1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2018, Joyent, Inc. 25 * Copyright 2016 Toomas Soome <tsoome@me.com> 26 * Copyright (c) 2016, 2017 by Delphix. All rights reserved. 27 * Copyright 2016 Nexenta Systems, Inc. 28 * Copyright 2017 RackTop Systems. 29 */ 30 31 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 32 /* All Rights Reserved */ 33 34 /* 35 * University Copyright- Copyright (c) 1982, 1986, 1988 36 * The Regents of the University of California 37 * All Rights Reserved 38 * 39 * University Acknowledgment- Portions of this document are derived from 40 * software developed by the University of California, Berkeley, and its 41 * contributors. 42 */ 43 44 #include <sys/types.h> 45 #include <sys/t_lock.h> 46 #include <sys/param.h> 47 #include <sys/errno.h> 48 #include <sys/user.h> 49 #include <sys/fstyp.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/proc.h> 53 #include <sys/mount.h> 54 #include <sys/vfs.h> 55 #include <sys/vfs_opreg.h> 56 #include <sys/fem.h> 57 #include <sys/mntent.h> 58 #include <sys/stat.h> 59 #include <sys/statvfs.h> 60 #include <sys/statfs.h> 61 #include <sys/cred.h> 62 #include <sys/vnode.h> 63 #include <sys/rwstlock.h> 64 #include <sys/dnlc.h> 65 #include <sys/file.h> 66 #include <sys/time.h> 67 #include <sys/atomic.h> 68 #include <sys/cmn_err.h> 69 #include <sys/buf.h> 70 #include <sys/swap.h> 71 #include <sys/debug.h> 72 #include <sys/vnode.h> 73 #include <sys/modctl.h> 74 #include <sys/ddi.h> 75 #include <sys/pathname.h> 76 #include <sys/bootconf.h> 77 #include <sys/dumphdr.h> 78 #include <sys/dc_ki.h> 79 #include <sys/poll.h> 80 #include <sys/sunddi.h> 81 #include <sys/sysmacros.h> 82 #include <sys/zone.h> 83 #include <sys/policy.h> 84 #include <sys/ctfs.h> 85 #include <sys/objfs.h> 86 #include <sys/console.h> 87 #include <sys/reboot.h> 88 #include <sys/attr.h> 89 #include <sys/zio.h> 90 #include <sys/spa.h> 91 #include <sys/lofi.h> 92 #include <sys/bootprops.h> 93 94 #include <vm/page.h> 95 96 #include <fs/fs_subr.h> 97 /* Private interfaces to create vopstats-related data structures */ 98 extern void initialize_vopstats(vopstats_t *); 99 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 100 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 101 102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 103 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 104 const char *, int, int); 105 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 106 static void vfs_freemnttab(struct vfs *); 107 static void vfs_freeopt(mntopt_t *); 108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 111 static void vfs_createopttbl_extend(mntopts_t *, const char *, 112 const mntopts_t *); 113 static char **vfs_copycancelopt_extend(char **const, int); 114 static void vfs_freecancelopt(char **); 115 static void getrootfs(char **, char **); 116 static int getmacpath(dev_info_t *, void *); 117 static void vfs_mnttabvp_setup(void); 118 119 struct ipmnt { 120 struct ipmnt *mip_next; 121 dev_t mip_dev; 122 struct vfs *mip_vfsp; 123 }; 124 125 static kmutex_t vfs_miplist_mutex; 126 static struct ipmnt *vfs_miplist = NULL; 127 static struct ipmnt *vfs_miplist_end = NULL; 128 129 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 130 131 /* 132 * VFS global data. 133 */ 134 vnode_t *rootdir; /* pointer to root inode vnode. */ 135 vnode_t *devicesdir; /* pointer to inode of devices root */ 136 vnode_t *devdir; /* pointer to inode of dev root */ 137 138 char *server_rootpath; /* root path for diskless clients */ 139 char *server_hostname; /* hostname of diskless server */ 140 141 static struct vfs root; 142 static struct vfs devices; 143 static struct vfs dev; 144 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 145 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 146 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 147 /* must be power of 2! */ 148 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 149 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 150 char *vfs_dummyfstype = "\0"; 151 struct pollhead vfs_pollhd; /* for mnttab pollers */ 152 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 153 int mntfstype; /* will be set once mnt fs is mounted */ 154 155 /* 156 * Table for generic options recognized in the VFS layer and acted 157 * on at this level before parsing file system specific options. 158 * The nosuid option is stronger than any of the devices and setuid 159 * options, so those are canceled when nosuid is seen. 160 * 161 * All options which are added here need to be added to the 162 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 163 */ 164 /* 165 * VFS Mount options table 166 */ 167 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 168 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 169 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 170 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 171 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 172 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 173 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 174 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 175 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 176 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 177 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 178 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 179 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 180 181 static const mntopt_t mntopts[] = { 182 /* 183 * option name cancel options default arg flags 184 */ 185 { MNTOPT_REMOUNT, NULL, NULL, 186 MO_NODISPLAY, (void *)0 }, 187 { MNTOPT_RO, ro_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_RW, rw_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_SUID, suid_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 198 (void *)0 }, 199 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 200 (void *)0 }, 201 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 202 (void *)0 }, 203 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 204 (void *)0 }, 205 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 206 (void *)0 }, 207 { MNTOPT_EXEC, exec_cancel, NULL, 0, 208 (void *)0 }, 209 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 210 (void *)0 }, 211 }; 212 213 const mntopts_t vfs_mntopts = { 214 sizeof (mntopts) / sizeof (mntopt_t), 215 (mntopt_t *)&mntopts[0] 216 }; 217 218 /* 219 * File system operation dispatch functions. 220 */ 221 222 int 223 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 224 { 225 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 226 } 227 228 int 229 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 230 { 231 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 232 } 233 234 int 235 fsop_root(vfs_t *vfsp, vnode_t **vpp) 236 { 237 refstr_t *mntpt; 238 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 239 /* 240 * Make sure this root has a path. With lofs, it is possible to have 241 * a NULL mountpoint. 242 */ 243 if (ret == 0 && vfsp->vfs_mntpt != NULL && 244 (*vpp)->v_path == vn_vpath_empty) { 245 const char *path; 246 247 mntpt = vfs_getmntpoint(vfsp); 248 path = refstr_value(mntpt); 249 vn_setpath_str(*vpp, path, strlen(path)); 250 refstr_rele(mntpt); 251 } 252 253 return (ret); 254 } 255 256 int 257 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 258 { 259 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 260 } 261 262 int 263 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 264 { 265 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 266 } 267 268 int 269 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 270 { 271 /* 272 * In order to handle system attribute fids in a manner 273 * transparent to the underlying fs, we embed the fid for 274 * the sysattr parent object in the sysattr fid and tack on 275 * some extra bytes that only the sysattr layer knows about. 276 * 277 * This guarantees that sysattr fids are larger than other fids 278 * for this vfs. If the vfs supports the sysattr view interface 279 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 280 * collision with XATTR_FIDSZ. 281 */ 282 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 283 fidp->fid_len == XATTR_FIDSZ) 284 return (xattr_dir_vget(vfsp, vpp, fidp)); 285 286 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 287 } 288 289 int 290 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 291 { 292 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 293 } 294 295 void 296 fsop_freefs(vfs_t *vfsp) 297 { 298 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 299 } 300 301 int 302 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 303 { 304 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 305 } 306 307 int 308 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 309 { 310 ASSERT((fstype >= 0) && (fstype < nfstype)); 311 312 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 313 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 314 else 315 return (ENOTSUP); 316 } 317 318 /* 319 * File system initialization. vfs_setfsops() must be called from a file 320 * system's init routine. 321 */ 322 323 static int 324 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 325 int *unused_ops) 326 { 327 static const fs_operation_trans_def_t vfs_ops_table[] = { 328 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 332 fs_nosys, fs_nosys, 333 334 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 335 fs_nosys, fs_nosys, 336 337 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 338 fs_nosys, fs_nosys, 339 340 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 341 (fs_generic_func_p) fs_sync, 342 (fs_generic_func_p) fs_sync, /* No errors allowed */ 343 344 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 345 fs_nosys, fs_nosys, 346 347 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 348 fs_nosys, fs_nosys, 349 350 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 351 (fs_generic_func_p)fs_freevfs, 352 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 353 354 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 355 (fs_generic_func_p)fs_nosys, 356 (fs_generic_func_p)fs_nosys, 357 358 NULL, 0, NULL, NULL 359 }; 360 361 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 362 } 363 364 void 365 zfs_boot_init(void) 366 { 367 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 368 spa_boot_init(); 369 } 370 371 int 372 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 373 { 374 int error; 375 int unused_ops; 376 377 /* 378 * Verify that fstype refers to a valid fs. Note that 379 * 0 is valid since it's used to set "stray" ops. 380 */ 381 if ((fstype < 0) || (fstype >= nfstype)) 382 return (EINVAL); 383 384 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 385 return (EINVAL); 386 387 /* Set up the operations vector. */ 388 389 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 390 391 if (error != 0) 392 return (error); 393 394 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 395 396 if (actual != NULL) 397 *actual = &vfssw[fstype].vsw_vfsops; 398 399 #if DEBUG 400 if (unused_ops != 0) 401 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 402 "but not used", vfssw[fstype].vsw_name, unused_ops); 403 #endif 404 405 return (0); 406 } 407 408 int 409 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 410 { 411 int error; 412 int unused_ops; 413 414 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 415 416 error = fs_copyfsops(template, *actual, &unused_ops); 417 if (error != 0) { 418 kmem_free(*actual, sizeof (vfsops_t)); 419 *actual = NULL; 420 return (error); 421 } 422 423 return (0); 424 } 425 426 /* 427 * Free a vfsops structure created as a result of vfs_makefsops(). 428 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 429 * vfs_freevfsops_by_type(). 430 */ 431 void 432 vfs_freevfsops(vfsops_t *vfsops) 433 { 434 kmem_free(vfsops, sizeof (vfsops_t)); 435 } 436 437 /* 438 * Since the vfsops structure is part of the vfssw table and wasn't 439 * really allocated, we're not really freeing anything. We keep 440 * the name for consistency with vfs_freevfsops(). We do, however, 441 * need to take care of a little bookkeeping. 442 * NOTE: For a vfsops structure created by vfs_setfsops(), use 443 * vfs_freevfsops_by_type(). 444 */ 445 int 446 vfs_freevfsops_by_type(int fstype) 447 { 448 449 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 450 if ((fstype <= 0) || (fstype >= nfstype)) 451 return (EINVAL); 452 453 WLOCK_VFSSW(); 454 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 455 WUNLOCK_VFSSW(); 456 return (EINVAL); 457 } 458 459 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 460 WUNLOCK_VFSSW(); 461 462 return (0); 463 } 464 465 /* Support routines used to reference vfs_op */ 466 467 /* Set the operations vector for a vfs */ 468 void 469 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 470 { 471 vfsops_t *op; 472 473 ASSERT(vfsp != NULL); 474 ASSERT(vfsops != NULL); 475 476 op = vfsp->vfs_op; 477 membar_consumer(); 478 if (vfsp->vfs_femhead == NULL && 479 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 480 return; 481 } 482 fsem_setvfsops(vfsp, vfsops); 483 } 484 485 /* Retrieve the operations vector for a vfs */ 486 vfsops_t * 487 vfs_getops(vfs_t *vfsp) 488 { 489 vfsops_t *op; 490 491 ASSERT(vfsp != NULL); 492 493 op = vfsp->vfs_op; 494 membar_consumer(); 495 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 496 return (op); 497 } else { 498 return (fsem_getvfsops(vfsp)); 499 } 500 } 501 502 /* 503 * Returns non-zero (1) if the vfsops matches that of the vfs. 504 * Returns zero (0) if not. 505 */ 506 int 507 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 508 { 509 return (vfs_getops(vfsp) == vfsops); 510 } 511 512 /* 513 * Returns non-zero (1) if the file system has installed a non-default, 514 * non-error vfs_sync routine. Returns zero (0) otherwise. 515 */ 516 int 517 vfs_can_sync(vfs_t *vfsp) 518 { 519 /* vfs_sync() routine is not the default/error function */ 520 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 521 } 522 523 /* 524 * Initialize a vfs structure. 525 */ 526 void 527 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 528 { 529 /* Other initialization has been moved to vfs_alloc() */ 530 vfsp->vfs_count = 0; 531 vfsp->vfs_next = vfsp; 532 vfsp->vfs_prev = vfsp; 533 vfsp->vfs_zone_next = vfsp; 534 vfsp->vfs_zone_prev = vfsp; 535 vfsp->vfs_lofi_id = 0; 536 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 537 vfsimpl_setup(vfsp); 538 vfsp->vfs_data = (data); 539 vfs_setops((vfsp), (op)); 540 } 541 542 /* 543 * Allocate and initialize the vfs implementation private data 544 * structure, vfs_impl_t. 545 */ 546 void 547 vfsimpl_setup(vfs_t *vfsp) 548 { 549 int i; 550 551 if (vfsp->vfs_implp != NULL) { 552 return; 553 } 554 555 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 556 /* Note that these are #define'd in vfs.h */ 557 vfsp->vfs_vskap = NULL; 558 vfsp->vfs_fstypevsp = NULL; 559 560 /* Set size of counted array, then zero the array */ 561 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 562 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 563 vfsp->vfs_featureset[i] = 0; 564 } 565 } 566 567 /* 568 * Release the vfs_impl_t structure, if it exists. Some unbundled 569 * filesystems may not use the newer version of vfs and thus 570 * would not contain this implementation private data structure. 571 */ 572 void 573 vfsimpl_teardown(vfs_t *vfsp) 574 { 575 vfs_impl_t *vip = vfsp->vfs_implp; 576 577 if (vip == NULL) 578 return; 579 580 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 581 vfsp->vfs_implp = NULL; 582 } 583 584 /* 585 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 586 * fstatvfs, and sysfs moved to common/syscall. 587 */ 588 589 /* 590 * Update every mounted file system. We call the vfs_sync operation of 591 * each file system type, passing it a NULL vfsp to indicate that all 592 * mounted file systems of that type should be updated. 593 */ 594 void 595 vfs_sync(int flag) 596 { 597 struct vfssw *vswp; 598 RLOCK_VFSSW(); 599 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 600 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 601 vfs_refvfssw(vswp); 602 RUNLOCK_VFSSW(); 603 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 604 CRED()); 605 vfs_unrefvfssw(vswp); 606 RLOCK_VFSSW(); 607 } 608 } 609 RUNLOCK_VFSSW(); 610 } 611 612 void 613 sync(void) 614 { 615 vfs_sync(0); 616 } 617 618 /* 619 * External routines. 