Print this page
    
10093 kmem_log_enter() dereferences pointer before NULL check
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/os/kmem.c
          +++ new/usr/src/uts/common/os/kmem.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23   23   * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  24   24   * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  25   25   * Copyright 2018, Joyent, Inc.
  26   26   */
  27   27  
  28   28  /*
  29   29   * Kernel memory allocator, as described in the following two papers and a
  30   30   * statement about the consolidator:
  31   31   *
  32   32   * Jeff Bonwick,
  33   33   * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  34   34   * Proceedings of the Summer 1994 Usenix Conference.
  35   35   * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  36   36   *
  37   37   * Jeff Bonwick and Jonathan Adams,
  38   38   * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  39   39   * Arbitrary Resources.
  40   40   * Proceedings of the 2001 Usenix Conference.
  41   41   * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  42   42   *
  43   43   * kmem Slab Consolidator Big Theory Statement:
  44   44   *
  45   45   * 1. Motivation
  46   46   *
  47   47   * As stated in Bonwick94, slabs provide the following advantages over other
  48   48   * allocation structures in terms of memory fragmentation:
  49   49   *
  50   50   *  - Internal fragmentation (per-buffer wasted space) is minimal.
  51   51   *  - Severe external fragmentation (unused buffers on the free list) is
  52   52   *    unlikely.
  53   53   *
  54   54   * Segregating objects by size eliminates one source of external fragmentation,
  55   55   * and according to Bonwick:
  56   56   *
  57   57   *   The other reason that slabs reduce external fragmentation is that all
  58   58   *   objects in a slab are of the same type, so they have the same lifetime
  59   59   *   distribution. The resulting segregation of short-lived and long-lived
  60   60   *   objects at slab granularity reduces the likelihood of an entire page being
  61   61   *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  62   62   *
  63   63   * While unlikely, severe external fragmentation remains possible. Clients that
  64   64   * allocate both short- and long-lived objects from the same cache cannot
  65   65   * anticipate the distribution of long-lived objects within the allocator's slab
  66   66   * implementation. Even a small percentage of long-lived objects distributed
  67   67   * randomly across many slabs can lead to a worst case scenario where the client
  68   68   * frees the majority of its objects and the system gets back almost none of the
  69   69   * slabs. Despite the client doing what it reasonably can to help the system
  70   70   * reclaim memory, the allocator cannot shake free enough slabs because of
  71   71   * lonely allocations stubbornly hanging on. Although the allocator is in a
  72   72   * position to diagnose the fragmentation, there is nothing that the allocator
  73   73   * by itself can do about it. It only takes a single allocated object to prevent
  74   74   * an entire slab from being reclaimed, and any object handed out by
  75   75   * kmem_cache_alloc() is by definition in the client's control. Conversely,
  76   76   * although the client is in a position to move a long-lived object, it has no
  77   77   * way of knowing if the object is causing fragmentation, and if so, where to
  78   78   * move it. A solution necessarily requires further cooperation between the
  79   79   * allocator and the client.
  80   80   *
  81   81   * 2. Move Callback
  82   82   *
  83   83   * The kmem slab consolidator therefore adds a move callback to the
  84   84   * allocator/client interface, improving worst-case external fragmentation in
  85   85   * kmem caches that supply a function to move objects from one memory location
  86   86   * to another. In a situation of low memory kmem attempts to consolidate all of
  87   87   * a cache's slabs at once; otherwise it works slowly to bring external
  88   88   * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  89   89   * thereby helping to avoid a low memory situation in the future.
  90   90   *
  91   91   * The callback has the following signature:
  92   92   *
  93   93   *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  94   94   *
  95   95   * It supplies the kmem client with two addresses: the allocated object that
  96   96   * kmem wants to move and a buffer selected by kmem for the client to use as the
  97   97   * copy destination. The callback is kmem's way of saying "Please get off of
  98   98   * this buffer and use this one instead." kmem knows where it wants to move the
  99   99   * object in order to best reduce fragmentation. All the client needs to know
 100  100   * about the second argument (void *new) is that it is an allocated, constructed
 101  101   * object ready to take the contents of the old object. When the move function
 102  102   * is called, the system is likely to be low on memory, and the new object
 103  103   * spares the client from having to worry about allocating memory for the
 104  104   * requested move. The third argument supplies the size of the object, in case a
 105  105   * single move function handles multiple caches whose objects differ only in
 106  106   * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 107  107   * user argument passed to the constructor, destructor, and reclaim functions is
 108  108   * also passed to the move callback.
 109  109   *
 110  110   * 2.1 Setting the Move Callback
 111  111   *
 112  112   * The client sets the move callback after creating the cache and before
 113  113   * allocating from it:
 114  114   *
 115  115   *      object_cache = kmem_cache_create(...);
 116  116   *      kmem_cache_set_move(object_cache, object_move);
 117  117   *
 118  118   * 2.2 Move Callback Return Values
 119  119   *
 120  120   * Only the client knows about its own data and when is a good time to move it.
 121  121   * The client is cooperating with kmem to return unused memory to the system,
 122  122   * and kmem respectfully accepts this help at the client's convenience. When
 123  123   * asked to move an object, the client can respond with any of the following:
 124  124   *
 125  125   *   typedef enum kmem_cbrc {
 126  126   *           KMEM_CBRC_YES,
 127  127   *           KMEM_CBRC_NO,
 128  128   *           KMEM_CBRC_LATER,
 129  129   *           KMEM_CBRC_DONT_NEED,
 130  130   *           KMEM_CBRC_DONT_KNOW
 131  131   *   } kmem_cbrc_t;
 132  132   *
 133  133   * The client must not explicitly kmem_cache_free() either of the objects passed
 134  134   * to the callback, since kmem wants to free them directly to the slab layer
 135  135   * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 136  136   * objects to free:
 137  137   *
 138  138   *       YES: (Did it) The client moved the object, so kmem frees the old one.
 139  139   *        NO: (Never) The client refused, so kmem frees the new object (the
 140  140   *            unused copy destination). kmem also marks the slab of the old
 141  141   *            object so as not to bother the client with further callbacks for
 142  142   *            that object as long as the slab remains on the partial slab list.
 143  143   *            (The system won't be getting the slab back as long as the
 144  144   *            immovable object holds it hostage, so there's no point in moving
 145  145   *            any of its objects.)
 146  146   *     LATER: The client is using the object and cannot move it now, so kmem
 147  147   *            frees the new object (the unused copy destination). kmem still
 148  148   *            attempts to move other objects off the slab, since it expects to
 149  149   *            succeed in clearing the slab in a later callback. The client
 150  150   *            should use LATER instead of NO if the object is likely to become
 151  151   *            movable very soon.
 152  152   * DONT_NEED: The client no longer needs the object, so kmem frees the old along
 153  153   *            with the new object (the unused copy destination). This response
 154  154   *            is the client's opportunity to be a model citizen and give back as
 155  155   *            much as it can.
 156  156   * DONT_KNOW: The client does not know about the object because
 157  157   *            a) the client has just allocated the object and not yet put it
 158  158   *               wherever it expects to find known objects
 159  159   *            b) the client has removed the object from wherever it expects to
 160  160   *               find known objects and is about to free it, or
 161  161   *            c) the client has freed the object.
 162  162   *            In all these cases (a, b, and c) kmem frees the new object (the
 163  163   *            unused copy destination).  In the first case, the object is in
 164  164   *            use and the correct action is that for LATER; in the latter two
 165  165   *            cases, we know that the object is either freed or about to be
 166  166   *            freed, in which case it is either already in a magazine or about
 167  167   *            to be in one.  In these cases, we know that the object will either
 168  168   *            be reallocated and reused, or it will end up in a full magazine
 169  169   *            that will be reaped (thereby liberating the slab).  Because it
 170  170   *            is prohibitively expensive to differentiate these cases, and
 171  171   *            because the defrag code is executed when we're low on memory
 172  172   *            (thereby biasing the system to reclaim full magazines) we treat
 173  173   *            all DONT_KNOW cases as LATER and rely on cache reaping to
 174  174   *            generally clean up full magazines.  While we take the same action
 175  175   *            for these cases, we maintain their semantic distinction:  if
 176  176   *            defragmentation is not occurring, it is useful to know if this
 177  177   *            is due to objects in use (LATER) or objects in an unknown state
 178  178   *            of transition (DONT_KNOW).
 179  179   *
 180  180   * 2.3 Object States
 181  181   *
 182  182   * Neither kmem nor the client can be assumed to know the object's whereabouts
 183  183   * at the time of the callback. An object belonging to a kmem cache may be in
 184  184   * any of the following states:
 185  185   *
 186  186   * 1. Uninitialized on the slab
 187  187   * 2. Allocated from the slab but not constructed (still uninitialized)
 188  188   * 3. Allocated from the slab, constructed, but not yet ready for business
 189  189   *    (not in a valid state for the move callback)
 190  190   * 4. In use (valid and known to the client)
 191  191   * 5. About to be freed (no longer in a valid state for the move callback)
 192  192   * 6. Freed to a magazine (still constructed)
 193  193   * 7. Allocated from a magazine, not yet ready for business (not in a valid
 194  194   *    state for the move callback), and about to return to state #4
 195  195   * 8. Deconstructed on a magazine that is about to be freed
 196  196   * 9. Freed to the slab
 197  197   *
 198  198   * Since the move callback may be called at any time while the object is in any
 199  199   * of the above states (except state #1), the client needs a safe way to
 200  200   * determine whether or not it knows about the object. Specifically, the client
 201  201   * needs to know whether or not the object is in state #4, the only state in
 202  202   * which a move is valid. If the object is in any other state, the client should
 203  203   * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 204  204   * the object's fields.
 205  205   *
 206  206   * Note that although an object may be in state #4 when kmem initiates the move
 207  207   * request, the object may no longer be in that state by the time kmem actually
 208  208   * calls the move function. Not only does the client free objects
 209  209   * asynchronously, kmem itself puts move requests on a queue where thay are
 210  210   * pending until kmem processes them from another context. Also, objects freed
 211  211   * to a magazine appear allocated from the point of view of the slab layer, so
 212  212   * kmem may even initiate requests for objects in a state other than state #4.
 213  213   *
 214  214   * 2.3.1 Magazine Layer
 215  215   *
 216  216   * An important insight revealed by the states listed above is that the magazine
 217  217   * layer is populated only by kmem_cache_free(). Magazines of constructed
 218  218   * objects are never populated directly from the slab layer (which contains raw,
 219  219   * unconstructed objects). Whenever an allocation request cannot be satisfied
 220  220   * from the magazine layer, the magazines are bypassed and the request is
 221  221   * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 222  222   * the object constructor only when allocating from the slab layer, and only in
 223  223   * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 224  224   * the move callback. kmem does not preconstruct objects in anticipation of
 225  225   * kmem_cache_alloc().
 226  226   *
 227  227   * 2.3.2 Object Constructor and Destructor
 228  228   *
 229  229   * If the client supplies a destructor, it must be valid to call the destructor
 230  230   * on a newly created object (immediately after the constructor).
 231  231   *
 232  232   * 2.4 Recognizing Known Objects
 233  233   *
 234  234   * There is a simple test to determine safely whether or not the client knows
 235  235   * about a given object in the move callback. It relies on the fact that kmem
 236  236   * guarantees that the object of the move callback has only been touched by the
 237  237   * client itself or else by kmem. kmem does this by ensuring that none of the
 238  238   * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 239  239   * callback is pending. When the last object on a slab is freed, if there is a
 240  240   * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 241  241   * slabs on that list until all pending callbacks are completed. That way,
 242  242   * clients can be certain that the object of a move callback is in one of the
 243  243   * states listed above, making it possible to distinguish known objects (in
 244  244   * state #4) using the two low order bits of any pointer member (with the
 245  245   * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 246  246   * platforms).
 247  247   *
 248  248   * The test works as long as the client always transitions objects from state #4
 249  249   * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 250  250   * order bit of the client-designated pointer member. Since kmem only writes
 251  251   * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 252  252   * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 253  253   * guaranteed to set at least one of the two low order bits. Therefore, given an
 254  254   * object with a back pointer to a 'container_t *o_container', the client can
 255  255   * test
 256  256   *
 257  257   *      container_t *container = object->o_container;
 258  258   *      if ((uintptr_t)container & 0x3) {
 259  259   *              return (KMEM_CBRC_DONT_KNOW);
 260  260   *      }
 261  261   *
 262  262   * Typically, an object will have a pointer to some structure with a list or
 263  263   * hash where objects from the cache are kept while in use. Assuming that the
 264  264   * client has some way of knowing that the container structure is valid and will
 265  265   * not go away during the move, and assuming that the structure includes a lock
 266  266   * to protect whatever collection is used, then the client would continue as
 267  267   * follows:
 268  268   *
 269  269   *      // Ensure that the container structure does not go away.
 270  270   *      if (container_hold(container) == 0) {
 271  271   *              return (KMEM_CBRC_DONT_KNOW);
 272  272   *      }
 273  273   *      mutex_enter(&container->c_objects_lock);
 274  274   *      if (container != object->o_container) {
 275  275   *              mutex_exit(&container->c_objects_lock);
 276  276   *              container_rele(container);
 277  277   *              return (KMEM_CBRC_DONT_KNOW);
 278  278   *      }
 279  279   *
 280  280   * At this point the client knows that the object cannot be freed as long as
 281  281   * c_objects_lock is held. Note that after acquiring the lock, the client must
 282  282   * recheck the o_container pointer in case the object was removed just before
 283  283   * acquiring the lock.
 284  284   *
 285  285   * When the client is about to free an object, it must first remove that object
 286  286   * from the list, hash, or other structure where it is kept. At that time, to
 287  287   * mark the object so it can be distinguished from the remaining, known objects,
 288  288   * the client sets the designated low order bit:
 289  289   *
 290  290   *      mutex_enter(&container->c_objects_lock);
 291  291   *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 292  292   *      list_remove(&container->c_objects, object);
 293  293   *      mutex_exit(&container->c_objects_lock);
 294  294   *
 295  295   * In the common case, the object is freed to the magazine layer, where it may
 296  296   * be reused on a subsequent allocation without the overhead of calling the
 297  297   * constructor. While in the magazine it appears allocated from the point of
 298  298   * view of the slab layer, making it a candidate for the move callback. Most
 299  299   * objects unrecognized by the client in the move callback fall into this
 300  300   * category and are cheaply distinguished from known objects by the test
 301  301   * described earlier. Because searching magazines is prohibitively expensive
 302  302   * for kmem, clients that do not mark freed objects (and therefore return
 303  303   * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
 304  304   * efficacy reduced.
 305  305   *
 306  306   * Invalidating the designated pointer member before freeing the object marks
 307  307   * the object to be avoided in the callback, and conversely, assigning a valid
 308  308   * value to the designated pointer member after allocating the object makes the
 309  309   * object fair game for the callback:
 310  310   *
 311  311   *      ... allocate object ...
 312  312   *      ... set any initial state not set by the constructor ...
 313  313   *
 314  314   *      mutex_enter(&container->c_objects_lock);
 315  315   *      list_insert_tail(&container->c_objects, object);
 316  316   *      membar_producer();
 317  317   *      object->o_container = container;
 318  318   *      mutex_exit(&container->c_objects_lock);
 319  319   *
 320  320   * Note that everything else must be valid before setting o_container makes the
 321  321   * object fair game for the move callback. The membar_producer() call ensures
 322  322   * that all the object's state is written to memory before setting the pointer
 323  323   * that transitions the object from state #3 or #7 (allocated, constructed, not
 324  324   * yet in use) to state #4 (in use, valid). That's important because the move
 325  325   * function has to check the validity of the pointer before it can safely
 326  326   * acquire the lock protecting the collection where it expects to find known
 327  327   * objects.
 328  328   *
 329  329   * This method of distinguishing known objects observes the usual symmetry:
 330  330   * invalidating the designated pointer is the first thing the client does before
 331  331   * freeing the object, and setting the designated pointer is the last thing the
 332  332   * client does after allocating the object. Of course, the client is not
 333  333   * required to use this method. Fundamentally, how the client recognizes known
 334  334   * objects is completely up to the client, but this method is recommended as an
 335  335   * efficient and safe way to take advantage of the guarantees made by kmem. If
 336  336   * the entire object is arbitrary data without any markable bits from a suitable
 337  337   * pointer member, then the client must find some other method, such as
 338  338   * searching a hash table of known objects.
 339  339   *
 340  340   * 2.5 Preventing Objects From Moving
 341  341   *
 342  342   * Besides a way to distinguish known objects, the other thing that the client
 343  343   * needs is a strategy to ensure that an object will not move while the client
 344  344   * is actively using it. The details of satisfying this requirement tend to be
 345  345   * highly cache-specific. It might seem that the same rules that let a client
 346  346   * remove an object safely should also decide when an object can be moved
 347  347   * safely. However, any object state that makes a removal attempt invalid is
 348  348   * likely to be long-lasting for objects that the client does not expect to
 349  349   * remove. kmem knows nothing about the object state and is equally likely (from
 350  350   * the client's point of view) to request a move for any object in the cache,
 351  351   * whether prepared for removal or not. Even a low percentage of objects stuck
 352  352   * in place by unremovability will defeat the consolidator if the stuck objects
 353  353   * are the same long-lived allocations likely to hold slabs hostage.
 354  354   * Fundamentally, the consolidator is not aimed at common cases. Severe external
 355  355   * fragmentation is a worst case scenario manifested as sparsely allocated
 356  356   * slabs, by definition a low percentage of the cache's objects. When deciding
 357  357   * what makes an object movable, keep in mind the goal of the consolidator: to
 358  358   * bring worst-case external fragmentation within the limits guaranteed for
 359  359   * internal fragmentation. Removability is a poor criterion if it is likely to
 360  360   * exclude more than an insignificant percentage of objects for long periods of
 361  361   * time.
 362  362   *
 363  363   * A tricky general solution exists, and it has the advantage of letting you
 364  364   * move any object at almost any moment, practically eliminating the likelihood
 365  365   * that an object can hold a slab hostage. However, if there is a cache-specific
 366  366   * way to ensure that an object is not actively in use in the vast majority of
 367  367   * cases, a simpler solution that leverages this cache-specific knowledge is
 368  368   * preferred.
 369  369   *
 370  370   * 2.5.1 Cache-Specific Solution
 371  371   *
 372  372   * As an example of a cache-specific solution, the ZFS znode cache takes
 373  373   * advantage of the fact that the vast majority of znodes are only being
 374  374   * referenced from the DNLC. (A typical case might be a few hundred in active
 375  375   * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 376  376   * client has established that it recognizes the znode and can access its fields
 377  377   * safely (using the method described earlier), it then tests whether the znode
 378  378   * is referenced by anything other than the DNLC. If so, it assumes that the
 379  379   * znode may be in active use and is unsafe to move, so it drops its locks and
 380  380   * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 381  381   * else znodes are used, no change is needed to protect against the possibility
 382  382   * of the znode moving. The disadvantage is that it remains possible for an
 383  383   * application to hold a znode slab hostage with an open file descriptor.
 384  384   * However, this case ought to be rare and the consolidator has a way to deal
 385  385   * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 386  386   * object, kmem eventually stops believing it and treats the slab as if the
 387  387   * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 388  388   * then focus on getting it off of the partial slab list by allocating rather
 389  389   * than freeing all of its objects. (Either way of getting a slab off the
 390  390   * free list reduces fragmentation.)
 391  391   *
 392  392   * 2.5.2 General Solution
 393  393   *
 394  394   * The general solution, on the other hand, requires an explicit hold everywhere
 395  395   * the object is used to prevent it from moving. To keep the client locking
 396  396   * strategy as uncomplicated as possible, kmem guarantees the simplifying
 397  397   * assumption that move callbacks are sequential, even across multiple caches.
 398  398   * Internally, a global queue processed by a single thread supports all caches
 399  399   * implementing the callback function. No matter how many caches supply a move
 400  400   * function, the consolidator never moves more than one object at a time, so the
 401  401   * client does not have to worry about tricky lock ordering involving several
 402  402   * related objects from different kmem caches.
 403  403   *
 404  404   * The general solution implements the explicit hold as a read-write lock, which
 405  405   * allows multiple readers to access an object from the cache simultaneously
 406  406   * while a single writer is excluded from moving it. A single rwlock for the
 407  407   * entire cache would lock out all threads from using any of the cache's objects
 408  408   * even though only a single object is being moved, so to reduce contention,
 409  409   * the client can fan out the single rwlock into an array of rwlocks hashed by
 410  410   * the object address, making it probable that moving one object will not
 411  411   * prevent other threads from using a different object. The rwlock cannot be a
 412  412   * member of the object itself, because the possibility of the object moving
 413  413   * makes it unsafe to access any of the object's fields until the lock is
 414  414   * acquired.
 415  415   *
 416  416   * Assuming a small, fixed number of locks, it's possible that multiple objects
 417  417   * will hash to the same lock. A thread that needs to use multiple objects in
 418  418   * the same function may acquire the same lock multiple times. Since rwlocks are
 419  419   * reentrant for readers, and since there is never more than a single writer at
 420  420   * a time (assuming that the client acquires the lock as a writer only when
 421  421   * moving an object inside the callback), there would seem to be no problem.
 422  422   * However, a client locking multiple objects in the same function must handle
 423  423   * one case of potential deadlock: Assume that thread A needs to prevent both
 424  424   * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 425  425   * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 426  426   * same lock, that thread A will acquire the lock for object 1 as a reader
 427  427   * before thread B sets the lock's write-wanted bit, preventing thread A from
 428  428   * reacquiring the lock for object 2 as a reader. Unable to make forward
 429  429   * progress, thread A will never release the lock for object 1, resulting in
 430  430   * deadlock.
 431  431   *
 432  432   * There are two ways of avoiding the deadlock just described. The first is to
 433  433   * use rw_tryenter() rather than rw_enter() in the callback function when
 434  434   * attempting to acquire the lock as a writer. If tryenter discovers that the
 435  435   * same object (or another object hashed to the same lock) is already in use, it
 436  436   * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 437  437   * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 438  438   * since it allows a thread to acquire the lock as a reader in spite of a
 439  439   * waiting writer. This second approach insists on moving the object now, no
 440  440   * matter how many readers the move function must wait for in order to do so,
 441  441   * and could delay the completion of the callback indefinitely (blocking
 442  442   * callbacks to other clients). In practice, a less insistent callback using
 443  443   * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 444  444   * little reason to use anything else.
 445  445   *
 446  446   * Avoiding deadlock is not the only problem that an implementation using an
 447  447   * explicit hold needs to solve. Locking the object in the first place (to
 448  448   * prevent it from moving) remains a problem, since the object could move
 449  449   * between the time you obtain a pointer to the object and the time you acquire
 450  450   * the rwlock hashed to that pointer value. Therefore the client needs to
 451  451   * recheck the value of the pointer after acquiring the lock, drop the lock if
 452  452   * the value has changed, and try again. This requires a level of indirection:
 453  453   * something that points to the object rather than the object itself, that the
 454  454   * client can access safely while attempting to acquire the lock. (The object
 455  455   * itself cannot be referenced safely because it can move at any time.)
 456  456   * The following lock-acquisition function takes whatever is safe to reference
 457  457   * (arg), follows its pointer to the object (using function f), and tries as
 458  458   * often as necessary to acquire the hashed lock and verify that the object
 459  459   * still has not moved:
 460  460   *
 461  461   *      object_t *
 462  462   *      object_hold(object_f f, void *arg)
 463  463   *      {
 464  464   *              object_t *op;
 465  465   *
 466  466   *              op = f(arg);
 467  467   *              if (op == NULL) {
 468  468   *                      return (NULL);
 469  469   *              }
 470  470   *
 471  471   *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 472  472   *              while (op != f(arg)) {
 473  473   *                      rw_exit(OBJECT_RWLOCK(op));
 474  474   *                      op = f(arg);
 475  475   *                      if (op == NULL) {
 476  476   *                              break;
 477  477   *                      }
 478  478   *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 479  479   *              }
 480  480   *
 481  481   *              return (op);
 482  482   *      }
 483  483   *
 484  484   * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 485  485   * lock reacquisition loop, while necessary, almost never executes. The function
 486  486   * pointer f (used to obtain the object pointer from arg) has the following type
 487  487   * definition:
 488  488   *
 489  489   *      typedef object_t *(*object_f)(void *arg);
 490  490   *
 491  491   * An object_f implementation is likely to be as simple as accessing a structure
 492  492   * member:
 493  493   *
 494  494   *      object_t *
 495  495   *      s_object(void *arg)
 496  496   *      {
 497  497   *              something_t *sp = arg;
 498  498   *              return (sp->s_object);
 499  499   *      }
 500  500   *
 501  501   * The flexibility of a function pointer allows the path to the object to be
 502  502   * arbitrarily complex and also supports the notion that depending on where you
 503  503   * are using the object, you may need to get it from someplace different.
 504  504   *
 505  505   * The function that releases the explicit hold is simpler because it does not
 506  506   * have to worry about the object moving:
 507  507   *
 508  508   *      void
 509  509   *      object_rele(object_t *op)
 510  510   *      {
 511  511   *              rw_exit(OBJECT_RWLOCK(op));
 512  512   *      }
 513  513   *
 514  514   * The caller is spared these details so that obtaining and releasing an
 515  515   * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 516  516   * of object_hold() only needs to know that the returned object pointer is valid
 517  517   * if not NULL and that the object will not move until released.
 518  518   *
 519  519   * Although object_hold() prevents an object from moving, it does not prevent it
 520  520   * from being freed. The caller must take measures before calling object_hold()
 521  521   * (afterwards is too late) to ensure that the held object cannot be freed. The
 522  522   * caller must do so without accessing the unsafe object reference, so any lock
 523  523   * or reference count used to ensure the continued existence of the object must
 524  524   * live outside the object itself.
 525  525   *
 526  526   * Obtaining a new object is a special case where an explicit hold is impossible
 527  527   * for the caller. Any function that returns a newly allocated object (either as
 528  528   * a return value, or as an in-out paramter) must return it already held; after
 529  529   * the caller gets it is too late, since the object cannot be safely accessed
 530  530   * without the level of indirection described earlier. The following
 531  531   * object_alloc() example uses the same code shown earlier to transition a new
 532  532   * object into the state of being recognized (by the client) as a known object.
 533  533   * The function must acquire the hold (rw_enter) before that state transition
 534  534   * makes the object movable:
 535  535   *
 536  536   *      static object_t *
 537  537   *      object_alloc(container_t *container)
 538  538   *      {
 539  539   *              object_t *object = kmem_cache_alloc(object_cache, 0);
 540  540   *              ... set any initial state not set by the constructor ...
 541  541   *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 542  542   *              mutex_enter(&container->c_objects_lock);
 543  543   *              list_insert_tail(&container->c_objects, object);
 544  544   *              membar_producer();
 545  545   *              object->o_container = container;
 546  546   *              mutex_exit(&container->c_objects_lock);
 547  547   *              return (object);
 548  548   *      }
 549  549   *
 550  550   * Functions that implicitly acquire an object hold (any function that calls
 551  551   * object_alloc() to supply an object for the caller) need to be carefully noted
 552  552   * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 553  553   * prevent all objects hashed to the affected rwlocks from ever being moved.
 554  554   *
 555  555   * The pointer to a held object can be hashed to the holding rwlock even after
 556  556   * the object has been freed. Although it is possible to release the hold
 557  557   * after freeing the object, you may decide to release the hold implicitly in
 558  558   * whatever function frees the object, so as to release the hold as soon as
 559  559   * possible, and for the sake of symmetry with the function that implicitly
 560  560   * acquires the hold when it allocates the object. Here, object_free() releases
 561  561   * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 562  562   * matching pair with object_hold():
 563  563   *
 564  564   *      void
 565  565   *      object_free(object_t *object)
 566  566   *      {
 567  567   *              container_t *container;
 568  568   *
 569  569   *              ASSERT(object_held(object));
 570  570   *              container = object->o_container;
 571  571   *              mutex_enter(&container->c_objects_lock);
 572  572   *              object->o_container =
 573  573   *                  (void *)((uintptr_t)object->o_container | 0x1);
 574  574   *              list_remove(&container->c_objects, object);
 575  575   *              mutex_exit(&container->c_objects_lock);
 576  576   *              object_rele(object);
 577  577   *              kmem_cache_free(object_cache, object);
 578  578   *      }
 579  579   *
 580  580   * Note that object_free() cannot safely accept an object pointer as an argument
 581  581   * unless the object is already held. Any function that calls object_free()
 582  582   * needs to be carefully noted since it similarly forms a matching pair with
 583  583   * object_hold().
