1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright (c) 2012 Joyent, Inc. All rights reserved. 25 */ 26 27 #include <sys/dmu.h> 28 #include <sys/dmu_objset.h> 29 #include <sys/dmu_tx.h> 30 #include <sys/dsl_dataset.h> 31 #include <sys/dsl_dir.h> 32 #include <sys/dsl_prop.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/dsl_deleg.h> 35 #include <sys/spa.h> 36 #include <sys/metaslab.h> 37 #include <sys/zap.h> 38 #include <sys/zio.h> 39 #include <sys/arc.h> 40 #include <sys/sunddi.h> 41 #include <sys/zfs_zone.h> 42 #include <sys/zfeature.h> 43 #include <sys/policy.h> 44 #include <sys/zfs_znode.h> 45 #include "zfs_namecheck.h" 46 #include "zfs_prop.h" 47 48 /* 49 * Filesystem and Snapshot Limits 50 * ------------------------------ 51 * 52 * These limits are used to restrict the number of filesystems and/or snapshots 53 * that can be created at a given level in the tree or below. A typical 54 * use-case is with a delegated dataset where the administrator wants to ensure 55 * that a user within the zone is not creating too many additional filesystems 56 * or snapshots, even though they're not exceeding their space quota. 57 * 58 * The count of filesystems and snapshots is stored in the dsl_dir_phys_t which 59 * impacts the on-disk format. As such, this capability is controlled by a 60 * feature flag and must be enabled to be used. Once enabled, the feature is 61 * not active until the first limit is set. At that point, future operations to 62 * create/destroy filesystems or snapshots will validate and update the counts. 63 * 64 * Because the on-disk counts will be uninitialized (0) before the feature is 65 * active, the counts are updated when a limit is first set on an uninitialized 66 * node (The filesystem/snapshot counts on a node includes all of the nested 67 * filesystems/snapshots, plus the node itself. Thus, a new leaf node has a 68 * filesystem count of 1 and a snapshot count of 0. A filesystem count of 0 on 69 * a node indicates uninitialized counts on that node.) When setting a limit on 70 * an uninitialized node, the code starts at the filesystem with the new limit 71 * and descends into all sub-filesystems and updates the counts to be accurate. 72 * In practice this is lightweight since a limit is typically set when the 73 * filesystem is created and thus has no children. Once valid, changing the 74 * limit value won't require a re-traversal since the counts are already valid. 75 * When recursively fixing the counts, if a node with a limit is encountered 76 * during the descent, the counts are known to be valid and there is no need to 77 * descend into that filesystem's children. The counts on filesystems above the 78 * one with the new limit will still be uninitialized (0), unless a limit is 79 * eventually set on one of those filesystems. The counts are always recursively 80 * updated when a limit is set on a dataset, unless there is already a limit. 81 * When a new limit value is set on a filesystem with an existing limit, it is 82 * possible for the new limit to be less than the current count at that level 83 * since a user who can change the limit is also allowed to exceed the limit. 84 * 85 * Once the feature is active, then whenever a filesystem or snapshot is 86 * created, the code recurses up the tree, validating the new count against the 87 * limit at each initialized level. In practice, most levels will not have a 88 * limit set. If there is a limit at any initialized level up the tree, the 89 * check must pass or the creation will fail. Likewise, when a filesystem or 90 * snapshot is destroyed, the counts are recursively adjusted all the way up 91 * the initizized nodes in the tree. Renaming a filesystem into different point 92 * in the tree will first validate, then update the counts on each branch up to 93 * the common ancestor. A receive will also validate the counts and then update 94 * them. 95 * 96 * An exception to the above behavior is that the limit is not enforced if the 97 * user has permission to modify the limit. This is primarily so that 98 * recursive snapshots in the global zone always work. We want to prevent a 99 * denial-of-service in which a lower level delegated dataset could max out its 100 * limit and thus block recursive snapshots from being taken in the global zone. 101 * Because of this, it is possible for the snapshot count to be over the limit 102 * and snapshots taken in the global zone could cause a lower level dataset to 103 * hit or exceed its limit. The administrator taking the global zone recursive 104 * snapshot should be aware of this side-effect and behave accordingly. 105 * For consistency, the filesystem limit is also not enforced if the user can 106 * modify the limit. 107 * 108 * The filesystem limit is validated by dsl_dir_fscount_check() and updated by 109 * dsl_dir_fscount_adjust(). The snapshot limit is validated by 110 * dsl_snapcount_check() and updated by dsl_snapcount_adjust(). 111 * A new limit value is validated in dsl_dir_validate_fs_ss_limit() and the 112 * filesystem counts are adjusted, if necessary, by dsl_dir_set_fs_ss_count(). 113 * 114 * There is a special case when we receive a filesystem that already exists. In 115 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 116 * never update the filesystem counts for temporary clones. 117 */ 118 119 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 120 static void dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, 121 uint64_t value, dmu_tx_t *tx); 122 123 extern dsl_syncfunc_t dsl_prop_set_sync; 124 125 /* ARGSUSED */ 126 static void 127 dsl_dir_evict(dmu_buf_t *db, void *arg) 128 { 129 dsl_dir_t *dd = arg; 130 dsl_pool_t *dp = dd->dd_pool; 131 int t; 132 133 for (t = 0; t < TXG_SIZE; t++) { 134 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 135 ASSERT(dd->dd_tempreserved[t] == 0); 136 ASSERT(dd->dd_space_towrite[t] == 0); 137 } 138 139 if (dd->dd_parent) 140 dsl_dir_close(dd->dd_parent, dd); 141 142 spa_close(dd->dd_pool->dp_spa, dd); 143 144 /* 145 * The props callback list should have been cleaned up by 146 * objset_evict(). 147 */ 148 list_destroy(&dd->dd_prop_cbs); 149 mutex_destroy(&dd->dd_lock); 150 kmem_free(dd, sizeof (dsl_dir_t)); 151 } 152 153 int 154 dsl_dir_open_obj(dsl_pool_t *dp, uint64_t ddobj, 155 const char *tail, void *tag, dsl_dir_t **ddp) 156 { 157 dmu_buf_t *dbuf; 158 dsl_dir_t *dd; 159 int err; 160 161 ASSERT(RW_LOCK_HELD(&dp->dp_config_rwlock) || 162 dsl_pool_sync_context(dp)); 163 164 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 165 if (err) 166 return (err); 167 dd = dmu_buf_get_user(dbuf); 168 #ifdef ZFS_DEBUG 169 { 170 dmu_object_info_t doi; 171 dmu_object_info_from_db(dbuf, &doi); 172 ASSERT3U(doi.doi_type, ==, DMU_OT_DSL_DIR); 173 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 174 } 175 #endif 176 if (dd == NULL) { 177 dsl_dir_t *winner; 178 179 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 180 dd->dd_object = ddobj; 181 dd->dd_dbuf = dbuf; 182 dd->dd_pool = dp; 183 dd->dd_phys = dbuf->db_data; 184 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 185 186 list_create(&dd->dd_prop_cbs, sizeof (dsl_prop_cb_record_t), 187 offsetof(dsl_prop_cb_record_t, cbr_node)); 188 189 dsl_dir_snap_cmtime_update(dd); 190 191 if (dd->dd_phys->dd_parent_obj) { 192 err = dsl_dir_open_obj(dp, dd->dd_phys->dd_parent_obj, 193 NULL, dd, &dd->dd_parent); 194 if (err) 195 goto errout; 196 if (tail) { 197 #ifdef ZFS_DEBUG 198 uint64_t foundobj; 199 200 err = zap_lookup(dp->dp_meta_objset, 201 dd->dd_parent->dd_phys->dd_child_dir_zapobj, 202 tail, sizeof (foundobj), 1, &foundobj); 203 ASSERT(err || foundobj == ddobj); 204 #endif 205 (void) strcpy(dd->dd_myname, tail); 206 } else { 207 err = zap_value_search(dp->dp_meta_objset, 208 dd->dd_parent->dd_phys->dd_child_dir_zapobj, 209 ddobj, 0, dd->dd_myname); 210 } 211 if (err) 212 goto errout; 213 } else { 214 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 215 } 216 217 if (dsl_dir_is_clone(dd)) { 218 dmu_buf_t *origin_bonus; 219 dsl_dataset_phys_t *origin_phys; 220 221 /* 222 * We can't open the origin dataset, because 223 * that would require opening this dsl_dir. 224 * Just look at its phys directly instead. 