620 */ 621 622 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 623 624 /* 625 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 626 * but otherwise should be accessed only via vfs_list_lock() and 627 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 628 */ 629 static krwlock_t vfslist; 630 631 /* 632 * Mount devfs on /devices. This is done right after root is mounted 633 * to provide device access support for the system 634 */ 635 static void 636 vfs_mountdevices(void) 637 { 638 struct vfssw *vsw; 639 struct vnode *mvp; 640 struct mounta mounta = { /* fake mounta for devfs_mount() */ 641 NULL, 642 NULL, 643 MS_SYSSPACE, 644 NULL, 645 NULL, 646 0, 647 NULL, 648 0 649 }; 650 651 /* 652 * _init devfs module to fill in the vfssw 653 */ 654 if (modload("fs", "devfs") == -1) 655 panic("Cannot _init devfs module"); 656 657 /* 658 * Hold vfs 659 */ 660 RLOCK_VFSSW(); 661 vsw = vfs_getvfsswbyname("devfs"); 662 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 663 VFS_HOLD(&devices); 664 665 /* 666 * Locate mount point 667 */ 668 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 669 panic("Cannot find /devices"); 670 671 /* 672 * Perform the mount of /devices 673 */ 674 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 675 panic("Cannot mount /devices"); 676 677 RUNLOCK_VFSSW(); 678 679 /* 680 * Set appropriate members and add to vfs list for mnttab display 681 */ 682 vfs_setresource(&devices, "/devices", 0); 683 vfs_setmntpoint(&devices, "/devices", 0); 684 685 /* 686 * Hold the root of /devices so it won't go away 687 */ 688 if (VFS_ROOT(&devices, &devicesdir)) 689 panic("vfs_mountdevices: not devices root"); 690 691 if (vfs_lock(&devices) != 0) { 692 VN_RELE(devicesdir); 693 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 694 return; 695 } 696 697 if (vn_vfswlock(mvp) != 0) { 698 vfs_unlock(&devices); 699 VN_RELE(devicesdir); 700 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 701 return; 702 } 703 704 vfs_add(mvp, &devices, 0); 705 vn_vfsunlock(mvp); 706 vfs_unlock(&devices); 707 VN_RELE(devicesdir); 708 } 709 710 /* 711 * mount the first instance of /dev to root and remain mounted 712 */ 713 static void 714 vfs_mountdev1(void) 715 { 716 struct vfssw *vsw; 717 struct vnode *mvp; 718 struct mounta mounta = { /* fake mounta for sdev_mount() */ 719 NULL, 720 NULL, 721 MS_SYSSPACE | MS_OVERLAY, 722 NULL, 723 NULL, 724 0, 725 NULL, 726 0 727 }; 728 729 /* 730 * _init dev module to fill in the vfssw 731 */ 732 if (modload("fs", "dev") == -1) 733 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 734 735 /* 736 * Hold vfs 737 */ 738 RLOCK_VFSSW(); 739 vsw = vfs_getvfsswbyname("dev"); 740 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 741 VFS_HOLD(&dev); 742 743 /* 744 * Locate mount point 745 */ 746 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 747 cmn_err(CE_PANIC, "Cannot find /dev\n"); 748 749 /* 750 * Perform the mount of /dev 751 */ 752 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 753 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 754 755 RUNLOCK_VFSSW(); 756 757 /* 758 * Set appropriate members and add to vfs list for mnttab display 759 */ 760 vfs_setresource(&dev, "/dev", 0); 761 vfs_setmntpoint(&dev, "/dev", 0); 762 763 /* 764 * Hold the root of /dev so it won't go away 765 */ 766 if (VFS_ROOT(&dev, &devdir)) 767 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 768 769 if (vfs_lock(&dev) != 0) { 770 VN_RELE(devdir); 771 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 772 return; 773 } 774 775 if (vn_vfswlock(mvp) != 0) { 776 vfs_unlock(&dev); 777 VN_RELE(devdir); 778 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 779 return; 780 } 781 782 vfs_add(mvp, &dev, 0); 783 vn_vfsunlock(mvp); 784 vfs_unlock(&dev); 785 VN_RELE(devdir); 786 } 787 788 /* 789 * Mount required filesystem. This is done right after root is mounted. 790 */ 791 static void 792 vfs_mountfs(char *module, char *spec, char *path) 793 { 794 struct vnode *mvp; 795 struct mounta mounta; 796 vfs_t *vfsp; 797 798 bzero(&mounta, sizeof (mounta)); 799 mounta.flags = MS_SYSSPACE | MS_DATA; 800 mounta.fstype = module; 801 mounta.spec = spec; 802 mounta.dir = path; 803 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 804 cmn_err(CE_WARN, "Cannot find %s", path); 805 return; 806 } 807 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 808 cmn_err(CE_WARN, "Cannot mount %s", path); 809 else 810 VFS_RELE(vfsp); 811 VN_RELE(mvp); 812 } 813 814 /* 815 * vfs_mountroot is called by main() to mount the root filesystem. 816 */ 817 void 818 vfs_mountroot(void) 819 { 820 struct vnode *rvp = NULL; 821 char *path; 822 size_t plen; 823 struct vfssw *vswp; 824 proc_t *p; 825 826 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 827 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 828 829 /* 830 * Alloc the vfs hash bucket array and locks 831 */ 832 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 833 834 /* 835 * Call machine-dependent routine "rootconf" to choose a root 836 * file system type. 837 */ 838 if (rootconf()) 839 panic("vfs_mountroot: cannot mount root"); 840 /* 841 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 842 * to point to it. These are used by lookuppn() so that it 843 * knows where to start from ('/' or '.'). 844 */ 845 vfs_setmntpoint(rootvfs, "/", 0); 846 if (VFS_ROOT(rootvfs, &rootdir)) 847 panic("vfs_mountroot: no root vnode"); 848 849 /* 850 * At this point, the process tree consists of p0 and possibly some 851 * direct children of p0. (i.e. there are no grandchildren) 852 * 853 * Walk through them all, setting their current directory. 854 */ 855 mutex_enter(&pidlock); 856 for (p = practive; p != NULL; p = p->p_next) { 857 ASSERT(p == &p0 || p->p_parent == &p0); 858 859 PTOU(p)->u_cdir = rootdir; 860 VN_HOLD(PTOU(p)->u_cdir); 861 PTOU(p)->u_rdir = NULL; 862 } 863 mutex_exit(&pidlock); 864 865 /* 866 * Setup the global zone's rootvp, now that it exists. 867 */ 868 global_zone->zone_rootvp = rootdir; 869 VN_HOLD(global_zone->zone_rootvp); 870 871 /* 872 * Notify the module code that it can begin using the 873 * root filesystem instead of the boot program's services. 874 */ 875 modrootloaded = 1; 876 877 /* 878 * Special handling for a ZFS root file system. 879 */ 880 zfs_boot_init(); 881 882 /* 883 * Set up mnttab information for root 884 */ 885 vfs_setresource(rootvfs, rootfs.bo_name, 0); 886 887 /* 888 * Notify cluster software that the root filesystem is available. 889 */ 890 clboot_mountroot(); 891 892 /* Now that we're all done with the root FS, set up its vopstats */ 893 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 894 /* Set flag for statistics collection */ 895 if (vswp->vsw_flag & VSW_STATS) { 896 initialize_vopstats(&rootvfs->vfs_vopstats); 897 rootvfs->vfs_flag |= VFS_STATS; 898 rootvfs->vfs_fstypevsp = 899 get_fstype_vopstats(rootvfs, vswp); 900 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 901 } 902 vfs_unrefvfssw(vswp); 903 } 904 905 /* 906 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 907 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 908 */ 909 vfs_mountdevices(); 910 vfs_mountdev1(); 911 912 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 913 vfs_mountfs("proc", "/proc", "/proc"); 914 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 915 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 916 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 917 vfs_mountfs("bootfs", "bootfs", "/system/boot"); 918 919 if (getzoneid() == GLOBAL_ZONEID) { 920 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 921 } 922 923 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 924 /* 925 * Look up the root device via devfs so that a dv_node is 926 * created for it. The vnode is never VN_RELE()ed. 927 * We allocate more than MAXPATHLEN so that the 928 * buffer passed to i_ddi_prompath_to_devfspath() is 929 * exactly MAXPATHLEN (the function expects a buffer 930 * of that length). 931 */ 932 plen = strlen("/devices"); 933 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 934 (void) strcpy(path, "/devices"); 935 936 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 937 != DDI_SUCCESS || 938 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 939 940 /* NUL terminate in case "path" has garbage */ 941 path[plen + MAXPATHLEN - 1] = '\0'; 942 #ifdef DEBUG 943 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 944 path); 945 #endif 946 } 947 kmem_free(path, plen + MAXPATHLEN); 948 } 949 950 vfs_mnttabvp_setup(); 951 } 952 953 /* 954 * Check to see if our "block device" is actually a file. If so, 955 * automatically add a lofi device, and keep track of this fact. 956 */ 957 static int 958 lofi_add(const char *fsname, struct vfs *vfsp, 959 mntopts_t *mntopts, struct mounta *uap) 960 { 961 int fromspace = (uap->flags & MS_SYSSPACE) ? 962 UIO_SYSSPACE : UIO_USERSPACE; 963 struct lofi_ioctl *li = NULL; 964 struct vnode *vp = NULL; 965 struct pathname pn = { NULL }; 966 ldi_ident_t ldi_id; 967 ldi_handle_t ldi_hdl; 968 vfssw_t *vfssw; 969 int id; 970 int err = 0; 971 972 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 973 return (0); 974 975 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 976 vfs_unrefvfssw(vfssw); 977 return (0); 978 } 979 980 vfs_unrefvfssw(vfssw); 981 vfssw = NULL; 982 983 if (pn_get(uap->spec, fromspace, &pn) != 0) 984 return (0); 985 986 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 987 goto out; 988 989 if (vp->v_type != VREG) 990 goto out; 991 992 /* OK, this is a lofi mount. */ 993 994 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 995 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 996 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 997 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 998 err = EINVAL; 999 goto out; 1000 } 1001 1002 ldi_id = ldi_ident_from_anon(); 1003 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1004 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1005 1006 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1007 &ldi_hdl, ldi_id); 1008 1009 if (err) 1010 goto out2; 1011 1012 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1013 FREAD | FWRITE | FKIOCTL, kcred, &id); 1014 1015 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1016 1017 if (!err) 1018 vfsp->vfs_lofi_id = id; 1019 1020 out2: 1021 ldi_ident_release(ldi_id); 1022 out: 1023 if (li != NULL) 1024 kmem_free(li, sizeof (*li)); 1025 if (vp != NULL) 1026 VN_RELE(vp); 1027 pn_free(&pn); 1028 return (err); 1029 } 1030 1031 static void 1032 lofi_remove(struct vfs *vfsp) 1033 { 1034 struct lofi_ioctl *li = NULL; 1035 ldi_ident_t ldi_id; 1036 ldi_handle_t ldi_hdl; 1037 int err; 1038 1039 if (vfsp->vfs_lofi_id == 0) 1040 return; 1041 1042 ldi_id = ldi_ident_from_anon(); 1043 1044 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1045 li->li_id = vfsp->vfs_lofi_id; 1046 li->li_cleanup = B_TRUE; 1047 1048 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1049 &ldi_hdl, ldi_id); 1050 1051 if (err) 1052 goto out; 1053 1054 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1055 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1056 1057 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1058 1059 if (!err) 1060 vfsp->vfs_lofi_id = 0; 1061 1062 out: 1063 ldi_ident_release(ldi_id); 1064 kmem_free(li, sizeof (*li)); 1065 } 1066 1067 /* 1068 * Common mount code. Called from the system call entry point, from autofs, 1069 * nfsv4 trigger mounts, and from pxfs. 1070 * 1071 * Takes the effective file system type, mount arguments, the mount point 1072 * vnode, flags specifying whether the mount is a remount and whether it 1073 * should be entered into the vfs list, and credentials. Fills in its vfspp 1074 * parameter with the mounted file system instance's vfs. 1075 * 1076 * Note that the effective file system type is specified as a string. It may 1077 * be null, in which case it's determined from the mount arguments, and may 1078 * differ from the type specified in the mount arguments; this is a hook to 1079 * allow interposition when instantiating file system instances. 1080 * 1081 * The caller is responsible for releasing its own hold on the mount point 1082 * vp (this routine does its own hold when necessary). 1083 * Also note that for remounts, the mount point vp should be the vnode for 1084 * the root of the file system rather than the vnode that the file system 1085 * is mounted on top of. 1086 */ 1087 int 1088 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1089 struct vfs **vfspp) 1090 { 1091 struct vfssw *vswp; 1092 vfsops_t *vfsops; 1093 struct vfs *vfsp; 1094 struct vnode *bvp; 1095 dev_t bdev = 0; 1096 mntopts_t mnt_mntopts; 1097 int error = 0; 1098 int copyout_error = 0; 1099 int ovflags; 1100 char *opts = uap->optptr; 1101 char *inargs = opts; 1102 int optlen = uap->optlen; 1103 int remount; 1104 int rdonly; 1105 int nbmand = 0; 1106 int delmip = 0; 1107 int addmip = 0; 1108 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1109 int fromspace = (uap->flags & MS_SYSSPACE) ? 1110 UIO_SYSSPACE : UIO_USERSPACE; 1111 char *resource = NULL, *mountpt = NULL; 1112 refstr_t *oldresource, *oldmntpt; 1113 struct pathname pn, rpn; 1114 vsk_anchor_t *vskap; 1115 char fstname[FSTYPSZ]; 1116 zone_t *zone; 1117 1118 /* 1119 * The v_flag value for the mount point vp is permanently set 1120 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1121 * for mount point locking. 1122 */ 1123 mutex_enter(&vp->v_lock); 1124 vp->v_flag |= VVFSLOCK; 1125 mutex_exit(&vp->v_lock); 1126 1127 mnt_mntopts.mo_count = 0; 1128 /* 1129 * Find the ops vector to use to invoke the file system-specific mount 1130 * method. If the fsname argument is non-NULL, use it directly. 1131 * Otherwise, dig the file system type information out of the mount 1132 * arguments. 1133 * 1134 * A side effect is to hold the vfssw entry. 1135 * 1136 * Mount arguments can be specified in several ways, which are 1137 * distinguished by flag bit settings. The preferred way is to set 1138 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1139 * type supplied as a character string and the last two arguments 1140 * being a pointer to a character buffer and the size of the buffer. 1141 * On entry, the buffer holds a null terminated list of options; on 1142 * return, the string is the list of options the file system 1143 * recognized. If MS_DATA is set arguments five and six point to a 1144 * block of binary data which the file system interprets. 1145 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1146 * consistently with these conventions. To handle them, we check to 1147 * see whether the pointer to the file system name has a numeric value 1148 * less than 256. If so, we treat it as an index. 1149 */ 1150 if (fsname != NULL) { 1151 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1152 return (EINVAL); 1153 } 1154 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1155 size_t n; 1156 uint_t fstype; 1157 1158 fsname = fstname; 1159 1160 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1161 RLOCK_VFSSW(); 1162 if (fstype == 0 || fstype >= nfstype || 1163 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1164 RUNLOCK_VFSSW(); 1165 return (EINVAL); 1166 } 1167 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1168 RUNLOCK_VFSSW(); 1169 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1170 return (EINVAL); 1171 } else { 1172 /* 1173 * Handle either kernel or user address space. 1174 */ 1175 if (uap->flags & MS_SYSSPACE) { 1176 error = copystr(uap->fstype, fsname, 1177 FSTYPSZ, &n); 1178 } else { 1179 error = copyinstr(uap->fstype, fsname, 1180 FSTYPSZ, &n); 1181 } 1182 if (error) { 1183 if (error == ENAMETOOLONG) 1184 return (EINVAL); 1185 return (error); 1186 } 1187 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1188 return (EINVAL); 1189 } 1190 } else { 1191 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1192 return (EINVAL); 1193 fsname = vswp->vsw_name; 1194 } 1195 if (!VFS_INSTALLED(vswp)) 1196 return (EINVAL); 1197 1198 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1199 vfs_unrefvfssw(vswp); 1200 return (error); 1201 } 1202 1203 vfsops = &vswp->vsw_vfsops; 1204 1205 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1206 /* 1207 * Fetch mount options and parse them for generic vfs options 1208 */ 1209 if (uap->flags & MS_OPTIONSTR) { 1210 /* 1211 * Limit the buffer size 1212 */ 1213 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1214 error = EINVAL; 1215 goto errout; 1216 } 1217 if ((uap->flags & MS_SYSSPACE) == 0) { 1218 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1219 inargs[0] = '\0'; 1220 if (optlen) { 1221 error = copyinstr(opts, inargs, (size_t)optlen, 1222 NULL); 1223 if (error) { 1224 goto errout; 1225 } 1226 } 1227 } 1228 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1229 } 1230 /* 1231 * Flag bits override the options string. 