4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */
25
26 #include <sys/dmu.h>
27 #include <sys/dmu_objset.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/dsl_dataset.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/dsl_deleg.h>
34 #include <sys/spa.h>
35 #include <sys/metaslab.h>
36 #include <sys/zap.h>
37 #include <sys/zio.h>
38 #include <sys/arc.h>
39 #include <sys/sunddi.h>
40 #include <sys/zfs_zone.h>
41 #include "zfs_namecheck.h"
42
43 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
44 static void dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd,
45 uint64_t value, dmu_tx_t *tx);
46
47 /* ARGSUSED */
48 static void
49 dsl_dir_evict(dmu_buf_t *db, void *arg)
50 {
51 dsl_dir_t *dd = arg;
52 dsl_pool_t *dp = dd->dd_pool;
53 int t;
54
55 for (t = 0; t < TXG_SIZE; t++) {
56 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
57 ASSERT(dd->dd_tempreserved[t] == 0);
58 ASSERT(dd->dd_space_towrite[t] == 0);
59 }
60
61 if (dd->dd_parent)
62 dsl_dir_close(dd->dd_parent, dd);
63
64 spa_close(dd->dd_pool->dp_spa, dd);
65
66 /*
390 if (tailp)
391 *tailp = next;
392 if (openedspa)
393 spa_close(spa, FTAG);
394 *ddp = dd;
395 return (err);
396 }
397
398 /*
399 * Return the dsl_dir_t, and possibly the last component which couldn't
400 * be found in *tail. Return NULL if the path is bogus, or if
401 * tail==NULL and we couldn't parse the whole name. (*tail)[0] == '@'
402 * means that the last component is a snapshot.
403 */
404 int
405 dsl_dir_open(const char *name, void *tag, dsl_dir_t **ddp, const char **tailp)
406 {
407 return (dsl_dir_open_spa(NULL, name, tag, ddp, tailp));
408 }
409
410 uint64_t
411 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
412 dmu_tx_t *tx)
413 {
414 objset_t *mos = dp->dp_meta_objset;
415 uint64_t ddobj;
416 dsl_dir_phys_t *ddphys;
417 dmu_buf_t *dbuf;
418
419 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
420 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
421 if (pds) {
422 VERIFY(0 == zap_add(mos, pds->dd_phys->dd_child_dir_zapobj,
423 name, sizeof (uint64_t), 1, &ddobj, tx));
424 } else {
425 /* it's the root dir */
426 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
427 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
428 }
429 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
430 dmu_buf_will_dirty(dbuf, tx);
431 ddphys = dbuf->db_data;
432
433 ddphys->dd_creation_time = gethrestime_sec();
434 if (pds)
435 ddphys->dd_parent_obj = pds->dd_object;
436 ddphys->dd_props_zapobj = zap_create(mos,
437 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
438 ddphys->dd_child_dir_zapobj = zap_create(mos,
439 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
440 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
441 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
442 dmu_buf_rele(dbuf, FTAG);
443
444 return (ddobj);
445 }
446
447 /* ARGSUSED */
448 int
449 dsl_dir_destroy_check(void *arg1, void *arg2, dmu_tx_t *tx)
450 {
451 dsl_dir_t *dd = arg1;
452 dsl_pool_t *dp = dd->dd_pool;
453 objset_t *mos = dp->dp_meta_objset;
470 err = zap_count(mos, dd->dd_phys->dd_child_dir_zapobj, &count);
471 if (err)
472 return (err);
473 if (count != 0)
474 return (EEXIST);
475
476 return (0);
477 }
478
479 void
480 dsl_dir_destroy_sync(void *arg1, void *tag, dmu_tx_t *tx)
481 {
482 dsl_dir_t *dd = arg1;
483 objset_t *mos = dd->dd_pool->dp_meta_objset;
484 uint64_t obj;
485 dd_used_t t;
486
487 ASSERT(RW_WRITE_HELD(&dd->dd_pool->dp_config_rwlock));
488 ASSERT(dd->dd_phys->dd_head_dataset_obj == 0);
489
490 /*
491 * Remove our reservation. The impl() routine avoids setting the
492 * actual property, which would require the (already destroyed) ds.
493 */
494 dsl_dir_set_reservation_sync_impl(dd, 0, tx);
495
496 ASSERT0(dd->dd_phys->dd_used_bytes);
497 ASSERT0(dd->dd_phys->dd_reserved);
498 for (t = 0; t < DD_USED_NUM; t++)
499 ASSERT0(dd->dd_phys->dd_used_breakdown[t]);
500
501 VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_child_dir_zapobj, tx));
502 VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_props_zapobj, tx));
503 VERIFY(0 == dsl_deleg_destroy(mos, dd->dd_phys->dd_deleg_zapobj, tx));
504 VERIFY(0 == zap_remove(mos,
505 dd->dd_parent->dd_phys->dd_child_dir_zapobj, dd->dd_myname, tx));
506
507 obj = dd->dd_object;
508 dsl_dir_close(dd, tag);
509 VERIFY(0 == dmu_object_free(mos, obj, tx));
1019 if (psa->psa_effective_value == 0)
1020 return (0);
1021
1022 mutex_enter(&dd->dd_lock);
1023 /*
1024 * If we are doing the preliminary check in open context, and
1025 * there are pending changes, then don't fail it, since the
1026 * pending changes could under-estimate the amount of space to be
1027 * freed up.