225 */ 226 err = dmu_bonus_hold(dp->dp_meta_objset, 227 dd->dd_phys->dd_origin_obj, FTAG, &origin_bonus); 228 if (err) 229 goto errout; 230 origin_phys = origin_bonus->db_data; 231 dd->dd_origin_txg = 232 origin_phys->ds_creation_txg; 233 dmu_buf_rele(origin_bonus, FTAG); 234 } 235 236 winner = dmu_buf_set_user_ie(dbuf, dd, &dd->dd_phys, 237 dsl_dir_evict); 238 if (winner) { 239 if (dd->dd_parent) 240 dsl_dir_close(dd->dd_parent, dd); 241 mutex_destroy(&dd->dd_lock); 242 kmem_free(dd, sizeof (dsl_dir_t)); 243 dd = winner; 244 } else { 245 spa_open_ref(dp->dp_spa, dd); 246 } 247 } 248 249 /* 250 * The dsl_dir_t has both open-to-close and instantiate-to-evict 251 * holds on the spa. We need the open-to-close holds because 252 * otherwise the spa_refcnt wouldn't change when we open a 253 * dir which the spa also has open, so we could incorrectly 254 * think it was OK to unload/export/destroy the pool. We need 255 * the instantiate-to-evict hold because the dsl_dir_t has a 256 * pointer to the dd_pool, which has a pointer to the spa_t. 257 */ 258 spa_open_ref(dp->dp_spa, tag); 259 ASSERT3P(dd->dd_pool, ==, dp); 260 ASSERT3U(dd->dd_object, ==, ddobj); 261 ASSERT3P(dd->dd_dbuf, ==, dbuf); 262 *ddp = dd; 263 return (0); 264 265 errout: 266 if (dd->dd_parent) 267 dsl_dir_close(dd->dd_parent, dd); 268 mutex_destroy(&dd->dd_lock); 269 kmem_free(dd, sizeof (dsl_dir_t)); 270 dmu_buf_rele(dbuf, tag); 271 return (err); 272 } 273 274 void 275 dsl_dir_close(dsl_dir_t *dd, void *tag) 276 { 277 dprintf_dd(dd, "%s\n", ""); 278 spa_close(dd->dd_pool->dp_spa, tag); 279 dmu_buf_rele(dd->dd_dbuf, tag); 280 } 281 282 /* buf must be long enough (MAXNAMELEN + strlen(MOS_DIR_NAME) + 1 should do) */ 283 void 284 dsl_dir_name(dsl_dir_t *dd, char *buf) 285 { 286 if (dd->dd_parent) { 287 dsl_dir_name(dd->dd_parent, buf); 288 (void) strcat(buf, "/"); 289 } else { 290 buf[0] = '\0'; 291 } 292 if (!MUTEX_HELD(&dd->dd_lock)) { 293 /* 294 * recursive mutex so that we can use 295 * dprintf_dd() with dd_lock held 296 */ 297 mutex_enter(&dd->dd_lock); 298 (void) strcat(buf, dd->dd_myname); 299 mutex_exit(&dd->dd_lock); 300 } else { 301 (void) strcat(buf, dd->dd_myname); 302 } 303 } 304 305 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 306 int 307 dsl_dir_namelen(dsl_dir_t *dd) 308 { 309 int result = 0; 310 311 if (dd->dd_parent) { 312 /* parent's name + 1 for the "/" */ 313 result = dsl_dir_namelen(dd->dd_parent) + 1; 314 } 315 316 if (!MUTEX_HELD(&dd->dd_lock)) { 317 /* see dsl_dir_name */ 318 mutex_enter(&dd->dd_lock); 319 result += strlen(dd->dd_myname); 320 mutex_exit(&dd->dd_lock); 321 } else { 322 result += strlen(dd->dd_myname); 323 } 324 325 return (result); 326 } 327 328 static int 329 getcomponent(const char *path, char *component, const char **nextp) 330 { 331 char *p; 332 if ((path == NULL) || (path[0] == '\0')) 333 return (ENOENT); 334 /* This would be a good place to reserve some namespace... */ 335 p = strpbrk(path, "/@"); 336 if (p && (p[1] == '/' || p[1] == '@')) { 337 /* two separators in a row */ 338 return (EINVAL); 339 } 340 if (p == NULL || p == path) { 341 /* 342 * if the first thing is an @ or /, it had better be an 343 * @ and it had better not have any more ats or slashes, 344 * and it had better have something after the @. 345 */ 346 if (p != NULL && 347 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 348 return (EINVAL); 349 if (strlen(path) >= MAXNAMELEN) 350 return (ENAMETOOLONG); 351 (void) strcpy(component, path); 352 p = NULL; 353 } else if (p[0] == '/') { 354 if (p-path >= MAXNAMELEN) 355 return (ENAMETOOLONG); 356 (void) strncpy(component, path, p - path); 357 component[p-path] = '\0'; 358 p++; 359 } else if (p[0] == '@') { 360 /* 361 * if the next separator is an @, there better not be 362 * any more slashes. 363 */ 364 if (strchr(path, '/')) 365 return (EINVAL); 366 if (p-path >= MAXNAMELEN) 367 return (ENAMETOOLONG); 368 (void) strncpy(component, path, p - path); 369 component[p-path] = '\0'; 370 } else { 371 ASSERT(!"invalid p"); 372 } 373 *nextp = p; 374 return (0); 375 } 376 377 /* 378 * same as dsl_open_dir, ignore the first component of name and use the 379 * spa instead 380 */ 381 int 382 dsl_dir_open_spa(spa_t *spa, const char *name, void *tag, 383 dsl_dir_t **ddp, const char **tailp) 384 { 385 char buf[MAXNAMELEN]; 386 const char *next, *nextnext = NULL; 387 int err; 388 dsl_dir_t *dd; 389 dsl_pool_t *dp; 390 uint64_t ddobj; 391 int openedspa = FALSE; 392 393 dprintf("%s\n", name); 394 395 err = getcomponent(name, buf, &next); 396 if (err) 397 return (err); 398 if (spa == NULL) { 399 err = spa_open(buf, &spa, FTAG); 400 if (err) { 401 dprintf("spa_open(%s) failed\n", buf); 402 return (err); 403 } 404 openedspa = TRUE; 405 406 /* XXX this assertion belongs in spa_open */ 407 ASSERT(!dsl_pool_sync_context(spa_get_dsl(spa))); 408 } 409 410 dp = spa_get_dsl(spa); 411 412 rw_enter(&dp->dp_config_rwlock, RW_READER); 413 err = dsl_dir_open_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 414 if (err) { 415 rw_exit(&dp->dp_config_rwlock); 416 if (openedspa) 417 spa_close(spa, FTAG); 418 return (err); 419 } 420 421 while (next != NULL) { 422 dsl_dir_t *child_ds; 423 err = getcomponent(next, buf, &nextnext); 424 if (err) 425 break; 426 ASSERT(next[0] != '\0'); 427 if (next[0] == '@') 428 break; 429 dprintf("looking up %s in obj%lld\n", 430 buf, dd->dd_phys->dd_child_dir_zapobj); 431 432 err = zap_lookup(dp->dp_meta_objset, 433 dd->dd_phys->dd_child_dir_zapobj, 434 buf, sizeof (ddobj), 1, &ddobj); 435 if (err) { 436 if (err == ENOENT) 437 err = 0; 438 break; 439 } 440 441 err = dsl_dir_open_obj(dp, ddobj, buf, tag, &child_ds); 442 if (err) 443 break; 444 dsl_dir_close(dd, tag); 445 dd = child_ds; 446 next = nextnext; 447 } 448 rw_exit(&dp->dp_config_rwlock); 449 450 if (err) { 451 dsl_dir_close(dd, tag); 452 if (openedspa) 453 spa_close(spa, FTAG); 454 return (err); 455 } 456 457 /* 458 * It's an error if there's more than one component left, or 459 * tailp==NULL and there's any component left. 460 */ 461 if (next != NULL && 462 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 463 /* bad path name */ 464 dsl_dir_close(dd, tag); 465 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 466 err = ENOENT; 467 } 468 if (tailp) 469 *tailp = next; 470 if (openedspa) 471 spa_close(spa, FTAG); 472 *ddp = dd; 473 return (err); 474 } 475 476 /* 477 * Return the dsl_dir_t, and possibly the last component which couldn't 478 * be found in *tail. Return NULL if the path is bogus, or if 479 * tail==NULL and we couldn't parse the whole name. (*tail)[0] == '@' 480 * means that the last component is a snapshot. 