1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /*
  26  * This file contains the source of the general purpose event channel extension
  27  * to the sysevent framework. This implementation is made up mainly of four
  28  * layers of functionality: the event queues (evch_evq_*()), the handling of
  29  * channels (evch_ch*()), the kernel interface (sysevent_evc_*()) and the
  30  * interface for the sysevent pseudo driver (evch_usr*()).
  31  * Libsysevent.so uses the pseudo driver sysevent's ioctl to access the event
  32  * channel extensions. The driver in turn uses the evch_usr*() functions below.
  33  *
  34  * The interfaces for user land and kernel are declared in sys/sysevent.h
  35  * Internal data structures for event channels are defined in
  36  * sys/sysevent_impl.h.
  37  *
  38  * The basic data structure for an event channel is of type evch_chan_t.
  39  * All channels are maintained by a list named evch_list. The list head
  40  * is of type evch_dlist_t.
  41  */
  42 
  43 #include <sys/types.h>
  44 #include <sys/errno.h>
  45 #include <sys/stropts.h>
  46 #include <sys/debug.h>
  47 #include <sys/ddi.h>
  48 #include <sys/vmem.h>
  49 #include <sys/cmn_err.h>
  50 #include <sys/callb.h>
  51 #include <sys/sysevent.h>
  52 #include <sys/sysevent_impl.h>
  53 #include <sys/sysmacros.h>
  54 #include <sys/disp.h>
  55 #include <sys/atomic.h>
  56 #include <sys/door.h>
  57 #include <sys/zone.h>
  58 #include <sys/sdt.h>
  59 
  60 /* Back-off delay for door_ki_upcall */
  61 #define EVCH_MIN_PAUSE  8
  62 #define EVCH_MAX_PAUSE  128
  63 
  64 #define GEVENT(ev)      ((evch_gevent_t *)((char *)ev - \
  65                             offsetof(evch_gevent_t, ge_payload)))
  66 
  67 #define EVCH_EVQ_EVCOUNT(x)     ((&(x)->eq_eventq)->sq_count)
  68 #define EVCH_EVQ_HIGHWM(x)      ((&(x)->eq_eventq)->sq_highwm)
  69 
  70 #define CH_HOLD_PEND            1
  71 #define CH_HOLD_PEND_INDEF      2
  72 
  73 struct evch_globals {
  74         evch_dlist_t evch_list;
  75         kmutex_t evch_list_lock;
  76 };
  77 
  78 /* Variables used by event channel routines */
  79 static int              evq_initcomplete = 0;
  80 static zone_key_t       evch_zone_key;
  81 static uint32_t         evch_channels_max;
  82 static uint32_t         evch_bindings_max = EVCH_MAX_BINDS_PER_CHANNEL;
  83 static uint32_t         evch_events_max;
  84 
  85 static void evch_evq_unsub(evch_eventq_t *, evch_evqsub_t *);
  86 static void evch_evq_destroy(evch_eventq_t *);
  87 
  88 /*
  89  * List handling. These functions handle a doubly linked list. The list has
  90  * to be protected by the calling functions. evch_dlist_t is the list head.
  91  * Every node of the list has to put a evch_dlelem_t data type in its data
  92  * structure as its first element.
  93  *
  94  * evch_dl_init         - Initialize list head
  95  * evch_dl_fini         - Terminate list handling
  96  * evch_dl_is_init      - Returns one if list is initialized
  97  * evch_dl_add          - Add element to end of list
  98  * evch_dl_del          - Remove given element from list
  99  * evch_dl_search       - Lookup element in list
 100  * evch_dl_getnum       - Get number of elements in list
 101  * evch_dl_next         - Get next elements of list
 102  */
 103 
 104 static void
 105 evch_dl_init(evch_dlist_t *hp)
 106 {
 107         hp->dh_head.dl_prev = hp->dh_head.dl_next = &hp->dh_head;
 108         hp->dh_count = 0;
 109 }
 110 
 111 /*
 112  * Assumes that list is empty.
 113  */
 114 static void
 115 evch_dl_fini(evch_dlist_t *hp)
 116 {
 117         hp->dh_head.dl_prev = hp->dh_head.dl_next = NULL;
 118 }
 119 
 120 static int
 121 evch_dl_is_init(evch_dlist_t *hp)
 122 {
 123         return (hp->dh_head.dl_next != NULL ? 1 : 0);
 124 }
 125 
 126 /*
 127  * Add an element at the end of the list.
 128  */
 129 static void
 130 evch_dl_add(evch_dlist_t *hp, evch_dlelem_t *el)
 131 {
 132         evch_dlelem_t   *x = hp->dh_head.dl_prev;
 133         evch_dlelem_t   *y = &hp->dh_head;
 134 
 135         x->dl_next = el;
 136         y->dl_prev = el;
 137         el->dl_next = y;
 138         el->dl_prev = x;
 139         hp->dh_count++;
 140 }
 141 
 142 /*
 143  * Remove arbitrary element out of dlist.
 144  */
 145 static void
 146 evch_dl_del(evch_dlist_t *hp, evch_dlelem_t *p)
 147 {
 148         ASSERT(hp->dh_count > 0 && p != &hp->dh_head);
 149         p->dl_prev->dl_next = p->dl_next;
 150         p->dl_next->dl_prev = p->dl_prev;
 151         p->dl_prev = NULL;
 152         p->dl_next = NULL;
 153         hp->dh_count--;
 154 }
 155 
 156 /*
 157  * Search an element in a list. Caller provides comparison callback function.
 158  */
 159 static evch_dlelem_t *
 160 evch_dl_search(evch_dlist_t *hp, int (*cmp)(evch_dlelem_t *, char *), char *s)
 161 {
 162         evch_dlelem_t *p;
 163 
 164         for (p = hp->dh_head.dl_next; p != &hp->dh_head; p = p->dl_next) {
 165                 if (cmp(p, s) == 0) {
 166                         return (p);
 167                 }
 168         }
 169         return (NULL);
 170 }
 171 
 172 /*
 173  * Return number of elements in the list.
 174  */
 175 static int
 176 evch_dl_getnum(evch_dlist_t *hp)
 177 {
 178         return (hp->dh_count);
 179 }
 180 
 181 /*
 182  * Find next element of a evch_dlist_t list. Find first element if el == NULL.
 183  * Returns NULL if end of list is reached.
 184  */
 185 static void *
 186 evch_dl_next(evch_dlist_t *hp, void *el)
 187 {
 188         evch_dlelem_t *ep = (evch_dlelem_t *)el;
 189 
 190         if (hp->dh_count == 0) {
 191                 return (NULL);
 192         }
 193         if (ep == NULL) {
 194                 return (hp->dh_head.dl_next);
 195         }
 196         if ((ep = ep->dl_next) == (evch_dlelem_t *)hp) {
 197                 return (NULL);
 198         }
 199         return ((void *)ep);
 200 }
 201 
 202 /*
 203  * Queue handling routines. Mutexes have to be entered previously.
 204  *
 205  * evch_q_init  - Initialize queue head
 206  * evch_q_in    - Put element into queue
 207  * evch_q_out   - Get element out of queue
 208  * evch_q_next  - Iterate over the elements of a queue
 209  */
 210 static void
 211 evch_q_init(evch_squeue_t *q)
 212 {
 213         q->sq_head = NULL;
 214         q->sq_tail = (evch_qelem_t *)q;
 215         q->sq_count = 0;
 216         q->sq_highwm = 0;
 217 }
 218 
 219 /*
 220  * Put element into the queue q
 221  */
 222 static void
 223 evch_q_in(evch_squeue_t *q, evch_qelem_t *el)
 224 {
 225         q->sq_tail->q_next = el;
 226         el->q_next = NULL;
 227         q->sq_tail = el;
 228         q->sq_count++;
 229         if (q->sq_count > q->sq_highwm) {
 230                 q->sq_highwm = q->sq_count;
 231         }
 232 }
 233 
 234 /*
 235  * Returns NULL if queue is empty.
 236  */
 237 static evch_qelem_t *
 238 evch_q_out(evch_squeue_t *q)
 239 {
 240         evch_qelem_t *el;
 241 
 242         if ((el = q->sq_head) != NULL) {
 243                 q->sq_head = el->q_next;
 244                 q->sq_count--;
 245                 if (q->sq_head == NULL) {
 246                         q->sq_tail = (evch_qelem_t *)q;
 247                 }
 248         }
 249         return (el);
 250 }
 251 
 252 /*
 253  * Returns element after *el or first if el == NULL. NULL is returned
 254  * if queue is empty or *el points to the last element in the queue.
 255  */
 256 static evch_qelem_t *
 257 evch_q_next(evch_squeue_t *q, evch_qelem_t *el)
 258 {
 259         if (el == NULL)
 260                 return (q->sq_head);
 261         return (el->q_next);
 262 }
 263 
 264 /*
 265  * Event queue handling functions. An event queue is the basic building block
 266  * of an event channel. One event queue makes up the publisher-side event queue.
 267  * Further event queues build the per-subscriber queues of an event channel.
 268  * Each queue is associated an event delivery thread.
 269  * These functions support a two-step initialization. First step, when kernel
 270  * memory is ready and second when threads are ready.
 271  * Events consist of an administrating evch_gevent_t structure with the event
 272  * data appended as variable length payload.
 273  * The internal interface functions for the event queue handling are:
 274  *
 275  * evch_evq_create      - create an event queue
 276  * evch_evq_thrcreate   - create thread for an event queue.
 277  * evch_evq_destroy     - delete an event queue
 278  * evch_evq_sub         - Subscribe to event delivery from an event queue
 279  * evch_evq_unsub       - Unsubscribe
 280  * evch_evq_pub         - Post an event into an event queue
 281  * evch_evq_stop        - Put delivery thread on hold
 282  * evch_evq_continue    - Resume event delivery thread
 283  * evch_evq_status      - Return status of delivery thread, running or on hold
 284  * evch_evq_evzalloc    - Allocate an event structure
 285  * evch_evq_evfree      - Free an event structure
 286  * evch_evq_evadd_dest  - Add a destructor function to an event structure
 287  * evch_evq_evnext      - Iterate over events non-destructive
 288  */
 289 
 290 /*ARGSUSED*/
 291 static void *
 292 evch_zoneinit(zoneid_t zoneid)
 293 {
 294         struct evch_globals *eg;
 295 
 296         eg = kmem_zalloc(sizeof (*eg), KM_SLEEP);
 297         evch_dl_init(&eg->evch_list);
 298         return (eg);
 299 }
 300 
 301 /*ARGSUSED*/
 302 static void
 303 evch_zonefree(zoneid_t zoneid, void *arg)
 304 {
 305         struct evch_globals *eg = arg;
 306         evch_chan_t *chp;
 307         evch_subd_t *sdp;
 308 
 309         mutex_enter(&eg->evch_list_lock);
 310 
 311         /*
 312          * Keep picking the head element off the list until there are no
 313          * more.
 314          */
 315         while ((chp = evch_dl_next(&eg->evch_list, NULL)) != NULL) {
 316 
 317                 /*
 318                  * Since all processes are gone, all bindings should be gone,
 319                  * and only channels with SUB_KEEP subscribers should remain.
 320                  */
 321                 mutex_enter(&chp->ch_mutex);
 322                 ASSERT(chp->ch_bindings == 0);
 323                 ASSERT(evch_dl_getnum(&chp->ch_subscr) != 0 ||
 324                     chp->ch_holdpend == CH_HOLD_PEND_INDEF);
 325 
 326                 /* Forcibly unsubscribe each remaining subscription */
 327                 while ((sdp = evch_dl_next(&chp->ch_subscr, NULL)) != NULL) {
 328                         /*
 329                          * We should only be tearing down persistent
 330                          * subscribers at this point, since all processes
 331                          * from this zone are gone.