1028 */
1029 towrite = dsl_dir_space_towrite(dd);
1030 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1031 (psa->psa_effective_value < dd->dd_phys->dd_reserved ||
1032 psa->psa_effective_value < dd->dd_phys->dd_used_bytes + towrite)) {
1033 err = ENOSPC;
1034 }
1035 mutex_exit(&dd->dd_lock);
1036 return (err);
1037 }
1038
1039 extern dsl_syncfunc_t dsl_prop_set_sync;
1040
1041 static void
1042 dsl_dir_set_quota_sync(void *arg1, void *arg2, dmu_tx_t *tx)
1043 {
1044 dsl_dataset_t *ds = arg1;
1045 dsl_dir_t *dd = ds->ds_dir;
1046 dsl_prop_setarg_t *psa = arg2;
1047 uint64_t effective_value = psa->psa_effective_value;
1048
1049 dsl_prop_set_sync(ds, psa, tx);
1050 DSL_PROP_CHECK_PREDICTION(dd, psa);
1051
1052 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1053
1054 mutex_enter(&dd->dd_lock);
1055 dd->dd_phys->dd_quota = effective_value;
1056 mutex_exit(&dd->dd_lock);
1057 }
1058
1059 int
1060 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1261 return (EBUSY);
1262
1263 /* check for existing name */
1264 err = zap_lookup(mos, ra->newparent->dd_phys->dd_child_dir_zapobj,
1265 ra->mynewname, 8, 1, &val);
1266 if (err == 0)
1267 return (EEXIST);
1268 if (err != ENOENT)
1269 return (err);
1270
1271 if (ra->newparent != dd->dd_parent) {
1272 /* is there enough space? */
1273 uint64_t myspace =
1274 MAX(dd->dd_phys->dd_used_bytes, dd->dd_phys->dd_reserved);
1275
1276 /* no rename into our descendant */
1277 if (closest_common_ancestor(dd, ra->newparent) == dd)
1278 return (EINVAL);
1279
1280 if (err = dsl_dir_transfer_possible(dd->dd_parent,
1281 ra->newparent, myspace))
1282 return (err);
1283 }
1284
1285 return (0);
1286 }
1287
1288 static void
1289 dsl_dir_rename_sync(void *arg1, void *arg2, dmu_tx_t *tx)
1290 {
1291 dsl_dir_t *dd = arg1;
1292 struct renamearg *ra = arg2;
1293 dsl_pool_t *dp = dd->dd_pool;
1294 objset_t *mos = dp->dp_meta_objset;
1295 int err;
1296 char namebuf[MAXNAMELEN];
1297
1298 ASSERT(dmu_buf_refcount(dd->dd_dbuf) <= 2);
1299
1300 /* Log this before we change the name. */
1301 dsl_dir_name(ra->newparent, namebuf);
1302 spa_history_log_internal_dd(dd, "rename", tx,
1303 "-> %s/%s", namebuf, ra->mynewname);
1304
1305 if (ra->newparent != dd->dd_parent) {
1306 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1307 -dd->dd_phys->dd_used_bytes,
1308 -dd->dd_phys->dd_compressed_bytes,
1309 -dd->dd_phys->dd_uncompressed_bytes, tx);
1310 dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD,
1311 dd->dd_phys->dd_used_bytes,
1312 dd->dd_phys->dd_compressed_bytes,
1313 dd->dd_phys->dd_uncompressed_bytes, tx);
1314
1315 if (dd->dd_phys->dd_reserved > dd->dd_phys->dd_used_bytes) {
1316 uint64_t unused_rsrv = dd->dd_phys->dd_reserved -
1317 dd->dd_phys->dd_used_bytes;
1318
1319 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1320 -unused_rsrv, 0, 0, tx);
1321 dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD_RSRV,
1322 unused_rsrv, 0, 0, tx);
1323 }
1324 }
1325
1358 if (dd->dd_pool != ra.newparent->dd_pool) {
1359 err = ENXIO;
1360 goto out;
1361 }
1362
1363 /* new name should not already exist */
1364 if (ra.mynewname == NULL) {
1365 err = EEXIST;
1366 goto out;
1367 }
1368
1369 err = dsl_sync_task_do(dd->dd_pool,
1370 dsl_dir_rename_check, dsl_dir_rename_sync, dd, &ra, 3);
1371
1372 out:
1373 dsl_dir_close(ra.newparent, FTAG);
1374 return (err);
1375 }
1376
1377 int
1378 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, uint64_t space)
1379 {
1380 dsl_dir_t *ancestor;
1381 int64_t adelta;
1382 uint64_t avail;
1383
1384 ancestor = closest_common_ancestor(sdd, tdd);
1385 adelta = would_change(sdd, -space, ancestor);
1386 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1387 if (avail < space)
1388 return (ENOSPC);
1389
1390 return (0);
1391 }
1392
1393 timestruc_t
1394 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1395 {
1396 timestruc_t t;
1397
1398 mutex_enter(&dd->dd_lock);
1399 t = dd->dd_snap_cmtime;
1400 mutex_exit(&dd->dd_lock);
1401
1402 return (t);
1403 }
1404
1405 void
1406 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1407 {
1408 timestruc_t t;
1409
|
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright (c) 2012 Joyent, Inc. All rights reserved.