481 */ 482 int 483 dsl_dir_open(const char *name, void *tag, dsl_dir_t **ddp, const char **tailp) 484 { 485 return (dsl_dir_open_spa(NULL, name, tag, ddp, tailp)); 486 } 487 488 /* 489 * Check if the counts are already valid for this filesystem and its 490 * descendants. The counts on this filesystem, and those below, may be 491 * uninitialized due to either the use of a pre-existing pool which did not 492 * support the filesystem/snapshot limit feature, or one in which the feature 493 * had not yet been enabled. 494 * 495 * Recursively descend the filesystem tree and update the filesystem/snapshot 496 * counts on each filesystem below, then update the cumulative count on the 497 * current filesystem. If the filesystem already has a limit set on it, 498 * then we know that its counts, and the counts on the filesystems below it, 499 * have been updated to be correct, so we can skip this filesystem. 500 */ 501 static int 502 dsl_dir_set_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx, uint64_t *fscnt, 503 uint64_t *sscnt) 504 { 505 uint64_t my_fs_cnt = 0; 506 uint64_t my_ss_cnt = 0; 507 uint64_t curr_ss_cnt; 508 objset_t *os = dd->dd_pool->dp_meta_objset; 509 zap_cursor_t *zc; 510 zap_attribute_t *za; 511 int err; 512 int ret = 0; 513 boolean_t limit_set = B_FALSE; 514 uint64_t fslimit, sslimit; 515 dsl_dataset_t *ds; 516 517 ASSERT(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock)); 518 519 err = dsl_prop_get_dd(dd, zfs_prop_to_name(ZFS_PROP_FILESYSTEM_LIMIT), 520 8, 1, &fslimit, NULL, B_FALSE); 521 if (err == 0 && fslimit != UINT64_MAX) 522 limit_set = B_TRUE; 523 524 if (!limit_set) { 525 err = dsl_prop_get_dd(dd, 526 zfs_prop_to_name(ZFS_PROP_SNAPSHOT_LIMIT), 8, 1, &sslimit, 527 NULL, B_FALSE); 528 if (err == 0 && sslimit != UINT64_MAX) 529 limit_set = B_TRUE; 530 } 531 532 /* 533 * If the dd has a limit, we know its count is already good and we 534 * don't need to recurse down any further. 535 */ 536 if (limit_set) { 537 *fscnt = dd->dd_phys->dd_filesystem_count; 538 *sscnt = dd->dd_phys->dd_snapshot_count; 539 return (ret); 540 } 541 542 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 543 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 544 545 mutex_enter(&dd->dd_lock); 546 547 /* Iterate datasets */ 548 for (zap_cursor_init(zc, os, dd->dd_phys->dd_child_dir_zapobj); 549 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 550 dsl_dir_t *chld_dd; 551 uint64_t chld_fs_cnt = 0; 552 uint64_t chld_ss_cnt = 0; 553 554 if (dsl_dir_open_obj(dd->dd_pool, 555 ZFS_DIRENT_OBJ(za->za_first_integer), NULL, FTAG, 556 &chld_dd)) { 557 ret = 1; 558 break; 559 } 560 561 if (dsl_dir_set_fs_ss_count(chld_dd, tx, &chld_fs_cnt, 562 &chld_ss_cnt)) { 563 ret = 1; 564 break; 565 } 566 567 dsl_dir_close(chld_dd, FTAG); 568 569 my_fs_cnt += chld_fs_cnt; 570 my_ss_cnt += chld_ss_cnt; 571 } 572 zap_cursor_fini(zc); 573 kmem_free(zc, sizeof (zap_cursor_t)); 574 kmem_free(za, sizeof (zap_attribute_t)); 575 576 /* Count snapshots */ 577 if (dsl_dataset_hold_obj(dd->dd_pool, dd->dd_phys->dd_head_dataset_obj, 578 FTAG, &ds) == 0) { 579 if (zap_count(os, ds->ds_phys->ds_snapnames_zapobj, 580 &curr_ss_cnt) == 0) 581 my_ss_cnt += curr_ss_cnt; 582 else 583 ret = 1; 584 dsl_dataset_rele(ds, FTAG); 585 } else { 586 ret = 1; 587 } 588 589 /* Add 1 for self */ 590 my_fs_cnt++; 591 592 /* save updated counts */ 593 dmu_buf_will_dirty(dd->dd_dbuf, tx); 594 dd->dd_phys->dd_filesystem_count = my_fs_cnt; 595 dd->dd_phys->dd_snapshot_count = my_ss_cnt; 596 597 mutex_exit(&dd->dd_lock); 598 599 /* Return child dataset count plus self */ 600 *fscnt = my_fs_cnt; 601 *sscnt = my_ss_cnt; 602 return (ret); 603 } 604 605 /* ARGSUSED */ 606 static int 607 fs_ss_limit_feat_check(void *arg1, void *arg2, dmu_tx_t *tx) 608 { 609 return (0); 610 } 611 612 /* ARGSUSED */ 613 static void 614 fs_ss_limit_feat_sync(void *arg1, void *arg2, dmu_tx_t *tx) 615 { 616 spa_t *spa = arg1; 617 zfeature_info_t *limit_feat = 618 &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT]; 619 620 spa_feature_incr(spa, limit_feat, tx); 621 } 622 623 /* 624 * Make sure the feature is enabled and activate it if necessary. 625 * If setting a limit, ensure the on-disk counts are valid. 626 * 627 * We do not validate the new limit, since users who can change the limit are 628 * also allowed to exceed the limit. 629 * 630 * Return -1 to force the zfs_set_prop_nvlist code down the default path to set 631 * the value in the nvlist. 632 */ 633 int 634 dsl_dir_validate_fs_ss_limit(const char *ddname, uint64_t limit, 635 zfs_prop_t ptype) 636 { 637 dsl_dir_t *dd; 638 dsl_dataset_t *ds; 639 int err; 640 dmu_tx_t *tx; 641 uint64_t my_fs_cnt = 0; 642 uint64_t my_ss_cnt = 0; 643 uint64_t curr_limit; 644 spa_t *spa; 645 zfeature_info_t *limit_feat = 646 &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT]; 647 648 if ((err = dsl_dataset_hold(ddname, FTAG, &ds)) != 0) 649 return (err); 650 651 spa = dsl_dataset_get_spa(ds); 652 if (!spa_feature_is_enabled(spa, 653 &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT])) { 654 dsl_dataset_rele(ds, FTAG); 655 return (ENOTSUP); 656 } 657 658 dd = ds->ds_dir; 659 660 if ((err = dsl_prop_get_dd(dd, zfs_prop_to_name(ptype), 8, 1, 661 &curr_limit, NULL, B_FALSE)) != 0) { 662 dsl_dataset_rele(ds, FTAG); 663 return (err); 664 } 665 666 if (limit == UINT64_MAX) { 667 /* 668 * If we had a limit, since we're now removing that limit, this 669 * is where we could decrement the feature-active counter so 670 * that the feature becomes inactive (only enabled) if we 671 * remove the last limit. However, we do not currently support 672 * deactivating the feature. 673 */ 674 dsl_dataset_rele(ds, FTAG); 675 return (-1); 676 } 677 678 if (!spa_feature_is_active(spa, limit_feat)) { 679 /* 680 * Since the feature was not active and we're now setting a 681 * limit, increment the feature-active counter so that the 682 * feature becomes active for the first time. 683 * 684 * We can't update the MOS in open context, so create a sync 685 * task. 686 */ 687 err = dsl_sync_task_do(dd->dd_pool, fs_ss_limit_feat_check, 688 fs_ss_limit_feat_sync, spa, (void *)1, 0); 689 if (err != 0) 690 return (err); 691 } 692 693 tx = dmu_tx_create_dd(dd); 694 if (dmu_tx_assign(tx, TXG_WAIT)) { 695 dmu_tx_abort(tx); 696 dsl_dataset_rele(ds, FTAG); 697 return (ENOSPC); 698 } 699 700 /* 701 * Since we are now setting a non-UINT64_MAX on the filesystem, we need 702 * to ensure the counts are correct. Descend down the tree from this 703 * point and update all of the counts to be accurate. 704 */ 705 err = -1; 706 rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER); 707 if (dsl_dir_set_fs_ss_count(dd, tx, &my_fs_cnt, &my_ss_cnt)) 708 err = ENOSPC; 709 rw_exit(&dd->dd_pool->dp_config_rwlock); 710 711 dmu_tx_commit(tx); 712 dsl_dataset_rele(ds, FTAG); 713 714 return (err); 715 } 716 717 /* 718 * Used to determine if the filesystem_limit or snapshot_limit should be 719 * enforced. We allow the limit to be exceeded if the user has permission to 720 * write the property value. We pass in the creds that we got in the open 721 * context since we will always be the GZ root in syncing context. 