 332                          */
 333                         ASSERT(sdp->sd_active == 0);
 334                         ASSERT((sdp->sd_persist & EVCH_SUB_KEEP) != 0);
 335                         /*
 336                          * Disconnect subscriber queue from main event queue.
 337                          */
 338                         evch_evq_unsub(chp->ch_queue, sdp->sd_msub);
 339 
 340                         /* Destruct per subscriber queue */
 341                         evch_evq_unsub(sdp->sd_queue, sdp->sd_ssub);
 342                         evch_evq_destroy(sdp->sd_queue);
 343                         /*
 344                          * Eliminate the subscriber data from channel list.
 345                          */
 346                         evch_dl_del(&chp->ch_subscr, &sdp->sd_link);
 347                         kmem_free(sdp->sd_classname, sdp->sd_clnsize);
 348                         kmem_free(sdp->sd_ident, strlen(sdp->sd_ident) + 1);
 349                         kmem_free(sdp, sizeof (evch_subd_t));
 350                 }
 351 
 352                 /* Channel must now have no subscribers */
 353                 ASSERT(evch_dl_getnum(&chp->ch_subscr) == 0);
 354 
 355                 /* Just like unbind */
 356                 mutex_exit(&chp->ch_mutex);
 357                 evch_dl_del(&eg->evch_list, &chp->ch_link);
 358                 evch_evq_destroy(chp->ch_queue);
 359                 mutex_destroy(&chp->ch_mutex);
 360                 mutex_destroy(&chp->ch_pubmx);
 361                 cv_destroy(&chp->ch_pubcv);
 362                 kmem_free(chp->ch_name, chp->ch_namelen);
 363                 kmem_free(chp, sizeof (evch_chan_t));
 364         }
 365 
 366         mutex_exit(&eg->evch_list_lock);
 367         /* all channels should now be gone */
 368         ASSERT(evch_dl_getnum(&eg->evch_list) == 0);
 369         kmem_free(eg, sizeof (*eg));
 370 }
 371 
 372 /*
 373  * Frees evch_gevent_t structure including the payload, if the reference count
 374  * drops to or below zero. Below zero happens when the event is freed
 375  * without beeing queued into a queue.
 376  */
 377 static void
 378 evch_gevent_free(evch_gevent_t *evp)
 379 {
 380         int32_t refcnt;
 381 
 382         refcnt = (int32_t)atomic_dec_32_nv(&evp->ge_refcount);
 383         if (refcnt <= 0) {
 384                 if (evp->ge_destruct != NULL) {
 385                         evp->ge_destruct((void *)&(evp->ge_payload),
 386                             evp->ge_dstcookie);
 387                 }
 388                 kmem_free(evp, evp->ge_size);
 389         }
 390 }
 391 
 392 /*
 393  * Deliver is called for every subscription to the current event
 394  * It calls the registered filter function and then the registered delivery
 395  * callback routine. Returns 0 on success. The callback routine returns
 396  * EVQ_AGAIN or EVQ_SLEEP in case the event could not be delivered.
 397  */
 398 static int
 399 evch_deliver(evch_evqsub_t *sp, evch_gevent_t *ep)
 400 {
 401         void            *uep = &ep->ge_payload;
 402         int             res = EVQ_DELIVER;
 403 
 404         if (sp->su_filter != NULL) {
 405                 res = sp->su_filter(uep, sp->su_fcookie);
 406         }
 407         if (res == EVQ_DELIVER) {
 408                 return (sp->su_callb(uep, sp->su_cbcookie));
 409         }
 410         return (0);
 411 }
 412 
 413 /*
 414  * Holds event delivery in case of eq_holdmode set or in case the
 415  * event queue is empty. Mutex must be held when called.
 416  * Wakes up a thread waiting for the delivery thread reaching the hold mode.
 417  */
 418 static void
 419 evch_delivery_hold(evch_eventq_t *eqp, callb_cpr_t *cpip)
 420 {
 421         if (eqp->eq_tabortflag == 0) {
 422                 do {
 423                         if (eqp->eq_holdmode) {
 424                                 cv_signal(&eqp->eq_onholdcv);
 425                         }
 426                         CALLB_CPR_SAFE_BEGIN(cpip);
 427                         cv_wait(&eqp->eq_thrsleepcv, &eqp->eq_queuemx);
 428                         CALLB_CPR_SAFE_END(cpip, &eqp->eq_queuemx);
 429                 } while (eqp->eq_holdmode);
 430         }
 431 }
 432 
 433 /*
 434  * Event delivery thread. Enumerates all subscribers and calls evch_deliver()
 435  * for each one.
 436  */
 437 static void
 438 evch_delivery_thr(evch_eventq_t *eqp)
 439 {
 440         evch_qelem_t    *qep;
 441         callb_cpr_t     cprinfo;
 442         int             res;
 443         evch_evqsub_t   *sub;
 444         int             deltime;
 445         int             repeatcount;
 446         char            thnam[32];
 447 
 448         (void) snprintf(thnam, sizeof (thnam), "sysevent_chan-%d",
 449             (int)eqp->eq_thrid);
 450         CALLB_CPR_INIT(&cprinfo, &eqp->eq_queuemx, callb_generic_cpr, thnam);
 451         mutex_enter(&eqp->eq_queuemx);
 452         while (eqp->eq_tabortflag == 0) {
 453                 while (eqp->eq_holdmode == 0 && eqp->eq_tabortflag == 0 &&
 454                     (qep = evch_q_out(&eqp->eq_eventq)) != NULL) {
 455 
 456                         /* Filter and deliver event to all subscribers */
 457                         deltime = EVCH_MIN_PAUSE;
 458                         repeatcount = EVCH_MAX_TRY_DELIVERY;
 459                         eqp->eq_curevent = qep->q_objref;
 460                         sub = evch_dl_next(&eqp->eq_subscr, NULL);
 461                         while (sub != NULL) {
 462                                 eqp->eq_dactive = 1;
 463                                 mutex_exit(&eqp->eq_queuemx);
 464                                 res = evch_deliver(sub, qep->q_objref);
 465                                 mutex_enter(&eqp->eq_queuemx);
 466                                 eqp->eq_dactive = 0;
 467                                 cv_signal(&eqp->eq_dactivecv);
 468                                 switch (res) {
 469                                 case EVQ_SLEEP:
 470                                         /*
 471                                          * Wait for subscriber to return.
 472                                          */
 473                                         eqp->eq_holdmode = 1;
 474                                         evch_delivery_hold(eqp, &cprinfo);
 475                                         if (eqp->eq_tabortflag) {
 476                                                 break;
 477                                         }
 478                                         continue;
 479                                 case EVQ_AGAIN:
 480                                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
 481                                         mutex_exit(&eqp->eq_queuemx);
 482                                         delay(deltime);
 483                                         deltime =
 484                                             deltime > EVCH_MAX_PAUSE ?
 485                                             deltime : deltime << 1;
 486                                         mutex_enter(&eqp->eq_queuemx);
 487                                         CALLB_CPR_SAFE_END(&cprinfo,
 488                                             &eqp->eq_queuemx);
 489                                         if (repeatcount-- > 0) {
 490                                                 continue;
 491                                         }
 492                                         break;
 493                                 }
 494                                 if (eqp->eq_tabortflag) {
 495                                         break;
 496                                 }
 497                                 sub = evch_dl_next(&eqp->eq_subscr, sub);
 498                                 repeatcount = EVCH_MAX_TRY_DELIVERY;
 499                         }
 500                         eqp->eq_curevent = NULL;
 501 
 502                         /* Free event data and queue element */
 503                         evch_gevent_free((evch_gevent_t *)qep->q_objref);
 504                         kmem_free(qep, qep->q_objsize);
 505                 }
 506 
 507                 /* Wait for next event or end of hold mode if set */
 508                 evch_delivery_hold(eqp, &cprinfo);
 509         }
 510         CALLB_CPR_EXIT(&cprinfo);   /* Does mutex_exit of eqp->eq_queuemx */
 511         thread_exit();
 512 }
 513 
 514 /*
 515  * Create the event delivery thread for an existing event queue.
 516  */
 517 static void
 518 evch_evq_thrcreate(evch_eventq_t *eqp)
 519 {
 520         kthread_t *thp;
 521 
 522         thp = thread_create(NULL, 0, evch_delivery_thr, (char *)eqp, 0, &p0,
 523             TS_RUN, minclsyspri);
 524         eqp->eq_thrid = thp->t_did;
 525 }
 526 
 527 /*
 528  * Create event queue.
 529  */
 530 static evch_eventq_t *
 531 evch_evq_create()
 532 {
 533         evch_eventq_t *p;
 534 
 535         /* Allocate and initialize event queue descriptor */
 536         p = kmem_zalloc(sizeof (evch_eventq_t), KM_SLEEP);
 537         mutex_init(&p->eq_queuemx, NULL, MUTEX_DEFAULT, NULL);
 538         cv_init(&p->eq_thrsleepcv, NULL, CV_DEFAULT, NULL);
 539         evch_q_init(&p->eq_eventq);
 540         evch_dl_init(&p->eq_subscr);
 541         cv_init(&p->eq_dactivecv, NULL, CV_DEFAULT, NULL);
 542         cv_init(&p->eq_onholdcv, NULL, CV_DEFAULT, NULL);
 543 
 544         /* Create delivery thread */
 545         if (evq_initcomplete) {
 546                 evch_evq_thrcreate(p);
 547         }
 548         return (p);
 549 }
 550 
 551 /*
 552  * Destroy an event queue. All subscribers have to be unsubscribed prior to
 553  * this call.
 554  */
 555 static void
 556 evch_evq_destroy(evch_eventq_t *eqp)
 557 {
 558         evch_qelem_t *qep;
 559 
 560         ASSERT(evch_dl_getnum(&eqp->eq_subscr) == 0);
 561         /* Kill delivery thread */
 562         if (eqp->eq_thrid != NULL) {
 563                 mutex_enter(&eqp->eq_queuemx);
 564                 eqp->eq_tabortflag = 1;
 565                 eqp->eq_holdmode = 0;
 566                 cv_signal(&eqp->eq_thrsleepcv);
 567                 mutex_exit(&eqp->eq_queuemx);
 568                 thread_join(eqp->eq_thrid);
 569         }
 570 
 571         /* Get rid of stale events in the event queue */
 572         while ((qep = (evch_qelem_t *)evch_q_out(&eqp->eq_eventq)) != NULL) {
 573                 evch_gevent_free((evch_gevent_t *)qep->q_objref);
 574                 kmem_free(qep, qep->q_objsize);
 575         }
 576 
 577         /* Wrap up event queue structure */
 578         cv_destroy(&eqp->eq_onholdcv);
 579         cv_destroy(&eqp->eq_dactivecv);
 580         cv_destroy(&eqp->eq_thrsleepcv);
 581         evch_dl_fini(&eqp->eq_subscr);
 582         mutex_destroy(&eqp->eq_queuemx);
 583 
 584         /* Free descriptor structure */
 585         kmem_free(eqp, sizeof (evch_eventq_t));
 586 }
 587 
 588 /*
 589  * Subscribe to an event queue. Every subscriber provides a filter callback
 590  * routine and an event delivery callback routine.