 584  584   *
 585  585   * To complete the picture, the following callback function implements the
 586  586   * general solution by moving objects only if they are currently unheld:
 587  587   *
 588  588   *      static kmem_cbrc_t
 589  589   *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 590  590   *      {
 591  591   *              object_t *op = buf, *np = newbuf;
 592  592   *              container_t *container;
 593  593   *
 594  594   *              container = op->o_container;
 595  595   *              if ((uintptr_t)container & 0x3) {
 596  596   *                      return (KMEM_CBRC_DONT_KNOW);
 597  597   *              }
 598  598   *
 599  599   *              // Ensure that the container structure does not go away.
 600  600   *              if (container_hold(container) == 0) {
 601  601   *                      return (KMEM_CBRC_DONT_KNOW);
 602  602   *              }
 603  603   *
 604  604   *              mutex_enter(&container->c_objects_lock);
 605  605   *              if (container != op->o_container) {
 606  606   *                      mutex_exit(&container->c_objects_lock);
 607  607   *                      container_rele(container);
 608  608   *                      return (KMEM_CBRC_DONT_KNOW);
 609  609   *              }
 610  610   *
 611  611   *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 612  612   *                      mutex_exit(&container->c_objects_lock);
 613  613   *                      container_rele(container);
 614  614   *                      return (KMEM_CBRC_LATER);
 615  615   *              }
 616  616   *
 617  617   *              object_move_impl(op, np); // critical section
 618  618   *              rw_exit(OBJECT_RWLOCK(op));
 619  619   *
 620  620   *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 621  621   *              list_link_replace(&op->o_link_node, &np->o_link_node);
 622  622   *              mutex_exit(&container->c_objects_lock);
 623  623   *              container_rele(container);
 624  624   *              return (KMEM_CBRC_YES);
 625  625   *      }
 626  626   *
 627  627   * Note that object_move() must invalidate the designated o_container pointer of
 628  628   * the old object in the same way that object_free() does, since kmem will free
 629  629   * the object in response to the KMEM_CBRC_YES return value.
 630  630   *
 631  631   * The lock order in object_move() differs from object_alloc(), which locks
 632  632   * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 633  633   * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 634  634   * not a problem. Holding the lock on the object list in the example above
 635  635   * through the entire callback not only prevents the object from going away, it
 636  636   * also allows you to lock the list elsewhere and know that none of its elements
 637  637   * will move during iteration.
 638  638   *
 639  639   * Adding an explicit hold everywhere an object from the cache is used is tricky
 640  640   * and involves much more change to client code than a cache-specific solution
 641  641   * that leverages existing state to decide whether or not an object is
 642  642   * movable. However, this approach has the advantage that no object remains
 643  643   * immovable for any significant length of time, making it extremely unlikely
 644  644   * that long-lived allocations can continue holding slabs hostage; and it works
 645  645   * for any cache.
 646  646   *
 647  647   * 3. Consolidator Implementation
 648  648   *
 649  649   * Once the client supplies a move function that a) recognizes known objects and
 650  650   * b) avoids moving objects that are actively in use, the remaining work is up
 651  651   * to the consolidator to decide which objects to move and when to issue
 652  652   * callbacks.
 653  653   *
 654  654   * The consolidator relies on the fact that a cache's slabs are ordered by
 655  655   * usage. Each slab has a fixed number of objects. Depending on the slab's
 656  656   * "color" (the offset of the first object from the beginning of the slab;
 657  657   * offsets are staggered to mitigate false sharing of cache lines) it is either
 658  658   * the maximum number of objects per slab determined at cache creation time or
 659  659   * else the number closest to the maximum that fits within the space remaining
 660  660   * after the initial offset. A completely allocated slab may contribute some
 661  661   * internal fragmentation (per-slab overhead) but no external fragmentation, so
 662  662   * it is of no interest to the consolidator. At the other extreme, slabs whose
 663  663   * objects have all been freed to the slab are released to the virtual memory
 664  664   * (VM) subsystem (objects freed to magazines are still allocated as far as the
 665  665   * slab is concerned). External fragmentation exists when there are slabs
 666  666   * somewhere between these extremes. A partial slab has at least one but not all
 667  667   * of its objects allocated. The more partial slabs, and the fewer allocated
 668  668   * objects on each of them, the higher the fragmentation. Hence the
 669  669   * consolidator's overall strategy is to reduce the number of partial slabs by
 670  670   * moving allocated objects from the least allocated slabs to the most allocated
 671  671   * slabs.
 672  672   *
 673  673   * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 674  674   * slabs are kept separately in an unordered list. Since the majority of slabs
 675  675   * tend to be completely allocated (a typical unfragmented cache may have
 676  676   * thousands of complete slabs and only a single partial slab), separating
 677  677   * complete slabs improves the efficiency of partial slab ordering, since the
 678  678   * complete slabs do not affect the depth or balance of the AVL tree. This
 679  679   * ordered sequence of partial slabs acts as a "free list" supplying objects for
 680  680   * allocation requests.
 681  681   *
 682  682   * Objects are always allocated from the first partial slab in the free list,
 683  683   * where the allocation is most likely to eliminate a partial slab (by
 684  684   * completely allocating it). Conversely, when a single object from a completely
 685  685   * allocated slab is freed to the slab, that slab is added to the front of the
 686  686   * free list. Since most free list activity involves highly allocated slabs
 687  687   * coming and going at the front of the list, slabs tend naturally toward the
 688  688   * ideal order: highly allocated at the front, sparsely allocated at the back.
 689  689   * Slabs with few allocated objects are likely to become completely free if they
 690  690   * keep a safe distance away from the front of the free list. Slab misorders
 691  691   * interfere with the natural tendency of slabs to become completely free or
 692  692   * completely allocated. For example, a slab with a single allocated object
 693  693   * needs only a single free to escape the cache; its natural desire is
 694  694   * frustrated when it finds itself at the front of the list where a second
 695  695   * allocation happens just before the free could have released it. Another slab
 696  696   * with all but one object allocated might have supplied the buffer instead, so
 697  697   * that both (as opposed to neither) of the slabs would have been taken off the
 698  698   * free list.
 699  699   *
 700  700   * Although slabs tend naturally toward the ideal order, misorders allowed by a
 701  701   * simple list implementation defeat the consolidator's strategy of merging
 702  702   * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 703  703   * needs another way to fix misorders to optimize its callback strategy. One
 704  704   * approach is to periodically scan a limited number of slabs, advancing a
 705  705   * marker to hold the current scan position, and to move extreme misorders to
 706  706   * the front or back of the free list and to the front or back of the current
 707  707   * scan range. By making consecutive scan ranges overlap by one slab, the least
 708  708   * allocated slab in the current range can be carried along from the end of one
 709  709   * scan to the start of the next.
 710  710   *
 711  711   * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 712  712   * task, however. Since most of the cache's activity is in the magazine layer,
 713  713   * and allocations from the slab layer represent only a startup cost, the
 714  714   * overhead of maintaining a balanced tree is not a significant concern compared
 715  715   * to the opportunity of reducing complexity by eliminating the partial slab
 716  716   * scanner just described. The overhead of an AVL tree is minimized by
 717  717   * maintaining only partial slabs in the tree and keeping completely allocated
 718  718   * slabs separately in a list. To avoid increasing the size of the slab
 719  719   * structure the AVL linkage pointers are reused for the slab's list linkage,
 720  720   * since the slab will always be either partial or complete, never stored both
 721  721   * ways at the same time. To further minimize the overhead of the AVL tree the
 722  722   * compare function that orders partial slabs by usage divides the range of
 723  723   * allocated object counts into bins such that counts within the same bin are
 724  724   * considered equal. Binning partial slabs makes it less likely that allocating
 725  725   * or freeing a single object will change the slab's order, requiring a tree
 726  726   * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 727  727   * requiring some rebalancing of the tree). Allocation counts closest to
 728  728   * completely free and completely allocated are left unbinned (finely sorted) to
 729  729   * better support the consolidator's strategy of merging slabs at either
 730  730   * extreme.
 731  731   *
 732  732   * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 733  733   *
 734  734   * The consolidator piggybacks on the kmem maintenance thread and is called on
 735  735   * the same interval as kmem_cache_update(), once per cache every fifteen
 736  736   * seconds. kmem maintains a running count of unallocated objects in the slab
 737  737   * layer (cache_bufslab). The consolidator checks whether that number exceeds
 738  738   * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 739  739   * there is a significant number of slabs in the cache (arbitrarily a minimum
 740  740   * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 741  741   * working set are included in the assessment, and magazines in the depot are
 742  742   * reaped if those objects would lift cache_bufslab above the fragmentation
 743  743   * threshold. Once the consolidator decides that a cache is fragmented, it looks
 744  744   * for a candidate slab to reclaim, starting at the end of the partial slab free
 745  745   * list and scanning backwards. At first the consolidator is choosy: only a slab
 746  746   * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 747  747   * single allocated object, regardless of percentage). If there is difficulty
 748  748   * finding a candidate slab, kmem raises the allocation threshold incrementally,
 749  749   * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 750  750   * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 751  751   * even in the worst case of every slab in the cache being almost 7/8 allocated.
 752  752   * The threshold can also be lowered incrementally when candidate slabs are easy
 753  753   * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 754  754   * is no longer fragmented.
 755  755   *
 756  756   * 3.2 Generating Callbacks
 757  757   *
 758  758   * Once an eligible slab is chosen, a callback is generated for every allocated
 759  759   * object on the slab, in the hope that the client will move everything off the
 760  760   * slab and make it reclaimable. Objects selected as move destinations are
 761  761   * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 762  762   * order (most allocated at the front, least allocated at the back) and a
 763  763   * cooperative client, the consolidator will succeed in removing slabs from both
 764  764   * ends of the free list, completely allocating on the one hand and completely
 765  765   * freeing on the other. Objects selected as move destinations are allocated in
 766  766   * the kmem maintenance thread where move requests are enqueued. A separate
 767  767   * callback thread removes pending callbacks from the queue and calls the
 768  768   * client. The separate thread ensures that client code (the move function) does
 769  769   * not interfere with internal kmem maintenance tasks. A map of pending
 770  770   * callbacks keyed by object address (the object to be moved) is checked to
 771  771   * ensure that duplicate callbacks are not generated for the same object.
 772  772   * Allocating the move destination (the object to move to) prevents subsequent
 773  773   * callbacks from selecting the same destination as an earlier pending callback.
 774  774   *
 775  775   * Move requests can also be generated by kmem_cache_reap() when the system is
 776  776   * desperate for memory and by kmem_cache_move_notify(), called by the client to
 777  777   * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 778  778   * The map of pending callbacks is protected by the same lock that protects the
 779  779   * slab layer.
 780  780   *
 781  781   * When the system is desperate for memory, kmem does not bother to determine
 782  782   * whether or not the cache exceeds the fragmentation threshold, but tries to
 783  783   * consolidate as many slabs as possible. Normally, the consolidator chews
 784  784   * slowly, one sparsely allocated slab at a time during each maintenance
 785  785   * interval that the cache is fragmented. When desperate, the consolidator
 786  786   * starts at the last partial slab and enqueues callbacks for every allocated
 787  787   * object on every partial slab, working backwards until it reaches the first
 788  788   * partial slab. The first partial slab, meanwhile, advances in pace with the
 789  789   * consolidator as allocations to supply move destinations for the enqueued
 790  790   * callbacks use up the highly allocated slabs at the front of the free list.
 791  791   * Ideally, the overgrown free list collapses like an accordion, starting at
 792  792   * both ends and ending at the center with a single partial slab.
 793  793   *
 794  794   * 3.3 Client Responses
 795  795   *
 796  796   * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 797  797   * marks the slab that supplied the stuck object non-reclaimable and moves it to
 798  798   * front of the free list. The slab remains marked as long as it remains on the
 799  799   * free list, and it appears more allocated to the partial slab compare function
 800  800   * than any unmarked slab, no matter how many of its objects are allocated.
 801  801   * Since even one immovable object ties up the entire slab, the goal is to
 802  802   * completely allocate any slab that cannot be completely freed. kmem does not
 803  803   * bother generating callbacks to move objects from a marked slab unless the
 804  804   * system is desperate.
 805  805   *
 806  806   * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 807  807   * slab. If the client responds LATER too many times, kmem disbelieves and
 808  808   * treats the response as a NO. The count is cleared when the slab is taken off
 809  809   * the partial slab list or when the client moves one of the slab's objects.
 810  810   *
 811  811   * 4. Observability
 812  812   *
 813  813   * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 814  814   * the ::kmem_slabs dcmd. For a complete description of the command, enter
 815  815   * '::help kmem_slabs' at the mdb prompt.
 816  816   */
 817  817  
 818  818  #include <sys/kmem_impl.h>
 819  819  #include <sys/vmem_impl.h>
 820  820  #include <sys/param.h>
 821  821  #include <sys/sysmacros.h>
 822  822  #include <sys/vm.h>
 823  823  #include <sys/proc.h>
 824  824  #include <sys/tuneable.h>
 825  825  #include <sys/systm.h>
 826  826  #include <sys/cmn_err.h>
 827  827  #include <sys/debug.h>
 828  828  #include <sys/sdt.h>
 829  829  #include <sys/mutex.h>
 830  830  #include <sys/bitmap.h>
 831  831  #include <sys/atomic.h>
 832  832  #include <sys/kobj.h>
 833  833  #include <sys/disp.h>
 834  834  #include <vm/seg_kmem.h>
 835  835  #include <sys/log.h>
 836  836  #include <sys/callb.h>
 837  837  #include <sys/taskq.h>
 838  838  #include <sys/modctl.h>
 839  839  #include <sys/reboot.h>
 840  840  #include <sys/id32.h>
 841  841  #include <sys/zone.h>
 842  842  #include <sys/netstack.h>
 843  843  #ifdef  DEBUG
 844  844  #include <sys/random.h>
 845  845  #endif
 846  846  
 847  847  extern void streams_msg_init(void);
 848  848  extern int segkp_fromheap;
 849  849  extern void segkp_cache_free(void);
 850  850  extern int callout_init_done;
 851  851  
 852  852  struct kmem_cache_kstat {
 853  853          kstat_named_t   kmc_buf_size;
 854  854          kstat_named_t   kmc_align;
 855  855          kstat_named_t   kmc_chunk_size;
 856  856          kstat_named_t   kmc_slab_size;
 857  857          kstat_named_t   kmc_alloc;
 858  858          kstat_named_t   kmc_alloc_fail;
 859  859          kstat_named_t   kmc_free;
 860  860          kstat_named_t   kmc_depot_alloc;
 861  861          kstat_named_t   kmc_depot_free;
 862  862          kstat_named_t   kmc_depot_contention;
 863  863          kstat_named_t   kmc_slab_alloc;
 864  864          kstat_named_t   kmc_slab_free;
 865  865          kstat_named_t   kmc_buf_constructed;
 866  866          kstat_named_t   kmc_buf_avail;
 867  867          kstat_named_t   kmc_buf_inuse;
 868  868          kstat_named_t   kmc_buf_total;
 869  869          kstat_named_t   kmc_buf_max;
 870  870          kstat_named_t   kmc_slab_create;
 871  871          kstat_named_t   kmc_slab_destroy;
 872  872          kstat_named_t   kmc_vmem_source;
 873  873          kstat_named_t   kmc_hash_size;
 874  874          kstat_named_t   kmc_hash_lookup_depth;
 875  875          kstat_named_t   kmc_hash_rescale;
 876  876          kstat_named_t   kmc_full_magazines;
 877  877          kstat_named_t   kmc_empty_magazines;
 878  878          kstat_named_t   kmc_magazine_size;
 879  879          kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 880  880          kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 881  881          kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 882  882          kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 883  883          kstat_named_t   kmc_move_yes;
 884  884          kstat_named_t   kmc_move_no;
 885  885          kstat_named_t   kmc_move_later;
 886  886          kstat_named_t   kmc_move_dont_need;
 887  887          kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 888  888          kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 889  889          kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 890  890          kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 891  891  } kmem_cache_kstat = {
 892  892          { "buf_size",           KSTAT_DATA_UINT64 },
 893  893          { "align",              KSTAT_DATA_UINT64 },
 894  894          { "chunk_size",         KSTAT_DATA_UINT64 },
 895  895          { "slab_size",          KSTAT_DATA_UINT64 },
 896  896          { "alloc",              KSTAT_DATA_UINT64 },
 897  897          { "alloc_fail",         KSTAT_DATA_UINT64 },
 898  898          { "free",               KSTAT_DATA_UINT64 },
 899  899          { "depot_alloc",        KSTAT_DATA_UINT64 },
 900  900          { "depot_free",         KSTAT_DATA_UINT64 },
 901  901          { "depot_contention",   KSTAT_DATA_UINT64 },
 902  902          { "slab_alloc",         KSTAT_DATA_UINT64 },
 903  903          { "slab_free",          KSTAT_DATA_UINT64 },
 904  904          { "buf_constructed",    KSTAT_DATA_UINT64 },
 905  905          { "buf_avail",          KSTAT_DATA_UINT64 },
 906  906          { "buf_inuse",          KSTAT_DATA_UINT64 },
 907  907          { "buf_total",          KSTAT_DATA_UINT64 },
 908  908          { "buf_max",            KSTAT_DATA_UINT64 },
 909  909          { "slab_create",        KSTAT_DATA_UINT64 },
 910  910          { "slab_destroy",       KSTAT_DATA_UINT64 },
 911  911          { "vmem_source",        KSTAT_DATA_UINT64 },
 912  912          { "hash_size",          KSTAT_DATA_UINT64 },
 913  913          { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 914  914          { "hash_rescale",       KSTAT_DATA_UINT64 },
 915  915          { "full_magazines",     KSTAT_DATA_UINT64 },
 916  916          { "empty_magazines",    KSTAT_DATA_UINT64 },
 917  917          { "magazine_size",      KSTAT_DATA_UINT64 },
 918  918          { "reap",               KSTAT_DATA_UINT64 },
 919  919          { "defrag",             KSTAT_DATA_UINT64 },
 920  920          { "scan",               KSTAT_DATA_UINT64 },
 921  921          { "move_callbacks",     KSTAT_DATA_UINT64 },
 922  922          { "move_yes",           KSTAT_DATA_UINT64 },
 923  923          { "move_no",            KSTAT_DATA_UINT64 },
 924  924          { "move_later",         KSTAT_DATA_UINT64 },
 925  925          { "move_dont_need",     KSTAT_DATA_UINT64 },
 926  926          { "move_dont_know",     KSTAT_DATA_UINT64 },
 927  927          { "move_hunt_found",    KSTAT_DATA_UINT64 },
 928  928          { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 929  929          { "move_reclaimable",   KSTAT_DATA_UINT64 },
 930  930  };
 931  931  
 932  932  static kmutex_t kmem_cache_kstat_lock;
 933  933  
 934  934  /*
 935  935   * The default set of caches to back kmem_alloc().
 936  936   * These sizes should be reevaluated periodically.
 937  937   *
 938  938   * We want allocations that are multiples of the coherency granularity
 939  939   * (64 bytes) to be satisfied from a cache which is a multiple of 64
 940  940   * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 941  941   * the next kmem_cache_size greater than or equal to it must be a
 942  942   * multiple of 64.
 943  943   *
 944  944   * We split the table into two sections:  size <= 4k and size > 4k.  This
 945  945   * saves a lot of space and cache footprint in our cache tables.
 946  946   */
 947  947  static const int kmem_alloc_sizes[] = {
 948  948          1 * 8,
 949  949          2 * 8,
 950  950          3 * 8,
 951  951          4 * 8,          5 * 8,          6 * 8,          7 * 8,
 952  952          4 * 16,         5 * 16,         6 * 16,         7 * 16,
 953  953          4 * 32,         5 * 32,         6 * 32,         7 * 32,
 954  954          4 * 64,         5 * 64,         6 * 64,         7 * 64,
 955  955          4 * 128,        5 * 128,        6 * 128,        7 * 128,
 956  956          P2ALIGN(8192 / 7, 64),
 957  957          P2ALIGN(8192 / 6, 64),
 958  958          P2ALIGN(8192 / 5, 64),
 959  959          P2ALIGN(8192 / 4, 64),
 960  960          P2ALIGN(8192 / 3, 64),
 961  961          P2ALIGN(8192 / 2, 64),
 962  962  };
 963  963  
 964  964  static const int kmem_big_alloc_sizes[] = {
 965  965          2 * 4096,       3 * 4096,
 966  966          2 * 8192,       3 * 8192,
 967  967          4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 968  968          8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 969  969          12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 970  970          16 * 8192
 971  971  };
 972  972  
 973  973  #define KMEM_MAXBUF             4096
 974  974  #define KMEM_BIG_MAXBUF_32BIT   32768
 975  975  #define KMEM_BIG_MAXBUF         131072
 976  976  
 977  977  #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 978  978  #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 979  979  
 980  980  static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 981  981  static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 982  982  
 983  983  #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 984  984  static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 985  985  
 986  986  static kmem_magtype_t kmem_magtype[] = {
 987  987          { 1,    8,      3200,   65536   },
 988  988          { 3,    16,     256,    32768   },
 989  989          { 7,    32,     64,     16384   },
 990  990          { 15,   64,     0,      8192    },
 991  991          { 31,   64,     0,      4096    },
 992  992          { 47,   64,     0,      2048    },
 993  993          { 63,   64,     0,      1024    },
 994  994          { 95,   64,     0,      512     },
 995  995          { 143,  64,     0,      0       },
 996  996  };
 997  997  
 998  998  static uint32_t kmem_reaping;
 999  999  static uint32_t kmem_reaping_idspace;
1000 1000  
1001 1001  /*
1002 1002   * kmem tunables
1003 1003   */
1004 1004  clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
1005 1005  int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
1006 1006  pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
1007 1007  int kmem_panic = 1;             /* whether to panic on error */
1008 1008  int kmem_logging = 1;           /* kmem_log_enter() override */
1009 1009  uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
1010 1010  size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1011 1011  size_t kmem_content_log_size;   /* content log size [2% of memory] */
1012 1012  size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1013 1013  size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
1014 1014  size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1015 1015  size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1016 1016  size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1017 1017  int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1018 1018  size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1019 1019  size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1020 1020  
1021 1021  #ifdef _LP64
1022 1022  size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1023 1023  #else
1024 1024  size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1025 1025  #endif
1026 1026  
1027 1027  #ifdef DEBUG
1028 1028  int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1029 1029  #else
1030 1030  int kmem_flags = 0;
1031 1031  #endif
1032 1032  int kmem_ready;
1033 1033  
1034 1034  static kmem_cache_t     *kmem_slab_cache;
1035 1035  static kmem_cache_t     *kmem_bufctl_cache;
1036 1036  static kmem_cache_t     *kmem_bufctl_audit_cache;
1037 1037  
1038 1038  static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1039 1039  static list_t           kmem_caches;
1040 1040  
1041 1041  static taskq_t          *kmem_taskq;
1042 1042  static kmutex_t         kmem_flags_lock;
1043 1043  static vmem_t           *kmem_metadata_arena;
1044 1044  static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1045 1045  static vmem_t           *kmem_cache_arena;
1046 1046  static vmem_t           *kmem_hash_arena;
1047 1047  static vmem_t           *kmem_log_arena;
1048 1048  static vmem_t           *kmem_oversize_arena;
1049 1049  static vmem_t           *kmem_va_arena;
1050 1050  static vmem_t           *kmem_default_arena;
1051 1051  static vmem_t           *kmem_firewall_va_arena;
1052 1052  static vmem_t           *kmem_firewall_arena;
1053 1053  
1054 1054  /*
1055 1055   * kmem slab consolidator thresholds (tunables)
1056 1056   */
1057 1057  size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1058 1058  size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1059 1059  size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1060 1060  /*
1061 1061   * Maximum number of slabs from which to move buffers during a single
1062 1062   * maintenance interval while the system is not low on memory.
1063 1063   */
1064 1064  size_t kmem_reclaim_max_slabs = 1;
1065 1065  /*
1066 1066   * Number of slabs to scan backwards from the end of the partial slab list
1067 1067   * when searching for buffers to relocate.
1068 1068   */
1069 1069  size_t kmem_reclaim_scan_range = 12;
1070 1070  
1071 1071  /* consolidator knobs */
1072 1072  boolean_t kmem_move_noreap;
1073 1073  boolean_t kmem_move_blocked;
1074 1074  boolean_t kmem_move_fulltilt;
1075 1075  boolean_t kmem_move_any_partial;
1076 1076  
1077 1077  #ifdef  DEBUG
1078 1078  /*
1079 1079   * kmem consolidator debug tunables:
1080 1080   * Ensure code coverage by occasionally running the consolidator even when the
1081 1081   * caches are not fragmented (they may never be). These intervals are mean time
1082 1082   * in cache maintenance intervals (kmem_cache_update).
1083 1083   */
1084 1084  uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1085 1085  uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1086 1086  #endif  /* DEBUG */
1087 1087  
1088 1088  static kmem_cache_t     *kmem_defrag_cache;
1089 1089  static kmem_cache_t     *kmem_move_cache;
1090 1090  static taskq_t          *kmem_move_taskq;
1091 1091  
1092 1092  static void kmem_cache_scan(kmem_cache_t *);
1093 1093  static void kmem_cache_defrag(kmem_cache_t *);
1094 1094  static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1095 1095  
1096 1096  
1097 1097  kmem_log_header_t       *kmem_transaction_log;
1098 1098  kmem_log_header_t       *kmem_content_log;
1099 1099  kmem_log_header_t       *kmem_failure_log;
1100 1100  kmem_log_header_t       *kmem_slab_log;
1101 1101  
1102 1102  static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1103 1103  
1104 1104  #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1105 1105          if ((count) > 0) {                                              \
1106 1106                  pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;    \
1107 1107                  pc_t *_e;                                               \
1108 1108                  /* memmove() the old entries down one notch */          \
1109 1109                  for (_e = &_s[(count) - 1]; _e > _s; _e--)              \
1110 1110                          *_e = *(_e - 1);                                \
1111 1111                  *_s = (uintptr_t)(caller);                              \
1112 1112          }
1113 1113  
1114 1114  #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1115 1115  #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1116 1116  #define KMERR_DUPFREE   2       /* freed a buffer twice */
1117 1117  #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1118 1118  #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1119 1119  #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1120 1120  #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1121 1121  #define KMERR_BADSIZE   7       /* alloc size != free size */
1122 1122  #define KMERR_BADBASE   8       /* buffer base address wrong */
1123 1123  
1124 1124  struct {
1125 1125          hrtime_t        kmp_timestamp;  /* timestamp of panic */
1126 1126          int             kmp_error;      /* type of kmem error */
1127 1127          void            *kmp_buffer;    /* buffer that induced panic */
1128 1128          void            *kmp_realbuf;   /* real start address for buffer */
1129 1129          kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1130 1130          kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1131 1131          kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1132 1132          kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1133 1133  } kmem_panic_info;
1134 1134  
1135 1135  
1136 1136  static void
1137 1137  copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1138 1138  {
1139 1139          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1140 1140          uint64_t *buf = buf_arg;
1141 1141  
1142 1142          while (buf < bufend)
1143 1143                  *buf++ = pattern;
1144 1144  }
1145 1145  
1146 1146  static void *
1147 1147  verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1148 1148  {
1149 1149          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1150 1150          uint64_t *buf;
1151 1151  
1152 1152          for (buf = buf_arg; buf < bufend; buf++)
1153 1153                  if (*buf != pattern)
1154 1154                          return (buf);
1155 1155          return (NULL);
1156 1156  }
1157 1157  
1158 1158  static void *
1159 1159  verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1160 1160  {
1161 1161          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1162 1162          uint64_t *buf;
1163 1163  
1164 1164          for (buf = buf_arg; buf < bufend; buf++) {
1165 1165                  if (*buf != old) {
1166 1166                          copy_pattern(old, buf_arg,
1167 1167                              (char *)buf - (char *)buf_arg);
1168 1168                          return (buf);
1169 1169                  }
1170 1170                  *buf = new;
1171 1171          }
1172 1172  
1173 1173          return (NULL);
1174 1174  }
1175 1175  
1176 1176  static void
1177 1177  kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1178 1178  {
1179 1179          kmem_cache_t *cp;
1180 1180  
1181 1181          mutex_enter(&kmem_cache_lock);
1182 1182          for (cp = list_head(&kmem_caches); cp != NULL;
1183 1183              cp = list_next(&kmem_caches, cp))
1184 1184                  if (tq != NULL)
1185 1185                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1186 1186                              tqflag);
1187 1187                  else
1188 1188                          func(cp);
1189 1189          mutex_exit(&kmem_cache_lock);
1190 1190  }
1191 1191  
1192 1192  static void
1193 1193  kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1194 1194  {
1195 1195          kmem_cache_t *cp;
1196 1196  
1197 1197          mutex_enter(&kmem_cache_lock);
1198 1198          for (cp = list_head(&kmem_caches); cp != NULL;
1199 1199              cp = list_next(&kmem_caches, cp)) {
1200 1200                  if (!(cp->cache_cflags & KMC_IDENTIFIER))
1201 1201                          continue;
1202 1202                  if (tq != NULL)
1203 1203                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1204 1204                              tqflag);
1205 1205                  else
1206 1206                          func(cp);
1207 1207          }
1208 1208          mutex_exit(&kmem_cache_lock);
1209 1209  }
1210 1210  
1211 1211  /*
1212 1212   * Debugging support.  Given a buffer address, find its slab.