1232 */ 1233 if (uap->flags & MS_REMOUNT) 1234 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1235 if (uap->flags & MS_RDONLY) 1236 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1237 if (uap->flags & MS_NOSUID) 1238 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1239 1240 /* 1241 * Check if this is a remount; must be set in the option string and 1242 * the file system must support a remount option. 1243 */ 1244 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1245 MNTOPT_REMOUNT, NULL)) { 1246 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1247 error = ENOTSUP; 1248 goto errout; 1249 } 1250 uap->flags |= MS_REMOUNT; 1251 } 1252 1253 /* 1254 * uap->flags and vfs_optionisset() should agree. 1255 */ 1256 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1257 uap->flags |= MS_RDONLY; 1258 } 1259 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1260 uap->flags |= MS_NOSUID; 1261 } 1262 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1263 ASSERT(splice || !remount); 1264 /* 1265 * If we are splicing the fs into the namespace, 1266 * perform mount point checks. 1267 * 1268 * We want to resolve the path for the mount point to eliminate 1269 * '.' and ".." and symlinks in mount points; we can't do the 1270 * same for the resource string, since it would turn 1271 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1272 * this before grabbing vn_vfswlock(), because otherwise we 1273 * would deadlock with lookuppn(). 1274 */ 1275 if (splice) { 1276 ASSERT(vp->v_count > 0); 1277 1278 /* 1279 * Pick up mount point and device from appropriate space. 1280 */ 1281 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1282 resource = kmem_alloc(pn.pn_pathlen + 1, 1283 KM_SLEEP); 1284 (void) strcpy(resource, pn.pn_path); 1285 pn_free(&pn); 1286 } 1287 /* 1288 * Do a lookupname prior to taking the 1289 * writelock. Mark this as completed if 1290 * successful for later cleanup and addition to 1291 * the mount in progress table. 1292 */ 1293 if ((vswp->vsw_flag & VSW_MOUNTDEV) && 1294 (uap->flags & MS_GLOBAL) == 0 && 1295 lookupname(uap->spec, fromspace, 1296 FOLLOW, NULL, &bvp) == 0) { 1297 addmip = 1; 1298 } 1299 1300 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1301 pathname_t *pnp; 1302 1303 if (*pn.pn_path != '/') { 1304 error = EINVAL; 1305 pn_free(&pn); 1306 goto errout; 1307 } 1308 pn_alloc(&rpn); 1309 /* 1310 * Kludge to prevent autofs from deadlocking with 1311 * itself when it calls domount(). 1312 * 1313 * If autofs is calling, it is because it is doing 1314 * (autofs) mounts in the process of an NFS mount. A 1315 * lookuppn() here would cause us to block waiting for 1316 * said NFS mount to complete, which can't since this 1317 * is the thread that was supposed to doing it. 1318 */ 1319 if (fromspace == UIO_USERSPACE) { 1320 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1321 NULL)) == 0) { 1322 pnp = &rpn; 1323 } else { 1324 /* 1325 * The file disappeared or otherwise 1326 * became inaccessible since we opened 1327 * it; might as well fail the mount 1328 * since the mount point is no longer 1329 * accessible. 1330 */ 1331 pn_free(&rpn); 1332 pn_free(&pn); 1333 goto errout; 1334 } 1335 } else { 1336 pnp = &pn; 1337 } 1338 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1339 (void) strcpy(mountpt, pnp->pn_path); 1340 1341 /* 1342 * If the addition of the zone's rootpath 1343 * would push us over a total path length 1344 * of MAXPATHLEN, we fail the mount with 1345 * ENAMETOOLONG, which is what we would have 1346 * gotten if we were trying to perform the same 1347 * mount in the global zone. 1348 * 1349 * strlen() doesn't count the trailing 1350 * '\0', but zone_rootpathlen counts both a 1351 * trailing '/' and the terminating '\0'. 1352 */ 1353 if ((curproc->p_zone->zone_rootpathlen - 1 + 1354 strlen(mountpt)) > MAXPATHLEN || 1355 (resource != NULL && 1356 (curproc->p_zone->zone_rootpathlen - 1 + 1357 strlen(resource)) > MAXPATHLEN)) { 1358 error = ENAMETOOLONG; 1359 } 1360 1361 pn_free(&rpn); 1362 pn_free(&pn); 1363 } 1364 1365 if (error) 1366 goto errout; 1367 1368 /* 1369 * Prevent path name resolution from proceeding past 1370 * the mount point. 1371 */ 1372 if (vn_vfswlock(vp) != 0) { 1373 error = EBUSY; 1374 goto errout; 1375 } 1376 1377 /* 1378 * Verify that it's legitimate to establish a mount on 1379 * the prospective mount point. 1380 */ 1381 if (vn_mountedvfs(vp) != NULL) { 1382 /* 1383 * The mount point lock was obtained after some 1384 * other thread raced through and established a mount. 1385 */ 1386 vn_vfsunlock(vp); 1387 error = EBUSY; 1388 goto errout; 1389 } 1390 if (vp->v_flag & VNOMOUNT) { 1391 vn_vfsunlock(vp); 1392 error = EINVAL; 1393 goto errout; 1394 } 1395 } 1396 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1397 uap->dataptr = NULL; 1398 uap->datalen = 0; 1399 } 1400 1401 /* 1402 * If this is a remount, we don't want to create a new VFS. 1403 * Instead, we pass the existing one with a remount flag. 1404 */ 1405 if (remount) { 1406 /* 1407 * Confirm that the mount point is the root vnode of the 1408 * file system that is being remounted. 1409 * This can happen if the user specifies a different 1410 * mount point directory pathname in the (re)mount command. 1411 * 1412 * Code below can only be reached if splice is true, so it's 1413 * safe to do vn_vfsunlock() here. 1414 */ 1415 if ((vp->v_flag & VROOT) == 0) { 1416 vn_vfsunlock(vp); 1417 error = ENOENT; 1418 goto errout; 1419 } 1420 /* 1421 * Disallow making file systems read-only unless file system 1422 * explicitly allows it in its vfssw. Ignore other flags. 1423 */ 1424 if (rdonly && vn_is_readonly(vp) == 0 && 1425 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1426 vn_vfsunlock(vp); 1427 error = EINVAL; 1428 goto errout; 1429 } 1430 /* 1431 * Disallow changing the NBMAND disposition of the file 1432 * system on remounts. 1433 */ 1434 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1435 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1436 vn_vfsunlock(vp); 1437 error = EINVAL; 1438 goto errout; 1439 } 1440 vfsp = vp->v_vfsp; 1441 ovflags = vfsp->vfs_flag; 1442 vfsp->vfs_flag |= VFS_REMOUNT; 1443 vfsp->vfs_flag &= ~VFS_RDONLY; 1444 } else { 1445 vfsp = vfs_alloc(KM_SLEEP); 1446 VFS_INIT(vfsp, vfsops, NULL); 1447 } 1448 1449 VFS_HOLD(vfsp); 1450 1451 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1452 if (!remount) { 1453 if (splice) 1454 vn_vfsunlock(vp); 1455 vfs_free(vfsp); 1456 } else { 1457 vn_vfsunlock(vp); 1458 VFS_RELE(vfsp); 1459 } 1460 goto errout; 1461 } 1462 1463 /* 1464 * PRIV_SYS_MOUNT doesn't mean you can become root. 1465 */ 1466 if (vfsp->vfs_lofi_id != 0) { 1467 uap->flags |= MS_NOSUID; 1468 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1469 } 1470 1471 /* 1472 * The vfs_reflock is not used anymore the code below explicitly 1473 * holds it preventing others accesing it directly. 1474 */ 1475 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1476 !(vfsp->vfs_flag & VFS_REMOUNT)) 1477 cmn_err(CE_WARN, 1478 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1479 1480 /* 1481 * Lock the vfs. If this is a remount we want to avoid spurious umount 1482 * failures that happen as a side-effect of fsflush() and other mount 1483 * and unmount operations that might be going on simultaneously and 1484 * may have locked the vfs currently. To not return EBUSY immediately 1485 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1486 */ 1487 if (!remount) { 1488 if (error = vfs_lock(vfsp)) { 1489 vfsp->vfs_flag = ovflags; 1490 1491 lofi_remove(vfsp); 1492 1493 if (splice) 1494 vn_vfsunlock(vp); 1495 vfs_free(vfsp); 1496 goto errout; 1497 } 1498 } else { 1499 vfs_lock_wait(vfsp); 1500 } 1501 1502 /* 1503 * Add device to mount in progress table, global mounts require special 1504 * handling. It is possible that we have already done the lookupname 1505 * on a spliced, non-global fs. If so, we don't want to do it again 1506 * since we cannot do a lookupname after taking the 1507 * wlock above. This case is for a non-spliced, non-global filesystem. 1508 */ 1509 if (!addmip) { 1510 if ((vswp->vsw_flag & VSW_MOUNTDEV) && 1511 (uap->flags & MS_GLOBAL) == 0 && 1512 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1513 addmip = 1; 1514 } 1515 } 1516 1517 if (addmip) { 1518 vnode_t *lvp = NULL; 1519 1520 error = vfs_get_lofi(vfsp, &lvp); 1521 if (error > 0) { 1522 lofi_remove(vfsp); 1523 1524 if (splice) 1525 vn_vfsunlock(vp); 1526 vfs_unlock(vfsp); 1527 1528 if (remount) { 1529 VFS_RELE(vfsp); 1530 } else { 1531 vfs_free(vfsp); 1532 } 1533 1534 goto errout; 1535 } else if (error == -1) { 1536 bdev = bvp->v_rdev; 1537 VN_RELE(bvp); 1538 } else { 1539 bdev = lvp->v_rdev; 1540 VN_RELE(lvp); 1541 VN_RELE(bvp); 1542 } 1543 1544 vfs_addmip(bdev, vfsp); 1545 addmip = 0; 1546 delmip = 1; 1547 } 1548 /* 1549 * Invalidate cached entry for the mount point. 1550 */ 1551 if (splice) 1552 dnlc_purge_vp(vp); 1553 1554 /* 1555 * If have an option string but the filesystem doesn't supply a 1556 * prototype options table, create a table with the global 1557 * options and sufficient room to accept all the options in the 1558 * string. Then parse the passed in option string 1559 * accepting all the options in the string. This gives us an 1560 * option table with all the proper cancel properties for the 1561 * global options. 1562 * 1563 * Filesystems that supply a prototype options table are handled 1564 * earlier in this function. 1565 */ 1566 if (uap->flags & MS_OPTIONSTR) { 1567 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1568 mntopts_t tmp_mntopts; 1569 1570 tmp_mntopts.mo_count = 0; 1571 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1572 &mnt_mntopts); 1573 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1574 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1575 vfs_freeopttbl(&tmp_mntopts); 1576 } 1577 } 1578 1579 /* 1580 * Serialize with zone state transitions. 1581 * See vfs_list_add; zone mounted into is: 1582 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1583 * not the zone doing the mount (curproc->p_zone), but if we're already 1584 * inside a NGZ, then we know what zone we are. 1585 */ 1586 if (INGLOBALZONE(curproc)) { 1587 zone = zone_find_by_path(mountpt); 1588 ASSERT(zone != NULL); 1589 } else { 1590 zone = curproc->p_zone; 1591 /* 1592 * zone_find_by_path does a hold, so do one here too so that 1593 * we can do a zone_rele after mount_completed. 1594 */ 1595 zone_hold(zone); 1596 } 1597 mount_in_progress(zone); 1598 /* 1599 * Instantiate (or reinstantiate) the file system. If appropriate, 1600 * splice it into the file system name space. 1601 * 1602 * We want VFS_MOUNT() to be able to override the vfs_resource 1603 * string if necessary (ie, mntfs), and also for a remount to 1604 * change the same (necessary when remounting '/' during boot). 1605 * So we set up vfs_mntpt and vfs_resource to what we think they 1606 * should be, then hand off control to VFS_MOUNT() which can 1607 * override this. 1608 * 1609 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1610 * a vfs which is on the vfs list (i.e. during a remount), we must 1611 * never set those fields to NULL. Several bits of code make 1612 * assumptions that the fields are always valid. 1613 */ 1614 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1615 if (remount) { 1616 if ((oldresource = vfsp->vfs_resource) != NULL) 1617 refstr_hold(oldresource); 1618 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1619 refstr_hold(oldmntpt); 1620 } 1621 vfs_setresource(vfsp, resource, 0); 1622 vfs_setmntpoint(vfsp, mountpt, 0); 1623 1624 /* 1625 * going to mount on this vnode, so notify. 1626 */ 1627 vnevent_mountedover(vp, NULL); 1628 error = VFS_MOUNT(vfsp, vp, uap, credp); 1629 1630 if (uap->flags & MS_RDONLY) 1631 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1632 if (uap->flags & MS_NOSUID) 1633 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1634 if (uap->flags & MS_GLOBAL) 1635 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1636 1637 if (error) { 1638 lofi_remove(vfsp); 1639 1640 if (remount) { 1641 /* put back pre-remount options */ 1642 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1643 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1644 VFSSP_VERBATIM); 1645 if (oldmntpt) 1646 refstr_rele(oldmntpt); 1647 vfs_setresource(vfsp, refstr_value(oldresource), 1648 VFSSP_VERBATIM); 1649 if (oldresource) 1650 refstr_rele(oldresource); 1651 vfsp->vfs_flag = ovflags; 1652 vfs_unlock(vfsp); 1653 VFS_RELE(vfsp); 1654 } else { 1655 vfs_unlock(vfsp); 1656 vfs_freemnttab(vfsp); 1657 vfs_free(vfsp); 1658 } 1659 } else { 1660 /* 1661 * Set the mount time to now 1662 */ 1663 vfsp->vfs_mtime = ddi_get_time(); 1664 if (remount) { 1665 vfsp->vfs_flag &= ~VFS_REMOUNT; 1666 if (oldresource) 1667 refstr_rele(oldresource); 1668 if (oldmntpt) 1669 refstr_rele(oldmntpt); 1670 } else if (splice) { 1671 /* 1672 * Link vfsp into the name space at the mount 1673 * point. Vfs_add() is responsible for 1674 * holding the mount point which will be 1675 * released when vfs_remove() is called. 1676 */ 1677 vfs_add(vp, vfsp, uap->flags); 1678 } else { 1679 /* 1680 * Hold the reference to file system which is 1681 * not linked into the name space. 1682 */ 1683 vfsp->vfs_zone = NULL; 1684 VFS_HOLD(vfsp); 1685 vfsp->vfs_vnodecovered = NULL; 1686 } 1687 /* 1688 * Set flags for global options encountered 1689 */ 1690 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1691 vfsp->vfs_flag |= VFS_RDONLY; 1692 else 1693 vfsp->vfs_flag &= ~VFS_RDONLY; 1694 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1695 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1696 } else { 1697 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1698 vfsp->vfs_flag |= VFS_NODEVICES; 1699 else 1700 vfsp->vfs_flag &= ~VFS_NODEVICES; 1701 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1702 vfsp->vfs_flag |= VFS_NOSETUID; 1703 else 1704 vfsp->vfs_flag &= ~VFS_NOSETUID; 1705 } 1706 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1707 vfsp->vfs_flag |= VFS_NBMAND; 1708 else 1709 vfsp->vfs_flag &= ~VFS_NBMAND; 1710 1711 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1712 vfsp->vfs_flag |= VFS_XATTR; 1713 else 1714 vfsp->vfs_flag &= ~VFS_XATTR; 1715 1716 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1717 vfsp->vfs_flag |= VFS_NOEXEC; 1718 else 1719 vfsp->vfs_flag &= ~VFS_NOEXEC; 1720 1721 /* 1722 * Now construct the output option string of options 1723 * we recognized. 1724 */ 1725 if (uap->flags & MS_OPTIONSTR) { 1726 vfs_list_read_lock(); 1727 copyout_error = vfs_buildoptionstr( 1728 &vfsp->vfs_mntopts, inargs, optlen); 1729 vfs_list_unlock(); 1730 if (copyout_error == 0 && 1731 (uap->flags & MS_SYSSPACE) == 0) { 1732 copyout_error = copyoutstr(inargs, opts, 1733 optlen, NULL); 1734 } 1735 } 1736 1737 /* 1738 * If this isn't a remount, set up the vopstats before 1739 * anyone can touch this. We only allow spliced file 1740 * systems (file systems which are in the namespace) to 1741 * have the VFS_STATS flag set. 1742 * NOTE: PxFS mounts the underlying file system with 1743 * MS_NOSPLICE set and copies those vfs_flags to its private 1744 * vfs structure. As a result, PxFS should never have 1745 * the VFS_STATS flag or else we might access the vfs 1746 * statistics-related fields prior to them being 1747 * properly initialized. 1748 */ 1749 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1750 initialize_vopstats(&vfsp->vfs_vopstats); 1751 /* 1752 * We need to set vfs_vskap to NULL because there's 1753 * a chance it won't be set below. This is checked 1754 * in teardown_vopstats() so we can't have garbage. 