25 */
26
27 #include <sys/dmu.h>
28 #include <sys/dmu_objset.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_dir.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_deleg.h>
35 #include <sys/spa.h>
36 #include <sys/metaslab.h>
37 #include <sys/zap.h>
38 #include <sys/zio.h>
39 #include <sys/arc.h>
40 #include <sys/sunddi.h>
41 #include <sys/zfs_zone.h>
42 #include <sys/zfeature.h>
43 #include "zfs_namecheck.h"
44 #include "zfs_prop.h"
45
46 /*
47 * Filesystem and Snapshot Limits
48 * ------------------------------
49 *
50 * These limits are used to restrict the number of filesystems and/or snapshots
51 * that can be created at a given level in the tree or below. The standard
52 * use-case is with a delegated dataset where the administrator wants to ensure
53 * that a user within the zone is not creating too many additional filesystems
54 * or snapshots, even though they're not exceeding their space quota.
55 *
56 * The count of filesystems and snapshots is stored in the dsl_dir_phys_t which
57 * impacts the on-disk format. As such, this capability is controlled by a
58 * feature flag and must be enabled to be used. Once enabled, the feature is
59 * not active until the first limit is set. At that point, future operations to
60 * create/destroy filesystems or snapshots will validate and update the counts.
61 *
62 * Because the on-disk counts will be uninitialized (0) before the feature is
63 * active, the counts are updated when a limit is first set on an uninitialized
64 * node (The filesystem/snapshot counts on a node includes all of the nested
65 * filesystems/snapshots, plus the node itself. Thus, a new leaf node has a
66 * filesystem count of 1 and a snapshot count of 0. A filesystem count of 0 on
67 * a node indicates uninitialized counts on that node.) When setting a limit on
68 * an uninitialized node, the code starts at the filesystem with the new limit
69 * and descends into all sub-filesystems and updates the counts to be accurate.
70 * In practice this is lightweight since a limit is typically set when the
71 * filesystem is created and thus has no children. Once valid, changing the
72 * limit value won't require a re-traversal since the counts are already valid.
73 * When recursively fixing the counts, if a node with a limit is encountered
74 * during the descent, the counts are known to be valid and there is no need to
75 * descend into that filesystem's children. The counts on filesystems above the
76 * one with the new limit will still be uninitialized (0), unless a limit is
77 * eventually set on one of those filesystems. It is possible for the counts
78 * to appear initialized, but be invalid, if the feature was previously active
79 * but then deactivated. For this reason, the counts are always recursively
80 * updated when a limit is set on a dataset, unless there is already a limit.
81 * When a new limit value is set on a filesystem with an existing limit, the
82 * new limit must be greater than the current count at that level or an error
83 * is returned and the limit is not changed.
84 *
85 * Once the feature is active, then whenever a filesystem or snapshot is
86 * created, the code recurses up the tree, validating the new count against the
87 * limit at each initialized level. In practice, most levels will not have a
88 * limit set. If there is a limit at any initialized level up the tree, the
89 * check must pass or the creation will fail. Likewise, when a filesystem or
90 * snapshot is destroyed, the counts are recursively adjusted all the way up
91 * the initizized nodes in the tree. Renaming a filesystem into different point
92 * in the tree will first validate, then update the counts on each branch up to
93 * the common ancestor. A receive will also validate the counts and then update
94 * them.
95 *
96 * An exception to the above behavior is that the limits are never enforced
97 * for the administrative user in the global zone. This is primarily so that
98 * recursive snapshots in the global zone always work. We want to prevent a
99 * denial-of-service in which a lower level delegated dataset could max out its
100 * limit and thus block recursive snapshots from being taken in the global zone.
101 * Because of this, it is possible for the snapshot count to be over the limit
102 * and snapshots taken in the global zone could cause a lower level dataset to
103 * hit or exceed its limit. The administrator taking the global zone recursive
104 * snapshot should be aware of this side-effect and behave accordingly.
105 * For consistency, the filesystem limit is also not enforced for the admin
106 * user in the global zone.
107 *
108 * The filesystem limit is validated by dsl_dir_fscount_check() and updated by
109 * dsl_dir_fscount_adjust(). The snapshot limit is validated by
110 * dsl_snapcount_check() and updated by dsl_snapcount_adjust().
111 * A new limit value is validated in dsl_dir_validate_fs_ss_limit() and the
112 * filesystem counts are adjusted, if necessary, by dsl_dir_set_fs_ss_count().