1213 1213   */
1214 1214  static kmem_slab_t *
1215 1215  kmem_findslab(kmem_cache_t *cp, void *buf)
1216 1216  {
1217 1217          kmem_slab_t *sp;
1218 1218  
1219 1219          mutex_enter(&cp->cache_lock);
1220 1220          for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1221 1221              sp = list_next(&cp->cache_complete_slabs, sp)) {
1222 1222                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1223 1223                          mutex_exit(&cp->cache_lock);
1224 1224                          return (sp);
1225 1225                  }
1226 1226          }
1227 1227          for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1228 1228              sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1229 1229                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1230 1230                          mutex_exit(&cp->cache_lock);
1231 1231                          return (sp);
1232 1232                  }
1233 1233          }
1234 1234          mutex_exit(&cp->cache_lock);
1235 1235  
1236 1236          return (NULL);
1237 1237  }
1238 1238  
1239 1239  static void
1240 1240  kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1241 1241  {
1242 1242          kmem_buftag_t *btp = NULL;
1243 1243          kmem_bufctl_t *bcp = NULL;
1244 1244          kmem_cache_t *cp = cparg;
1245 1245          kmem_slab_t *sp;
1246 1246          uint64_t *off;
1247 1247          void *buf = bufarg;
1248 1248  
1249 1249          kmem_logging = 0;       /* stop logging when a bad thing happens */
1250 1250  
1251 1251          kmem_panic_info.kmp_timestamp = gethrtime();
1252 1252  
1253 1253          sp = kmem_findslab(cp, buf);
1254 1254          if (sp == NULL) {
1255 1255                  for (cp = list_tail(&kmem_caches); cp != NULL;
1256 1256                      cp = list_prev(&kmem_caches, cp)) {
1257 1257                          if ((sp = kmem_findslab(cp, buf)) != NULL)
1258 1258                                  break;
1259 1259                  }
1260 1260          }
1261 1261  
1262 1262          if (sp == NULL) {
1263 1263                  cp = NULL;
1264 1264                  error = KMERR_BADADDR;
1265 1265          } else {
1266 1266                  if (cp != cparg)
1267 1267                          error = KMERR_BADCACHE;
1268 1268                  else
1269 1269                          buf = (char *)bufarg - ((uintptr_t)bufarg -
1270 1270                              (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1271 1271                  if (buf != bufarg)
1272 1272                          error = KMERR_BADBASE;
1273 1273                  if (cp->cache_flags & KMF_BUFTAG)
1274 1274                          btp = KMEM_BUFTAG(cp, buf);
1275 1275                  if (cp->cache_flags & KMF_HASH) {
1276 1276                          mutex_enter(&cp->cache_lock);
1277 1277                          for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1278 1278                                  if (bcp->bc_addr == buf)
1279 1279                                          break;
1280 1280                          mutex_exit(&cp->cache_lock);
1281 1281                          if (bcp == NULL && btp != NULL)
1282 1282                                  bcp = btp->bt_bufctl;
1283 1283                          if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1284 1284                              NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1285 1285                              bcp->bc_addr != buf) {
1286 1286                                  error = KMERR_BADBUFCTL;
1287 1287                                  bcp = NULL;
1288 1288                          }
1289 1289                  }
1290 1290          }
1291 1291  
1292 1292          kmem_panic_info.kmp_error = error;
1293 1293          kmem_panic_info.kmp_buffer = bufarg;
1294 1294          kmem_panic_info.kmp_realbuf = buf;
1295 1295          kmem_panic_info.kmp_cache = cparg;
1296 1296          kmem_panic_info.kmp_realcache = cp;
1297 1297          kmem_panic_info.kmp_slab = sp;
1298 1298          kmem_panic_info.kmp_bufctl = bcp;
1299 1299  
1300 1300          printf("kernel memory allocator: ");
1301 1301  
1302 1302          switch (error) {
1303 1303  
1304 1304          case KMERR_MODIFIED:
1305 1305                  printf("buffer modified after being freed\n");
1306 1306                  off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1307 1307                  if (off == NULL)        /* shouldn't happen */
1308 1308                          off = buf;
1309 1309                  printf("modification occurred at offset 0x%lx "
1310 1310                      "(0x%llx replaced by 0x%llx)\n",
1311 1311                      (uintptr_t)off - (uintptr_t)buf,
1312 1312                      (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1313 1313                  break;
1314 1314  
1315 1315          case KMERR_REDZONE:
1316 1316                  printf("redzone violation: write past end of buffer\n");
1317 1317                  break;
1318 1318  
1319 1319          case KMERR_BADADDR:
1320 1320                  printf("invalid free: buffer not in cache\n");
1321 1321                  break;
1322 1322  
1323 1323          case KMERR_DUPFREE:
1324 1324                  printf("duplicate free: buffer freed twice\n");
1325 1325                  break;
1326 1326  
1327 1327          case KMERR_BADBUFTAG:
1328 1328                  printf("boundary tag corrupted\n");
1329 1329                  printf("bcp ^ bxstat = %lx, should be %lx\n",
1330 1330                      (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1331 1331                      KMEM_BUFTAG_FREE);
1332 1332                  break;
1333 1333  
1334 1334          case KMERR_BADBUFCTL:
1335 1335                  printf("bufctl corrupted\n");
1336 1336                  break;
1337 1337  
1338 1338          case KMERR_BADCACHE:
1339 1339                  printf("buffer freed to wrong cache\n");
1340 1340                  printf("buffer was allocated from %s,\n", cp->cache_name);
1341 1341                  printf("caller attempting free to %s.\n", cparg->cache_name);
1342 1342                  break;
1343 1343  
1344 1344          case KMERR_BADSIZE:
1345 1345                  printf("bad free: free size (%u) != alloc size (%u)\n",
1346 1346                      KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1347 1347                      KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1348 1348                  break;
1349 1349  
1350 1350          case KMERR_BADBASE:
1351 1351                  printf("bad free: free address (%p) != alloc address (%p)\n",
1352 1352                      bufarg, buf);
1353 1353                  break;
1354 1354          }
1355 1355  
1356 1356          printf("buffer=%p  bufctl=%p  cache: %s\n",
1357 1357              bufarg, (void *)bcp, cparg->cache_name);
1358 1358  
1359 1359          if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1360 1360              error != KMERR_BADBUFCTL) {
1361 1361                  int d;
1362 1362                  timestruc_t ts;
1363 1363                  kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1364 1364  
1365 1365                  hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1366 1366                  printf("previous transaction on buffer %p:\n", buf);
1367 1367                  printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1368 1368                      (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1369 1369                      (void *)sp, cp->cache_name);
1370 1370                  for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1371 1371                          ulong_t off;
1372 1372                          char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1373 1373                          printf("%s+%lx\n", sym ? sym : "?", off);
1374 1374                  }
1375 1375          }
1376 1376          if (kmem_panic > 0)
1377 1377                  panic("kernel heap corruption detected");
1378 1378          if (kmem_panic == 0)
1379 1379                  debug_enter(NULL);
1380 1380          kmem_logging = 1;       /* resume logging */
1381 1381  }
1382 1382  
1383 1383  static kmem_log_header_t *
1384 1384  kmem_log_init(size_t logsize)
1385 1385  {
1386 1386          kmem_log_header_t *lhp;
1387 1387          int nchunks = 4 * max_ncpus;
1388 1388          size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1389 1389          int i;
1390 1390  
1391 1391          /*
1392 1392           * Make sure that lhp->lh_cpu[] is nicely aligned
1393 1393           * to prevent false sharing of cache lines.
1394 1394           */
1395 1395          lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1396 1396          lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1397 1397              NULL, NULL, VM_SLEEP);
1398 1398          bzero(lhp, lhsize);
1399 1399  
1400 1400          mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1401 1401          lhp->lh_nchunks = nchunks;
1402 1402          lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1403 1403          lhp->lh_base = vmem_alloc(kmem_log_arena,
1404 1404              lhp->lh_chunksize * nchunks, VM_SLEEP);
1405 1405          lhp->lh_free = vmem_alloc(kmem_log_arena,
1406 1406              nchunks * sizeof (int), VM_SLEEP);
1407 1407          bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1408 1408  
1409 1409          for (i = 0; i < max_ncpus; i++) {
1410 1410                  kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1411 1411                  mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1412 1412                  clhp->clh_chunk = i;
1413 1413          }
1414 1414  
1415 1415          for (i = max_ncpus; i < nchunks; i++)
1416 1416                  lhp->lh_free[i] = i;
1417 1417  
  
    | 
      ↓ open down ↓ | 
    1417 lines elided | 
    
      ↑ open up ↑ | 
  
1418 1418          lhp->lh_head = max_ncpus;
1419 1419          lhp->lh_tail = 0;
1420 1420  
1421 1421          return (lhp);
1422 1422  }
1423 1423  
1424 1424  static void *
1425 1425  kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1426 1426  {
1427 1427          void *logspace;
1428      -        kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
     1428 +        kmem_cpu_log_header_t *clhp;
1429 1429  
1430 1430          if (lhp == NULL || kmem_logging == 0 || panicstr)
1431 1431                  return (NULL);
1432 1432  
     1433 +        clhp = &lhp->lh_cpu[CPU->cpu_seqid];
     1434 +
1433 1435          mutex_enter(&clhp->clh_lock);
1434 1436          clhp->clh_hits++;
1435 1437          if (size > clhp->clh_avail) {
1436 1438                  mutex_enter(&lhp->lh_lock);
1437 1439                  lhp->lh_hits++;
1438 1440                  lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1439 1441                  lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1440 1442                  clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1441 1443                  lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1442 1444                  clhp->clh_current = lhp->lh_base +
1443 1445                      clhp->clh_chunk * lhp->lh_chunksize;
1444 1446                  clhp->clh_avail = lhp->lh_chunksize;
1445 1447                  if (size > lhp->lh_chunksize)
1446 1448                          size = lhp->lh_chunksize;
1447 1449                  mutex_exit(&lhp->lh_lock);
1448 1450          }
1449 1451          logspace = clhp->clh_current;
1450 1452          clhp->clh_current += size;
1451 1453          clhp->clh_avail -= size;
1452 1454          bcopy(data, logspace, size);
1453 1455          mutex_exit(&clhp->clh_lock);
1454 1456          return (logspace);
1455 1457  }
1456 1458  
1457 1459  #define KMEM_AUDIT(lp, cp, bcp)                                         \
1458 1460  {                                                                       \
1459 1461          kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1460 1462          _bcp->bc_timestamp = gethrtime();                               \
1461 1463          _bcp->bc_thread = curthread;                                    \
1462 1464          _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);  \
1463 1465          _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));  \
1464 1466  }
1465 1467  
1466 1468  static void
1467 1469  kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1468 1470      kmem_slab_t *sp, void *addr)
1469 1471  {
1470 1472          kmem_bufctl_audit_t bca;
1471 1473  
1472 1474          bzero(&bca, sizeof (kmem_bufctl_audit_t));
1473 1475          bca.bc_addr = addr;
1474 1476          bca.bc_slab = sp;
1475 1477          bca.bc_cache = cp;
1476 1478          KMEM_AUDIT(lp, cp, &bca);
1477 1479  }
1478 1480  
1479 1481  /*
1480 1482   * Create a new slab for cache cp.
1481 1483   */
1482 1484  static kmem_slab_t *
1483 1485  kmem_slab_create(kmem_cache_t *cp, int kmflag)
1484 1486  {
1485 1487          size_t slabsize = cp->cache_slabsize;
1486 1488          size_t chunksize = cp->cache_chunksize;
1487 1489          int cache_flags = cp->cache_flags;
1488 1490          size_t color, chunks;
1489 1491          char *buf, *slab;
1490 1492          kmem_slab_t *sp;
1491 1493          kmem_bufctl_t *bcp;
1492 1494          vmem_t *vmp = cp->cache_arena;
1493 1495  
1494 1496          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1495 1497  
1496 1498          color = cp->cache_color + cp->cache_align;
1497 1499          if (color > cp->cache_maxcolor)
1498 1500                  color = cp->cache_mincolor;
1499 1501          cp->cache_color = color;
1500 1502  
1501 1503          slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1502 1504  
1503 1505          if (slab == NULL)
1504 1506                  goto vmem_alloc_failure;
1505 1507  
1506 1508          ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1507 1509  
1508 1510          /*
1509 1511           * Reverify what was already checked in kmem_cache_set_move(), since the
1510 1512           * consolidator depends (for correctness) on slabs being initialized
1511 1513           * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1512 1514           * clients to distinguish uninitialized memory from known objects).
1513 1515           */
1514 1516          ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1515 1517          if (!(cp->cache_cflags & KMC_NOTOUCH))
1516 1518                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1517 1519  
1518 1520          if (cache_flags & KMF_HASH) {
1519 1521                  if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1520 1522                          goto slab_alloc_failure;
1521 1523                  chunks = (slabsize - color) / chunksize;
1522 1524          } else {
1523 1525                  sp = KMEM_SLAB(cp, slab);
1524 1526                  chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1525 1527          }
1526 1528  
1527 1529          sp->slab_cache  = cp;
1528 1530          sp->slab_head   = NULL;
1529 1531          sp->slab_refcnt = 0;
1530 1532          sp->slab_base   = buf = slab + color;
1531 1533          sp->slab_chunks = chunks;
1532 1534          sp->slab_stuck_offset = (uint32_t)-1;
1533 1535          sp->slab_later_count = 0;
1534 1536          sp->slab_flags = 0;
1535 1537  
1536 1538          ASSERT(chunks > 0);
1537 1539          while (chunks-- != 0) {
1538 1540                  if (cache_flags & KMF_HASH) {
1539 1541                          bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1540 1542                          if (bcp == NULL)
1541 1543                                  goto bufctl_alloc_failure;
1542 1544                          if (cache_flags & KMF_AUDIT) {
1543 1545                                  kmem_bufctl_audit_t *bcap =
1544 1546                                      (kmem_bufctl_audit_t *)bcp;
1545 1547                                  bzero(bcap, sizeof (kmem_bufctl_audit_t));
1546 1548                                  bcap->bc_cache = cp;
1547 1549                          }
1548 1550                          bcp->bc_addr = buf;
1549 1551                          bcp->bc_slab = sp;
1550 1552                  } else {
1551 1553                          bcp = KMEM_BUFCTL(cp, buf);
1552 1554                  }
1553 1555                  if (cache_flags & KMF_BUFTAG) {
1554 1556                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1555 1557                          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1556 1558                          btp->bt_bufctl = bcp;
1557 1559                          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1558 1560                          if (cache_flags & KMF_DEADBEEF) {
1559 1561                                  copy_pattern(KMEM_FREE_PATTERN, buf,
1560 1562                                      cp->cache_verify);
1561 1563                          }
1562 1564                  }
1563 1565                  bcp->bc_next = sp->slab_head;
1564 1566                  sp->slab_head = bcp;
1565 1567                  buf += chunksize;
1566 1568          }
1567 1569  
1568 1570          kmem_log_event(kmem_slab_log, cp, sp, slab);
1569 1571  
1570 1572          return (sp);
1571 1573  
1572 1574  bufctl_alloc_failure:
1573 1575  
1574 1576          while ((bcp = sp->slab_head) != NULL) {
1575 1577                  sp->slab_head = bcp->bc_next;
1576 1578                  kmem_cache_free(cp->cache_bufctl_cache, bcp);
1577 1579          }
1578 1580          kmem_cache_free(kmem_slab_cache, sp);
1579 1581  
1580 1582  slab_alloc_failure:
1581 1583  
1582 1584          vmem_free(vmp, slab, slabsize);
1583 1585  
1584 1586  vmem_alloc_failure:
1585 1587  
1586 1588          kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1587 1589          atomic_inc_64(&cp->cache_alloc_fail);
1588 1590  
1589 1591          return (NULL);
1590 1592  }
1591 1593  
1592 1594  /*
1593 1595   * Destroy a slab.
1594 1596   */
1595 1597  static void
1596 1598  kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1597 1599  {
1598 1600          vmem_t *vmp = cp->cache_arena;
1599 1601          void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1600 1602  
1601 1603          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1602 1604          ASSERT(sp->slab_refcnt == 0);
1603 1605  
1604 1606          if (cp->cache_flags & KMF_HASH) {
1605 1607                  kmem_bufctl_t *bcp;
1606 1608                  while ((bcp = sp->slab_head) != NULL) {
1607 1609                          sp->slab_head = bcp->bc_next;
1608 1610                          kmem_cache_free(cp->cache_bufctl_cache, bcp);
1609 1611                  }
1610 1612                  kmem_cache_free(kmem_slab_cache, sp);
1611 1613          }
1612 1614          vmem_free(vmp, slab, cp->cache_slabsize);
1613 1615  }
1614 1616  
1615 1617  static void *
1616 1618  kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1617 1619  {
1618 1620          kmem_bufctl_t *bcp, **hash_bucket;
1619 1621          void *buf;
1620 1622          boolean_t new_slab = (sp->slab_refcnt == 0);
1621 1623  
1622 1624          ASSERT(MUTEX_HELD(&cp->cache_lock));
1623 1625          /*
1624 1626           * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1625 1627           * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1626 1628           * slab is newly created.
1627 1629           */
1628 1630          ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1629 1631              (sp == avl_first(&cp->cache_partial_slabs))));
1630 1632          ASSERT(sp->slab_cache == cp);
1631 1633  
1632 1634          cp->cache_slab_alloc++;
1633 1635          cp->cache_bufslab--;
1634 1636          sp->slab_refcnt++;
1635 1637  
1636 1638          bcp = sp->slab_head;
1637 1639          sp->slab_head = bcp->bc_next;
1638 1640  
1639 1641          if (cp->cache_flags & KMF_HASH) {
1640 1642                  /*
1641 1643                   * Add buffer to allocated-address hash table.
1642 1644                   */
1643 1645                  buf = bcp->bc_addr;
1644 1646                  hash_bucket = KMEM_HASH(cp, buf);
1645 1647                  bcp->bc_next = *hash_bucket;
1646 1648                  *hash_bucket = bcp;
1647 1649                  if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1648 1650                          KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1649 1651                  }
1650 1652          } else {
1651 1653                  buf = KMEM_BUF(cp, bcp);
1652 1654          }
1653 1655  
1654 1656          ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1655 1657  
1656 1658          if (sp->slab_head == NULL) {
1657 1659                  ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1658 1660                  if (new_slab) {
1659 1661                          ASSERT(sp->slab_chunks == 1);
1660 1662                  } else {
1661 1663                          ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1662 1664                          avl_remove(&cp->cache_partial_slabs, sp);
1663 1665                          sp->slab_later_count = 0; /* clear history */
1664 1666                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1665 1667                          sp->slab_stuck_offset = (uint32_t)-1;
1666 1668                  }
1667 1669                  list_insert_head(&cp->cache_complete_slabs, sp);
1668 1670                  cp->cache_complete_slab_count++;
1669 1671                  return (buf);
1670 1672          }
1671 1673  
1672 1674          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1673 1675          /*
1674 1676           * Peek to see if the magazine layer is enabled before
1675 1677           * we prefill.  We're not holding the cpu cache lock,
1676 1678           * so the peek could be wrong, but there's no harm in it.
1677 1679           */
1678 1680          if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1679 1681              (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1680 1682                  kmem_slab_prefill(cp, sp);
1681 1683                  return (buf);
1682 1684          }
1683 1685  
1684 1686          if (new_slab) {
1685 1687                  avl_add(&cp->cache_partial_slabs, sp);
1686 1688                  return (buf);
1687 1689          }
1688 1690  
1689 1691          /*
1690 1692           * The slab is now more allocated than it was, so the
1691 1693           * order remains unchanged.
1692 1694           */
1693 1695          ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1694 1696          return (buf);
1695 1697  }
1696 1698  
1697 1699  /*
1698 1700   * Allocate a raw (unconstructed) buffer from cp's slab layer.
1699 1701   */
1700 1702  static void *
1701 1703  kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1702 1704  {
1703 1705          kmem_slab_t *sp;
1704 1706          void *buf;
1705 1707          boolean_t test_destructor;
1706 1708  
1707 1709          mutex_enter(&cp->cache_lock);
1708 1710          test_destructor = (cp->cache_slab_alloc == 0);
1709 1711          sp = avl_first(&cp->cache_partial_slabs);
1710 1712          if (sp == NULL) {
1711 1713                  ASSERT(cp->cache_bufslab == 0);
1712 1714  
1713 1715                  /*
1714 1716                   * The freelist is empty.  Create a new slab.
1715 1717                   */
1716 1718                  mutex_exit(&cp->cache_lock);
1717 1719                  if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1718 1720                          return (NULL);
1719 1721                  }
1720 1722                  mutex_enter(&cp->cache_lock);
1721 1723                  cp->cache_slab_create++;
1722 1724                  if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1723 1725                          cp->cache_bufmax = cp->cache_buftotal;
1724 1726                  cp->cache_bufslab += sp->slab_chunks;
1725 1727          }
1726 1728  
1727 1729          buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1728 1730          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1729 1731              (cp->cache_complete_slab_count +
1730 1732              avl_numnodes(&cp->cache_partial_slabs) +
1731 1733              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1732 1734          mutex_exit(&cp->cache_lock);
1733 1735  
1734 1736          if (test_destructor && cp->cache_destructor != NULL) {
1735 1737                  /*
1736 1738                   * On the first kmem_slab_alloc(), assert that it is valid to
1737 1739                   * call the destructor on a newly constructed object without any
1738 1740                   * client involvement.
1739 1741                   */
1740 1742                  if ((cp->cache_constructor == NULL) ||
1741 1743                      cp->cache_constructor(buf, cp->cache_private,
1742 1744                      kmflag) == 0) {
1743 1745                          cp->cache_destructor(buf, cp->cache_private);
1744 1746                  }
1745 1747                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1746 1748                      cp->cache_bufsize);
1747 1749                  if (cp->cache_flags & KMF_DEADBEEF) {
1748 1750                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1749 1751                  }
1750 1752          }
1751 1753  
1752 1754          return (buf);
1753 1755  }
1754 1756  
1755 1757  static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1756 1758  
1757 1759  /*
1758 1760   * Free a raw (unconstructed) buffer to cp's slab layer.
1759 1761   */
1760 1762  static void
1761 1763  kmem_slab_free(kmem_cache_t *cp, void *buf)
1762 1764  {
1763 1765          kmem_slab_t *sp;
1764 1766          kmem_bufctl_t *bcp, **prev_bcpp;
1765 1767  
1766 1768          ASSERT(buf != NULL);
1767 1769  
1768 1770          mutex_enter(&cp->cache_lock);
1769 1771          cp->cache_slab_free++;
1770 1772  
1771 1773          if (cp->cache_flags & KMF_HASH) {
1772 1774                  /*
1773 1775                   * Look up buffer in allocated-address hash table.
1774 1776                   */
1775 1777                  prev_bcpp = KMEM_HASH(cp, buf);
1776 1778                  while ((bcp = *prev_bcpp) != NULL) {
1777 1779                          if (bcp->bc_addr == buf) {
1778 1780                                  *prev_bcpp = bcp->bc_next;
1779 1781                                  sp = bcp->bc_slab;
1780 1782                                  break;
1781 1783                          }
1782 1784                          cp->cache_lookup_depth++;
1783 1785                          prev_bcpp = &bcp->bc_next;
1784 1786                  }
1785 1787          } else {
1786 1788                  bcp = KMEM_BUFCTL(cp, buf);
1787 1789                  sp = KMEM_SLAB(cp, buf);
1788 1790          }
1789 1791  
1790 1792          if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1791 1793                  mutex_exit(&cp->cache_lock);
1792 1794                  kmem_error(KMERR_BADADDR, cp, buf);
1793 1795                  return;
1794 1796          }
1795 1797  
1796 1798          if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1797 1799                  /*
1798 1800                   * If this is the buffer that prevented the consolidator from
1799 1801                   * clearing the slab, we can reset the slab flags now that the
1800 1802                   * buffer is freed. (It makes sense to do this in
1801 1803                   * kmem_cache_free(), where the client gives up ownership of the
1802 1804                   * buffer, but on the hot path the test is too expensive.)
1803 1805                   */
1804 1806                  kmem_slab_move_yes(cp, sp, buf);
1805 1807          }
1806 1808  
1807 1809          if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1808 1810                  if (cp->cache_flags & KMF_CONTENTS)
1809 1811                          ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1810 1812                              kmem_log_enter(kmem_content_log, buf,
1811 1813                              cp->cache_contents);
1812 1814                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1813 1815          }
1814 1816  
1815 1817          bcp->bc_next = sp->slab_head;
1816 1818          sp->slab_head = bcp;
1817 1819  
1818 1820          cp->cache_bufslab++;
1819 1821          ASSERT(sp->slab_refcnt >= 1);
1820 1822  
1821 1823          if (--sp->slab_refcnt == 0) {
1822 1824                  /*
1823 1825                   * There are no outstanding allocations from this slab,
1824 1826                   * so we can reclaim the memory.
1825 1827                   */
1826 1828                  if (sp->slab_chunks == 1) {
1827 1829                          list_remove(&cp->cache_complete_slabs, sp);
1828 1830                          cp->cache_complete_slab_count--;
1829 1831                  } else {
1830 1832                          avl_remove(&cp->cache_partial_slabs, sp);
1831 1833                  }
1832 1834  
1833 1835                  cp->cache_buftotal -= sp->slab_chunks;
1834 1836                  cp->cache_bufslab -= sp->slab_chunks;
1835 1837                  /*
1836 1838                   * Defer releasing the slab to the virtual memory subsystem
1837 1839                   * while there is a pending move callback, since we guarantee
1838 1840                   * that buffers passed to the move callback have only been
1839 1841                   * touched by kmem or by the client itself. Since the memory
1840 1842                   * patterns baddcafe (uninitialized) and deadbeef (freed) both
1841 1843                   * set at least one of the two lowest order bits, the client can
1842 1844                   * test those bits in the move callback to determine whether or
1843 1845                   * not it knows about the buffer (assuming that the client also
1844 1846                   * sets one of those low order bits whenever it frees a buffer).
1845 1847                   */
1846 1848                  if (cp->cache_defrag == NULL ||
1847 1849                      (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1848 1850                      !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1849 1851                          cp->cache_slab_destroy++;
1850 1852                          mutex_exit(&cp->cache_lock);
1851 1853                          kmem_slab_destroy(cp, sp);
1852 1854                  } else {
1853 1855                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1854 1856                          /*
1855 1857                           * Slabs are inserted at both ends of the deadlist to
1856 1858                           * distinguish between slabs freed while move callbacks
1857 1859                           * are pending (list head) and a slab freed while the
1858 1860                           * lock is dropped in kmem_move_buffers() (list tail) so
1859 1861                           * that in both cases slab_destroy() is called from the
1860 1862                           * right context.