1755 */ 1756 vfsp->vfs_vskap = NULL; 1757 vfsp->vfs_flag |= VFS_STATS; 1758 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1759 } 1760 1761 if (vswp->vsw_flag & VSW_XID) 1762 vfsp->vfs_flag |= VFS_XID; 1763 1764 vfs_unlock(vfsp); 1765 } 1766 mount_completed(zone); 1767 zone_rele(zone); 1768 if (splice) 1769 vn_vfsunlock(vp); 1770 1771 if ((error == 0) && (copyout_error == 0)) { 1772 if (!remount) { 1773 /* 1774 * Don't call get_vskstat_anchor() while holding 1775 * locks since it allocates memory and calls 1776 * VFS_STATVFS(). For NFS, the latter can generate 1777 * an over-the-wire call. 1778 */ 1779 vskap = get_vskstat_anchor(vfsp); 1780 /* Only take the lock if we have something to do */ 1781 if (vskap != NULL) { 1782 vfs_lock_wait(vfsp); 1783 if (vfsp->vfs_flag & VFS_STATS) { 1784 vfsp->vfs_vskap = vskap; 1785 } 1786 vfs_unlock(vfsp); 1787 } 1788 } 1789 /* Return vfsp to caller. */ 1790 *vfspp = vfsp; 1791 } 1792 errout: 1793 vfs_freeopttbl(&mnt_mntopts); 1794 if (resource != NULL) 1795 kmem_free(resource, strlen(resource) + 1); 1796 if (mountpt != NULL) 1797 kmem_free(mountpt, strlen(mountpt) + 1); 1798 /* 1799 * It is possible we errored prior to adding to mount in progress 1800 * table. Must free vnode we acquired with successful lookupname. 1801 */ 1802 if (addmip) 1803 VN_RELE(bvp); 1804 if (delmip) 1805 vfs_delmip(vfsp); 1806 ASSERT(vswp != NULL); 1807 vfs_unrefvfssw(vswp); 1808 if (inargs != opts) 1809 kmem_free(inargs, MAX_MNTOPT_STR); 1810 if (copyout_error) { 1811 lofi_remove(vfsp); 1812 VFS_RELE(vfsp); 1813 error = copyout_error; 1814 } 1815 return (error); 1816 } 1817 1818 static void 1819 vfs_setpath( 1820 struct vfs *vfsp, /* vfs being updated */ 1821 refstr_t **refp, /* Ref-count string to contain the new path */ 1822 const char *newpath, /* Path to add to refp (above) */ 1823 uint32_t flag) /* flag */ 1824 { 1825 size_t len; 1826 refstr_t *ref; 1827 zone_t *zone = curproc->p_zone; 1828 char *sp; 1829 int have_list_lock = 0; 1830 1831 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1832 1833 /* 1834 * New path must be less than MAXPATHLEN because mntfs 1835 * will only display up to MAXPATHLEN bytes. This is currently 1836 * safe, because domount() uses pn_get(), and other callers 1837 * similarly cap the size to fewer than MAXPATHLEN bytes. 1838 */ 1839 1840 ASSERT(strlen(newpath) < MAXPATHLEN); 1841 1842 /* mntfs requires consistency while vfs list lock is held */ 1843 1844 if (VFS_ON_LIST(vfsp)) { 1845 have_list_lock = 1; 1846 vfs_list_lock(); 1847 } 1848 1849 if (*refp != NULL) 1850 refstr_rele(*refp); 1851 1852 /* 1853 * If we are in a non-global zone then we prefix the supplied path, 1854 * newpath, with the zone's root path, with two exceptions. The first 1855 * is where we have been explicitly directed to avoid doing so; this 1856 * will be the case following a failed remount, where the path supplied 1857 * will be a saved version which must now be restored. The second 1858 * exception is where newpath is not a pathname but a descriptive name, 1859 * e.g. "procfs". 1860 */ 1861 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1862 ref = refstr_alloc(newpath); 1863 goto out; 1864 } 1865 1866 /* 1867 * Truncate the trailing '/' in the zoneroot, and merge 1868 * in the zone's rootpath with the "newpath" (resource 1869 * or mountpoint) passed in. 1870 * 1871 * The size of the required buffer is thus the size of 1872 * the buffer required for the passed-in newpath 1873 * (strlen(newpath) + 1), plus the size of the buffer 1874 * required to hold zone_rootpath (zone_rootpathlen) 1875 * minus one for one of the now-superfluous NUL 1876 * terminations, minus one for the trailing '/'. 1877 * 1878 * That gives us: 1879 * 1880 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1881 * 1882 * Which is what we have below. 1883 */ 1884 1885 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1886 sp = kmem_alloc(len, KM_SLEEP); 1887 1888 /* 1889 * Copy everything including the trailing slash, which 1890 * we then overwrite with the NUL character. 1891 */ 1892 1893 (void) strcpy(sp, zone->zone_rootpath); 1894 sp[zone->zone_rootpathlen - 2] = '\0'; 1895 (void) strcat(sp, newpath); 1896 1897 ref = refstr_alloc(sp); 1898 kmem_free(sp, len); 1899 out: 1900 *refp = ref; 1901 1902 if (have_list_lock) { 1903 vfs_mnttab_modtimeupd(); 1904 vfs_list_unlock(); 1905 } 1906 } 1907 1908 /* 1909 * Record a mounted resource name in a vfs structure. 1910 * If vfsp is already mounted, caller must hold the vfs lock. 1911 */ 1912 void 1913 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1914 { 1915 if (resource == NULL || resource[0] == '\0') 1916 resource = VFS_NORESOURCE; 1917 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1918 } 1919 1920 /* 1921 * Record a mount point name in a vfs structure. 1922 * If vfsp is already mounted, caller must hold the vfs lock. 1923 */ 1924 void 1925 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1926 { 1927 if (mntpt == NULL || mntpt[0] == '\0') 1928 mntpt = VFS_NOMNTPT; 1929 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1930 } 1931 1932 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1933 1934 refstr_t * 1935 vfs_getresource(const struct vfs *vfsp) 1936 { 1937 refstr_t *resource; 1938 1939 vfs_list_read_lock(); 1940 resource = vfsp->vfs_resource; 1941 refstr_hold(resource); 1942 vfs_list_unlock(); 1943 1944 return (resource); 1945 } 1946 1947 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1948 1949 refstr_t * 1950 vfs_getmntpoint(const struct vfs *vfsp) 1951 { 1952 refstr_t *mntpt; 1953 1954 vfs_list_read_lock(); 1955 mntpt = vfsp->vfs_mntpt; 1956 refstr_hold(mntpt); 1957 vfs_list_unlock(); 1958 1959 return (mntpt); 1960 } 1961 1962 /* 1963 * Create an empty options table with enough empty slots to hold all 1964 * The options in the options string passed as an argument. 1965 * Potentially prepend another options table. 1966 * 1967 * Note: caller is responsible for locking the vfs list, if needed, 1968 * to protect mops. 1969 */ 1970 static void 1971 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1972 const mntopts_t *mtmpl) 1973 { 1974 const char *s = opts; 1975 uint_t count; 1976 1977 if (opts == NULL || *opts == '\0') { 1978 count = 0; 1979 } else { 1980 count = 1; 1981 1982 /* 1983 * Count number of options in the string 1984 */ 1985 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1986 count++; 1987 s++; 1988 } 1989 } 1990 vfs_copyopttbl_extend(mtmpl, mops, count); 1991 } 1992 1993 /* 1994 * Create an empty options table with enough empty slots to hold all 1995 * The options in the options string passed as an argument. 1996 * 1997 * This function is *not* for general use by filesystems. 1998 * 1999 * Note: caller is responsible for locking the vfs list, if needed, 2000 * to protect mops. 2001 */ 2002 void 2003 vfs_createopttbl(mntopts_t *mops, const char *opts) 2004 { 2005 vfs_createopttbl_extend(mops, opts, NULL); 2006 } 2007 2008 2009 /* 2010 * Swap two mount options tables 2011 */ 2012 static void 2013 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2014 { 2015 uint_t tmpcnt; 2016 mntopt_t *tmplist; 2017 2018 tmpcnt = optbl2->mo_count; 2019 tmplist = optbl2->mo_list; 2020 optbl2->mo_count = optbl1->mo_count; 2021 optbl2->mo_list = optbl1->mo_list; 2022 optbl1->mo_count = tmpcnt; 2023 optbl1->mo_list = tmplist; 2024 } 2025 2026 static void 2027 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2028 { 2029 vfs_list_lock(); 2030 vfs_swapopttbl_nolock(optbl1, optbl2); 2031 vfs_mnttab_modtimeupd(); 2032 vfs_list_unlock(); 2033 } 2034 2035 static char ** 2036 vfs_copycancelopt_extend(char **const moc, int extend) 2037 { 2038 int i = 0; 2039 int j; 2040 char **result; 2041 2042 if (moc != NULL) { 2043 for (; moc[i] != NULL; i++) 2044 /* count number of options to cancel */; 2045 } 2046 2047 if (i + extend == 0) 2048 return (NULL); 2049 2050 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2051 2052 for (j = 0; j < i; j++) { 2053 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2054 (void) strcpy(result[j], moc[j]); 2055 } 2056 for (; j <= i + extend; j++) 2057 result[j] = NULL; 2058 2059 return (result); 2060 } 2061 2062 static void 2063 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2064 { 2065 char *sp, *dp; 2066 2067 d->mo_flags = s->mo_flags; 2068 d->mo_data = s->mo_data; 2069 sp = s->mo_name; 2070 if (sp != NULL) { 2071 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2072 (void) strcpy(dp, sp); 2073 d->mo_name = dp; 2074 } else { 2075 d->mo_name = NULL; /* should never happen */ 2076 } 2077 2078 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2079 2080 sp = s->mo_arg; 2081 if (sp != NULL) { 2082 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2083 (void) strcpy(dp, sp); 2084 d->mo_arg = dp; 2085 } else { 2086 d->mo_arg = NULL; 2087 } 2088 } 2089 2090 /* 2091 * Copy a mount options table, possibly allocating some spare 2092 * slots at the end. It is permissible to copy_extend the NULL table. 2093 */ 2094 static void 2095 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2096 { 2097 uint_t i, count; 2098 mntopt_t *motbl; 2099 2100 /* 2101 * Clear out any existing stuff in the options table being initialized 2102 */ 2103 vfs_freeopttbl(dmo); 2104 count = (smo == NULL) ? 0 : smo->mo_count; 2105 if ((count + extra) == 0) /* nothing to do */ 2106 return; 2107 dmo->mo_count = count + extra; 2108 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2109 dmo->mo_list = motbl; 2110 for (i = 0; i < count; i++) { 2111 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2112 } 2113 for (i = count; i < count + extra; i++) { 2114 motbl[i].mo_flags = MO_EMPTY; 2115 } 2116 } 2117 2118 /* 2119 * Copy a mount options table. 2120 * 2121 * This function is *not* for general use by filesystems. 2122 * 2123 * Note: caller is responsible for locking the vfs list, if needed, 2124 * to protect smo and dmo. 2125 */ 2126 void 2127 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2128 { 2129 vfs_copyopttbl_extend(smo, dmo, 0); 2130 } 2131 2132 static char ** 2133 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2134 { 2135 int c1 = 0; 2136 int c2 = 0; 2137 char **result; 2138 char **sp1, **sp2, **dp; 2139 2140 /* 2141 * First we count both lists of cancel options. 2142 * If either is NULL or has no elements, we return a copy of 2143 * the other. 2144 */ 2145 if (mop1->mo_cancel != NULL) { 2146 for (; mop1->mo_cancel[c1] != NULL; c1++) 2147 /* count cancel options in mop1 */; 2148 } 2149 2150 if (c1 == 0) 2151 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2152 2153 if (mop2->mo_cancel != NULL) { 2154 for (; mop2->mo_cancel[c2] != NULL; c2++) 2155 /* count cancel options in mop2 */; 2156 } 2157 2158 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2159 2160 if (c2 == 0) 2161 return (result); 2162 2163 /* 2164 * When we get here, we've got two sets of cancel options; 2165 * we need to merge the two sets. We know that the result 2166 * array has "c1+c2+1" entries and in the end we might shrink 2167 * it. 2168 * Result now has a copy of the c1 entries from mop1; we'll 2169 * now lookup all the entries of mop2 in mop1 and copy it if 2170 * it is unique. 2171 * This operation is O(n^2) but it's only called once per 2172 * filesystem per duplicate option. This is a situation 2173 * which doesn't arise with the filesystems in ON and 2174 * n is generally 1. 2175 */ 2176 2177 dp = &result[c1]; 2178 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2179 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2180 if (strcmp(*sp1, *sp2) == 0) 2181 break; 2182 } 2183 if (*sp1 == NULL) { 2184 /* 2185 * Option *sp2 not found in mop1, so copy it. 2186 * The calls to vfs_copycancelopt_extend() 2187 * guarantee that there's enough room. 2188 */ 2189 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2190 (void) strcpy(*dp++, *sp2); 2191 } 2192 } 2193 if (dp != &result[c1+c2]) { 2194 size_t bytes = (dp - result + 1) * sizeof (char *); 2195 char **nres = kmem_alloc(bytes, KM_SLEEP); 2196 2197 bcopy(result, nres, bytes); 2198 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2199 result = nres; 2200 } 2201 return (result); 2202 } 2203 2204 /* 2205 * Merge two mount option tables (outer and inner) into one. This is very 2206 * similar to "merging" global variables and automatic variables in C. 2207 * 2208 * This isn't (and doesn't have to be) fast. 2209 * 2210 * This function is *not* for general use by filesystems. 2211 * 2212 * Note: caller is responsible for locking the vfs list, if needed, 2213 * to protect omo, imo & dmo. 2214 */ 2215 void 2216 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2217 { 2218 uint_t i, count; 2219 mntopt_t *mop, *motbl; 2220 uint_t freeidx; 2221 2222 /* 2223 * First determine how much space we need to allocate. 2224 */ 2225 count = omo->mo_count; 2226 for (i = 0; i < imo->mo_count; i++) { 2227 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2228 continue; 2229 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2230 count++; 2231 } 2232 ASSERT(count >= omo->mo_count && 2233 count <= omo->mo_count + imo->mo_count); 2234 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2235 for (i = 0; i < omo->mo_count; i++) 2236 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2237 freeidx = omo->mo_count; 2238 for (i = 0; i < imo->mo_count; i++) { 2239 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2240 continue; 2241 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2242 char **newcanp; 2243 uint_t index = mop - omo->mo_list; 2244 2245 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2246 2247 vfs_freeopt(&motbl[index]); 2248 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2249 2250 vfs_freecancelopt(motbl[index].mo_cancel); 2251 motbl[index].mo_cancel = newcanp; 2252 } else { 2253 /* 2254 * If it's a new option, just copy it over to the first 2255 * free location. 2256 */ 2257 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2258 } 2259 } 2260 dmo->mo_count = count; 2261 dmo->mo_list = motbl; 2262 } 2263 2264 /* 2265 * Functions to set and clear mount options in a mount options table. 2266 */ 2267 2268 /* 2269 * Clear a mount option, if it exists. 