722 * 723 * We can never modify these two properties within a non-global zone. In 724 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 725 * can't use that function since we are already holding the dp_config_rwlock. 726 * In addition, we already have the dd and dealing with snapshots is simplified. 727 */ 728 int 729 dsl_secpolicy_write_prop(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 730 { 731 int err = 0; 732 uint64_t obj; 733 dsl_dataset_t *ds; 734 uint64_t zoned; 735 736 #ifdef _KERNEL 737 if (crgetzoneid(cr) != GLOBAL_ZONEID) 738 return (EPERM); 739 740 if (secpolicy_zfs(cr) == 0) 741 return (0); 742 #endif 743 744 if ((obj = dd->dd_phys->dd_head_dataset_obj) == NULL) 745 return (ENOENT); 746 747 ASSERT(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock)); 748 749 if ((err = dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds)) != 0) 750 return (err); 751 752 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 753 /* Only root can access zoned fs's from the GZ */ 754 err = EPERM; 755 } else { 756 err = dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr, 757 B_FALSE); 758 } 759 760 dsl_dataset_rele(ds, FTAG); 761 return (err); 762 } 763 764 /* 765 * Check if adding additional child filesystem(s) would exceed any filesystem 766 * limits. Note that all filesystem limits up to the root (or the highest 767 * initialized) filesystem or the given ancestor must be satisfied. 768 */ 769 int 770 dsl_dir_fscount_check(dsl_dir_t *dd, uint64_t cnt, dsl_dir_t *ancestor, 771 cred_t *cr) 772 { 773 uint64_t limit; 774 int err = 0; 775 776 VERIFY(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock)); 777 778 /* If we're allowed to change the limit, don't enforce the limit. */ 779 if (dsl_secpolicy_write_prop(dd, ZFS_PROP_FILESYSTEM_LIMIT, cr) == 0) 780 return (0); 781 782 /* 783 * If an ancestor has been provided, stop checking the limit once we 784 * hit that dir. We need this during rename so that we don't overcount 785 * the check once we recurse up to the common ancestor. 786 */ 787 if (ancestor == dd) 788 return (0); 789 790 /* 791 * If we hit an uninitialized node while recursing up the tree, we can 792 * stop since we know the counts are not valid on this node and we 793 * know we won't touch this node's counts. 794 */ 795 if (dd->dd_phys->dd_filesystem_count == 0) 796 return (0); 797 798 err = dsl_prop_get_dd(dd, zfs_prop_to_name(ZFS_PROP_FILESYSTEM_LIMIT), 799 8, 1, &limit, NULL, B_FALSE); 800 if (err != 0) 801 return (err); 802 803 /* Is there a fs limit which we've hit? */ 804 if ((dd->dd_phys->dd_filesystem_count + cnt) > limit) 805 return (EDQUOT); 806 807 if (dd->dd_parent != NULL) 808 err = dsl_dir_fscount_check(dd->dd_parent, cnt, ancestor, cr); 809 810 return (err); 811 } 812 813 /* 814 * Adjust the filesystem count for the specified dsl_dir_t and all parent 815 * filesystems. When a new filesystem is created, increment the count on all 816 * parents, and when a filesystem is destroyed, decrement the count. 817 */ 818 void 819 dsl_dir_fscount_adjust(dsl_dir_t *dd, dmu_tx_t *tx, int64_t delta, 820 boolean_t first) 821 { 822 if (first) { 823 VERIFY(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock)); 824 VERIFY(dmu_tx_is_syncing(tx)); 825 } 826 827 /* 828 * When we receive an incremental stream into a filesystem that already 829 * exists, a temporary clone is created. We don't count this temporary 830 * clone, whose name begins with a '%'. 831 */ 832 if (dd->dd_myname[0] == '%') 833 return; 834 835 /* 836 * If we hit an uninitialized node while recursing up the tree, we can 837 * stop since we know the counts are not valid on this node and we 838 * know we shouldn't touch this node's counts. An uninitialized count 839 * on the node indicates that either the feature has not yet been 840 * activated or there are no limits on this part of the tree. 841 */ 842 if (dd->dd_phys->dd_filesystem_count == 0) 843 return; 844 845 /* 846 * On initial entry we need to check if this feature is active, but 847 * we don't want to re-check this on each recursive call. Note: the 848 * feature cannot be active if its not enabled. If the feature is not 849 * active, don't touch the on-disk count fields. 850 */ 851 if (first) { 852 zfeature_info_t *quota_feat = 853 &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT]; 854 855 if (!spa_feature_is_active(dd->dd_pool->dp_spa, quota_feat)) 856 return; 857 } 858 859 dmu_buf_will_dirty(dd->dd_dbuf, tx); 860 861 mutex_enter(&dd->dd_lock); 862 863 dd->dd_phys->dd_filesystem_count += delta; 864 VERIFY(dd->dd_phys->dd_filesystem_count >= 1); /* ourself is 1 */ 865 866 /* Roll up this additional count into our ancestors */ 867 if (dd->dd_parent != NULL) 868 dsl_dir_fscount_adjust(dd->dd_parent, tx, delta, B_FALSE); 869 870 mutex_exit(&dd->dd_lock); 871 } 872 873 uint64_t 874 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 875 dmu_tx_t *tx) 876 { 877 objset_t *mos = dp->dp_meta_objset; 878 uint64_t ddobj; 879 dsl_dir_phys_t *ddphys; 880 dmu_buf_t *dbuf; 881 zfeature_info_t *limit_feat = 882 &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT]; 883 884 885 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 886 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 887 if (pds) { 888 VERIFY(0 == zap_add(mos, pds->dd_phys->dd_child_dir_zapobj, 889 name, sizeof (uint64_t), 1, &ddobj, tx)); 890 } else { 891 /* it's the root dir */ 892 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 893 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 894 } 895 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 896 dmu_buf_will_dirty(dbuf, tx); 897 ddphys = dbuf->db_data; 898 899 ddphys->dd_creation_time = gethrestime_sec(); 900 /* Only initialize the count if the limit feature is active */ 901 if (spa_feature_is_active(dp->dp_spa, limit_feat)) 902 ddphys->dd_filesystem_count = 1; 903 if (pds) 904 ddphys->dd_parent_obj = pds->dd_object; 905 ddphys->dd_props_zapobj = zap_create(mos, 906 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 907 ddphys->dd_child_dir_zapobj = zap_create(mos, 908 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 909 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 910 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 911 dmu_buf_rele(dbuf, FTAG); 912 913 return (ddobj); 914 } 915 916 /* ARGSUSED */ 917 int 918 dsl_dir_destroy_check(void *arg1, void *arg2, dmu_tx_t *tx) 919 { 920 dsl_dir_t *dd = arg1; 921 dsl_pool_t *dp = dd->dd_pool; 922 objset_t *mos = dp->dp_meta_objset; 923 int err; 924 uint64_t count; 925 926 /* 927 * There should be exactly two holds, both from 928 * dsl_dataset_destroy: one on the dd directory, and one on its 929 * head ds. If there are more holds, then a concurrent thread is 930 * performing a lookup inside this dir while we're trying to destroy 931 * it. To minimize this possibility, we perform this check only 932 * in syncing context and fail the operation if we encounter 933 * additional holds. The dp_config_rwlock ensures that nobody else 934 * opens it after we check. 