == oldeaddr) { 8456 /* 8457 * Set policy for new segment 8458 */ 8459 (void) lgrp_privm_policy_set(policy, 8460 &new_svd->policy_info, 8461 new_seg->s_size); 8462 8463 next = AS_SEGNEXT(new_seg->s_as, 8464 new_seg); 8465 8466 if (next && 8467 next->s_ops == &segvn_ops && 8468 eaddr == next->s_base) 8469 (void) segvn_concat(new_seg, 8470 next, 1); 8471 } 8472 } 8473 8474 /* 8475 * Split off end of existing segment if advice only 8476 * applies to a portion of segment ending before 8477 * end of the existing segment 8478 */ 8479 if (eaddr < oldeaddr) { 8480 /* 8481 * Must flush I/O page cache 8482 * before splitting segment 8483 */ 8484 if (svd->softlockcnt > 0) 8485 segvn_purge(seg); 8486 8487 /* 8488 * If beginning of old segment was already 8489 * split off, use new segment to split end off 8490 * from. 8491 */ 8492 if (new_seg != NULL && new_seg != seg) { 8493 /* 8494 * Split segment 8495 */ 8496 (void) segvn_split_seg(new_seg, eaddr); 8497 8498 /* 8499 * Set policy for new segment 8500 */ 8501 (void) lgrp_privm_policy_set(policy, 8502 &new_svd->policy_info, 8503 new_seg->s_size); 8504 } else { 8505 /* 8506 * Split segment and return IE_REATTACH 8507 * to tell as_ctl() that current 8508 * segment changed 8509 */ 8510 (void) segvn_split_seg(seg, eaddr); 8511 err = IE_REATTACH; 8512 8513 (void) lgrp_privm_policy_set(policy, 8514 &svd->policy_info, seg->s_size); 8515 8516 /* 8517 * If new segment starts where old one 8518 * did, try to concatenate it with 8519 * previous segment. 8520 */ 8521 if (addr == seg->s_base) { 8522 prev = AS_SEGPREV(seg->s_as, 8523 seg); 8524 8525 /* 8526 * Drop lock for private data 8527 * of current segment before 8528 * concatenating (deleting) it 8529 */ 8530 if (prev && 8531 prev->s_ops == 8532 &segvn_ops && 8533 addr == prev->s_base + 8534 prev->s_size) { 8535 SEGVN_LOCK_EXIT( 8536 seg->s_as, 8537 &svd->lock); 8538 (void) segvn_concat( 8539 prev, seg, 1); 8540 return (err); 8541 } 8542 } 8543 } 8544 } 8545 break; 8546 case MADV_SEQUENTIAL: 8547 ASSERT(seg->s_szc == 0); 8548 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 8549 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD); 8550 /* FALLTHROUGH */ 8551 case MADV_NORMAL: 8552 case MADV_RANDOM: 8553 bvpp = &svd->vpage[page]; 8554 evpp = &svd->vpage[page + (len >> PAGESHIFT)]; 8555 for (; bvpp < evpp; bvpp++) 8556 VPP_SETADVICE(bvpp, behav); 8557 svd->advice = MADV_NORMAL; 8558 break; 8559 case MADV_WILLNEED: /* handled in memcntl */ 8560 case MADV_DONTNEED: /* handled in memcntl */ 8561 case MADV_FREE: /* handled above */ 8562 case MADV_PURGE: /* handled above */ 8563 break; 8564 default: 8565 err = EINVAL; 8566 } 8567 } 8568 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8569 return (err); 8570 } 8571 8572 /* 8573 * There is one kind of inheritance that can be specified for pages: 8574 * 8575 * SEGP_INH_ZERO - Pages should be zeroed in the child 8576 */ 8577 static int 8578 segvn_inherit(struct seg *seg, caddr_t addr, size_t len, uint_t behav) 8579 { 8580 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 8581 struct vpage *bvpp, *evpp; 8582 size_t page; 8583 int ret = 0; 8584 8585 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 8586 8587 /* Can't support something we don't know about */ 8588 if (behav != SEGP_INH_ZERO) 8589 return (ENOTSUP); 8590 8591 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 8592 8593 /* 8594 * This must be a straightforward anonymous segment that is mapped 8595 * privately and is not backed by a vnode. 8596 */ 8597 if (svd->tr_state != SEGVN_TR_OFF || 8598 svd->type != MAP_PRIVATE || 8599 svd->vp != NULL) { 8600 ret = EINVAL; 8601 goto out; 8602 } 8603 8604 /* 8605 * If the entire segment has been marked as inherit zero, then no reason 8606 * to do anything else. 8607 */ 8608 if (svd->svn_inz == SEGVN_INZ_ALL) { 8609 ret = 0; 8610 goto out; 8611 } 8612 8613 /* 8614 * If this applies to the entire segment, simply mark it and we're done. 8615 */ 8616 if ((addr == seg->s_base) && (len == seg->s_size)) { 8617 svd->svn_inz = SEGVN_INZ_ALL; 8618 ret = 0; 8619 goto out; 8620 } 8621 8622 /* 8623 * We've been asked to mark a subset of this segment as inherit zero, 8624 * therefore we need to mainpulate its vpages. 8625 */ 8626 if (svd->vpage == NULL) { 8627 segvn_vpage(seg); 8628 if (svd->vpage == NULL) { 8629 ret = ENOMEM; 8630 goto out; 8631 } 8632 } 8633 8634 svd->svn_inz = SEGVN_INZ_VPP; 8635 page = seg_page(seg, addr); 8636 bvpp = &svd->vpage[page]; 8637 evpp = &svd->vpage[page + (len >> PAGESHIFT)]; 8638 for (; bvpp < evpp; bvpp++) 8639 VPP_SETINHZERO(bvpp); 8640 ret = 0; 8641 8642 out: 8643 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8644 return (ret); 8645 } 8646 8647 /* 8648 * Create a vpage structure for this seg. 8649 */ 8650 static void 8651 segvn_vpage(struct seg *seg) 8652 { 8653 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 8654 struct vpage *vp, *evp; 8655 static pgcnt_t page_limit = 0; 8656 8657 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock)); 8658 8659 /* 8660 * If no vpage structure exists, allocate one. Copy the protections 8661 * and the advice from the segment itself to the individual pages. 8662 */ 8663 if (svd->vpage == NULL) { 8664 /* 8665 * Start by calculating the number of pages we must allocate to 8666 * track the per-page vpage structs needs for this entire 8667 * segment. If we know now that it will require more than our 8668 * heuristic for the maximum amount of kmem we can consume then 8669 * fail. We do this here, instead of trying to detect this deep 8670 * in page_resv and propagating the error up, since the entire 8671 * memory allocation stack is not amenable to passing this 8672 * back. Instead, it wants to keep trying. 8673 * 8674 * As a heuristic we set a page limit of 5/8s of total_pages 8675 * for this allocation. We use shifts so that no floating 8676 * point conversion takes place and only need to do the 8677 * calculation once. 8678 */ 8679 ulong_t mem_needed = seg_pages(seg) * sizeof (struct vpage); 8680 pgcnt_t npages = mem_needed >> PAGESHIFT; 8681 8682 if (page_limit == 0) 8683 page_limit = (total_pages >> 1) + (total_pages >> 3); 8684 8685 if (npages > page_limit) 8686 return; 8687 8688 svd->pageadvice = 1; 8689 svd->vpage = kmem_zalloc(mem_needed, KM_SLEEP); 8690 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)]; 8691 for (vp = svd->vpage; vp < evp; vp++) { 8692 VPP_SETPROT(vp, svd->prot); 8693 VPP_SETADVICE(vp, svd->advice); 8694 } 8695 } 8696 } 8697 8698 /* 8699 * Dump the pages belonging to this segvn segment. 