2270 * 2271 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2272 * the vfs list. 2273 */ 2274 static void 2275 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2276 { 2277 struct mntopt *mop; 2278 uint_t i, count; 2279 2280 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2281 2282 count = mops->mo_count; 2283 for (i = 0; i < count; i++) { 2284 mop = &mops->mo_list[i]; 2285 2286 if (mop->mo_flags & MO_EMPTY) 2287 continue; 2288 if (strcmp(opt, mop->mo_name)) 2289 continue; 2290 mop->mo_flags &= ~MO_SET; 2291 if (mop->mo_arg != NULL) { 2292 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2293 } 2294 mop->mo_arg = NULL; 2295 if (update_mnttab) 2296 vfs_mnttab_modtimeupd(); 2297 break; 2298 } 2299 } 2300 2301 void 2302 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2303 { 2304 int gotlock = 0; 2305 2306 if (VFS_ON_LIST(vfsp)) { 2307 gotlock = 1; 2308 vfs_list_lock(); 2309 } 2310 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2311 if (gotlock) 2312 vfs_list_unlock(); 2313 } 2314 2315 2316 /* 2317 * Set a mount option on. If it's not found in the table, it's silently 2318 * ignored. If the option has MO_IGNORE set, it is still set unless the 2319 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2320 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2321 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2322 * MO_EMPTY set is created as the option passed in. 2323 * 2324 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2325 * the vfs list. 2326 */ 2327 static void 2328 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2329 const char *arg, int flags, int update_mnttab) 2330 { 2331 mntopt_t *mop; 2332 uint_t i, count; 2333 char *sp; 2334 2335 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2336 2337 if (flags & VFS_CREATEOPT) { 2338 if (vfs_hasopt(mops, opt) != NULL) { 2339 flags &= ~VFS_CREATEOPT; 2340 } 2341 } 2342 count = mops->mo_count; 2343 for (i = 0; i < count; i++) { 2344 mop = &mops->mo_list[i]; 2345 2346 if (mop->mo_flags & MO_EMPTY) { 2347 if ((flags & VFS_CREATEOPT) == 0) 2348 continue; 2349 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2350 (void) strcpy(sp, opt); 2351 mop->mo_name = sp; 2352 if (arg != NULL) 2353 mop->mo_flags = MO_HASVALUE; 2354 else 2355 mop->mo_flags = 0; 2356 } else if (strcmp(opt, mop->mo_name)) { 2357 continue; 2358 } 2359 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2360 break; 2361 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2362 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2363 (void) strcpy(sp, arg); 2364 } else { 2365 sp = NULL; 2366 } 2367 if (mop->mo_arg != NULL) 2368 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2369 mop->mo_arg = sp; 2370 if (flags & VFS_DISPLAY) 2371 mop->mo_flags &= ~MO_NODISPLAY; 2372 if (flags & VFS_NODISPLAY) 2373 mop->mo_flags |= MO_NODISPLAY; 2374 mop->mo_flags |= MO_SET; 2375 if (mop->mo_cancel != NULL) { 2376 char **cp; 2377 2378 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2379 vfs_clearmntopt_nolock(mops, *cp, 0); 2380 } 2381 if (update_mnttab) 2382 vfs_mnttab_modtimeupd(); 2383 break; 2384 } 2385 } 2386 2387 void 2388 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2389 { 2390 int gotlock = 0; 2391 2392 if (VFS_ON_LIST(vfsp)) { 2393 gotlock = 1; 2394 vfs_list_lock(); 2395 } 2396 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2397 if (gotlock) 2398 vfs_list_unlock(); 2399 } 2400 2401 2402 /* 2403 * Add a "tag" option to a mounted file system's options list. 2404 * 2405 * Note: caller is responsible for locking the vfs list, if needed, 2406 * to protect mops. 2407 */ 2408 static mntopt_t * 2409 vfs_addtag(mntopts_t *mops, const char *tag) 2410 { 2411 uint_t count; 2412 mntopt_t *mop, *motbl; 2413 2414 count = mops->mo_count + 1; 2415 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2416 if (mops->mo_count) { 2417 size_t len = (count - 1) * sizeof (mntopt_t); 2418 2419 bcopy(mops->mo_list, motbl, len); 2420 kmem_free(mops->mo_list, len); 2421 } 2422 mops->mo_count = count; 2423 mops->mo_list = motbl; 2424 mop = &motbl[count - 1]; 2425 mop->mo_flags = MO_TAG; 2426 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2427 (void) strcpy(mop->mo_name, tag); 2428 return (mop); 2429 } 2430 2431 /* 2432 * Allow users to set arbitrary "tags" in a vfs's mount options. 2433 * Broader use within the kernel is discouraged. 2434 */ 2435 int 2436 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2437 cred_t *cr) 2438 { 2439 vfs_t *vfsp; 2440 mntopts_t *mops; 2441 mntopt_t *mop; 2442 int found = 0; 2443 dev_t dev = makedevice(major, minor); 2444 int err = 0; 2445 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2446 2447 /* 2448 * Find the desired mounted file system 2449 */ 2450 vfs_list_lock(); 2451 vfsp = rootvfs; 2452 do { 2453 if (vfsp->vfs_dev == dev && 2454 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2455 found = 1; 2456 break; 2457 } 2458 vfsp = vfsp->vfs_next; 2459 } while (vfsp != rootvfs); 2460 2461 if (!found) { 2462 err = EINVAL; 2463 goto out; 2464 } 2465 err = secpolicy_fs_config(cr, vfsp); 2466 if (err != 0) 2467 goto out; 2468 2469 mops = &vfsp->vfs_mntopts; 2470 /* 2471 * Add tag if it doesn't already exist 2472 */ 2473 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2474 int len; 2475 2476 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2477 len = strlen(buf); 2478 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2479 err = ENAMETOOLONG; 2480 goto out; 2481 } 2482 mop = vfs_addtag(mops, tag); 2483 } 2484 if ((mop->mo_flags & MO_TAG) == 0) { 2485 err = EINVAL; 2486 goto out; 2487 } 2488 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2489 out: 2490 vfs_list_unlock(); 2491 kmem_free(buf, MAX_MNTOPT_STR); 2492 return (err); 2493 } 2494 2495 /* 2496 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2497 * Broader use within the kernel is discouraged. 2498 */ 2499 int 2500 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2501 cred_t *cr) 2502 { 2503 vfs_t *vfsp; 2504 mntopt_t *mop; 2505 int found = 0; 2506 dev_t dev = makedevice(major, minor); 2507 int err = 0; 2508 2509 /* 2510 * Find the desired mounted file system 2511 */ 2512 vfs_list_lock(); 2513 vfsp = rootvfs; 2514 do { 2515 if (vfsp->vfs_dev == dev && 2516 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2517 found = 1; 2518 break; 2519 } 2520 vfsp = vfsp->vfs_next; 2521 } while (vfsp != rootvfs); 2522 2523 if (!found) { 2524 err = EINVAL; 2525 goto out; 2526 } 2527 err = secpolicy_fs_config(cr, vfsp); 2528 if (err != 0) 2529 goto out; 2530 2531 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2532 err = EINVAL; 2533 goto out; 2534 } 2535 if ((mop->mo_flags & MO_TAG) == 0) { 2536 err = EINVAL; 2537 goto out; 2538 } 2539 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2540 out: 2541 vfs_list_unlock(); 2542 return (err); 2543 } 2544 2545 /* 2546 * Function to parse an option string and fill in a mount options table. 2547 * Unknown options are silently ignored. The input option string is modified 2548 * by replacing separators with nulls. If the create flag is set, options 2549 * not found in the table are just added on the fly. The table must have 2550 * an option slot marked MO_EMPTY to add an option on the fly. 2551 * 2552 * This function is *not* for general use by filesystems. 2553 * 2554 * Note: caller is responsible for locking the vfs list, if needed, 2555 * to protect mops.. 2556 */ 2557 void 2558 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2559 { 2560 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2561 int setflg = VFS_NOFORCEOPT; 2562 2563 if (osp == NULL) 2564 return; 2565 while (*s != '\0') { 2566 p = strchr(s, ','); /* find next option */ 2567 if (p == NULL) { 2568 cp = NULL; 2569 p = s + strlen(s); 2570 } else { 2571 cp = p; /* save location of comma */ 2572 *p++ = '\0'; /* mark end and point to next option */ 2573 } 2574 nextop = p; 2575 p = strchr(s, '='); /* look for value */ 2576 if (p == NULL) { 2577 valp = NULL; /* no value supplied */ 2578 } else { 2579 ep = p; /* save location of equals */ 2580 *p++ = '\0'; /* end option and point to value */ 2581 valp = p; 2582 } 2583 /* 2584 * set option into options table 2585 */ 2586 if (create) 2587 setflg |= VFS_CREATEOPT; 2588 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2589 if (cp != NULL) 2590 *cp = ','; /* restore the comma */ 2591 if (valp != NULL) 2592 *ep = '='; /* restore the equals */ 2593 s = nextop; 2594 } 2595 } 2596 2597 /* 2598 * Function to inquire if an option exists in a mount options table. 2599 * Returns a pointer to the option if it exists, else NULL. 2600 * 2601 * This function is *not* for general use by filesystems. 2602 * 2603 * Note: caller is responsible for locking the vfs list, if needed, 2604 * to protect mops. 2605 */ 2606 struct mntopt * 2607 vfs_hasopt(const mntopts_t *mops, const char *opt) 2608 { 2609 struct mntopt *mop; 2610 uint_t i, count; 2611 2612 count = mops->mo_count; 2613 for (i = 0; i < count; i++) { 2614 mop = &mops->mo_list[i]; 2615 2616 if (mop->mo_flags & MO_EMPTY) 2617 continue; 2618 if (strcmp(opt, mop->mo_name) == 0) 2619 return (mop); 2620 } 2621 return (NULL); 2622 } 2623 2624 /* 2625 * Function to inquire if an option is set in a mount options table. 2626 * Returns non-zero if set and fills in the arg pointer with a pointer to 2627 * the argument string or NULL if there is no argument string. 2628 */ 2629 static int 2630 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2631 { 2632 struct mntopt *mop; 2633 uint_t i, count; 2634 2635 count = mops->mo_count; 2636 for (i = 0; i < count; i++) { 2637 mop = &mops->mo_list[i]; 2638 2639 if (mop->mo_flags & MO_EMPTY) 2640 continue; 2641 if (strcmp(opt, mop->mo_name)) 2642 continue; 2643 if ((mop->mo_flags & MO_SET) == 0) 2644 return (0); 2645 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2646 *argp = mop->mo_arg; 2647 return (1); 2648 } 2649 return (0); 2650 } 2651 2652 2653 int 2654 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2655 { 2656 int ret; 2657 2658 vfs_list_read_lock(); 2659 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2660 vfs_list_unlock(); 2661 return (ret); 2662 } 2663 2664 2665 /* 2666 * Construct a comma separated string of the options set in the given 2667 * mount table, return the string in the given buffer. Return non-zero if 2668 * the buffer would overflow. 2669 * 2670 * This function is *not* for general use by filesystems. 2671 * 2672 * Note: caller is responsible for locking the vfs list, if needed, 2673 * to protect mp. 2674 */ 2675 int 2676 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2677 { 2678 char *cp; 2679 uint_t i; 2680 2681 buf[0] = '\0'; 2682 cp = buf; 2683 for (i = 0; i < mp->mo_count; i++) { 2684 struct mntopt *mop; 2685 2686 mop = &mp->mo_list[i]; 2687 if (mop->mo_flags & MO_SET) { 2688 int optlen, comma = 0; 2689 2690 if (buf[0] != '\0') 2691 comma = 1; 2692 optlen = strlen(mop->mo_name); 2693 if (strlen(buf) + comma + optlen + 1 > len) 2694 goto err; 2695 if (comma) 2696 *cp++ = ','; 2697 (void) strcpy(cp, mop->mo_name); 2698 cp += optlen; 2699 /* 2700 * Append option value if there is one 2701 */ 2702 if (mop->mo_arg != NULL) { 2703 int arglen; 2704 2705 arglen = strlen(mop->mo_arg); 2706 if (strlen(buf) + arglen + 2 > len) 2707 goto err; 2708 *cp++ = '='; 2709 (void) strcpy(cp, mop->mo_arg); 2710 cp += arglen; 2711 } 2712 } 2713 } 2714 return (0); 2715 err: 2716 return (EOVERFLOW); 2717 } 2718 2719 static void 2720 vfs_freecancelopt(char **moc) 2721 { 2722 if (moc != NULL) { 2723 int ccnt = 0; 2724 char **cp; 2725 2726 for (cp = moc; *cp != NULL; cp++) { 2727 kmem_free(*cp, strlen(*cp) + 1); 2728 ccnt++; 2729 } 2730 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2731 } 2732 } 2733 2734 static void 2735 vfs_freeopt(mntopt_t *mop) 2736 { 2737 if (mop->mo_name != NULL) 2738 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2739 2740 vfs_freecancelopt(mop->mo_cancel); 2741 2742 if (mop->mo_arg != NULL) 2743 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2744 } 2745 2746 /* 2747 * Free a mount options table 2748 * 2749 * This function is *not* for general use by filesystems. 2750 * 2751 * Note: caller is responsible for locking the vfs list, if needed, 2752 * to protect mp. 2753 */ 2754 void 2755 vfs_freeopttbl(mntopts_t *mp) 2756 { 2757 uint_t i, count; 2758 2759 count = mp->mo_count; 2760 for (i = 0; i < count; i++) { 2761 vfs_freeopt(&mp->mo_list[i]); 2762 } 2763 if (count) { 2764 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2765 mp->mo_count = 0; 2766 mp->mo_list = NULL; 2767 } 2768 } 2769 2770 2771 /* ARGSUSED */ 2772 static int 2773 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2774 caller_context_t *ct) 2775 { 2776 return (0); 2777 } 2778 2779 /* ARGSUSED */ 2780 static int 2781 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2782 caller_context_t *ct) 2783 { 2784 return (0); 2785 } 2786 2787 /* 2788 * The dummy vnode is currently used only by file events notification 2789 * module which is just interested in the timestamps. 2790 */ 2791 /* ARGSUSED */ 2792 static int 2793 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2794 caller_context_t *ct) 2795 { 2796 bzero(vap, sizeof (vattr_t)); 2797 vap->va_type = VREG; 2798 vap->va_nlink = 1; 2799 vap->va_ctime = vfs_mnttab_ctime; 2800 /* 2801 * it is ok to just copy mtime as the time will be monotonically 2802 * increasing. 2803 */ 2804 vap->va_mtime = vfs_mnttab_mtime; 2805 vap->va_atime = vap->va_mtime; 2806 return (0); 2807 } 2808 2809 static void 2810 vfs_mnttabvp_setup(void) 2811 { 2812 vnode_t *tvp; 2813 vnodeops_t *vfs_mntdummyvnops; 2814 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2815 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2816 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2817 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2818 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2819 NULL, NULL 2820 }; 2821 2822 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2823 &vfs_mntdummyvnops) != 0) { 2824 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2825 /* Shouldn't happen, but not bad enough to panic */ 2826 return; 2827 } 2828 2829 /* 2830 * A global dummy vnode is allocated to represent mntfs files. 2831 * The mntfs file (/etc/mnttab) can be monitored for file events 2832 * and receive an event when mnttab changes. Dummy VOP calls 2833 * will be made on this vnode. The file events notification module 2834 * intercepts this vnode and delivers relevant events. 2835 */ 2836 tvp = vn_alloc(KM_SLEEP); 2837 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2838 vn_setops(tvp, vfs_mntdummyvnops); 2839 tvp->v_type = VREG; 2840 /* 2841 * The mnt dummy ops do not reference v_data. 2842 * No other module intercepting this vnode should either. 2843 * Just set it to point to itself. 2844 */ 2845 tvp->v_data = (caddr_t)tvp; 2846 tvp->v_vfsp = rootvfs; 2847 vfs_mntdummyvp = tvp; 2848 } 2849 2850 /* 2851 * performs fake read/write ops 2852 */ 2853 static void 2854 vfs_mnttab_rwop(int rw) 2855 { 2856 struct uio uio; 2857 struct iovec iov; 2858 char buf[1]; 2859 2860 if (vfs_mntdummyvp == NULL) 2861 return; 2862 2863 bzero(&uio, sizeof (uio)); 2864 bzero(&iov, sizeof (iov)); 2865 iov.iov_base = buf; 2866 iov.iov_len = 0; 2867 uio.uio_iov = &iov; 2868 uio.uio_iovcnt = 1; 2869 uio.uio_loffset = 0; 2870 uio.uio_segflg = UIO_SYSSPACE; 2871 uio.uio_resid = 0; 2872 if (rw) { 2873 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2874 } else { 2875 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2876 } 2877 } 2878 2879 /* 2880 * Generate a write operation. 2881 */ 2882 void 2883 vfs_mnttab_writeop(void) 2884 { 2885 vfs_mnttab_rwop(1); 2886 } 2887 2888 /* 2889 * Generate a read operation. 2890 */ 2891 void 2892 vfs_mnttab_readop(void) 2893 { 2894 vfs_mnttab_rwop(0); 2895 } 2896 2897 /* 2898 * Free any mnttab information recorded in the vfs struct. 2899 * The vfs must not be on the vfs list. 2900 */ 2901 static void 2902 vfs_freemnttab(struct vfs *vfsp) 2903 { 2904 ASSERT(!VFS_ON_LIST(vfsp)); 2905 2906 /* 2907 * Free device and mount point information 2908 */ 2909 if (vfsp->vfs_mntpt != NULL) { 2910 refstr_rele(vfsp->vfs_mntpt); 2911 vfsp->vfs_mntpt = NULL; 2912 } 2913 if (vfsp->vfs_resource != NULL) { 2914 refstr_rele(vfsp->vfs_resource); 2915 vfsp->vfs_resource = NULL; 2916 } 2917 /* 2918 * Now free mount options information 2919 */ 2920 vfs_freeopttbl(&vfsp->vfs_mntopts); 2921 } 2922 2923 /* 2924 * Return the last mnttab modification time 2925 */ 2926 void 2927 vfs_mnttab_modtime(timespec_t *ts) 2928 { 2929 ASSERT(RW_LOCK_HELD(&vfslist)); 2930 *ts = vfs_mnttab_mtime; 2931 } 2932 2933 /* 2934 * See if mnttab is changed 2935 */ 2936 void 2937 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2938 { 2939 int changed; 2940 2941 *phpp = (struct pollhead *)NULL; 2942 2943 /* 2944 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2945 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2946 * to not grab the vfs list lock because tv_sec is monotonically 2947 * increasing. 2948 */ 2949 2950 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2951 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2952 if (!changed) { 2953 *phpp = &vfs_pollhd; 2954 } 2955 } 2956 2957 /* Provide a unique and monotonically-increasing timestamp. */ 2958 void 2959 vfs_mono_time(timespec_t *ts) 2960 { 2961 static volatile hrtime_t hrt; /* The saved time. */ 2962 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2963 timespec_t newts; 2964 2965 /* 2966 * Try gethrestime() first, but be prepared to fabricate a sensible 2967 * answer at the first sign of any trouble. 2968 */ 2969 gethrestime(&newts); 2970 newhrt = ts2hrt(&newts); 2971 for (;;) { 2972 oldhrt = hrt; 2973 if (newhrt <= hrt) 2974 newhrt = hrt + 1; 2975 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2976 break; 2977 } 2978 hrt2ts(newhrt, ts); 2979 } 2980 2981 /* 2982 * Update the mnttab modification time and wake up any waiters for 2983 * mnttab changes 2984 */ 2985 void 2986 vfs_mnttab_modtimeupd() 2987 { 2988 hrtime_t oldhrt, newhrt; 2989 2990 ASSERT(RW_WRITE_HELD(&vfslist)); 2991 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2992 gethrestime(&vfs_mnttab_mtime); 2993 newhrt = ts2hrt(&vfs_mnttab_mtime); 2994 if (oldhrt == (hrtime_t)0) 2995 vfs_mnttab_ctime = vfs_mnttab_mtime; 2996 /* 2997 * Attempt to provide unique mtime (like uniqtime but not). 