935 */ 936 if (dmu_tx_is_syncing(tx) && dmu_buf_refcount(dd->dd_dbuf) > 2) 937 return (EBUSY); 938 939 err = zap_count(mos, dd->dd_phys->dd_child_dir_zapobj, &count); 940 if (err) 941 return (err); 942 if (count != 0) 943 return (EEXIST); 944 945 return (0); 946 } 947 948 void 949 dsl_dir_destroy_sync(void *arg1, void *tag, dmu_tx_t *tx) 950 { 951 dsl_dir_t *dd = arg1; 952 objset_t *mos = dd->dd_pool->dp_meta_objset; 953 uint64_t obj; 954 dd_used_t t; 955 956 ASSERT(RW_WRITE_HELD(&dd->dd_pool->dp_config_rwlock)); 957 ASSERT(dd->dd_phys->dd_head_dataset_obj == 0); 958 959 /* 960 * Decrement the filesystem count for all parent filesystems. 961 * 962 * When we receive an incremental stream into a filesystem that already 963 * exists, a temporary clone is created. We never count this temporary 964 * clone, whose name begins with a '%'. 965 */ 966 if (dd->dd_myname[0] != '%' && dd->dd_parent != NULL) 967 dsl_dir_fscount_adjust(dd->dd_parent, tx, -1, B_TRUE); 968 969 /* 970 * Remove our reservation. The impl() routine avoids setting the 971 * actual property, which would require the (already destroyed) ds. 972 */ 973 dsl_dir_set_reservation_sync_impl(dd, 0, tx); 974 975 ASSERT0(dd->dd_phys->dd_used_bytes); 976 ASSERT0(dd->dd_phys->dd_reserved); 977 for (t = 0; t < DD_USED_NUM; t++) 978 ASSERT0(dd->dd_phys->dd_used_breakdown[t]); 979 980 VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_child_dir_zapobj, tx)); 981 VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_props_zapobj, tx)); 982 VERIFY(0 == dsl_deleg_destroy(mos, dd->dd_phys->dd_deleg_zapobj, tx)); 983 VERIFY(0 == zap_remove(mos, 984 dd->dd_parent->dd_phys->dd_child_dir_zapobj, dd->dd_myname, tx)); 985 986 obj = dd->dd_object; 987 dsl_dir_close(dd, tag); 988 VERIFY(0 == dmu_object_free(mos, obj, tx)); 989 } 990 991 boolean_t 992 dsl_dir_is_clone(dsl_dir_t *dd) 993 { 994 return (dd->dd_phys->dd_origin_obj && 995 (dd->dd_pool->dp_origin_snap == NULL || 996 dd->dd_phys->dd_origin_obj != 997 dd->dd_pool->dp_origin_snap->ds_object)); 998 } 999 1000 void 1001 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1002 { 1003 mutex_enter(&dd->dd_lock); 1004 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, 1005 dd->dd_phys->dd_used_bytes); 1006 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, dd->dd_phys->dd_quota); 1007 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1008 dd->dd_phys->dd_reserved); 1009 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, 1010 dd->dd_phys->dd_compressed_bytes == 0 ? 100 : 1011 (dd->dd_phys->dd_uncompressed_bytes * 100 / 1012 dd->dd_phys->dd_compressed_bytes)); 1013 if (dd->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1014 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1015 dd->dd_phys->dd_used_breakdown[DD_USED_SNAP]); 1016 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1017 dd->dd_phys->dd_used_breakdown[DD_USED_HEAD]); 1018 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1019 dd->dd_phys->dd_used_breakdown[DD_USED_REFRSRV]); 1020 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1021 dd->dd_phys->dd_used_breakdown[DD_USED_CHILD] + 1022 dd->dd_phys->dd_used_breakdown[DD_USED_CHILD_RSRV]); 1023 } 1024 mutex_exit(&dd->dd_lock); 1025 1026 rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER); 1027 if (dsl_dir_is_clone(dd)) { 1028 dsl_dataset_t *ds; 1029 char buf[MAXNAMELEN]; 1030 1031 VERIFY(0 == dsl_dataset_hold_obj(dd->dd_pool, 1032 dd->dd_phys->dd_origin_obj, FTAG, &ds)); 1033 dsl_dataset_name(ds, buf); 1034 dsl_dataset_rele(ds, FTAG); 1035 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1036 } 1037 rw_exit(&dd->dd_pool->dp_config_rwlock); 1038 } 1039 1040 void 1041 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1042 { 1043 dsl_pool_t *dp = dd->dd_pool; 1044 1045 ASSERT(dd->dd_phys); 1046 1047 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg) == 0) { 1048 /* up the hold count until we can be written out */ 1049 dmu_buf_add_ref(dd->dd_dbuf, dd); 1050 } 1051 } 1052 1053 static int64_t 1054 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1055 { 1056 uint64_t old_accounted = MAX(used, dd->dd_phys->dd_reserved); 1057 uint64_t new_accounted = MAX(used + delta, dd->dd_phys->dd_reserved); 1058 return (new_accounted - old_accounted); 1059 } 1060 1061 void 1062 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1063 { 1064 ASSERT(dmu_tx_is_syncing(tx)); 1065 1066 mutex_enter(&dd->dd_lock); 1067 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1068 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1069 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1070 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1071 mutex_exit(&dd->dd_lock); 1072 1073 /* release the hold from dsl_dir_dirty */ 1074 dmu_buf_rele(dd->dd_dbuf, dd); 1075 } 1076 1077 static uint64_t 1078 dsl_dir_space_towrite(dsl_dir_t *dd) 1079 { 1080 uint64_t space = 0; 1081 int i; 1082 1083 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1084 1085 for (i = 0; i < TXG_SIZE; i++) { 1086 space += dd->dd_space_towrite[i&TXG_MASK]; 1087 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0); 1088 } 1089 return (space); 1090 } 1091 1092 /* 1093 * How much space would dd have available if ancestor had delta applied 1094 * to it? If ondiskonly is set, we're only interested in what's 1095 * on-disk, not estimated pending changes. 1096 */ 1097 uint64_t 1098 dsl_dir_space_available(dsl_dir_t *dd, 1099 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1100 { 1101 uint64_t parentspace, myspace, quota, used; 1102 1103 /* 1104 * If there are no restrictions otherwise, assume we have 1105 * unlimited space available. 1106 */ 1107 quota = UINT64_MAX; 1108 parentspace = UINT64_MAX; 1109 1110 if (dd->dd_parent != NULL) { 1111 parentspace = dsl_dir_space_available(dd->dd_parent, 1112 ancestor, delta, ondiskonly); 1113 } 1114 1115 mutex_enter(&dd->dd_lock); 1116 if (dd->dd_phys->dd_quota != 0) 1117 quota = dd->dd_phys->dd_quota; 1118 used = dd->dd_phys->dd_used_bytes; 1119 if (!ondiskonly) 1120 used += dsl_dir_space_towrite(dd); 1121 1122 if (dd->dd_parent == NULL) { 1123 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); 1124 quota = MIN(quota, poolsize); 1125 } 1126 1127 if (dd->dd_phys->dd_reserved > used && parentspace != UINT64_MAX) { 1128 /* 1129 * We have some space reserved, in addition to what our 1130 * parent gave us. 1131 */ 1132 parentspace += dd->dd_phys->dd_reserved - used; 1133 } 1134 1135 if (dd == ancestor) { 1136 ASSERT(delta <= 0); 1137 ASSERT(used >= -delta); 1138 used += delta; 1139 if (parentspace != UINT64_MAX) 1140 parentspace -= delta; 1141 } 1142 1143 if (used > quota) { 1144 /* over quota */ 1145 myspace = 0; 1146 } else { 1147 /* 1148 * the lesser of the space provided by our parent and 1149 * the space left in our quota 1150 */ 1151 myspace = MIN(parentspace, quota - used); 1152 } 1153 1154 mutex_exit(&dd->dd_lock); 1155 1156 return (myspace); 1157 } 1158 1159 struct tempreserve { 1160 list_node_t tr_node; 1161 dsl_pool_t *tr_dp; 1162 dsl_dir_t *tr_ds; 1163 uint64_t tr_size; 1164 }; 1165 1166 static int 1167 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1168 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list, 1169 dmu_tx_t *tx, boolean_t first) 1170 { 1171 uint64_t txg = tx->tx_txg; 1172 uint64_t est_inflight, used_on_disk, quota, parent_rsrv; 1173 uint64_t deferred = 0; 1174 struct tempreserve *tr; 1175 int retval = EDQUOT; 1176 int txgidx = txg & TXG_MASK; 1177 int i; 1178 uint64_t ref_rsrv = 0; 1179 1180 ASSERT3U(txg, !