 591  */
 592 static evch_evqsub_t *
 593 evch_evq_sub(evch_eventq_t *eqp, filter_f filter, void *fcookie,
 594     deliver_f callb, void *cbcookie)
 595 {
 596         evch_evqsub_t *sp = kmem_zalloc(sizeof (evch_evqsub_t), KM_SLEEP);
 597 
 598         /* Initialize subscriber structure */
 599         sp->su_filter = filter;
 600         sp->su_fcookie = fcookie;
 601         sp->su_callb = callb;
 602         sp->su_cbcookie = cbcookie;
 603 
 604         /* Add subscription to queue */
 605         mutex_enter(&eqp->eq_queuemx);
 606         evch_dl_add(&eqp->eq_subscr, &sp->su_link);
 607         mutex_exit(&eqp->eq_queuemx);
 608         return (sp);
 609 }
 610 
 611 /*
 612  * Unsubscribe from an event queue.
 613  */
 614 static void
 615 evch_evq_unsub(evch_eventq_t *eqp, evch_evqsub_t *sp)
 616 {
 617         mutex_enter(&eqp->eq_queuemx);
 618 
 619         /* Wait if delivery is just in progress */
 620         if (eqp->eq_dactive) {
 621                 cv_wait(&eqp->eq_dactivecv, &eqp->eq_queuemx);
 622         }
 623         evch_dl_del(&eqp->eq_subscr, &sp->su_link);
 624         mutex_exit(&eqp->eq_queuemx);
 625         kmem_free(sp, sizeof (evch_evqsub_t));
 626 }
 627 
 628 /*
 629  * Publish an event. Returns 0 on success and -1 if memory alloc failed.
 630  */
 631 static int
 632 evch_evq_pub(evch_eventq_t *eqp, void *ev, int flags)
 633 {
 634         size_t size;
 635         evch_qelem_t    *qep;
 636         evch_gevent_t   *evp = GEVENT(ev);
 637 
 638         size = sizeof (evch_qelem_t);
 639         if (flags & EVCH_TRYHARD) {
 640                 qep = kmem_alloc_tryhard(size, &size, KM_NOSLEEP);
 641         } else {
 642                 qep = kmem_alloc(size, flags & EVCH_NOSLEEP ?
 643                     KM_NOSLEEP : KM_SLEEP);
 644         }
 645         if (qep == NULL) {
 646                 return (-1);
 647         }
 648         qep->q_objref = (void *)evp;
 649         qep->q_objsize = size;
 650         atomic_inc_32(&evp->ge_refcount);
 651         mutex_enter(&eqp->eq_queuemx);
 652         evch_q_in(&eqp->eq_eventq, qep);
 653 
 654         /* Wakeup delivery thread */
 655         cv_signal(&eqp->eq_thrsleepcv);
 656         mutex_exit(&eqp->eq_queuemx);
 657         return (0);
 658 }
 659 
 660 /*
 661  * Enter hold mode of an event queue. Event delivery thread stops event
 662  * handling after delivery of current event (if any).
 663  */
 664 static void
 665 evch_evq_stop(evch_eventq_t *eqp)
 666 {
 667         mutex_enter(&eqp->eq_queuemx);
 668         eqp->eq_holdmode = 1;
 669         if (evq_initcomplete) {
 670                 cv_signal(&eqp->eq_thrsleepcv);
 671                 cv_wait(&eqp->eq_onholdcv, &eqp->eq_queuemx);
 672         }
 673         mutex_exit(&eqp->eq_queuemx);
 674 }
 675 
 676 /*
 677  * Continue event delivery.
 678  */
 679 static void
 680 evch_evq_continue(evch_eventq_t *eqp)
 681 {
 682         mutex_enter(&eqp->eq_queuemx);
 683         eqp->eq_holdmode = 0;
 684         cv_signal(&eqp->eq_thrsleepcv);
 685         mutex_exit(&eqp->eq_queuemx);
 686 }
 687 
 688 /*
 689  * Returns status of delivery thread. 0 if running and 1 if on hold.
 690  */
 691 static int
 692 evch_evq_status(evch_eventq_t *eqp)
 693 {
 694         return (eqp->eq_holdmode);
 695 }
 696 
 697 /*
 698  * Add a destructor function to an event structure.
 699  */
 700 static void
 701 evch_evq_evadd_dest(void *ev, destr_f destructor, void *cookie)
 702 {
 703         evch_gevent_t *evp = GEVENT(ev);
 704 
 705         evp->ge_destruct = destructor;
 706         evp->ge_dstcookie = cookie;
 707 }
 708 
 709 /*
 710  * Allocate evch_gevent_t structure. Return address of payload offset of
 711  * evch_gevent_t.  If EVCH_TRYHARD allocation is requested, we use
 712  * kmem_alloc_tryhard to alloc memory of at least paylsize bytes.
 713  *
 714  * If either memory allocation is unsuccessful, we return NULL.
 715  */
 716 static void *
 717 evch_evq_evzalloc(size_t paylsize, int flag)
 718 {
 719         evch_gevent_t   *evp;
 720         size_t          rsize, evsize, ge_size;
 721 
 722         rsize = offsetof(evch_gevent_t, ge_payload) + paylsize;
 723         if (flag & EVCH_TRYHARD) {
 724                 evp = kmem_alloc_tryhard(rsize, &evsize, KM_NOSLEEP);
 725                 ge_size = evsize;
 726         } else {
 727                 evp = kmem_alloc(rsize, flag & EVCH_NOSLEEP ? KM_NOSLEEP :
 728                     KM_SLEEP);
 729                 ge_size = rsize;
 730         }
 731 
 732         if (evp) {
 733                 bzero(evp, rsize);
 734                 evp->ge_size = ge_size;
 735                 return (&evp->ge_payload);
 736         }
 737         return (evp);
 738 }
 739 
 740 /*
 741  * Free event structure. Argument ev is address of payload offset.
 742  */
 743 static void
 744 evch_evq_evfree(void *ev)
 745 {
 746         evch_gevent_free(GEVENT(ev));
 747 }
 748 
 749 /*
 750  * Iterate over all events in the event queue. Begin with an event
 751  * which is currently being delivered. No mutexes are grabbed and no
 752  * resources allocated so that this function can be called in panic
 753  * context too. This function has to be called with ev == NULL initially.
 754  * Actually argument ev is only a flag. Internally the member eq_nextev
 755  * is used to determine the next event. But ev allows for the convenient
 756  * use like
 757  *      ev = NULL;
 758  *      while ((ev = evch_evq_evnext(evp, ev)) != NULL) ...
 759  */
 760 static void *
 761 evch_evq_evnext(evch_eventq_t *evq, void *ev)
 762 {
 763         if (ev == NULL) {
 764                 evq->eq_nextev = NULL;
 765                 if (evq->eq_curevent != NULL)
 766                         return (&evq->eq_curevent->ge_payload);
 767         }
 768         evq->eq_nextev = evch_q_next(&evq->eq_eventq, evq->eq_nextev);
 769         if (evq->eq_nextev == NULL)
 770                 return (NULL);
 771         return (&((evch_gevent_t *)evq->eq_nextev->q_objref)->ge_payload);
 772 }
 773 
 774 /*
 775  * Channel handling functions. First some support functions. Functions belonging
 776  * to the channel handling interface start with evch_ch. The following functions
 777  * make up the channel handling internal interfaces:
 778  *
 779  * evch_chinit          - Initialize channel handling
 780  * evch_chinitthr       - Second step init: initialize threads
 781  * evch_chbind          - Bind to a channel
 782  * evch_chunbind        - Unbind from a channel
 783  * evch_chsubscribe     - Subscribe to a sysevent class
 784  * evch_chunsubscribe   - Unsubscribe
 785  * evch_chpublish       - Publish an event
 786  * evch_chgetnames      - Get names of all channels
 787  * evch_chgetchdata     - Get data of a channel
 788  * evch_chrdevent_init  - Init event q traversal
 789  * evch_chgetnextev     - Read out events queued for a subscriber
 790  * evch_chrdevent_fini  - Finish event q traversal
 791  */
 792 
 793 /*
 794  * Compare channel name. Used for evch_dl_search to find a channel with the
 795  * name s.
 796  */
 797 static int
 798 evch_namecmp(evch_dlelem_t *ep, char *s)
 799 {
 800         return (strcmp(((evch_chan_t *)ep)->ch_name, s));
 801 }
 802 
 803 /*
 804  * Simple wildcarded match test of event class string 'class' to
 805  * wildcarded subscription string 'pat'.  Recursive only if
 806  * 'pat' includes a wildcard, otherwise essentially just strcmp.
 807  */
 808 static int
 809 evch_clsmatch(char *class, const char *pat)
 810 {
 811         char c;
 812 
 813         do {
 814                 if ((c = *pat++) == '\0')
 815                         return (*class == '\0');
 816 
 817                 if (c == '*') {
 818                         while (*pat == '*')
 819                                 pat++; /* consecutive *'s can be collapsed */
 820 
 821                         if (*pat == '\0')
 822                                 return (1);
 823 
 824                         while (*class != '\0') {
 825                                 if (evch_clsmatch(class++, pat) != 0)
 826                                         return (1);
 827                         }
 828 
 829                         return (0);
 830                 }
 831         } while (c == *class++);
 832 
 833         return (0);
 834 }
 835 
 836 /*
 837  * Sysevent filter callback routine. Enables event delivery only if it matches
 838  * the event class pattern string given by parameter cookie.
 839  */
 840 static int
 841 evch_class_filter(void *ev, void *cookie)
 842 {
 843         const char *pat = (const char *)cookie;
 844 
 845         if (pat == NULL || evch_clsmatch(SE_CLASS_NAME(ev), pat))
 846                 return (EVQ_DELIVER);
 847 
 848         return (EVQ_IGNORE);
 849 }
 850 
 851 /*
 852  * Callback routine to propagate the event into a per subscriber queue.
 853  */
 854 static int
 855 evch_subq_deliver(void *evp, void *cookie)
 856 {
 857         evch_subd_t *p = (evch_subd_t *)cookie;
 858 
 859         (void) evch_evq_pub(p->sd_queue, evp, EVCH_SLEEP);
 860         return (EVQ_CONT);
 861 }
 862 
 863 /*
 864  * Call kernel callback routine for sysevent kernel delivery.
 865  */
 866 static int
 867 evch_kern_deliver(void *evp, void *cookie)
 868 {
 869         sysevent_impl_t *ev = (sysevent_impl_t *)evp;
 870         evch_subd_t     *sdp = (evch_subd_t *)cookie;
 871 
 872         return (sdp->sd_callback(ev, sdp->sd_cbcookie));
 873 }
 874 
 875 /*
 876  * Door upcall for user land sysevent delivery.