2998 */ 2999 if (newhrt == oldhrt) { 3000 newhrt++; 3001 hrt2ts(newhrt, &vfs_mnttab_mtime); 3002 } 3003 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3004 vfs_mnttab_writeop(); 3005 } 3006 3007 int 3008 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3009 { 3010 vnode_t *coveredvp; 3011 int error; 3012 extern void teardown_vopstats(vfs_t *); 3013 3014 /* 3015 * Get covered vnode. This will be NULL if the vfs is not linked 3016 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3017 */ 3018 coveredvp = vfsp->vfs_vnodecovered; 3019 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3020 3021 /* 3022 * Purge all dnlc entries for this vfs. 3023 */ 3024 (void) dnlc_purge_vfsp(vfsp, 0); 3025 3026 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3027 if ((flag & MS_FORCE) == 0) 3028 (void) VFS_SYNC(vfsp, 0, cr); 3029 3030 /* 3031 * Lock the vfs to maintain fs status quo during unmount. This 3032 * has to be done after the sync because ufs_update tries to acquire 3033 * the vfs_reflock. 3034 */ 3035 vfs_lock_wait(vfsp); 3036 3037 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3038 vfs_unlock(vfsp); 3039 if (coveredvp != NULL) 3040 vn_vfsunlock(coveredvp); 3041 } else if (coveredvp != NULL) { 3042 teardown_vopstats(vfsp); 3043 /* 3044 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3045 * when it frees vfsp so we do a VN_HOLD() so we can 3046 * continue to use coveredvp afterwards. 3047 */ 3048 VN_HOLD(coveredvp); 3049 vfs_remove(vfsp); 3050 vn_vfsunlock(coveredvp); 3051 VN_RELE(coveredvp); 3052 } else { 3053 teardown_vopstats(vfsp); 3054 /* 3055 * Release the reference to vfs that is not linked 3056 * into the name space. 3057 */ 3058 vfs_unlock(vfsp); 3059 VFS_RELE(vfsp); 3060 } 3061 return (error); 3062 } 3063 3064 3065 /* 3066 * Vfs_unmountall() is called by uadmin() to unmount all 3067 * mounted file systems (except the root file system) during shutdown. 3068 * It follows the existing locking protocol when traversing the vfs list 3069 * to sync and unmount vfses. Even though there should be no 3070 * other thread running while the system is shutting down, it is prudent 3071 * to still follow the locking protocol. 3072 */ 3073 void 3074 vfs_unmountall(void) 3075 { 3076 struct vfs *vfsp; 3077 struct vfs *prev_vfsp = NULL; 3078 int error; 3079 3080 /* 3081 * Toss all dnlc entries now so that the per-vfs sync 3082 * and unmount operations don't have to slog through 3083 * a bunch of uninteresting vnodes over and over again. 3084 */ 3085 dnlc_purge(); 3086 3087 vfs_list_lock(); 3088 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3089 prev_vfsp = vfsp->vfs_prev; 3090 3091 if (vfs_lock(vfsp) != 0) 3092 continue; 3093 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3094 vfs_unlock(vfsp); 3095 if (error) 3096 continue; 3097 3098 vfs_list_unlock(); 3099 3100 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3101 (void) dounmount(vfsp, 0, CRED()); 3102 3103 /* 3104 * Since we dropped the vfslist lock above we must 3105 * verify that next_vfsp still exists, else start over. 3106 */ 3107 vfs_list_lock(); 3108 for (vfsp = rootvfs->vfs_prev; 3109 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3110 if (vfsp == prev_vfsp) 3111 break; 3112 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3113 prev_vfsp = rootvfs->vfs_prev; 3114 } 3115 vfs_list_unlock(); 3116 } 3117 3118 /* 3119 * Called to add an entry to the end of the vfs mount in progress list 3120 */ 3121 void 3122 vfs_addmip(dev_t dev, struct vfs *vfsp) 3123 { 3124 struct ipmnt *mipp; 3125 3126 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3127 mipp->mip_next = NULL; 3128 mipp->mip_dev = dev; 3129 mipp->mip_vfsp = vfsp; 3130 mutex_enter(&vfs_miplist_mutex); 3131 if (vfs_miplist_end != NULL) 3132 vfs_miplist_end->mip_next = mipp; 3133 else 3134 vfs_miplist = mipp; 3135 vfs_miplist_end = mipp; 3136 mutex_exit(&vfs_miplist_mutex); 3137 } 3138 3139 /* 3140 * Called to remove an entry from the mount in progress list 3141 * Either because the mount completed or it failed. 3142 */ 3143 void 3144 vfs_delmip(struct vfs *vfsp) 3145 { 3146 struct ipmnt *mipp, *mipprev; 3147 3148 mutex_enter(&vfs_miplist_mutex); 3149 mipprev = NULL; 3150 for (mipp = vfs_miplist; 3151 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3152 mipprev = mipp; 3153 } 3154 if (mipp == NULL) 3155 return; /* shouldn't happen */ 3156 if (mipp == vfs_miplist_end) 3157 vfs_miplist_end = mipprev; 3158 if (mipprev == NULL) 3159 vfs_miplist = mipp->mip_next; 3160 else 3161 mipprev->mip_next = mipp->mip_next; 3162 mutex_exit(&vfs_miplist_mutex); 3163 kmem_free(mipp, sizeof (struct ipmnt)); 3164 } 3165 3166 /* 3167 * vfs_add is called by a specific filesystem's mount routine to add 3168 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3169 * The vfs should already have been locked by the caller. 3170 * 3171 * coveredvp is NULL if this is the root. 3172 */ 3173 void 3174 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3175 { 3176 int newflag; 3177 3178 ASSERT(vfs_lock_held(vfsp)); 3179 VFS_HOLD(vfsp); 3180 newflag = vfsp->vfs_flag; 3181 if (mflag & MS_RDONLY) 3182 newflag |= VFS_RDONLY; 3183 else 3184 newflag &= ~VFS_RDONLY; 3185 if (mflag & MS_NOSUID) 3186 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3187 else 3188 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3189 if (mflag & MS_NOMNTTAB) 3190 newflag |= VFS_NOMNTTAB; 3191 else 3192 newflag &= ~VFS_NOMNTTAB; 3193 3194 if (coveredvp != NULL) { 3195 ASSERT(vn_vfswlock_held(coveredvp)); 3196 coveredvp->v_vfsmountedhere = vfsp; 3197 VN_HOLD(coveredvp); 3198 } 3199 vfsp->vfs_vnodecovered = coveredvp; 3200 vfsp->vfs_flag = newflag; 3201 3202 vfs_list_add(vfsp); 3203 } 3204 3205 /* 3206 * Remove a vfs from the vfs list, null out the pointer from the 3207 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3208 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3209 * reference to the vfs and to the covered vnode. 3210 * 3211 * Called from dounmount after it's confirmed with the file system 3212 * that the unmount is legal. 3213 */ 3214 void 3215 vfs_remove(struct vfs *vfsp) 3216 { 3217 vnode_t *vp; 3218 3219 ASSERT(vfs_lock_held(vfsp)); 3220 3221 /* 3222 * Can't unmount root. Should never happen because fs will 3223 * be busy. 3224 */ 3225 if (vfsp == rootvfs) 3226 panic("vfs_remove: unmounting root"); 3227 3228 vfs_list_remove(vfsp); 3229 3230 /* 3231 * Unhook from the file system name space. 3232 */ 3233 vp = vfsp->vfs_vnodecovered; 3234 ASSERT(vn_vfswlock_held(vp)); 3235 vp->v_vfsmountedhere = NULL; 3236 vfsp->vfs_vnodecovered = NULL; 3237 VN_RELE(vp); 3238 3239 /* 3240 * Release lock and wakeup anybody waiting. 3241 */ 3242 vfs_unlock(vfsp); 3243 VFS_RELE(vfsp); 3244 } 3245 3246 /* 3247 * Lock a filesystem to prevent access to it while mounting, 3248 * unmounting and syncing. Return EBUSY immediately if lock 3249 * can't be acquired. 3250 */ 3251 int 3252 vfs_lock(vfs_t *vfsp) 3253 { 3254 vn_vfslocks_entry_t *vpvfsentry; 3255 3256 vpvfsentry = vn_vfslocks_getlock(vfsp); 3257 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3258 return (0); 3259 3260 vn_vfslocks_rele(vpvfsentry); 3261 return (EBUSY); 3262 } 3263 3264 int 3265 vfs_rlock(vfs_t *vfsp) 3266 { 3267 vn_vfslocks_entry_t *vpvfsentry; 3268 3269 vpvfsentry = vn_vfslocks_getlock(vfsp); 3270 3271 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3272 return (0); 3273 3274 vn_vfslocks_rele(vpvfsentry); 3275 return (EBUSY); 3276 } 3277 3278 void 3279 vfs_lock_wait(vfs_t *vfsp) 3280 { 3281 vn_vfslocks_entry_t *vpvfsentry; 3282 3283 vpvfsentry = vn_vfslocks_getlock(vfsp); 3284 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3285 } 3286 3287 void 3288 vfs_rlock_wait(vfs_t *vfsp) 3289 { 3290 vn_vfslocks_entry_t *vpvfsentry; 3291 3292 vpvfsentry = vn_vfslocks_getlock(vfsp); 3293 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3294 } 3295 3296 /* 3297 * Unlock a locked filesystem. 3298 */ 3299 void 3300 vfs_unlock(vfs_t *vfsp) 3301 { 3302 vn_vfslocks_entry_t *vpvfsentry; 3303 3304 /* 3305 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3306 * And these changes should remain for the patch changes as it is. 3307 */ 3308 if (panicstr) 3309 return; 3310 3311 /* 3312 * ve_refcount needs to be dropped twice here. 3313 * 1. To release refernce after a call to vfs_locks_getlock() 3314 * 2. To release the reference from the locking routines like 3315 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3316 */ 3317 3318 vpvfsentry = vn_vfslocks_getlock(vfsp); 3319 vn_vfslocks_rele(vpvfsentry); 3320 3321 rwst_exit(&vpvfsentry->ve_lock); 3322 vn_vfslocks_rele(vpvfsentry); 3323 } 3324 3325 /* 3326 * Utility routine that allows a filesystem to construct its 3327 * fsid in "the usual way" - by munging some underlying dev_t and 3328 * the filesystem type number into the 64-bit fsid. Note that 3329 * this implicitly relies on dev_t persistence to make filesystem 3330 * id's persistent. 3331 * 3332 * There's nothing to prevent an individual fs from constructing its 3333 * fsid in a different way, and indeed they should. 3334 * 3335 * Since we want fsids to be 32-bit quantities (so that they can be 3336 * exported identically by either 32-bit or 64-bit APIs, as well as 3337 * the fact that fsid's are "known" to NFS), we compress the device 3338 * number given down to 32-bits, and panic if that isn't possible. 3339 */ 3340 void 3341 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3342 { 3343 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3344 panic("device number too big for fsid!"); 3345 fsi->val[1] = val; 3346 } 3347 3348 int 3349 vfs_lock_held(vfs_t *vfsp) 3350 { 3351 int held; 3352 vn_vfslocks_entry_t *vpvfsentry; 3353 3354 /* 3355 * vfs_lock_held will mimic sema_held behaviour 3356 * if panicstr is set. And these changes should remain 3357 * for the patch changes as it is. 3358 */ 3359 if (panicstr) 3360 return (1); 3361 3362 vpvfsentry = vn_vfslocks_getlock(vfsp); 3363 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3364 3365 vn_vfslocks_rele(vpvfsentry); 3366 return (held); 3367 } 3368 3369 struct _kthread * 3370 vfs_lock_owner(vfs_t *vfsp) 3371 { 3372 struct _kthread *owner; 3373 vn_vfslocks_entry_t *vpvfsentry; 3374 3375 /* 3376 * vfs_wlock_held will mimic sema_held behaviour 3377 * if panicstr is set. And these changes should remain 3378 * for the patch changes as it is. 3379 */ 3380 if (panicstr) 3381 return (NULL); 3382 3383 vpvfsentry = vn_vfslocks_getlock(vfsp); 3384 owner = rwst_owner(&vpvfsentry->ve_lock); 3385 3386 vn_vfslocks_rele(vpvfsentry); 3387 return (owner); 3388 } 3389 3390 /* 3391 * vfs list locking. 3392 * 3393 * Rather than manipulate the vfslist lock directly, we abstract into lock 3394 * and unlock routines to allow the locking implementation to be changed for 3395 * clustering. 3396 * 3397 * Whenever the vfs list is modified through its hash links, the overall list 3398 * lock must be obtained before locking the relevant hash bucket. But to see 3399 * whether a given vfs is on the list, it suffices to obtain the lock for the 3400 * hash bucket without getting the overall list lock. (See getvfs() below.) 3401 */ 3402 3403 void 3404 vfs_list_lock() 3405 { 3406 rw_enter(&vfslist, RW_WRITER); 3407 } 3408 3409 void 3410 vfs_list_read_lock() 3411 { 3412 rw_enter(&vfslist, RW_READER); 3413 } 3414 3415 void 3416 vfs_list_unlock() 3417 { 3418 rw_exit(&vfslist); 3419 } 3420 3421 /* 3422 * Low level worker routines for adding entries to and removing entries from 3423 * the vfs list. 3424 */ 3425 3426 static void 3427 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3428 { 3429 int vhno; 3430 struct vfs **hp; 3431 dev_t dev; 3432 3433 ASSERT(RW_WRITE_HELD(&vfslist)); 3434 3435 dev = expldev(vfsp->vfs_fsid.val[0]); 3436 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3437 3438 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3439 3440 /* 3441 * Link into the hash table, inserting it at the end, so that LOFS 3442 * with the same fsid as UFS (or other) file systems will not hide the 3443 * UFS. 3444 */ 3445 if (insert_at_head) { 3446 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3447 rvfs_list[vhno].rvfs_head = vfsp; 3448 } else { 3449 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3450 hp = &(*hp)->vfs_hash) 3451 continue; 3452 /* 3453 * hp now contains the address of the pointer to update 3454 * to effect the insertion. 3455 */ 3456 vfsp->vfs_hash = NULL; 3457 *hp = vfsp; 3458 } 3459 3460 rvfs_list[vhno].rvfs_len++; 3461 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3462 } 3463 3464 3465 static void 3466 vfs_hash_remove(struct vfs *vfsp) 3467 { 3468 int vhno; 3469 struct vfs *tvfsp; 3470 dev_t dev; 3471 3472 ASSERT(RW_WRITE_HELD(&vfslist)); 3473 3474 dev = expldev(vfsp->vfs_fsid.val[0]); 3475 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3476 3477 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3478 3479 /* 3480 * Remove from hash. 3481 */ 3482 if (rvfs_list[vhno].rvfs_head == vfsp) { 3483 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3484 rvfs_list[vhno].rvfs_len--; 3485 goto foundit; 3486 } 3487 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3488 tvfsp = tvfsp->vfs_hash) { 3489 if (tvfsp->vfs_hash == vfsp) { 3490 tvfsp->vfs_hash = vfsp->vfs_hash; 3491 rvfs_list[vhno].rvfs_len--; 3492 goto foundit; 3493 } 3494 } 3495 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3496 3497 foundit: 3498 3499 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3500 } 3501 3502 3503 void 3504 vfs_list_add(struct vfs *vfsp) 3505 { 3506 zone_t *zone; 3507 3508 /* 3509 * Typically, the vfs_t will have been created on behalf of the file 3510 * system in vfs_init, where it will have been provided with a 3511 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3512 * by an unbundled file system. We therefore check for such an example 3513 * before stamping the vfs_t with its creation time for the benefit of 3514 * mntfs. 3515 */ 3516 if (vfsp->vfs_implp == NULL) 3517 vfsimpl_setup(vfsp); 3518 vfs_mono_time(&vfsp->vfs_hrctime); 3519 3520 /* 3521 * The zone that owns the mount is the one that performed the mount. 3522 * Note that this isn't necessarily the same as the zone mounted into. 3523 * The corresponding zone_rele_ref() will be done when the vfs_t 3524 * is being free'd. 3525 */ 3526 vfsp->vfs_zone = curproc->p_zone; 3527 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3528 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3529 ZONE_REF_VFS); 3530 3531 /* 3532 * Find the zone mounted into, and put this mount on its vfs list. 3533 */ 3534 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3535 ASSERT(zone != NULL); 3536 /* 3537 * Special casing for the root vfs. This structure is allocated 3538 * statically and hooked onto rootvfs at link time. During the 3539 * vfs_mountroot call at system startup time, the root file system's 3540 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3541 * as argument. The code below must detect and handle this special 3542 * case. The only apparent justification for this special casing is 3543 * to ensure that the root file system appears at the head of the 3544 * list. 3545 * 3546 * XXX: I'm assuming that it's ok to do normal list locking when 3547 * adding the entry for the root file system (this used to be 3548 * done with no locks held). 3549 */ 3550 vfs_list_lock(); 3551 /* 3552 * Link into the vfs list proper. 3553 */ 3554 if (vfsp == &root) { 3555 /* 3556 * Assert: This vfs is already on the list as its first entry. 3557 * Thus, there's nothing to do. 3558 */ 3559 ASSERT(rootvfs == vfsp); 3560 /* 3561 * Add it to the head of the global zone's vfslist. 3562 */ 3563 ASSERT(zone == global_zone); 3564 ASSERT(zone->zone_vfslist == NULL); 3565 zone->zone_vfslist = vfsp; 3566 } else { 3567 /* 3568 * Link to end of list using vfs_prev (as rootvfs is now a 3569 * doubly linked circular list) so list is in mount order for 3570 * mnttab use. 3571 */ 3572 rootvfs->vfs_prev->vfs_next = vfsp; 3573 vfsp->vfs_prev = rootvfs->vfs_prev; 3574 rootvfs->vfs_prev = vfsp; 3575 vfsp->vfs_next = rootvfs; 3576 3577 /* 3578 * Do it again for the zone-private list (which may be NULL). 