8700 */ 8701 static void 8702 segvn_dump(struct seg *seg) 8703 { 8704 struct segvn_data *svd; 8705 page_t *pp; 8706 struct anon_map *amp; 8707 ulong_t anon_index; 8708 struct vnode *vp; 8709 u_offset_t off, offset; 8710 pfn_t pfn; 8711 pgcnt_t page, npages; 8712 caddr_t addr; 8713 8714 npages = seg_pages(seg); 8715 svd = (struct segvn_data *)seg->s_data; 8716 vp = svd->vp; 8717 off = offset = svd->offset; 8718 addr = seg->s_base; 8719 8720 if ((amp = svd->amp) != NULL) { 8721 anon_index = svd->anon_index; 8722 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 8723 } 8724 8725 for (page = 0; page < npages; page++, offset += PAGESIZE) { 8726 struct anon *ap; 8727 int we_own_it = 0; 8728 8729 if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) { 8730 swap_xlate_nopanic(ap, &vp, &off); 8731 } else { 8732 vp = svd->vp; 8733 off = offset; 8734 } 8735 8736 /* 8737 * If pp == NULL, the page either does not exist 8738 * or is exclusively locked. So determine if it 8739 * exists before searching for it. 8740 */ 8741 8742 if ((pp = page_lookup_nowait(vp, off, SE_SHARED))) 8743 we_own_it = 1; 8744 else 8745 pp = page_exists(vp, off); 8746 8747 if (pp) { 8748 pfn = page_pptonum(pp); 8749 dump_addpage(seg->s_as, addr, pfn); 8750 if (we_own_it) 8751 page_unlock(pp); 8752 } 8753 addr += PAGESIZE; 8754 dump_timeleft = dump_timeout; 8755 } 8756 8757 if (amp != NULL) 8758 ANON_LOCK_EXIT(&->a_rwlock); 8759 } 8760 8761 #ifdef DEBUG 8762 static uint32_t segvn_pglock_mtbf = 0; 8763 #endif 8764 8765 #define PCACHE_SHWLIST ((page_t *)-2) 8766 #define NOPCACHE_SHWLIST ((page_t *)-1) 8767 8768 /* 8769 * Lock/Unlock anon pages over a given range. Return shadow list. This routine 8770 * uses global segment pcache to cache shadow lists (i.e. pp arrays) of pages 8771 * to avoid the overhead of per page locking, unlocking for subsequent IOs to 8772 * the same parts of the segment. Currently shadow list creation is only 8773 * supported for pure anon segments. MAP_PRIVATE segment pcache entries are 8774 * tagged with segment pointer, starting virtual address and length. This 8775 * approach for MAP_SHARED segments may add many pcache entries for the same 8776 * set of pages and lead to long hash chains that decrease pcache lookup 8777 * performance. To avoid this issue for shared segments shared anon map and 8778 * starting anon index are used for pcache entry tagging. This allows all 8779 * segments to share pcache entries for the same anon range and reduces pcache 8780 * chain's length as well as memory overhead from duplicate shadow lists and 8781 * pcache entries. 8782 * 8783 * softlockcnt field in segvn_data structure counts the number of F_SOFTLOCK'd 8784 * pages via segvn_fault() and pagelock'd pages via this routine. But pagelock 8785 * part of softlockcnt accounting is done differently for private and shared 8786 * segments. In private segment case softlock is only incremented when a new 8787 * shadow list is created but not when an existing one is found via 8788 * seg_plookup(). pcache entries have reference count incremented/decremented 8789 * by each seg_plookup()/seg_pinactive() operation. Only entries that have 0 8790 * reference count can be purged (and purging is needed before segment can be 8791 * freed). When a private segment pcache entry is purged segvn_reclaim() will 8792 * decrement softlockcnt. Since in private segment case each of its pcache 8793 * entries only belongs to this segment we can expect that when 8794 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this 8795 * segment purge will succeed and softlockcnt will drop to 0. In shared 8796 * segment case reference count in pcache entry counts active locks from many 8797 * different segments so we can't expect segment purging to succeed even when 8798 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this 8799 * segment. To be able to determine when there're no pending pagelocks in 8800 * shared segment case we don't rely on purging to make softlockcnt drop to 0 8801 * but instead softlockcnt is incremented and decremented for every 8802 * segvn_pagelock(L_PAGELOCK/L_PAGEUNLOCK) call regardless if a new shadow 8803 * list was created or an existing one was found. When softlockcnt drops to 0 8804 * this segment no longer has any claims for pcached shadow lists and the 8805 * segment can be freed even if there're still active pcache entries 8806 * shared by this segment anon map. Shared segment pcache entries belong to 8807 * anon map and are typically removed when anon map is freed after all 8808 * processes destroy the segments that use this anon map. 8809 */ 8810 static int 8811 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp, 8812 enum lock_type type, enum seg_rw rw) 8813 { 8814 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 8815 size_t np; 8816 pgcnt_t adjustpages; 8817 pgcnt_t npages; 8818 ulong_t anon_index; 8819 uint_t protchk = (rw == S_READ) ? PROT_READ : PROT_WRITE; 8820 uint_t error; 8821 struct anon_map *amp; 8822 pgcnt_t anpgcnt; 8823 struct page **pplist, **pl, *pp; 8824 caddr_t a; 8825 size_t page; 8826 caddr_t lpgaddr, lpgeaddr; 8827 anon_sync_obj_t cookie; 8828 int anlock; 8829 struct anon_map *pamp; 8830 caddr_t paddr; 8831 seg_preclaim_cbfunc_t preclaim_callback; 8832 size_t pgsz; 8833 int use_pcache; 8834 size_t wlen; 8835 uint_t pflags = 0; 8836 int sftlck_sbase = 0; 8837 int sftlck_send = 0; 8838 8839 #ifdef DEBUG 8840 if (type == L_PAGELOCK && segvn_pglock_mtbf) { 8841 hrtime_t ts = gethrtime(); 8842 if ((ts % segvn_pglock_mtbf) == 0) { 8843 return (ENOTSUP); 8844 } 8845 if ((ts % segvn_pglock_mtbf) == 1) { 8846 return (EFAULT); 8847 } 8848 } 8849 #endif 8850 8851 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START, 8852 "segvn_pagelock: start seg %p addr %p", seg, addr); 8853 8854 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 8855 ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK); 8856 8857 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 8858 8859 /* 8860 * for now we only support pagelock to anon memory. We would have to 8861 * check protections for vnode objects and call into the vnode driver. 8862 * That's too much for a fast path. Let the fault entry point handle 8863 * it. 8864 */ 8865 if (svd->vp != NULL) { 8866 if (type == L_PAGELOCK) { 8867 error = ENOTSUP; 8868 goto out; 8869 } 8870 panic("segvn_pagelock(L_PAGEUNLOCK): vp != NULL"); 8871 } 8872 if ((amp = svd->amp) == NULL) { 8873 if (type == L_PAGELOCK) { 8874 error = EFAULT; 8875 goto out; 8876 } 8877 panic("segvn_pagelock(L_PAGEUNLOCK): amp == NULL"); 8878 } 8879 if (rw != S_READ && rw != S_WRITE) { 8880 if (type == L_PAGELOCK) { 8881 error = ENOTSUP; 8882 goto out; 8883 } 8884 panic("segvn_pagelock(L_PAGEUNLOCK): bad rw"); 8885 } 8886 8887 if (seg->s_szc != 0) { 8888 /* 8889 * We are adjusting the pagelock region to the large page size 8890 * boundary because the unlocked part of a large page cannot 8891 * be freed anyway unless all constituent pages of a large 8892 * page are locked. Bigger regions reduce pcache chain length 8893 * and improve lookup performance. The tradeoff is that the 8894 * very first segvn_pagelock() call for a given page is more 8895 * expensive if only 1 page_t is needed for IO. This is only 8896 * an issue if pcache entry doesn't get reused by several 8897 * subsequent calls. We optimize here for the case when pcache 8898 * is heavily used by repeated IOs to the same address range. 8899 * 8900 * Note segment's page size cannot change while we are holding 8901 * as lock. And then it cannot change while softlockcnt is 8902 * not 0. This will allow us to correctly recalculate large 8903 * page size region for the matching pageunlock/reclaim call 8904 * since as_pageunlock() caller must always match 8905 * as_pagelock() call's addr and len. 8906 * 8907 * For pageunlock *ppp points to the pointer of page_t that 8908 * corresponds to the real unadjusted start address. Similar 8909 * for pagelock *ppp must point to the pointer of page_t that 8910 * corresponds to the real unadjusted start address. 