 877  */
 878 static int
 879 evch_door_deliver(void *evp, void *cookie)
 880 {
 881         int             error;
 882         size_t          size;
 883         sysevent_impl_t *ev = (sysevent_impl_t *)evp;
 884         door_arg_t      darg;
 885         evch_subd_t     *sdp = (evch_subd_t *)cookie;
 886         int             nticks = EVCH_MIN_PAUSE;
 887         uint32_t        retval;
 888         int             retry = 20;
 889 
 890         /* Initialize door args */
 891         size = sizeof (sysevent_impl_t) + SE_PAYLOAD_SZ(ev);
 892 
 893         darg.rbuf = (char *)&retval;
 894         darg.rsize = sizeof (retval);
 895         darg.data_ptr = (char *)ev;
 896         darg.data_size = size;
 897         darg.desc_ptr = NULL;
 898         darg.desc_num = 0;
 899 
 900         for (;;) {
 901                 if ((error = door_ki_upcall_limited(sdp->sd_door, &darg,
 902                     NULL, SIZE_MAX, 0)) == 0) {
 903                         break;
 904                 }
 905                 switch (error) {
 906                 case EAGAIN:
 907                         /* Cannot deliver event - process may be forking */
 908                         delay(nticks);
 909                         nticks <<= 1;
 910                         if (nticks > EVCH_MAX_PAUSE) {
 911                                 nticks = EVCH_MAX_PAUSE;
 912                         }
 913                         if (retry-- <= 0) {
 914                                 cmn_err(CE_CONT, "event delivery thread: "
 915                                     "door_ki_upcall error EAGAIN\n");
 916                                 return (EVQ_CONT);
 917                         }
 918                         break;
 919                 case EINTR:
 920                 case EBADF:
 921                         /* Process died */
 922                         return (EVQ_SLEEP);
 923                 default:
 924                         cmn_err(CE_CONT,
 925                             "event delivery thread: door_ki_upcall error %d\n",
 926                             error);
 927                         return (EVQ_CONT);
 928                 }
 929         }
 930         if (retval == EAGAIN) {
 931                 return (EVQ_AGAIN);
 932         }
 933         return (EVQ_CONT);
 934 }
 935 
 936 /*
 937  * Callback routine for evch_dl_search() to compare subscriber id's. Used by
 938  * evch_subscribe() and evch_chrdevent_init().
 939  */
 940 static int
 941 evch_subidcmp(evch_dlelem_t *ep, char *s)
 942 {
 943         return (strcmp(((evch_subd_t *)ep)->sd_ident, s));
 944 }
 945 
 946 /*
 947  * Callback routine for evch_dl_search() to find a subscriber with EVCH_SUB_DUMP
 948  * set (indicated by sub->sd_dump != 0). Used by evch_chrdevent_init() and
 949  * evch_subscribe(). Needs to returns 0 if subscriber with sd_dump set is
 950  * found.
 951  */
 952 /*ARGSUSED1*/
 953 static int
 954 evch_dumpflgcmp(evch_dlelem_t *ep, char *s)
 955 {
 956         return (((evch_subd_t *)ep)->sd_dump ? 0 : 1);
 957 }
 958 
 959 /*
 960  * Event destructor function. Used to maintain the number of events per channel.
 961  */
 962 /*ARGSUSED*/
 963 static void
 964 evch_destr_event(void *ev, void *ch)
 965 {
 966         evch_chan_t *chp = (evch_chan_t *)ch;
 967 
 968         mutex_enter(&chp->ch_pubmx);
 969         chp->ch_nevents--;
 970         cv_signal(&chp->ch_pubcv);
 971         mutex_exit(&chp->ch_pubmx);
 972 }
 973 
 974 /*
 975  * Integer square root according to Newton's iteration.
 976  */
 977 static uint32_t
 978 evch_isqrt(uint64_t n)
 979 {
 980         uint64_t        x = n >> 1;
 981         uint64_t        xn = x - 1;
 982         static uint32_t lowval[] = { 0, 1, 1, 2 };
 983 
 984         if (n < 4) {
 985                 return (lowval[n]);
 986         }
 987         while (xn < x) {
 988                 x = xn;
 989                 xn = (x + n / x) / 2;
 990         }
 991         return ((uint32_t)xn);
 992 }
 993 
 994 /*
 995  * First step sysevent channel initialization. Called when kernel memory
 996  * allocator is initialized.
 997  */
 998 static void
 999 evch_chinit()
1000 {
1001         size_t k;
1002 
1003         /*
1004          * Calculate limits: max no of channels and max no of events per
1005          * channel. The smallest machine with 128 MByte will allow for
1006          * >= 8 channels and an upper limit of 2048 events per channel.
1007          * The event limit is the number of channels times 256 (hence
1008          * the shift factor of 8). These number where selected arbitrarily.
1009          */
1010         k = kmem_maxavail() >> 20;
1011         evch_channels_max = min(evch_isqrt(k), EVCH_MAX_CHANNELS);
1012         evch_events_max = evch_channels_max << 8;
1013 
1014         /*
1015          * Will trigger creation of the global zone's evch state.
1016          */
1017         zone_key_create(&evch_zone_key, evch_zoneinit, NULL, evch_zonefree);
1018 }
1019 
1020 /*
1021  * Second step sysevent channel initialization. Called when threads are ready.
1022  */
1023 static void
1024 evch_chinitthr()
1025 {
1026         struct evch_globals *eg;
1027         evch_chan_t     *chp;
1028         evch_subd_t     *sdp;
1029 
1030         /*
1031          * We're early enough in boot that we know that only the global
1032          * zone exists; we only need to initialize its threads.
1033          */
1034         eg = zone_getspecific(evch_zone_key, global_zone);
1035         ASSERT(eg != NULL);
1036 
1037         for (chp = evch_dl_next(&eg->evch_list, NULL); chp != NULL;
1038             chp = evch_dl_next(&eg->evch_list, chp)) {
1039                 for (sdp = evch_dl_next(&chp->ch_subscr, NULL); sdp;
1040                     sdp = evch_dl_next(&chp->ch_subscr, sdp)) {
1041                         evch_evq_thrcreate(sdp->sd_queue);
1042                 }
1043                 evch_evq_thrcreate(chp->ch_queue);
1044         }
1045         evq_initcomplete = 1;
1046 }
1047 
1048 /*
1049  * Sysevent channel bind. Create channel and allocate binding structure.
1050  */
1051 static int
1052 evch_chbind(const char *chnam, evch_bind_t **scpp, uint32_t flags)
1053 {
1054         struct evch_globals *eg;
1055         evch_bind_t     *bp;
1056         evch_chan_t     *p;
1057         char            *chn;
1058         size_t          namlen;
1059         int             rv;
1060 
1061         eg = zone_getspecific(evch_zone_key, curproc->p_zone);
1062         ASSERT(eg != NULL);
1063 
1064         /* Create channel if it does not exist */
1065         ASSERT(evch_dl_is_init(&eg->evch_list));
1066         if ((namlen = strlen(chnam) + 1) > MAX_CHNAME_LEN) {
1067                 return (EINVAL);
1068         }
1069         mutex_enter(&eg->evch_list_lock);
1070         if ((p = (evch_chan_t *)evch_dl_search(&eg->evch_list, evch_namecmp,
1071             (char *)chnam)) == NULL) {
1072                 if (flags & EVCH_CREAT) {
1073                         if (evch_dl_getnum(&eg->evch_list) >=
1074                             evch_channels_max) {
1075                                 mutex_exit(&eg->evch_list_lock);
1076                                 return (ENOMEM);
1077                         }
1078                         chn = kmem_alloc(namlen, KM_SLEEP);
1079                         bcopy(chnam, chn, namlen);
1080 
1081                         /* Allocate and initialize channel descriptor */
1082                         p = kmem_zalloc(sizeof (evch_chan_t), KM_SLEEP);
1083                         p->ch_name = chn;
1084                         p->ch_namelen = namlen;
1085                         mutex_init(&p->ch_mutex, NULL, MUTEX_DEFAULT, NULL);
1086                         p->ch_queue = evch_evq_create();
1087                         evch_dl_init(&p->ch_subscr);
1088                         if (evq_initcomplete) {
1089                                 p->ch_uid = crgetuid(curthread->t_cred);
1090                                 p->ch_gid = crgetgid(curthread->t_cred);
1091                         }
1092                         cv_init(&p->ch_pubcv, NULL, CV_DEFAULT, NULL);
1093                         mutex_init(&p->ch_pubmx, NULL, MUTEX_DEFAULT, NULL);
1094                         p->ch_maxev = min(EVCH_DEFAULT_EVENTS, evch_events_max);
1095                         p->ch_maxsubscr = EVCH_MAX_SUBSCRIPTIONS;
1096                         p->ch_maxbinds = evch_bindings_max;
1097                         p->ch_ctime = gethrestime_sec();
1098 
1099                         if (flags & (EVCH_HOLD_PEND | EVCH_HOLD_PEND_INDEF)) {
1100                                 if (flags & EVCH_HOLD_PEND_INDEF)
1101                                         p->ch_holdpend = CH_HOLD_PEND_INDEF;
1102                                 else
1103                                         p->ch_holdpend = CH_HOLD_PEND;
1104 
1105                                 evch_evq_stop(p->ch_queue);
1106                         }
1107 
1108                         /* Put new descriptor into channel list */
1109                         evch_dl_add(&eg->evch_list, (evch_dlelem_t *)p);
1110                 } else {
1111                         mutex_exit(&eg->evch_list_lock);
1112                         return (ENOENT);
1113                 }
1114         }
1115 
1116         /* Check for max binds and create binding */
1117         mutex_enter(&p->ch_mutex);
1118         if (p->ch_bindings >= p->ch_maxbinds) {
1119                 rv = ENOMEM;
1120                 /*
1121                  * No need to destroy the channel because this call did not
1122                  * create it. Other bindings will be present if ch_maxbinds
1123                  * is exceeded.
1124                  */
1125                 goto errorexit;
1126         }
1127         bp = kmem_alloc(sizeof (evch_bind_t), KM_SLEEP);
1128         bp->bd_channel = p;
1129         bp->bd_sublst = NULL;
1130         p->ch_bindings++;
1131         rv = 0;
1132         *scpp = bp;
1133 errorexit:
1134         mutex_exit(&p->ch_mutex);
1135         mutex_exit(&eg->evch_list_lock);
1136         return (rv);
1137 }
1138 
1139 /*
1140  * Unbind: Free bind structure. Remove channel if last binding was freed.
1141  */
1142 static void
1143 evch_chunbind(evch_bind_t *bp)
1144 {
1145         struct evch_globals *eg;
1146         evch_chan_t *chp = bp->bd_channel;
1147 
1148         eg = zone_getspecific(evch_zone_key, curproc->p_zone);
1149         ASSERT(eg != NULL);
1150 
1151         mutex_enter(&eg->evch_list_lock);
1152         mutex_enter(&chp->ch_mutex);
1153         ASSERT(chp->ch_bindings > 0);
1154         chp->ch_bindings--;
1155         kmem_free(bp, sizeof (evch_bind_t));
1156         if (chp->ch_bindings == 0 && evch_dl_getnum(&chp->ch_subscr) == 0 &&
1157             (chp->ch_nevents == 0 || chp->ch_holdpend != CH_HOLD_PEND_INDEF)) {
1158                 /*
1159                  * No more bindings and no persistent subscriber(s).  If there
1160                  * are no events in the channel then destroy the channel;
1161                  * otherwise destroy the channel only if we're not holding
1162                  * pending events indefinitely.
1163                  */
1164                 mutex_exit(&chp->ch_mutex);
1165                 evch_dl_del(&eg->evch_list, &chp->ch_link);
1166                 evch_evq_destroy(chp->ch_queue);
1167                 nvlist_free(chp->ch_propnvl);
1168                 mutex_destroy(&chp->ch_mutex);
1169                 mutex_destroy(&chp->ch_pubmx);
1170                 cv_destroy(&chp->ch_pubcv);
1171                 kmem_free(chp->ch_name, chp->ch_namelen);
1172                 kmem_free(chp, sizeof (evch_chan_t));
1173         } else
1174                 mutex_exit(&chp->ch_mutex);
1175         mutex_exit(&eg->evch_list_lock);
1176 }
1177 
1178 static int
1179 wildcard_count(const char *class)
1180 {
1181         int count = 0;
1182         char c;
1183 
1184         if (class == NULL)
1185                 return (0);
1186 
1187         while ((c = *class++) != '\0') {
1188                 if (c == '*')
1189                         count++;
1190         }
1191 
1192         return (count);
1193 }
1194 
1195 /*
1196  * Subscribe to a channel. dtype is either EVCH_DELKERN for kernel callbacks
1197  * or EVCH_DELDOOR for door upcall delivery to user land. Depending on dtype
1198  * dinfo gives the call back routine address or the door handle.