113 */
114
115 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
116 static void dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd,
117 uint64_t value, dmu_tx_t *tx);
118
119 extern dsl_syncfunc_t dsl_prop_set_sync;
120
121 /* ARGSUSED */
122 static void
123 dsl_dir_evict(dmu_buf_t *db, void *arg)
124 {
125 dsl_dir_t *dd = arg;
126 dsl_pool_t *dp = dd->dd_pool;
127 int t;
128
129 for (t = 0; t < TXG_SIZE; t++) {
130 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
131 ASSERT(dd->dd_tempreserved[t] == 0);
132 ASSERT(dd->dd_space_towrite[t] == 0);
133 }
134
135 if (dd->dd_parent)
136 dsl_dir_close(dd->dd_parent, dd);
137
138 spa_close(dd->dd_pool->dp_spa, dd);
139
140 /*
464 if (tailp)
465 *tailp = next;
466 if (openedspa)
467 spa_close(spa, FTAG);
468 *ddp = dd;
469 return (err);
470 }
471
472 /*
473 * Return the dsl_dir_t, and possibly the last component which couldn't
474 * be found in *tail. Return NULL if the path is bogus, or if
475 * tail==NULL and we couldn't parse the whole name. (*tail)[0] == '@'
476 * means that the last component is a snapshot.
477 */
478 int
479 dsl_dir_open(const char *name, void *tag, dsl_dir_t **ddp, const char **tailp)
480 {
481 return (dsl_dir_open_spa(NULL, name, tag, ddp, tailp));
482 }
483
484 /*
485 * Check if the counts are already valid for this filesystem and its
486 * descendants. The counts on this filesystem, and those below, may be
487 * uninitialized due to either the use of a pre-existing pool which did not
488 * support the filesystem/snapshot limit feature, or one in which the feature
489 * had not yet been enabled. The counts can also be invalid if the feature was
490 * previously active but then deactivated.
491 *
492 * Recursively descend the filesystem tree and update the filesystem/snapshot
493 * counts on each filesystem below, then update the cumulative count on the
494 * current filesystem. If the filesystem already has a limit set on it,
495 * then we know that its counts, and the counts on the filesystems below it,
496 * have been updated to be correct, so we can skip this filesystem.
497 */
498 static void
499 dsl_dir_set_fs_ss_count(const char *nm, dsl_dir_t *dd, dmu_tx_t *tx,
500 uint64_t *fscnt, uint64_t *sscnt)
501 {
502 uint64_t my_fs_cnt = 0;
503 uint64_t my_ss_cnt = 0;
504 objset_t *os = dd->dd_pool->dp_meta_objset;
505 zap_cursor_t *zc;
506 zap_attribute_t *za;
507 char *namebuf;
508 int err;
509 boolean_t limit_set = B_FALSE;
510 uint64_t fslimit, sslimit;
511 dsl_dataset_t *ds;
512
513 err = dsl_prop_get_dd(dd, zfs_prop_to_name(ZFS_PROP_FILESYSTEM_LIMIT),
514 8, 1, &fslimit, NULL, B_FALSE);
515 if (err == 0 && fslimit != MAXLIMIT)
516 limit_set = B_TRUE;
517
518 if (!limit_set) {
519 err = dsl_prop_get_dd(dd,
520 zfs_prop_to_name(ZFS_PROP_SNAPSHOT_LIMIT), 8, 1, &sslimit,
521 NULL, B_FALSE);
522 if (err == 0 && sslimit != MAXLIMIT)
523 limit_set = B_TRUE;
524 }
525
526 /*
527 * If the dd has a limit, we know its count is already good and we
528 * don't need to recurse down any further.
529 *
530 * We can't check for an initialized (non-0) count since the feature
531 * might have been previously active, then deactivated and is now
532 * being activated again.
533 */
534 if (limit_set) {
535 *fscnt = dd->dd_phys->dd_filesystem_count;
536 *sscnt = dd->dd_phys->dd_snapshot_count;
537 return;
538 }
539
540 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
541 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
542 namebuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
543
544 mutex_enter(&dd->dd_lock);
545
546 /* Iterate datasets */
547 for (zap_cursor_init(zc, os, dd->dd_phys->dd_child_dir_zapobj);
548 zap_cursor_retrieve(zc, za) == 0;
549 zap_cursor_advance(zc)) {
550 dsl_dir_t *chld_dd;
551 uint64_t chld_fs_cnt = 0;
552 uint64_t chld_ss_cnt = 0;
553
554 (void) snprintf(namebuf, MAXPATHLEN, "%s/%s", nm, za->za_name);
555
556 if (dsl_dir_open(namebuf, FTAG, &chld_dd, NULL))
557 continue;
558
559 dsl_dir_set_fs_ss_count(namebuf, chld_dd, tx, &chld_fs_cnt,
560 &chld_ss_cnt);
561
562 dsl_dir_close(chld_dd, FTAG);
563
564 my_fs_cnt += chld_fs_cnt;
565 my_ss_cnt += chld_ss_cnt;
566 }
567 zap_cursor_fini(zc);
568
569 kmem_free(namebuf, MAXPATHLEN);
570
571 /* Iterate snapshots */
572 if (dsl_dataset_hold(nm, FTAG, &ds) == 0) {
573 for (zap_cursor_init(zc, os, ds->ds_phys->ds_snapnames_zapobj);
574 zap_cursor_retrieve(zc, za) == 0;
575 zap_cursor_advance(zc)) {
576 my_ss_cnt++;
577 }
578 zap_cursor_fini(zc);
579 dsl_dataset_rele(ds, FTAG);
580 }
581
582 kmem_free(zc, sizeof (zap_cursor_t));
583 kmem_free(za, sizeof (zap_attribute_t));
584
585 /* Add 1 for self */
586 my_fs_cnt++;
587
588 #ifdef _KERNEL
589 extern void __dtrace_probe_zfs__fs__fix__count(char *, uint64_t,
590 uint64_t);
591 __dtrace_probe_zfs__fs__fix__count((char *)nm, my_fs_cnt, my_ss_cnt);
592 #endif
593
594 /* save updated counts */
595 dmu_buf_will_dirty(dd->dd_dbuf, tx);
596 dd->dd_phys->dd_filesystem_count = my_fs_cnt;
597 dd->dd_phys->dd_snapshot_count = my_ss_cnt;
598
599 mutex_exit(&dd->dd_lock);
600
601 /* Return child dataset count plus self */
602 *fscnt = my_fs_cnt;
603 *sscnt = my_ss_cnt;
604 }
605
606 /*
607 * Return ENOSPC if new limit is less than the existing count, otherwise return
608 * -1 to force the zfs_set_prop_nvlist code down the default path to set the
609 * value in the nvlist.