8911 */ 8912 pgsz = page_get_pagesize(seg->s_szc); 8913 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr); 8914 adjustpages = btop((uintptr_t)(addr - lpgaddr)); 8915 } else if (len < segvn_pglock_comb_thrshld) { 8916 lpgaddr = addr; 8917 lpgeaddr = addr + len; 8918 adjustpages = 0; 8919 pgsz = PAGESIZE; 8920 } else { 8921 /* 8922 * Align the address range of large enough requests to allow 8923 * combining of different shadow lists into 1 to reduce memory 8924 * overhead from potentially overlapping large shadow lists 8925 * (worst case is we have a 1MB IO into buffers with start 8926 * addresses separated by 4K). Alignment is only possible if 8927 * padded chunks have sufficient access permissions. Note 8928 * permissions won't change between L_PAGELOCK and 8929 * L_PAGEUNLOCK calls since non 0 softlockcnt will force 8930 * segvn_setprot() to wait until softlockcnt drops to 0. This 8931 * allows us to determine in L_PAGEUNLOCK the same range we 8932 * computed in L_PAGELOCK. 8933 * 8934 * If alignment is limited by segment ends set 8935 * sftlck_sbase/sftlck_send flags. In L_PAGELOCK case when 8936 * these flags are set bump softlockcnt_sbase/softlockcnt_send 8937 * per segment counters. In L_PAGEUNLOCK case decrease 8938 * softlockcnt_sbase/softlockcnt_send counters if 8939 * sftlck_sbase/sftlck_send flags are set. When 8940 * softlockcnt_sbase/softlockcnt_send are non 0 8941 * segvn_concat()/segvn_extend_prev()/segvn_extend_next() 8942 * won't merge the segments. This restriction combined with 8943 * restriction on segment unmapping and splitting for segments 8944 * that have non 0 softlockcnt allows L_PAGEUNLOCK to 8945 * correctly determine the same range that was previously 8946 * locked by matching L_PAGELOCK. 8947 */ 8948 pflags = SEGP_PSHIFT | (segvn_pglock_comb_bshift << 16); 8949 pgsz = PAGESIZE; 8950 if (svd->type == MAP_PRIVATE) { 8951 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)addr, 8952 segvn_pglock_comb_balign); 8953 if (lpgaddr < seg->s_base) { 8954 lpgaddr = seg->s_base; 8955 sftlck_sbase = 1; 8956 } 8957 } else { 8958 ulong_t aix = svd->anon_index + seg_page(seg, addr); 8959 ulong_t aaix = P2ALIGN(aix, segvn_pglock_comb_palign); 8960 if (aaix < svd->anon_index) { 8961 lpgaddr = seg->s_base; 8962 sftlck_sbase = 1; 8963 } else { 8964 lpgaddr = addr - ptob(aix - aaix); 8965 ASSERT(lpgaddr >= seg->s_base); 8966 } 8967 } 8968 if (svd->pageprot && lpgaddr != addr) { 8969 struct vpage *vp = &svd->vpage[seg_page(seg, lpgaddr)]; 8970 struct vpage *evp = &svd->vpage[seg_page(seg, addr)]; 8971 while (vp < evp) { 8972 if ((VPP_PROT(vp) & protchk) == 0) { 8973 break; 8974 } 8975 vp++; 8976 } 8977 if (vp < evp) { 8978 lpgaddr = addr; 8979 pflags = 0; 8980 } 8981 } 8982 lpgeaddr = addr + len; 8983 if (pflags) { 8984 if (svd->type == MAP_PRIVATE) { 8985 lpgeaddr = (caddr_t)P2ROUNDUP( 8986 (uintptr_t)lpgeaddr, 8987 segvn_pglock_comb_balign); 8988 } else { 8989 ulong_t aix = svd->anon_index + 8990 seg_page(seg, lpgeaddr); 8991 ulong_t aaix = P2ROUNDUP(aix, 8992 segvn_pglock_comb_palign); 8993 if (aaix < aix) { 8994 lpgeaddr = 0; 8995 } else { 8996 lpgeaddr += ptob(aaix - aix); 8997 } 8998 } 8999 if (lpgeaddr == 0 || 9000 lpgeaddr > seg->s_base + seg->s_size) { 9001 lpgeaddr = seg->s_base + seg->s_size; 9002 sftlck_send = 1; 9003 } 9004 } 9005 if (svd->pageprot && lpgeaddr != addr + len) { 9006 struct vpage *vp; 9007 struct vpage *evp; 9008 9009 vp = &svd->vpage[seg_page(seg, addr + len)]; 9010 evp = &svd->vpage[seg_page(seg, lpgeaddr)]; 9011 9012 while (vp < evp) { 9013 if ((VPP_PROT(vp) & protchk) == 0) { 9014 break; 9015 } 9016 vp++; 9017 } 9018 if (vp < evp) { 9019 lpgeaddr = addr + len; 9020 } 9021 } 9022 adjustpages = btop((uintptr_t)(addr - lpgaddr)); 9023 } 9024 9025 /* 9026 * For MAP_SHARED segments we create pcache entries tagged by amp and 9027 * anon index so that we can share pcache entries with other segments 9028 * that map this amp. For private segments pcache entries are tagged 9029 * with segment and virtual address. 9030 */ 9031 if (svd->type == MAP_SHARED) { 9032 pamp = amp; 9033 paddr = (caddr_t)((lpgaddr - seg->s_base) + 9034 ptob(svd->anon_index)); 9035 preclaim_callback = shamp_reclaim; 9036 } else { 9037 pamp = NULL; 9038 paddr = lpgaddr; 9039 preclaim_callback = segvn_reclaim; 9040 } 9041 9042 if (type == L_PAGEUNLOCK) { 9043 VM_STAT_ADD(segvnvmstats.pagelock[0]); 9044 9045 /* 9046 * update hat ref bits for /proc. We need to make sure 9047 * that threads tracing the ref and mod bits of the 9048 * address space get the right data. 9049 * Note: page ref and mod bits are updated at reclaim time 9050 */ 9051 if (seg->s_as->a_vbits) { 9052 for (a = addr; a < addr + len; a += PAGESIZE) { 9053 if (rw == S_WRITE) { 9054 hat_setstat(seg->s_as, a, 9055 PAGESIZE, P_REF | P_MOD); 9056 } else { 9057 hat_setstat(seg->s_as, a, 9058 PAGESIZE, P_REF); 9059 } 9060 } 9061 } 9062 9063 /* 9064 * Check the shadow list entry after the last page used in 9065 * this IO request. If it's NOPCACHE_SHWLIST the shadow list 9066 * was not inserted into pcache and is not large page 9067 * adjusted. In this case call reclaim callback directly and 9068 * don't adjust the shadow list start and size for large 9069 * pages. 9070 */ 9071 npages = btop(len); 9072 if ((*ppp)[npages] == NOPCACHE_SHWLIST) { 9073 void *ptag; 9074 if (pamp != NULL) { 9075 ASSERT(svd->type == MAP_SHARED); 9076 ptag = (void *)pamp; 9077 paddr = (caddr_t)((addr - seg->s_base) + 9078 ptob(svd->anon_index)); 9079 } else { 9080 ptag = (void *)seg; 9081 paddr = addr; 9082 } 9083 (*preclaim_callback)(ptag, paddr, len, *ppp, rw, 0); 9084 } else { 9085 ASSERT((*ppp)[npages] == PCACHE_SHWLIST || 9086 IS_SWAPFSVP((*ppp)[npages]->p_vnode)); 9087 len = lpgeaddr - lpgaddr; 9088 npages = btop(len); 9089 seg_pinactive(seg, pamp, paddr, len, 9090 *ppp - adjustpages, rw, pflags, preclaim_callback); 9091 } 9092 9093 if (pamp != NULL) { 9094 ASSERT(svd->type == MAP_SHARED); 9095 ASSERT(svd->softlockcnt >= npages); 9096 atomic_add_long((ulong_t *)&svd->softlockcnt, -npages); 9097 } 9098 9099 if (sftlck_sbase) { 9100 ASSERT(svd->softlockcnt_sbase > 0); 9101 atomic_dec_ulong((ulong_t *)&svd->softlockcnt_sbase); 9102 } 9103 if (sftlck_send) { 9104 ASSERT(svd->softlockcnt_send > 0); 9105 atomic_dec_ulong((ulong_t *)&svd->softlockcnt_send); 9106 } 9107 9108 /* 9109 * If someone is blocked while unmapping, we purge 9110 * segment page cache and thus reclaim pplist synchronously 9111 * without waiting for seg_pasync_thread. This speeds up 9112 * unmapping in cases where munmap(2) is called, while 9113 * raw async i/o is still in progress or where a thread 9114 * exits on data fault in a multithreaded application. 9115 */ 9116 if (AS_ISUNMAPWAIT(seg->s_as)) { 9117 if (svd->softlockcnt == 0) { 9118 mutex_enter(&seg->s_as->a_contents); 9119 if (AS_ISUNMAPWAIT(seg->s_as)) { 9120 AS_CLRUNMAPWAIT(seg->s_as); 9121 cv_broadcast(&seg->s_as->a_cv); 9122 } 9123 mutex_exit(&seg->s_as->a_contents); 9124 } else if (pamp == NULL) { 9125 /* 9126 * softlockcnt is not 0 and this is a 9127 * MAP_PRIVATE segment. Try to purge its 9128 * pcache entries to reduce softlockcnt. 9129 * If it drops to 0 segvn_reclaim() 9130 * will wake up a thread waiting on 9131 * unmapwait flag. 9132 * 9133 * We don't purge MAP_SHARED segments with non 9134 * 0 softlockcnt since IO is still in progress 9135 * for such segments. 9136 */ 9137 ASSERT(svd->type == MAP_PRIVATE); 9138 segvn_purge(seg); 9139 } 9140 } 9141 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 9142 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END, 9143 "segvn_pagelock: unlock seg %p addr %p", seg, addr); 9144 return (0); 9145 } 9146 9147 /* The L_PAGELOCK case ... */ 9148 9149 VM_STAT_ADD(segvnvmstats.pagelock[1]); 9150 9151 /* 9152 * For MAP_SHARED segments we have to check protections before 9153 * seg_plookup() since pcache entries may be shared by many segments 9154 * with potentially different page protections. 