1861 1863                           */
1862 1864                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1863 1865                                  list_insert_tail(deadlist, sp);
1864 1866                          } else {
1865 1867                                  list_insert_head(deadlist, sp);
1866 1868                          }
1867 1869                          cp->cache_defrag->kmd_deadcount++;
1868 1870                          mutex_exit(&cp->cache_lock);
1869 1871                  }
1870 1872                  return;
1871 1873          }
1872 1874  
1873 1875          if (bcp->bc_next == NULL) {
1874 1876                  /* Transition the slab from completely allocated to partial. */
1875 1877                  ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1876 1878                  ASSERT(sp->slab_chunks > 1);
1877 1879                  list_remove(&cp->cache_complete_slabs, sp);
1878 1880                  cp->cache_complete_slab_count--;
1879 1881                  avl_add(&cp->cache_partial_slabs, sp);
1880 1882          } else {
1881 1883                  (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1882 1884          }
1883 1885  
1884 1886          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1885 1887              (cp->cache_complete_slab_count +
1886 1888              avl_numnodes(&cp->cache_partial_slabs) +
1887 1889              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1888 1890          mutex_exit(&cp->cache_lock);
1889 1891  }
1890 1892  
1891 1893  /*
1892 1894   * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1893 1895   */
1894 1896  static int
1895 1897  kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1896 1898      caddr_t caller)
1897 1899  {
1898 1900          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1899 1901          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1900 1902          uint32_t mtbf;
1901 1903  
1902 1904          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1903 1905                  kmem_error(KMERR_BADBUFTAG, cp, buf);
1904 1906                  return (-1);
1905 1907          }
1906 1908  
1907 1909          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1908 1910  
1909 1911          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1910 1912                  kmem_error(KMERR_BADBUFCTL, cp, buf);
1911 1913                  return (-1);
1912 1914          }
1913 1915  
1914 1916          if (cp->cache_flags & KMF_DEADBEEF) {
1915 1917                  if (!construct && (cp->cache_flags & KMF_LITE)) {
1916 1918                          if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1917 1919                                  kmem_error(KMERR_MODIFIED, cp, buf);
1918 1920                                  return (-1);
1919 1921                          }
1920 1922                          if (cp->cache_constructor != NULL)
1921 1923                                  *(uint64_t *)buf = btp->bt_redzone;
1922 1924                          else
1923 1925                                  *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1924 1926                  } else {
1925 1927                          construct = 1;
1926 1928                          if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1927 1929                              KMEM_UNINITIALIZED_PATTERN, buf,
1928 1930                              cp->cache_verify)) {
1929 1931                                  kmem_error(KMERR_MODIFIED, cp, buf);
1930 1932                                  return (-1);
1931 1933                          }
1932 1934                  }
1933 1935          }
1934 1936          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1935 1937  
1936 1938          if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1937 1939              gethrtime() % mtbf == 0 &&
1938 1940              (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1939 1941                  kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1940 1942                  if (!construct && cp->cache_destructor != NULL)
1941 1943                          cp->cache_destructor(buf, cp->cache_private);
1942 1944          } else {
1943 1945                  mtbf = 0;
1944 1946          }
1945 1947  
1946 1948          if (mtbf || (construct && cp->cache_constructor != NULL &&
1947 1949              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1948 1950                  atomic_inc_64(&cp->cache_alloc_fail);
1949 1951                  btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1950 1952                  if (cp->cache_flags & KMF_DEADBEEF)
1951 1953                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1952 1954                  kmem_slab_free(cp, buf);
1953 1955                  return (1);
1954 1956          }
1955 1957  
1956 1958          if (cp->cache_flags & KMF_AUDIT) {
1957 1959                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1958 1960          }
1959 1961  
1960 1962          if ((cp->cache_flags & KMF_LITE) &&
1961 1963              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1962 1964                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1963 1965          }
1964 1966  
1965 1967          return (0);
1966 1968  }
1967 1969  
1968 1970  static int
1969 1971  kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1970 1972  {
1971 1973          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1972 1974          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1973 1975          kmem_slab_t *sp;
1974 1976  
1975 1977          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1976 1978                  if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1977 1979                          kmem_error(KMERR_DUPFREE, cp, buf);
1978 1980                          return (-1);
1979 1981                  }
1980 1982                  sp = kmem_findslab(cp, buf);
1981 1983                  if (sp == NULL || sp->slab_cache != cp)
1982 1984                          kmem_error(KMERR_BADADDR, cp, buf);
1983 1985                  else
1984 1986                          kmem_error(KMERR_REDZONE, cp, buf);
1985 1987                  return (-1);
1986 1988          }
1987 1989  
1988 1990          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1989 1991  
1990 1992          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1991 1993                  kmem_error(KMERR_BADBUFCTL, cp, buf);
1992 1994                  return (-1);
1993 1995          }
1994 1996  
1995 1997          if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1996 1998                  kmem_error(KMERR_REDZONE, cp, buf);
1997 1999                  return (-1);
1998 2000          }
1999 2001  
2000 2002          if (cp->cache_flags & KMF_AUDIT) {
2001 2003                  if (cp->cache_flags & KMF_CONTENTS)
2002 2004                          bcp->bc_contents = kmem_log_enter(kmem_content_log,
2003 2005                              buf, cp->cache_contents);
2004 2006                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2005 2007          }
2006 2008  
2007 2009          if ((cp->cache_flags & KMF_LITE) &&
2008 2010              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2009 2011                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2010 2012          }
2011 2013  
2012 2014          if (cp->cache_flags & KMF_DEADBEEF) {
2013 2015                  if (cp->cache_flags & KMF_LITE)
2014 2016                          btp->bt_redzone = *(uint64_t *)buf;
2015 2017                  else if (cp->cache_destructor != NULL)
2016 2018                          cp->cache_destructor(buf, cp->cache_private);
2017 2019  
2018 2020                  copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2019 2021          }
2020 2022  
2021 2023          return (0);
2022 2024  }
2023 2025  
2024 2026  /*
2025 2027   * Free each object in magazine mp to cp's slab layer, and free mp itself.
2026 2028   */
2027 2029  static void
2028 2030  kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2029 2031  {
2030 2032          int round;
2031 2033  
2032 2034          ASSERT(!list_link_active(&cp->cache_link) ||
2033 2035              taskq_member(kmem_taskq, curthread));
2034 2036  
2035 2037          for (round = 0; round < nrounds; round++) {
2036 2038                  void *buf = mp->mag_round[round];
2037 2039  
2038 2040                  if (cp->cache_flags & KMF_DEADBEEF) {
2039 2041                          if (verify_pattern(KMEM_FREE_PATTERN, buf,
2040 2042                              cp->cache_verify) != NULL) {
2041 2043                                  kmem_error(KMERR_MODIFIED, cp, buf);
2042 2044                                  continue;
2043 2045                          }
2044 2046                          if ((cp->cache_flags & KMF_LITE) &&
2045 2047                              cp->cache_destructor != NULL) {
2046 2048                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2047 2049                                  *(uint64_t *)buf = btp->bt_redzone;
2048 2050                                  cp->cache_destructor(buf, cp->cache_private);
2049 2051                                  *(uint64_t *)buf = KMEM_FREE_PATTERN;
2050 2052                          }
2051 2053                  } else if (cp->cache_destructor != NULL) {
2052 2054                          cp->cache_destructor(buf, cp->cache_private);
2053 2055                  }
2054 2056  
2055 2057                  kmem_slab_free(cp, buf);
2056 2058          }
2057 2059          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2058 2060          kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2059 2061  }
2060 2062  
2061 2063  /*
2062 2064   * Allocate a magazine from the depot.
2063 2065   */
2064 2066  static kmem_magazine_t *
2065 2067  kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2066 2068  {
2067 2069          kmem_magazine_t *mp;
2068 2070  
2069 2071          /*
2070 2072           * If we can't get the depot lock without contention,
2071 2073           * update our contention count.  We use the depot
2072 2074           * contention rate to determine whether we need to
2073 2075           * increase the magazine size for better scalability.
2074 2076           */
2075 2077          if (!mutex_tryenter(&cp->cache_depot_lock)) {
2076 2078                  mutex_enter(&cp->cache_depot_lock);
2077 2079                  cp->cache_depot_contention++;
2078 2080          }
2079 2081  
2080 2082          if ((mp = mlp->ml_list) != NULL) {
2081 2083                  ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2082 2084                  mlp->ml_list = mp->mag_next;
2083 2085                  if (--mlp->ml_total < mlp->ml_min)
2084 2086                          mlp->ml_min = mlp->ml_total;
2085 2087                  mlp->ml_alloc++;
2086 2088          }
2087 2089  
2088 2090          mutex_exit(&cp->cache_depot_lock);
2089 2091  
2090 2092          return (mp);
2091 2093  }
2092 2094  
2093 2095  /*
2094 2096   * Free a magazine to the depot.
2095 2097   */
2096 2098  static void
2097 2099  kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2098 2100  {
2099 2101          mutex_enter(&cp->cache_depot_lock);
2100 2102          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2101 2103          mp->mag_next = mlp->ml_list;
2102 2104          mlp->ml_list = mp;
2103 2105          mlp->ml_total++;
2104 2106          mutex_exit(&cp->cache_depot_lock);
2105 2107  }
2106 2108  
2107 2109  /*
2108 2110   * Update the working set statistics for cp's depot.
2109 2111   */
2110 2112  static void
2111 2113  kmem_depot_ws_update(kmem_cache_t *cp)
2112 2114  {
2113 2115          mutex_enter(&cp->cache_depot_lock);
2114 2116          cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2115 2117          cp->cache_full.ml_min = cp->cache_full.ml_total;
2116 2118          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2117 2119          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2118 2120          mutex_exit(&cp->cache_depot_lock);
2119 2121  }
2120 2122  
2121 2123  /*
2122 2124   * Set the working set statistics for cp's depot to zero.  (Everything is
2123 2125   * eligible for reaping.)
2124 2126   */
2125 2127  static void
2126 2128  kmem_depot_ws_zero(kmem_cache_t *cp)
2127 2129  {
2128 2130          mutex_enter(&cp->cache_depot_lock);
2129 2131          cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2130 2132          cp->cache_full.ml_min = cp->cache_full.ml_total;
2131 2133          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2132 2134          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2133 2135          mutex_exit(&cp->cache_depot_lock);
2134 2136  }
2135 2137  
2136 2138  /*
2137 2139   * The number of bytes to reap before we call kpreempt(). The default (1MB)
2138 2140   * causes us to preempt reaping up to hundreds of times per second. Using a
2139 2141   * larger value (1GB) causes this to have virtually no effect.
2140 2142   */
2141 2143  size_t kmem_reap_preempt_bytes = 1024 * 1024;
2142 2144  
2143 2145  /*
2144 2146   * Reap all magazines that have fallen out of the depot's working set.
2145 2147   */
2146 2148  static void
2147 2149  kmem_depot_ws_reap(kmem_cache_t *cp)
2148 2150  {
2149 2151          size_t bytes = 0;
2150 2152          long reap;
2151 2153          kmem_magazine_t *mp;
2152 2154  
2153 2155          ASSERT(!list_link_active(&cp->cache_link) ||
2154 2156              taskq_member(kmem_taskq, curthread));
2155 2157  
2156 2158          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2157 2159          while (reap-- &&
2158 2160              (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2159 2161                  kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2160 2162                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2161 2163                  if (bytes > kmem_reap_preempt_bytes) {
2162 2164                          kpreempt(KPREEMPT_SYNC);
2163 2165                          bytes = 0;
2164 2166                  }
2165 2167          }
2166 2168  
2167 2169          reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2168 2170          while (reap-- &&
2169 2171              (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2170 2172                  kmem_magazine_destroy(cp, mp, 0);
2171 2173                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2172 2174                  if (bytes > kmem_reap_preempt_bytes) {
2173 2175                          kpreempt(KPREEMPT_SYNC);
2174 2176                          bytes = 0;
2175 2177                  }
2176 2178          }
2177 2179  }
2178 2180  
2179 2181  static void
2180 2182  kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2181 2183  {
2182 2184          ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2183 2185              (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2184 2186          ASSERT(ccp->cc_magsize > 0);
2185 2187  
2186 2188          ccp->cc_ploaded = ccp->cc_loaded;
2187 2189          ccp->cc_prounds = ccp->cc_rounds;
2188 2190          ccp->cc_loaded = mp;
2189 2191          ccp->cc_rounds = rounds;
2190 2192  }
2191 2193  
2192 2194  /*
2193 2195   * Intercept kmem alloc/free calls during crash dump in order to avoid
2194 2196   * changing kmem state while memory is being saved to the dump device.
2195 2197   * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2196 2198   * there are no locks because only one CPU calls kmem during a crash
2197 2199   * dump. To enable this feature, first create the associated vmem
2198 2200   * arena with VMC_DUMPSAFE.
2199 2201   */
2200 2202  static void *kmem_dump_start;   /* start of pre-reserved heap */
2201 2203  static void *kmem_dump_end;     /* end of heap area */
2202 2204  static void *kmem_dump_curr;    /* current free heap pointer */
2203 2205  static size_t kmem_dump_size;   /* size of heap area */
2204 2206  
2205 2207  /* append to each buf created in the pre-reserved heap */
2206 2208  typedef struct kmem_dumpctl {
2207 2209          void    *kdc_next;      /* cache dump free list linkage */
2208 2210  } kmem_dumpctl_t;
2209 2211  
2210 2212  #define KMEM_DUMPCTL(cp, buf)   \
2211 2213          ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2212 2214              sizeof (void *)))
2213 2215  
2214 2216  /* set non zero for full report */
2215 2217  uint_t kmem_dump_verbose = 0;
2216 2218  
2217 2219  /* stats for overize heap */
2218 2220  uint_t kmem_dump_oversize_allocs = 0;
2219 2221  uint_t kmem_dump_oversize_max = 0;
2220 2222  
2221 2223  static void
2222 2224  kmem_dumppr(char **pp, char *e, const char *format, ...)
2223 2225  {
2224 2226          char *p = *pp;
2225 2227  
2226 2228          if (p < e) {
2227 2229                  int n;
2228 2230                  va_list ap;
2229 2231  
2230 2232                  va_start(ap, format);
2231 2233                  n = vsnprintf(p, e - p, format, ap);
2232 2234                  va_end(ap);
2233 2235                  *pp = p + n;
2234 2236          }
2235 2237  }
2236 2238  
2237 2239  /*
2238 2240   * Called when dumpadm(1M) configures dump parameters.
2239 2241   */
2240 2242  void
2241 2243  kmem_dump_init(size_t size)
2242 2244  {
2243 2245          /* Our caller ensures size is always set. */
2244 2246          ASSERT3U(size, >, 0);
2245 2247  
2246 2248          if (kmem_dump_start != NULL)
2247 2249                  kmem_free(kmem_dump_start, kmem_dump_size);
2248 2250  
2249 2251          kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2250 2252          kmem_dump_size = size;
2251 2253          kmem_dump_curr = kmem_dump_start;
2252 2254          kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2253 2255          copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2254 2256  }
2255 2257  
2256 2258  /*
2257 2259   * Set flag for each kmem_cache_t if is safe to use alternate dump
2258 2260   * memory. Called just before panic crash dump starts. Set the flag
2259 2261   * for the calling CPU.
2260 2262   */
2261 2263  void
2262 2264  kmem_dump_begin(void)
2263 2265  {
2264 2266          kmem_cache_t *cp;
2265 2267  
2266 2268          ASSERT(panicstr != NULL);
2267 2269  
2268 2270          for (cp = list_head(&kmem_caches); cp != NULL;
2269 2271              cp = list_next(&kmem_caches, cp)) {
2270 2272                  kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2271 2273  
2272 2274                  if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2273 2275                          cp->cache_flags |= KMF_DUMPDIVERT;
2274 2276                          ccp->cc_flags |= KMF_DUMPDIVERT;
2275 2277                          ccp->cc_dump_rounds = ccp->cc_rounds;
2276 2278                          ccp->cc_dump_prounds = ccp->cc_prounds;
2277 2279                          ccp->cc_rounds = ccp->cc_prounds = -1;
2278 2280                  } else {
2279 2281                          cp->cache_flags |= KMF_DUMPUNSAFE;
2280 2282                          ccp->cc_flags |= KMF_DUMPUNSAFE;
2281 2283                  }
2282 2284          }
2283 2285  }
2284 2286  
2285 2287  /*
2286 2288   * finished dump intercept
2287 2289   * print any warnings on the console
2288 2290   * return verbose information to dumpsys() in the given buffer
2289 2291   */
2290 2292  size_t
2291 2293  kmem_dump_finish(char *buf, size_t size)
2292 2294  {
2293 2295          int percent = 0;
2294 2296          size_t used;
2295 2297          char *e = buf + size;
2296 2298          char *p = buf;
2297 2299  
2298 2300          if (kmem_dump_curr == kmem_dump_end) {
2299 2301                  cmn_err(CE_WARN, "exceeded kmem_dump space of %lu "
2300 2302                      "bytes: kmem state in dump may be inconsistent",
2301 2303                      kmem_dump_size);
2302 2304          }
2303 2305  
2304 2306          if (kmem_dump_verbose == 0)
2305 2307                  return (0);
2306 2308  
2307 2309          used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2308 2310          percent = (used * 100) / kmem_dump_size;
2309 2311  
2310 2312          kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2311 2313          kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2312 2314          kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2313 2315          kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2314 2316              kmem_dump_oversize_allocs);
2315 2317          kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2316 2318              kmem_dump_oversize_max);
2317 2319  
2318 2320          /* return buffer size used */
2319 2321          if (p < e)
2320 2322                  bzero(p, e - p);
2321 2323          return (p - buf);
2322 2324  }
2323 2325  
2324 2326  /*
2325 2327   * Allocate a constructed object from alternate dump memory.
2326 2328   */
2327 2329  void *
2328 2330  kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2329 2331  {
2330 2332          void *buf;
2331 2333          void *curr;
2332 2334          char *bufend;
2333 2335  
2334 2336          /* return a constructed object */
2335 2337          if ((buf = cp->cache_dump.kd_freelist) != NULL) {
2336 2338                  cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2337 2339                  return (buf);
2338 2340          }
2339 2341  
2340 2342          /* create a new constructed object */
2341 2343          curr = kmem_dump_curr;
2342 2344          buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2343 2345          bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2344 2346  
2345 2347          /* hat layer objects cannot cross a page boundary */
2346 2348          if (cp->cache_align < PAGESIZE) {
2347 2349                  char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2348 2350                  if (bufend > page) {
2349 2351                          bufend += page - (char *)buf;
2350 2352                          buf = (void *)page;
2351 2353                  }
2352 2354          }
2353 2355  
2354 2356          /* fall back to normal alloc if reserved area is used up */
2355 2357          if (bufend > (char *)kmem_dump_end) {
2356 2358                  kmem_dump_curr = kmem_dump_end;
2357 2359                  cp->cache_dump.kd_alloc_fails++;
2358 2360                  return (NULL);
2359 2361          }
2360 2362  
2361 2363          /*
2362 2364           * Must advance curr pointer before calling a constructor that
2363 2365           * may also allocate memory.
2364 2366           */
2365 2367          kmem_dump_curr = bufend;
2366 2368  
2367 2369          /* run constructor */
2368 2370          if (cp->cache_constructor != NULL &&
2369 2371              cp->cache_constructor(buf, cp->cache_private, kmflag)
2370 2372              != 0) {
2371 2373  #ifdef DEBUG
2372 2374                  printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2373 2375                      cp->cache_name, (void *)cp);
2374 2376  #endif
2375 2377                  /* reset curr pointer iff no allocs were done */
2376 2378                  if (kmem_dump_curr == bufend)
2377 2379                          kmem_dump_curr = curr;
2378 2380  
2379 2381                  cp->cache_dump.kd_alloc_fails++;
2380 2382                  /* fall back to normal alloc if the constructor fails */
2381 2383                  return (NULL);
2382 2384          }
2383 2385  
2384 2386          return (buf);
2385 2387  }
2386 2388  
2387 2389  /*
2388 2390   * Free a constructed object in alternate dump memory.
2389 2391   */
2390 2392  int
2391 2393  kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2392 2394  {
2393 2395          /* save constructed buffers for next time */
2394 2396          if ((char *)buf >= (char *)kmem_dump_start &&
2395 2397              (char *)buf < (char *)kmem_dump_end) {
2396 2398                  KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist;
2397 2399                  cp->cache_dump.kd_freelist = buf;
2398 2400                  return (0);
2399 2401          }
2400 2402  
2401 2403          /* just drop buffers that were allocated before dump started */
2402 2404          if (kmem_dump_curr < kmem_dump_end)
2403 2405                  return (0);
2404 2406  
2405 2407          /* fall back to normal free if reserved area is used up */
2406 2408          return (1);
2407 2409  }
2408 2410  
2409 2411  /*
2410 2412   * Allocate a constructed object from cache cp.
2411 2413   */
2412 2414  void *
2413 2415  kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2414 2416  {
2415 2417          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2416 2418          kmem_magazine_t *fmp;
2417 2419          void *buf;
2418 2420  
2419 2421          mutex_enter(&ccp->cc_lock);
2420 2422          for (;;) {
2421 2423                  /*
2422 2424                   * If there's an object available in the current CPU's
2423 2425                   * loaded magazine, just take it and return.
2424 2426                   */
2425 2427                  if (ccp->cc_rounds > 0) {
2426 2428                          buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2427 2429                          ccp->cc_alloc++;
2428 2430                          mutex_exit(&ccp->cc_lock);
2429 2431                          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2430 2432                                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2431 2433                                          ASSERT(!(ccp->cc_flags &
2432 2434                                              KMF_DUMPDIVERT));
2433 2435                                          cp->cache_dump.kd_unsafe++;
2434 2436                                  }
2435 2437                                  if ((ccp->cc_flags & KMF_BUFTAG) &&
2436 2438                                      kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2437 2439                                      caller()) != 0) {
2438 2440                                          if (kmflag & KM_NOSLEEP)
2439 2441                                                  return (NULL);
2440 2442                                          mutex_enter(&ccp->cc_lock);
2441 2443                                          continue;
2442 2444                                  }
2443 2445                          }
2444 2446                          return (buf);
2445 2447                  }
2446 2448  
2447 2449                  /*
2448 2450                   * The loaded magazine is empty.  If the previously loaded
2449 2451                   * magazine was full, exchange them and try again.
2450 2452                   */
2451 2453                  if (ccp->cc_prounds > 0) {
2452 2454                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2453 2455                          continue;
2454 2456                  }
2455 2457  
2456 2458                  /*
2457 2459                   * Return an alternate buffer at dump time to preserve
2458 2460                   * the heap.
2459 2461                   */
2460 2462                  if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2461 2463                          if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2462 2464                                  ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2463 2465                                  /* log it so that we can warn about it */
2464 2466                                  cp->cache_dump.kd_unsafe++;
2465 2467                          } else {
2466 2468                                  if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2467 2469                                      NULL) {
2468 2470                                          mutex_exit(&ccp->cc_lock);
2469 2471                                          return (buf);
2470 2472                                  }
2471 2473                                  break;          /* fall back to slab layer */
2472 2474                          }
2473 2475                  }
2474 2476  
2475 2477                  /*
2476 2478                   * If the magazine layer is disabled, break out now.
2477 2479                   */
2478 2480                  if (ccp->cc_magsize == 0)
2479 2481                          break;
2480 2482  
2481 2483                  /*
2482 2484                   * Try to get a full magazine from the depot.
2483 2485                   */
2484 2486                  fmp = kmem_depot_alloc(cp, &cp->cache_full);
2485 2487                  if (fmp != NULL) {
2486 2488                          if (ccp->cc_ploaded != NULL)
2487 2489                                  kmem_depot_free(cp, &cp->cache_empty,
2488 2490                                      ccp->cc_ploaded);
2489 2491                          kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2490 2492                          continue;
2491 2493                  }
2492 2494  
2493 2495                  /*
2494 2496                   * There are no full magazines in the depot,
2495 2497                   * so fall through to the slab layer.
2496 2498                   */
2497 2499                  break;
2498 2500          }
2499 2501          mutex_exit(&ccp->cc_lock);
2500 2502  
2501 2503          /*
2502 2504           * We couldn't allocate a constructed object from the magazine layer,
2503 2505           * so get a raw buffer from the slab layer and apply its constructor.
2504 2506           */
2505 2507          buf = kmem_slab_alloc(cp, kmflag);
2506 2508  
2507 2509          if (buf == NULL)
2508 2510                  return (NULL);
2509 2511  
2510 2512          if (cp->cache_flags & KMF_BUFTAG) {
2511 2513                  /*
2512 2514                   * Make kmem_cache_alloc_debug() apply the constructor for us.
2513 2515                   */
2514 2516                  int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2515 2517                  if (rc != 0) {
2516 2518                          if (kmflag & KM_NOSLEEP)
2517 2519                                  return (NULL);
2518 2520                          /*
2519 2521                           * kmem_cache_alloc_debug() detected corruption
2520 2522                           * but didn't panic (kmem_panic <= 0). We should not be
2521 2523                           * here because the constructor failed (indicated by a
2522 2524                           * return code of 1). Try again.
2523 2525                           */
2524 2526                          ASSERT(rc == -1);
2525 2527                          return (kmem_cache_alloc(cp, kmflag));
2526 2528                  }
2527 2529                  return (buf);
2528 2530          }
2529 2531  
2530 2532          if (cp->cache_constructor != NULL &&
2531 2533              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2532 2534                  atomic_inc_64(&cp->cache_alloc_fail);
2533 2535                  kmem_slab_free(cp, buf);
2534 2536                  return (NULL);
2535 2537          }
2536 2538  
2537 2539          return (buf);
2538 2540  }
2539 2541  
2540 2542  /*
2541 2543   * The freed argument tells whether or not kmem_cache_free_debug() has already
2542 2544   * been called so that we can avoid the duplicate free error. For example, a
2543 2545   * buffer on a magazine has already been freed by the client but is still
2544 2546   * constructed.
2545 2547   */
2546 2548  static void
2547 2549  kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2548 2550  {
2549 2551          if (!freed && (cp->cache_flags & KMF_BUFTAG))
2550 2552                  if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2551 2553                          return;
2552 2554  
2553 2555          /*
2554 2556           * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2555 2557           * kmem_cache_free_debug() will have already applied the destructor.
2556 2558           */
2557 2559          if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2558 2560              cp->cache_destructor != NULL) {
2559 2561                  if (cp->cache_flags & KMF_DEADBEEF) {   /* KMF_LITE implied */
2560 2562                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2561 2563                          *(uint64_t *)buf = btp->bt_redzone;
2562 2564                          cp->cache_destructor(buf, cp->cache_private);
2563 2565                          *(uint64_t *)buf = KMEM_FREE_PATTERN;
2564 2566                  } else {
2565 2567                          cp->cache_destructor(buf, cp->cache_private);
2566 2568                  }
2567 2569          }
2568 2570  
2569 2571          kmem_slab_free(cp, buf);
2570 2572  }
2571 2573  
2572 2574  /*
2573 2575   * Used when there's no room to free a buffer to the per-CPU cache.
2574 2576   * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2575 2577   * caller should try freeing to the per-CPU cache again.
2576 2578   * Note that we don't directly install the magazine in the cpu cache,
2577 2579   * since its state may have changed wildly while the lock was dropped.
2578 2580   */
2579 2581  static int
2580 2582  kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2581 2583  {
2582 2584          kmem_magazine_t *emp;
2583 2585          kmem_magtype_t *mtp;
2584 2586  
2585 2587          ASSERT(MUTEX_HELD(&ccp->cc_lock));
2586 2588          ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2587 2589              ((uint_t)ccp->cc_rounds == -1)) &&
2588 2590              ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2589 2591              ((uint_t)ccp->cc_prounds == -1)));
2590 2592  
2591 2593          emp = kmem_depot_alloc(cp, &cp->cache_empty);
2592 2594          if (emp != NULL) {
2593 2595                  if (ccp->cc_ploaded != NULL)
2594 2596                          kmem_depot_free(cp, &cp->cache_full,
2595 2597                              ccp->cc_ploaded);
2596 2598                  kmem_cpu_reload(ccp, emp, 0);
2597 2599                  return (1);
2598 2600          }
2599 2601          /*
2600 2602           * There are no empty magazines in the depot,
2601 2603           * so try to allocate a new one.  We must drop all locks
2602 2604           * across kmem_cache_alloc() because lower layers may
2603 2605           * attempt to allocate from this cache.
2604 2606           */
2605 2607          mtp = cp->cache_magtype;
2606 2608          mutex_exit(&ccp->cc_lock);
2607 2609          emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2608 2610          mutex_enter(&ccp->cc_lock);
2609 2611  
2610 2612          if (emp != NULL) {
2611 2613                  /*
2612 2614                   * We successfully allocated an empty magazine.