=, 0); 1181 ASSERT3S(asize, >, 0); 1182 1183 mutex_enter(&dd->dd_lock); 1184 1185 /* 1186 * Check against the dsl_dir's quota. We don't add in the delta 1187 * when checking for over-quota because they get one free hit. 1188 */ 1189 est_inflight = dsl_dir_space_towrite(dd); 1190 for (i = 0; i < TXG_SIZE; i++) 1191 est_inflight += dd->dd_tempreserved[i]; 1192 used_on_disk = dd->dd_phys->dd_used_bytes; 1193 1194 /* 1195 * On the first iteration, fetch the dataset's used-on-disk and 1196 * refreservation values. Also, if checkrefquota is set, test if 1197 * allocating this space would exceed the dataset's refquota. 1198 */ 1199 if (first && tx->tx_objset) { 1200 int error; 1201 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1202 1203 error = dsl_dataset_check_quota(ds, checkrefquota, 1204 asize, est_inflight, &used_on_disk, &ref_rsrv); 1205 if (error) { 1206 mutex_exit(&dd->dd_lock); 1207 return (error); 1208 } 1209 } 1210 1211 /* 1212 * If this transaction will result in a net free of space, 1213 * we want to let it through. 1214 */ 1215 if (ignorequota || netfree || dd->dd_phys->dd_quota == 0) 1216 quota = UINT64_MAX; 1217 else 1218 quota = dd->dd_phys->dd_quota; 1219 1220 /* 1221 * Adjust the quota against the actual pool size at the root 1222 * minus any outstanding deferred frees. 1223 * To ensure that it's possible to remove files from a full 1224 * pool without inducing transient overcommits, we throttle 1225 * netfree transactions against a quota that is slightly larger, 1226 * but still within the pool's allocation slop. In cases where 1227 * we're very close to full, this will allow a steady trickle of 1228 * removes to get through. 1229 */ 1230 if (dd->dd_parent == NULL) { 1231 spa_t *spa = dd->dd_pool->dp_spa; 1232 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); 1233 deferred = metaslab_class_get_deferred(spa_normal_class(spa)); 1234 if (poolsize - deferred < quota) { 1235 quota = poolsize - deferred; 1236 retval = ENOSPC; 1237 } 1238 } 1239 1240 /* 1241 * If they are requesting more space, and our current estimate 1242 * is over quota, they get to try again unless the actual 1243 * on-disk is over quota and there are no pending changes (which 1244 * may free up space for us). 1245 */ 1246 if (used_on_disk + est_inflight >= quota) { 1247 if (est_inflight > 0 || used_on_disk < quota || 1248 (retval == ENOSPC && used_on_disk < quota + deferred)) 1249 retval = ERESTART; 1250 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1251 "quota=%lluK tr=%lluK err=%d\n", 1252 used_on_disk>>10, est_inflight>>10, 1253 quota>>10, asize>>10, retval); 1254 mutex_exit(&dd->dd_lock); 1255 return (retval); 1256 } 1257 1258 /* We need to up our estimated delta before dropping dd_lock */ 1259 dd->dd_tempreserved[txgidx] += asize; 1260 1261 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1262 asize - ref_rsrv); 1263 mutex_exit(&dd->dd_lock); 1264 1265 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1266 tr->tr_ds = dd; 1267 tr->tr_size = asize; 1268 list_insert_tail(tr_list, tr); 1269 1270 /* see if it's OK with our parent */ 1271 if (dd->dd_parent && parent_rsrv) { 1272 boolean_t ismos = (dd->dd_phys->dd_head_dataset_obj == 0); 1273 1274 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1275 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE)); 1276 } else { 1277 return (0); 1278 } 1279 } 1280 1281 /* 1282 * Reserve space in this dsl_dir, to be used in this tx's txg. 1283 * After the space has been dirtied (and dsl_dir_willuse_space() 1284 * has been called), the reservation should be canceled, using 1285 * dsl_dir_tempreserve_clear(). 1286 */ 1287 int 1288 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1289 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx) 1290 { 1291 int err; 1292 list_t *tr_list; 1293 1294 if (asize == 0) { 1295 *tr_cookiep = NULL; 1296 return (0); 1297 } 1298 1299 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1300 list_create(tr_list, sizeof (struct tempreserve), 1301 offsetof(struct tempreserve, tr_node)); 1302 ASSERT3S(asize, >, 0); 1303 ASSERT3S(fsize, >=, 0); 1304 1305 err = arc_tempreserve_space(lsize, tx->tx_txg); 1306 if (err == 0) { 1307 struct tempreserve *tr; 1308 1309 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1310 tr->tr_size = lsize; 1311 list_insert_tail(tr_list, tr); 1312 1313 err = dsl_pool_tempreserve_space(dd->dd_pool, asize, tx); 1314 } else { 1315 if (err == EAGAIN) { 1316 txg_delay(dd->dd_pool, tx->tx_txg, 1317 zfs_zone_txg_delay()); 1318 err = ERESTART; 1319 } 1320 dsl_pool_memory_pressure(dd->dd_pool); 1321 } 1322 1323 if (err == 0) { 1324 struct tempreserve *tr; 1325 1326 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1327 tr->tr_dp = dd->dd_pool; 1328 tr->tr_size = asize; 1329 list_insert_tail(tr_list, tr); 1330 1331 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize, 1332 FALSE, asize > usize, tr_list, tx, TRUE); 1333 } 1334 1335 if (err) 1336 dsl_dir_tempreserve_clear(tr_list, tx); 1337 else 1338 *tr_cookiep = tr_list; 1339 1340 return (err); 1341 } 1342 1343 /* 1344 * Clear a temporary reservation that we previously made with 1345 * dsl_dir_tempreserve_space(). 1346 */ 1347 void 1348 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1349 { 1350 int txgidx = tx->tx_txg & TXG_MASK; 1351 list_t *tr_list = tr_cookie; 1352 struct tempreserve *tr; 1353 1354 ASSERT3U(tx->tx_txg, !=, 0); 1355 1356 if (tr_cookie == NULL) 1357 return; 1358 1359 while (tr = list_head(tr_list)) { 1360 if (tr->tr_dp) { 1361 dsl_pool_tempreserve_clear(tr->tr_dp, tr->tr_size, tx); 1362 } else if (tr->tr_ds) { 1363 mutex_enter(&tr->tr_ds->dd_lock); 1364 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1365 tr->tr_size); 1366 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1367 mutex_exit(&tr->tr_ds->dd_lock); 1368 } else { 1369 arc_tempreserve_clear(tr->tr_size); 1370 } 1371 list_remove(tr_list, tr); 1372 kmem_free(tr, sizeof (struct tempreserve)); 1373 } 1374 1375 kmem_free(tr_list, sizeof (list_t)); 1376 } 1377 1378 static void 1379 dsl_dir_willuse_space_impl(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1380 { 1381 int64_t parent_space; 1382 uint64_t est_used; 1383 1384 mutex_enter(&dd->dd_lock); 1385 if (space > 0) 1386 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1387 1388 est_used = dsl_dir_space_towrite(dd) + dd->dd_phys->dd_used_bytes; 1389 parent_space = parent_delta(dd, est_used, space); 1390 mutex_exit(&dd->dd_lock); 1391 1392 /* Make sure that we clean up dd_space_to* */ 1393 dsl_dir_dirty(dd, tx); 1394 1395 /* XXX this is potentially expensive and unnecessary... */ 1396 if (parent_space && dd->dd_parent) 1397 dsl_dir_willuse_space_impl(dd->dd_parent, parent_space, tx); 1398 } 1399 1400 /* 1401 * Call in open context when we think we're going to write/free space, 1402 * eg. when dirtying data. Be conservative (ie. OK to write less than 1403 * this or free more than this, but don't write more or free less). 