610 */
611 int
612 dsl_dir_validate_fs_ss_limit(const char *ddname, uint64_t limit,
613 zfs_prop_t ptype)
614 {
615 dsl_dir_t *dd;
616 dsl_dataset_t *ds;
617 int err = -1;
618 uint64_t count;
619 dmu_tx_t *tx;
620 uint64_t my_fs_cnt = 0;
621 uint64_t my_ss_cnt = 0;
622 uint64_t curr_limit;
623 spa_t *spa;
624 zfeature_info_t *limit_feat =
625 &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT];
626
627 if (dsl_dataset_hold(ddname, FTAG, &ds))
628 return (EACCES);
629
630 spa = dsl_dataset_get_spa(ds);
631 if (!spa_feature_is_enabled(spa,
632 &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT])) {
633 dsl_dataset_rele(ds, FTAG);
634 return (ENOTSUP);
635 }
636
637 if (dsl_dir_open(ddname, FTAG, &dd, NULL)) {
638 dsl_dataset_rele(ds, FTAG);
639 return (EACCES);
640 }
641
642 ASSERT(ds->ds_dir == dd);
643
644 if (dsl_prop_get_dd(dd, zfs_prop_to_name(ptype), 8, 1, &curr_limit,
645 NULL, B_FALSE) != 0)
646 curr_limit = MAXLIMIT;
647
648 tx = dmu_tx_create_dd(dd);
649 if (dmu_tx_assign(tx, TXG_WAIT)) {
650 dmu_tx_abort(tx);
651 dsl_dir_close(dd, FTAG);
652 dsl_dataset_rele(ds, FTAG);
653 return (ENOSPC);
654 }
655
656 if (limit == MAXLIMIT) {
657 /*
658 * If we had a limit, since we're now removing that limit,
659 * decrement the feature-active counter so that the feature
660 * becomes inactive (only enabled) if we remove the last limit.
661 */
662 if (curr_limit != MAXLIMIT)
663 spa_feature_decr(spa, limit_feat, tx);
664
665 dmu_tx_commit(tx);
666 dsl_dir_close(dd, FTAG);
667 dsl_dataset_rele(ds, FTAG);
668 return (-1);
669 }
670
671 /*
672 * Since we are now setting a non-MAXLIMIT on the filesystem, we need
673 * to ensure the counts are correct. Descend down the tree from this
674 * point and update all of the counts to be accurate.
675 */
676 rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER);
677 dsl_dir_set_fs_ss_count(ddname, dd, tx, &my_fs_cnt, &my_ss_cnt);
678 rw_exit(&dd->dd_pool->dp_config_rwlock);
679
680 if (ptype == ZFS_PROP_FILESYSTEM_LIMIT)
681 count = dd->dd_phys->dd_filesystem_count;
682 else
683 count = dd->dd_phys->dd_snapshot_count;
684
685 if (limit < count) {
686 err = ENOSPC;
687 } else {
688 /*
689 * If we had no limit, since we're now setting a limit
690 * increment the feature-active counter so that the feature
691 * either becomes active for the first time, or the count
692 * simply increases so that we can decrement it when we remove
693 * the limit.
694 */
695 if (curr_limit == MAXLIMIT)
696 spa_feature_incr(spa, limit_feat, tx);
697 }
698
699 dmu_tx_commit(tx);
700
701 dsl_dir_close(dd, FTAG);
702 dsl_dataset_rele(ds, FTAG);
703
704 return (err);
705 }
706
707 /*
708 * Check if adding additional child filesystem(s) would exceed any filesystem
709 * limits. Note that all filesystem limits up to the root (or the highest
710 * initialized) filesystem or the given ancestor must be satisfied.