3579 */ 3580 if (zone->zone_vfslist == NULL) { 3581 ASSERT(zone != global_zone); 3582 zone->zone_vfslist = vfsp; 3583 } else { 3584 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3585 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3586 zone->zone_vfslist->vfs_zone_prev = vfsp; 3587 vfsp->vfs_zone_next = zone->zone_vfslist; 3588 } 3589 } 3590 3591 /* 3592 * Link into the hash table, inserting it at the end, so that LOFS 3593 * with the same fsid as UFS (or other) file systems will not hide 3594 * the UFS. 3595 */ 3596 vfs_hash_add(vfsp, 0); 3597 3598 /* 3599 * update the mnttab modification time 3600 */ 3601 vfs_mnttab_modtimeupd(); 3602 vfs_list_unlock(); 3603 zone_rele(zone); 3604 } 3605 3606 void 3607 vfs_list_remove(struct vfs *vfsp) 3608 { 3609 zone_t *zone; 3610 3611 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3612 ASSERT(zone != NULL); 3613 /* 3614 * Callers are responsible for preventing attempts to unmount the 3615 * root. 3616 */ 3617 ASSERT(vfsp != rootvfs); 3618 3619 vfs_list_lock(); 3620 3621 /* 3622 * Remove from hash. 3623 */ 3624 vfs_hash_remove(vfsp); 3625 3626 /* 3627 * Remove from vfs list. 3628 */ 3629 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3630 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3631 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3632 3633 /* 3634 * Remove from zone-specific vfs list. 3635 */ 3636 if (zone->zone_vfslist == vfsp) 3637 zone->zone_vfslist = vfsp->vfs_zone_next; 3638 3639 if (vfsp->vfs_zone_next == vfsp) { 3640 ASSERT(vfsp->vfs_zone_prev == vfsp); 3641 ASSERT(zone->zone_vfslist == vfsp); 3642 zone->zone_vfslist = NULL; 3643 } 3644 3645 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3646 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3647 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3648 3649 /* 3650 * update the mnttab modification time 3651 */ 3652 vfs_mnttab_modtimeupd(); 3653 vfs_list_unlock(); 3654 zone_rele(zone); 3655 } 3656 3657 struct vfs * 3658 getvfs(fsid_t *fsid) 3659 { 3660 struct vfs *vfsp; 3661 int val0 = fsid->val[0]; 3662 int val1 = fsid->val[1]; 3663 dev_t dev = expldev(val0); 3664 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3665 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3666 3667 mutex_enter(hmp); 3668 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3669 if (vfsp->vfs_fsid.val[0] == val0 && 3670 vfsp->vfs_fsid.val[1] == val1) { 3671 VFS_HOLD(vfsp); 3672 mutex_exit(hmp); 3673 return (vfsp); 3674 } 3675 } 3676 mutex_exit(hmp); 3677 return (NULL); 3678 } 3679 3680 /* 3681 * Search the vfs mount in progress list for a specified device/vfs entry. 3682 * Returns 0 if the first entry in the list that the device matches has the 3683 * given vfs pointer as well. If the device matches but a different vfs 3684 * pointer is encountered in the list before the given vfs pointer then 3685 * a 1 is returned. 3686 */ 3687 3688 int 3689 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3690 { 3691 int retval = 0; 3692 struct ipmnt *mipp; 3693 3694 mutex_enter(&vfs_miplist_mutex); 3695 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3696 if (mipp->mip_dev == dev) { 3697 if (mipp->mip_vfsp != vfsp) 3698 retval = 1; 3699 break; 3700 } 3701 } 3702 mutex_exit(&vfs_miplist_mutex); 3703 return (retval); 3704 } 3705 3706 /* 3707 * Search the vfs list for a specified device. Returns 1, if entry is found 3708 * or 0 if no suitable entry is found. 3709 */ 3710 3711 int 3712 vfs_devismounted(dev_t dev) 3713 { 3714 struct vfs *vfsp; 3715 int found; 3716 3717 vfs_list_read_lock(); 3718 vfsp = rootvfs; 3719 found = 0; 3720 do { 3721 if (vfsp->vfs_dev == dev) { 3722 found = 1; 3723 break; 3724 } 3725 vfsp = vfsp->vfs_next; 3726 } while (vfsp != rootvfs); 3727 3728 vfs_list_unlock(); 3729 return (found); 3730 } 3731 3732 /* 3733 * Search the vfs list for a specified device. Returns a pointer to it 3734 * or NULL if no suitable entry is found. The caller of this routine 3735 * is responsible for releasing the returned vfs pointer. 3736 */ 3737 struct vfs * 3738 vfs_dev2vfsp(dev_t dev) 3739 { 3740 struct vfs *vfsp; 3741 int found; 3742 3743 vfs_list_read_lock(); 3744 vfsp = rootvfs; 3745 found = 0; 3746 do { 3747 /* 3748 * The following could be made more efficient by making 3749 * the entire loop use vfs_zone_next if the call is from 3750 * a zone. The only callers, however, ustat(2) and 3751 * umount2(2), don't seem to justify the added 3752 * complexity at present. 3753 */ 3754 if (vfsp->vfs_dev == dev && 3755 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3756 curproc->p_zone)) { 3757 VFS_HOLD(vfsp); 3758 found = 1; 3759 break; 3760 } 3761 vfsp = vfsp->vfs_next; 3762 } while (vfsp != rootvfs); 3763 vfs_list_unlock(); 3764 return (found ? vfsp: NULL); 3765 } 3766 3767 /* 3768 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3769 * or NULL if no suitable entry is found. The caller of this routine 3770 * is responsible for releasing the returned vfs pointer. 3771 * 3772 * Note that if multiple mntpoints match, the last one matching is 3773 * returned in an attempt to return the "top" mount when overlay 3774 * mounts are covering the same mount point. This is accomplished by starting 3775 * at the end of the list and working our way backwards, stopping at the first 3776 * matching mount. 3777 */ 3778 struct vfs * 3779 vfs_mntpoint2vfsp(const char *mp) 3780 { 3781 struct vfs *vfsp; 3782 struct vfs *retvfsp = NULL; 3783 zone_t *zone = curproc->p_zone; 3784 struct vfs *list; 3785 3786 vfs_list_read_lock(); 3787 if (getzoneid() == GLOBAL_ZONEID) { 3788 /* 3789 * The global zone may see filesystems in any zone. 3790 */ 3791 vfsp = rootvfs->vfs_prev; 3792 do { 3793 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3794 retvfsp = vfsp; 3795 break; 3796 } 3797 vfsp = vfsp->vfs_prev; 3798 } while (vfsp != rootvfs->vfs_prev); 3799 } else if ((list = zone->zone_vfslist) != NULL) { 3800 const char *mntpt; 3801 3802 vfsp = list->vfs_zone_prev; 3803 do { 3804 mntpt = refstr_value(vfsp->vfs_mntpt); 3805 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3806 if (strcmp(mntpt, mp) == 0) { 3807 retvfsp = vfsp; 3808 break; 3809 } 3810 vfsp = vfsp->vfs_zone_prev; 3811 } while (vfsp != list->vfs_zone_prev); 3812 } 3813 if (retvfsp) 3814 VFS_HOLD(retvfsp); 3815 vfs_list_unlock(); 3816 return (retvfsp); 3817 } 3818 3819 /* 3820 * Search the vfs list for a specified vfsops. 3821 * if vfs entry is found then return 1, else 0. 3822 */ 3823 int 3824 vfs_opsinuse(vfsops_t *ops) 3825 { 3826 struct vfs *vfsp; 3827 int found; 3828 3829 vfs_list_read_lock(); 3830 vfsp = rootvfs; 3831 found = 0; 3832 do { 3833 if (vfs_getops(vfsp) == ops) { 3834 found = 1; 3835 break; 3836 } 3837 vfsp = vfsp->vfs_next; 3838 } while (vfsp != rootvfs); 3839 vfs_list_unlock(); 3840 return (found); 3841 } 3842 3843 /* 3844 * Allocate an entry in vfssw for a file system type 3845 */ 3846 struct vfssw * 3847 allocate_vfssw(const char *type) 3848 { 3849 struct vfssw *vswp; 3850 3851 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3852 /* 3853 * The vfssw table uses the empty string to identify an 3854 * available entry; we cannot add any type which has 3855 * a leading NUL. The string length is limited to 3856 * the size of the st_fstype array in struct stat. 3857 */ 3858 return (NULL); 3859 } 3860 3861 ASSERT(VFSSW_WRITE_LOCKED()); 3862 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3863 if (!ALLOCATED_VFSSW(vswp)) { 3864 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3865 (void) strcpy(vswp->vsw_name, type); 3866 ASSERT(vswp->vsw_count == 0); 3867 vswp->vsw_count = 1; 3868 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3869 return (vswp); 3870 } 3871 return (NULL); 3872 } 3873 3874 /* 3875 * Impose additional layer of translation between vfstype names 3876 * and module names in the filesystem. 3877 */ 3878 static const char * 3879 vfs_to_modname(const char *vfstype) 3880 { 3881 if (strcmp(vfstype, "proc") == 0) { 3882 vfstype = "procfs"; 3883 } else if (strcmp(vfstype, "fd") == 0) { 3884 vfstype = "fdfs"; 3885 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3886 vfstype = "nfs"; 3887 } 3888 3889 return (vfstype); 3890 } 3891 3892 /* 3893 * Find a vfssw entry given a file system type name. 3894 * Try to autoload the filesystem if it's not found. 3895 * If it's installed, return the vfssw locked to prevent unloading. 3896 */ 3897 struct vfssw * 3898 vfs_getvfssw(const char *type) 3899 { 3900 struct vfssw *vswp; 3901 const char *modname; 3902 3903 RLOCK_VFSSW(); 3904 vswp = vfs_getvfsswbyname(type); 3905 modname = vfs_to_modname(type); 3906 3907 if (rootdir == NULL) { 3908 /* 3909 * If we haven't yet loaded the root file system, then our 3910 * _init won't be called until later. Allocate vfssw entry, 3911 * because mod_installfs won't be called. 3912 */ 3913 if (vswp == NULL) { 3914 RUNLOCK_VFSSW(); 3915 WLOCK_VFSSW(); 3916 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3917 if ((vswp = allocate_vfssw(type)) == NULL) { 3918 WUNLOCK_VFSSW(); 3919 return (NULL); 3920 } 3921 } 3922 WUNLOCK_VFSSW(); 3923 RLOCK_VFSSW(); 3924 } 3925 if (!VFS_INSTALLED(vswp)) { 3926 RUNLOCK_VFSSW(); 3927 (void) modloadonly("fs", modname); 3928 } else 3929 RUNLOCK_VFSSW(); 3930 return (vswp); 3931 } 3932 3933 /* 3934 * Try to load the filesystem. Before calling modload(), we drop 3935 * our lock on the VFS switch table, and pick it up after the 3936 * module is loaded. However, there is a potential race: the 3937 * module could be unloaded after the call to modload() completes 3938 * but before we pick up the lock and drive on. Therefore, 3939 * we keep reloading the module until we've loaded the module 3940 * _and_ we have the lock on the VFS switch table. 3941 */ 3942 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3943 RUNLOCK_VFSSW(); 3944 if (modload("fs", modname) == -1) 3945 return (NULL); 3946 RLOCK_VFSSW(); 3947 if (vswp == NULL) 3948 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3949 break; 3950 } 3951 RUNLOCK_VFSSW(); 3952 3953 return (vswp); 3954 } 3955 3956 /* 3957 * Find a vfssw entry given a file system type name. 3958 */ 3959 struct vfssw * 3960 vfs_getvfsswbyname(const char *type) 3961 { 3962 struct vfssw *vswp; 3963 3964 ASSERT(VFSSW_LOCKED()); 3965 if (type == NULL || *type == '\0') 3966 return (NULL); 3967 3968 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3969 if (strcmp(type, vswp->vsw_name) == 0) { 3970 vfs_refvfssw(vswp); 3971 return (vswp); 3972 } 3973 } 3974 3975 return (NULL); 3976 } 3977 3978 /* 3979 * Find a vfssw entry given a set of vfsops. 3980 */ 3981 struct vfssw * 3982 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3983 { 3984 struct vfssw *vswp; 3985 3986 RLOCK_VFSSW(); 3987 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3988 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3989 vfs_refvfssw(vswp); 3990 RUNLOCK_VFSSW(); 3991 return (vswp); 3992 } 3993 } 3994 RUNLOCK_VFSSW(); 3995 3996 return (NULL); 3997 } 3998 3999 /* 4000 * Reference a vfssw entry. 4001 */ 4002 void 4003 vfs_refvfssw(struct vfssw *vswp) 4004 { 4005 4006 mutex_enter(&vswp->vsw_lock); 4007 vswp->vsw_count++; 4008 mutex_exit(&vswp->vsw_lock); 4009 } 4010 4011 /* 4012 * Unreference a vfssw entry. 4013 */ 4014 void 4015 vfs_unrefvfssw(struct vfssw *vswp) 4016 { 4017 4018 mutex_enter(&vswp->vsw_lock); 4019 vswp->vsw_count--; 4020 mutex_exit(&vswp->vsw_lock); 4021 } 4022 4023 static int sync_retries = 20; /* number of retries when not making progress */ 4024 static int sync_triesleft; /* portion of sync_retries remaining */ 4025 4026 static pgcnt_t old_pgcnt, new_pgcnt; 4027 static int new_bufcnt, old_bufcnt; 4028 4029 /* 4030 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4031 * complete. We wait by counting the number of dirty pages and buffers, 4032 * pushing them out using bio_busy() and page_busy(), and then counting again. 4033 * This routine is used during the uadmin A_SHUTDOWN code. It should only 4034 * be used after some higher-level mechanism has quiesced the system so that 4035 * new writes are not being initiated while we are waiting for completion. 4036 * 4037 * To ensure finite running time, our algorithm uses sync_triesleft (a progress 4038 * counter used by the vfs_syncall() loop below). It is declared above so 4039 * it can be found easily in the debugger. 4040 * 4041 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4042 * sync_retries consecutive calls to bio_busy() and page_busy() without 4043 * decreasing either the number of dirty buffers or dirty pages below the 4044 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4045 * 4046 * Each loop iteration ends with a call to delay() one second to allow time for 4047 * i/o completion and to permit the user time to read our progress messages. 4048 */ 4049 void 4050 vfs_syncall(void) 4051 { 4052 if (rootdir == NULL && !modrootloaded) 4053 return; /* no filesystems have been loaded yet */ 4054 4055 printf("syncing file systems..."); 4056 sync(); 4057 4058 sync_triesleft = sync_retries; 4059 4060 old_bufcnt = new_bufcnt = INT_MAX; 4061 old_pgcnt = new_pgcnt = ULONG_MAX; 4062 4063 while (sync_triesleft > 0) { 4064 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4065 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4066 4067 new_bufcnt = bio_busy(B_TRUE); 4068 new_pgcnt = page_busy(B_TRUE); 4069 4070 if (new_bufcnt == 0 && new_pgcnt == 0) 4071 break; 4072 4073 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4074 sync_triesleft = sync_retries; 4075 else 4076 sync_triesleft--; 4077 4078 if (new_bufcnt) 4079 printf(" [%d]", new_bufcnt); 4080 if (new_pgcnt) 4081 printf(" %lu", new_pgcnt); 4082 4083 delay(hz); 4084 } 4085 4086 if (new_bufcnt != 0 || new_pgcnt != 0) 4087 printf(" done (not all i/o completed)\n"); 4088 else 4089 printf(" done\n"); 4090 4091 delay(hz); 4092 } 4093 4094 /* 4095 * Map VFS flags to statvfs flags. These shouldn't really be separate 4096 * flags at all. 4097 */ 4098 uint_t 4099 vf_to_stf(uint_t vf) 4100 { 4101 uint_t stf = 0; 4102 4103 if (vf & VFS_RDONLY) 4104 stf |= ST_RDONLY; 4105 if (vf & VFS_NOSETUID) 4106 stf |= ST_NOSUID; 4107 if (vf & VFS_NOTRUNC) 4108 stf |= ST_NOTRUNC; 4109 4110 return (stf); 4111 } 4112 4113 /* 4114 * Entries for (illegal) fstype 0. 4115 */ 4116 /* ARGSUSED */ 4117 int 4118 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4119 { 4120 cmn_err(CE_PANIC, "stray vfs operation"); 4121 return (0); 4122 } 4123 4124 /* 4125 * Entries for (illegal) fstype 0. 4126 */ 4127 int 4128 vfsstray(void) 4129 { 4130 cmn_err(CE_PANIC, "stray vfs operation"); 4131 return (0); 4132 } 4133 4134 /* 4135 * Support for dealing with forced UFS unmount and its interaction with 4136 * LOFS. Could be used by any filesystem. 4137 * See bug 1203132. 4138 */ 4139 int 4140 vfs_EIO(void) 4141 { 4142 return (EIO); 4143 } 4144 4145 /* 4146 * We've gotta define the op for sync separately, since the compiler gets 4147 * confused if we mix and match ANSI and normal style prototypes when 4148 * a "short" argument is present and spits out a warning. 4149 */ 4150 /*ARGSUSED*/ 4151 int 4152 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4153 { 4154 return (EIO); 4155 } 4156 4157 vfs_t EIO_vfs; 4158 vfsops_t *EIO_vfsops; 4159 4160 /* 4161 * Called from startup() to initialize all loaded vfs's 4162 */ 4163 void 4164 vfsinit(void) 4165 { 4166 struct vfssw *vswp; 4167 int error; 4168 extern int vopstats_enabled; 4169 extern void vopstats_startup(); 4170 4171 static const fs_operation_def_t EIO_vfsops_template[] = { 4172 VFSNAME_MOUNT, { .error = vfs_EIO }, 4173 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4174 VFSNAME_ROOT, { .error = vfs_EIO }, 4175 VFSNAME_STATVFS, { .error = vfs_EIO }, 4176 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4177 VFSNAME_VGET, { .error = vfs_EIO }, 4178 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4179 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4180 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4181 NULL, NULL 4182 }; 4183 4184 static const fs_operation_def_t stray_vfsops_template[] = { 4185 VFSNAME_MOUNT, { .error = vfsstray }, 4186 VFSNAME_UNMOUNT, { .error = vfsstray }, 4187 VFSNAME_ROOT, { .error = vfsstray }, 4188 VFSNAME_STATVFS, { .error = vfsstray }, 4189 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4190 VFSNAME_VGET, { .error = vfsstray }, 4191 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4192 VFSNAME_FREEVFS, { .error = vfsstray }, 4193 VFSNAME_VNSTATE, { .error = vfsstray }, 4194 NULL, NULL 4195 }; 4196 4197 /* Create vfs cache */ 4198 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4199 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4200 4201 /* Initialize the vnode cache (file systems may use it during init). */ 4202 vn_create_cache(); 4203 4204 /* Setup event monitor framework */ 4205 fem_init(); 4206 4207 /* Initialize the dummy stray file system type. */ 4208 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4209 4210 /* Initialize the dummy EIO file system. */ 4211 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4212 if (error != 0) { 4213 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4214 /* Shouldn't happen, but not bad enough to panic */ 4215 } 4216 4217 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4218 4219 /* 4220 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4221 * on this vfs can immediately notice it's invalid. 