1404 */ 1405 void 1406 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1407 { 1408 dsl_pool_willuse_space(dd->dd_pool, space, tx); 1409 dsl_dir_willuse_space_impl(dd, space, tx); 1410 } 1411 1412 /* call from syncing context when we actually write/free space for this dd */ 1413 void 1414 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1415 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1416 { 1417 int64_t accounted_delta; 1418 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1419 1420 ASSERT(dmu_tx_is_syncing(tx)); 1421 ASSERT(type < DD_USED_NUM); 1422 1423 if (needlock) 1424 mutex_enter(&dd->dd_lock); 1425 accounted_delta = parent_delta(dd, dd->dd_phys->dd_used_bytes, used); 1426 ASSERT(used >= 0 || dd->dd_phys->dd_used_bytes >= -used); 1427 ASSERT(compressed >= 0 || 1428 dd->dd_phys->dd_compressed_bytes >= -compressed); 1429 ASSERT(uncompressed >= 0 || 1430 dd->dd_phys->dd_uncompressed_bytes >= -uncompressed); 1431 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1432 dd->dd_phys->dd_used_bytes += used; 1433 dd->dd_phys->dd_uncompressed_bytes += uncompressed; 1434 dd->dd_phys->dd_compressed_bytes += compressed; 1435 1436 if (dd->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1437 ASSERT(used > 0 || 1438 dd->dd_phys->dd_used_breakdown[type] >= -used); 1439 dd->dd_phys->dd_used_breakdown[type] += used; 1440 #ifdef DEBUG 1441 dd_used_t t; 1442 uint64_t u = 0; 1443 for (t = 0; t < DD_USED_NUM; t++) 1444 u += dd->dd_phys->dd_used_breakdown[t]; 1445 ASSERT3U(u, ==, dd->dd_phys->dd_used_bytes); 1446 #endif 1447 } 1448 if (needlock) 1449 mutex_exit(&dd->dd_lock); 1450 1451 if (dd->dd_parent != NULL) { 1452 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1453 accounted_delta, compressed, uncompressed, tx); 1454 dsl_dir_transfer_space(dd->dd_parent, 1455 used - accounted_delta, 1456 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1457 } 1458 } 1459 1460 void 1461 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1462 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1463 { 1464 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1465 1466 ASSERT(dmu_tx_is_syncing(tx)); 1467 ASSERT(oldtype < DD_USED_NUM); 1468 ASSERT(newtype < DD_USED_NUM); 1469 1470 if (delta == 0 || !(dd->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1471 return; 1472 1473 if (needlock) 1474 mutex_enter(&dd->dd_lock); 1475 ASSERT(delta > 0 ? 1476 dd->dd_phys->dd_used_breakdown[oldtype] >= delta : 1477 dd->dd_phys->dd_used_breakdown[newtype] >= -delta); 1478 ASSERT(dd->dd_phys->dd_used_bytes >= ABS(delta)); 1479 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1480 dd->dd_phys->dd_used_breakdown[oldtype] -= delta; 1481 dd->dd_phys->dd_used_breakdown[newtype] += delta; 1482 if (needlock) 1483 mutex_exit(&dd->dd_lock); 1484 } 1485 1486 static int 1487 dsl_dir_set_quota_check(void *arg1, void *arg2, dmu_tx_t *tx) 1488 { 1489 dsl_dataset_t *ds = arg1; 1490 dsl_dir_t *dd = ds->ds_dir; 1491 dsl_prop_setarg_t *psa = arg2; 1492 int err; 1493 uint64_t towrite; 1494 1495 if ((err = dsl_prop_predict_sync(ds->ds_dir, psa)) != 0) 1496 return (err); 1497 1498 if (psa->psa_effective_value == 0) 1499 return (0); 1500 1501 mutex_enter(&dd->dd_lock); 1502 /* 1503 * If we are doing the preliminary check in open context, and 1504 * there are pending changes, then don't fail it, since the 1505 * pending changes could under-estimate the amount of space to be 1506 * freed up. 1507 */ 1508 towrite = dsl_dir_space_towrite(dd); 1509 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1510 (psa->psa_effective_value < dd->dd_phys->dd_reserved || 1511 psa->psa_effective_value < dd->dd_phys->dd_used_bytes + towrite)) { 1512 err = ENOSPC; 1513 } 1514 mutex_exit(&dd->dd_lock); 1515 return (err); 1516 } 1517 1518 static void 1519 dsl_dir_set_quota_sync(void *arg1, void *arg2, dmu_tx_t *tx) 1520 { 1521 dsl_dataset_t *ds = arg1; 1522 dsl_dir_t *dd = ds->ds_dir; 1523 dsl_prop_setarg_t *psa = arg2; 1524 uint64_t effective_value = psa->psa_effective_value; 1525 1526 dsl_prop_set_sync(ds, psa, tx); 1527 DSL_PROP_CHECK_PREDICTION(dd, psa); 1528 1529 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1530 1531 mutex_enter(&dd->dd_lock); 1532 dd->dd_phys->dd_quota = effective_value; 1533 mutex_exit(&dd->dd_lock); 1534 } 1535 1536 int 1537 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1538 { 1539 dsl_dir_t *dd; 1540 dsl_dataset_t *ds; 1541 dsl_prop_setarg_t psa; 1542 int err; 1543 1544 dsl_prop_setarg_init_uint64(&psa, "quota", source, "a); 1545 1546 err = dsl_dataset_hold(ddname, FTAG, &ds); 1547 if (err) 1548 return (err); 1549 1550 err = dsl_dir_open(ddname, FTAG, &dd, NULL); 1551 if (err) { 1552 dsl_dataset_rele(ds, FTAG); 1553 return (err); 1554 } 1555 1556 ASSERT(ds->ds_dir == dd); 1557 1558 /* 1559 * If someone removes a file, then tries to set the quota, we want to 1560 * make sure the file freeing takes effect. 1561 */ 1562 txg_wait_open(dd->dd_pool, 0); 1563 1564 err = dsl_sync_task_do(dd->dd_pool, dsl_dir_set_quota_check, 1565 dsl_dir_set_quota_sync, ds, &psa, 0); 1566 1567 dsl_dir_close(dd, FTAG); 1568 dsl_dataset_rele(ds, FTAG); 1569 return (err); 1570 } 1571 1572 int 1573 dsl_dir_set_reservation_check(void *arg1, void *arg2, dmu_tx_t *tx) 1574 { 1575 dsl_dataset_t *ds = arg1; 1576 dsl_dir_t *dd = ds->ds_dir; 1577 dsl_prop_setarg_t *psa = arg2; 1578 uint64_t effective_value; 1579 uint64_t used, avail; 1580 int err; 1581 1582 if ((err = dsl_prop_predict_sync(ds->ds_dir, psa)) != 0) 1583 return (err); 1584 1585 effective_value = psa->psa_effective_value; 1586 1587 /* 1588 * If we are doing the preliminary check in open context, the 1589 * space estimates may be inaccurate. 1590 */ 1591 if (!dmu_tx_is_syncing(tx)) 1592 return (0); 1593 1594 mutex_enter(&dd->dd_lock); 1595 used = dd->dd_phys->dd_used_bytes; 1596 mutex_exit(&dd->dd_lock); 1597 1598 if (dd->dd_parent) { 1599 avail = dsl_dir_space_available(dd->dd_parent, 1600 NULL, 0, FALSE); 1601 } else { 1602 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; 1603 } 1604 1605 if (MAX(used, effective_value) > MAX(used, dd->dd_phys->dd_reserved)) { 1606 uint64_t delta = MAX(used, effective_value) - 1607 MAX(used, dd->dd_phys->dd_reserved); 1608 1609 if (delta > avail) 1610 return (ENOSPC); 1611 if (dd->dd_phys->dd_quota > 0 && 1612 effective_value > dd->dd_phys->dd_quota) 1613 return (ENOSPC); 1614 } 1615 1616 return (0); 1617 } 1618 1619 static void 1620 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1621 { 1622 uint64_t used; 1623 int64_t delta; 1624 1625 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1626 1627 mutex_enter(&dd->dd_lock); 1628 used = dd->dd_phys->dd_used_bytes; 1629 delta = MAX(used, value) - MAX(used, dd->dd_phys->dd_reserved); 1630 dd->dd_phys->dd_reserved = value; 1631 1632 if (dd->dd_parent != NULL) { 1633 /* Roll up this additional usage into our ancestors */ 1634 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1635 delta, 0, 0, tx); 1636 } 1637 mutex_exit(&dd->dd_lock); 1638 } 1639 1640 1641 static void 1642 dsl_dir_set_reservation_sync(void *arg1, void *arg2, dmu_tx_t *tx) 1643 { 1644 dsl_dataset_t *ds = arg1; 1645 dsl_dir_t *dd = ds->ds_dir; 1646 dsl_prop_setarg_t *psa = arg2; 1647 uint64_t value = psa->psa_effective_value; 1648 1649 dsl_prop_set_sync(ds, psa, tx); 1650 DSL_PROP_CHECK_PREDICTION(dd, psa); 1651 1652 dsl_dir_set_reservation_sync_impl(dd, value, tx); 1653 } 1654 1655 int 1656 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1657 uint64_t reservation) 1658 { 1659 dsl_dir_t *dd; 1660 dsl_dataset_t *ds; 1661 dsl_prop_setarg_t psa; 1662 int err; 1663 1664 dsl_prop_setarg_init_uint64(&psa, "reservation", source, &reservation); 1665 1666 err = dsl_dataset_hold(ddname, FTAG, &ds); 1667 