1199  */
1200 static int
1201 evch_chsubscribe(evch_bind_t *bp, int dtype, const char *sid, const char *class,
1202     void *dinfo, void *cookie, int flags, pid_t pid)
1203 {
1204         evch_chan_t     *chp = bp->bd_channel;
1205         evch_eventq_t   *eqp = chp->ch_queue;
1206         evch_subd_t     *sdp;
1207         evch_subd_t     *esp;
1208         int             (*delivfkt)();
1209         char            *clb = NULL;
1210         int             clblen = 0;
1211         char            *subid;
1212         int             subidblen;
1213 
1214         /*
1215          * Check if only known flags are set.
1216          */
1217         if (flags & ~(EVCH_SUB_KEEP | EVCH_SUB_DUMP))
1218                 return (EINVAL);
1219 
1220         /*
1221          * Enforce a limit on the number of wildcards allowed in the class
1222          * subscription string (limits recursion in pattern matching).
1223          */
1224         if (wildcard_count(class) > EVCH_WILDCARD_MAX)
1225                 return (EINVAL);
1226 
1227         /*
1228          * Check if we have already a subscription with that name and if we
1229          * have to reconnect the subscriber to a persistent subscription.
1230          */
1231         mutex_enter(&chp->ch_mutex);
1232         if ((esp = (evch_subd_t *)evch_dl_search(&chp->ch_subscr,
1233             evch_subidcmp, (char *)sid)) != NULL) {
1234                 int error = 0;
1235                 if ((flags & EVCH_SUB_KEEP) && (esp->sd_active == 0)) {
1236                         /*
1237                          * Subscription with the name on hold, reconnect to
1238                          * existing queue.
1239                          */
1240                         ASSERT(dtype == EVCH_DELDOOR);
1241                         esp->sd_subnxt = bp->bd_sublst;
1242                         bp->bd_sublst = esp;
1243                         esp->sd_pid = pid;
1244                         esp->sd_door = (door_handle_t)dinfo;
1245                         esp->sd_active++;
1246                         evch_evq_continue(esp->sd_queue);
1247                 } else {
1248                         /* Subscriber with given name already exists */
1249                         error = EEXIST;
1250                 }
1251                 mutex_exit(&chp->ch_mutex);
1252                 return (error);
1253         }
1254 
1255         if (evch_dl_getnum(&chp->ch_subscr) >= chp->ch_maxsubscr) {
1256                 mutex_exit(&chp->ch_mutex);
1257                 return (ENOMEM);
1258         }
1259 
1260         if (flags & EVCH_SUB_DUMP && evch_dl_search(&chp->ch_subscr,
1261             evch_dumpflgcmp, NULL) != NULL) {
1262                 /*
1263                  * Subscription with EVCH_SUB_DUMP flagged already exists.
1264                  * Only one subscription with EVCH_SUB_DUMP possible. Return
1265                  * error.
1266                  */
1267                 mutex_exit(&chp->ch_mutex);
1268                 return (EINVAL);
1269         }
1270 
1271         if (class != NULL) {
1272                 clblen = strlen(class) + 1;
1273                 clb = kmem_alloc(clblen, KM_SLEEP);
1274                 bcopy(class, clb, clblen);
1275         }
1276 
1277         subidblen = strlen(sid) + 1;
1278         subid = kmem_alloc(subidblen, KM_SLEEP);
1279         bcopy(sid, subid, subidblen);
1280 
1281         /* Create per subscriber queue */
1282         sdp = kmem_zalloc(sizeof (evch_subd_t), KM_SLEEP);
1283         sdp->sd_queue = evch_evq_create();
1284 
1285         /* Subscribe to subscriber queue */
1286         sdp->sd_persist = flags & EVCH_SUB_KEEP ? 1 : 0;
1287         sdp->sd_dump = flags & EVCH_SUB_DUMP ? 1 : 0;
1288         sdp->sd_type = dtype;
1289         sdp->sd_cbcookie = cookie;
1290         sdp->sd_ident = subid;
1291         if (dtype == EVCH_DELKERN) {
1292                 sdp->sd_callback = (kerndlv_f)dinfo;
1293                 delivfkt = evch_kern_deliver;
1294         } else {
1295                 sdp->sd_door = (door_handle_t)dinfo;
1296                 delivfkt = evch_door_deliver;
1297         }
1298         sdp->sd_ssub =
1299             evch_evq_sub(sdp->sd_queue, NULL, NULL, delivfkt, (void *)sdp);
1300 
1301         /* Connect per subscriber queue to main event queue */
1302         sdp->sd_msub = evch_evq_sub(eqp, evch_class_filter, clb,
1303             evch_subq_deliver, (void *)sdp);
1304         sdp->sd_classname = clb;
1305         sdp->sd_clnsize = clblen;
1306         sdp->sd_pid = pid;
1307         sdp->sd_active++;
1308 
1309         /* Add subscription to binding */
1310         sdp->sd_subnxt = bp->bd_sublst;
1311         bp->bd_sublst = sdp;
1312 
1313         /* Add subscription to channel */
1314         evch_dl_add(&chp->ch_subscr, &sdp->sd_link);
1315         if (chp->ch_holdpend && evch_dl_getnum(&chp->ch_subscr) == 1) {
1316 
1317                 /* Let main event queue run in case of HOLDPEND */
1318                 evch_evq_continue(eqp);
1319         }
1320         mutex_exit(&chp->ch_mutex);
1321 
1322         return (0);
1323 }
1324 
1325 /*
1326  * If flag == EVCH_SUB_KEEP only non-persistent subscriptions are deleted.
1327  * When sid == NULL all subscriptions except the ones with EVCH_SUB_KEEP set
1328  * are removed.
1329  */
1330 static void
1331 evch_chunsubscribe(evch_bind_t *bp, const char *sid, uint32_t flags)
1332 {
1333         evch_subd_t     *sdp;
1334         evch_subd_t     *next;
1335         evch_subd_t     *prev;
1336         evch_chan_t     *chp = bp->bd_channel;
1337 
1338         mutex_enter(&chp->ch_mutex);
1339         if (chp->ch_holdpend) {
1340                 evch_evq_stop(chp->ch_queue);        /* Hold main event queue */
1341         }
1342         prev = NULL;
1343         for (sdp = bp->bd_sublst; sdp; sdp = next) {
1344                 if (sid == NULL || strcmp(sid, sdp->sd_ident) == 0) {
1345                         if (flags == 0 || sdp->sd_persist == 0) {
1346                                 /*
1347                                  * Disconnect subscriber queue from main event
1348                                  * queue.
1349                                  */
1350                                 evch_evq_unsub(chp->ch_queue, sdp->sd_msub);
1351 
1352                                 /* Destruct per subscriber queue */
1353                                 evch_evq_unsub(sdp->sd_queue, sdp->sd_ssub);
1354                                 evch_evq_destroy(sdp->sd_queue);
1355                                 /*
1356                                  * Eliminate the subscriber data from channel
1357                                  * list.
1358                                  */
1359                                 evch_dl_del(&chp->ch_subscr, &sdp->sd_link);
1360                                 kmem_free(sdp->sd_classname, sdp->sd_clnsize);
1361                                 if (sdp->sd_type == EVCH_DELDOOR) {
1362                                         door_ki_rele(sdp->sd_door);
1363                                 }
1364                                 next = sdp->sd_subnxt;
1365                                 if (prev) {
1366                                         prev->sd_subnxt = next;
1367                                 } else {
1368                                         bp->bd_sublst = next;
1369                                 }
1370                                 kmem_free(sdp->sd_ident,
1371                                     strlen(sdp->sd_ident) + 1);
1372                                 kmem_free(sdp, sizeof (evch_subd_t));
1373                         } else {
1374                                 /*
1375                                  * EVCH_SUB_KEEP case
1376                                  */
1377                                 evch_evq_stop(sdp->sd_queue);
1378                                 if (sdp->sd_type == EVCH_DELDOOR) {
1379                                         door_ki_rele(sdp->sd_door);
1380                                 }
1381                                 sdp->sd_active--;
1382                                 ASSERT(sdp->sd_active == 0);
1383                                 next = sdp->sd_subnxt;
1384                                 prev = sdp;
1385                         }
1386                         if (sid != NULL) {
1387                                 break;
1388                         }
1389                 } else {
1390                         next = sdp->sd_subnxt;
1391                         prev = sdp;
1392                 }
1393         }
1394         if (!(chp->ch_holdpend && evch_dl_getnum(&chp->ch_subscr) == 0)) {
1395                 /*
1396                  * Continue dispatch thread except if no subscribers are present
1397                  * in HOLDPEND mode.
1398                  */
1399                 evch_evq_continue(chp->ch_queue);
1400         }
1401         mutex_exit(&chp->ch_mutex);
1402 }
1403 
1404 /*
1405  * Publish an event. Returns zero on success and an error code else.
1406  */
1407 static int
1408 evch_chpublish(evch_bind_t *bp, sysevent_impl_t *ev, int flags)
1409 {
1410         evch_chan_t *chp = bp->bd_channel;
1411 
1412         DTRACE_SYSEVENT2(post, evch_bind_t *, bp, sysevent_impl_t *, ev);
1413 
1414         mutex_enter(&chp->ch_pubmx);
1415         if (chp->ch_nevents >= chp->ch_maxev) {
1416                 if (!(flags & EVCH_QWAIT)) {
1417                         evch_evq_evfree(ev);
1418                         mutex_exit(&chp->ch_pubmx);
1419                         return (EAGAIN);
1420                 } else {
1421                         while (chp->ch_nevents >= chp->ch_maxev) {
1422                                 if (cv_wait_sig(&chp->ch_pubcv,
1423                                     &chp->ch_pubmx) == 0) {
1424 
1425                                         /* Got Signal, return EINTR */
1426                                         evch_evq_evfree(ev);
1427                                         mutex_exit(&chp->ch_pubmx);
1428                                         return (EINTR);
1429                                 }
1430                         }
1431                 }
1432         }
1433         chp->ch_nevents++;
1434         mutex_exit(&chp->ch_pubmx);
1435         SE_TIME(ev) = gethrtime();
1436         SE_SEQ(ev) = log_sysevent_new_id();
1437         /*
1438          * Add the destructor function to the event structure, now that the
1439          * event is accounted for. The only task of the descructor is to
1440          * decrement the channel event count. The evq_*() routines (including
1441          * the event delivery thread) do not have knowledge of the channel
1442          * data. So the anonymous destructor handles the channel data for it.
1443          */
1444         evch_evq_evadd_dest(ev, evch_destr_event, (void *)chp);
1445         return (evch_evq_pub(chp->ch_queue, ev, flags) == 0 ? 0 : EAGAIN);
1446 }
1447 
1448 /*
1449  * Fills a buffer consecutive with the names of all available channels.
1450  * Returns the length of all name strings or -1 if buffer size was unsufficient.