711 */
712 int
713 dsl_dir_fscount_check(dsl_dir_t *dd, uint64_t cnt, dsl_dir_t *ancestor)
714 {
715 uint64_t limit;
716 int err = 0;
717
718 VERIFY(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock));
719
720 /*
721 * The limit is never enforced for the admin user in global zone.
722 * If we're not in the global zone then we need to run this check in
723 * open context, since thats when we know what zone we're in and
724 * syncing is only performed in the global zone.
725 */
726 if (INGLOBALZONE(curproc))
727 return (0);
728
729 /*
730 * If an ancestor has been provided, stop checking the limit once we
731 * hit that dir. We need this during rename so that we don't overcount
732 * the check once we recurse up to the common ancestor.
733 */
734 if (ancestor == dd)
735 return (0);
736
737 /*
738 * If we hit an uninitialized node while recursing up the tree, we can
739 * stop since we know the counts are not valid on this node and we
740 * know we won't touch this node's counts.
741 */
742 if (dd->dd_phys->dd_filesystem_count == 0)
743 return (0);
744
745 /*
746 * If there's no value for this property, there's no need to enforce a
747 * filesystem limit.
748 */
749 err = dsl_prop_get_dd(dd, zfs_prop_to_name(ZFS_PROP_FILESYSTEM_LIMIT),
750 8, 1, &limit, NULL, B_FALSE);
751 if (err == ENOENT)
752 return (0);
753 else if (err != 0)
754 return (err);
755
756 #ifdef _KERNEL
757 extern void __dtrace_probe_zfs__fs__limit(uint64_t, uint64_t, char *);
758 __dtrace_probe_zfs__fs__limit(
759 (uint64_t)dd->dd_phys->dd_filesystem_count, (uint64_t)limit,
760 dd->dd_myname);
761 #endif
762
763 if (limit != MAXLIMIT &&
764 (dd->dd_phys->dd_filesystem_count + cnt) > limit)
765 return (EDQUOT);
766
767 if (dd->dd_parent != NULL)
768 err = dsl_dir_fscount_check(dd->dd_parent, cnt, ancestor);
769
770 return (err);
771 }
772
773 /*
774 * Adjust the filesystem count for the specified dsl_dir_t and all parent
775 * filesystems. When a new filesystem is created, increment the count on all
776 * parents, and when a filesystem is destroyed, decrement the count.
777 */
778 void
779 dsl_dir_fscount_adjust(dsl_dir_t *dd, dmu_tx_t *tx, int64_t delta,
780 boolean_t syncing, boolean_t first)
781 {
782 VERIFY(RW_LOCK_HELD(&dd->dd_pool->dp_config_rwlock));
783 if (syncing)
784 VERIFY(dmu_tx_is_syncing(tx));
785
786 /*
787 * There is a special case where we are receiving a filesystem that
788 * already exists. In this case a temporary clone name of %X is created
789 * (see dmu_recv_begin). In dmu_recv_existing_end we destroy this
790 * temporary clone. We never update the filesystem counts for temporary
791 * clones. To detect this case we check the filesystem name to see if
792 * its a hidden filesystem (%X).
793 */
794 if (dd->dd_myname[0] == '%')
795 return;
796
797 /*
798 * If we hit an uninitialized node while recursing up the tree, we can
799 * stop since we know the counts are not valid on this node and we
800 * know we shouldn't touch this node's counts. An uninitialized count
801 * on the node indicates that either the feature has not yet been
802 * activated or there are no limits on this part of the tree.
803 */
804 if (dd->dd_phys->dd_filesystem_count == 0)
805 return;
806
807 /*
808 * The feature might have previously been active, so there could be
809 * non-0 counts on the nodes, but it might now be inactive.
810 *
811 * On initial entry we need to check if this feature is active, but
812 * we don't want to re-check this on each recursive call. Note: the
813 * feature cannot be active if its not enabled. If the feature is not
814 * active, don't touch the on-disk count fields.