9155 */ 9156 if (pamp != NULL) { 9157 ASSERT(svd->type == MAP_SHARED); 9158 if (svd->pageprot == 0) { 9159 if ((svd->prot & protchk) == 0) { 9160 error = EACCES; 9161 goto out; 9162 } 9163 } else { 9164 /* 9165 * check page protections 9166 */ 9167 caddr_t ea; 9168 9169 if (seg->s_szc) { 9170 a = lpgaddr; 9171 ea = lpgeaddr; 9172 } else { 9173 a = addr; 9174 ea = addr + len; 9175 } 9176 for (; a < ea; a += pgsz) { 9177 struct vpage *vp; 9178 9179 ASSERT(seg->s_szc == 0 || 9180 sameprot(seg, a, pgsz)); 9181 vp = &svd->vpage[seg_page(seg, a)]; 9182 if ((VPP_PROT(vp) & protchk) == 0) { 9183 error = EACCES; 9184 goto out; 9185 } 9186 } 9187 } 9188 } 9189 9190 /* 9191 * try to find pages in segment page cache 9192 */ 9193 pplist = seg_plookup(seg, pamp, paddr, lpgeaddr - lpgaddr, rw, pflags); 9194 if (pplist != NULL) { 9195 if (pamp != NULL) { 9196 npages = btop((uintptr_t)(lpgeaddr - lpgaddr)); 9197 ASSERT(svd->type == MAP_SHARED); 9198 atomic_add_long((ulong_t *)&svd->softlockcnt, 9199 npages); 9200 } 9201 if (sftlck_sbase) { 9202 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_sbase); 9203 } 9204 if (sftlck_send) { 9205 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_send); 9206 } 9207 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 9208 *ppp = pplist + adjustpages; 9209 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END, 9210 "segvn_pagelock: cache hit seg %p addr %p", seg, addr); 9211 return (0); 9212 } 9213 9214 /* 9215 * For MAP_SHARED segments we already verified above that segment 9216 * protections allow this pagelock operation. 9217 */ 9218 if (pamp == NULL) { 9219 ASSERT(svd->type == MAP_PRIVATE); 9220 if (svd->pageprot == 0) { 9221 if ((svd->prot & protchk) == 0) { 9222 error = EACCES; 9223 goto out; 9224 } 9225 if (svd->prot & PROT_WRITE) { 9226 wlen = lpgeaddr - lpgaddr; 9227 } else { 9228 wlen = 0; 9229 ASSERT(rw == S_READ); 9230 } 9231 } else { 9232 int wcont = 1; 9233 /* 9234 * check page protections 9235 */ 9236 for (a = lpgaddr, wlen = 0; a < lpgeaddr; a += pgsz) { 9237 struct vpage *vp; 9238 9239 ASSERT(seg->s_szc == 0 || 9240 sameprot(seg, a, pgsz)); 9241 vp = &svd->vpage[seg_page(seg, a)]; 9242 if ((VPP_PROT(vp) & protchk) == 0) { 9243 error = EACCES; 9244 goto out; 9245 } 9246 if (wcont && (VPP_PROT(vp) & PROT_WRITE)) { 9247 wlen += pgsz; 9248 } else { 9249 wcont = 0; 9250 ASSERT(rw == S_READ); 9251 } 9252 } 9253 } 9254 ASSERT(rw == S_READ || wlen == lpgeaddr - lpgaddr); 9255 ASSERT(rw == S_WRITE || wlen <= lpgeaddr - lpgaddr); 9256 } 9257 9258 /* 9259 * Only build large page adjusted shadow list if we expect to insert 9260 * it into pcache. For large enough pages it's a big overhead to 9261 * create a shadow list of the entire large page. But this overhead 9262 * should be amortized over repeated pcache hits on subsequent reuse 9263 * of this shadow list (IO into any range within this shadow list will 9264 * find it in pcache since we large page align the request for pcache 9265 * lookups). pcache performance is improved with bigger shadow lists 9266 * as it reduces the time to pcache the entire big segment and reduces 9267 * pcache chain length. 9268 */ 9269 if (seg_pinsert_check(seg, pamp, paddr, 9270 lpgeaddr - lpgaddr, pflags) == SEGP_SUCCESS) { 9271 addr = lpgaddr; 9272 len = lpgeaddr - lpgaddr; 9273 use_pcache = 1; 9274 } else { 9275 use_pcache = 0; 9276 /* 9277 * Since this entry will not be inserted into the pcache, we 9278 * will not do any adjustments to the starting address or 9279 * size of the memory to be locked. 9280 */ 9281 adjustpages = 0; 9282 } 9283 npages = btop(len); 9284 9285 pplist = kmem_alloc(sizeof (page_t *) * (npages + 1), KM_SLEEP); 9286 pl = pplist; 9287 *ppp = pplist + adjustpages; 9288 /* 9289 * If use_pcache is 0 this shadow list is not large page adjusted. 9290 * Record this info in the last entry of shadow array so that 9291 * L_PAGEUNLOCK can determine if it should large page adjust the 9292 * address range to find the real range that was locked. 9293 */ 9294 pl[npages] = use_pcache ? PCACHE_SHWLIST : NOPCACHE_SHWLIST; 9295 9296 page = seg_page(seg, addr); 9297 anon_index = svd->anon_index + page; 9298 9299 anlock = 0; 9300 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 9301 ASSERT(amp->a_szc >= seg->s_szc); 9302 anpgcnt = page_get_pagecnt(amp->a_szc); 9303 for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) { 9304 struct anon *ap; 9305 struct vnode *vp; 9306 u_offset_t off; 9307 9308 /* 9309 * Lock and unlock anon array only once per large page. 9310 * anon_array_enter() locks the root anon slot according to 9311 * a_szc which can't change while anon map is locked. We lock 9312 * anon the first time through this loop and each time we 9313 * reach anon index that corresponds to a root of a large 9314 * page. 9315 */ 9316 if (a == addr || P2PHASE(anon_index, anpgcnt) == 0) { 9317 ASSERT(anlock == 0); 9318 anon_array_enter(amp, anon_index, &cookie); 9319 anlock = 1; 9320 } 9321 ap = anon_get_ptr(amp->ahp, anon_index); 9322 9323 /* 9324 * We must never use seg_pcache for COW pages 9325 * because we might end up with original page still 9326 * lying in seg_pcache even after private page is 9327 * created. This leads to data corruption as 9328 * aio_write refers to the page still in cache 9329 * while all other accesses refer to the private 9330 * page. 9331 */ 9332 if (ap == NULL || ap->an_refcnt != 1) { 9333 struct vpage *vpage; 9334 9335 if (seg->s_szc) { 9336 error = EFAULT; 9337 break; 9338 } 9339 if (svd->vpage != NULL) { 9340 vpage = &svd->vpage[seg_page(seg, a)]; 9341 } else { 9342 vpage = NULL; 9343 } 9344 ASSERT(anlock); 9345 anon_array_exit(&cookie); 9346 anlock = 0; 9347 pp = NULL; 9348 error = segvn_faultpage(seg->s_as->a_hat, seg, a, 0, 9349 vpage, &pp, 0, F_INVAL, rw, 1); 9350 if (error) { 9351 error = fc_decode(error); 9352 break; 9353 } 9354 anon_array_enter(amp, anon_index, &cookie); 9355 anlock = 1; 9356 ap = anon_get_ptr(amp->ahp, anon_index); 9357 if (ap == NULL || ap->an_refcnt != 1) { 9358 error = EFAULT; 9359 break; 9360 } 9361 } 9362 swap_xlate(ap, &vp, &off); 9363 pp = page_lookup_nowait(vp, off, SE_SHARED); 9364 if (pp == NULL) { 9365 error = EFAULT; 9366 break; 9367 } 9368 if (ap->an_pvp != NULL) { 9369 anon_swap_free(ap, pp); 9370 } 9371 /* 9372 * Unlock anon if this is the last slot in a large page. 9373 */ 9374 if (P2PHASE(anon_index, anpgcnt) == anpgcnt - 1) { 9375 ASSERT(anlock); 9376 anon_array_exit(&cookie); 9377 anlock = 0; 9378 } 9379 *pplist++ = pp; 9380 } 9381 if (anlock) { /* Ensure the lock is dropped */ 9382 anon_array_exit(&cookie); 9383 } 9384 ANON_LOCK_EXIT(&->a_rwlock); 9385 9386 if (a >= addr + len) { 9387 atomic_add_long((ulong_t *)&svd->softlockcnt, npages); 9388 if (pamp != NULL) { 9389 ASSERT(svd->type == MAP_SHARED); 9390 atomic_add_long((ulong_t *)&pamp->a_softlockcnt, 9391 npages); 9392 wlen = len; 9393 } 9394 if (sftlck_sbase) { 9395 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_sbase); 9396 } 9397 if (sftlck_send) { 9398 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_send); 9399 } 9400 if (use_pcache) { 9401 (void) seg_pinsert(seg, pamp, paddr, len, wlen, pl, 9402 rw, pflags, preclaim_callback); 9403 } 9404 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 9405 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END, 9406 "segvn_pagelock: cache fill seg %p addr %p", seg, addr); 9407 return (0); 9408 } 9409 9410 pplist = pl; 9411 np = ((uintptr_t)(a - addr)) >> PAGESHIFT; 9412 while (np > (uint_t)0) { 9413 ASSERT(PAGE_LOCKED(*pplist)); 9414 page_unlock(*pplist); 9415 np--; 9416 pplist++; 9417 } 9418 kmem_free(pl, sizeof (page_t *) * (npages + 1)); 9419 out: 9420 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 9421 *ppp = NULL; 9422 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END, 9423 "segvn_pagelock: cache miss seg %p addr %p", seg, addr); 9424 return (error); 9425 } 9426 9427 /* 9428 * purge any cached pages in the I/O page cache 9429 */ 9430 static void 9431 segvn_purge(struct seg *seg) 9432 { 9433 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9434 9435 /* 9436 * pcache is only used by pure anon segments. 