2613 2615                   * However, we had to drop ccp->cc_lock to do it,
2614 2616                   * so the cache's magazine size may have changed.
2615 2617                   * If so, free the magazine and try again.
2616 2618                   */
2617 2619                  if (ccp->cc_magsize != mtp->mt_magsize) {
2618 2620                          mutex_exit(&ccp->cc_lock);
2619 2621                          kmem_cache_free(mtp->mt_cache, emp);
2620 2622                          mutex_enter(&ccp->cc_lock);
2621 2623                          return (1);
2622 2624                  }
2623 2625  
2624 2626                  /*
2625 2627                   * We got a magazine of the right size.  Add it to
2626 2628                   * the depot and try the whole dance again.
2627 2629                   */
2628 2630                  kmem_depot_free(cp, &cp->cache_empty, emp);
2629 2631                  return (1);
2630 2632          }
2631 2633  
2632 2634          /*
2633 2635           * We couldn't allocate an empty magazine,
2634 2636           * so fall through to the slab layer.
2635 2637           */
2636 2638          return (0);
2637 2639  }
2638 2640  
2639 2641  /*
2640 2642   * Free a constructed object to cache cp.
2641 2643   */
2642 2644  void
2643 2645  kmem_cache_free(kmem_cache_t *cp, void *buf)
2644 2646  {
2645 2647          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2646 2648  
2647 2649          /*
2648 2650           * The client must not free either of the buffers passed to the move
2649 2651           * callback function.
2650 2652           */
2651 2653          ASSERT(cp->cache_defrag == NULL ||
2652 2654              cp->cache_defrag->kmd_thread != curthread ||
2653 2655              (buf != cp->cache_defrag->kmd_from_buf &&
2654 2656              buf != cp->cache_defrag->kmd_to_buf));
2655 2657  
2656 2658          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2657 2659                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2658 2660                          ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2659 2661                          /* log it so that we can warn about it */
2660 2662                          cp->cache_dump.kd_unsafe++;
2661 2663                  } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2662 2664                          return;
2663 2665                  }
2664 2666                  if (ccp->cc_flags & KMF_BUFTAG) {
2665 2667                          if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2666 2668                                  return;
2667 2669                  }
2668 2670          }
2669 2671  
2670 2672          mutex_enter(&ccp->cc_lock);
2671 2673          /*
2672 2674           * Any changes to this logic should be reflected in kmem_slab_prefill()
2673 2675           */
2674 2676          for (;;) {
2675 2677                  /*
2676 2678                   * If there's a slot available in the current CPU's
2677 2679                   * loaded magazine, just put the object there and return.
2678 2680                   */
2679 2681                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2680 2682                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2681 2683                          ccp->cc_free++;
2682 2684                          mutex_exit(&ccp->cc_lock);
2683 2685                          return;
2684 2686                  }
2685 2687  
2686 2688                  /*
2687 2689                   * The loaded magazine is full.  If the previously loaded
2688 2690                   * magazine was empty, exchange them and try again.
2689 2691                   */
2690 2692                  if (ccp->cc_prounds == 0) {
2691 2693                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2692 2694                          continue;
2693 2695                  }
2694 2696  
2695 2697                  /*
2696 2698                   * If the magazine layer is disabled, break out now.
2697 2699                   */
2698 2700                  if (ccp->cc_magsize == 0)
2699 2701                          break;
2700 2702  
2701 2703                  if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2702 2704                          /*
2703 2705                           * We couldn't free our constructed object to the
2704 2706                           * magazine layer, so apply its destructor and free it
2705 2707                           * to the slab layer.
2706 2708                           */
2707 2709                          break;
2708 2710                  }
2709 2711          }
2710 2712          mutex_exit(&ccp->cc_lock);
2711 2713          kmem_slab_free_constructed(cp, buf, B_TRUE);
2712 2714  }
2713 2715  
2714 2716  static void
2715 2717  kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2716 2718  {
2717 2719          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2718 2720          int cache_flags = cp->cache_flags;
2719 2721  
2720 2722          kmem_bufctl_t *next, *head;
2721 2723          size_t nbufs;
2722 2724  
2723 2725          /*
2724 2726           * Completely allocate the newly created slab and put the pre-allocated
2725 2727           * buffers in magazines. Any of the buffers that cannot be put in
2726 2728           * magazines must be returned to the slab.
2727 2729           */
2728 2730          ASSERT(MUTEX_HELD(&cp->cache_lock));
2729 2731          ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2730 2732          ASSERT(cp->cache_constructor == NULL);
2731 2733          ASSERT(sp->slab_cache == cp);
2732 2734          ASSERT(sp->slab_refcnt == 1);
2733 2735          ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2734 2736          ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2735 2737  
2736 2738          head = sp->slab_head;
2737 2739          nbufs = (sp->slab_chunks - sp->slab_refcnt);
2738 2740          sp->slab_head = NULL;
2739 2741          sp->slab_refcnt += nbufs;
2740 2742          cp->cache_bufslab -= nbufs;
2741 2743          cp->cache_slab_alloc += nbufs;
2742 2744          list_insert_head(&cp->cache_complete_slabs, sp);
2743 2745          cp->cache_complete_slab_count++;
2744 2746          mutex_exit(&cp->cache_lock);
2745 2747          mutex_enter(&ccp->cc_lock);
2746 2748  
2747 2749          while (head != NULL) {
2748 2750                  void *buf = KMEM_BUF(cp, head);
2749 2751                  /*
2750 2752                   * If there's a slot available in the current CPU's
2751 2753                   * loaded magazine, just put the object there and
2752 2754                   * continue.
2753 2755                   */
2754 2756                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2755 2757                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2756 2758                              buf;
2757 2759                          ccp->cc_free++;
2758 2760                          nbufs--;
2759 2761                          head = head->bc_next;
2760 2762                          continue;
2761 2763                  }
2762 2764  
2763 2765                  /*
2764 2766                   * The loaded magazine is full.  If the previously
2765 2767                   * loaded magazine was empty, exchange them and try
2766 2768                   * again.
2767 2769                   */
2768 2770                  if (ccp->cc_prounds == 0) {
2769 2771                          kmem_cpu_reload(ccp, ccp->cc_ploaded,
2770 2772                              ccp->cc_prounds);
2771 2773                          continue;
2772 2774                  }
2773 2775  
2774 2776                  /*
2775 2777                   * If the magazine layer is disabled, break out now.
2776 2778                   */
2777 2779  
2778 2780                  if (ccp->cc_magsize == 0) {
2779 2781                          break;
2780 2782                  }
2781 2783  
2782 2784                  if (!kmem_cpucache_magazine_alloc(ccp, cp))
2783 2785                          break;
2784 2786          }
2785 2787          mutex_exit(&ccp->cc_lock);
2786 2788          if (nbufs != 0) {
2787 2789                  ASSERT(head != NULL);
2788 2790  
2789 2791                  /*
2790 2792                   * If there was a failure, return remaining objects to
2791 2793                   * the slab
2792 2794                   */
2793 2795                  while (head != NULL) {
2794 2796                          ASSERT(nbufs != 0);
2795 2797                          next = head->bc_next;
2796 2798                          head->bc_next = NULL;
2797 2799                          kmem_slab_free(cp, KMEM_BUF(cp, head));
2798 2800                          head = next;
2799 2801                          nbufs--;
2800 2802                  }
2801 2803          }
2802 2804          ASSERT(head == NULL);
2803 2805          ASSERT(nbufs == 0);
2804 2806          mutex_enter(&cp->cache_lock);
2805 2807  }
2806 2808  
2807 2809  void *
2808 2810  kmem_zalloc(size_t size, int kmflag)
2809 2811  {
2810 2812          size_t index;
2811 2813          void *buf;
2812 2814  
2813 2815          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2814 2816                  kmem_cache_t *cp = kmem_alloc_table[index];
2815 2817                  buf = kmem_cache_alloc(cp, kmflag);
2816 2818                  if (buf != NULL) {
2817 2819                          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2818 2820                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2819 2821                                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2820 2822                                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2821 2823  
2822 2824                                  if (cp->cache_flags & KMF_LITE) {
2823 2825                                          KMEM_BUFTAG_LITE_ENTER(btp,
2824 2826                                              kmem_lite_count, caller());
2825 2827                                  }
2826 2828                          }
2827 2829                          bzero(buf, size);
2828 2830                  }
2829 2831          } else {
2830 2832                  buf = kmem_alloc(size, kmflag);
2831 2833                  if (buf != NULL)
2832 2834                          bzero(buf, size);
2833 2835          }
2834 2836          return (buf);
2835 2837  }
2836 2838  
2837 2839  void *
2838 2840  kmem_alloc(size_t size, int kmflag)
2839 2841  {
2840 2842          size_t index;
2841 2843          kmem_cache_t *cp;
2842 2844          void *buf;
2843 2845  
2844 2846          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2845 2847                  cp = kmem_alloc_table[index];
2846 2848                  /* fall through to kmem_cache_alloc() */
2847 2849  
2848 2850          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2849 2851              kmem_big_alloc_table_max) {
2850 2852                  cp = kmem_big_alloc_table[index];
2851 2853                  /* fall through to kmem_cache_alloc() */
2852 2854  
2853 2855          } else {
2854 2856                  if (size == 0)
2855 2857                          return (NULL);
2856 2858  
2857 2859                  buf = vmem_alloc(kmem_oversize_arena, size,
2858 2860                      kmflag & KM_VMFLAGS);
2859 2861                  if (buf == NULL)
2860 2862                          kmem_log_event(kmem_failure_log, NULL, NULL,
2861 2863                              (void *)size);
2862 2864                  else if (KMEM_DUMP(kmem_slab_cache)) {
2863 2865                          /* stats for dump intercept */
2864 2866                          kmem_dump_oversize_allocs++;
2865 2867                          if (size > kmem_dump_oversize_max)
2866 2868                                  kmem_dump_oversize_max = size;
2867 2869                  }
2868 2870                  return (buf);
2869 2871          }
2870 2872  
2871 2873          buf = kmem_cache_alloc(cp, kmflag);
2872 2874          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2873 2875                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2874 2876                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2875 2877                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2876 2878  
2877 2879                  if (cp->cache_flags & KMF_LITE) {
2878 2880                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2879 2881                  }
2880 2882          }
2881 2883          return (buf);
2882 2884  }
2883 2885  
2884 2886  void
2885 2887  kmem_free(void *buf, size_t size)
2886 2888  {
2887 2889          size_t index;
2888 2890          kmem_cache_t *cp;
2889 2891  
2890 2892          if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2891 2893                  cp = kmem_alloc_table[index];
2892 2894                  /* fall through to kmem_cache_free() */
2893 2895  
2894 2896          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2895 2897              kmem_big_alloc_table_max) {
2896 2898                  cp = kmem_big_alloc_table[index];
2897 2899                  /* fall through to kmem_cache_free() */
2898 2900  
2899 2901          } else {
2900 2902                  EQUIV(buf == NULL, size == 0);
2901 2903                  if (buf == NULL && size == 0)
2902 2904                          return;
2903 2905                  vmem_free(kmem_oversize_arena, buf, size);
2904 2906                  return;
2905 2907          }
2906 2908  
2907 2909          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2908 2910                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2909 2911                  uint32_t *ip = (uint32_t *)btp;
2910 2912                  if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2911 2913                          if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2912 2914                                  kmem_error(KMERR_DUPFREE, cp, buf);
2913 2915                                  return;
2914 2916                          }
2915 2917                          if (KMEM_SIZE_VALID(ip[1])) {
2916 2918                                  ip[0] = KMEM_SIZE_ENCODE(size);
2917 2919                                  kmem_error(KMERR_BADSIZE, cp, buf);
2918 2920                          } else {
2919 2921                                  kmem_error(KMERR_REDZONE, cp, buf);
2920 2922                          }
2921 2923                          return;
2922 2924                  }
2923 2925                  if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2924 2926                          kmem_error(KMERR_REDZONE, cp, buf);
2925 2927                          return;
2926 2928                  }
2927 2929                  btp->bt_redzone = KMEM_REDZONE_PATTERN;
2928 2930                  if (cp->cache_flags & KMF_LITE) {
2929 2931                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2930 2932                              caller());
2931 2933                  }
2932 2934          }
2933 2935          kmem_cache_free(cp, buf);
2934 2936  }
2935 2937  
2936 2938  void *
2937 2939  kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2938 2940  {
2939 2941          size_t realsize = size + vmp->vm_quantum;
2940 2942          void *addr;
2941 2943  
2942 2944          /*
2943 2945           * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2944 2946           * vm_quantum will cause integer wraparound.  Check for this, and
2945 2947           * blow off the firewall page in this case.  Note that such a
2946 2948           * giant allocation (the entire kernel address space) can never
2947 2949           * be satisfied, so it will either fail immediately (VM_NOSLEEP)
2948 2950           * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2949 2951           * corresponding check in kmem_firewall_va_free().
2950 2952           */
2951 2953          if (realsize < size)
2952 2954                  realsize = size;
2953 2955  
2954 2956          /*
2955 2957           * While boot still owns resource management, make sure that this
2956 2958           * redzone virtual address allocation is properly accounted for in
2957 2959           * OBPs "virtual-memory" "available" lists because we're
2958 2960           * effectively claiming them for a red zone.  If we don't do this,
2959 2961           * the available lists become too fragmented and too large for the
2960 2962           * current boot/kernel memory list interface.
2961 2963           */
2962 2964          addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
2963 2965  
2964 2966          if (addr != NULL && kvseg.s_base == NULL && realsize != size)
2965 2967                  (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
2966 2968  
2967 2969          return (addr);
2968 2970  }
2969 2971  
2970 2972  void
2971 2973  kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2972 2974  {
2973 2975          ASSERT((kvseg.s_base == NULL ?
2974 2976              va_to_pfn((char *)addr + size) :
2975 2977              hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
2976 2978  
2977 2979          vmem_free(vmp, addr, size + vmp->vm_quantum);
2978 2980  }
2979 2981  
2980 2982  /*
2981 2983   * Try to allocate at least `size' bytes of memory without sleeping or
2982 2984   * panicking. Return actual allocated size in `asize'. If allocation failed,
2983 2985   * try final allocation with sleep or panic allowed.
2984 2986   */
2985 2987  void *
2986 2988  kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
2987 2989  {
2988 2990          void *p;
2989 2991  
2990 2992          *asize = P2ROUNDUP(size, KMEM_ALIGN);
2991 2993          do {
2992 2994                  p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
2993 2995                  if (p != NULL)
2994 2996                          return (p);
2995 2997                  *asize += KMEM_ALIGN;
2996 2998          } while (*asize <= PAGESIZE);
2997 2999  
2998 3000          *asize = P2ROUNDUP(size, KMEM_ALIGN);
2999 3001          return (kmem_alloc(*asize, kmflag));
3000 3002  }
3001 3003  
3002 3004  /*
3003 3005   * Reclaim all unused memory from a cache.
3004 3006   */
3005 3007  static void
3006 3008  kmem_cache_reap(kmem_cache_t *cp)
3007 3009  {
3008 3010          ASSERT(taskq_member(kmem_taskq, curthread));
3009 3011          cp->cache_reap++;
3010 3012  
3011 3013          /*
3012 3014           * Ask the cache's owner to free some memory if possible.
3013 3015           * The idea is to handle things like the inode cache, which
3014 3016           * typically sits on a bunch of memory that it doesn't truly
3015 3017           * *need*.  Reclaim policy is entirely up to the owner; this
3016 3018           * callback is just an advisory plea for help.
3017 3019           */
3018 3020          if (cp->cache_reclaim != NULL) {
3019 3021                  long delta;
3020 3022  
3021 3023                  /*
3022 3024                   * Reclaimed memory should be reapable (not included in the
3023 3025                   * depot's working set).
3024 3026                   */
3025 3027                  delta = cp->cache_full.ml_total;
3026 3028                  cp->cache_reclaim(cp->cache_private);
3027 3029                  delta = cp->cache_full.ml_total - delta;
3028 3030                  if (delta > 0) {
3029 3031                          mutex_enter(&cp->cache_depot_lock);
3030 3032                          cp->cache_full.ml_reaplimit += delta;
3031 3033                          cp->cache_full.ml_min += delta;
3032 3034                          mutex_exit(&cp->cache_depot_lock);
3033 3035                  }
3034 3036          }
3035 3037  
3036 3038          kmem_depot_ws_reap(cp);
3037 3039  
3038 3040          if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3039 3041                  kmem_cache_defrag(cp);
3040 3042          }
3041 3043  }
3042 3044  
3043 3045  static void
3044 3046  kmem_reap_timeout(void *flag_arg)
3045 3047  {
3046 3048          uint32_t *flag = (uint32_t *)flag_arg;
3047 3049  
3048 3050          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3049 3051          *flag = 0;
3050 3052  }
3051 3053  
3052 3054  static void
3053 3055  kmem_reap_done(void *flag)
3054 3056  {
3055 3057          if (!callout_init_done) {
3056 3058                  /* can't schedule a timeout at this point */
3057 3059                  kmem_reap_timeout(flag);
3058 3060          } else {
3059 3061                  (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3060 3062          }
3061 3063  }
3062 3064  
3063 3065  static void
3064 3066  kmem_reap_start(void *flag)
3065 3067  {
3066 3068          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3067 3069  
3068 3070          if (flag == &kmem_reaping) {
3069 3071                  kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3070 3072                  /*
3071 3073                   * if we have segkp under heap, reap segkp cache.
3072 3074                   */
3073 3075                  if (segkp_fromheap)
3074 3076                          segkp_cache_free();
3075 3077          }
3076 3078          else
3077 3079                  kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3078 3080  
3079 3081          /*
3080 3082           * We use taskq_dispatch() to schedule a timeout to clear
3081 3083           * the flag so that kmem_reap() becomes self-throttling:
3082 3084           * we won't reap again until the current reap completes *and*
3083 3085           * at least kmem_reap_interval ticks have elapsed.
3084 3086           */
3085 3087          if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3086 3088                  kmem_reap_done(flag);
3087 3089  }
3088 3090  
3089 3091  static void
3090 3092  kmem_reap_common(void *flag_arg)
3091 3093  {
3092 3094          uint32_t *flag = (uint32_t *)flag_arg;
3093 3095  
3094 3096          if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3095 3097              atomic_cas_32(flag, 0, 1) != 0)
3096 3098                  return;
3097 3099  
3098 3100          /*
3099 3101           * It may not be kosher to do memory allocation when a reap is called
3100 3102           * (for example, if vmem_populate() is in the call chain).  So we
3101 3103           * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3102 3104           * fails, we reset the flag, and the next reap will try again.
3103 3105           */
3104 3106          if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3105 3107                  *flag = 0;
3106 3108  }
3107 3109  
3108 3110  /*
3109 3111   * Reclaim all unused memory from all caches.  Called from the VM system
3110 3112   * when memory gets tight.
3111 3113   */
3112 3114  void
3113 3115  kmem_reap(void)
3114 3116  {
3115 3117          kmem_reap_common(&kmem_reaping);
3116 3118  }
3117 3119  
3118 3120  /*
3119 3121   * Reclaim all unused memory from identifier arenas, called when a vmem
3120 3122   * arena not back by memory is exhausted.  Since reaping memory-backed caches
3121 3123   * cannot help with identifier exhaustion, we avoid both a large amount of
3122 3124   * work and unwanted side-effects from reclaim callbacks.
3123 3125   */
3124 3126  void
3125 3127  kmem_reap_idspace(void)
3126 3128  {
3127 3129          kmem_reap_common(&kmem_reaping_idspace);
3128 3130  }
3129 3131  
3130 3132  /*
3131 3133   * Purge all magazines from a cache and set its magazine limit to zero.
3132 3134   * All calls are serialized by the kmem_taskq lock, except for the final
3133 3135   * call from kmem_cache_destroy().
3134 3136   */
3135 3137  static void
3136 3138  kmem_cache_magazine_purge(kmem_cache_t *cp)
3137 3139  {
3138 3140          kmem_cpu_cache_t *ccp;
3139 3141          kmem_magazine_t *mp, *pmp;
3140 3142          int rounds, prounds, cpu_seqid;
3141 3143  
3142 3144          ASSERT(!list_link_active(&cp->cache_link) ||
3143 3145              taskq_member(kmem_taskq, curthread));
3144 3146          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3145 3147  
3146 3148          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3147 3149                  ccp = &cp->cache_cpu[cpu_seqid];
3148 3150  
3149 3151                  mutex_enter(&ccp->cc_lock);
3150 3152                  mp = ccp->cc_loaded;
3151 3153                  pmp = ccp->cc_ploaded;
3152 3154                  rounds = ccp->cc_rounds;
3153 3155                  prounds = ccp->cc_prounds;
3154 3156                  ccp->cc_loaded = NULL;
3155 3157                  ccp->cc_ploaded = NULL;
3156 3158                  ccp->cc_rounds = -1;
3157 3159                  ccp->cc_prounds = -1;
3158 3160                  ccp->cc_magsize = 0;
3159 3161                  mutex_exit(&ccp->cc_lock);
3160 3162  
3161 3163                  if (mp)
3162 3164                          kmem_magazine_destroy(cp, mp, rounds);
3163 3165                  if (pmp)
3164 3166                          kmem_magazine_destroy(cp, pmp, prounds);
3165 3167          }
3166 3168  
3167 3169          kmem_depot_ws_zero(cp);
3168 3170          kmem_depot_ws_reap(cp);
3169 3171  }
3170 3172  
3171 3173  /*
3172 3174   * Enable per-cpu magazines on a cache.
3173 3175   */
3174 3176  static void
3175 3177  kmem_cache_magazine_enable(kmem_cache_t *cp)
3176 3178  {
3177 3179          int cpu_seqid;
3178 3180  
3179 3181          if (cp->cache_flags & KMF_NOMAGAZINE)
3180 3182                  return;
3181 3183  
3182 3184          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3183 3185                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3184 3186                  mutex_enter(&ccp->cc_lock);
3185 3187                  ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3186 3188                  mutex_exit(&ccp->cc_lock);
3187 3189          }
3188 3190  
3189 3191  }
3190 3192  
3191 3193  /*
3192 3194   * Allow our caller to determine if there are running reaps.
3193 3195   *
3194 3196   * This call is very conservative and may return B_TRUE even when
3195 3197   * reaping activity isn't active. If it returns B_FALSE, then reaping
3196 3198   * activity is definitely inactive.
3197 3199   */
3198 3200  boolean_t
3199 3201  kmem_cache_reap_active(void)
3200 3202  {
3201 3203          return (!taskq_empty(kmem_taskq));
3202 3204  }
3203 3205  
3204 3206  /*
3205 3207   * Reap (almost) everything soon.
3206 3208   *
3207 3209   * Note: this does not wait for the reap-tasks to complete. Caller
3208 3210   * should use kmem_cache_reap_active() (above) and/or moderation to
3209 3211   * avoid scheduling too many reap-tasks.
3210 3212   */
3211 3213  void
3212 3214  kmem_cache_reap_soon(kmem_cache_t *cp)
3213 3215  {
3214 3216          ASSERT(list_link_active(&cp->cache_link));
3215 3217  
3216 3218          kmem_depot_ws_zero(cp);
3217 3219  
3218 3220          (void) taskq_dispatch(kmem_taskq,
3219 3221              (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3220 3222  }
3221 3223  
3222 3224  /*
3223 3225   * Recompute a cache's magazine size.  The trade-off is that larger magazines
3224 3226   * provide a higher transfer rate with the depot, while smaller magazines
3225 3227   * reduce memory consumption.  Magazine resizing is an expensive operation;
3226 3228   * it should not be done frequently.
3227 3229   *
3228 3230   * Changes to the magazine size are serialized by the kmem_taskq lock.
3229 3231   *
3230 3232   * Note: at present this only grows the magazine size.  It might be useful
3231 3233   * to allow shrinkage too.
3232 3234   */
3233 3235  static void
3234 3236  kmem_cache_magazine_resize(kmem_cache_t *cp)
3235 3237  {
3236 3238          kmem_magtype_t *mtp = cp->cache_magtype;
3237 3239  
3238 3240          ASSERT(taskq_member(kmem_taskq, curthread));
3239 3241  
3240 3242          if (cp->cache_chunksize < mtp->mt_maxbuf) {
3241 3243                  kmem_cache_magazine_purge(cp);
3242 3244                  mutex_enter(&cp->cache_depot_lock);
3243 3245                  cp->cache_magtype = ++mtp;
3244 3246                  cp->cache_depot_contention_prev =
3245 3247                      cp->cache_depot_contention + INT_MAX;
3246 3248                  mutex_exit(&cp->cache_depot_lock);
3247 3249                  kmem_cache_magazine_enable(cp);
3248 3250          }
3249 3251  }
3250 3252  
3251 3253  /*
3252 3254   * Rescale a cache's hash table, so that the table size is roughly the
3253 3255   * cache size.  We want the average lookup time to be extremely small.
3254 3256   */
3255 3257  static void
3256 3258  kmem_hash_rescale(kmem_cache_t *cp)
3257 3259  {
3258 3260          kmem_bufctl_t **old_table, **new_table, *bcp;
3259 3261          size_t old_size, new_size, h;
3260 3262  
3261 3263          ASSERT(taskq_member(kmem_taskq, curthread));
3262 3264  
3263 3265          new_size = MAX(KMEM_HASH_INITIAL,
3264 3266              1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3265 3267          old_size = cp->cache_hash_mask + 1;
3266 3268  
3267 3269          if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3268 3270                  return;
3269 3271  
3270 3272          new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3271 3273              VM_NOSLEEP);
3272 3274          if (new_table == NULL)
3273 3275                  return;
3274 3276          bzero(new_table, new_size * sizeof (void *));
3275 3277  
3276 3278          mutex_enter(&cp->cache_lock);
3277 3279  
3278 3280          old_size = cp->cache_hash_mask + 1;
3279 3281          old_table = cp->cache_hash_table;
3280 3282  
3281 3283          cp->cache_hash_mask = new_size - 1;
3282 3284          cp->cache_hash_table = new_table;
3283 3285          cp->cache_rescale++;
3284 3286  
3285 3287          for (h = 0; h < old_size; h++) {
3286 3288                  bcp = old_table[h];
3287 3289                  while (bcp != NULL) {
3288 3290                          void *addr = bcp->bc_addr;
3289 3291                          kmem_bufctl_t *next_bcp = bcp->bc_next;
3290 3292                          kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3291 3293                          bcp->bc_next = *hash_bucket;
3292 3294                          *hash_bucket = bcp;
3293 3295                          bcp = next_bcp;
3294 3296                  }
3295 3297          }
3296 3298  
3297 3299          mutex_exit(&cp->cache_lock);
3298 3300  
3299 3301          vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3300 3302  }
3301 3303  
3302 3304  /*
3303 3305   * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3304 3306   * update, magazine resizing, and slab consolidation.
3305 3307   */
3306 3308  static void
3307 3309  kmem_cache_update(kmem_cache_t *cp)
3308 3310  {
3309 3311          int need_hash_rescale = 0;
3310 3312          int need_magazine_resize = 0;
3311 3313  
3312 3314          ASSERT(MUTEX_HELD(&kmem_cache_lock));
3313 3315  
3314 3316          /*
3315 3317           * If the cache has become much larger or smaller than its hash table,
3316 3318           * fire off a request to rescale the hash table.
3317 3319           */
3318 3320          mutex_enter(&cp->cache_lock);
3319 3321  
3320 3322          if ((cp->cache_flags & KMF_HASH) &&
3321 3323              (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3322 3324              (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3323 3325              cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3324 3326                  need_hash_rescale = 1;
3325 3327  
3326 3328          mutex_exit(&cp->cache_lock);
3327 3329  
3328 3330          /*
3329 3331           * Update the depot working set statistics.
3330 3332           */
3331 3333          kmem_depot_ws_update(cp);
3332 3334  
3333 3335          /*
3334 3336           * If there's a lot of contention in the depot,
3335 3337           * increase the magazine size.