if (err) 1668 return (err); 1669 1670 err = dsl_dir_open(ddname, FTAG, &dd, NULL); 1671 if (err) { 1672 dsl_dataset_rele(ds, FTAG); 1673 return (err); 1674 } 1675 1676 ASSERT(ds->ds_dir == dd); 1677 1678 err = dsl_sync_task_do(dd->dd_pool, dsl_dir_set_reservation_check, 1679 dsl_dir_set_reservation_sync, ds, &psa, 0); 1680 1681 dsl_dir_close(dd, FTAG); 1682 dsl_dataset_rele(ds, FTAG); 1683 return (err); 1684 } 1685 1686 static dsl_dir_t * 1687 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1688 { 1689 for (; ds1; ds1 = ds1->dd_parent) { 1690 dsl_dir_t *dd; 1691 for (dd = ds2; dd; dd = dd->dd_parent) { 1692 if (ds1 == dd) 1693 return (dd); 1694 } 1695 } 1696 return (NULL); 1697 } 1698 1699 /* 1700 * If delta is applied to dd, how much of that delta would be applied to 1701 * ancestor? Syncing context only. 1702 */ 1703 static int64_t 1704 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1705 { 1706 if (dd == ancestor) 1707 return (delta); 1708 1709 mutex_enter(&dd->dd_lock); 1710 delta = parent_delta(dd, dd->dd_phys->dd_used_bytes, delta); 1711 mutex_exit(&dd->dd_lock); 1712 return (would_change(dd->dd_parent, delta, ancestor)); 1713 } 1714 1715 struct renamearg { 1716 dsl_dir_t *newparent; 1717 const char *mynewname; 1718 cred_t *cr; 1719 }; 1720 1721 static int 1722 dsl_dir_rename_check(void *arg1, void *arg2, dmu_tx_t *tx) 1723 { 1724 dsl_dir_t *dd = arg1; 1725 struct renamearg *ra = arg2; 1726 dsl_pool_t *dp = dd->dd_pool; 1727 objset_t *mos = dp->dp_meta_objset; 1728 int err; 1729 uint64_t val; 1730 1731 /* 1732 * There should only be one reference, from dmu_objset_rename(). 1733 * Fleeting holds are also possible (eg, from "zfs list" getting 1734 * stats), but any that are present in open context will likely 1735 * be gone by syncing context, so only fail from syncing 1736 * context. 1737 */ 1738 if (dmu_tx_is_syncing(tx) && dmu_buf_refcount(dd->dd_dbuf) > 1) 1739 return (EBUSY); 1740 1741 /* check for existing name */ 1742 err = zap_lookup(mos, ra->newparent->dd_phys->dd_child_dir_zapobj, 1743 ra->mynewname, 8, 1, &val); 1744 if (err == 0) 1745 return (EEXIST); 1746 if (err != ENOENT) 1747 return (err); 1748 1749 if (ra->newparent != dd->dd_parent) { 1750 /* is there enough space? */ 1751 uint64_t myspace = 1752 MAX(dd->dd_phys->dd_used_bytes, dd->dd_phys->dd_reserved); 1753 1754 /* no rename into our descendant */ 1755 if (closest_common_ancestor(dd, ra->newparent) == dd) 1756 return (EINVAL); 1757 1758 if (err = dsl_dir_transfer_possible(dd->dd_parent, 1759 ra->newparent, dd, myspace, ra->cr)) 1760 return (err); 1761 1762 if (dd->dd_phys->dd_filesystem_count == 0 && 1763 dmu_tx_is_syncing(tx)) { 1764 uint64_t fs_cnt = 0; 1765 uint64_t ss_cnt = 0; 1766 1767 /* 1768 * Ensure this portion of the tree's counts have been 1769 * initialized in case the new parent has limits set. 1770 */ 1771 err = dsl_dir_set_fs_ss_count(dd, tx, &fs_cnt, &ss_cnt); 1772 if (err) 1773 return (EIO); 1774 } 1775 } 1776 1777 return (0); 1778 } 1779 1780 static void 1781 dsl_dir_rename_sync(void *arg1, void *arg2, dmu_tx_t *tx) 1782 { 1783 dsl_dir_t *dd = arg1; 1784 struct renamearg *ra = arg2; 1785 dsl_pool_t *dp = dd->dd_pool; 1786 objset_t *mos = dp->dp_meta_objset; 1787 int err; 1788 char namebuf[MAXNAMELEN]; 1789 1790 ASSERT(dmu_buf_refcount(dd->dd_dbuf) <= 2); 1791 1792 /* Log this before we change the name. */ 1793 dsl_dir_name(ra->newparent, namebuf); 1794 spa_history_log_internal_dd(dd, "rename", tx, 1795 "-> %s/%s", namebuf, ra->mynewname); 1796 1797 if (ra->newparent != dd->dd_parent) { 1798 int cnt; 1799 1800 mutex_enter(&dd->dd_lock); 1801 1802 cnt = dd->dd_phys->dd_filesystem_count; 1803 dsl_dir_fscount_adjust(dd->dd_parent, tx, -cnt, B_TRUE); 1804 dsl_dir_fscount_adjust(ra->newparent, tx, cnt, B_TRUE); 1805 1806 cnt = dd->dd_phys->dd_snapshot_count; 1807 dsl_snapcount_adjust(dd->dd_parent, tx, -cnt, B_TRUE); 1808 dsl_snapcount_adjust(ra->newparent, tx, cnt, B_TRUE); 1809 1810 mutex_exit(&dd->dd_lock); 1811 1812 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1813 -dd->dd_phys->dd_used_bytes, 1814 -dd->dd_phys->dd_compressed_bytes, 1815 -dd->dd_phys->dd_uncompressed_bytes, tx); 1816 dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD, 1817 dd->dd_phys->dd_used_bytes, 1818 dd->dd_phys->dd_compressed_bytes, 1819 dd->dd_phys->dd_uncompressed_bytes, tx); 1820 1821 if (dd->dd_phys->dd_reserved > dd->dd_phys->dd_used_bytes) { 1822 uint64_t unused_rsrv = dd->dd_phys->dd_reserved - 1823 dd->dd_phys->dd_used_bytes; 1824 1825 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1826 -unused_rsrv, 0, 0, tx); 1827 dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD_RSRV, 1828 unused_rsrv, 0, 0, tx); 1829 } 1830 } 1831 1832 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1833 1834 /* remove from old parent zapobj */ 1835 err = zap_remove(mos, dd->dd_parent->dd_phys->dd_child_dir_zapobj, 1836 dd->dd_myname, tx); 1837 ASSERT0(err); 1838 1839 (void) strcpy(dd->dd_myname, ra->mynewname); 1840 dsl_dir_close(dd->dd_parent, dd); 1841 dd->dd_phys->dd_parent_obj = ra->newparent->dd_object; 1842 VERIFY(0 == dsl_dir_open_obj(dd->dd_pool, 1843 ra->newparent->dd_object, NULL, dd, &dd->dd_parent)); 1844 1845 /* add to new parent zapobj */ 1846 err = zap_add(mos, ra->newparent->dd_phys->dd_child_dir_zapobj, 1847 dd->dd_myname, 8, 1, &dd->dd_object, tx); 1848 ASSERT0(err); 1849 1850 } 1851 1852 int 1853 dsl_dir_rename(dsl_dir_t *dd, const char *newname) 1854 { 1855 struct renamearg ra; 1856 int err; 1857 1858 /* new parent should exist */ 1859 err = dsl_dir_open(newname, FTAG, &ra.newparent, &ra.mynewname); 1860 if (err) 1861 return (err); 1862 1863 /* can't rename to different pool */ 1864 if (dd->dd_pool != ra.newparent->dd_pool) { 1865 err = ENXIO; 1866 goto out; 1867 } 1868 1869 /* new name should not already exist */ 1870 if (ra.mynewname == NULL) { 1871 err = EEXIST; 1872 goto out; 1873 } 1874 1875 ra.cr = CRED(); 1876 1877 err = dsl_sync_task_do(dd->dd_pool, 1878 dsl_dir_rename_check, dsl_dir_rename_sync, dd, &ra, 3); 1879 1880 out: 1881 dsl_dir_close(ra.newparent, FTAG); 1882 return (err); 1883 } 1884 1885 int 1886 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, dsl_dir_t *moving_dd, 1887 uint64_t space, cred_t *cr) 1888 { 1889 dsl_dir_t *ancestor; 1890 int64_t adelta; 1891 uint64_t avail; 1892 int err; 1893 1894 ancestor = closest_common_ancestor(sdd, tdd); 1895 adelta = would_change(sdd, -space, ancestor); 1896 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 1897 if (avail < space) 1898 return (ENOSPC); 1899 1900 if (sdd != moving_dd) { 1901 err = dsl_dir_fscount_check(tdd, 1902 moving_dd->dd_phys->dd_filesystem_count, ancestor, cr); 1903 if (err != 0) 1904 return (err); 1905 } 1906 err = dsl_snapcount_check(tdd, moving_dd->dd_phys->dd_snapshot_count, 1907 ancestor, cr); 1908 if (err != 0) 1909 return (err); 1910 1911 return (0); 1912 } 1913 1914 timestruc_t 1915 dsl_dir_snap_cmtime(dsl_dir_t *dd) 1916 { 1917 timestruc_t t; 1918 1919 mutex_enter(&dd->dd_lock); 1920 t = dd->dd_snap_cmtime; 1921 mutex_exit(&dd->dd_lock); 1922 1923 return (t); 1924 } 1925 1926 void 1927 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 1928 { 1929 timestruc_t t; 1930 1931 gethrestime(&t); 1932 mutex_enter(&dd->dd_lock); 1933 dd->dd_snap_cmtime = t; 1934 mutex_exit(&dd->dd_lock); 1935 }