4222 */ 4223 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4224 4225 /* 4226 * Call the init routines of non-loadable filesystems only. 4227 * Filesystems which are loaded as separate modules will be 4228 * initialized by the module loading code instead. 4229 */ 4230 4231 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4232 RLOCK_VFSSW(); 4233 if (vswp->vsw_init != NULL) 4234 (void) (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4235 RUNLOCK_VFSSW(); 4236 } 4237 4238 vopstats_startup(); 4239 4240 if (vopstats_enabled) { 4241 /* EIO_vfs can collect stats, but we don't retrieve them */ 4242 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4243 EIO_vfs.vfs_fstypevsp = NULL; 4244 EIO_vfs.vfs_vskap = NULL; 4245 EIO_vfs.vfs_flag |= VFS_STATS; 4246 } 4247 4248 xattr_init(); 4249 4250 reparse_point_init(); 4251 } 4252 4253 vfs_t * 4254 vfs_alloc(int kmflag) 4255 { 4256 vfs_t *vfsp; 4257 4258 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4259 4260 /* 4261 * Do the simplest initialization here. 4262 * Everything else gets done in vfs_init() 4263 */ 4264 bzero(vfsp, sizeof (vfs_t)); 4265 return (vfsp); 4266 } 4267 4268 void 4269 vfs_free(vfs_t *vfsp) 4270 { 4271 /* 4272 * One would be tempted to assert that "vfsp->vfs_count == 0". 4273 * The problem is that this gets called out of domount() with 4274 * a partially initialized vfs and a vfs_count of 1. This is 4275 * also called from vfs_rele() with a vfs_count of 0. We can't 4276 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4277 * returned. This is because VFS_MOUNT() fully initializes the 4278 * vfs structure and its associated data. VFS_RELE() will call 4279 * VFS_FREEVFS() which may panic the system if the data structures 4280 * aren't fully initialized from a successful VFS_MOUNT()). 4281 */ 4282 4283 /* If FEM was in use, make sure everything gets cleaned up */ 4284 if (vfsp->vfs_femhead) { 4285 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4286 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4287 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4288 vfsp->vfs_femhead = NULL; 4289 } 4290 4291 if (vfsp->vfs_implp) 4292 vfsimpl_teardown(vfsp); 4293 sema_destroy(&vfsp->vfs_reflock); 4294 kmem_cache_free(vfs_cache, vfsp); 4295 } 4296 4297 /* 4298 * Increments the vfs reference count by one atomically. 4299 */ 4300 void 4301 vfs_hold(vfs_t *vfsp) 4302 { 4303 atomic_inc_32(&vfsp->vfs_count); 4304 ASSERT(vfsp->vfs_count != 0); 4305 } 4306 4307 /* 4308 * Decrements the vfs reference count by one atomically. When 4309 * vfs reference count becomes zero, it calls the file system 4310 * specific vfs_freevfs() to free up the resources. 4311 */ 4312 void 4313 vfs_rele(vfs_t *vfsp) 4314 { 4315 ASSERT(vfsp->vfs_count != 0); 4316 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4317 VFS_FREEVFS(vfsp); 4318 lofi_remove(vfsp); 4319 if (vfsp->vfs_zone) 4320 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4321 ZONE_REF_VFS); 4322 vfs_freemnttab(vfsp); 4323 vfs_free(vfsp); 4324 } 4325 } 4326 4327 /* 4328 * Generic operations vector support. 4329 * 4330 * This is used to build operations vectors for both the vfs and vnode. 4331 * It's normally called only when a file system is loaded. 4332 * 4333 * There are many possible algorithms for this, including the following: 4334 * 4335 * (1) scan the list of known operations; for each, see if the file system 4336 * includes an entry for it, and fill it in as appropriate. 4337 * 4338 * (2) set up defaults for all known operations. scan the list of ops 4339 * supplied by the file system; for each which is both supplied and 4340 * known, fill it in. 4341 * 4342 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4343 * in entries as we go. 4344 * 4345 * we choose (1) for simplicity, and because performance isn't critical here. 4346 * note that (2) could be sped up using a precomputed hash table on known ops. 4347 * (3) could be faster than either, but only if the lists were very large or 4348 * supplied in sorted order. 4349 * 4350 */ 4351 4352 int 4353 fs_build_vector(void *vector, int *unused_ops, 4354 const fs_operation_trans_def_t *translation, 4355 const fs_operation_def_t *operations) 4356 { 4357 int i, num_trans, num_ops, used; 4358 4359 /* 4360 * Count the number of translations and the number of supplied 4361 * operations. 4362 */ 4363 4364 { 4365 const fs_operation_trans_def_t *p; 4366 4367 for (num_trans = 0, p = translation; 4368 p->name != NULL; 4369 num_trans++, p++) 4370 ; 4371 } 4372 4373 { 4374 const fs_operation_def_t *p; 4375 4376 for (num_ops = 0, p = operations; 4377 p->name != NULL; 4378 num_ops++, p++) 4379 ; 4380 } 4381 4382 /* Walk through each operation known to our caller. There will be */ 4383 /* one entry in the supplied "translation table" for each. */ 4384 4385 used = 0; 4386 4387 for (i = 0; i < num_trans; i++) { 4388 int j, found; 4389 char *curname; 4390 fs_generic_func_p result; 4391 fs_generic_func_p *location; 4392 4393 curname = translation[i].name; 4394 4395 /* Look for a matching operation in the list supplied by the */ 4396 /* file system. */ 4397 4398 found = 0; 4399 4400 for (j = 0; j < num_ops; j++) { 4401 if (strcmp(operations[j].name, curname) == 0) { 4402 used++; 4403 found = 1; 4404 break; 4405 } 4406 } 4407 4408 /* 4409 * If the file system is using a "placeholder" for default 4410 * or error functions, grab the appropriate function out of 4411 * the translation table. If the file system didn't supply 4412 * this operation at all, use the default function. 4413 */ 4414 4415 if (found) { 4416 result = operations[j].func.fs_generic; 4417 if (result == fs_default) { 4418 result = translation[i].defaultFunc; 4419 } else if (result == fs_error) { 4420 result = translation[i].errorFunc; 4421 } else if (result == NULL) { 4422 /* Null values are PROHIBITED */ 4423 return (EINVAL); 4424 } 4425 } else { 4426 result = translation[i].defaultFunc; 4427 } 4428 4429 /* Now store the function into the operations vector. */ 4430 4431 location = (fs_generic_func_p *) 4432 (((char *)vector) + translation[i].offset); 4433 4434 *location = result; 4435 } 4436 4437 *unused_ops = num_ops - used; 4438 4439 return (0); 4440 } 4441 4442 /* Placeholder functions, should never be called. */ 4443 4444 int 4445 fs_error(void) 4446 { 4447 cmn_err(CE_PANIC, "fs_error called"); 4448 return (0); 4449 } 4450 4451 int 4452 fs_default(void) 4453 { 4454 cmn_err(CE_PANIC, "fs_default called"); 4455 return (0); 4456 } 4457 4458 #ifdef __sparc 4459 4460 /* 4461 * Part of the implementation of booting off a mirrored root 4462 * involves a change of dev_t for the root device. To 4463 * accomplish this, first remove the existing hash table 4464 * entry for the root device, convert to the new dev_t, 4465 * then re-insert in the hash table at the head of the list. 4466 */ 4467 void 4468 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4469 { 4470 vfs_list_lock(); 4471 4472 vfs_hash_remove(vfsp); 4473 4474 vfsp->vfs_dev = ndev; 4475 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4476 4477 vfs_hash_add(vfsp, 1); 4478 4479 vfs_list_unlock(); 4480 } 4481 4482 #else /* x86 NEWBOOT */ 4483 4484 #if defined(__x86) 4485 extern int hvmboot_rootconf(); 4486 #endif /* __x86 */ 4487 4488 extern ib_boot_prop_t *iscsiboot_prop; 4489 4490 int 4491 rootconf() 4492 { 4493 int error; 4494 struct vfssw *vsw; 4495 extern void pm_init(); 4496 char *fstyp, *fsmod; 4497 int ret = -1; 4498 4499 getrootfs(&fstyp, &fsmod); 4500 4501 #if defined(__x86) 4502 /* 4503 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4504 * which lives in /platform/i86hvm, and hence is only available when 4505 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4506 * is not available then the modstub for this function will return 0. 4507 * If the hvm_bootstrap misc module is available it will be loaded 4508 * and hvmboot_rootconf() will be invoked. 4509 */ 4510 if (error = hvmboot_rootconf()) 4511 return (error); 4512 #endif /* __x86 */ 4513 4514 if (error = clboot_rootconf()) 4515 return (error); 4516 4517 if (modload("fs", fsmod) == -1) 4518 panic("Cannot _init %s module", fsmod); 4519 4520 RLOCK_VFSSW(); 4521 vsw = vfs_getvfsswbyname(fstyp); 4522 RUNLOCK_VFSSW(); 4523 if (vsw == NULL) { 4524 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4525 return (ENXIO); 4526 } 4527 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4528 VFS_HOLD(rootvfs); 4529 4530 /* always mount readonly first */ 4531 rootvfs->vfs_flag |= VFS_RDONLY; 4532 4533 pm_init(); 4534 4535 if (netboot && iscsiboot_prop) { 4536 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4537 " shouldn't happen in the same time"); 4538 return (EINVAL); 4539 } 4540 4541 if (netboot || iscsiboot_prop) { 4542 ret = strplumb(); 4543 if (ret != 0) { 4544 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4545 return (EFAULT); 4546 } 4547 } 4548 4549 if ((ret == 0) && iscsiboot_prop) { 4550 ret = modload("drv", "iscsi"); 4551 /* -1 indicates fail */ 4552 if (ret == -1) { 4553 cmn_err(CE_WARN, "Failed to load iscsi module"); 4554 iscsi_boot_prop_free(); 4555 return (EINVAL); 4556 } else { 4557 if (!i_ddi_attach_pseudo_node("iscsi")) { 4558 cmn_err(CE_WARN, 4559 "Failed to attach iscsi driver"); 4560 iscsi_boot_prop_free(); 4561 return (ENODEV); 4562 } 4563 } 4564 } 4565 4566 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4567 vfs_unrefvfssw(vsw); 4568 rootdev = rootvfs->vfs_dev; 4569 4570 if (error) 4571 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4572 rootfs.bo_name, fstyp); 4573 else 4574 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4575 rootfs.bo_name, fstyp); 4576 return (error); 4577 } 4578 4579 /* 4580 * XXX this is called by nfs only and should probably be removed 4581 * If booted with ASKNAME, prompt on the console for a filesystem 4582 * name and return it. 4583 */ 4584 void 4585 getfsname(char *askfor, char *name, size_t namelen) 4586 { 4587 if (boothowto & RB_ASKNAME) { 4588 printf("%s name: ", askfor); 4589 console_gets(name, namelen); 4590 } 4591 } 4592 4593 /* 4594 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4595 * property. 4596 * 4597 * Filesystem types starting with the prefix "nfs" are diskless clients; 4598 * init the root filename name (rootfs.bo_name), too. 4599 * 4600 * If we are booting via NFS we currently have these options: 4601 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4602 * nfs2 - force NFS V2 4603 * nfs3 - force NFS V3 4604 * nfs4 - force NFS V4 4605 * Because we need to maintain backward compatibility with the naming 4606 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4607 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4608 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4609 * This is only for root filesystems, all other uses will expect 4610 * that "nfs" == NFS V2. 4611 */ 4612 static void 4613 getrootfs(char **fstypp, char **fsmodp) 4614 { 4615 char *propstr = NULL; 4616 4617 /* 4618 * Check fstype property; for diskless it should be one of "nfs", 4619 * "nfs2", "nfs3" or "nfs4". 4620 */ 4621 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4622 DDI_PROP_DONTPASS, "fstype", &propstr) 4623 == DDI_SUCCESS) { 4624 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4625 ddi_prop_free(propstr); 4626 4627 /* 4628 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4629 * assume the type of this root filesystem is 'zfs'. 4630 */ 4631 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4632 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4633 == DDI_SUCCESS) { 4634 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4635 ddi_prop_free(propstr); 4636 } 4637 4638 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4639 *fstypp = *fsmodp = rootfs.bo_fstype; 4640 return; 4641 } 4642 4643 ++netboot; 4644 4645 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4646 (void) strcpy(rootfs.bo_fstype, "nfs"); 4647 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4648 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4649 4650 /* 4651 * check if path to network interface is specified in bootpath 4652 * or by a hypervisor domain configuration file. 4653 * XXPV - enable strlumb_get_netdev_path() 4654 */ 4655 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4656 "xpv-nfsroot")) { 4657 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4658 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4659 DDI_PROP_DONTPASS, "bootpath", &propstr) 4660 == DDI_SUCCESS) { 4661 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4662 ddi_prop_free(propstr); 4663 } else { 4664 rootfs.bo_name[0] = '\0'; 4665 } 4666 *fstypp = rootfs.bo_fstype; 4667 *fsmodp = "nfs"; 4668 } 4669 #endif 4670 4671 /* 4672 * VFS feature routines 4673 */ 4674 4675 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4676 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4677 4678 /* Register a feature in the vfs */ 4679 void 4680 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4681 { 4682 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4683 if (vfsp->vfs_implp == NULL) 4684 return; 4685 4686 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4687 } 4688 4689 void 4690 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4691 { 4692 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4693 if (vfsp->vfs_implp == NULL) 4694 return; 4695 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4696 } 4697 4698 /* 4699 * Query a vfs for a feature. 4700 * Returns 1 if feature is present, 0 if not 4701 */ 4702 int 4703 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4704 { 4705 int ret = 0; 4706 4707 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4708 if (vfsp->vfs_implp == NULL) 4709 return (ret); 4710 4711 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4712 ret = 1; 4713 4714 return (ret); 4715 } 4716 4717 /* 4718 * Propagate feature set from one vfs to another 4719 */ 4720 void 4721 vfs_propagate_features(vfs_t *from, vfs_t *to) 4722 { 4723 int i; 4724 4725 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4726 return; 4727 4728 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4729 to->vfs_featureset[i] = from->vfs_featureset[i]; 4730 } 4731 } 4732 4733 #define LOFINODE_PATH "/dev/lofi/%d" 4734 4735 /* 4736 * Return the vnode for the lofi node if there's a lofi mount in place. 4737 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4738 * failure. 4739 */ 4740 int 4741 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4742 { 4743 char *path = NULL; 4744 int strsize; 4745 int err; 4746 4747 if (vfsp->vfs_lofi_id == 0) { 4748 *vpp = NULL; 4749 return (-1); 4750 } 4751 4752 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id); 4753 path = kmem_alloc(strsize + 1, KM_SLEEP); 4754 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id); 4755 4756 /* 4757 * We may be inside a zone, so we need to use the /dev path, but 4758 * it's created asynchronously, so we wait here. 4759 */ 4760 for (;;) { 4761 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4762 4763 if (err != ENOENT) 4764 break; 4765 4766 if ((err = delay_sig(hz / 8)) == EINTR) 4767 break; 4768 } 4769 4770 if (err) 4771 *vpp = NULL; 4772 4773 kmem_free(path, strsize + 1); 4774 return (err); 4775 }