815 */
816 if (first) {
817 dsl_dataset_t *ds = NULL;
818 spa_t *spa;
819 zfeature_info_t *quota_feat =
820 &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT];
821
822 VERIFY(0 == dsl_dataset_hold_obj(dd->dd_pool,
823 dd->dd_phys->dd_head_dataset_obj, FTAG, &ds));
824 spa = dsl_dataset_get_spa(ds);
825 dsl_dataset_rele(ds, FTAG);
826 if (!spa_feature_is_active(spa, quota_feat))
827 return;
828 }
829
830 dmu_buf_will_dirty(dd->dd_dbuf, tx);
831
832 mutex_enter(&dd->dd_lock);
833
834 dd->dd_phys->dd_filesystem_count += delta;
835
836 if (dd->dd_parent != NULL)
837 dsl_dir_fscount_adjust(dd->dd_parent, tx, delta, syncing,
838 B_FALSE);
839
840 mutex_exit(&dd->dd_lock);
841 }
842
843 uint64_t
844 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
845 dmu_tx_t *tx)
846 {
847 objset_t *mos = dp->dp_meta_objset;
848 uint64_t ddobj;
849 dsl_dir_phys_t *ddphys;
850 dmu_buf_t *dbuf;
851 zfeature_info_t *limit_feat =
852 &spa_feature_table[SPA_FEATURE_FS_SS_LIMIT];
853
854
855 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
856 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
857 if (pds) {
858 VERIFY(0 == zap_add(mos, pds->dd_phys->dd_child_dir_zapobj,
859 name, sizeof (uint64_t), 1, &ddobj, tx));
860 } else {
861 /* it's the root dir */
862 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
863 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
864 }
865 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
866 dmu_buf_will_dirty(dbuf, tx);
867 ddphys = dbuf->db_data;
868
869 ddphys->dd_creation_time = gethrestime_sec();
870 /* Only initialize the count if the limit feature is active */
871 if (spa_feature_is_active(dp->dp_spa, limit_feat))
872 ddphys->dd_filesystem_count = 1;
873 if (pds)
874 ddphys->dd_parent_obj = pds->dd_object;
875 ddphys->dd_props_zapobj = zap_create(mos,
876 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
877 ddphys->dd_child_dir_zapobj = zap_create(mos,
878 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
879 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
880 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
881 dmu_buf_rele(dbuf, FTAG);
882
883 return (ddobj);
884 }
885
886 /* ARGSUSED */
887 int
888 dsl_dir_destroy_check(void *arg1, void *arg2, dmu_tx_t *tx)
889 {
890 dsl_dir_t *dd = arg1;
891 dsl_pool_t *dp = dd->dd_pool;
892 objset_t *mos = dp->dp_meta_objset;
909 err = zap_count(mos, dd->dd_phys->dd_child_dir_zapobj, &count);
910 if (err)
911 return (err);
912 if (count != 0)
913 return (EEXIST);
914
915 return (0);
916 }
917
918 void
919 dsl_dir_destroy_sync(void *arg1, void *tag, dmu_tx_t *tx)
920 {
921 dsl_dir_t *dd = arg1;
922 objset_t *mos = dd->dd_pool->dp_meta_objset;
923 uint64_t obj;
924 dd_used_t t;
925
926 ASSERT(RW_WRITE_HELD(&dd->dd_pool->dp_config_rwlock));
927 ASSERT(dd->dd_phys->dd_head_dataset_obj == 0);
928
929 /* Decrement the filesystem count for all parent filesystems. */
930 if (dd->dd_parent != NULL)
931 dsl_dir_fscount_adjust(dd->dd_parent, tx, -1, B_TRUE, B_TRUE);
932
933 /*
934 * Remove our reservation. The impl() routine avoids setting the
935 * actual property, which would require the (already destroyed) ds.
936 */
937 dsl_dir_set_reservation_sync_impl(dd, 0, tx);
938
939 ASSERT0(dd->dd_phys->dd_used_bytes);
940 ASSERT0(dd->dd_phys->dd_reserved);
941 for (t = 0; t < DD_USED_NUM; t++)
942 ASSERT0(dd->dd_phys->dd_used_breakdown[t]);
943
944 VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_child_dir_zapobj, tx));
945 VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_props_zapobj, tx));
946 VERIFY(0 == dsl_deleg_destroy(mos, dd->dd_phys->dd_deleg_zapobj, tx));
947 VERIFY(0 == zap_remove(mos,
948 dd->dd_parent->dd_phys->dd_child_dir_zapobj, dd->dd_myname, tx));
949
950 obj = dd->dd_object;
951 dsl_dir_close(dd, tag);
952 VERIFY(0 == dmu_object_free(mos, obj, tx));
1462 if (psa->psa_effective_value == 0)
1463 return (0);
1464
1465 mutex_enter(&dd->dd_lock);
1466 /*
1467 * If we are doing the preliminary check in open context, and
1468 * there are pending changes, then don't fail it, since the
1469 * pending changes could under-estimate the amount of space to be
1470 * freed up.