1451  */
1452 static int
1453 evch_chgetnames(char *buf, size_t size)
1454 {
1455         struct evch_globals *eg;
1456         int             len = 0;
1457         char            *addr = buf;
1458         int             max = size;
1459         evch_chan_t     *chp;
1460 
1461         eg = zone_getspecific(evch_zone_key, curproc->p_zone);
1462         ASSERT(eg != NULL);
1463 
1464         mutex_enter(&eg->evch_list_lock);
1465         for (chp = evch_dl_next(&eg->evch_list, NULL); chp != NULL;
1466             chp = evch_dl_next(&eg->evch_list, chp)) {
1467                 len += chp->ch_namelen;
1468                 if (len >= max) {
1469                         mutex_exit(&eg->evch_list_lock);
1470                         return (-1);
1471                 }
1472                 bcopy(chp->ch_name, addr, chp->ch_namelen);
1473                 addr += chp->ch_namelen;
1474         }
1475         mutex_exit(&eg->evch_list_lock);
1476         addr[0] = 0;
1477         return (len + 1);
1478 }
1479 
1480 /*
1481  * Fills the data of one channel and all subscribers of that channel into
1482  * a buffer. Returns -1 if the channel name is invalid and 0 on buffer overflow.
1483  */
1484 static int
1485 evch_chgetchdata(char *chname, void *buf, size_t size)
1486 {
1487         struct evch_globals *eg;
1488         char            *cpaddr;
1489         int             bufmax;
1490         int             buflen;
1491         evch_chan_t     *chp;
1492         sev_chinfo_t    *p = (sev_chinfo_t *)buf;
1493         int             chdlen;
1494         evch_subd_t     *sdp;
1495         sev_subinfo_t   *subp;
1496         int             idlen;
1497         int             len;
1498 
1499         eg = zone_getspecific(evch_zone_key, curproc->p_zone);
1500         ASSERT(eg != NULL);
1501 
1502         mutex_enter(&eg->evch_list_lock);
1503         chp = (evch_chan_t *)evch_dl_search(&eg->evch_list, evch_namecmp,
1504             chname);
1505         if (chp == NULL) {
1506                 mutex_exit(&eg->evch_list_lock);
1507                 return (-1);
1508         }
1509         chdlen = offsetof(sev_chinfo_t, cd_subinfo);
1510         if (size < chdlen) {
1511                 mutex_exit(&eg->evch_list_lock);
1512                 return (0);
1513         }
1514         p->cd_version = 0;
1515         p->cd_suboffs = chdlen;
1516         p->cd_uid = chp->ch_uid;
1517         p->cd_gid = chp->ch_gid;
1518         p->cd_perms = 0;
1519         p->cd_ctime = chp->ch_ctime;
1520         p->cd_maxev = chp->ch_maxev;
1521         p->cd_evhwm = EVCH_EVQ_HIGHWM(chp->ch_queue);
1522         p->cd_nevents = EVCH_EVQ_EVCOUNT(chp->ch_queue);
1523         p->cd_maxsub = chp->ch_maxsubscr;
1524         p->cd_nsub = evch_dl_getnum(&chp->ch_subscr);
1525         p->cd_maxbinds = chp->ch_maxbinds;
1526         p->cd_nbinds = chp->ch_bindings;
1527         p->cd_holdpend = chp->ch_holdpend;
1528         p->cd_limev = evch_events_max;
1529         cpaddr = (char *)p + chdlen;
1530         bufmax = size - chdlen;
1531         buflen = 0;
1532 
1533         for (sdp = evch_dl_next(&chp->ch_subscr, NULL); sdp != NULL;
1534             sdp = evch_dl_next(&chp->ch_subscr, sdp)) {
1535                 idlen = strlen(sdp->sd_ident) + 1;
1536                 len = SE_ALIGN(offsetof(sev_subinfo_t, sb_strings) + idlen +
1537                     sdp->sd_clnsize);
1538                 buflen += len;
1539                 if (buflen >= bufmax) {
1540                         mutex_exit(&eg->evch_list_lock);
1541                         return (0);
1542                 }
1543                 subp = (sev_subinfo_t *)cpaddr;
1544                 subp->sb_nextoff = len;
1545                 subp->sb_stroff = offsetof(sev_subinfo_t, sb_strings);
1546                 if (sdp->sd_classname) {
1547                         bcopy(sdp->sd_classname, subp->sb_strings + idlen,
1548                             sdp->sd_clnsize);
1549                         subp->sb_clnamoff = idlen;
1550                 } else {
1551                         subp->sb_clnamoff = idlen - 1;
1552                 }
1553                 subp->sb_pid = sdp->sd_pid;
1554                 subp->sb_nevents = EVCH_EVQ_EVCOUNT(sdp->sd_queue);
1555                 subp->sb_evhwm = EVCH_EVQ_HIGHWM(sdp->sd_queue);
1556                 subp->sb_persist = sdp->sd_persist;
1557                 subp->sb_status = evch_evq_status(sdp->sd_queue);
1558                 subp->sb_active = sdp->sd_active;
1559                 subp->sb_dump = sdp->sd_dump;
1560                 bcopy(sdp->sd_ident, subp->sb_strings, idlen);
1561                 cpaddr += len;
1562         }
1563         mutex_exit(&eg->evch_list_lock);
1564         return (chdlen + buflen);
1565 }
1566 
1567 static void
1568 evch_chsetpropnvl(evch_bind_t *bp, nvlist_t *nvl)
1569 {
1570         evch_chan_t *chp = bp->bd_channel;
1571 
1572         mutex_enter(&chp->ch_mutex);
1573 
1574         nvlist_free(chp->ch_propnvl);
1575 
1576         chp->ch_propnvl = nvl;
1577         chp->ch_propnvlgen++;
1578 
1579         mutex_exit(&chp->ch_mutex);
1580 }
1581 
1582 static int
1583 evch_chgetpropnvl(evch_bind_t *bp, nvlist_t **nvlp, int64_t *genp)
1584 {
1585         evch_chan_t *chp = bp->bd_channel;
1586         int rc = 0;
1587 
1588         mutex_enter(&chp->ch_mutex);
1589 
1590         if (chp->ch_propnvl != NULL)
1591                 rc = (nvlist_dup(chp->ch_propnvl, nvlp, 0) == 0) ? 0 : ENOMEM;
1592         else
1593                 *nvlp = NULL;   /* rc still 0 */
1594 
1595         if (genp)
1596                 *genp = chp->ch_propnvlgen;
1597 
1598         mutex_exit(&chp->ch_mutex);
1599 
1600         if (rc != 0)
1601                 *nvlp = NULL;
1602 
1603         return (rc);
1604 
1605 }
1606 
1607 /*
1608  * Init iteration of all events of a channel. This function creates a new
1609  * event queue and puts all events from the channel into that queue.
1610  * Subsequent calls to evch_chgetnextev will deliver the events from that
1611  * queue. Only one thread per channel is allowed to read through the events.
1612  * Returns 0 on success and 1 if there is already someone reading the
1613  * events.
1614  * If argument subid == NULL, we look for a subscriber which has
1615  * flag EVCH_SUB_DUMP set.
1616  */
1617 /*
1618  * Static variables that are used to traverse events of a channel in panic case.
1619  */
1620 static evch_chan_t      *evch_chan;
1621 static evch_eventq_t    *evch_subq;
1622 static sysevent_impl_t  *evch_curev;
1623 
1624 static evchanq_t *
1625 evch_chrdevent_init(evch_chan_t *chp, char *subid)
1626 {
1627         evch_subd_t     *sdp;
1628         void            *ev;
1629         int             pmqstat;        /* Prev status of main queue */
1630         int             psqstat;        /* Prev status of subscriber queue */
1631         evchanq_t       *snp;           /* Pointer to q with snapshot of ev */
1632         compare_f       compfunc;
1633 
1634         compfunc = subid == NULL ? evch_dumpflgcmp : evch_subidcmp;
1635         if (panicstr != NULL) {
1636                 evch_chan = chp;
1637                 evch_subq = NULL;
1638                 evch_curev = NULL;
1639                 if ((sdp = (evch_subd_t *)evch_dl_search(&chp->ch_subscr,
1640                     compfunc, subid)) != NULL) {
1641                         evch_subq = sdp->sd_queue;
1642                 }
1643                 return (NULL);
1644         }
1645         mutex_enter(&chp->ch_mutex);
1646         sdp = (evch_subd_t *)evch_dl_search(&chp->ch_subscr, compfunc, subid);
1647         /*
1648          * Stop main event queue and subscriber queue if not already
1649          * in stop mode.
1650          */
1651         pmqstat = evch_evq_status(chp->ch_queue);
1652         if (pmqstat == 0)
1653                 evch_evq_stop(chp->ch_queue);
1654         if (sdp != NULL) {
1655                 psqstat = evch_evq_status(sdp->sd_queue);
1656                 if (psqstat == 0)
1657                         evch_evq_stop(sdp->sd_queue);
1658         }
1659         /*
1660          * Create event queue to make a snapshot of all events in the
1661          * channel.
1662          */
1663         snp = kmem_alloc(sizeof (evchanq_t), KM_SLEEP);
1664         snp->sn_queue = evch_evq_create();
1665         evch_evq_stop(snp->sn_queue);
1666         /*
1667          * Make a snapshot of the subscriber queue and the main event queue.
1668          */
1669         if (sdp != NULL) {
1670                 ev = NULL;
1671                 while ((ev = evch_evq_evnext(sdp->sd_queue, ev)) != NULL) {
1672                         (void) evch_evq_pub(snp->sn_queue, ev, EVCH_SLEEP);
1673                 }
1674         }
1675         ev = NULL;
1676         while ((ev = evch_evq_evnext(chp->ch_queue, ev)) != NULL) {
1677                 (void) evch_evq_pub(snp->sn_queue, ev, EVCH_SLEEP);
1678         }
1679         snp->sn_nxtev = NULL;
1680         /*
1681          * Restart main and subscriber queue if previously stopped
1682          */
1683         if (sdp != NULL && psqstat == 0)
1684                 evch_evq_continue(sdp->sd_queue);
1685         if (pmqstat == 0)
1686                 evch_evq_continue(chp->ch_queue);
1687         mutex_exit(&chp->ch_mutex);
1688         return (snp);
1689 }
1690 
1691 /*
1692  * Free all resources of the event queue snapshot. In case of panic
1693  * context snp must be NULL and no resources need to be free'ed.
1694  */
1695 static void
1696 evch_chrdevent_fini(evchanq_t *snp)
1697 {
1698         if (snp != NULL) {
1699                 evch_evq_destroy(snp->sn_queue);
1700                 kmem_free(snp, sizeof (evchanq_t));
1701         }
1702 }
1703 
1704 /*
1705  * Get address of next event from an event channel.
1706  * This function might be called in a panic context. In that case
1707  * no resources will be allocated and no locks grabbed.
1708  * In normal operation context a snapshot of the event queues of the
1709  * specified event channel will be taken.
1710  */
1711 static sysevent_impl_t *
1712 evch_chgetnextev(evchanq_t *snp)
1713 {
1714         if (panicstr != NULL) {
1715                 if (evch_chan == NULL)
1716                         return (NULL);
1717                 if (evch_subq != NULL) {
1718                         /*
1719                          * We have a subscriber queue. Traverse this queue
1720                          * first.
1721                          */
1722                         if ((evch_curev = (sysevent_impl_t *)
1723                             evch_evq_evnext(evch_subq, evch_curev)) != NULL) {
1724                                 return (evch_curev);
1725                         } else {
1726                                 /*
1727                                  * All subscriber events traversed. evch_subq
1728                                  * == NULL indicates to take the main event
1729                                  * queue now.
1730                                  */
1731                                 evch_subq = NULL;
1732                         }
1733                 }
1734                 /*
1735                  * Traverse the main event queue.