9437 */ 9438 if (svd->amp == NULL || svd->vp != NULL) { 9439 return; 9440 } 9441 9442 /* 9443 * For MAP_SHARED segments non 0 segment's softlockcnt means 9444 * active IO is still in progress via this segment. So we only 9445 * purge MAP_SHARED segments when their softlockcnt is 0. 9446 */ 9447 if (svd->type == MAP_PRIVATE) { 9448 if (svd->softlockcnt) { 9449 seg_ppurge(seg, NULL, 0); 9450 } 9451 } else if (svd->softlockcnt == 0 && svd->amp->a_softlockcnt != 0) { 9452 seg_ppurge(seg, svd->amp, 0); 9453 } 9454 } 9455 9456 /* 9457 * If async argument is not 0 we are called from pcache async thread and don't 9458 * hold AS lock. 9459 */ 9460 9461 /*ARGSUSED*/ 9462 static int 9463 segvn_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist, 9464 enum seg_rw rw, int async) 9465 { 9466 struct seg *seg = (struct seg *)ptag; 9467 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9468 pgcnt_t np, npages; 9469 struct page **pl; 9470 9471 npages = np = btop(len); 9472 ASSERT(npages); 9473 9474 ASSERT(svd->vp == NULL && svd->amp != NULL); 9475 ASSERT(svd->softlockcnt >= npages); 9476 ASSERT(async || AS_LOCK_HELD(seg->s_as)); 9477 9478 pl = pplist; 9479 9480 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST); 9481 ASSERT(!async || pl[np] == PCACHE_SHWLIST); 9482 9483 while (np > (uint_t)0) { 9484 if (rw == S_WRITE) { 9485 hat_setrefmod(*pplist); 9486 } else { 9487 hat_setref(*pplist); 9488 } 9489 page_unlock(*pplist); 9490 np--; 9491 pplist++; 9492 } 9493 9494 kmem_free(pl, sizeof (page_t *) * (npages + 1)); 9495 9496 /* 9497 * If we are pcache async thread we don't hold AS lock. This means if 9498 * softlockcnt drops to 0 after the decrement below address space may 9499 * get freed. We can't allow it since after softlock derement to 0 we 9500 * still need to access as structure for possible wakeup of unmap 9501 * waiters. To prevent the disappearance of as we take this segment 9502 * segfree_syncmtx. segvn_free() also takes this mutex as a barrier to 9503 * make sure this routine completes before segment is freed. 9504 * 9505 * The second complication we have to deal with in async case is a 9506 * possibility of missed wake up of unmap wait thread. When we don't 9507 * hold as lock here we may take a_contents lock before unmap wait 9508 * thread that was first to see softlockcnt was still not 0. As a 9509 * result we'll fail to wake up an unmap wait thread. To avoid this 9510 * race we set nounmapwait flag in as structure if we drop softlockcnt 9511 * to 0 when we were called by pcache async thread. unmapwait thread 9512 * will not block if this flag is set. 9513 */ 9514 if (async) { 9515 mutex_enter(&svd->segfree_syncmtx); 9516 } 9517 9518 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -npages)) { 9519 if (async || AS_ISUNMAPWAIT(seg->s_as)) { 9520 mutex_enter(&seg->s_as->a_contents); 9521 if (async) { 9522 AS_SETNOUNMAPWAIT(seg->s_as); 9523 } 9524 if (AS_ISUNMAPWAIT(seg->s_as)) { 9525 AS_CLRUNMAPWAIT(seg->s_as); 9526 cv_broadcast(&seg->s_as->a_cv); 9527 } 9528 mutex_exit(&seg->s_as->a_contents); 9529 } 9530 } 9531 9532 if (async) { 9533 mutex_exit(&svd->segfree_syncmtx); 9534 } 9535 return (0); 9536 } 9537 9538 /*ARGSUSED*/ 9539 static int 9540 shamp_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist, 9541 enum seg_rw rw, int async) 9542 { 9543 amp_t *amp = (amp_t *)ptag; 9544 pgcnt_t np, npages; 9545 struct page **pl; 9546 9547 npages = np = btop(len); 9548 ASSERT(npages); 9549 ASSERT(amp->a_softlockcnt >= npages); 9550 9551 pl = pplist; 9552 9553 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST); 9554 ASSERT(!async || pl[np] == PCACHE_SHWLIST); 9555 9556 while (np > (uint_t)0) { 9557 if (rw == S_WRITE) { 9558 hat_setrefmod(*pplist); 9559 } else { 9560 hat_setref(*pplist); 9561 } 9562 page_unlock(*pplist); 9563 np--; 9564 pplist++; 9565 } 9566 9567 kmem_free(pl, sizeof (page_t *) * (npages + 1)); 9568 9569 /* 9570 * If somebody sleeps in anonmap_purge() wake them up if a_softlockcnt 9571 * drops to 0. anon map can't be freed until a_softlockcnt drops to 0 9572 * and anonmap_purge() acquires a_purgemtx. 9573 */ 9574 mutex_enter(&->a_purgemtx); 9575 if (!atomic_add_long_nv((ulong_t *)&->a_softlockcnt, -npages) && 9576 amp->a_purgewait) { 9577 amp->a_purgewait = 0; 9578 cv_broadcast(&->a_purgecv); 9579 } 9580 mutex_exit(&->a_purgemtx); 9581 return (0); 9582 } 9583 9584 /* 9585 * get a memory ID for an addr in a given segment 9586 * 9587 * XXX only creates PAGESIZE pages if anon slots are not initialized. 9588 * At fault time they will be relocated into larger pages. 9589 */ 9590 static int 9591 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 9592 { 9593 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9594 struct anon *ap = NULL; 9595 ulong_t anon_index; 9596 struct anon_map *amp; 9597 anon_sync_obj_t cookie; 9598 9599 if (svd->type == MAP_PRIVATE) { 9600 memidp->val[0] = (uintptr_t)seg->s_as; 9601 memidp->val[1] = (uintptr_t)addr; 9602 return (0); 9603 } 9604 9605 if (svd->type == MAP_SHARED) { 9606 if (svd->vp) { 9607 memidp->val[0] = (uintptr_t)svd->vp; 9608 memidp->val[1] = (u_longlong_t)svd->offset + 9609 (uintptr_t)(addr - seg->s_base); 9610 return (0); 9611 } else { 9612 9613 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 9614 if ((amp = svd->amp) != NULL) { 9615 anon_index = svd->anon_index + 9616 seg_page(seg, addr); 9617 } 9618 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 9619 9620 ASSERT(amp != NULL); 9621 9622 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 9623 anon_array_enter(amp, anon_index, &cookie); 9624 ap = anon_get_ptr(amp->ahp, anon_index); 9625 if (ap == NULL) { 9626 page_t *pp; 9627 9628 pp = anon_zero(seg, addr, &ap, svd->cred); 9629 if (pp == NULL) { 9630 anon_array_exit(&cookie); 9631 ANON_LOCK_EXIT(&->a_rwlock); 9632 return (ENOMEM); 9633 } 9634 ASSERT(anon_get_ptr(amp->ahp, anon_index) 9635 == NULL); 9636 (void) anon_set_ptr(amp->ahp, anon_index, 9637 ap, ANON_SLEEP); 9638 page_unlock(pp); 9639 } 9640 9641 anon_array_exit(&cookie); 9642 ANON_LOCK_EXIT(&->a_rwlock); 9643 9644 memidp->val[0] = (uintptr_t)ap; 9645 memidp->val[1] = (uintptr_t)addr & PAGEOFFSET; 9646 return (0); 9647 } 9648 } 9649 return (EINVAL); 9650 } 9651 9652 static int 9653 sameprot(struct seg *seg, caddr_t a, size_t len) 9654 { 9655 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9656 struct vpage *vpage; 9657 spgcnt_t pages = btop(len); 9658 uint_t prot; 9659 9660 if (svd->pageprot == 0) 9661 return (1); 9662 9663 ASSERT(svd->vpage != NULL); 9664 9665 vpage = &svd->vpage[seg_page(seg, a)]; 9666 prot = VPP_PROT(vpage); 9667 vpage++; 9668 pages--; 9669 while (pages-- > 0) { 9670 if (prot != VPP_PROT(vpage)) 9671 return (0); 9672 vpage++; 9673 } 9674 return (1); 9675 } 9676 9677 /* 9678 * Get memory allocation policy info for specified address in given segment 9679 */ 9680 static lgrp_mem_policy_info_t * 9681 segvn_getpolicy(struct seg *seg, caddr_t addr) 9682 { 9683 struct anon_map *amp; 9684 ulong_t anon_index; 9685 lgrp_mem_policy_info_t *policy_info; 9686 struct segvn_data *svn_data; 9687 u_offset_t vn_off; 9688 vnode_t *vp; 9689 9690 ASSERT(seg != NULL); 9691 9692 svn_data = (struct segvn_data *)seg->s_data; 9693 if (svn_data == NULL) 9694 return (NULL); 9695 9696 /* 9697 * Get policy info for private or shared memory 9698 */ 9699 if (svn_data->type != MAP_SHARED) { 9700 if (svn_data->tr_state != SEGVN_TR_ON) { 9701 policy_info = &svn_data->policy_info; 9702 } else { 9703 policy_info = &svn_data->tr_policy_info; 9704 ASSERT(policy_info->mem_policy == 9705 LGRP_MEM_POLICY_NEXT_SEG); 9706 } 9707 } else { 9708 amp = svn_data->amp; 9709 anon_index = svn_data->anon_index + seg_page(seg, addr); 9710 vp = svn_data->vp; 9711 vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base); 9712 policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off); 9713 } 9714 9715 return (policy_info); 9716 } 9717 9718 /*ARGSUSED*/ 9719 static int 9720 segvn_capable(struct seg *seg, segcapability_t capability) 9721 { 9722 return (0); 9723 } 9724 9725 /* 9726 * Bind text vnode segment to an amp. If we bind successfully mappings will be 9727 * established to per vnode mapping per lgroup amp pages instead of to vnode 9728 * pages. There's one amp per vnode text mapping per lgroup. Many processes 9729 * may share the same text replication amp. If a suitable amp doesn't already 9730 * exist in svntr hash table create a new one. We may fail to bind to amp if 9731 * segment is not eligible for text replication. Code below first checks for 9732 * these conditions. If binding is successful segment tr_state is set to on 9733 * and svd->amp points to the amp to use. Otherwise tr_state is set to off and 9734 * svd->amp remains as NULL. 9735 */ 9736 static void 9737 segvn_textrepl(struct seg *seg) 9738 { 9739 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9740 vnode_t *vp = svd->vp; 9741 u_offset_t off = svd->offset; 9742 size_t size = seg->s_size; 9743 u_offset_t eoff = off + size; 9744 uint_t szc = seg->s_szc; 9745 ulong_t hash = SVNTR_HASH_FUNC(vp); 9746 svntr_t *svntrp; 9747 struct vattr va; 9748 proc_t *p = seg->s_as->a_proc; 9749 lgrp_id_t lgrp_id; 9750 lgrp_id_t olid; 9751 int first; 9752 struct anon_map *amp; 9753 9754 ASSERT(AS_LOCK_HELD(seg->s_as)); 9755 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock)); 9756 ASSERT(p != NULL); 9757 ASSERT(svd->tr_state == SEGVN_TR_INIT); 9758 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie)); 9759 ASSERT(svd->flags & MAP_TEXT); 9760 ASSERT(svd->type == MAP_PRIVATE); 9761 ASSERT(vp != NULL && svd->amp == NULL); 9762 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE)); 9763 ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0); 9764 ASSERT(seg->s_as != &kas); 9765 ASSERT(off < eoff); 9766 ASSERT(svntr_hashtab != NULL); 9767 9768 /* 9769 * If numa optimizations are no longer desired bail out. 9770 */ 9771 if (!lgrp_optimizations()) { 9772 svd->tr_state = SEGVN_TR_OFF; 9773 return; 9774 } 9775 9776 /* 9777 * Avoid creating anon maps with size bigger than the file size. 9778 * If VOP_GETATTR() call fails bail out. 9779 */ 9780 va.va_mask = AT_SIZE | AT_MTIME | AT_CTIME; 9781 if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL) != 0) { 9782 svd->tr_state = SEGVN_TR_OFF; 9783 SEGVN_TR_ADDSTAT(gaerr); 9784 return; 9785 } 9786 if (btopr(va.va_size) < btopr(eoff)) { 9787 svd->tr_state = SEGVN_TR_OFF; 9788 SEGVN_TR_ADDSTAT(overmap); 9789 return; 9790 } 9791 9792 /* 9793 * VVMEXEC may not be set yet if exec() prefaults text segment. Set 9794 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED 9795 * mapping that checks if trcache for this vnode needs to be 9796 * invalidated can't miss us. 9797 */ 9798 if (!(vp->v_flag & VVMEXEC)) { 9799 mutex_enter(&vp->v_lock); 9800 vp->v_flag |= VVMEXEC; 9801 mutex_exit(&vp->v_lock); 9802 } 9803 mutex_enter(&svntr_hashtab[hash].tr_lock); 9804 /* 9805 * Bail out if potentially MAP_SHARED writable mappings exist to this 9806 * vnode. We don't want to use old file contents from existing 9807 * replicas if this mapping was established after the original file 9808 * was changed. 9809 */ 9810 if (vn_is_mapped(vp, V_WRITE)) { 9811 mutex_exit(&svntr_hashtab[hash].tr_lock); 9812 svd->tr_state = SEGVN_TR_OFF; 9813 SEGVN_TR_ADDSTAT(wrcnt); 9814 return; 9815 } 9816 svntrp = svntr_hashtab[hash].tr_head; 9817 for (; svntrp != NULL; svntrp = svntrp->tr_next) { 9818 ASSERT(svntrp->tr_refcnt != 0); 9819 if (svntrp->tr_vp != vp) { 9820 continue; 9821 } 9822 9823 /* 9824 * Bail out if the file or its attributes were changed after 9825 * this replication entry was created since we need to use the 9826 * latest file contents. Note that mtime test alone is not 9827 * sufficient because a user can explicitly change mtime via 9828 * utimes(2) interfaces back to the old value after modifiying 9829 * the file contents. To detect this case we also have to test 9830 * ctime which among other things records the time of the last 9831 * mtime change by utimes(2). ctime is not changed when the file 9832 * is only read or executed so we expect that typically existing 9833 * replication amp's can be used most of the time. 9834 */ 9835 if (!svntrp->tr_valid || 9836 svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec || 9837 svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec || 9838 svntrp->tr_ctime.tv_sec != va.va_ctime.tv_sec || 9839 svntrp->tr_ctime.tv_nsec != va.va_ctime.tv_nsec) { 9840 mutex_exit(&svntr_hashtab[hash].tr_lock); 9841 svd->tr_state = SEGVN_TR_OFF; 9842 SEGVN_TR_ADDSTAT(stale); 9843 return; 9844 } 9845 /* 9846 * if off, eoff and szc match current segment we found the 9847 * existing entry we can use. 9848 */ 9849 if (svntrp->tr_off == off && svntrp->tr_eoff == eoff && 9850 svntrp->tr_szc == szc) { 9851 break; 9852 } 9853 /* 9854 * Don't create different but overlapping in file offsets 9855 * entries to avoid replication of the same file pages more 9856 * than once per lgroup. 9857 */ 9858 if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) || 9859 (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) { 9860 mutex_exit(&svntr_hashtab[hash].tr_lock); 9861 svd->tr_state = SEGVN_TR_OFF; 9862 SEGVN_TR_ADDSTAT(overlap); 9863 return; 9864 } 9865 } 9866 /* 9867 * If we didn't find existing entry create a new one. 9868 */ 9869 if (svntrp == NULL) { 9870 svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP); 9871 if (svntrp == NULL) { 9872 mutex_exit(&svntr_hashtab[hash].tr_lock); 9873 svd->tr_state = SEGVN_TR_OFF; 9874 SEGVN_TR_ADDSTAT(nokmem); 9875 return; 9876 } 9877 #ifdef DEBUG 9878 { 9879 lgrp_id_t i; 9880 for (i = 0; i < NLGRPS_MAX; i++) { 9881 ASSERT(svntrp->tr_amp[i] == NULL); 9882 } 9883 } 9884 #endif /* DEBUG */ 9885 svntrp->tr_vp = vp; 9886 svntrp->tr_off = off; 9887 svntrp->tr_eoff = eoff; 9888 svntrp->tr_szc = szc; 9889 svntrp->tr_valid = 1; 9890 svntrp->tr_mtime = va.va_mtime; 9891 svntrp->tr_ctime = va.va_ctime; 9892 svntrp->tr_refcnt = 0; 9893 svntrp->tr_next = svntr_hashtab[hash].tr_head; 9894 svntr_hashtab[hash].tr_head = svntrp; 9895 } 9896 first = 1; 9897 again: 9898 /* 9899 * We want to pick a replica with pages on main thread's (t_tid = 1, 9900 * aka T1) lgrp. Currently text replication is only optimized for 9901 * workloads that either have all threads of a process on the same 9902 * lgrp or execute their large text primarily on main thread. 9903 */ 9904 lgrp_id = p->p_t1_lgrpid; 9905 if (lgrp_id == LGRP_NONE) { 9906 /* 9907 * In case exec() prefaults text on non main thread use 9908 * current thread lgrpid. It will become main thread anyway 9909 * soon. 9910 */ 9911 lgrp_id = lgrp_home_id(curthread); 9912 } 9913 /* 9914 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet. Otherwise 9915 * just set it to NLGRPS_MAX if it's different from current process T1 9916 * home lgrp. p_tr_lgrpid is used to detect if process uses text 9917 * replication and T1 new home is different from lgrp used for text 9918 * replication. When this happens asyncronous segvn thread rechecks if 9919 * segments should change lgrps used for text replication. If we fail 9920 * to set p_tr_lgrpid with atomic_cas_32 then set it to NLGRPS_MAX 9921 * without cas if it's not already NLGRPS_MAX and not equal lgrp_id 9922 * we want to use. We don't need to use cas in this case because 9923 * another thread that races in between our non atomic check and set 9924 * may only change p_tr_lgrpid to NLGRPS_MAX at this point. 9925 */ 9926 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX); 9927 olid = p->p_tr_lgrpid; 9928 if (lgrp_id != olid && olid != NLGRPS_MAX) { 9929 lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX; 9930 if (atomic_cas_32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) != 9931 olid) { 9932 olid = p->p_tr_lgrpid; 9933 ASSERT(olid != LGRP_NONE); 9934 if (olid != lgrp_id && olid != NLGRPS_MAX) { 9935 p->p_tr_lgrpid = NLGRPS_MAX; 9936 } 9937 } 9938 ASSERT(p->p_tr_lgrpid != LGRP_NONE); 9939 membar_producer(); 9940 /* 9941 * lgrp_move_thread() won't schedule async recheck after 9942 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not 9943 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid 9944 * is not LGRP_NONE. 9945 */ 9946 if (first && p->p_t1_lgrpid != LGRP_NONE && 9947 p->p_t1_lgrpid != lgrp_id) { 9948 first = 0; 9949 goto again; 9950 } 9951 } 9952 /* 9953 * If no amp was created yet for lgrp_id create a new one as long as 9954 * we have enough memory to afford it. 9955 */ 9956 if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) { 9957 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size); 9958 if (trmem > segvn_textrepl_max_bytes) { 9959 SEGVN_TR_ADDSTAT(normem); 9960 goto fail; 9961 } 9962 if (anon_try_resv_zone(size, NULL) == 0) { 9963 SEGVN_TR_ADDSTAT(noanon); 9964 goto fail; 9965 } 9966 amp = anonmap_alloc(size, size, ANON_NOSLEEP); 9967 if (amp == NULL) { 9968 anon_unresv_zone(size, NULL); 9969 SEGVN_TR_ADDSTAT(nokmem); 9970 goto fail; 9971 } 9972 ASSERT(amp->refcnt == 1); 9973 amp->a_szc = szc; 9974 svntrp->tr_amp[lgrp_id] = amp; 9975 SEGVN_TR_ADDSTAT(newamp); 9976 } 9977 svntrp->tr_refcnt++; 9978 ASSERT(svd->svn_trnext == NULL); 9979 ASSERT(svd->svn_trprev == NULL); 9980 svd->svn_trnext = svntrp->tr_svnhead; 9981 svd->svn_trprev = NULL; 9982 if (svntrp->tr_svnhead != NULL) { 9983 svntrp->tr_svnhead->svn_trprev = svd; 9984 } 9985 svntrp->tr_svnhead = svd; 9986 ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size); 9987 ASSERT(amp->refcnt >= 1); 9988 svd->amp = amp; 9989 svd->anon_index = 0; 9990 svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG; 9991 svd->tr_policy_info.mem_lgrpid = lgrp_id; 9992 svd->tr_state = SEGVN_TR_ON; 9993 mutex_exit(&svntr_hashtab[hash].tr_lock); 9994 SEGVN_TR_ADDSTAT(repl); 9995 return; 9996 fail: 9997 ASSERT(segvn_textrepl_bytes >= size); 9998 atomic_add_long(&segvn_textrepl_bytes, -size); 9999 ASSERT(svntrp != NULL); 10000 ASSERT(svntrp->tr_amp[lgrp_id] == NULL); 10001 if (svntrp->tr_refcnt == 0) { 10002 ASSERT(svntrp == svntr_hashtab[hash].tr_head); 10003 svntr_hashtab[hash].tr_head = svntrp->tr_next; 10004 mutex_exit(&svntr_hashtab[hash].tr_lock); 10005 kmem_cache_free(svntr_cache, svntrp); 10006 } else { 10007 mutex_exit(&svntr_hashtab[hash].tr_lock); 10008 } 10009 svd->tr_state = SEGVN_TR_OFF; 10010 } 10011 10012 /* 10013 * Convert seg back to regular vnode mapping seg by unbinding it from its text 10014 * replication amp. This routine is most typically called when segment is 10015 * unmapped but can also be called when segment no longer qualifies for text 10016 * replication (e.g. due to protection changes). If unload_unmap is set use 10017 * HAT_UNLOAD_UNMAP flag in hat_unload_callback(). If we are the last user of 10018 * svntr free all its anon maps and remove it from the hash table. 10019 */ 10020 static void 10021 segvn_textunrepl(struct seg *seg, int unload_unmap) 10022 { 10023 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 10024 vnode_t *vp = svd->vp; 10025 u_offset_t off = svd->offset; 10026 size_t size = seg->s_size; 10027 u_offset_t eoff = off + size; 10028 uint_t szc = seg->s_szc; 10029 ulong_t hash = SVNTR_HASH_FUNC(vp); 10030 svntr_t *svntrp; 10031 svntr_t **prv_svntrp; 10032 lgrp_id_t lgrp_id = svd->tr_policy_info.mem_lgrpid; 10033 lgrp_id_t i; 10034 10035 ASSERT(AS_LOCK_HELD(seg->s_as)); 10036 ASSERT(AS_WRITE_HELD(seg->s_as) || 10037 SEGVN_WRITE_HELD(seg->s_as, &svd->lock)); 10038 ASSERT(svd->tr_state == SEGVN_TR_ON); 10039 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie)); 10040 ASSERT(svd->amp != NULL); 10041 ASSERT(svd->amp->refcnt >= 1); 10042 ASSERT(svd->anon_index == 0); 10043 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX); 10044 ASSERT(svntr_hashtab != NULL); 10045 10046 mutex_enter(&svntr_hashtab[hash].tr_lock); 10047 prv_svntrp = &svntr_hashtab[hash].tr_head; 10048 for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) { 10049 ASSERT(svntrp->tr_refcnt != 0); 10050 if (svntrp->tr_vp == vp && svntrp->tr_off == off && 10051 svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) { 10052 break; 10053 } 10054 } 10055 if (svntrp == NULL) { 10056 panic("segvn_textunrepl: svntr record not found"); 10057 } 10058 if (svntrp->tr_amp[lgrp_id] != svd->amp) { 10059 panic("segvn_textunrepl: amp mismatch"); 10060 } 10061 svd->tr_state = SEGVN_TR_OFF; 10062 svd->amp = NULL; 10063 if (svd->svn_trprev == NULL) { 10064 ASSERT(svntrp->tr_svnhead == svd); 10065 svntrp->tr_svnhead = svd->svn_trnext; 10066 if (svntrp->tr_svnhead != NULL) { 10067 svntrp->tr_svnhead->svn_trprev = NULL; 10068 } 10069 svd->svn_trnext = NULL; 10070 } else { 10071 svd->svn_trprev->svn_trnext = svd->svn_trnext; 10072 if (svd->svn_trnext != NULL) { 10073 svd->svn_trnext->svn_trprev = svd->svn_trprev; 10074 svd->svn_trnext = NULL; 10075 } 10076 svd->svn_trprev = NULL; 10077 } 10078 if (--svntrp->tr_refcnt) { 10079 mutex_exit(&svntr_hashtab[hash].tr_lock); 10080 goto done; 10081 } 10082 *prv_svntrp = svntrp->tr_next; 10083 mutex_exit(&svntr_hashtab[hash].tr_lock); 10084 for (i = 0; i < NLGRPS_MAX; i++) { 10085 struct anon_map *amp = svntrp->tr_amp[i]; 10086 if (amp == NULL) { 10087 continue; 10088 } 10089 ASSERT(amp->refcnt == 1); 10090 ASSERT(amp->swresv == size); 10091 ASSERT(amp->size == size); 10092 ASSERT(amp->a_szc == szc); 10093 if (amp->a_szc != 0) { 10094 anon_free_pages(amp->ahp, 0, size, szc); 10095 } else { 10096 anon_free(amp->ahp, 0, size); 10097 } 10098 svntrp->tr_amp[i] = NULL; 10099 ASSERT(segvn_textrepl_bytes >= size); 10100 atomic_add_long(&segvn_textrepl_bytes, -size); 10101 anon_unresv_zone(amp->swresv, NULL); 10102 amp->refcnt = 0; 10103 anonmap_free(amp); 10104 } 10105 kmem_cache_free(svntr_cache, svntrp); 10106 done: 10107 hat_unload_callback(seg->s_as->a_hat, seg->s_base, size, 10108 unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL); 10109 } 10110 10111 /* 10112 * This is called when a MAP_SHARED writable mapping is created to a vnode 10113 * that is currently used for execution (VVMEXEC flag is set). In this case we 10114 * need to prevent further use of existing replicas. 