3336 3338           */
3337 3339          mutex_enter(&cp->cache_depot_lock);
3338 3340  
3339 3341          if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3340 3342              (int)(cp->cache_depot_contention -
3341 3343              cp->cache_depot_contention_prev) > kmem_depot_contention)
3342 3344                  need_magazine_resize = 1;
3343 3345  
3344 3346          cp->cache_depot_contention_prev = cp->cache_depot_contention;
3345 3347  
3346 3348          mutex_exit(&cp->cache_depot_lock);
3347 3349  
3348 3350          if (need_hash_rescale)
3349 3351                  (void) taskq_dispatch(kmem_taskq,
3350 3352                      (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3351 3353  
3352 3354          if (need_magazine_resize)
3353 3355                  (void) taskq_dispatch(kmem_taskq,
3354 3356                      (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3355 3357  
3356 3358          if (cp->cache_defrag != NULL)
3357 3359                  (void) taskq_dispatch(kmem_taskq,
3358 3360                      (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3359 3361  }
3360 3362  
3361 3363  static void kmem_update(void *);
3362 3364  
3363 3365  static void
3364 3366  kmem_update_timeout(void *dummy)
3365 3367  {
3366 3368          (void) timeout(kmem_update, dummy, kmem_reap_interval);
3367 3369  }
3368 3370  
3369 3371  static void
3370 3372  kmem_update(void *dummy)
3371 3373  {
3372 3374          kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3373 3375  
3374 3376          /*
3375 3377           * We use taskq_dispatch() to reschedule the timeout so that
3376 3378           * kmem_update() becomes self-throttling: it won't schedule
3377 3379           * new tasks until all previous tasks have completed.
3378 3380           */
3379 3381          if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3380 3382                  kmem_update_timeout(NULL);
3381 3383  }
3382 3384  
3383 3385  static int
3384 3386  kmem_cache_kstat_update(kstat_t *ksp, int rw)
3385 3387  {
3386 3388          struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3387 3389          kmem_cache_t *cp = ksp->ks_private;
3388 3390          uint64_t cpu_buf_avail;
3389 3391          uint64_t buf_avail = 0;
3390 3392          int cpu_seqid;
3391 3393          long reap;
3392 3394  
3393 3395          ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3394 3396  
3395 3397          if (rw == KSTAT_WRITE)
3396 3398                  return (EACCES);
3397 3399  
3398 3400          mutex_enter(&cp->cache_lock);
3399 3401  
3400 3402          kmcp->kmc_alloc_fail.value.ui64         = cp->cache_alloc_fail;
3401 3403          kmcp->kmc_alloc.value.ui64              = cp->cache_slab_alloc;
3402 3404          kmcp->kmc_free.value.ui64               = cp->cache_slab_free;
3403 3405          kmcp->kmc_slab_alloc.value.ui64         = cp->cache_slab_alloc;
3404 3406          kmcp->kmc_slab_free.value.ui64          = cp->cache_slab_free;
3405 3407  
3406 3408          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3407 3409                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3408 3410  
3409 3411                  mutex_enter(&ccp->cc_lock);
3410 3412  
3411 3413                  cpu_buf_avail = 0;
3412 3414                  if (ccp->cc_rounds > 0)
3413 3415                          cpu_buf_avail += ccp->cc_rounds;
3414 3416                  if (ccp->cc_prounds > 0)
3415 3417                          cpu_buf_avail += ccp->cc_prounds;
3416 3418  
3417 3419                  kmcp->kmc_alloc.value.ui64      += ccp->cc_alloc;
3418 3420                  kmcp->kmc_free.value.ui64       += ccp->cc_free;
3419 3421                  buf_avail                       += cpu_buf_avail;
3420 3422  
3421 3423                  mutex_exit(&ccp->cc_lock);
3422 3424          }
3423 3425  
3424 3426          mutex_enter(&cp->cache_depot_lock);
3425 3427  
3426 3428          kmcp->kmc_depot_alloc.value.ui64        = cp->cache_full.ml_alloc;
3427 3429          kmcp->kmc_depot_free.value.ui64         = cp->cache_empty.ml_alloc;
3428 3430          kmcp->kmc_depot_contention.value.ui64   = cp->cache_depot_contention;
3429 3431          kmcp->kmc_full_magazines.value.ui64     = cp->cache_full.ml_total;
3430 3432          kmcp->kmc_empty_magazines.value.ui64    = cp->cache_empty.ml_total;
3431 3433          kmcp->kmc_magazine_size.value.ui64      =
3432 3434              (cp->cache_flags & KMF_NOMAGAZINE) ?
3433 3435              0 : cp->cache_magtype->mt_magsize;
3434 3436  
3435 3437          kmcp->kmc_alloc.value.ui64              += cp->cache_full.ml_alloc;
3436 3438          kmcp->kmc_free.value.ui64               += cp->cache_empty.ml_alloc;
3437 3439          buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3438 3440  
3439 3441          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3440 3442          reap = MIN(reap, cp->cache_full.ml_total);
3441 3443  
3442 3444          mutex_exit(&cp->cache_depot_lock);
3443 3445  
3444 3446          kmcp->kmc_buf_size.value.ui64   = cp->cache_bufsize;
3445 3447          kmcp->kmc_align.value.ui64      = cp->cache_align;
3446 3448          kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize;
3447 3449          kmcp->kmc_slab_size.value.ui64  = cp->cache_slabsize;
3448 3450          kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3449 3451          buf_avail += cp->cache_bufslab;
3450 3452          kmcp->kmc_buf_avail.value.ui64  = buf_avail;
3451 3453          kmcp->kmc_buf_inuse.value.ui64  = cp->cache_buftotal - buf_avail;
3452 3454          kmcp->kmc_buf_total.value.ui64  = cp->cache_buftotal;
3453 3455          kmcp->kmc_buf_max.value.ui64    = cp->cache_bufmax;
3454 3456          kmcp->kmc_slab_create.value.ui64        = cp->cache_slab_create;
3455 3457          kmcp->kmc_slab_destroy.value.ui64       = cp->cache_slab_destroy;
3456 3458          kmcp->kmc_hash_size.value.ui64  = (cp->cache_flags & KMF_HASH) ?
3457 3459              cp->cache_hash_mask + 1 : 0;
3458 3460          kmcp->kmc_hash_lookup_depth.value.ui64  = cp->cache_lookup_depth;
3459 3461          kmcp->kmc_hash_rescale.value.ui64       = cp->cache_rescale;
3460 3462          kmcp->kmc_vmem_source.value.ui64        = cp->cache_arena->vm_id;
3461 3463          kmcp->kmc_reap.value.ui64       = cp->cache_reap;
3462 3464  
3463 3465          if (cp->cache_defrag == NULL) {
3464 3466                  kmcp->kmc_move_callbacks.value.ui64     = 0;
3465 3467                  kmcp->kmc_move_yes.value.ui64           = 0;
3466 3468                  kmcp->kmc_move_no.value.ui64            = 0;
3467 3469                  kmcp->kmc_move_later.value.ui64         = 0;
3468 3470                  kmcp->kmc_move_dont_need.value.ui64     = 0;
3469 3471                  kmcp->kmc_move_dont_know.value.ui64     = 0;
3470 3472                  kmcp->kmc_move_hunt_found.value.ui64    = 0;
3471 3473                  kmcp->kmc_move_slabs_freed.value.ui64   = 0;
3472 3474                  kmcp->kmc_defrag.value.ui64             = 0;
3473 3475                  kmcp->kmc_scan.value.ui64               = 0;
3474 3476                  kmcp->kmc_move_reclaimable.value.ui64   = 0;
3475 3477          } else {
3476 3478                  int64_t reclaimable;
3477 3479  
3478 3480                  kmem_defrag_t *kd = cp->cache_defrag;
3479 3481                  kmcp->kmc_move_callbacks.value.ui64     = kd->kmd_callbacks;
3480 3482                  kmcp->kmc_move_yes.value.ui64           = kd->kmd_yes;
3481 3483                  kmcp->kmc_move_no.value.ui64            = kd->kmd_no;
3482 3484                  kmcp->kmc_move_later.value.ui64         = kd->kmd_later;
3483 3485                  kmcp->kmc_move_dont_need.value.ui64     = kd->kmd_dont_need;
3484 3486                  kmcp->kmc_move_dont_know.value.ui64     = kd->kmd_dont_know;
3485 3487                  kmcp->kmc_move_hunt_found.value.ui64    = 0;
3486 3488                  kmcp->kmc_move_slabs_freed.value.ui64   = kd->kmd_slabs_freed;
3487 3489                  kmcp->kmc_defrag.value.ui64             = kd->kmd_defrags;
3488 3490                  kmcp->kmc_scan.value.ui64               = kd->kmd_scans;
3489 3491  
3490 3492                  reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3491 3493                  reclaimable = MAX(reclaimable, 0);
3492 3494                  reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3493 3495                  kmcp->kmc_move_reclaimable.value.ui64   = reclaimable;
3494 3496          }
3495 3497  
3496 3498          mutex_exit(&cp->cache_lock);
3497 3499          return (0);
3498 3500  }
3499 3501  
3500 3502  /*
3501 3503   * Return a named statistic about a particular cache.
3502 3504   * This shouldn't be called very often, so it's currently designed for
3503 3505   * simplicity (leverages existing kstat support) rather than efficiency.
3504 3506   */
3505 3507  uint64_t
3506 3508  kmem_cache_stat(kmem_cache_t *cp, char *name)
3507 3509  {
3508 3510          int i;
3509 3511          kstat_t *ksp = cp->cache_kstat;
3510 3512          kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3511 3513          uint64_t value = 0;
3512 3514  
3513 3515          if (ksp != NULL) {
3514 3516                  mutex_enter(&kmem_cache_kstat_lock);
3515 3517                  (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3516 3518                  for (i = 0; i < ksp->ks_ndata; i++) {
3517 3519                          if (strcmp(knp[i].name, name) == 0) {
3518 3520                                  value = knp[i].value.ui64;
3519 3521                                  break;
3520 3522                          }
3521 3523                  }
3522 3524                  mutex_exit(&kmem_cache_kstat_lock);
3523 3525          }
3524 3526          return (value);
3525 3527  }
3526 3528  
3527 3529  /*
3528 3530   * Return an estimate of currently available kernel heap memory.
3529 3531   * On 32-bit systems, physical memory may exceed virtual memory,
3530 3532   * we just truncate the result at 1GB.
3531 3533   */
3532 3534  size_t
3533 3535  kmem_avail(void)
3534 3536  {
3535 3537          spgcnt_t rmem = availrmem - tune.t_minarmem;
3536 3538          spgcnt_t fmem = freemem - minfree;
3537 3539  
3538 3540          return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3539 3541              1 << (30 - PAGESHIFT))));
3540 3542  }
3541 3543  
3542 3544  /*
3543 3545   * Return the maximum amount of memory that is (in theory) allocatable
3544 3546   * from the heap. This may be used as an estimate only since there
3545 3547   * is no guarentee this space will still be available when an allocation
3546 3548   * request is made, nor that the space may be allocated in one big request
3547 3549   * due to kernel heap fragmentation.
3548 3550   */
3549 3551  size_t
3550 3552  kmem_maxavail(void)
3551 3553  {
3552 3554          spgcnt_t pmem = availrmem - tune.t_minarmem;
3553 3555          spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3554 3556  
3555 3557          return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3556 3558  }
3557 3559  
3558 3560  /*
3559 3561   * Indicate whether memory-intensive kmem debugging is enabled.
3560 3562   */
3561 3563  int
3562 3564  kmem_debugging(void)
3563 3565  {
3564 3566          return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3565 3567  }
3566 3568  
3567 3569  /* binning function, sorts finely at the two extremes */
3568 3570  #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3569 3571          ((((sp)->slab_refcnt <= (binshift)) ||                          \
3570 3572              (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))    \
3571 3573              ? -(sp)->slab_refcnt                                        \
3572 3574              : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3573 3575  
3574 3576  /*
3575 3577   * Minimizing the number of partial slabs on the freelist minimizes
3576 3578   * fragmentation (the ratio of unused buffers held by the slab layer). There are
3577 3579   * two ways to get a slab off of the freelist: 1) free all the buffers on the
3578 3580   * slab, and 2) allocate all the buffers on the slab. It follows that we want
3579 3581   * the most-used slabs at the front of the list where they have the best chance
3580 3582   * of being completely allocated, and the least-used slabs at a safe distance
3581 3583   * from the front to improve the odds that the few remaining buffers will all be
3582 3584   * freed before another allocation can tie up the slab. For that reason a slab
3583 3585   * with a higher slab_refcnt sorts less than than a slab with a lower
3584 3586   * slab_refcnt.
3585 3587   *
3586 3588   * However, if a slab has at least one buffer that is deemed unfreeable, we
3587 3589   * would rather have that slab at the front of the list regardless of
3588 3590   * slab_refcnt, since even one unfreeable buffer makes the entire slab
3589 3591   * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3590 3592   * callback, the slab is marked unfreeable for as long as it remains on the
3591 3593   * freelist.
3592 3594   */
3593 3595  static int
3594 3596  kmem_partial_slab_cmp(const void *p0, const void *p1)
3595 3597  {
3596 3598          const kmem_cache_t *cp;
3597 3599          const kmem_slab_t *s0 = p0;
3598 3600          const kmem_slab_t *s1 = p1;
3599 3601          int w0, w1;
3600 3602          size_t binshift;
3601 3603  
3602 3604          ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3603 3605          ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3604 3606          ASSERT(s0->slab_cache == s1->slab_cache);
3605 3607          cp = s1->slab_cache;
3606 3608          ASSERT(MUTEX_HELD(&cp->cache_lock));
3607 3609          binshift = cp->cache_partial_binshift;
3608 3610  
3609 3611          /* weight of first slab */
3610 3612          w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3611 3613          if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3612 3614                  w0 -= cp->cache_maxchunks;
3613 3615          }
3614 3616  
3615 3617          /* weight of second slab */
3616 3618          w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3617 3619          if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3618 3620                  w1 -= cp->cache_maxchunks;
3619 3621          }
3620 3622  
3621 3623          if (w0 < w1)
3622 3624                  return (-1);
3623 3625          if (w0 > w1)
3624 3626                  return (1);
3625 3627  
3626 3628          /* compare pointer values */
3627 3629          if ((uintptr_t)s0 < (uintptr_t)s1)
3628 3630                  return (-1);
3629 3631          if ((uintptr_t)s0 > (uintptr_t)s1)
3630 3632                  return (1);
3631 3633  
3632 3634          return (0);
3633 3635  }
3634 3636  
3635 3637  /*
3636 3638   * It must be valid to call the destructor (if any) on a newly created object.
3637 3639   * That is, the constructor (if any) must leave the object in a valid state for
3638 3640   * the destructor.
3639 3641   */
3640 3642  kmem_cache_t *
3641 3643  kmem_cache_create(
3642 3644          char *name,             /* descriptive name for this cache */
3643 3645          size_t bufsize,         /* size of the objects it manages */
3644 3646          size_t align,           /* required object alignment */
3645 3647          int (*constructor)(void *, void *, int), /* object constructor */
3646 3648          void (*destructor)(void *, void *),     /* object destructor */
3647 3649          void (*reclaim)(void *), /* memory reclaim callback */
3648 3650          void *private,          /* pass-thru arg for constr/destr/reclaim */
3649 3651          vmem_t *vmp,            /* vmem source for slab allocation */
3650 3652          int cflags)             /* cache creation flags */
3651 3653  {
3652 3654          int cpu_seqid;
3653 3655          size_t chunksize;
3654 3656          kmem_cache_t *cp;
3655 3657          kmem_magtype_t *mtp;
3656 3658          size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3657 3659  
3658 3660  #ifdef  DEBUG
3659 3661          /*
3660 3662           * Cache names should conform to the rules for valid C identifiers
3661 3663           */
3662 3664          if (!strident_valid(name)) {
3663 3665                  cmn_err(CE_CONT,
3664 3666                      "kmem_cache_create: '%s' is an invalid cache name\n"
3665 3667                      "cache names must conform to the rules for "
3666 3668                      "C identifiers\n", name);
3667 3669          }
3668 3670  #endif  /* DEBUG */
3669 3671  
3670 3672          if (vmp == NULL)
3671 3673                  vmp = kmem_default_arena;
3672 3674  
3673 3675          /*
3674 3676           * If this kmem cache has an identifier vmem arena as its source, mark
3675 3677           * it such to allow kmem_reap_idspace().
3676 3678           */
3677 3679          ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3678 3680          if (vmp->vm_cflags & VMC_IDENTIFIER)
3679 3681                  cflags |= KMC_IDENTIFIER;
3680 3682  
3681 3683          /*
3682 3684           * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3683 3685           * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3684 3686           * false sharing of per-CPU data.
3685 3687           */
3686 3688          cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3687 3689              P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3688 3690          bzero(cp, csize);
3689 3691          list_link_init(&cp->cache_link);
3690 3692  
3691 3693          if (align == 0)
3692 3694                  align = KMEM_ALIGN;
3693 3695  
3694 3696          /*
3695 3697           * If we're not at least KMEM_ALIGN aligned, we can't use free
3696 3698           * memory to hold bufctl information (because we can't safely
3697 3699           * perform word loads and stores on it).
3698 3700           */
3699 3701          if (align < KMEM_ALIGN)
3700 3702                  cflags |= KMC_NOTOUCH;
3701 3703  
3702 3704          if (!ISP2(align) || align > vmp->vm_quantum)
3703 3705                  panic("kmem_cache_create: bad alignment %lu", align);
3704 3706  
3705 3707          mutex_enter(&kmem_flags_lock);
3706 3708          if (kmem_flags & KMF_RANDOMIZE)
3707 3709                  kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3708 3710                      KMF_RANDOMIZE;
3709 3711          cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3710 3712          mutex_exit(&kmem_flags_lock);
3711 3713  
3712 3714          /*
3713 3715           * Make sure all the various flags are reasonable.
3714 3716           */
3715 3717          ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3716 3718  
3717 3719          if (cp->cache_flags & KMF_LITE) {
3718 3720                  if (bufsize >= kmem_lite_minsize &&
3719 3721                      align <= kmem_lite_maxalign &&
3720 3722                      P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3721 3723                          cp->cache_flags |= KMF_BUFTAG;
3722 3724                          cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3723 3725                  } else {
3724 3726                          cp->cache_flags &= ~KMF_DEBUG;
3725 3727                  }
3726 3728          }
3727 3729  
3728 3730          if (cp->cache_flags & KMF_DEADBEEF)
3729 3731                  cp->cache_flags |= KMF_REDZONE;
3730 3732  
3731 3733          if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3732 3734                  cp->cache_flags |= KMF_NOMAGAZINE;
3733 3735  
3734 3736          if (cflags & KMC_NODEBUG)
3735 3737                  cp->cache_flags &= ~KMF_DEBUG;
3736 3738  
3737 3739          if (cflags & KMC_NOTOUCH)
3738 3740                  cp->cache_flags &= ~KMF_TOUCH;
3739 3741  
3740 3742          if (cflags & KMC_PREFILL)
3741 3743                  cp->cache_flags |= KMF_PREFILL;
3742 3744  
3743 3745          if (cflags & KMC_NOHASH)
3744 3746                  cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3745 3747  
3746 3748          if (cflags & KMC_NOMAGAZINE)
3747 3749                  cp->cache_flags |= KMF_NOMAGAZINE;
3748 3750  
3749 3751          if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3750 3752                  cp->cache_flags |= KMF_REDZONE;
3751 3753  
3752 3754          if (!(cp->cache_flags & KMF_AUDIT))
3753 3755                  cp->cache_flags &= ~KMF_CONTENTS;
3754 3756  
3755 3757          if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3756 3758              !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3757 3759                  cp->cache_flags |= KMF_FIREWALL;
3758 3760  
3759 3761          if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3760 3762                  cp->cache_flags &= ~KMF_FIREWALL;
3761 3763  
3762 3764          if (cp->cache_flags & KMF_FIREWALL) {
3763 3765                  cp->cache_flags &= ~KMF_BUFTAG;
3764 3766                  cp->cache_flags |= KMF_NOMAGAZINE;
3765 3767                  ASSERT(vmp == kmem_default_arena);
3766 3768                  vmp = kmem_firewall_arena;
3767 3769          }
3768 3770  
3769 3771          /*
3770 3772           * Set cache properties.
3771 3773           */
3772 3774          (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3773 3775          strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3774 3776          cp->cache_bufsize = bufsize;
3775 3777          cp->cache_align = align;
3776 3778          cp->cache_constructor = constructor;
3777 3779          cp->cache_destructor = destructor;
3778 3780          cp->cache_reclaim = reclaim;
3779 3781          cp->cache_private = private;
3780 3782          cp->cache_arena = vmp;
3781 3783          cp->cache_cflags = cflags;
3782 3784  
3783 3785          /*
3784 3786           * Determine the chunk size.
3785 3787           */
3786 3788          chunksize = bufsize;
3787 3789  
3788 3790          if (align >= KMEM_ALIGN) {
3789 3791                  chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3790 3792                  cp->cache_bufctl = chunksize - KMEM_ALIGN;
3791 3793          }
3792 3794  
3793 3795          if (cp->cache_flags & KMF_BUFTAG) {
3794 3796                  cp->cache_bufctl = chunksize;
3795 3797                  cp->cache_buftag = chunksize;
3796 3798                  if (cp->cache_flags & KMF_LITE)
3797 3799                          chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3798 3800                  else
3799 3801                          chunksize += sizeof (kmem_buftag_t);
3800 3802          }
3801 3803  
3802 3804          if (cp->cache_flags & KMF_DEADBEEF) {
3803 3805                  cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3804 3806                  if (cp->cache_flags & KMF_LITE)
3805 3807                          cp->cache_verify = sizeof (uint64_t);
3806 3808          }
3807 3809  
3808 3810          cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3809 3811  
3810 3812          cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3811 3813  
3812 3814          /*
3813 3815           * Now that we know the chunk size, determine the optimal slab size.
3814 3816           */
3815 3817          if (vmp == kmem_firewall_arena) {
3816 3818                  cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3817 3819                  cp->cache_mincolor = cp->cache_slabsize - chunksize;
3818 3820                  cp->cache_maxcolor = cp->cache_mincolor;
3819 3821                  cp->cache_flags |= KMF_HASH;
3820 3822                  ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3821 3823          } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3822 3824              !(cp->cache_flags & KMF_AUDIT) &&
3823 3825              chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3824 3826                  cp->cache_slabsize = vmp->vm_quantum;
3825 3827                  cp->cache_mincolor = 0;
3826 3828                  cp->cache_maxcolor =
3827 3829                      (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3828 3830                  ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3829 3831                  ASSERT(!(cp->cache_flags & KMF_AUDIT));
3830 3832          } else {
3831 3833                  size_t chunks, bestfit, waste, slabsize;
3832 3834                  size_t minwaste = LONG_MAX;
3833 3835  
3834 3836                  for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3835 3837                          slabsize = P2ROUNDUP(chunksize * chunks,
3836 3838                              vmp->vm_quantum);
3837 3839                          chunks = slabsize / chunksize;
3838 3840                          waste = (slabsize % chunksize) / chunks;
3839 3841                          if (waste < minwaste) {
3840 3842                                  minwaste = waste;
3841 3843                                  bestfit = slabsize;
3842 3844                          }
3843 3845                  }
3844 3846                  if (cflags & KMC_QCACHE)
3845 3847                          bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3846 3848                  cp->cache_slabsize = bestfit;
3847 3849                  cp->cache_mincolor = 0;
3848 3850                  cp->cache_maxcolor = bestfit % chunksize;
3849 3851                  cp->cache_flags |= KMF_HASH;
3850 3852          }
3851 3853  
3852 3854          cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3853 3855          cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3854 3856  
3855 3857          /*
3856 3858           * Disallowing prefill when either the DEBUG or HASH flag is set or when
3857 3859           * there is a constructor avoids some tricky issues with debug setup
3858 3860           * that may be revisited later. We cannot allow prefill in a
3859 3861           * metadata cache because of potential recursion.
3860 3862           */
3861 3863          if (vmp == kmem_msb_arena ||
3862 3864              cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3863 3865              cp->cache_constructor != NULL)
3864 3866                  cp->cache_flags &= ~KMF_PREFILL;
3865 3867  
3866 3868          if (cp->cache_flags & KMF_HASH) {
3867 3869                  ASSERT(!(cflags & KMC_NOHASH));
3868 3870                  cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3869 3871                      kmem_bufctl_audit_cache : kmem_bufctl_cache;
3870 3872          }
3871 3873  
3872 3874          if (cp->cache_maxcolor >= vmp->vm_quantum)
3873 3875                  cp->cache_maxcolor = vmp->vm_quantum - 1;
3874 3876  
3875 3877          cp->cache_color = cp->cache_mincolor;
3876 3878  
3877 3879          /*
3878 3880           * Initialize the rest of the slab layer.
3879 3881           */
3880 3882          mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3881 3883  
3882 3884          avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3883 3885              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3884 3886          /* LINTED: E_TRUE_LOGICAL_EXPR */
3885 3887          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3886 3888          /* reuse partial slab AVL linkage for complete slab list linkage */
3887 3889          list_create(&cp->cache_complete_slabs,
3888 3890              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3889 3891  
3890 3892          if (cp->cache_flags & KMF_HASH) {
3891 3893                  cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3892 3894                      KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3893 3895                  bzero(cp->cache_hash_table,
3894 3896                      KMEM_HASH_INITIAL * sizeof (void *));
3895 3897                  cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3896 3898                  cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3897 3899          }
3898 3900  
3899 3901          /*
3900 3902           * Initialize the depot.
3901 3903           */
3902 3904          mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3903 3905  
3904 3906          for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3905 3907                  continue;
3906 3908  
3907 3909          cp->cache_magtype = mtp;
3908 3910  
3909 3911          /*
3910 3912           * Initialize the CPU layer.
3911 3913           */
3912 3914          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3913 3915                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3914 3916                  mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3915 3917                  ccp->cc_flags = cp->cache_flags;
3916 3918                  ccp->cc_rounds = -1;
3917 3919                  ccp->cc_prounds = -1;
3918 3920          }
3919 3921  
3920 3922          /*
3921 3923           * Create the cache's kstats.
3922 3924           */
3923 3925          if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3924 3926              "kmem_cache", KSTAT_TYPE_NAMED,
3925 3927              sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3926 3928              KSTAT_FLAG_VIRTUAL)) != NULL) {
3927 3929                  cp->cache_kstat->ks_data = &kmem_cache_kstat;
3928 3930                  cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3929 3931                  cp->cache_kstat->ks_private = cp;
3930 3932                  cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3931 3933                  kstat_install(cp->cache_kstat);
3932 3934          }
3933 3935  
3934 3936          /*
3935 3937           * Add the cache to the global list.  This makes it visible
3936 3938           * to kmem_update(), so the cache must be ready for business.
3937 3939           */
3938 3940          mutex_enter(&kmem_cache_lock);
3939 3941          list_insert_tail(&kmem_caches, cp);
3940 3942          mutex_exit(&kmem_cache_lock);
3941 3943  
3942 3944          if (kmem_ready)
3943 3945                  kmem_cache_magazine_enable(cp);
3944 3946  
3945 3947          return (cp);
3946 3948  }
3947 3949  
3948 3950  static int
3949 3951  kmem_move_cmp(const void *buf, const void *p)
3950 3952  {
3951 3953          const kmem_move_t *kmm = p;
3952 3954          uintptr_t v1 = (uintptr_t)buf;
3953 3955          uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3954 3956          return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3955 3957  }
3956 3958  
3957 3959  static void
3958 3960  kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3959 3961  {
3960 3962          kmd->kmd_reclaim_numer = 1;
3961 3963  }
3962 3964  
3963 3965  /*
3964 3966   * Initially, when choosing candidate slabs for buffers to move, we want to be
3965 3967   * very selective and take only slabs that are less than
3966 3968   * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3967 3969   * slabs, then we raise the allocation ceiling incrementally. The reclaim
3968 3970   * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
3969 3971   * longer fragmented.
3970 3972   */
3971 3973  static void
3972 3974  kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
3973 3975  {
3974 3976          if (direction > 0) {
3975 3977                  /* make it easier to find a candidate slab */
3976 3978                  if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
3977 3979                          kmd->kmd_reclaim_numer++;
3978 3980                  }
3979 3981          } else {
3980 3982                  /* be more selective */
3981 3983                  if (kmd->kmd_reclaim_numer > 1) {
3982 3984                          kmd->kmd_reclaim_numer--;
3983 3985                  }
3984 3986          }
3985 3987  }
3986 3988  
3987 3989  void
3988 3990  kmem_cache_set_move(kmem_cache_t *cp,
3989 3991      kmem_cbrc_t (*move)(void *, void *, size_t, void *))
3990 3992  {
3991 3993          kmem_defrag_t *defrag;
3992 3994  
3993 3995          ASSERT(move != NULL);
3994 3996          /*
3995 3997           * The consolidator does not support NOTOUCH caches because kmem cannot
3996 3998           * initialize their slabs with the 0xbaddcafe memory pattern, which sets
3997 3999           * a low order bit usable by clients to distinguish uninitialized memory
3998 4000           * from known objects (see kmem_slab_create).