1736                  */
1737                 if ((evch_curev = (sysevent_impl_t *)
1738                     evch_evq_evnext(evch_chan->ch_queue, evch_curev)) ==
1739                     NULL) {
1740                         evch_chan = NULL;
1741                 }
1742                 return (evch_curev);
1743         }
1744         ASSERT(snp != NULL);
1745         snp->sn_nxtev = (sysevent_impl_t *)evch_evq_evnext(snp->sn_queue,
1746             snp->sn_nxtev);
1747         return (snp->sn_nxtev);
1748 }
1749 
1750 /*
1751  * The functions below build up the interface for the kernel to bind/unbind,
1752  * subscribe/unsubscribe and publish to event channels. It consists of the
1753  * following functions:
1754  *
1755  * sysevent_evc_bind        - Bind to a channel. Create a channel if required
1756  * sysevent_evc_unbind      - Unbind from a channel. Destroy ch. if last unbind
1757  * sysevent_evc_subscribe   - Subscribe to events from a channel
1758  * sysevent_evc_unsubscribe - Unsubscribe from an event class
1759  * sysevent_evc_publish     - Publish an event to an event channel
1760  * sysevent_evc_control     - Various control operation on event channel
1761  * sysevent_evc_setpropnvl  - Set channel property nvlist
1762  * sysevent_evc_getpropnvl  - Get channel property nvlist
1763  *
1764  * The function below are for evaluating a sysevent:
1765  *
1766  * sysevent_get_class_name  - Get pointer to event class string
1767  * sysevent_get_subclass_name - Get pointer to event subclass string
1768  * sysevent_get_seq         - Get unique event sequence number
1769  * sysevent_get_time        - Get hrestime of event publish
1770  * sysevent_get_size        - Get size of event structure
1771  * sysevent_get_pub         - Get publisher string
1772  * sysevent_get_attr_list   - Get copy of attribute list
1773  *
1774  * The following interfaces represent stability level project privat
1775  * and allow to save the events of an event channel even in a panic case.
1776  *
1777  * sysevent_evc_walk_init   - Take a snapshot of the events in a channel
1778  * sysevent_evc_walk_step   - Read next event from snapshot
1779  * sysevent_evc_walk_fini   - Free resources from event channel snapshot
1780  * sysevent_evc_event_attr  - Get event payload address and size
1781  */
1782 /*
1783  * allocate sysevent structure with optional space for attributes
1784  */
1785 static sysevent_impl_t *
1786 sysevent_evc_alloc(const char *class, const char *subclass, const char *pub,
1787     size_t pub_sz, size_t atsz, uint32_t flag)
1788 {
1789         int             payload_sz;
1790         int             class_sz, subclass_sz;
1791         int             aligned_class_sz, aligned_subclass_sz, aligned_pub_sz;
1792         sysevent_impl_t *ev;
1793 
1794         /*
1795          * Calculate and reserve space for the class, subclass and
1796          * publisher strings in the event buffer
1797          */
1798         class_sz = strlen(class) + 1;
1799         subclass_sz = strlen(subclass) + 1;
1800 
1801         ASSERT((class_sz <= MAX_CLASS_LEN) && (subclass_sz <=
1802             MAX_SUBCLASS_LEN) && (pub_sz <= MAX_PUB_LEN));
1803 
1804         /* String sizes must be 64-bit aligned in the event buffer */
1805         aligned_class_sz = SE_ALIGN(class_sz);
1806         aligned_subclass_sz = SE_ALIGN(subclass_sz);
1807         aligned_pub_sz = SE_ALIGN(pub_sz);
1808 
1809         /*
1810          * Calculate payload size. Consider the space needed for alignment
1811          * and subtract the size of the uint64_t placeholder variables of
1812          * sysevent_impl_t.
1813          */
1814         payload_sz = (aligned_class_sz - sizeof (uint64_t)) +
1815             (aligned_subclass_sz - sizeof (uint64_t)) +
1816             (aligned_pub_sz - sizeof (uint64_t)) - sizeof (uint64_t) +
1817             atsz;
1818 
1819         /*
1820          * Allocate event buffer plus additional payload overhead
1821          */
1822         if ((ev = evch_evq_evzalloc(sizeof (sysevent_impl_t) +
1823             payload_sz, flag)) == NULL) {
1824                 return (NULL);
1825         }
1826 
1827         /* Initialize the event buffer data */
1828         SE_VERSION(ev) = SYS_EVENT_VERSION;
1829         bcopy(class, SE_CLASS_NAME(ev), class_sz);
1830 
1831         SE_SUBCLASS_OFF(ev) = SE_ALIGN(offsetof(sysevent_impl_t,
1832             se_class_name)) + aligned_class_sz;
1833         bcopy(subclass, SE_SUBCLASS_NAME(ev), subclass_sz);
1834 
1835         SE_PUB_OFF(ev) = SE_SUBCLASS_OFF(ev) + aligned_subclass_sz;
1836         bcopy(pub, SE_PUB_NAME(ev), pub_sz);
1837 
1838         SE_ATTR_PTR(ev) = (uint64_t)0;
1839         SE_PAYLOAD_SZ(ev) = payload_sz;
1840 
1841         return (ev);
1842 }
1843 
1844 /*
1845  * Initialize event channel handling queues.
1846  */
1847 void
1848 sysevent_evc_init()
1849 {
1850         evch_chinit();
1851 }
1852 
1853 /*
1854  * Second initialization step: create threads, if event channels are already
1855  * created
1856  */
1857 void
1858 sysevent_evc_thrinit()
1859 {
1860         evch_chinitthr();
1861 }
1862 
1863 int
1864 sysevent_evc_bind(const char *ch_name, evchan_t **scpp, uint32_t flags)
1865 {
1866         ASSERT(ch_name != NULL && scpp != NULL);
1867         ASSERT((flags & ~EVCH_B_FLAGS) == 0);
1868         return (evch_chbind(ch_name, (evch_bind_t **)scpp, flags));
1869 }
1870 
1871 int
1872 sysevent_evc_unbind(evchan_t *scp)
1873 {
1874         evch_bind_t *bp = (evch_bind_t *)scp;
1875 
1876         ASSERT(scp != NULL);
1877         evch_chunsubscribe(bp, NULL, 0);
1878         evch_chunbind(bp);
1879 
1880         return (0);
1881 }
1882 
1883 int
1884 sysevent_evc_subscribe(evchan_t *scp, const char *sid, const char *class,
1885     int (*callb)(sysevent_t *ev, void *cookie),
1886     void *cookie, uint32_t flags)
1887 {
1888         ASSERT(scp != NULL && sid != NULL && class != NULL && callb != NULL);
1889         ASSERT(flags == 0);
1890         if (strlen(sid) > MAX_SUBID_LEN) {
1891                 return (EINVAL);
1892         }
1893         if (strcmp(class, EC_ALL) == 0) {
1894                 class = NULL;
1895         }
1896         return (evch_chsubscribe((evch_bind_t *)scp, EVCH_DELKERN, sid, class,
1897             (void *)callb, cookie, 0, 0));
1898 }
1899 
1900 int
1901 sysevent_evc_unsubscribe(evchan_t *scp, const char *sid)
1902 {
1903         ASSERT(scp != NULL && sid != NULL);
1904         if (strcmp(sid, EVCH_ALLSUB) == 0) {
1905                 sid = NULL;
1906         }
1907         evch_chunsubscribe((evch_bind_t *)scp, sid, 0);
1908 
1909         return (0);
1910 }
1911 
1912 /*
1913  * Publish kernel event. Returns 0 on success, error code else.
1914  * Optional attribute data is packed into the event structure.
1915  */
1916 int
1917 sysevent_evc_publish(evchan_t *scp, const char *class, const char *subclass,
1918     const char *vendor, const char *pubs, nvlist_t *attr, uint32_t flags)
1919 {
1920         sysevent_impl_t *evp;
1921         char            pub[MAX_PUB_LEN];
1922         int             pub_sz;         /* includes terminating 0 */
1923         int             km_flags;
1924         size_t          asz = 0;
1925         uint64_t        attr_offset;
1926         caddr_t         patt;
1927         int             err;
1928 
1929         ASSERT(scp != NULL && class != NULL && subclass != NULL &&
1930             vendor != NULL && pubs != NULL);
1931 
1932         ASSERT((flags & ~(EVCH_SLEEP | EVCH_NOSLEEP | EVCH_TRYHARD |
1933             EVCH_QWAIT)) == 0);
1934 
1935         km_flags = flags & (EVCH_SLEEP | EVCH_NOSLEEP | EVCH_TRYHARD);
1936         ASSERT(km_flags == EVCH_SLEEP || km_flags == EVCH_NOSLEEP ||
1937             km_flags == EVCH_TRYHARD);
1938 
1939         pub_sz = snprintf(pub, MAX_PUB_LEN, "%s:kern:%s", vendor, pubs) + 1;
1940         if (pub_sz > MAX_PUB_LEN)
1941                 return (EINVAL);
1942 
1943         if (attr != NULL) {
1944                 if ((err = nvlist_size(attr, &asz, NV_ENCODE_NATIVE)) != 0) {
1945                         return (err);
1946                 }
1947         }
1948         evp = sysevent_evc_alloc(class, subclass, pub, pub_sz, asz, km_flags);
1949         if (evp == NULL) {
1950                 return (ENOMEM);
1951         }
1952         if (attr != NULL) {
1953                 /*
1954                  * Pack attributes into event buffer. Event buffer already
1955                  * has enough room for the packed nvlist.
1956                  */
1957                 attr_offset = SE_ATTR_OFF(evp);
1958                 patt = (caddr_t)evp + attr_offset;
1959 
1960                 err = nvlist_pack(attr, &patt, &asz, NV_ENCODE_NATIVE,
1961                     km_flags & EVCH_SLEEP ? KM_SLEEP : KM_NOSLEEP);
1962 
1963                 ASSERT(err != ENOMEM);
1964 
1965                 if (err != 0) {
1966                         return (EINVAL);
1967                 }
1968 
1969                 evp->seh_attr_off = attr_offset;
1970                 SE_FLAG(evp) = SE_PACKED_BUF;
1971         }
1972         return (evch_chpublish((evch_bind_t *)scp, evp, flags));
1973 }
1974 
1975 int
1976 sysevent_evc_control(evchan_t *scp, int cmd, ...)
1977 {
1978         va_list         ap;
1979         evch_chan_t     *chp = ((evch_bind_t *)scp)->bd_channel;
1980         uint32_t        *chlenp;
1981         uint32_t        chlen;
1982         uint32_t        ochlen;
1983         int             rc = 0;
1984 
1985         if (scp == NULL) {
1986                 return (EINVAL);
1987         }
1988 
1989         va_start(ap, cmd);
1990         mutex_enter(&chp->ch_mutex);
1991         switch (cmd) {
1992         case EVCH_GET_CHAN_LEN:
1993                 chlenp = va_arg(ap, uint32_t *);
1994                 *chlenp = chp->ch_maxev;
1995                 break;
1996         case EVCH_SET_CHAN_LEN:
1997                 chlen = va_arg(ap, uint32_t);
1998                 ochlen = chp->ch_maxev;
1999                 chp->ch_maxev = min(chlen, evch_events_max);
2000                 if (ochlen < chp->ch_maxev) {
2001                         cv_signal(&chp->ch_pubcv);
2002                 }
2003                 break;
2004         case EVCH_GET_CHAN_LEN_MAX:
2005                 *va_arg(ap, uint32_t *) = evch_events_max;
2006                 break;
2007         default:
2008                 rc = EINVAL;
2009         }
2010 
2011         mutex_exit(&chp->ch_mutex);
2012         va_end(ap);
2013         return (rc);
2014 }
2015 
2016 int
2017 sysevent_evc_setpropnvl(evchan_t *scp, nvlist_t *nvl)
2018 {
2019         nvlist_t *nvlcp = nvl;
2020 
2021         if (nvl != NULL && nvlist_dup(nvl, &nvlcp, 0) != 0)
2022                 return (ENOMEM);
2023 
2024         evch_chsetpropnvl((evch_bind_t *)scp, nvlcp);
2025 
2026         return (0);
2027 }
2028 
2029 int
2030 sysevent_evc_getpropnvl(evchan_t *scp, nvlist_t **nvlp)
2031 {
2032         return (evch_chgetpropnvl((evch_bind_t *)scp, nvlp, NULL));
2033 }
2034 
2035 /*
2036  * Project private interface to take a snapshot of all events of the
2037  * specified event channel. Argument subscr may be a subscriber id, the empty
2038  * string "", or NULL. The empty string indicates that no subscriber is
2039  * selected, for example if a previous subscriber died. sysevent_evc_walk_next()
2040  * will deliver events from the main event queue in this case. If subscr is
2041  * NULL, the subscriber with the EVCH_SUB_DUMP flag set (subd->sd_dump != 0)
2042  * will be selected.