1471 */
1472 towrite = dsl_dir_space_towrite(dd);
1473 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1474 (psa->psa_effective_value < dd->dd_phys->dd_reserved ||
1475 psa->psa_effective_value < dd->dd_phys->dd_used_bytes + towrite)) {
1476 err = ENOSPC;
1477 }
1478 mutex_exit(&dd->dd_lock);
1479 return (err);
1480 }
1481
1482 static void
1483 dsl_dir_set_quota_sync(void *arg1, void *arg2, dmu_tx_t *tx)
1484 {
1485 dsl_dataset_t *ds = arg1;
1486 dsl_dir_t *dd = ds->ds_dir;
1487 dsl_prop_setarg_t *psa = arg2;
1488 uint64_t effective_value = psa->psa_effective_value;
1489
1490 dsl_prop_set_sync(ds, psa, tx);
1491 DSL_PROP_CHECK_PREDICTION(dd, psa);
1492
1493 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1494
1495 mutex_enter(&dd->dd_lock);
1496 dd->dd_phys->dd_quota = effective_value;
1497 mutex_exit(&dd->dd_lock);
1498 }
1499
1500 int
1501 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1702 return (EBUSY);
1703
1704 /* check for existing name */
1705 err = zap_lookup(mos, ra->newparent->dd_phys->dd_child_dir_zapobj,
1706 ra->mynewname, 8, 1, &val);
1707 if (err == 0)
1708 return (EEXIST);
1709 if (err != ENOENT)
1710 return (err);
1711
1712 if (ra->newparent != dd->dd_parent) {
1713 /* is there enough space? */
1714 uint64_t myspace =
1715 MAX(dd->dd_phys->dd_used_bytes, dd->dd_phys->dd_reserved);
1716
1717 /* no rename into our descendant */
1718 if (closest_common_ancestor(dd, ra->newparent) == dd)
1719 return (EINVAL);
1720
1721 if (err = dsl_dir_transfer_possible(dd->dd_parent,
1722 ra->newparent, dd, myspace, tx))
1723 return (err);
1724 }
1725
1726 return (0);
1727 }
1728
1729 static void
1730 dsl_dir_rename_sync(void *arg1, void *arg2, dmu_tx_t *tx)
1731 {
1732 dsl_dir_t *dd = arg1;
1733 struct renamearg *ra = arg2;
1734 dsl_pool_t *dp = dd->dd_pool;
1735 objset_t *mos = dp->dp_meta_objset;
1736 int err;
1737 char namebuf[MAXNAMELEN];
1738
1739 ASSERT(dmu_buf_refcount(dd->dd_dbuf) <= 2);
1740
1741 /* Log this before we change the name. */
1742 dsl_dir_name(ra->newparent, namebuf);
1743 spa_history_log_internal_dd(dd, "rename", tx,
1744 "-> %s/%s", namebuf, ra->mynewname);
1745
1746 if (ra->newparent != dd->dd_parent) {
1747 int cnt;
1748
1749 mutex_enter(&dd->dd_lock);
1750
1751 cnt = dd->dd_phys->dd_filesystem_count;
1752 dsl_dir_fscount_adjust(dd->dd_parent, tx, -cnt, B_TRUE, B_TRUE);
1753 dsl_dir_fscount_adjust(ra->newparent, tx, cnt, B_TRUE, B_TRUE);
1754
1755 cnt = dd->dd_phys->dd_snapshot_count;
1756 dsl_snapcount_adjust(dd->dd_parent, tx, -cnt, B_TRUE);
1757 dsl_snapcount_adjust(ra->newparent, tx, cnt, B_TRUE);
1758
1759 mutex_exit(&dd->dd_lock);
1760
1761 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1762 -dd->dd_phys->dd_used_bytes,
1763 -dd->dd_phys->dd_compressed_bytes,
1764 -dd->dd_phys->dd_uncompressed_bytes, tx);
1765 dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD,
1766 dd->dd_phys->dd_used_bytes,
1767 dd->dd_phys->dd_compressed_bytes,
1768 dd->dd_phys->dd_uncompressed_bytes, tx);
1769
1770 if (dd->dd_phys->dd_reserved > dd->dd_phys->dd_used_bytes) {
1771 uint64_t unused_rsrv = dd->dd_phys->dd_reserved -
1772 dd->dd_phys->dd_used_bytes;
1773
1774 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1775 -unused_rsrv, 0, 0, tx);
1776 dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD_RSRV,
1777 unused_rsrv, 0, 0, tx);
1778 }
1779 }
1780
1813 if (dd->dd_pool != ra.newparent->dd_pool) {
1814 err = ENXIO;
1815 goto out;
1816 }
1817
1818 /* new name should not already exist */
1819 if (ra.mynewname == NULL) {
1820 err = EEXIST;
1821 goto out;
1822 }
1823
1824 err = dsl_sync_task_do(dd->dd_pool,
1825 dsl_dir_rename_check, dsl_dir_rename_sync, dd, &ra, 3);
1826
1827 out:
1828 dsl_dir_close(ra.newparent, FTAG);
1829 return (err);
1830 }
1831
1832 int
1833 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, dsl_dir_t *moving_dd,
1834 uint64_t space, dmu_tx_t *tx)
1835 {
1836 dsl_dir_t *ancestor;
1837 int64_t adelta;
1838 uint64_t avail;
1839 int err;
1840
1841 ancestor = closest_common_ancestor(sdd, tdd);
1842 adelta = would_change(sdd, -space, ancestor);
1843 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1844 if (avail < space)
1845 return (ENOSPC);
1846
1847 if (sdd != moving_dd) {
1848 err = dsl_dir_fscount_check(tdd,
1849 moving_dd->dd_phys->dd_filesystem_count, ancestor);
1850 if (err != 0)
1851 return (err);
1852 }
1853 err = dsl_snapcount_check(tdd, moving_dd->dd_phys->dd_snapshot_count,
1854 ancestor);
1855 if (err != 0)
1856 return (err);
1857
1858 return (0);
1859 }
1860
1861 timestruc_t
1862 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1863 {
1864 timestruc_t t;
1865
1866 mutex_enter(&dd->dd_lock);
1867 t = dd->dd_snap_cmtime;
1868 mutex_exit(&dd->dd_lock);
1869
1870 return (t);
1871 }
1872
1873 void
1874 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1875 {
1876 timestruc_t t;
1877
|