3999 4001           */
4000 4002          ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4001 4003          ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4002 4004  
4003 4005          /*
4004 4006           * We should not be holding anyone's cache lock when calling
4005 4007           * kmem_cache_alloc(), so allocate in all cases before acquiring the
4006 4008           * lock.
4007 4009           */
4008 4010          defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4009 4011  
4010 4012          mutex_enter(&cp->cache_lock);
4011 4013  
4012 4014          if (KMEM_IS_MOVABLE(cp)) {
4013 4015                  if (cp->cache_move == NULL) {
4014 4016                          ASSERT(cp->cache_slab_alloc == 0);
4015 4017  
4016 4018                          cp->cache_defrag = defrag;
4017 4019                          defrag = NULL; /* nothing to free */
4018 4020                          bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4019 4021                          avl_create(&cp->cache_defrag->kmd_moves_pending,
4020 4022                              kmem_move_cmp, sizeof (kmem_move_t),
4021 4023                              offsetof(kmem_move_t, kmm_entry));
4022 4024                          /* LINTED: E_TRUE_LOGICAL_EXPR */
4023 4025                          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4024 4026                          /* reuse the slab's AVL linkage for deadlist linkage */
4025 4027                          list_create(&cp->cache_defrag->kmd_deadlist,
4026 4028                              sizeof (kmem_slab_t),
4027 4029                              offsetof(kmem_slab_t, slab_link));
4028 4030                          kmem_reset_reclaim_threshold(cp->cache_defrag);
4029 4031                  }
4030 4032                  cp->cache_move = move;
4031 4033          }
4032 4034  
4033 4035          mutex_exit(&cp->cache_lock);
4034 4036  
4035 4037          if (defrag != NULL) {
4036 4038                  kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4037 4039          }
4038 4040  }
4039 4041  
4040 4042  void
4041 4043  kmem_cache_destroy(kmem_cache_t *cp)
4042 4044  {
4043 4045          int cpu_seqid;
4044 4046  
4045 4047          /*
4046 4048           * Remove the cache from the global cache list so that no one else
4047 4049           * can schedule tasks on its behalf, wait for any pending tasks to
4048 4050           * complete, purge the cache, and then destroy it.
4049 4051           */
4050 4052          mutex_enter(&kmem_cache_lock);
4051 4053          list_remove(&kmem_caches, cp);
4052 4054          mutex_exit(&kmem_cache_lock);
4053 4055  
4054 4056          if (kmem_taskq != NULL)
4055 4057                  taskq_wait(kmem_taskq);
4056 4058  
4057 4059          if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4058 4060                  taskq_wait(kmem_move_taskq);
4059 4061  
4060 4062          kmem_cache_magazine_purge(cp);
4061 4063  
4062 4064          mutex_enter(&cp->cache_lock);
4063 4065          if (cp->cache_buftotal != 0)
4064 4066                  cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4065 4067                      cp->cache_name, (void *)cp);
4066 4068          if (cp->cache_defrag != NULL) {
4067 4069                  avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4068 4070                  list_destroy(&cp->cache_defrag->kmd_deadlist);
4069 4071                  kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4070 4072                  cp->cache_defrag = NULL;
4071 4073          }
4072 4074          /*
4073 4075           * The cache is now dead.  There should be no further activity.  We
4074 4076           * enforce this by setting land mines in the constructor, destructor,
4075 4077           * reclaim, and move routines that induce a kernel text fault if
4076 4078           * invoked.
4077 4079           */
4078 4080          cp->cache_constructor = (int (*)(void *, void *, int))1;
4079 4081          cp->cache_destructor = (void (*)(void *, void *))2;
4080 4082          cp->cache_reclaim = (void (*)(void *))3;
4081 4083          cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4082 4084          mutex_exit(&cp->cache_lock);
4083 4085  
4084 4086          kstat_delete(cp->cache_kstat);
4085 4087  
4086 4088          if (cp->cache_hash_table != NULL)
4087 4089                  vmem_free(kmem_hash_arena, cp->cache_hash_table,
4088 4090                      (cp->cache_hash_mask + 1) * sizeof (void *));
4089 4091  
4090 4092          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4091 4093                  mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4092 4094  
4093 4095          mutex_destroy(&cp->cache_depot_lock);
4094 4096          mutex_destroy(&cp->cache_lock);
4095 4097  
4096 4098          vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4097 4099  }
4098 4100  
4099 4101  /*ARGSUSED*/
4100 4102  static int
4101 4103  kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4102 4104  {
4103 4105          ASSERT(MUTEX_HELD(&cpu_lock));
4104 4106          if (what == CPU_UNCONFIG) {
4105 4107                  kmem_cache_applyall(kmem_cache_magazine_purge,
4106 4108                      kmem_taskq, TQ_SLEEP);
4107 4109                  kmem_cache_applyall(kmem_cache_magazine_enable,
4108 4110                      kmem_taskq, TQ_SLEEP);
4109 4111          }
4110 4112          return (0);
4111 4113  }
4112 4114  
4113 4115  static void
4114 4116  kmem_alloc_caches_create(const int *array, size_t count,
4115 4117      kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4116 4118  {
4117 4119          char name[KMEM_CACHE_NAMELEN + 1];
4118 4120          size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4119 4121          size_t size = table_unit;
4120 4122          int i;
4121 4123  
4122 4124          for (i = 0; i < count; i++) {
4123 4125                  size_t cache_size = array[i];
4124 4126                  size_t align = KMEM_ALIGN;
4125 4127                  kmem_cache_t *cp;
4126 4128  
4127 4129                  /* if the table has an entry for maxbuf, we're done */
4128 4130                  if (size > maxbuf)
4129 4131                          break;
4130 4132  
4131 4133                  /* cache size must be a multiple of the table unit */
4132 4134                  ASSERT(P2PHASE(cache_size, table_unit) == 0);
4133 4135  
4134 4136                  /*
4135 4137                   * If they allocate a multiple of the coherency granularity,
4136 4138                   * they get a coherency-granularity-aligned address.
4137 4139                   */
4138 4140                  if (IS_P2ALIGNED(cache_size, 64))
4139 4141                          align = 64;
4140 4142                  if (IS_P2ALIGNED(cache_size, PAGESIZE))
4141 4143                          align = PAGESIZE;
4142 4144                  (void) snprintf(name, sizeof (name),
4143 4145                      "kmem_alloc_%lu", cache_size);
4144 4146                  cp = kmem_cache_create(name, cache_size, align,
4145 4147                      NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4146 4148  
4147 4149                  while (size <= cache_size) {
4148 4150                          alloc_table[(size - 1) >> shift] = cp;
4149 4151                          size += table_unit;
4150 4152                  }
4151 4153          }
4152 4154  
4153 4155          ASSERT(size > maxbuf);          /* i.e. maxbuf <= max(cache_size) */
4154 4156  }
4155 4157  
4156 4158  static void
4157 4159  kmem_cache_init(int pass, int use_large_pages)
4158 4160  {
4159 4161          int i;
4160 4162          size_t maxbuf;
4161 4163          kmem_magtype_t *mtp;
4162 4164  
4163 4165          for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4164 4166                  char name[KMEM_CACHE_NAMELEN + 1];
4165 4167  
4166 4168                  mtp = &kmem_magtype[i];
4167 4169                  (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4168 4170                  mtp->mt_cache = kmem_cache_create(name,
4169 4171                      (mtp->mt_magsize + 1) * sizeof (void *),
4170 4172                      mtp->mt_align, NULL, NULL, NULL, NULL,
4171 4173                      kmem_msb_arena, KMC_NOHASH);
4172 4174          }
4173 4175  
4174 4176          kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4175 4177              sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4176 4178              kmem_msb_arena, KMC_NOHASH);
4177 4179  
4178 4180          kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4179 4181              sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4180 4182              kmem_msb_arena, KMC_NOHASH);
4181 4183  
4182 4184          kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4183 4185              sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4184 4186              kmem_msb_arena, KMC_NOHASH);
4185 4187  
4186 4188          if (pass == 2) {
4187 4189                  kmem_va_arena = vmem_create("kmem_va",
4188 4190                      NULL, 0, PAGESIZE,
4189 4191                      vmem_alloc, vmem_free, heap_arena,
4190 4192                      8 * PAGESIZE, VM_SLEEP);
4191 4193  
4192 4194                  if (use_large_pages) {
4193 4195                          kmem_default_arena = vmem_xcreate("kmem_default",
4194 4196                              NULL, 0, PAGESIZE,
4195 4197                              segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4196 4198                              0, VMC_DUMPSAFE | VM_SLEEP);
4197 4199                  } else {
4198 4200                          kmem_default_arena = vmem_create("kmem_default",
4199 4201                              NULL, 0, PAGESIZE,
4200 4202                              segkmem_alloc, segkmem_free, kmem_va_arena,
4201 4203                              0, VMC_DUMPSAFE | VM_SLEEP);
4202 4204                  }
4203 4205  
4204 4206                  /* Figure out what our maximum cache size is */
4205 4207                  maxbuf = kmem_max_cached;
4206 4208                  if (maxbuf <= KMEM_MAXBUF) {
4207 4209                          maxbuf = 0;
4208 4210                          kmem_max_cached = KMEM_MAXBUF;
4209 4211                  } else {
4210 4212                          size_t size = 0;
4211 4213                          size_t max =
4212 4214                              sizeof (kmem_big_alloc_sizes) / sizeof (int);
4213 4215                          /*
4214 4216                           * Round maxbuf up to an existing cache size.  If maxbuf
4215 4217                           * is larger than the largest cache, we truncate it to
4216 4218                           * the largest cache's size.
4217 4219                           */
4218 4220                          for (i = 0; i < max; i++) {
4219 4221                                  size = kmem_big_alloc_sizes[i];
4220 4222                                  if (maxbuf <= size)
4221 4223                                          break;
4222 4224                          }
4223 4225                          kmem_max_cached = maxbuf = size;
4224 4226                  }
4225 4227  
4226 4228                  /*
4227 4229                   * The big alloc table may not be completely overwritten, so
4228 4230                   * we clear out any stale cache pointers from the first pass.
4229 4231                   */
4230 4232                  bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4231 4233          } else {
4232 4234                  /*
4233 4235                   * During the first pass, the kmem_alloc_* caches
4234 4236                   * are treated as metadata.
4235 4237                   */
4236 4238                  kmem_default_arena = kmem_msb_arena;
4237 4239                  maxbuf = KMEM_BIG_MAXBUF_32BIT;
4238 4240          }
4239 4241  
4240 4242          /*
4241 4243           * Set up the default caches to back kmem_alloc()
4242 4244           */
4243 4245          kmem_alloc_caches_create(
4244 4246              kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4245 4247              kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4246 4248  
4247 4249          kmem_alloc_caches_create(
4248 4250              kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4249 4251              kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4250 4252  
4251 4253          kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4252 4254  }
4253 4255  
4254 4256  void
4255 4257  kmem_init(void)
4256 4258  {
4257 4259          kmem_cache_t *cp;
4258 4260          int old_kmem_flags = kmem_flags;
4259 4261          int use_large_pages = 0;
4260 4262          size_t maxverify, minfirewall;
4261 4263  
4262 4264          kstat_init();
4263 4265  
4264 4266          /*
4265 4267           * Don't do firewalled allocations if the heap is less than 1TB
4266 4268           * (i.e. on a 32-bit kernel)
4267 4269           * The resulting VM_NEXTFIT allocations would create too much
4268 4270           * fragmentation in a small heap.
4269 4271           */
4270 4272  #if defined(_LP64)
4271 4273          maxverify = minfirewall = PAGESIZE / 2;
4272 4274  #else
4273 4275          maxverify = minfirewall = ULONG_MAX;
4274 4276  #endif
4275 4277  
4276 4278          /* LINTED */
4277 4279          ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4278 4280  
4279 4281          list_create(&kmem_caches, sizeof (kmem_cache_t),
4280 4282              offsetof(kmem_cache_t, cache_link));
4281 4283  
4282 4284          kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4283 4285              vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4284 4286              VM_SLEEP | VMC_NO_QCACHE);
4285 4287  
4286 4288          kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4287 4289              PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4288 4290              VMC_DUMPSAFE | VM_SLEEP);
4289 4291  
4290 4292          kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4291 4293              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4292 4294  
4293 4295          kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4294 4296              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4295 4297  
4296 4298          kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4297 4299              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4298 4300  
4299 4301          kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4300 4302              NULL, 0, PAGESIZE,
4301 4303              kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4302 4304              0, VM_SLEEP);
4303 4305  
4304 4306          kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4305 4307              segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4306 4308              VMC_DUMPSAFE | VM_SLEEP);
4307 4309  
4308 4310          /* temporary oversize arena for mod_read_system_file */
4309 4311          kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4310 4312              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4311 4313  
4312 4314          kmem_reap_interval = 15 * hz;
4313 4315  
4314 4316          /*
4315 4317           * Read /etc/system.  This is a chicken-and-egg problem because
4316 4318           * kmem_flags may be set in /etc/system, but mod_read_system_file()
4317 4319           * needs to use the allocator.  The simplest solution is to create
4318 4320           * all the standard kmem caches, read /etc/system, destroy all the
4319 4321           * caches we just created, and then create them all again in light
4320 4322           * of the (possibly) new kmem_flags and other kmem tunables.
4321 4323           */
4322 4324          kmem_cache_init(1, 0);
4323 4325  
4324 4326          mod_read_system_file(boothowto & RB_ASKNAME);
4325 4327  
4326 4328          while ((cp = list_tail(&kmem_caches)) != NULL)
4327 4329                  kmem_cache_destroy(cp);
4328 4330  
4329 4331          vmem_destroy(kmem_oversize_arena);
4330 4332  
4331 4333          if (old_kmem_flags & KMF_STICKY)
4332 4334                  kmem_flags = old_kmem_flags;
4333 4335  
4334 4336          if (!(kmem_flags & KMF_AUDIT))
4335 4337                  vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4336 4338  
4337 4339          if (kmem_maxverify == 0)
4338 4340                  kmem_maxverify = maxverify;
4339 4341  
4340 4342          if (kmem_minfirewall == 0)
4341 4343                  kmem_minfirewall = minfirewall;
4342 4344  
4343 4345          /*
4344 4346           * give segkmem a chance to figure out if we are using large pages
4345 4347           * for the kernel heap
4346 4348           */
4347 4349          use_large_pages = segkmem_lpsetup();
4348 4350  
4349 4351          /*
4350 4352           * To protect against corruption, we keep the actual number of callers
4351 4353           * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4352 4354           * to 16, since the overhead for small buffers quickly gets out of
4353 4355           * hand.
4354 4356           *
4355 4357           * The real limit would depend on the needs of the largest KMC_NOHASH
4356 4358           * cache.
4357 4359           */
4358 4360          kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4359 4361          kmem_lite_pcs = kmem_lite_count;
4360 4362  
4361 4363          /*
4362 4364           * Normally, we firewall oversized allocations when possible, but
4363 4365           * if we are using large pages for kernel memory, and we don't have
4364 4366           * any non-LITE debugging flags set, we want to allocate oversized
4365 4367           * buffers from large pages, and so skip the firewalling.
4366 4368           */
4367 4369          if (use_large_pages &&
4368 4370              ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4369 4371                  kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4370 4372                      PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4371 4373                      0, VMC_DUMPSAFE | VM_SLEEP);
4372 4374          } else {
4373 4375                  kmem_oversize_arena = vmem_create("kmem_oversize",
4374 4376                      NULL, 0, PAGESIZE,
4375 4377                      segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4376 4378                      kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4377 4379                      VM_SLEEP);
4378 4380          }
4379 4381  
4380 4382          kmem_cache_init(2, use_large_pages);
4381 4383  
4382 4384          if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4383 4385                  if (kmem_transaction_log_size == 0)
4384 4386                          kmem_transaction_log_size = kmem_maxavail() / 50;
4385 4387                  kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4386 4388          }
4387 4389  
4388 4390          if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4389 4391                  if (kmem_content_log_size == 0)
4390 4392                          kmem_content_log_size = kmem_maxavail() / 50;
4391 4393                  kmem_content_log = kmem_log_init(kmem_content_log_size);
4392 4394          }
4393 4395  
4394 4396          kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4395 4397  
4396 4398          kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4397 4399  
4398 4400          /*
4399 4401           * Initialize STREAMS message caches so allocb() is available.
4400 4402           * This allows us to initialize the logging framework (cmn_err(9F),
4401 4403           * strlog(9F), etc) so we can start recording messages.
4402 4404           */
4403 4405          streams_msg_init();
4404 4406  
4405 4407          /*
4406 4408           * Initialize the ZSD framework in Zones so modules loaded henceforth
4407 4409           * can register their callbacks.
4408 4410           */
4409 4411          zone_zsd_init();
4410 4412  
4411 4413          log_init();
4412 4414          taskq_init();
4413 4415  
4414 4416          /*
4415 4417           * Warn about invalid or dangerous values of kmem_flags.
4416 4418           * Always warn about unsupported values.
4417 4419           */
4418 4420          if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4419 4421              KMF_CONTENTS | KMF_LITE)) != 0) ||
4420 4422              ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4421 4423                  cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4422 4424                      "See the Solaris Tunable Parameters Reference Manual.",
4423 4425                      kmem_flags);
4424 4426  
4425 4427  #ifdef DEBUG
4426 4428          if ((kmem_flags & KMF_DEBUG) == 0)
4427 4429                  cmn_err(CE_NOTE, "kmem debugging disabled.");
4428 4430  #else
4429 4431          /*
4430 4432           * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4431 4433           * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4432 4434           * if KMF_AUDIT is set). We should warn the user about the performance
4433 4435           * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4434 4436           * isn't set (since that disables AUDIT).
4435 4437           */
4436 4438          if (!(kmem_flags & KMF_LITE) &&
4437 4439              (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4438 4440                  cmn_err(CE_WARN, "High-overhead kmem debugging features "
4439 4441                      "enabled (kmem_flags = 0x%x).  Performance degradation "
4440 4442                      "and large memory overhead possible. See the Solaris "
4441 4443                      "Tunable Parameters Reference Manual.", kmem_flags);
4442 4444  #endif /* not DEBUG */
4443 4445  
4444 4446          kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4445 4447  
4446 4448          kmem_ready = 1;
4447 4449  
4448 4450          /*
4449 4451           * Initialize the platform-specific aligned/DMA memory allocator.
4450 4452           */
4451 4453          ka_init();
4452 4454  
4453 4455          /*
4454 4456           * Initialize 32-bit ID cache.
4455 4457           */
4456 4458          id32_init();
4457 4459  
4458 4460          /*
4459 4461           * Initialize the networking stack so modules loaded can
4460 4462           * register their callbacks.
4461 4463           */
4462 4464          netstack_init();
4463 4465  }
4464 4466  
4465 4467  static void
4466 4468  kmem_move_init(void)
4467 4469  {
4468 4470          kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4469 4471              sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4470 4472              kmem_msb_arena, KMC_NOHASH);
4471 4473          kmem_move_cache = kmem_cache_create("kmem_move_cache",
4472 4474              sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4473 4475              kmem_msb_arena, KMC_NOHASH);
4474 4476  
4475 4477          /*
4476 4478           * kmem guarantees that move callbacks are sequential and that even
4477 4479           * across multiple caches no two moves ever execute simultaneously.
4478 4480           * Move callbacks are processed on a separate taskq so that client code
4479 4481           * does not interfere with internal maintenance tasks.
4480 4482           */
4481 4483          kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4482 4484              minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4483 4485  }
4484 4486  
4485 4487  void
4486 4488  kmem_thread_init(void)
4487 4489  {
4488 4490          kmem_move_init();
4489 4491          kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4490 4492              300, INT_MAX, TASKQ_PREPOPULATE);
4491 4493  }
4492 4494  
4493 4495  void
4494 4496  kmem_mp_init(void)
4495 4497  {
4496 4498          mutex_enter(&cpu_lock);
4497 4499          register_cpu_setup_func(kmem_cpu_setup, NULL);
4498 4500          mutex_exit(&cpu_lock);
4499 4501  
4500 4502          kmem_update_timeout(NULL);
4501 4503  
4502 4504          taskq_mp_init();
4503 4505  }
4504 4506  
4505 4507  /*
4506 4508   * Return the slab of the allocated buffer, or NULL if the buffer is not
4507 4509   * allocated. This function may be called with a known slab address to determine
4508 4510   * whether or not the buffer is allocated, or with a NULL slab address to obtain
4509 4511   * an allocated buffer's slab.
4510 4512   */
4511 4513  static kmem_slab_t *
4512 4514  kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4513 4515  {
4514 4516          kmem_bufctl_t *bcp, *bufbcp;
4515 4517  
4516 4518          ASSERT(MUTEX_HELD(&cp->cache_lock));
4517 4519          ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4518 4520  
4519 4521          if (cp->cache_flags & KMF_HASH) {
4520 4522                  for (bcp = *KMEM_HASH(cp, buf);
4521 4523                      (bcp != NULL) && (bcp->bc_addr != buf);
4522 4524                      bcp = bcp->bc_next) {
4523 4525                          continue;
4524 4526                  }
4525 4527                  ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4526 4528                  return (bcp == NULL ? NULL : bcp->bc_slab);
4527 4529          }
4528 4530  
4529 4531          if (sp == NULL) {
4530 4532                  sp = KMEM_SLAB(cp, buf);
4531 4533          }
4532 4534          bufbcp = KMEM_BUFCTL(cp, buf);
4533 4535          for (bcp = sp->slab_head;
4534 4536              (bcp != NULL) && (bcp != bufbcp);
4535 4537              bcp = bcp->bc_next) {
4536 4538                  continue;
4537 4539          }
4538 4540          return (bcp == NULL ? sp : NULL);
4539 4541  }
4540 4542  
4541 4543  static boolean_t
4542 4544  kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4543 4545  {
4544 4546          long refcnt = sp->slab_refcnt;
4545 4547  
4546 4548          ASSERT(cp->cache_defrag != NULL);
4547 4549  
4548 4550          /*
4549 4551           * For code coverage we want to be able to move an object within the
4550 4552           * same slab (the only partial slab) even if allocating the destination
4551 4553           * buffer resulted in a completely allocated slab.
4552 4554           */
4553 4555          if (flags & KMM_DEBUG) {
4554 4556                  return ((flags & KMM_DESPERATE) ||
4555 4557                      ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4556 4558          }
4557 4559  
4558 4560          /* If we're desperate, we don't care if the client said NO. */
4559 4561          if (flags & KMM_DESPERATE) {
4560 4562                  return (refcnt < sp->slab_chunks); /* any partial */
4561 4563          }
4562 4564  
4563 4565          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4564 4566                  return (B_FALSE);
4565 4567          }
4566 4568  
4567 4569          if ((refcnt == 1) || kmem_move_any_partial) {
4568 4570                  return (refcnt < sp->slab_chunks);
4569 4571          }
4570 4572  
4571 4573          /*
4572 4574           * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4573 4575           * slabs with a progressively higher percentage of used buffers can be
4574 4576           * reclaimed until the cache as a whole is no longer fragmented.
4575 4577           *
4576 4578           *      sp->slab_refcnt   kmd_reclaim_numer
4577 4579           *      --------------- < ------------------
4578 4580           *      sp->slab_chunks   KMEM_VOID_FRACTION
4579 4581           */
4580 4582          return ((refcnt * KMEM_VOID_FRACTION) <
4581 4583              (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4582 4584  }
4583 4585  
4584 4586  /*
4585 4587   * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4586 4588   * or when the buffer is freed.
4587 4589   */
4588 4590  static void
4589 4591  kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4590 4592  {
4591 4593          ASSERT(MUTEX_HELD(&cp->cache_lock));
4592 4594          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4593 4595  
4594 4596          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4595 4597                  return;
4596 4598          }
4597 4599  
4598 4600          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4599 4601                  if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4600 4602                          avl_remove(&cp->cache_partial_slabs, sp);
4601 4603                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4602 4604                          sp->slab_stuck_offset = (uint32_t)-1;
4603 4605                          avl_add(&cp->cache_partial_slabs, sp);
4604 4606                  }
4605 4607          } else {
4606 4608                  sp->slab_later_count = 0;
4607 4609                  sp->slab_stuck_offset = (uint32_t)-1;
4608 4610          }
4609 4611  }
4610 4612  
4611 4613  static void
4612 4614  kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4613 4615  {
4614 4616          ASSERT(taskq_member(kmem_move_taskq, curthread));
4615 4617          ASSERT(MUTEX_HELD(&cp->cache_lock));
4616 4618          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4617 4619  
4618 4620          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4619 4621                  return;
4620 4622          }
4621 4623  
4622 4624          avl_remove(&cp->cache_partial_slabs, sp);
4623 4625          sp->slab_later_count = 0;
4624 4626          sp->slab_flags |= KMEM_SLAB_NOMOVE;
4625 4627          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4626 4628          avl_add(&cp->cache_partial_slabs, sp);
4627 4629  }
4628 4630  
4629 4631  static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4630 4632  
4631 4633  /*
4632 4634   * The move callback takes two buffer addresses, the buffer to be moved, and a
4633 4635   * newly allocated and constructed buffer selected by kmem as the destination.
4634 4636   * It also takes the size of the buffer and an optional user argument specified
4635 4637   * at cache creation time. kmem guarantees that the buffer to be moved has not
4636 4638   * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4637 4639   * guarantee the present whereabouts of the buffer to be moved, so it is up to
4638 4640   * the client to safely determine whether or not it is still using the buffer.
4639 4641   * The client must not free either of the buffers passed to the move callback,
4640 4642   * since kmem wants to free them directly to the slab layer. The client response
4641 4643   * tells kmem which of the two buffers to free:
4642 4644   *
4643 4645   * YES          kmem frees the old buffer (the move was successful)
4644 4646   * NO           kmem frees the new buffer, marks the slab of the old buffer
4645 4647   *              non-reclaimable to avoid bothering the client again
4646 4648   * LATER        kmem frees the new buffer, increments slab_later_count
4647 4649   * DONT_KNOW    kmem frees the new buffer
4648 4650   * DONT_NEED    kmem frees both the old buffer and the new buffer
4649 4651   *
4650 4652   * The pending callback argument now being processed contains both of the
4651 4653   * buffers (old and new) passed to the move callback function, the slab of the
4652 4654   * old buffer, and flags related to the move request, such as whether or not the
4653 4655   * system was desperate for memory.
4654 4656   *
4655 4657   * Slabs are not freed while there is a pending callback, but instead are kept
4656 4658   * on a deadlist, which is drained after the last callback completes. This means
4657 4659   * that slabs are safe to access until kmem_move_end(), no matter how many of
4658 4660   * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4659 4661   * zero for as long as the slab remains on the deadlist and until the slab is
4660 4662   * freed.
4661 4663   */
4662 4664  static void
4663 4665  kmem_move_buffer(kmem_move_t *callback)
4664 4666  {
4665 4667          kmem_cbrc_t response;
4666 4668          kmem_slab_t *sp = callback->kmm_from_slab;
4667 4669          kmem_cache_t *cp = sp->slab_cache;
4668 4670          boolean_t free_on_slab;
4669 4671  
4670 4672          ASSERT(taskq_member(kmem_move_taskq, curthread));
4671 4673          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4672 4674          ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4673 4675  
4674 4676          /*
4675 4677           * The number of allocated buffers on the slab may have changed since we
4676 4678           * last checked the slab's reclaimability (when the pending move was
4677 4679           * enqueued), or the client may have responded NO when asked to move
4678 4680           * another buffer on the same slab.
4679 4681           */
4680 4682          if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4681 4683                  kmem_slab_free(cp, callback->kmm_to_buf);
4682 4684                  kmem_move_end(cp, callback);
4683 4685                  return;
4684 4686          }
4685 4687  
4686 4688          /*
4687 4689           * Checking the slab layer is easy, so we might as well do that here
4688 4690           * in case we can avoid bothering the client.