2043  *
2044  * In panic case this function returns NULL. This is legal. The NULL has
2045  * to be delivered to sysevent_evc_walk_step() and sysevent_evc_walk_fini().
2046  */
2047 evchanq_t *
2048 sysevent_evc_walk_init(evchan_t *scp, char *subscr)
2049 {
2050         if (panicstr != NULL && scp == NULL)
2051                 return (NULL);
2052         ASSERT(scp != NULL);
2053         return (evch_chrdevent_init(((evch_bind_t *)scp)->bd_channel, subscr));
2054 }
2055 
2056 /*
2057  * Project private interface to read events from a previously taken
2058  * snapshot (with sysevent_evc_walk_init). In case of panic events
2059  * are retrieved directly from the channel data structures. No resources
2060  * are allocated and no mutexes are grabbed in panic context.
2061  */
2062 sysevent_t *
2063 sysevent_evc_walk_step(evchanq_t *evcq)
2064 {
2065         return ((sysevent_t *)evch_chgetnextev(evcq));
2066 }
2067 
2068 /*
2069  * Project private interface to free a previously taken snapshot.
2070  */
2071 void
2072 sysevent_evc_walk_fini(evchanq_t *evcq)
2073 {
2074         evch_chrdevent_fini(evcq);
2075 }
2076 
2077 /*
2078  * Get address and size of an event payload. Returns NULL when no
2079  * payload present.
2080  */
2081 char *
2082 sysevent_evc_event_attr(sysevent_t *ev, size_t *plsize)
2083 {
2084         char    *attrp;
2085         size_t  aoff;
2086         size_t  asz;
2087 
2088         aoff = SE_ATTR_OFF(ev);
2089         attrp = (char *)ev + aoff;
2090         asz = *plsize = SE_SIZE(ev) - aoff;
2091         return (asz ? attrp : NULL);
2092 }
2093 
2094 /*
2095  * sysevent_get_class_name - Get class name string
2096  */
2097 char *
2098 sysevent_get_class_name(sysevent_t *ev)
2099 {
2100         return (SE_CLASS_NAME(ev));
2101 }
2102 
2103 /*
2104  * sysevent_get_subclass_name - Get subclass name string
2105  */
2106 char *
2107 sysevent_get_subclass_name(sysevent_t *ev)
2108 {
2109         return (SE_SUBCLASS_NAME(ev));
2110 }
2111 
2112 /*
2113  * sysevent_get_seq - Get event sequence id
2114  */
2115 uint64_t
2116 sysevent_get_seq(sysevent_t *ev)
2117 {
2118         return (SE_SEQ(ev));
2119 }
2120 
2121 /*
2122  * sysevent_get_time - Get event timestamp
2123  */
2124 void
2125 sysevent_get_time(sysevent_t *ev, hrtime_t *etime)
2126 {
2127         *etime = SE_TIME(ev);
2128 }
2129 
2130 /*
2131  * sysevent_get_size - Get event buffer size
2132  */
2133 size_t
2134 sysevent_get_size(sysevent_t *ev)
2135 {
2136         return ((size_t)SE_SIZE(ev));
2137 }
2138 
2139 /*
2140  * sysevent_get_pub - Get publisher name string
2141  */
2142 char *
2143 sysevent_get_pub(sysevent_t *ev)
2144 {
2145         return (SE_PUB_NAME(ev));
2146 }
2147 
2148 /*
2149  * sysevent_get_attr_list - stores address of a copy of the attribute list
2150  * associated with the given sysevent buffer. The list must be freed by the
2151  * caller.
2152  */
2153 int
2154 sysevent_get_attr_list(sysevent_t *ev, nvlist_t **nvlist)
2155 {
2156         int             error;
2157         caddr_t         attr;
2158         size_t          attr_len;
2159         uint64_t        attr_offset;
2160 
2161         *nvlist = NULL;
2162         if (SE_FLAG(ev) != SE_PACKED_BUF) {
2163                 return (EINVAL);
2164         }
2165         attr_offset = SE_ATTR_OFF(ev);
2166         if (SE_SIZE(ev) == attr_offset) {
2167                 return (EINVAL);
2168         }
2169 
2170         /* unpack nvlist */
2171         attr = (caddr_t)ev + attr_offset;
2172         attr_len = SE_SIZE(ev) - attr_offset;
2173         if ((error = nvlist_unpack(attr, attr_len, nvlist, 0)) != 0) {
2174                 error = error != ENOMEM ? EINVAL : error;
2175                 return (error);
2176         }
2177         return (0);
2178 }
2179 
2180 /*
2181  * Functions called by the sysevent driver for general purpose event channels
2182  *
2183  * evch_usrchanopen     - Create/Bind to an event channel
2184  * evch_usrchanclose    - Unbind/Destroy event channel
2185  * evch_usrallocev      - Allocate event data structure
2186  * evch_usrfreeev       - Free event data structure
2187  * evch_usrpostevent    - Publish event
2188  * evch_usrsubscribe    - Subscribe (register callback function)
2189  * evch_usrunsubscribe  - Unsubscribe
2190  * evch_usrcontrol_set  - Set channel properties
2191  * evch_usrcontrol_get  - Get channel properties
2192  * evch_usrgetchnames   - Get list of channel names
2193  * evch_usrgetchdata    - Get data of an event channel
2194  * evch_usrsetpropnvl   - Set channel properties nvlist
2195  * evch_usrgetpropnvl   - Get channel properties nvlist
2196  */
2197 evchan_t *
2198 evch_usrchanopen(const char *name, uint32_t flags, int *err)
2199 {
2200         evch_bind_t *bp = NULL;
2201 
2202         *err = evch_chbind(name, &bp, flags);
2203         return ((evchan_t *)bp);
2204 }
2205 
2206 /*
2207  * Unbind from the channel.
2208  */
2209 void
2210 evch_usrchanclose(evchan_t *cbp)
2211 {
2212         evch_chunbind((evch_bind_t *)cbp);
2213 }
2214 
2215 /*
2216  * Allocates log_evch_eventq_t structure but returns the pointer of the embedded
2217  * sysevent_impl_t structure as the opaque sysevent_t * data type
2218  */
2219 sysevent_impl_t *
2220 evch_usrallocev(size_t evsize, uint32_t flags)
2221 {
2222         return ((sysevent_impl_t *)evch_evq_evzalloc(evsize, flags));
2223 }
2224 
2225 /*
2226  * Free evch_eventq_t structure
2227  */
2228 void
2229 evch_usrfreeev(sysevent_impl_t *ev)
2230 {
2231         evch_evq_evfree((void *)ev);
2232 }
2233 
2234 /*
2235  * Posts an event to the given channel. The event structure has to be
2236  * allocated by evch_usrallocev(). Returns zero on success and an error
2237  * code else. Attributes have to be packed and included in the event structure.
2238  *
2239  */
2240 int
2241 evch_usrpostevent(evchan_t *bp, sysevent_impl_t *ev, uint32_t flags)
2242 {
2243         return (evch_chpublish((evch_bind_t *)bp, ev, flags));
2244 }
2245 
2246 /*
2247  * Subscribe function for user land subscriptions
2248  */
2249 int
2250 evch_usrsubscribe(evchan_t *bp, const char *sid, const char *class,
2251     int d, uint32_t flags)
2252 {
2253         door_handle_t   dh = door_ki_lookup(d);
2254         int             rv;
2255 
2256         if (dh == NULL) {
2257                 return (EINVAL);
2258         }
2259         if ((rv = evch_chsubscribe((evch_bind_t *)bp, EVCH_DELDOOR, sid, class,
2260             (void *)dh, NULL, flags, curproc->p_pid)) != 0) {
2261                 door_ki_rele(dh);
2262         }
2263         return (rv);
2264 }
2265 
2266 /*
2267  * Flag can be EVCH_SUB_KEEP or 0. EVCH_SUB_KEEP preserves persistent
2268  * subscribers
2269  */
2270 void
2271 evch_usrunsubscribe(evchan_t *bp, const char *subid, uint32_t flags)
2272 {
2273         evch_chunsubscribe((evch_bind_t *)bp, subid, flags);
2274 }
2275 
2276 /*ARGSUSED*/
2277 int
2278 evch_usrcontrol_set(evchan_t *bp, int cmd, uint32_t value)
2279 {
2280         evch_chan_t     *chp = ((evch_bind_t *)bp)->bd_channel;
2281         uid_t           uid = crgetuid(curthread->t_cred);
2282         int             rc = 0;
2283 
2284         mutex_enter(&chp->ch_mutex);
2285         switch (cmd) {
2286         case EVCH_SET_CHAN_LEN:
2287                 if (uid && uid != chp->ch_uid) {
2288                         rc = EACCES;
2289                         break;
2290                 }
2291                 chp->ch_maxev = min(value, evch_events_max);
2292                 break;
2293         default:
2294                 rc = EINVAL;
2295         }
2296         mutex_exit(&chp->ch_mutex);
2297         return (rc);
2298 }
2299 
2300 /*ARGSUSED*/
2301 int
2302 evch_usrcontrol_get(evchan_t *bp, int cmd, uint32_t *value)
2303 {
2304         evch_chan_t     *chp = ((evch_bind_t *)bp)->bd_channel;
2305         int             rc = 0;
2306 
2307         mutex_enter(&chp->ch_mutex);
2308         switch (cmd) {
2309         case EVCH_GET_CHAN_LEN:
2310                 *value = chp->ch_maxev;
2311                 break;
2312         case EVCH_GET_CHAN_LEN_MAX:
2313                 *value = evch_events_max;
2314                 break;
2315         default:
2316                 rc = EINVAL;
2317         }
2318         mutex_exit(&chp->ch_mutex);
2319         return (rc);
2320 }
2321 
2322 int
2323 evch_usrgetchnames(char *buf, size_t size)
2324 {
2325         return (evch_chgetnames(buf, size));
2326 }
2327 
2328 int
2329 evch_usrgetchdata(char *chname, void *buf, size_t size)
2330 {
2331         return (evch_chgetchdata(chname, buf, size));
2332 }
2333 
2334 void
2335 evch_usrsetpropnvl(evchan_t *bp, nvlist_t *nvl)
2336 {
2337         evch_chsetpropnvl((evch_bind_t *)bp, nvl);
2338 }
2339 
2340 int
2341 evch_usrgetpropnvl(evchan_t *bp, nvlist_t **nvlp, int64_t *genp)
2342 {
2343         return (evch_chgetpropnvl((evch_bind_t *)bp, nvlp, genp));
2344 }