10115 */ 10116 static void 10117 segvn_inval_trcache(vnode_t *vp) 10118 { 10119 ulong_t hash = SVNTR_HASH_FUNC(vp); 10120 svntr_t *svntrp; 10121 10122 ASSERT(vp->v_flag & VVMEXEC); 10123 10124 if (svntr_hashtab == NULL) { 10125 return; 10126 } 10127 10128 mutex_enter(&svntr_hashtab[hash].tr_lock); 10129 svntrp = svntr_hashtab[hash].tr_head; 10130 for (; svntrp != NULL; svntrp = svntrp->tr_next) { 10131 ASSERT(svntrp->tr_refcnt != 0); 10132 if (svntrp->tr_vp == vp && svntrp->tr_valid) { 10133 svntrp->tr_valid = 0; 10134 } 10135 } 10136 mutex_exit(&svntr_hashtab[hash].tr_lock); 10137 } 10138 10139 static void 10140 segvn_trasync_thread(void) 10141 { 10142 callb_cpr_t cpr_info; 10143 kmutex_t cpr_lock; /* just for CPR stuff */ 10144 10145 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL); 10146 10147 CALLB_CPR_INIT(&cpr_info, &cpr_lock, 10148 callb_generic_cpr, "segvn_async"); 10149 10150 if (segvn_update_textrepl_interval == 0) { 10151 segvn_update_textrepl_interval = segvn_update_tr_time * hz; 10152 } else { 10153 segvn_update_textrepl_interval *= hz; 10154 } 10155 (void) timeout(segvn_trupdate_wakeup, NULL, 10156 segvn_update_textrepl_interval); 10157 10158 for (;;) { 10159 mutex_enter(&cpr_lock); 10160 CALLB_CPR_SAFE_BEGIN(&cpr_info); 10161 mutex_exit(&cpr_lock); 10162 sema_p(&segvn_trasync_sem); 10163 mutex_enter(&cpr_lock); 10164 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 10165 mutex_exit(&cpr_lock); 10166 segvn_trupdate(); 10167 } 10168 } 10169 10170 static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0; 10171 10172 static void 10173 segvn_trupdate_wakeup(void *dummy) 10174 { 10175 uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations(); 10176 10177 if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) { 10178 segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs; 10179 sema_v(&segvn_trasync_sem); 10180 } 10181 10182 if (!segvn_disable_textrepl_update && 10183 segvn_update_textrepl_interval != 0) { 10184 (void) timeout(segvn_trupdate_wakeup, dummy, 10185 segvn_update_textrepl_interval); 10186 } 10187 } 10188 10189 static void 10190 segvn_trupdate(void) 10191 { 10192 ulong_t hash; 10193 svntr_t *svntrp; 10194 segvn_data_t *svd; 10195 10196 ASSERT(svntr_hashtab != NULL); 10197 10198 for (hash = 0; hash < svntr_hashtab_sz; hash++) { 10199 mutex_enter(&svntr_hashtab[hash].tr_lock); 10200 svntrp = svntr_hashtab[hash].tr_head; 10201 for (; svntrp != NULL; svntrp = svntrp->tr_next) { 10202 ASSERT(svntrp->tr_refcnt != 0); 10203 svd = svntrp->tr_svnhead; 10204 for (; svd != NULL; svd = svd->svn_trnext) { 10205 segvn_trupdate_seg(svd->seg, svd, svntrp, 10206 hash); 10207 } 10208 } 10209 mutex_exit(&svntr_hashtab[hash].tr_lock); 10210 } 10211 } 10212 10213 static void 10214 segvn_trupdate_seg(struct seg *seg, segvn_data_t *svd, svntr_t *svntrp, 10215 ulong_t hash) 10216 { 10217 proc_t *p; 10218 lgrp_id_t lgrp_id; 10219 struct as *as; 10220 size_t size; 10221 struct anon_map *amp; 10222 10223 ASSERT(svd->vp != NULL); 10224 ASSERT(svd->vp == svntrp->tr_vp); 10225 ASSERT(svd->offset == svntrp->tr_off); 10226 ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff); 10227 ASSERT(seg != NULL); 10228 ASSERT(svd->seg == seg); 10229 ASSERT(seg->s_data == (void *)svd); 10230 ASSERT(seg->s_szc == svntrp->tr_szc); 10231 ASSERT(svd->tr_state == SEGVN_TR_ON); 10232 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie)); 10233 ASSERT(svd->amp != NULL); 10234 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG); 10235 ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE); 10236 ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX); 10237 ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp); 10238 ASSERT(svntrp->tr_refcnt != 0); 10239 ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock)); 10240 10241 as = seg->s_as; 10242 ASSERT(as != NULL && as != &kas); 10243 p = as->a_proc; 10244 ASSERT(p != NULL); 10245 ASSERT(p->p_tr_lgrpid != LGRP_NONE); 10246 lgrp_id = p->p_t1_lgrpid; 10247 if (lgrp_id == LGRP_NONE) { 10248 return; 10249 } 10250 ASSERT(lgrp_id < NLGRPS_MAX); 10251 if (svd->tr_policy_info.mem_lgrpid == lgrp_id) { 10252 return; 10253 } 10254 10255 /* 10256 * Use tryenter locking since we are locking as/seg and svntr hash 10257 * lock in reverse from syncrounous thread order. 10258 */ 10259 if (!AS_LOCK_TRYENTER(as, RW_READER)) { 10260 SEGVN_TR_ADDSTAT(nolock); 10261 if (segvn_lgrp_trthr_migrs_snpsht) { 10262 segvn_lgrp_trthr_migrs_snpsht = 0; 10263 } 10264 return; 10265 } 10266 if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) { 10267 AS_LOCK_EXIT(as); 10268 SEGVN_TR_ADDSTAT(nolock); 10269 if (segvn_lgrp_trthr_migrs_snpsht) { 10270 segvn_lgrp_trthr_migrs_snpsht = 0; 10271 } 10272 return; 10273 } 10274 size = seg->s_size; 10275 if (svntrp->tr_amp[lgrp_id] == NULL) { 10276 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size); 10277 if (trmem > segvn_textrepl_max_bytes) { 10278 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 10279 AS_LOCK_EXIT(as); 10280 atomic_add_long(&segvn_textrepl_bytes, -size); 10281 SEGVN_TR_ADDSTAT(normem); 10282 return; 10283 } 10284 if (anon_try_resv_zone(size, NULL) == 0) { 10285 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 10286 AS_LOCK_EXIT(as); 10287 atomic_add_long(&segvn_textrepl_bytes, -size); 10288 SEGVN_TR_ADDSTAT(noanon); 10289 return; 10290 } 10291 amp = anonmap_alloc(size, size, KM_NOSLEEP); 10292 if (amp == NULL) { 10293 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 10294 AS_LOCK_EXIT(as); 10295 atomic_add_long(&segvn_textrepl_bytes, -size); 10296 anon_unresv_zone(size, NULL); 10297 SEGVN_TR_ADDSTAT(nokmem); 10298 return; 10299 } 10300 ASSERT(amp->refcnt == 1); 10301 amp->a_szc = seg->s_szc; 10302 svntrp->tr_amp[lgrp_id] = amp; 10303 } 10304 /* 10305 * We don't need to drop the bucket lock but here we give other 10306 * threads a chance. svntr and svd can't be unlinked as long as 10307 * segment lock is held as a writer and AS held as well. After we 10308 * retake bucket lock we'll continue from where we left. We'll be able 10309 * to reach the end of either list since new entries are always added 10310 * to the beginning of the lists. 10311 */ 10312 mutex_exit(&svntr_hashtab[hash].tr_lock); 10313 hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL); 10314 mutex_enter(&svntr_hashtab[hash].tr_lock); 10315 10316 ASSERT(svd->tr_state == SEGVN_TR_ON); 10317 ASSERT(svd->amp != NULL); 10318 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG); 10319 ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id); 10320 ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]); 10321 10322 svd->tr_policy_info.mem_lgrpid = lgrp_id; 10323 svd->amp = svntrp->tr_amp[lgrp_id]; 10324 p->p_tr_lgrpid = NLGRPS_MAX; 10325 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 10326 AS_LOCK_EXIT(as); 10327 10328 ASSERT(svntrp->tr_refcnt != 0); 10329 ASSERT(svd->vp == svntrp->tr_vp); 10330 ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id); 10331 ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]); 10332 ASSERT(svd->seg == seg); 10333 ASSERT(svd->tr_state == SEGVN_TR_ON); 10334 10335 SEGVN_TR_ADDSTAT(asyncrepl); 10336 }