4689 4691           */
4690 4692          mutex_enter(&cp->cache_lock);
4691 4693          free_on_slab = (kmem_slab_allocated(cp, sp,
4692 4694              callback->kmm_from_buf) == NULL);
4693 4695          mutex_exit(&cp->cache_lock);
4694 4696  
4695 4697          if (free_on_slab) {
4696 4698                  kmem_slab_free(cp, callback->kmm_to_buf);
4697 4699                  kmem_move_end(cp, callback);
4698 4700                  return;
4699 4701          }
4700 4702  
4701 4703          if (cp->cache_flags & KMF_BUFTAG) {
4702 4704                  /*
4703 4705                   * Make kmem_cache_alloc_debug() apply the constructor for us.
4704 4706                   */
4705 4707                  if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4706 4708                      KM_NOSLEEP, 1, caller()) != 0) {
4707 4709                          kmem_move_end(cp, callback);
4708 4710                          return;
4709 4711                  }
4710 4712          } else if (cp->cache_constructor != NULL &&
4711 4713              cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4712 4714              KM_NOSLEEP) != 0) {
4713 4715                  atomic_inc_64(&cp->cache_alloc_fail);
4714 4716                  kmem_slab_free(cp, callback->kmm_to_buf);
4715 4717                  kmem_move_end(cp, callback);
4716 4718                  return;
4717 4719          }
4718 4720  
4719 4721          cp->cache_defrag->kmd_callbacks++;
4720 4722          cp->cache_defrag->kmd_thread = curthread;
4721 4723          cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4722 4724          cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4723 4725          DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4724 4726              callback);
4725 4727  
4726 4728          response = cp->cache_move(callback->kmm_from_buf,
4727 4729              callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4728 4730  
4729 4731          DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4730 4732              callback, kmem_cbrc_t, response);
4731 4733          cp->cache_defrag->kmd_thread = NULL;
4732 4734          cp->cache_defrag->kmd_from_buf = NULL;
4733 4735          cp->cache_defrag->kmd_to_buf = NULL;
4734 4736  
4735 4737          if (response == KMEM_CBRC_YES) {
4736 4738                  cp->cache_defrag->kmd_yes++;
4737 4739                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4738 4740                  /* slab safe to access until kmem_move_end() */
4739 4741                  if (sp->slab_refcnt == 0)
4740 4742                          cp->cache_defrag->kmd_slabs_freed++;
4741 4743                  mutex_enter(&cp->cache_lock);
4742 4744                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4743 4745                  mutex_exit(&cp->cache_lock);
4744 4746                  kmem_move_end(cp, callback);
4745 4747                  return;
4746 4748          }
4747 4749  
4748 4750          switch (response) {
4749 4751          case KMEM_CBRC_NO:
4750 4752                  cp->cache_defrag->kmd_no++;
4751 4753                  mutex_enter(&cp->cache_lock);
4752 4754                  kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4753 4755                  mutex_exit(&cp->cache_lock);
4754 4756                  break;
4755 4757          case KMEM_CBRC_LATER:
4756 4758                  cp->cache_defrag->kmd_later++;
4757 4759                  mutex_enter(&cp->cache_lock);
4758 4760                  if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4759 4761                          mutex_exit(&cp->cache_lock);
4760 4762                          break;
4761 4763                  }
4762 4764  
4763 4765                  if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4764 4766                          kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4765 4767                  } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4766 4768                          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4767 4769                              callback->kmm_from_buf);
4768 4770                  }
4769 4771                  mutex_exit(&cp->cache_lock);
4770 4772                  break;
4771 4773          case KMEM_CBRC_DONT_NEED:
4772 4774                  cp->cache_defrag->kmd_dont_need++;
4773 4775                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4774 4776                  if (sp->slab_refcnt == 0)
4775 4777                          cp->cache_defrag->kmd_slabs_freed++;
4776 4778                  mutex_enter(&cp->cache_lock);
4777 4779                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4778 4780                  mutex_exit(&cp->cache_lock);
4779 4781                  break;
4780 4782          case KMEM_CBRC_DONT_KNOW:
4781 4783                  /*
4782 4784                   * If we don't know if we can move this buffer or not, we'll
4783 4785                   * just assume that we can't:  if the buffer is in fact free,
4784 4786                   * then it is sitting in one of the per-CPU magazines or in
4785 4787                   * a full magazine in the depot layer.  Either way, because
4786 4788                   * defrag is induced in the same logic that reaps a cache,
4787 4789                   * it's likely that full magazines will be returned to the
4788 4790                   * system soon (thereby accomplishing what we're trying to
4789 4791                   * accomplish here: return those magazines to their slabs).
4790 4792                   * Given this, any work that we might do now to locate a buffer
4791 4793                   * in a magazine is wasted (and expensive!) work; we bump
4792 4794                   * a counter in this case and otherwise assume that we can't
4793 4795                   * move it.
4794 4796                   */
4795 4797                  cp->cache_defrag->kmd_dont_know++;
4796 4798                  break;
4797 4799          default:
4798 4800                  panic("'%s' (%p) unexpected move callback response %d\n",
4799 4801                      cp->cache_name, (void *)cp, response);
4800 4802          }
4801 4803  
4802 4804          kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4803 4805          kmem_move_end(cp, callback);
4804 4806  }
4805 4807  
4806 4808  /* Return B_FALSE if there is insufficient memory for the move request. */
4807 4809  static boolean_t
4808 4810  kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4809 4811  {
4810 4812          void *to_buf;
4811 4813          avl_index_t index;
4812 4814          kmem_move_t *callback, *pending;
4813 4815          ulong_t n;
4814 4816  
4815 4817          ASSERT(taskq_member(kmem_taskq, curthread));
4816 4818          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4817 4819          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4818 4820  
4819 4821          callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4820 4822  
4821 4823          if (callback == NULL)
4822 4824                  return (B_FALSE);
4823 4825  
4824 4826          callback->kmm_from_slab = sp;
4825 4827          callback->kmm_from_buf = buf;
4826 4828          callback->kmm_flags = flags;
4827 4829  
4828 4830          mutex_enter(&cp->cache_lock);
4829 4831  
4830 4832          n = avl_numnodes(&cp->cache_partial_slabs);
4831 4833          if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4832 4834                  mutex_exit(&cp->cache_lock);
4833 4835                  kmem_cache_free(kmem_move_cache, callback);
4834 4836                  return (B_TRUE); /* there is no need for the move request */
4835 4837          }
4836 4838  
4837 4839          pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4838 4840          if (pending != NULL) {
4839 4841                  /*
4840 4842                   * If the move is already pending and we're desperate now,
4841 4843                   * update the move flags.
4842 4844                   */
4843 4845                  if (flags & KMM_DESPERATE) {
4844 4846                          pending->kmm_flags |= KMM_DESPERATE;
4845 4847                  }
4846 4848                  mutex_exit(&cp->cache_lock);
4847 4849                  kmem_cache_free(kmem_move_cache, callback);
4848 4850                  return (B_TRUE);
4849 4851          }
4850 4852  
4851 4853          to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4852 4854              B_FALSE);
4853 4855          callback->kmm_to_buf = to_buf;
4854 4856          avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4855 4857  
4856 4858          mutex_exit(&cp->cache_lock);
4857 4859  
4858 4860          if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4859 4861              callback, TQ_NOSLEEP)) {
4860 4862                  mutex_enter(&cp->cache_lock);
4861 4863                  avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4862 4864                  mutex_exit(&cp->cache_lock);
4863 4865                  kmem_slab_free(cp, to_buf);
4864 4866                  kmem_cache_free(kmem_move_cache, callback);
4865 4867                  return (B_FALSE);
4866 4868          }
4867 4869  
4868 4870          return (B_TRUE);
4869 4871  }
4870 4872  
4871 4873  static void
4872 4874  kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4873 4875  {
4874 4876          avl_index_t index;
4875 4877  
4876 4878          ASSERT(cp->cache_defrag != NULL);
4877 4879          ASSERT(taskq_member(kmem_move_taskq, curthread));
4878 4880          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4879 4881  
4880 4882          mutex_enter(&cp->cache_lock);
4881 4883          VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4882 4884              callback->kmm_from_buf, &index) != NULL);
4883 4885          avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4884 4886          if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4885 4887                  list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4886 4888                  kmem_slab_t *sp;
4887 4889  
4888 4890                  /*
4889 4891                   * The last pending move completed. Release all slabs from the
4890 4892                   * front of the dead list except for any slab at the tail that
4891 4893                   * needs to be released from the context of kmem_move_buffers().
4892 4894                   * kmem deferred unmapping the buffers on these slabs in order
4893 4895                   * to guarantee that buffers passed to the move callback have
4894 4896                   * been touched only by kmem or by the client itself.
4895 4897                   */
4896 4898                  while ((sp = list_remove_head(deadlist)) != NULL) {
4897 4899                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4898 4900                                  list_insert_tail(deadlist, sp);
4899 4901                                  break;
4900 4902                          }
4901 4903                          cp->cache_defrag->kmd_deadcount--;
4902 4904                          cp->cache_slab_destroy++;
4903 4905                          mutex_exit(&cp->cache_lock);
4904 4906                          kmem_slab_destroy(cp, sp);
4905 4907                          mutex_enter(&cp->cache_lock);
4906 4908                  }
4907 4909          }
4908 4910          mutex_exit(&cp->cache_lock);
4909 4911          kmem_cache_free(kmem_move_cache, callback);
4910 4912  }
4911 4913  
4912 4914  /*
4913 4915   * Move buffers from least used slabs first by scanning backwards from the end
4914 4916   * of the partial slab list. Scan at most max_scan candidate slabs and move
4915 4917   * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4916 4918   * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4917 4919   * skip slabs with a ratio of allocated buffers at or above the current
4918 4920   * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4919 4921   * scan is aborted) so that the caller can adjust the reclaimability threshold
4920 4922   * depending on how many reclaimable slabs it finds.
4921 4923   *
4922 4924   * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4923 4925   * move request, since it is not valid for kmem_move_begin() to call
4924 4926   * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4925 4927   */
4926 4928  static int
4927 4929  kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4928 4930      int flags)
4929 4931  {
4930 4932          kmem_slab_t *sp;
4931 4933          void *buf;
4932 4934          int i, j; /* slab index, buffer index */
4933 4935          int s; /* reclaimable slabs */
4934 4936          int b; /* allocated (movable) buffers on reclaimable slab */
4935 4937          boolean_t success;
4936 4938          int refcnt;
4937 4939          int nomove;
4938 4940  
4939 4941          ASSERT(taskq_member(kmem_taskq, curthread));
4940 4942          ASSERT(MUTEX_HELD(&cp->cache_lock));
4941 4943          ASSERT(kmem_move_cache != NULL);
4942 4944          ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4943 4945          ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4944 4946              avl_numnodes(&cp->cache_partial_slabs) > 1);
4945 4947  
4946 4948          if (kmem_move_blocked) {
4947 4949                  return (0);
4948 4950          }
4949 4951  
4950 4952          if (kmem_move_fulltilt) {
4951 4953                  flags |= KMM_DESPERATE;
4952 4954          }
4953 4955  
4954 4956          if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4955 4957                  /*
4956 4958                   * Scan as many slabs as needed to find the desired number of
4957 4959                   * candidate slabs.
4958 4960                   */
4959 4961                  max_scan = (size_t)-1;
4960 4962          }
4961 4963  
4962 4964          if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4963 4965                  /* Find as many candidate slabs as possible. */
4964 4966                  max_slabs = (size_t)-1;
4965 4967          }
4966 4968  
4967 4969          sp = avl_last(&cp->cache_partial_slabs);
4968 4970          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
4969 4971          for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
4970 4972              ((sp != avl_first(&cp->cache_partial_slabs)) ||
4971 4973              (flags & KMM_DEBUG));
4972 4974              sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
4973 4975  
4974 4976                  if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
4975 4977                          continue;
4976 4978                  }
4977 4979                  s++;
4978 4980  
4979 4981                  /* Look for allocated buffers to move. */
4980 4982                  for (j = 0, b = 0, buf = sp->slab_base;
4981 4983                      (j < sp->slab_chunks) && (b < sp->slab_refcnt);
4982 4984                      buf = (((char *)buf) + cp->cache_chunksize), j++) {
4983 4985  
4984 4986                          if (kmem_slab_allocated(cp, sp, buf) == NULL) {
4985 4987                                  continue;
4986 4988                          }
4987 4989  
4988 4990                          b++;
4989 4991  
4990 4992                          /*
4991 4993                           * Prevent the slab from being destroyed while we drop
4992 4994                           * cache_lock and while the pending move is not yet
4993 4995                           * registered. Flag the pending move while
4994 4996                           * kmd_moves_pending may still be empty, since we can't
4995 4997                           * yet rely on a non-zero pending move count to prevent
4996 4998                           * the slab from being destroyed.
4997 4999                           */
4998 5000                          ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
4999 5001                          sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5000 5002                          /*
5001 5003                           * Recheck refcnt and nomove after reacquiring the lock,
5002 5004                           * since these control the order of partial slabs, and
5003 5005                           * we want to know if we can pick up the scan where we
5004 5006                           * left off.
5005 5007                           */
5006 5008                          refcnt = sp->slab_refcnt;
5007 5009                          nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5008 5010                          mutex_exit(&cp->cache_lock);
5009 5011  
5010 5012                          success = kmem_move_begin(cp, sp, buf, flags);
5011 5013  
5012 5014                          /*
5013 5015                           * Now, before the lock is reacquired, kmem could
5014 5016                           * process all pending move requests and purge the
5015 5017                           * deadlist, so that upon reacquiring the lock, sp has
5016 5018                           * been remapped. Or, the client may free all the
5017 5019                           * objects on the slab while the pending moves are still
5018 5020                           * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5019 5021                           * flag causes the slab to be put at the end of the
5020 5022                           * deadlist and prevents it from being destroyed, since
5021 5023                           * we plan to destroy it here after reacquiring the
5022 5024                           * lock.
5023 5025                           */
5024 5026                          mutex_enter(&cp->cache_lock);
5025 5027                          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5026 5028                          sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5027 5029  
5028 5030                          if (sp->slab_refcnt == 0) {
5029 5031                                  list_t *deadlist =
5030 5032                                      &cp->cache_defrag->kmd_deadlist;
5031 5033                                  list_remove(deadlist, sp);
5032 5034  
5033 5035                                  if (!avl_is_empty(
5034 5036                                      &cp->cache_defrag->kmd_moves_pending)) {
5035 5037                                          /*
5036 5038                                           * A pending move makes it unsafe to
5037 5039                                           * destroy the slab, because even though
5038 5040                                           * the move is no longer needed, the
5039 5041                                           * context where that is determined
5040 5042                                           * requires the slab to exist.
5041 5043                                           * Fortunately, a pending move also
5042 5044                                           * means we don't need to destroy the
5043 5045                                           * slab here, since it will get
5044 5046                                           * destroyed along with any other slabs
5045 5047                                           * on the deadlist after the last
5046 5048                                           * pending move completes.
5047 5049                                           */
5048 5050                                          list_insert_head(deadlist, sp);
5049 5051                                          return (-1);
5050 5052                                  }
5051 5053  
5052 5054                                  /*
5053 5055                                   * Destroy the slab now if it was completely
5054 5056                                   * freed while we dropped cache_lock and there
5055 5057                                   * are no pending moves. Since slab_refcnt
5056 5058                                   * cannot change once it reaches zero, no new
5057 5059                                   * pending moves from that slab are possible.
5058 5060                                   */
5059 5061                                  cp->cache_defrag->kmd_deadcount--;
5060 5062                                  cp->cache_slab_destroy++;
5061 5063                                  mutex_exit(&cp->cache_lock);
5062 5064                                  kmem_slab_destroy(cp, sp);
5063 5065                                  mutex_enter(&cp->cache_lock);
5064 5066                                  /*
5065 5067                                   * Since we can't pick up the scan where we left
5066 5068                                   * off, abort the scan and say nothing about the
5067 5069                                   * number of reclaimable slabs.
5068 5070                                   */
5069 5071                                  return (-1);
5070 5072                          }
5071 5073  
5072 5074                          if (!success) {
5073 5075                                  /*
5074 5076                                   * Abort the scan if there is not enough memory
5075 5077                                   * for the request and say nothing about the
5076 5078                                   * number of reclaimable slabs.
5077 5079                                   */
5078 5080                                  return (-1);
5079 5081                          }
5080 5082  
5081 5083                          /*
5082 5084                           * The slab's position changed while the lock was
5083 5085                           * dropped, so we don't know where we are in the
5084 5086                           * sequence any more.
5085 5087                           */
5086 5088                          if (sp->slab_refcnt != refcnt) {
5087 5089                                  /*
5088 5090                                   * If this is a KMM_DEBUG move, the slab_refcnt
5089 5091                                   * may have changed because we allocated a
5090 5092                                   * destination buffer on the same slab. In that
5091 5093                                   * case, we're not interested in counting it.
5092 5094                                   */
5093 5095                                  return (-1);
5094 5096                          }
5095 5097                          if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5096 5098                                  return (-1);
5097 5099  
5098 5100                          /*
5099 5101                           * Generating a move request allocates a destination
5100 5102                           * buffer from the slab layer, bumping the first partial
5101 5103                           * slab if it is completely allocated. If the current
5102 5104                           * slab becomes the first partial slab as a result, we
5103 5105                           * can't continue to scan backwards.
5104 5106                           *
5105 5107                           * If this is a KMM_DEBUG move and we allocated the
5106 5108                           * destination buffer from the last partial slab, then
5107 5109                           * the buffer we're moving is on the same slab and our
5108 5110                           * slab_refcnt has changed, causing us to return before
5109 5111                           * reaching here if there are no partial slabs left.
5110 5112                           */
5111 5113                          ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5112 5114                          if (sp == avl_first(&cp->cache_partial_slabs)) {
5113 5115                                  /*
5114 5116                                   * We're not interested in a second KMM_DEBUG
5115 5117                                   * move.
5116 5118                                   */
5117 5119                                  goto end_scan;
5118 5120                          }
5119 5121                  }
5120 5122          }
5121 5123  end_scan:
5122 5124  
5123 5125          return (s);
5124 5126  }
5125 5127  
5126 5128  typedef struct kmem_move_notify_args {
5127 5129          kmem_cache_t *kmna_cache;
5128 5130          void *kmna_buf;
5129 5131  } kmem_move_notify_args_t;
5130 5132  
5131 5133  static void
5132 5134  kmem_cache_move_notify_task(void *arg)
5133 5135  {
5134 5136          kmem_move_notify_args_t *args = arg;
5135 5137          kmem_cache_t *cp = args->kmna_cache;
5136 5138          void *buf = args->kmna_buf;
5137 5139          kmem_slab_t *sp;
5138 5140  
5139 5141          ASSERT(taskq_member(kmem_taskq, curthread));
5140 5142          ASSERT(list_link_active(&cp->cache_link));
5141 5143  
5142 5144          kmem_free(args, sizeof (kmem_move_notify_args_t));
5143 5145          mutex_enter(&cp->cache_lock);
5144 5146          sp = kmem_slab_allocated(cp, NULL, buf);
5145 5147  
5146 5148          /* Ignore the notification if the buffer is no longer allocated. */
5147 5149          if (sp == NULL) {
5148 5150                  mutex_exit(&cp->cache_lock);
5149 5151                  return;
5150 5152          }
5151 5153  
5152 5154          /* Ignore the notification if there's no reason to move the buffer. */
5153 5155          if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5154 5156                  /*
5155 5157                   * So far the notification is not ignored. Ignore the
5156 5158                   * notification if the slab is not marked by an earlier refusal
5157 5159                   * to move a buffer.
5158 5160                   */
5159 5161                  if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5160 5162                      (sp->slab_later_count == 0)) {
5161 5163                          mutex_exit(&cp->cache_lock);
5162 5164                          return;
5163 5165                  }
5164 5166  
5165 5167                  kmem_slab_move_yes(cp, sp, buf);
5166 5168                  ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5167 5169                  sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5168 5170                  mutex_exit(&cp->cache_lock);
5169 5171                  /* see kmem_move_buffers() about dropping the lock */
5170 5172                  (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5171 5173                  mutex_enter(&cp->cache_lock);
5172 5174                  ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5173 5175                  sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5174 5176                  if (sp->slab_refcnt == 0) {
5175 5177                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5176 5178                          list_remove(deadlist, sp);
5177 5179  
5178 5180                          if (!avl_is_empty(
5179 5181                              &cp->cache_defrag->kmd_moves_pending)) {
5180 5182                                  list_insert_head(deadlist, sp);
5181 5183                                  mutex_exit(&cp->cache_lock);
5182 5184                                  return;
5183 5185                          }
5184 5186  
5185 5187                          cp->cache_defrag->kmd_deadcount--;
5186 5188                          cp->cache_slab_destroy++;
5187 5189                          mutex_exit(&cp->cache_lock);
5188 5190                          kmem_slab_destroy(cp, sp);
5189 5191                          return;
5190 5192                  }
5191 5193          } else {
5192 5194                  kmem_slab_move_yes(cp, sp, buf);
5193 5195          }
5194 5196          mutex_exit(&cp->cache_lock);
5195 5197  }
5196 5198  
5197 5199  void
5198 5200  kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5199 5201  {
5200 5202          kmem_move_notify_args_t *args;
5201 5203  
5202 5204          args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5203 5205          if (args != NULL) {
5204 5206                  args->kmna_cache = cp;
5205 5207                  args->kmna_buf = buf;
5206 5208                  if (!taskq_dispatch(kmem_taskq,
5207 5209                      (task_func_t *)kmem_cache_move_notify_task, args,
5208 5210                      TQ_NOSLEEP))
5209 5211                          kmem_free(args, sizeof (kmem_move_notify_args_t));
5210 5212          }
5211 5213  }
5212 5214  
5213 5215  static void
5214 5216  kmem_cache_defrag(kmem_cache_t *cp)
5215 5217  {
5216 5218          size_t n;
5217 5219  
5218 5220          ASSERT(cp->cache_defrag != NULL);
5219 5221  
5220 5222          mutex_enter(&cp->cache_lock);
5221 5223          n = avl_numnodes(&cp->cache_partial_slabs);
5222 5224          if (n > 1) {
5223 5225                  /* kmem_move_buffers() drops and reacquires cache_lock */
5224 5226                  cp->cache_defrag->kmd_defrags++;
5225 5227                  (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5226 5228          }
5227 5229          mutex_exit(&cp->cache_lock);
5228 5230  }
5229 5231  
5230 5232  /* Is this cache above the fragmentation threshold? */
5231 5233  static boolean_t
5232 5234  kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5233 5235  {
5234 5236          /*
5235 5237           *      nfree           kmem_frag_numer
5236 5238           * ------------------ > ---------------
5237 5239           * cp->cache_buftotal   kmem_frag_denom
5238 5240           */
5239 5241          return ((nfree * kmem_frag_denom) >
5240 5242              (cp->cache_buftotal * kmem_frag_numer));
5241 5243  }
5242 5244  
5243 5245  static boolean_t
5244 5246  kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5245 5247  {
5246 5248          boolean_t fragmented;
5247 5249          uint64_t nfree;
5248 5250  
5249 5251          ASSERT(MUTEX_HELD(&cp->cache_lock));
5250 5252          *doreap = B_FALSE;
5251 5253  
5252 5254          if (kmem_move_fulltilt) {
5253 5255                  if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5254 5256                          return (B_TRUE);
5255 5257                  }
5256 5258          } else {
5257 5259                  if ((cp->cache_complete_slab_count + avl_numnodes(
5258 5260                      &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5259 5261                          return (B_FALSE);
5260 5262                  }
5261 5263          }
5262 5264  
5263 5265          nfree = cp->cache_bufslab;
5264 5266          fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5265 5267              kmem_cache_frag_threshold(cp, nfree));
5266 5268  
5267 5269          /*
5268 5270           * Free buffers in the magazine layer appear allocated from the point of
5269 5271           * view of the slab layer. We want to know if the slab layer would
5270 5272           * appear fragmented if we included free buffers from magazines that
5271 5273           * have fallen out of the working set.
5272 5274           */
5273 5275          if (!fragmented) {
5274 5276                  long reap;
5275 5277  
5276 5278                  mutex_enter(&cp->cache_depot_lock);
5277 5279                  reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5278 5280                  reap = MIN(reap, cp->cache_full.ml_total);
5279 5281                  mutex_exit(&cp->cache_depot_lock);
5280 5282  
5281 5283                  nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5282 5284                  if (kmem_cache_frag_threshold(cp, nfree)) {
5283 5285                          *doreap = B_TRUE;
5284 5286                  }
5285 5287          }
5286 5288  
5287 5289          return (fragmented);
5288 5290  }
5289 5291  
5290 5292  /* Called periodically from kmem_taskq */
5291 5293  static void
5292 5294  kmem_cache_scan(kmem_cache_t *cp)
5293 5295  {
5294 5296          boolean_t reap = B_FALSE;
5295 5297          kmem_defrag_t *kmd;
5296 5298  
5297 5299          ASSERT(taskq_member(kmem_taskq, curthread));
5298 5300  
5299 5301          mutex_enter(&cp->cache_lock);
5300 5302  
5301 5303          kmd = cp->cache_defrag;
5302 5304          if (kmd->kmd_consolidate > 0) {
5303 5305                  kmd->kmd_consolidate--;
5304 5306                  mutex_exit(&cp->cache_lock);
5305 5307                  kmem_cache_reap(cp);
5306 5308                  return;
5307 5309          }
5308 5310  
5309 5311          if (kmem_cache_is_fragmented(cp, &reap)) {
5310 5312                  size_t slabs_found;
5311 5313  
5312 5314                  /*
5313 5315                   * Consolidate reclaimable slabs from the end of the partial
5314 5316                   * slab list (scan at most kmem_reclaim_scan_range slabs to find
5315 5317                   * reclaimable slabs). Keep track of how many candidate slabs we
5316 5318                   * looked for and how many we actually found so we can adjust
5317 5319                   * the definition of a candidate slab if we're having trouble
5318 5320                   * finding them.
5319 5321                   *
5320 5322                   * kmem_move_buffers() drops and reacquires cache_lock.
5321 5323                   */
5322 5324                  kmd->kmd_scans++;
5323 5325                  slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5324 5326                      kmem_reclaim_max_slabs, 0);
5325 5327                  if (slabs_found >= 0) {
5326 5328                          kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5327 5329                          kmd->kmd_slabs_found += slabs_found;
5328 5330                  }
5329 5331  
5330 5332                  if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5331 5333                          kmd->kmd_tries = 0;
5332 5334  
5333 5335                          /*
5334 5336                           * If we had difficulty finding candidate slabs in
5335 5337                           * previous scans, adjust the threshold so that
5336 5338                           * candidates are easier to find.
5337 5339                           */
5338 5340                          if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5339 5341                                  kmem_adjust_reclaim_threshold(kmd, -1);
5340 5342                          } else if ((kmd->kmd_slabs_found * 2) <
5341 5343                              kmd->kmd_slabs_sought) {
5342 5344                                  kmem_adjust_reclaim_threshold(kmd, 1);
5343 5345                          }
5344 5346                          kmd->kmd_slabs_sought = 0;
5345 5347                          kmd->kmd_slabs_found = 0;
5346 5348                  }
5347 5349          } else {
5348 5350                  kmem_reset_reclaim_threshold(cp->cache_defrag);
5349 5351  #ifdef  DEBUG
5350 5352                  if (!avl_is_empty(&cp->cache_partial_slabs)) {
5351 5353                          /*
5352 5354                           * In a debug kernel we want the consolidator to
5353 5355                           * run occasionally even when there is plenty of
5354 5356                           * memory.
5355 5357                           */
5356 5358                          uint16_t debug_rand;
5357 5359  
5358 5360                          (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5359 5361                          if (!kmem_move_noreap &&
5360 5362                              ((debug_rand % kmem_mtb_reap) == 0)) {
5361 5363                                  mutex_exit(&cp->cache_lock);
5362 5364                                  kmem_cache_reap(cp);
5363 5365                                  return;
5364 5366                          } else if ((debug_rand % kmem_mtb_move) == 0) {
5365 5367                                  kmd->kmd_scans++;
5366 5368                                  (void) kmem_move_buffers(cp,
5367 5369                                      kmem_reclaim_scan_range, 1, KMM_DEBUG);
5368 5370                          }
5369 5371                  }
5370 5372  #endif  /* DEBUG */
5371 5373          }
5372 5374  
5373 5375          mutex_exit(&cp->cache_lock);
5374 5376  
5375 5377          if (reap)
5376 5378                  kmem_depot_ws_reap(cp);
5377 5379  }
  
    | 
      ↓ open down ↓ | 
    3935 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX