Print this page
OS-1566 filesystem limits for ZFS datasets
*** 19,28 ****
--- 19,29 ----
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
+ * Copyright (c) 2012 Joyent, Inc. All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_tx.h>
*** 36,51 ****
--- 37,129 ----
#include <sys/zap.h>
#include <sys/zio.h>
#include <sys/arc.h>
#include <sys/sunddi.h>
#include <sys/zfs_zone.h>
+ #include <sys/zfeature.h>
+ #include <sys/policy.h>
+ #include <sys/zfs_znode.h>
#include "zfs_namecheck.h"
+ #include "zfs_prop.h"
+ /*
+ * Filesystem and Snapshot Limits
+ * ------------------------------
+ *
+ * These limits are used to restrict the number of filesystems and/or snapshots
+ * that can be created at a given level in the tree or below. A typical
+ * use-case is with a delegated dataset where the administrator wants to ensure
+ * that a user within the zone is not creating too many additional filesystems
+ * or snapshots, even though they're not exceeding their space quota.
+ *
+ * The count of filesystems and snapshots is stored in the dsl_dir_phys_t which
+ * impacts the on-disk format. As such, this capability is controlled by a
+ * feature flag and must be enabled to be used. Once enabled, the feature is
+ * not active until the first limit is set. At that point, future operations to
+ * create/destroy filesystems or snapshots will validate and update the counts.
+ *
+ * Because the on-disk counts will be uninitialized (0) before the feature is
+ * active, the counts are updated when a limit is first set on an uninitialized
+ * node (The filesystem/snapshot counts on a node includes all of the nested
+ * filesystems/snapshots, plus the node itself. Thus, a new leaf node has a
+ * filesystem count of 1 and a snapshot count of 0. A filesystem count of 0 on
+ * a node indicates uninitialized counts on that node.) When setting a limit on
+ * an uninitialized node, the code starts at the filesystem with the new limit
+ * and descends into all sub-filesystems and updates the counts to be accurate.
+ * In practice this is lightweight since a limit is typically set when the
+ * filesystem is created and thus has no children. Once valid, changing the
+ * limit value won't require a re-traversal since the counts are already valid.
+ * When recursively fixing the counts, if a node with a limit is encountered
+ * during the descent, the counts are known to be valid and there is no need to
+ * descend into that filesystem's children. The counts on filesystems above the
+ * one with the new limit will still be uninitialized (0), unless a limit is
+ * eventually set on one of those filesystems. The counts are always recursively
+ * updated when a limit is set on a dataset, unless there is already a limit.
+ * When a new limit value is set on a filesystem with an existing limit, it is
+ * possible for the new limit to be less than the current count at that level
+ * since a user who can change the limit is also allowed to exceed the limit.
+ *
+ * Once the feature is active, then whenever a filesystem or snapshot is
+ * created, the code recurses up the tree, validating the new count against the
+ * limit at each initialized level. In practice, most levels will not have a
+ * limit set. If there is a limit at any initialized level up the tree, the
+ * check must pass or the creation will fail. Likewise, when a filesystem or
+ * snapshot is destroyed, the counts are recursively adjusted all the way up
+ * the initizized nodes in the tree. Renaming a filesystem into different point
+ * in the tree will first validate, then update the counts on each branch up to
+ * the common ancestor. A receive will also validate the counts and then update
+ * them.
+ *
+ * An exception to the above behavior is that the limit is not enforced if the
+ * user has permission to modify the limit. This is primarily so that
+ * recursive snapshots in the global zone always work. We want to prevent a
+ * denial-of-service in which a lower level delegated dataset could max out its
+ * limit and thus block recursive snapshots from being taken in the global zone.
+ * Because of this, it is possible for the snapshot count to be over the limit
+ * and snapshots taken in the global zone could cause a lower level dataset to
+ * hit or exceed its limit. The administrator taking the global zone recursive
+ * snapshot should be aware of this side-effect and behave accordingly.
+ * For consistency, the filesystem limit is also not enforced if the user can
+ * modify the limit.
+ *
+ * The filesystem limit is validated by dsl_dir_fscount_check() and updated by
+ * dsl_dir_fscount_adjust(). The snapshot limit is validated by
+ * dsl_snapcount_check() and updated by dsl_snapcount_adjust().
+ * A new limit value is validated in dsl_dir_validate_fs_ss_limit() and the
+ * filesystem counts are adjusted, if necessary, by dsl_dir_set_fs_ss_count().
+ *
+ * There is a special case when we receive a filesystem that already exists. In
+ * this case a temporary clone name of %X is created (see dmu_recv_begin). We
+ * never update the filesystem counts for temporary clones.
+ */
+
static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
static void dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd,
uint64_t value, dmu_tx_t *tx);
+ extern dsl_syncfunc_t dsl_prop_set_sync;
+
/* ARGSUSED */
static void
dsl_dir_evict(dmu_buf_t *db, void *arg)
{
dsl_dir_t *dd = arg;
*** 405,423 ****
--- 483,889 ----
dsl_dir_open(const char *name, void *tag, dsl_dir_t **ddp, const char **tailp)
{
return (dsl_dir_open_spa(NULL, name, tag, ddp, tailp));
}
+ /*
+ * Check if the counts are already valid for this filesystem and its
+ * descendants. The counts on this filesystem, and those below, may be
+ * uninitialized due to either the use of a pre-existing pool which did not
+ * support the filesystem/snapshot limit feature, or one in which the feature
+ * had not yet been enabled.
+ *
+ * Recursively descend the filesystem tree and update the filesystem/snapshot
+ * counts on each filesystem below, then update the cumulative count on the
+ * current filesystem. If the filesystem already has a limit set on it,
+ * then we know that its counts, and the counts on the filesystems below it,
+ * have been updated to be correct, so we can skip this filesystem.
+ */
+ static int
+ dsl_dir_set_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx, uint64_t *fscnt,
+ uint64_t *sscnt)
+ {
+ uint64_t my_fs_cnt = 0;
+ uint64_t my_ss_cnt = 0;
+ uint64_t curr_ss_cnt;
+ objset_t *os = dd->dd_pool->dp_meta_objset;
+ zap_cursor_t *zc;
+ zap_attribute_t *za;
+ int err;
+ int ret = 0;
+ boolean_t limit_set = B_FALSE;
+ uint64_t fslimit, sslimit;
+ dsl_dataset_t *ds;
+
+ ASSERT(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock));
+
+ err = dsl_prop_get_dd(dd, zfs_prop_to_name(ZFS_PROP_FILESYSTEM_LIMIT),
+ 8, 1, &fslimit, NULL, B_FALSE);
+ if (err == 0 && fslimit != UINT64_MAX)
+ limit_set = B_TRUE;
+
+ if (!limit_set) {
+ err = dsl_prop_get_dd(dd,
+ zfs_prop_to_name(ZFS_PROP_SNAPSHOT_LIMIT), 8, 1, &sslimit,
+ NULL, B_FALSE);
+ if (err == 0 && sslimit != UINT64_MAX)
+ limit_set = B_TRUE;
+ }
+
+ /*
+ * If the dd has a limit, we know its count is already good and we
+ * don't need to recurse down any further.
+ */
+ if (limit_set) {
+ *fscnt = dd->dd_phys->dd_filesystem_count;
+ *sscnt = dd->dd_phys->dd_snapshot_count;
+ return (ret);
+ }
+
+ zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
+ za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
+
+ mutex_enter(&dd->dd_lock);
+
+ /* Iterate datasets */
+ for (zap_cursor_init(zc, os, dd->dd_phys->dd_child_dir_zapobj);
+ zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
+ dsl_dir_t *chld_dd;
+ uint64_t chld_fs_cnt = 0;
+ uint64_t chld_ss_cnt = 0;
+
+ if (dsl_dir_open_obj(dd->dd_pool,
+ ZFS_DIRENT_OBJ(za->za_first_integer), NULL, FTAG,
+ &chld_dd)) {
+ ret = 1;
+ break;
+ }
+
+ if (dsl_dir_set_fs_ss_count(chld_dd, tx, &chld_fs_cnt,
+ &chld_ss_cnt)) {
+ ret = 1;
+ break;
+ }
+
+ dsl_dir_close(chld_dd, FTAG);
+
+ my_fs_cnt += chld_fs_cnt;
+ my_ss_cnt += chld_ss_cnt;
+ }
+ zap_cursor_fini(zc);
+ kmem_free(zc, sizeof (zap_cursor_t));
+ kmem_free(za, sizeof (zap_attribute_t));
+
+ /* Count snapshots */
+ if (dsl_dataset_hold_obj(dd->dd_pool, dd->dd_phys->dd_head_dataset_obj,
+ FTAG, &ds) == 0) {
+ if (zap_count(os, ds->ds_phys->ds_snapnames_zapobj,
+ &curr_ss_cnt) == 0)
+ my_ss_cnt += curr_ss_cnt;
+ else
+ ret = 1;
+ dsl_dataset_rele(ds, FTAG);
+ } else {
+ ret = 1;
+ }
+
+ /* Add 1 for self */
+ my_fs_cnt++;
+
+ /* save updated counts */
+ dmu_buf_will_dirty(dd->dd_dbuf, tx);
+ dd->dd_phys->dd_filesystem_count = my_fs_cnt;
+ dd->dd_phys->dd_snapshot_count = my_ss_cnt;
+
+ mutex_exit(&dd->dd_lock);
+
+ /* Return child dataset count plus self */
+ *fscnt = my_fs_cnt;
+ *sscnt = my_ss_cnt;
+ return (ret);
+ }
+
+ /* ARGSUSED */
+ static int
+ fs_ss_limit_feat_check(void *arg1, void *arg2, dmu_tx_t *tx)
+ {
+ return (0);
+ }
+
+ /* ARGSUSED */
+ static void
+ fs_ss_limit_feat_sync(void *arg1, void *arg2, dmu_tx_t *tx)
+ {
+ spa_t *spa = arg1;
+ zfeature_info_t *limit_feat =
+ &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT];
+
+ spa_feature_incr(spa, limit_feat, tx);
+ }
+
+ /*
+ * Make sure the feature is enabled and activate it if necessary.
+ * If setting a limit, ensure the on-disk counts are valid.
+ *
+ * We do not validate the new limit, since users who can change the limit are
+ * also allowed to exceed the limit.
+ *
+ * Return -1 to force the zfs_set_prop_nvlist code down the default path to set
+ * the value in the nvlist.
+ */
+ int
+ dsl_dir_validate_fs_ss_limit(const char *ddname, uint64_t limit,
+ zfs_prop_t ptype)
+ {
+ dsl_dir_t *dd;
+ dsl_dataset_t *ds;
+ int err;
+ dmu_tx_t *tx;
+ uint64_t my_fs_cnt = 0;
+ uint64_t my_ss_cnt = 0;
+ uint64_t curr_limit;
+ spa_t *spa;
+ zfeature_info_t *limit_feat =
+ &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT];
+
+ if ((err = dsl_dataset_hold(ddname, FTAG, &ds)) != 0)
+ return (err);
+
+ spa = dsl_dataset_get_spa(ds);
+ if (!spa_feature_is_enabled(spa,
+ &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT])) {
+ dsl_dataset_rele(ds, FTAG);
+ return (ENOTSUP);
+ }
+
+ dd = ds->ds_dir;
+
+ if ((err = dsl_prop_get_dd(dd, zfs_prop_to_name(ptype), 8, 1,
+ &curr_limit, NULL, B_FALSE)) != 0) {
+ dsl_dataset_rele(ds, FTAG);
+ return (err);
+ }
+
+ if (limit == UINT64_MAX) {
+ /*
+ * If we had a limit, since we're now removing that limit, this
+ * is where we could decrement the feature-active counter so
+ * that the feature becomes inactive (only enabled) if we
+ * remove the last limit. However, we do not currently support
+ * deactivating the feature.
+ */
+ dsl_dataset_rele(ds, FTAG);
+ return (-1);
+ }
+
+ if (!spa_feature_is_active(spa, limit_feat)) {
+ /*
+ * Since the feature was not active and we're now setting a
+ * limit, increment the feature-active counter so that the
+ * feature becomes active for the first time.
+ *
+ * We can't update the MOS in open context, so create a sync
+ * task.
+ */
+ err = dsl_sync_task_do(dd->dd_pool, fs_ss_limit_feat_check,
+ fs_ss_limit_feat_sync, spa, (void *)1, 0);
+ if (err != 0)
+ return (err);
+ }
+
+ tx = dmu_tx_create_dd(dd);
+ if (dmu_tx_assign(tx, TXG_WAIT)) {
+ dmu_tx_abort(tx);
+ dsl_dataset_rele(ds, FTAG);
+ return (ENOSPC);
+ }
+
+ /*
+ * Since we are now setting a non-UINT64_MAX on the filesystem, we need
+ * to ensure the counts are correct. Descend down the tree from this
+ * point and update all of the counts to be accurate.
+ */
+ err = -1;
+ rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER);
+ if (dsl_dir_set_fs_ss_count(dd, tx, &my_fs_cnt, &my_ss_cnt))
+ err = ENOSPC;
+ rw_exit(&dd->dd_pool->dp_config_rwlock);
+
+ dmu_tx_commit(tx);
+ dsl_dataset_rele(ds, FTAG);
+
+ return (err);
+ }
+
+ /*
+ * Used to determine if the filesystem_limit or snapshot_limit should be
+ * enforced. We allow the limit to be exceeded if the user has permission to
+ * write the property value. We pass in the creds that we got in the open
+ * context since we will always be the GZ root in syncing context.
+ *
+ * We can never modify these two properties within a non-global zone. In
+ * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
+ * can't use that function since we are already holding the dp_config_rwlock.
+ * In addition, we already have the dd and dealing with snapshots is simplified.
+ */
+ int
+ dsl_secpolicy_write_prop(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
+ {
+ int err = 0;
+ uint64_t obj;
+ dsl_dataset_t *ds;
+ uint64_t zoned;
+
+ #ifdef _KERNEL
+ if (crgetzoneid(cr) != GLOBAL_ZONEID)
+ return (EPERM);
+
+ if (secpolicy_zfs(cr) == 0)
+ return (0);
+ #endif
+
+ if ((obj = dd->dd_phys->dd_head_dataset_obj) == NULL)
+ return (ENOENT);
+
+ ASSERT(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock));
+
+ if ((err = dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds)) != 0)
+ return (err);
+
+ if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
+ /* Only root can access zoned fs's from the GZ */
+ err = EPERM;
+ } else {
+ err = dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr,
+ B_FALSE);
+ }
+
+ dsl_dataset_rele(ds, FTAG);
+ return (err);
+ }
+
+ /*
+ * Check if adding additional child filesystem(s) would exceed any filesystem
+ * limits. Note that all filesystem limits up to the root (or the highest
+ * initialized) filesystem or the given ancestor must be satisfied.
+ */
+ int
+ dsl_dir_fscount_check(dsl_dir_t *dd, uint64_t cnt, dsl_dir_t *ancestor,
+ cred_t *cr)
+ {
+ uint64_t limit;
+ int err = 0;
+
+ VERIFY(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock));
+
+ /* If we're allowed to change the limit, don't enforce the limit. */
+ if (dsl_secpolicy_write_prop(dd, ZFS_PROP_FILESYSTEM_LIMIT, cr) == 0)
+ return (0);
+
+ /*
+ * If an ancestor has been provided, stop checking the limit once we
+ * hit that dir. We need this during rename so that we don't overcount
+ * the check once we recurse up to the common ancestor.
+ */
+ if (ancestor == dd)
+ return (0);
+
+ /*
+ * If we hit an uninitialized node while recursing up the tree, we can
+ * stop since we know the counts are not valid on this node and we
+ * know we won't touch this node's counts.
+ */
+ if (dd->dd_phys->dd_filesystem_count == 0)
+ return (0);
+
+ err = dsl_prop_get_dd(dd, zfs_prop_to_name(ZFS_PROP_FILESYSTEM_LIMIT),
+ 8, 1, &limit, NULL, B_FALSE);
+ if (err != 0)
+ return (err);
+
+ /* Is there a fs limit which we've hit? */
+ if ((dd->dd_phys->dd_filesystem_count + cnt) > limit)
+ return (EDQUOT);
+
+ if (dd->dd_parent != NULL)
+ err = dsl_dir_fscount_check(dd->dd_parent, cnt, ancestor, cr);
+
+ return (err);
+ }
+
+ /*
+ * Adjust the filesystem count for the specified dsl_dir_t and all parent
+ * filesystems. When a new filesystem is created, increment the count on all
+ * parents, and when a filesystem is destroyed, decrement the count.
+ */
+ void
+ dsl_dir_fscount_adjust(dsl_dir_t *dd, dmu_tx_t *tx, int64_t delta,
+ boolean_t first)
+ {
+ if (first) {
+ VERIFY(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock));
+ VERIFY(dmu_tx_is_syncing(tx));
+ }
+
+ /*
+ * When we receive an incremental stream into a filesystem that already
+ * exists, a temporary clone is created. We don't count this temporary
+ * clone, whose name begins with a '%'.
+ */
+ if (dd->dd_myname[0] == '%')
+ return;
+
+ /*
+ * If we hit an uninitialized node while recursing up the tree, we can
+ * stop since we know the counts are not valid on this node and we
+ * know we shouldn't touch this node's counts. An uninitialized count
+ * on the node indicates that either the feature has not yet been
+ * activated or there are no limits on this part of the tree.
+ */
+ if (dd->dd_phys->dd_filesystem_count == 0)
+ return;
+
+ /*
+ * On initial entry we need to check if this feature is active, but
+ * we don't want to re-check this on each recursive call. Note: the
+ * feature cannot be active if its not enabled. If the feature is not
+ * active, don't touch the on-disk count fields.
+ */
+ if (first) {
+ zfeature_info_t *quota_feat =
+ &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT];
+
+ if (!spa_feature_is_active(dd->dd_pool->dp_spa, quota_feat))
+ return;
+ }
+
+ dmu_buf_will_dirty(dd->dd_dbuf, tx);
+
+ mutex_enter(&dd->dd_lock);
+
+ dd->dd_phys->dd_filesystem_count += delta;
+ VERIFY(dd->dd_phys->dd_filesystem_count >= 1); /* ourself is 1 */
+
+ /* Roll up this additional count into our ancestors */
+ if (dd->dd_parent != NULL)
+ dsl_dir_fscount_adjust(dd->dd_parent, tx, delta, B_FALSE);
+
+ mutex_exit(&dd->dd_lock);
+ }
+
uint64_t
dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
dmu_tx_t *tx)
{
objset_t *mos = dp->dp_meta_objset;
uint64_t ddobj;
dsl_dir_phys_t *ddphys;
dmu_buf_t *dbuf;
+ zfeature_info_t *limit_feat =
+ &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT];
+
ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
if (pds) {
VERIFY(0 == zap_add(mos, pds->dd_phys->dd_child_dir_zapobj,
name, sizeof (uint64_t), 1, &ddobj, tx));
*** 429,438 ****
--- 895,907 ----
VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
dmu_buf_will_dirty(dbuf, tx);
ddphys = dbuf->db_data;
ddphys->dd_creation_time = gethrestime_sec();
+ /* Only initialize the count if the limit feature is active */
+ if (spa_feature_is_active(dp->dp_spa, limit_feat))
+ ddphys->dd_filesystem_count = 1;
if (pds)
ddphys->dd_parent_obj = pds->dd_object;
ddphys->dd_props_zapobj = zap_create(mos,
DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
ddphys->dd_child_dir_zapobj = zap_create(mos,
*** 486,495 ****
--- 955,974 ----
ASSERT(RW_WRITE_HELD(&dd->dd_pool->dp_config_rwlock));
ASSERT(dd->dd_phys->dd_head_dataset_obj == 0);
/*
+ * Decrement the filesystem count for all parent filesystems.
+ *
+ * When we receive an incremental stream into a filesystem that already
+ * exists, a temporary clone is created. We never count this temporary
+ * clone, whose name begins with a '%'.
+ */
+ if (dd->dd_myname[0] != '%' && dd->dd_parent != NULL)
+ dsl_dir_fscount_adjust(dd->dd_parent, tx, -1, B_TRUE);
+
+ /*
* Remove our reservation. The impl() routine avoids setting the
* actual property, which would require the (already destroyed) ds.
*/
dsl_dir_set_reservation_sync_impl(dd, 0, tx);
*** 1034,1045 ****
}
mutex_exit(&dd->dd_lock);
return (err);
}
- extern dsl_syncfunc_t dsl_prop_set_sync;
-
static void
dsl_dir_set_quota_sync(void *arg1, void *arg2, dmu_tx_t *tx)
{
dsl_dataset_t *ds = arg1;
dsl_dir_t *dd = ds->ds_dir;
--- 1513,1522 ----
*** 1236,1245 ****
--- 1713,1723 ----
}
struct renamearg {
dsl_dir_t *newparent;
const char *mynewname;
+ cred_t *cr;
};
static int
dsl_dir_rename_check(void *arg1, void *arg2, dmu_tx_t *tx)
{
*** 1276,1288 ****
/* no rename into our descendant */
if (closest_common_ancestor(dd, ra->newparent) == dd)
return (EINVAL);
if (err = dsl_dir_transfer_possible(dd->dd_parent,
! ra->newparent, myspace))
return (err);
}
return (0);
}
static void
--- 1754,1780 ----
/* no rename into our descendant */
if (closest_common_ancestor(dd, ra->newparent) == dd)
return (EINVAL);
if (err = dsl_dir_transfer_possible(dd->dd_parent,
! ra->newparent, dd, myspace, ra->cr))
return (err);
+
+ if (dd->dd_phys->dd_filesystem_count == 0 &&
+ dmu_tx_is_syncing(tx)) {
+ uint64_t fs_cnt = 0;
+ uint64_t ss_cnt = 0;
+
+ /*
+ * Ensure this portion of the tree's counts have been
+ * initialized in case the new parent has limits set.
+ */
+ err = dsl_dir_set_fs_ss_count(dd, tx, &fs_cnt, &ss_cnt);
+ if (err)
+ return (EIO);
}
+ }
return (0);
}
static void
*** 1301,1310 ****
--- 1793,1816 ----
dsl_dir_name(ra->newparent, namebuf);
spa_history_log_internal_dd(dd, "rename", tx,
"-> %s/%s", namebuf, ra->mynewname);
if (ra->newparent != dd->dd_parent) {
+ int cnt;
+
+ mutex_enter(&dd->dd_lock);
+
+ cnt = dd->dd_phys->dd_filesystem_count;
+ dsl_dir_fscount_adjust(dd->dd_parent, tx, -cnt, B_TRUE);
+ dsl_dir_fscount_adjust(ra->newparent, tx, cnt, B_TRUE);
+
+ cnt = dd->dd_phys->dd_snapshot_count;
+ dsl_snapcount_adjust(dd->dd_parent, tx, -cnt, B_TRUE);
+ dsl_snapcount_adjust(ra->newparent, tx, cnt, B_TRUE);
+
+ mutex_exit(&dd->dd_lock);
+
dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
-dd->dd_phys->dd_used_bytes,
-dd->dd_phys->dd_compressed_bytes,
-dd->dd_phys->dd_uncompressed_bytes, tx);
dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD,
*** 1364,1394 ****
if (ra.mynewname == NULL) {
err = EEXIST;
goto out;
}
err = dsl_sync_task_do(dd->dd_pool,
dsl_dir_rename_check, dsl_dir_rename_sync, dd, &ra, 3);
out:
dsl_dir_close(ra.newparent, FTAG);
return (err);
}
int
! dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, uint64_t space)
{
dsl_dir_t *ancestor;
int64_t adelta;
uint64_t avail;
ancestor = closest_common_ancestor(sdd, tdd);
adelta = would_change(sdd, -space, ancestor);
avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
if (avail < space)
return (ENOSPC);
return (0);
}
timestruc_t
dsl_dir_snap_cmtime(dsl_dir_t *dd)
--- 1870,1915 ----
if (ra.mynewname == NULL) {
err = EEXIST;
goto out;
}
+ ra.cr = CRED();
+
err = dsl_sync_task_do(dd->dd_pool,
dsl_dir_rename_check, dsl_dir_rename_sync, dd, &ra, 3);
out:
dsl_dir_close(ra.newparent, FTAG);
return (err);
}
int
! dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, dsl_dir_t *moving_dd,
! uint64_t space, cred_t *cr)
{
dsl_dir_t *ancestor;
int64_t adelta;
uint64_t avail;
+ int err;
ancestor = closest_common_ancestor(sdd, tdd);
adelta = would_change(sdd, -space, ancestor);
avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
if (avail < space)
return (ENOSPC);
+ if (sdd != moving_dd) {
+ err = dsl_dir_fscount_check(tdd,
+ moving_dd->dd_phys->dd_filesystem_count, ancestor, cr);
+ if (err != 0)
+ return (err);
+ }
+ err = dsl_snapcount_check(tdd, moving_dd->dd_phys->dd_snapshot_count,
+ ancestor, cr);
+ if (err != 0)
+ return (err);
+
return (0);
}
timestruc_t
dsl_dir_snap_cmtime(dsl_dir_t *dd)