new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c 1 new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 233 now = gethftlnE()
16706 Sat Aug 18 10:48:41 2012

new usr/src/uts/ comon/fs/snbcl nt/snbfs/snbfs_client.c 235 /*

*** NO COMMENTS *** 236 * Delta is the nunber of nanoseconds that we will

LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE] 237 * CaChe the attri butes Of the f||e |t iS based on

__unchanged_portion_onitted_ 238 * the nunber of nanoseconds since the last tinme that

239 * we detected a change. The assunption is that files

120 /* 240 * that changed recently are likely to change again.

121 * Purge all of the various data caches. 241 * There is a mninumand a maxi numfor regular files

122 */ 242 * and for directories which is enforced though.

123 /* ARGSUSED*/ 243 *

124 void 244 * Using the time since |ast change was detected

125 snbfs_purge_caches(struct vnode *vp) 245 * elimnates direct conparison or calculation

126 { 246 * using mxed client and server times. SMBFS

127 #if O /* not yet: nmmap support */ 247 * does not nake any assunptions regarding the

127 /* 248 * client and server clocks being synchronized.

128 * NFS: Purge the DNLC for this vp, 249 *

129 * Clear any readdir state bits, 250 f (fap->fa_ntine.tv_sec != np->r_attr.fa_ntinme.tv_sec ||

130 * the readlink response cache, ... 251 fap->fa_ntine.tv_nsec != np->r_attr.fa_ntinme.tv_nsec ||

131 */ 252 fap->fa_size I'= np->r_attr.fa_size)

132 smbnode_t *np = VTOSMB(vp); 253 np->r_ntinme = now,

134 /* 255 if ((sm->sm_flags & SM_NOAC) || (vp->v_flag & VNOCACHE))

135 * Flush the page cache. 256 delta = 0;

136 */ 257 el se {

137 if (vn_has_cached_data(vp)) { 258 delta = now - np->r_ntine;

138 (voi d) VOP_PUTPAGE(vp, (u_offset_t) O, 0, B_INVAL, np->r_cred, N 259 if (vtype == VDIR) {

139 (voi d) VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL); 260 if (del ta < sm->sm _acdirmn)

139 } 261 delta = sm->sm _acdirmn;

141 #endif /* not yet */ 262 else if (delta > smi->sm _acdi rmax)

140 } 263 del ta = sni->sni _acdirnax;

__unchanged_portion_onitted_ 264 } else {

199 #endif /* not yet */ 265 if (delta < snmi->sm _acregmin)
266 delta = sm->sm _acregmn;

201 /* 267 else if (delta > sni->sm _acregnax)

202 * Set attributes cache for given vnode using SMB fattr 268 delta = sni->sni _acregnax;

203 * and update the attribute cache tineout. 269 }

204 * 270 }

205 * From NFS: nfs_attrcache, nfs_attrcache_va

206 */ 272 np->r_attrtime = now + delta;

207 void 273 np->r_attr = *fap;

208 snbfs_attrcache_fa(vnode_t *vp, struct snbfattr *fap) 274 np->n_node = node;

209 { 275 ol dvt = vp->v_type;

210 smbnode_t *np; 276 vp->v_type = vtype;

211 smbmtinfo_t *sm;

212 hrtime_t delta, now 278 /*

213 u_of fset_t newsi ze; 279 * Shall we update r_size? (local notion of size)

214 vtype_t vtype, oldvt; 280 *

215 node_t node; 281 * The real criteria for updating r_size should be:
282 * if the file has grown on the server, or if

217 np = VIOSMB(vp); 283 * the client has not nodified the file.

218 sm = VIOSM (vp); 284 *
285 * Also deal with the fact that SMB presents

220 /* 286 * directories as having size=0. Doing that

221 * V‘é IIow v_type to change, so set that here 287 * here and leaving fa_size as returned QW

222 * (and the nopde, which depends on the type). 288 * avoids fixing the size lots of places.

223 */ 289 */

224 f (fap->fa_attr & SMB_FA DIR) { 290 newsi ze = fap->fa_size;

225 vtype = VDI R, 291 if (vtype == VDI R && newsi ze < DEV_BSI ZE)

226 nmode = smi ->sni _dnode; 292 newsi ze = DEV_BSI ZE;

227 } else {

228 vtype = VREG 294 if (np->r_size != newsize) {

229 node = smi->sni _f node; 295 if (!vn_has_cached_data(vp)

230 } 296 || C!'(np->r_flags & RDI RTY)&& np->r_count == 0)) {
297 #if O /* not yet: nmap support */

232 nmut ex_ent er (&np->r _st at el ock) ; 298 if ('vn_has_cached_dat a(vp) || ...)

new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c

299 /* XXX: See NFS page cache code. */
300 #endif /* not yet */

297 /* OKto set the size. */

298 np->r_si ze = newsi ze;

299 }

300

301 #endif /* ! codereview */

303 /* NFS: np->r_flags & ~RWRI TEATTR, */

304 np->n_flag & ~NATTRCHANGCED;

306 nmut ex_exi t (&p->r _st at el ock);

308 if (oldvt != vtype) {

309 SMBVDEBUG " vt ype change % to %\ n", oldvt, vtype);
310 }

311 }

313 /*

314 * Fill in attribute fromthe cache.

315 *

316 * If valid, copy to *fap and return zero,

317 * otherwi se return an error.

318 *

319 * From NFS: nfs_getattr_cache()

320 */

321 int

322 snbfs_getattr_cache(vnode_t *vp, struct snbfattr *fap)

323

324 snmbnode_t *np;

325 int error;

327 np = VTOSMB(vp);

329 mut ex_ent er (&p- >r _st at el ock) ;

330 if (gethrtime() >= np->r_attrtinme) {

331 /* cache expired */

332 error = ENCENT;

333 } else {

334 /* cache is valid */

335 *fap = np->r_attr;

336 error = 0;

337 }

338 mut ex_exi t (&p->r _st at el ock) ;

340 return (error);

341 }

343 [*

344 * Get attributes over-the-wire and update attributes cache
345 * if no error occurred in the over-the-w re operation.

346 * Return O if successful, otherw se error.

347 * From NFS: nfs_getattr_otw

348 *

349 int

350 snbfs_getattr_otw(vnode_t *vp, struct snbfattr *fap, cred_t *cr)
351 {

352 struct snmbnode *np;

353 struct smb_cred scred;

354 int error;

356 np = VITGSMB(vp);

358 /*

359 * NFS uses the ACL rpc here (if sm _flags & SM _ACL)
360 * Wth SMB, getting the ACL is a significantly nore

new usr/src/uts/comon/ fs/snbcl nt/snbfs/snbfs_client.c

361
362
363

365
366
367
368

370
371

373
374

376
377
378
379
380
381
382
383
384
385
386
387
388

390
391
392
393
394
395
396
397

399
400

402
403
404

406
407

408 i

409
410
411
412
413
414

416
418

420
421
422
423
424
425
426

}
/*

*

* expensive operation, so we do that only when asked
* for the uid/gid. See snbfsgetattr().
*

/

/* Shared lock for (possible) n_fid use. */

if (smbfs_rw enter_sig(&p->r_| kserl ock, RW READER, SMBI NTR(vp)))
return (EINTR);

snb_credinit(&scred, cr);

bzero(fap, sizeof (*fap));
error = snbfs_snb_getfattr(np, fap, &scred);

snmb_credrel e(&scred);
smbf s_rw_exi t (&p->r _I| kserl ock) ;

if (error) {
/* NFS had: PURGE_STALE FH(error, vp, cr) */
snbf s_attrcache_renove(np);
if (error == ENCENT || error == ENOTDIR) {
/*
* Getattr failed because the object was
* renoved or renaned by another client.
* Renpve any cached attributes under it.
*
/
snbfs_attrcache_prune(np);

return (error);

}

/*

* NFS: snbfs_cache_fattr(vap, fa, vap, t, cr);
* which did: fattr_to_vattr, nfs_attr_cache.
* We cache the fattr form so just do the

* cache check and store the attributes.

*/

snbf s_cache_check(vp, fap);
snbfs_attrcache_fa(vp, fap);

return (0);

Return either cached or renote attributes. If get renote attr

* use themto check and invalidate caches, then cache the new attri butes.
*

int
snb
{

From NFS: nfsgetattr()
/

fsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)

struct snmbfattr fa;
smbmtinfo_t *smi;
uint_t mask;

int error;

sm = VIOSM (vp);
ASSERT(cur proc->p_zone == smi ->sm _zone_ref.zref_zone);

*

* |f asked for UDor @D, update n_uid, n_gid.
*

/
mask = AT_ALL;
if (vap->va_mask & (AT_UD | AT_AD)) {

if (sm->sm_flags & SM _ACL)
(void) snbfs_acl _getids(vp, cr);

new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c 5 new usr/src/uts/comon/ fs/snbcl nt/snbfs/snbfs_client.c

427 /* else | eave as set in make_snbnode */ 493 * Unix form (in the unmarshal ling code).
428 } else { 494 */
429 mask & ~(AT_U D | AT_GD); 495 vap->va_atine = fa->fa_atinme;
430 } 496 vap->va_ntinme = fa->fa_nting;
497 vap->va_ctinme = fa->fa_cting;
432 /*
433 * |If we’ve got cached attributes, just use them 499 /*
434 * otherw se go to the server to get attributes, 500 * rdev, blksize, seq are nade up.
435 * which will update the cache in the process. 501 * va_nbl ocks is 512 byte bl ocks.
436 */ 502 */
437 error = snbfs_getattr_cache(vp, &fa); 503 vap->va_rdev = vp->V rdev
438 if (error) 504 vap->va_bl ksi ze = MAXBSI Z
439 error = snbfs_getattr_otwvp, &a, cr); 505 vap->va_nbl ocks = (fsbhl kcnt 64_t)btod(np->r_attr.fa_allocsz);
440 if (error) 506 vap->va_seq = 0;
441 return (error);
508 return (0);
443 /* 509 }
444 * Re. client’s view of the file size, see:
445 * snbfs_attrcache_fa, snbfs_getattr_otw
446 &/ 512 /| *
513 * SMB Cient initialization and cl eanup.
448 error = snbfattr_to_vattr(vp, &a, vap); 514 * Much of it is per-zone now.
449 vap->va_mask = mask; 515 */
451 return (error);
452 } 518 /* ARGSUSED */

519 static void *
520 snbfs_zone_init(zoneid_t zoneid)

455 [* 521 {
456 * Convert SMB over the wire attributes to vnode form 522 sm _gl obal s_t *sny;
457 * Returns O for success, error if failed (overflow, etc).
458 * From NFS: nattr_to_vattr() 524 smg = knmem al | oc(si zeof (*sng), KM SLEEP);
459 */ 525 nut ex_i ni t (&mg- >smg_l ock, NULL, MJTEX_DEFAULT, NULL);
460 i nt 526 l'ist_create(&sng->sng_list, sizeof (smbmtinfo_t),
461 snbfattr_to_vattr(vnode_t *vp, struct snbfattr *fa, struct vattr *vap) 527 of f set of (snbmtinfo_t, sm _zone_node));
462 { 528 sng- >sng_destructor _call ed = B_FALSE;
463 struct snbnode *np = VTOSMB(vp); 529) return (sng);
530
465 /* Set va_mask in caller */
532 /*
467 7% 533 * Callback routine to tell all SMBFS npbunts in the zone to stop creating new
468 * Take type, node, uid, gid fromthe snbfs node, 534 * threads. Existing threads should exit.
469 * which has have been updated by _getattr_otw. 535 */
470 */ 536 /* ARGSUSED */
471 vap->va_type = vp->v_type; 537 static void
472 vap- >va_node = np->n_node; 538 {snbf s_zone_shut down(zonei d_t zoneid, void *data)
539
474 vap->va_uid = np->n_uid; 540 sm _globals_t *sng = data;
475 vap->va_gi d = np->n_gid; 541 smbmtinfo_t *sm;
477 vap->va_fsid = vp->v_vfsp->vfs_dev; 543 ASSERT(snmg != NULL);
478 vap->va_nodei d = np->n_i no; 544 agai n:
479 vap->va_nlink = 1; 545 mut ex_ent er (&sng- >sny_| ock) ;
546 for (sm = list_head(&ng->sng_list); sm != NULL;
481 /* 547 sm = |ist_next(&sng->sng_list, sm)) {
482 * Difference fromNFS here: W cache attributes as
483 * reported by the server, so r_attr.fa_size is the 549 /*
484 * server’s idea of the file size. This is called 550 * | f we’ve done the shutdown work for this FS, skip.
485 * for getattr, so we want to return the client’s 551 * Once we go off the end of the list, we're done.
486 * idea of the file size. NFS deals with that in 552 */
487 * nfsgetattr(), the equivalent of our caller. 553 if (sm->sm_flags & SM _DEAD)
488 */ 554 conti nue;
489 vap- >va_si ze = np->r_si ze;
556 /*
491 [557 * W will do work, so not done. Get a hold on the FS.

492 * Tinmes. Note, already converted fromNT to 558 */

new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c

559 VFS_HOLD(sm ->smi _vfsp);

561 mut ex_ent er (&m ->sm _| ock) ;

562 sm ->sm _flags | = SM _DEAD;

563 mut ex_exit (&sm ->sm _| ock);

565 /*

566 * Drop lock and rel ease FS, which may change |ist, then repeat.
567 * We're done when every m has been done or the list is enpty.
568 */

569 mut ex_exi t (&ng- >sng_| ock) ;

570 VFS_RELE(sm ->sni _vfsp);

571 goto again;

572 }

573 mut ex_exi t (&sng- >sny_| ock) ;

574 }

576 static void

577 snbfs_zone_free_gl obal s(sm _gl obal s_t *sng)

578 {

579 i st_destroy(&sng->sng_list); /* makes sure the list is enpty */
580 mut ex_dest r oy(&sng- >sng_| ock) ;

581 kmem free(sng, sizeof (*sng));

583 }

585 /* ARGSUSED */

586 static void

587 snbfs_zone_destroy(zoneid_t zoneid, void *data)

588 {

589 sm _gl obal s_t *sng = dat a;

591 ASSERT(sng ! = NULL);

592 mut ex_ent er (&sng- >sny_| ock) ;

593 if (list_head(&ng->sng_list) !'= NULL)

594 7* Still waiting for VFS FREEVFS() */

595 sng->sng_destructor _cal l ed = B_TRUE;

596 mut ex_exi t (& ng- >sng_| ock) ;

597 return;

598 }

599 snbf s_zone_free_gl obal s(sng);

600 }

602 /*

603 * Add an SMBFS nount to the per-zone |list of SVMBFS nounts.

604 */

605 void

606 snbfs_zonelist_add(smbmtinfo_t *sm)

607 {

608 sm _gl obal s_t *sny;

610 smg = zone_get specific(sm _list_key, sm->sm _zone_ref.zref_zone);
611 mut ex_ent er (&sng- >sny_I ock) ;

612 l'ist_insert_head(&ng->sng_list, sm);

613 mut ex_exi t (&sng->sng_| ock) ;

614 }

616 /*

617 * Renpve an SMBFS nount fromthe per-zone |ist of SMBFS nounts.
618 */

619 void

620 snbfs_zonel i st_renove(snbmtinfo_t *sm)

621 {

622 sm _gl obal s_t *sny;

624 smg = zone_get specific(sm _list_key, sm->sn _zone_ref.zref_zone);

new usr/src/uts/comon/ fs/snbcl nt/snbfs/snbfs_client.c

625 nmut ex_ent er (&sng- >sny_| ock) ;

626 l'ist_renove(&sng->sng_list, sm);

627 /*

628 * We can be called asynchronously by VFS_FREEVFS() after the zone
629 * shut down/ destroy cal | backs have executed; if so, clean up the zone's
630 * sm _gl obal s.

631 */

632 if (list_head(&ng->sng_list) == NULL &&
633 sng- >sng_destructor_call ed == B_TRUE) {
634 snbf s_zone_free_gl obal s(snyg);

635 return;

636 }

637 mut ex_exi t (&sng->sny_| ock) ;

638 }

640 #ifdef |int

641 #define NEED_SMBFS_CALLBACKS 1

642 #endi f

644 #ifdef NEED SMBFS_CALLBACKS

645 [*

646 * Call-back hooks for netsnb, in case we want them
647 * Apple’s VFS wants them W nay not need them
648 */

649 /* ARGSUSED*/

650 static void snbfs_dead(snb_share_t *ssp)

651 {

652 *

653 * Wal k the nount list, finding all mounts
654 * using this share...

655 */

656 }

658 /* ARGSUSED*/

659 static void snbfs_cb_nop(snb_share_t *ss)

660 {

661 /* no-op */

662 }

664 snb_fscb_t snbfs_cb = {

665 . fscb_di sconn = snbfs_dead,

666 . fscb_connect = snbfs_cb_nop,

667 . fscb_down = snbfs_cb_nop,

668 .fscbh_up = snbfs_cb_nop };

670 #endif /* NEED_SMBFS_CALLBACKS */

672 | *

673 * SMBFS Client initialization routine. This routine should only be called
674 * once. It perforns the follow ng tasks:

675 * - Initalize all global |ocks

676 * - Call sub-initialization routines (localize access to variabl es)
677 */

678 int

679 snbfs_clntinit(void)

680 {

682 zone_key_create(&m _|ist_key, snbfs_zone_init, snbfs_zone_shutdown,
683 smbf s_zone_destroy);

684 #ifdef NEED_SMBFS_CALLBACKS

685 (void) snb_fsch_set(&snbfs_ch);

686 #endif /* NEED_SMBFS_CALLBACKS */

687 return (0);

688 }

690 /*

new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c

691 * This routine is called when the nodunload is called. This wll cleanup
692 * the previously allocated/initialized nodes.
*/

693

694 void

695 snbfs_clntfini(void)

696 {

697 #ifdef NEED SMBFS_CALLBACKS

698 (void) snb_fscb_set (NULL);

699 #endif /* NEED _SMBFS_CALLBACKS */

700 (void) zone_key_del ete(sm _list_key);

701 }

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_node. h

R R R R

11749 Sat Aug 18 10:48:42 2012
new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_node. h
% NO COMVENTS *

R R R R R

__unchanged_portion_onitted_

125 /
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Bel ow i s the SMBFS-specific representation of a "node".
This struct is a mixture of Sun NFS and Darwi n code.
Fields starting with "r_" came from NFS struct "rnode"
and fields starting with "n_" cane from Darwi n, or
were added during the Solaris port. W have avoi ded
renam ng fields so we would not cause excessive
changes in the code using this struct.

Now using an AVL tree instead of hash lists, but kept the
"“hash" in some menber nanes and functions to reduce churn.
One AVL tree per nmount replaces the global hash buckets.

Notes carried over fromthe NFS code:

The snbnode is the "inode" for rembte files. It contains all the
information necessary to handle renpte file on the client side.

Note on file sizes: we keep two file sizes in the snbnode: the size
according to the client (r_size) and the size according to the server
(r_attr.fa_size). They can differ because we nodify r_size during a
wite systemcall (snbfs_rdw), before the wite request goes over the
wire (before the file is actually nodified on the server). If an OTW
request occurs before the cached data is witten to the server the file
size returned fromthe server (r_attr.fa_size) may not match r_size.
r_size is the one we use, in general. r_attr.fa_size is only used to
det erm ne whether or not our cached data is valid.

Each snbnode has 3 | ocks associated with it (not including the snbnode
"hash" AVL tree and free list |ocks):

r_rw ock: Serializes snbfs_wite and snbfs_setattr requests

and all ows snbfs read requests to proceed in parallel.

Serializes reads/updates to directories.

r_l kserl ock: Serializes |ock requests with map, wite, and
readahead operations.

r_statel ock: Protects all fields in the snbnode except for
those listed below. This lock is intented
to be held for relatively short periods of
tine (not accross entire putpage operations,
for exanple).

The foll owing nenbers are protected by the nmutex snbfreelist_|ock:
r_freef
r_freeb

The fol l owing nenbers are protected by the AVL tree rw ock:
r_avl _node (r__hdr. hdr_avl _node)

Note: r_nodaddr is only accessed when the r_statel ock nutex is held.
Its value is also controlled via r_rwock. It is assuned that
there will be only 1 witer active at a tinme, so it safe to
set r_nodaddr and rel ease r_statel ock as long as the r_rw ock
witer lock is held.

64-bit offsets: the code fornerly assuned that atomic reads of
r_size were safe and reliable; on 32-bit architectures, this is

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_node. h

184
185
186
187
188
189
190

192
193
194

196
197
198
199

201
202

204
205
206
207
208
209

211
212
213

215
216
217
218
219
220
221
222
223
224
225
226
227

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

249

Lock
/

* Ok kR % k¥

t ypedef

#defi ne
#defi ne
#defi ne

#endi f /

ordering:

r_rwock > r_lkserlock >r

struct snbnode
/*

coul d update half of the size field.
be hel d whenever any kind of access of r_size is made.

not true since an interveni ng bus cycI e from anot her processor

The r_statel ock nust now

_statel ock

Qur linkage in the node cache AVL tree (see above). */

snbf s_node_hdr _t

/* short-hand nanmes for r__|

r_avl _node r__hdr. hdr
n_rpath r__hdr. hdr
n_rpl en r__hdr. hdr
smbmti nfo_t *n_nount ;
vnode_t *r_vnode;
/*

r__

* Linkage in snbfreelist

hdr;

hdr menbers */

_avl _node
_n_rpath
_n_rplen

/

*

VFS data */

/* associ ated vnode */

for reclaimng nodes.

snbfreelist_I ock

free list forward pointer */
free list back pointer */

serialize wite/setattr requests */
serialize lock with other ops */
protect (nost) snbnode fields */

/* ff context */
last ff offset */

file handle */

vnode type opened */
granted rights */
gereration no. (reconnect)

current credentials */

next read of fset (read-ahead)
count of mmapped pages */

of refs not reflect in v_count */
of outstanding async wite */
getattrs waiting to flush pages */
address for page in witenp */

flags, see bel ow */

NXXX flags bel ow */

async wite error */

condvar for bl ocked threads */
cache of readdir responses */
pointer to the ECF entry */

1d of purging thread */

list of delmap callers */

* Lock for the free list is:

*/
struct snmbnode *r_freef; /*
struct snbnode *r_freeb; /*
smbfs_rw ock_t r_rw ock; [*
smbfs_rwl ock_t r_I kserl ock; /*
kmut ex_t r_statel ock; /*
/*

* File handl e, directory search handle,

* and reference counts for them etc.

* Lock for these is: r_lkserlock

*/

int n_dirrefs;
struct snbfs_fctx *n_dirseq;
int n_di rofs; /*
int n_fidrefs;

uint16_t n_fid; /*
enum vtype n_ovtype; /*
ui nt 32_t n_rights; /*
int n_vcgeni d; /*
/*

* Msc. bookkeeping

*/
cred_t *r_cred,; /*
u_of fset_t r_nextr; /*
| ong r_mapcnt; /*
uint_t r_count; /*
uint_t r_awcount; /*
ui nt _t r_gcount; I
u_of fset _t r _nodaddr ; 1=
*71 codereview */

uint_t r_flags; /*
ui nt 32_t n_fl ag; I *
uint_t r_error; /*
kcondvar _t r_cv; /*
avl _tree_t r_dir; /*
rddir_cache *r_direof; /*
kt hread_t *r_serial; /*
list_t r_i ndel map; /*
/*

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_node. h

250 * Attributes: local, and as |ast seen on the server.

251 * See notes above re: r_size vs r_attr.fa_size, etc.

252 */

253 smbfattr_t r_attr; /* attributes fromthe server */
254 hrtime_t r_attrtine; /* time attributes becone invalid */
255 hrtime_t r_ntinme; /* client tine file last nodified */
256 len_t r_size; /* client’s view of file size */
258 /*

259 * Security attributes.

260 */

261 vsecattr_t r_secattr;

262 hrtime_t r_sectine;

264 I*

265 * Other attributes, not carried in snbfattr_t

266 */

267 u_l ongl ong_t n_i no;

268 ui d_t n_uid;

269 gid_t n_gid;

270 node_t n_node;

271 } snbnode_t;

273 | *
274 * Flag bits in: snbnode_t .n_flag
275 */

276 #defi ne NFLUSH NPROG 0x00001
277 #define NFLUSHWANT 0x00002 /*
278 #defi ne NMODI FI ED 0x00004 /*
279 #defi ne NREFPARENT 0x00010 /*
280 #defi ne NGOTI DS 0x00020
281 #defi ne NRDI RSERI AL 0x00080 /*
282 #defi ne NI SVAPPED 0x00800
283 #defi ne NFLUSHW RE 0x01000
284 #defi ne NATTRCHANGED 0x02000 /*
285 #define NALLOC 0x04000 /*
286 #define NWALLOC 0x08000 /*
287 #define N_XATTR 0x10000 /*
289 /*

290 * Flag bits in: snbnode_t .r_flags
291 */

292 #defi ne RREADDI RPLUS Ox1 l*
293 #define RDI RTY 0x2 /*
294 #define RSTALE 0x4 0
295 #defi ne RMODI NPROGRESS 0x8 /*
296 #defi ne RTRUNCATE 0x10 [*
297 #defi ne RHAVEVERF 0x20 /*
298 #define RCOW T 0x40 /*
299 #define RCOW TWAI T 0x80 I*
300 #defi ne RHASHED 0x100 /*
301 #defi ne ROUTOFSPACE 0x200 /*
302 #defi ne RDI RECTI O 0x400 l*
303 #define RLOOKUP 0x800 /*
304 #define RWRI TEATTR 0x1000 /*
305 #define RI NDNLCPURGE 0x2000 /*
306 #define RDELMAPLI ST 0x4000 /*

308 /*

310

311 #define VTOSMB(vp)
312 #define SMBTOV(np)

314 /*

they should gone ... */
bogus, until async 10 inplenented */
node hol ds parent fromrecycling */

serialize readdir operation */

kill cached attributes at close */
bei ng created */

awai ting creation */

extended attribute (dir or file) */

i ssue a READDI RPLUS instead of READDIR */
dirty pages fromwite operation */

file handle is stale */

page nodification happening */
truncating, don’t commt */

have a wite verifier to conpare agai nst */

conmmit in progress */

soneone is waiting to do a conmt */
snbnode is in the "hash" AVL tree */
an out of space error has happened */
bypass the buffer cache *

a | ookup has been perforned */
attributes came fromWRI TE */

in the process of purging DNLC references */

del map callers tracking for as callback */

309 * Convert between vnode and snbnode
*/

((snbnode_t
((np) ->r_vnode)

*) ((vp)->v_data))

315 * A macro to conpute the separator that should be used for

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_node. h

316 * nanes under sone directory.
317 */

318 #define SMBFS_DNP_SEP(dnp) \

319 (((dnp->n_flag & N_XATTR)
321 #ifdef __cplusplus

322 }

323 #endi f

325 #endif /* _FS SMBFS NODE_H_ */

See snbfs_fullpath().

== 0 & dnp->n_rplen > 1)

? W\

"o

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_subr. h

R R R R

10945 Sat Aug 18 10:48:43 2012

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_subr. h

% NO COMMENTS *

IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]

__unchanged_portion_onmtted

149 typedef struct snbfs_fctx smbfs_fctx_t;

151 #define f_rq f_urqg.uf_rq
f_t2 f_urq.uf _t2

152 #define

154 /*

155 * snb level (snbfs_snb.c)

156 */

157 int snbfs_snb_| ock(struct snbnode *np, int op, caddr_t id,
158 of fset _t start, uint64_t Ilen, int |argel ock,

159 struct smb_cred *scrp, uint32_t timeout);

160 int snbfs_snmb_gfsattr(struct snmb_share *ssp, struct snb_fs_attr_i
161 struct smb_cred *scrp);

162 int snbfs_snb_statfs(struct snmb_share *ssp, statvfs64_t *sbp,
163 struct snb_cred *scrp);

164 int snbfs_snb_setfsize(struct snbnode *np, uint16_t fid, uint64_t
165 struct snb_cred *scrp);

167 int snbfs_snb_getfattr(struct smbnode *np, struct smbfattr *fap,
168 struct snmb_cred *scrp);

170 int snbfs_snb_setfattr(struct smbnode *np, int fid,

nfo *,

newsi ze,

ine,

*fidp);

171 uint32_t attr, struct timespec *ntine, struct tinespec *at
172 struct snmb_cred *scrp);

174 int snbfs_snmb_open(struct snbnode *np, const char *name, int nnien,
175 int xattr, uint32_t rights, struct snb_cred *scrp

176 ui nt16_t *fldp uint32_t *rightsp, struct smbfattr *fap);
177 int snbfs_snb_t npopen(struct smbnode *np, uint32_t rights,

178 struct snb_cred *scrp, uintl1l6_t *fidp);

179 int snbfs_snb_close(struct snb_share *ssp, uintl6_t fid,

180 struct tinespec *ntinme, struct smb_cred *scrp);

181 int snbfs_snb_tnpcl ose(struct snmbnode *ssp, uintl6_t fid,

182 struct snmb_cred *scrp);

183 int snbfs_snb_creat e(struct smbnode *dnp, const char *nane, int nnlen,
184 int xattr, uint32_t disp, struct smb_cred *scrp, uint16_t
185 int snbf s_snb_del ete(struct smbnode *np, struct snb_cred *scrp,
186 const char *nane, int len, int xattr);

187 int snbfs_snb_renanme(struct smbnode *src, struct snbnode *tdnp,
188 const char *tname, int tnmen, struct smb_cred *scrp);

189 int snbfs_snb_t 2renanme(struct smbnode *np, struct snbnode *tdnp,
190 const char *tnane, int tnnmlen, struct snb_cred *scrp, int

191 int snbfs_snb_nove(struct smbnode *src, struct snbnode *tdnp,

192 const char *tname, int tnmen, uintl6_t flags, struct snb_cred *scrp);

overwite);

193 int snbfs_snb_nkdir(struct snbnode *dnp, const char *nane, int |en,

194 struct smb_cred *scrp);
195 int snbfs_snb_rndir(struct snmbnode *np, struct snb_cred *scrp);
196 int snbfs_snb_findopen(struct smbnode *dnp, const char *w | dcard,

int wlen,

197 int attr, struct smb_cred *scrp, struct snbfs_fctx **ctxpp);

198 int snbfs snb flndnext(struct snbfs_fctx *ctx, int limt,
199 struct snb_cred *scrp);

200 int snbfs_snb_fi ndclose(struct smbfs_fctx *ctx, struct smb_cred *scrp);

201 int snbfs_fullpath(struct nmbchain *nbp, struct smb_vc *vcp,

202 struct snbnode *dnp, const char *nane, int nmen, uint8_t
203 int snbfs_snb_| ookup(struct snbnode *dnp, const char **nanep, int
204 struct snmbfattr *fap, struct snb_cred *scrp);

sep);
*nni enp,

205 int snbfs_snb_hideit(struct snbnode *np, const char *nane, int |en,

206 struct snb_cred *scrp);
207 int snbfs_snb_unhideit(struct snbnode *np, const char *name, int
208 struct smb_cred *scrp);

|l en,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_subr. h

209 int snbfs_snb_flush(struct snmbnode *np, struct smb_cred *scrp);
210 int smbfs_Oextend(vnode_t *vp, uint16_t fid, len_t from len_t to,
211 struct snb_cred *scredp, int ti) ;

213 /* get/set security descriptor */
214 int snbfs_snb_getsec_n(struct snb_share *ssp, uint16_t fid,

215 struct snb_cred *scrp, uint32_t selector,

216 mbl k_t **res, uint32_t *reslen);

217 int snbfs_snb_setsec_m(struct snb_share *ssp, uintl6_t fid,
218 struct smb_cred *scrp, uint32_t selector, nblk_t **np);
220 /*

221 * VFS-level init, fini stuff

222 */

224 int snbfs_vfsinit(void)
225 voi d snbfs_vfsfini(voi d)
226 int snbfs_subrinit(void);
227 void snbfs_subrfini(voi d);
228 int snmbfs_clntinit(void);
229 void snbfs_clntfini(void);

231 void snbfs_zonelist_add(snbmtinfo_t *sm);
232 void snbfs_zonelist_renove(snbmtinfo_t *smi);

234 int snbfs_check_table(struct vfs *vfsp, struct smbnode *srp);
235 void snbfs_destroy_tabl e(struct vfs *vfsp);
236 void snbfs_rflush(struct vfs *vfsp, cred_t *cr);

238 [/ *

239 * Function definitions - those having to do with
240 * snbfs nodes, vnodes, etc

241 */

243 void snbfs_attrcache_prune(struct snbnode *np);
244 void snbfs_attrcache_renove(struct snbnode *np);
245 void snbfs_attrcache_rm| ocked(struct snbnode *np);
246 #ifndef DEBUG

247 #define snbfs_attrcache_rm| ocked(np)
248 #endi f

249 void snbfs_attr_touchdir(struct snbnode *dnp);

250 void snbfs_attrcache_fa(vnode_t *vp, struct snbfattr *fap);
251 voi d snbfs_cache_check(struct vnode *vp, struct snbfattr *fap);

253 voi d snbfs_addfree(struct snbnode *sp);
254 void snbfs_rnmhash(struct snbnode *);

256 voi d snbfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr);

258 #endif /* | codereview */
259 /* See avl _create in snbfs_vfsops.c */
260 void snbfs_init_hash_avl (avl _tree_t *);

262 uint32_t snbfs_gethash(const char *rpath, int prlen);

263 uint32_t snbfs_getino(struct snbnode *dnp, const char *nane, int nnlen);

265 extern struct snbfattr snbfs_fattroO;
266 snbnode_t *snbfs_node_findcreate(smbmtinfo_t *m,

267 const char *dir, int dirlen,
268 const char *nane, int nmien,
269 char sep, struct snbfattr *fap);

271 int snbfs_nget(vnode_t *dvp, const char *nane, int nnlen,
272 struct snbfattr *fap, vnode_t **vpp);

274 void snbfs_fname_tol ocal (struct snbfs_fctx *ctx);

(np)->r_attrtine = gethrtine()

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_subr. h

275 char *snbf s_nane_al | oc(const char *name, int nmen);
276 void snbf s_nanme_free(const char *nane, int nnien);

278 int snbfs_readvnode(vnode_t *, uio_t *, cred_t *, struct vattr *);
279 int snbfs_witevnode(vnode_t *vp, uio_t *uiop, cred_t *cr,

280 int ioflag, int tinmo);

281 int snbfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr);

283 /* snbfs ACL support */

284 int snbfs_acl _getids(vnode_t *, cred_t *);

285 int smbfs_acl _setids(vnode_t *, vattr_t *, cred_t *);

286 int smbfs_acl _getvsa(vnode_t *, vsecattr_t *, int, cred_t *);
287 int snbfs_acl _setvsa(vnode_t *, vsecattr_t *, |nt, cred_t *);
288 int snbfs_acl _iocget(vnode t *, intptr_t, int, cred_t *);
289 int snbfs_acl _iocset(vnode_t *, intptr_t, int, cred_t *);

291 /* snbfs_xattr.c */
292 int snbfs_get xattrdir(vnode_t *dvp, vnode_t **vpp, cred_t *cr, int);
293 int snbfs_xa_parent(vnode_t *vp, vnode_t **vpp);
294 int snbfs_xa_exists(vnode_t *vp, cred_t *cr);
int snmbfs_xa_getfattr(struct smbnode *np, struct smbfattr *fap,

295

296 struct smb_cred *scrp);

297 int snbfs_xa_findopen(struct snbfs_fctx *ctx, struct snmbnode *dnp,
298 const char *nane, int nnlen);

299 int snbfs_xa_findnext(struct snbfs_fctx *ctx, uintl6_t limt);
300 int snbfs_xa_findclose(struct snbfs_fctx *ctx);

302 /* For Solaris, interruptible rw ock */

303 int snbfs_rw enter_sig(snbfs_rwock_t *I, krw.t rw, int intr);
304 int snbfs_rw tryenter(snbfs_rw ock_t *I, krw.t rw;

305 void snbfs_rw exit(snbfs_rwock_t *I);

306 int snbfs_rw | ock_held(snbfs_rwliock_ t *I, krwt rw;
307 void snbfs_rw.init(snbfs_rwock_t *T, char *nanme, krw type_t type, void *arg);
308 void snbfs_rw destroy(snbfs_rw ock_t *I);

310 #endif /* | _FS SVBFS_SMBFS_SUBR H_*/

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

R R R R

29801 Sat Aug 18 10:48:43 2012
new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

*x%x NO

COMVENTS ***

R R R R R

1/*

35 #i
36 #i
37 #i
38 #i
39 #i
40 #i
41 #i
42 #i
43 #i

45 #i

47 #i
48 #i
49 #i
50 #i

52 #i
53 #i
54 #i

ol
[ee]
L

[N
~
L I I S I I I S R I I I R
<

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END
Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T.
Al rights reserved.

Node hash inplenmentation initially borrowed from NFS (nfs_subr.c)
but then heavily nodified. It’s no longer an array of hash lists,

* but an AVL tree per nount point. Mre on this bel ow
*/

ncl ude <sys/param h>

ncl ude <sys/systm h>

ncl ude <sys/tine.h>

ncl ude <sys/vnode. h>

ncl ude <sys/bitmap. h>

ncl ude <sys/dnlc. h>

ncl ude <sys/knem h>

ncl ude <sys/sunddi . h>
ncl ude <sys/sysmacros. h>

ncl ude <netsnb/snb_osdep. h>

ncl ude <netsnb/snb. h>

ncl ude <netsnb/snmb_conn. h>
ncl ude <netsnb/snmb_subr. h>
ncl ude <netsnb/snmb_rq. h>

ncl ude <snbfs/snbfs. h>
ncl ude <snbfs/snbfs_node. h>
ncl ude <snbfs/snbfs_subr. h>

The AVL trees (now per-nount) allow finding an snbfs node by its
full rempte path name. It also allows easy traversal of all nodes
bel ow (path w se) any given node. A reader/witer |ock for each
(per mount) AVL tree is used to control access and to synchronize
| ookups, additions, and deletions fromthat AVL tree.

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

112
114

118
119
120
121
122
123
124
125

Previously, this code use a global array of hash chains, each with
its owmn rw ock. A few struct nenbers, functions, and comments may
still refer to a "hash", and those should all now be considered to
refer to the per-nmount AVL tree that replaced the ol d hash chains.
(i.e. menber sm _hash_l k, function sn_hashfind, etc.)

The snbnode freelist is organized as a doubly linked list with
a head pointer. Additions and deletions are synchronized via
a single nmutex.

In order to add an snbnode to the free list, it nust be linked into
the nount’s AVL tree and the exclusive |ock for the AVL nust be hel d.
If an snbnode is not linked into the AVL tree, then it is destroyed
because it represents no valuable infornation that can be reused
about the file. The exclusive lock for the AVL tree nust be held

in order to prevent a |lookup in the AVL tree fromfinding the
snbnode and using it and assuming that the snmbnode is not on the
freelist. The lookup in the AVL tree will have the AVL tree | ock

hel d, either exclusive or shared.

The vnode reference count for each smbnode is not allowed to drop
below 1. This prevents external entities, such as the VM
subsystem from acquiring references to vnodes already on the
freelist and then trying to place them back on the freelist

when their reference is released. This neans that the when an
snbnode is |ooked up in the AVL tree, then either the snbnode

is removed fromthe freelist and that reference is tranfered to
the new reference or the vnode reference count nust be increnented
accordingly. The mutex for the freelist nust be held in order to
accurately test to see if the snbnode is on the freelist or not.
The AVL tree lock m ght be held shared and it is possible that

two different threads nmay race to renove the snbnode fromthe
freelist. This race can be resolved by holding the nutex for the
freelist. Please note that the nmutex for the freelist does not
need to held if the snbnode is not on the freelist. 1t can not be
placed on the freelist due to the requirenent that the thread
putting the snbnode on the freelist nust hold the exclusive |ock
for the AVL tree and the thread doing the | ookup in the AVL tree
is holding either a shared or exclusive lock for the AVL tree.

The | ock ordering is:

AVL tree lock -> vnode | ock
AVL tree lock -> freelist |ock

® Ok ok R ok ok ok SR F Sk F b Sk O 3E R ok b SR F Sk F Sk ok SR E Ok b ok OF F ok ok b Rk ok ok % b % b % ok

/

static krmutex_t snbfreelist_Iock;
static snmbnode_t *snbfreelist = NULL;
static ulong_t snbnodenew = O;

| ong nsnbnode = 0;

static struct knem cache *snbnode_cache;
static const vsecattr_t smbfs_vsa0 = { 0 };

/*

* Mutex to protect the follow ng variabl es:
* snmbf s_maj or

* smbf s_m nor

*/

kmut ex_t snbfs_m nor_| ock;

int snbfs_mgjor;

int snbfs_m nor;

/* See snbfs_node_findcreate() */

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c
128 struct snbfattr snbfs_fattro;

130 /*

131 * Local functions.

132 * SN for Snb Node

133 */

134 static void sn_rnfree(snbnode_t *);

135 static void sn_inactive(snbnode_t *);

136 static void sn_addhash Iocked(snbnode t *, avl_index_t);
137 static void sn_rmhash_T ocked(snbnode_t *);

138 static void sn destroy node(snbnode_t *);

139 void snbfs_kmemreclain{void *cdrarg);

141 static snbnode_t *
142 sn_hashfind(snmbmtinfo_t *, const char *, int, avl_index_t

144 static snbnode_t *
145 make_snbnode(snmbmtinfo_t *, const char *, int, int *);

147 | *

148 * Free the resources associated with an snbnode.
149 * Note: This is different from snbfs_inactive
150 *

151 * NFS: nfs_subr.c:rinactive

152 *

153 static void
154 sn_inactive(snbnode_t *np)

155 {

156 vsecattr_t ovsa;

157 cred_t *ol dcr;

158 char *or pat h;

159 int orpl en;

160 vnode_t *vp;

161 #endif /* | codereview */

163 I*

164 * Flush and invalidate all pages

160 * Flush and invalidate all pages (todo)
165 * Free any held credentials and caches...
166 * etc. (See NFS code)

167 */

168 mut ex_ent er (&np->r _st at el ock) ;

170 ovsa = np->r_secattr;

171 np->r_secattr = snbfs_vsa0;

172 np->r_sectinme = 0;

174 ol dcr = np->r_cred;

175 np->r_cred = NULL;

177 orpath = np->n_rpath;

178 orplen = np->n_rplen;

179 np->n_rpath = NULL;

180 np->n_rplen = 0;

182 mut ex_exi t (&p->r_st at el ock) ;

184 vp = SMBTOV(np);

185 if (vn_has_cached_data(vp)) {

186 snbf s_i nval i dat e_pages(vp, (u_offset_t) O,
187 1

189 #endif /* ! codereview */
190 if (ovsa.vsa_aclentp !'= NULL)

191 kmem free(ovsa. vsa_acl entp, ovsa.vsa_acl entsz);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

193 if (oldcr !'= NULL)

194 crfree(ol dcr);

196 if (orpath !'= NULL)

197 kmem free(orpath, orplen + 1);

198 }

200 /*

201 * Find and optionally create an snbnode for the passed
202 * mountinfo, directory, separator, and nane. |f the
203 * desired snbnode already exists, return a reference.
204 * If the file attributes pointer is non-null, the node
205 * is created if necessary and linked into the AVL tree.
206 *

207 * Callers that need a node created but don't have the
208 * real attributes pass snbfs_fattrO to force creation.
209 *

210 * Note: mmke_snbnode() nay upgrade the "hash" |ock to exclusive.
211 *

212 * NFS: nfs_subr.c: nekenf snode

213 */

214 snbnode_t *
215 snbfs_node_fi ndcreat e(

216 smbmtinfo_t *m,

217 const char *dirnm

218 int dirlen,

219 const char *nane,

220 int nmen,

221 char sep,

222 struct snbfattr *fap)

223 {

224 char tnpbuf[256];

225 size_t rpalloc;

226 char *p, *rpath;

227 int rplen;

228 snbnode_t *np;

229 vnode_t *vp;

230 i nt newnode;

232 /*

233 * Build the search string, either in tnpbuf or
234 * in allocated menory if larger than tnpbuf.
235 */

236 rplen = dirlen;

237 if (sep!="'\0")

238 rpl en++;

239 rplen += nml en;

240 if (rplen<5|zeof (trrpbuf)) {
241 /* use tnpbuf */

242 rpalloc = 0O;

243 rpath = tnpbuf;

244 } else {

245 rpalloc = rplen + 1;
246 rpath = kmem al | oc(rpal | oc, KM SLEEP);
247 }

248 p = rpath;

249 bcopy(dirnm p, dirlen);

250 p += dirlen;

251 | f (sep!:’\O’)

252 *p++ = sep;

253 if (name = NULL) {

254 bcopy(nanme, p, nnien);
255 p += nmlen;

256 }

257 ASSERT(p == rpath + rplen);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

259
260
261
262
263
264
265
266
267

269
270

272
273
274
275
276
277
278
279

281
282
283
284
285
286
287

289
290
291
292
293
294
295
296
297
298
299
300
301

303
304
305
306
307
308
309
310

312
313
314
315

317
318
319
320
321
322
323
324

}

/ *

/*

/*
* Find or create a node with this path.
*
/
rw_enter (&m ->sm _hash_| k, RW READER);
if (fap == NULL)
np = sn_hashfind(m, rpath, rplen, NULL);
el se
np = make_snbnode(m , rpath, rplen, &newnode);
rw_exit(&m ->sm _hash_l k);

if (rpalloc)
kmem free(rpath, rpalloc);

if (fap == NULL) {

* Caller is "just |ooking" (no create)
* so np may or may not be NULL here.

* Either way, we're done.

*/

return (np);

-

*

* We shoul d have a node, possibly created.
* Do we have (real) attributes to apply?
*

/

ASSERT(np != NULL);

if (fap == &snbfs_fattr0)

return (np);

Apply the given attributes to this node,
dealing with any cache inpact, etc.

<
T * ok ok *
-

= SMBTOV(np) ;
if (!newnode) {
/*

* Found an exi sting node.
* Maybe purge caches. ..
*/

snbf s_cache_check(vp, fap);
}
smbf s_attrcache_fa(vp, fap);

/
Note NFS sets vp->v_type here, assuming it
can never change for the life of a node.
We allow v_type to change, and set it in
snbfs_attrcache(). Al so: node, uid, gid

EE
-

return (np);

nfs_subr.c:rtabl ehash

* W use snbfs_hash().
*
/

Find or create an snbnode.

nfs_subr. c: make_r node

static snmbnode_t *
make_snbnode(

smbmtinfo_t *m,
const char *rpath,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

325
326
327
328
329
330
331
332
333

335
336

338
339
340
341
342
343

345
346

348
349
350
351
352
353
354
355

357

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

377

379
380
381
382
383
384
385
386
387
388
389
390

start:

int rplen,
int *newnode)

snmbnode_t *np;
snbnode_t *tnp;

vnode_t *vp;

vis_ t *vfsp;

avl _i ndex_t where;

char *new_rpath = NULL;

ASSERT(RW READ_HELD(&ni - >sni _hash_I k)) ;
visp = m->sm _vfsp;

np = sn_hashfind(m, rpath, rplen, NULL);
if (np !'= NULL) {

*newnode = 0;

return (np);

}

/* Note: will retake this |ock below */
rw_exit(&m->sm _hash_| k) ;

/*
* see if we can find sonething on the freelist
*/

mut ex_ent er (&snbfreel i st_| ock);

if (snbfreelist = NULL && snbnodenew >= nsnbnode) {
np = snbfreelist;
sn_rnfree(np);
mut ex_exi t (&nbfreelist_I| ock);

vp = SMBTOV(np);
if (np->r_flags & RHASHED) ({

snbmtinfo_t *tnp_m = np->n_nount;
ASSERT(tnp_nmi != NULL);

rw_enter (& nmp_m ->sm _hash_l k, RWWRI TER);

mut ex_ent er (&p- >v_| ock) ;

if (vp->v_count > 1) {
vp->v_count - -;
mut ex_exi t (& p->v_| ock);
rw_exit(& nmp_m ->sm _hash_| k) ;
/* start over */

rw_enter (&m ->sm _hash_| k, RW READER);

goto start;

}

mut ex_exi t (& p->v_I| ock);
sn_rnmhash_| ocked(np);
rw_exit(& nmp_m ->sm _hash_| k);

}
sn_i nacti ve(np);

mut ex_ent er (& p->v_| ock);
if (vp->v_count > 1)
vp->v_count - -;
nut ex_exi t (& p->v_| ock);
rw_enter (&m ->sm _hash_| k, RW READER);
goto start;

mut ex_exi t (& p->v_I ock);
vn_i nval i d(vp);
/*

* destroy old | ocks before bzero’'ing and
* recreating the | ocks bel ow

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

391 */

392 snbf s_rw_dest roy(&p->r_rw ock);

393 snbf s_rw_destroy(&p->r_I kserl ock) ;

394 mut ex_dest r oy(&np- >r_st at el ock);

395 cv_destroy(&np->r_cv);

396 /*

397 * Make sure that if snmbnode is recycled then
398 * VFS count is decrenmented properly before
399 * reuse.

400 */

401 VFS_RELE(vp->v_vfsp);

402 vn_reinit(vp);

403 } else {

404

405 * allocate and initialize a new snbnode

406 */

407 vnode_t *new_vp;

409 mut ex_exi t (&nbfreelist_I| ock);

411 np = kmem cache_al | oc(snbnode_cache, KM SLEEP);
412 new vp = vn_al | oc(KM SLEEP) ;

414 atom c_add_l ong((ul ong_t *)&snbnodenew, 1);
415 Vp = new_vp;

416 }

418 /*

419 */AI | ocate and copy the rpath we’'ll need bel ow.

420 *

421 new rpath = knmem al l oc(rplen + 1, KM SLEEP);

422 bcopy(rpath, new rpath, rplen);

423 new rpath[rplen] = '\0";

425 /* Initialize snbnode_t */

426 bzero(np, sizeof (*np));

428 smbfs_rw_init(&wp->r_rw ock, NULL, RWDEFAULT, NULL);
429 smbf s_rw_i nit (& p->r_| kserl ock, NULL, RWDEFAULT, NULL);
430 mut ex_init (&np->r_statel ock, NULL, MJUTEX_DEFAULT, NULL);
431 cv_init(&p->r_cv, NULL, CV_DEFAULT, NULL);

432 /* cv_init(&p->r_commt.c_cv, NULL, CV_DEFAULT, NULL);
434 np- >r_vnode = vp;

435 np->n_nount = m;

437 np->n_fid = SMB_FI D_UNUSED;

438 np->n_uid = m->sm _uid;

439 np->n_gid = m->sm _gid;

440 /* Leave attributes "stale." */

442 #if 0 /* XXX dircache */
*

443

444 * We don’t know if it’s a directory yet.
445 * Let the caller do this? XXX

446 */

447 avl _create(&np->r_dir, conpar, sizeof (rddir_cache),
448 of fsetof (rddir_cache, tree));

449 #endi f

451 /* Now fill in the vnode. */

452 vn_set ops(vp, snbfs_vnodeops);

453 vp->v_data = (caddr_t)np;

454 VFS_HOLD(vfsp);

455 vp->v_vfsp = vfsp;

456 vp->v_type = VNON,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

458 I*

459 * W& entered with mi->sm _hash_|I k held (reader).
460 * Retake it now, (as the witer).

461 * WIl return with it held.

462 *

463 rw_enter(&m ->sm _hash_|l k, RWWRI TER);

465 /*

466 * There is a race condition where sonmeone el se
467 * may alloc the snbnode while no | ocks are held,
468 * so check again and recover if found.

469 */

470 tnp = sn_hashfind(m, rpath, rplen, &were);

471 if (tnp T= NULL) {

472 I*

473 * Lost the race. Put the node we were building
474 * on the free list and return the one we found.
475 */

476 rw_exit(&m->sm _hash_l k);

477 knmem free(new rpath, rplen + 1);

478 snbf s_addf ree(np);

479 rw_enter(&m ->sm _hash_| k, RW READER);

480 *newnode = 0;

481 return (tnp);

482 }

484 /*

485 * Hash search identifies nodes by the rempte path
486 * (n_rpath) so fill that in now, before |inking
487 * this node into the node cache (AVL tree).

488 */

489 np->n_rpath = new_rpath;

490 np->n_rplen = rplen;

491 np->n_i no = snbfs_get hash(new_rpath, rplen);

493 sn_addhash_I| ocked(np, where);

494 *newnode = 1;

495 return (np);

496 }

498 [*

499 * snbfs_addfree

500 * Put an snbnode on the free list, or destroy it inmmediately
501 * if it offers no value were it to be reclained later.
502 * destroy inmediately when we have too many snbnodes, etc.
503 *

504 * Normally called by snbfs_inactive, but also

505 * called in here during cleanup operations.

506 *

507 * NFS: nfs_subr.c:rp_addfree

508 */

509 void

510 snbfs_addfree(snbnode_t *np)

511 {

512 vnode_t *vp;

513 struct vfs *vfsp;

514 smbmtinfo_t *m;

516 ASSERT(np->r_freef == NULL && np->r_freeb == NULL);
518 vp = SMBTOV(np);

519 ASSERT(vp->v_count >= 1);

521 vfsp = vp->v_vfsp;

522 m = VFTOSM (vfsp);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

524
525
526
527
528
529
530
531
532
533
534
535
536

538

540
541
542
543
544
545
546
547
548
549
550
551
552,
553
554
555
556

558

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

587
588

If there are no nore references to this snmbnode and:
we have too nany snbnodes allocated, or if the node
is no longer accessible via the AVL tree (! RHASHED),
or an i/o error occurred while witing to the file,
or it's part of an unnmobunted FS, then try to destroy
/it instead of putting it on the snbnode freelist.
*
if (np->r_count == 0 &&
(np->r_flags & RHASHED) == 0 ||
(np->r_error !'= 0)
(vfsp->vfs_flag & VFS_UNMOUNTED) | |
(snmbnodenew > nsnbnode))) {

EE N
2

/* Try to destroy this node. */

if (np->r_flags & RHASHED) ({
rw_enter(&m ->sm _hash_| k, RWWRI TER);
mut ex_ent er (& p- >v_I ock) ;
if (vp->v_count > 1) {
vp->v_count - -;
mut ex_exi t (&p->v_| ock);
rw_exit(&m ->sm _hash_l k) ;
return;
/*
* WII get another call later,
* via snbfs_inactive.
*
/

mut ex_exi t (&p->v_| ock);
sn_r mhash_| ocked(np);
rw_exit(&m ->sm _hash_| k);

}
sn_i nactive(np);

/
Recheck the vnode reference count. W need to
make sure that another reference has not been
acquired while we were not holding v_lock. The
snbnode is not in the snbnode "hash" AVL tree, so
the only way for a reference to have been acquired
is for a VOP_PUTPAGE because the snbnode was marked
with RDIRTY or for a nodified page. This vnode
reference may have been acquired before our call
to sn_inactive. The i/o nay have been conpl eted,
thus allowi ng sn_inactive to conplete, but the
reference to the vnode may not have been rel eased
yet. In any case, the snbnode can not be destroyed
until the other references to this vnode have been
rel eased. The other references will take care of
either destroying the snbnode or placing it on the
snbnode freelist. |If there are no other references,
then the snmbnode may be safely destroyed.

/

mut ex_ent er (& p->v_| ock);

if (vp->v_count > 1) {

vp->v_count - -;
mut ex_exi t (&p->v_| ock);
return;

I T T

mut ex_exi t (&p->v_| ock);

sn_dest roy_node(np);
return;

new usr/src/uts/comon/ fs/snbcl nt/snbfs/snbfs_subr2.c

589

591
592
593
594
595
596
597
598
599

601
602
603
604
605
606
607
608

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

626
627 }
629 /
630
631
632
633
634
635
636

637 static void

* Ok Ok ok Ok Ok * o

* ok % ok k ok * %
—~

Lock the AVL tree and then recheck the reference count

to ensure that no other threads have acquired a reference
to indicate that the snbnode should not be placed on the
freelist. |f another reference has been acquired, then
just release this one and |l et the other thread conplete
the processing of adding this snbnode to the freelist.

rw_enter(&m ->sm _hash_| k, RWWRI TER);

mut ex_ent er (&p->v_| ock);
if (vp->v_count > 1) {

vp->v_count - -;

mut ex_exi t (&p->v_| ock);
rw_exit(&m->sm _hash_l k);
return;

}
mut ex_exi t (& p->v_I ock);

/

*
*

*/

Put this node on the free list.

nmut ex_ent er (&snbfreelist_| ock);
if (smbfreelist == NULL) {

np->r_freef = np;

np->r_freeb = np;

smbfreelist = np;
} else {

np->r_freef = snbfreelist;
np->r_freeb = snbfreelist->r_freeb;
snbfreelist->r_freeb->r_freef = np;
snbfreelist->r_freeb = np;

}
mut ex_exi t (&snbfreelist_| ock);

rw_exit(&m->sm _hash_| k);

Rermove an snbnode fromthe free list.

The cal l er nust be hol ding snbfreelist_|ock and the snbnode
must be on the freelist.

NFS: nfs_subr.c:rp_rnfree

638 sn_rnfree(snbnode_t *np)

639 {

641
642

644
645
646
647
648

650
651

653
654 }

ASSERT(MUTEX_HELD(& nbf reel i st_l ock));
ASSERT(np->r_freef != NULL & np->r_freeb != NULL);

if (np == snbfreelist)

}

np->r_freeb->r_freef

snbfreelist = np->r_freef;
if (np == snbfreelist)
snbfreelist = NULL;

np->r_freef;

np->r_freef->r_freeb = np->r_freeb;

np->r_freef = np->r_freeb = NULL;

10

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c 11 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c
721 */
656 /* 722 static snbnode_t *
657 * Put an snbnode in the "hash" AVL tree. 723 sn_hashfi nd(
658 * 724 smbmtinfo_t *m,
659 * The caller nmust be hold the rw ock as witer. 725 const char *rpath,
660 * 726 int rplen,
661 * NFS: nfs_subr.c:rp_addhash 727 avl _i ndex_t *pwhere) /* optional */
662 */ 728 {
663 static void 729 snbf s_node_hdr_t nhdr;
664 sn_addhash_| ocked(snbnode_t *np, avl _index_t where) 730 smbnode_t *np;
665 { 731 vnode_t *vp;
666 smbmtinfo_t *m = np->n_nount;
733 ASSERT(RW_ LOCK_HELD(&ni - >smi _hash_l k));
668 ASSERT(RW WRI TE_HELD(&ni - >smi _hash_I k)) ;
669 ASSERT(! (np->r_flags & RHASHED)) ; 735 bzer o(&nhdr, sizeof (nhdr));
736 nhdr. hdr_n_rpath = (char *)rpath;
671 avl _insert(&m ->sm _hash_avl, np, where); 737 nhdr. hdr_n_rplen = rplen;
673 mut ex_ent er (&p- >r _st at el ock) ; 739 /* See snbfs_node_cnp bel ow. */
674 np->r_flags | = RHASHED; 740 np = avl _find(&m ->sm _hash_avl, &nhdr, pwhere);
675 mut ex_exi t (&p->r_st at el ock) ;
676 } 742 if (np == NULL)
743 return (NULL);
678 /[*
679 * Renmpve an snbnode fromthe "hash" AVL tree. 745 /*
680 * 746 * Found it in the "hash" AVL tree.
681 * The caller must hold the rwock as witer. 747 * Renpve fromfree list, if necessary.
682 * 748 */
683 * NFS: nfs_subr.c:rp_rmhash_| ocked 749 vp = SMBTOV(np);
684 */ 750 if (np->r_freef !'= NULL)
685 static void 751 mut ex_ent er (&nbfreel i st_| ock);
686 sn_rnhash_| ocked(snbnode_t *np) 752 /*
687 { 753 * |f the snbnode is on the freelist,
688 smbmtinfo_t *m = np->n_nount; 754 * then renpve it and use that reference
755 * as the new reference. O herw se,
690 ASSERT(RW VRl TE_HELD(& - >sm _hash_l k)) ; 756 * need to increment the reference count.
691 ASSERT(np->r _flags & RHASHED); 757 *
758 if (np->r_freef != NULL) {
693 avl _renove(& ->snmi _hash_avl, np); 759 sn_rnfree(np);
760 mut ex_exit (&nbfreelist_l ock);
695 mut ex_ent er (&np- >r _st at el ock) ; 761 } else {
696 np->r_fl ags &= ~RHASHED; 762 nut ex_exi t (&snbfreelist_|ock);
697 mut ex_exi t (&p- >r_st at el ock) ; 763 VN_HOLD(vp) ;
698 } 764
765 } else
700 /* 766 VN_HOLD(vp) ;
701 * Renmpve an snbnode fromthe "hash" AVL tree.
702 * 768 return (np);
703 * The caller nmust not be holding the rw ock. 769 }
704 */
705 void 771 static int
706 snbfs_rmhash(snbnode_t *np) 772 snbfs_node_cnp(const void *va, const void *vb)
707 { 773 {
708 smbmtinfo_t *m = np->n_nount; 774 const snmbfs_node_hdr_t *a = va;
775 const snmbfs_node_hdr_t *b = vb;
710 rw_enter(&m ->sm _hash_| k, RWWRI TER); 776 int clen, diff;
711 sn_rmhash_| ocked(np);
712 rw_exit(&m ->sm _hash_| k); 778 /*
713 } 779 * Sane semantics as strcnp, but does not
780 * assune the strings are null terninated.
715 | * 781 */
716 * Lookup an snbnode by renote pathnane 782 clen = (a->hdr_n_rplen < b->hdr_n_rplen) ?
717 * 783 a->hdr_n_rplen : b->hdr_n_rplen;
718 * The caller nust be holding the AVL rw ock, either shared or exclusive. 784 di ff = strncnp(a->hdr_n_rpath, b->hdr_n_rpath, clen);
719 * 785 if (diff < 0)
720 * NFS: nfs_subr.c:rfind 786 return (-1);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

787 if (diff > 0)

788 return (1);

789 /* they match through clen */
790 if (b->hdr_n_rplen > clen)
791 return (-1);

792 if (a->hdr_n_rplen > clen)
793 return (1);

794 return (0);

795 }

797 |*

798 * Setup the "hash" AVL tree used for our node cache.
799 * See: snbfs_mount, snbfs_destroy_table.

*

/

800

801 void

802 snbfs_init_hash_avl (avl _tree_t *avl)

803 {

804 avl _create(avl, snbfs_node_cnp, sizeof (snbnode_t),

805 of f set of (snbnode_t, r_avl _node));

806 }

808 /*

809 * Invalidate the cached attributes for all nodes "under" the
810 * passed-in node. Note: the passed-in node is NOT affected by
811 * this call. This is used both for files under sone directory
812 * after the directory is deleted or renaned, and for extended
813 * attribute files (naned streans) under a plain file after that
814 * file is renamed or del eted.

815 *

816 * Do this by wal king the AVL tree starting at the passed in node,
817 * and continuing while the visited nodes have a path prefix matching
818 * the entire path of the passed-in node, and a separator just after
819 * that matching path prefix. Watch out for cases where the AVL tree
820 * order may not exactly match the order of an FS walk, i.e.

821 * consider this sequence:

822 * "foo" (directory)

823 * "foo bar" (name containing a space)

824 * "f ool bar"

825 * The wal k needs to skip "foo bar" and keep going until it finds
826 * sonmething that doesn’t natch the "foo" nane prefix.

827 *

828 void

829 snbfs_attrcache_prune(snbnode_t *top_np)

830 {

831 smbmtinfo_t *m;

832 snbnode_t *np;

833 char *rpath;

834 int rplen;

836 m = top_np->n_nount;

837 rw_enter (& ->sm _hash_| k, RW READER);

839 np = top_np;

840 rpath = top_np->n_rpath;

841 rplen = top_np->n_rplen;

842 for (;;) {

843 np = avl _wal k(&m ->sm _hash_avl, np, AVL_AFTER);
844 if (np == NULL)

845 br eak;

846 if (np->n_rplen < rplen)

847 break;

848 if (0 != strncnp(np->n_rpath, rpath, rplen))

849 br eak;

850 if (np->n_rplen > rplen && (

851 np->n_rpath[rplen] == ":" ||

852 np->n_rpath[rplen] == 'i\’))

13

new usr/src/uts/comon/ fs/snbcl nt/snbfs/snbfs_subr2.c

853 snbfs_attrcache_renmove(np);
854 1

856 rw_exit(&m->sm _hash_l k);

857 }

859 #ifdef SMB_VNCODE_DEBUG

860 int snbfs_check_tabl e_debug =
861 #el se /* SMB_VNODE_DEBUG */
862 int snbfs_check_tabl e_debug = O;
863 #endi f /* SMB_VNODE_DEBUG */

1
=

866 /*

867 * Return 1 if there is a active vnode belonging to this vfs in the
868 * snbnode cache.

869 *

870 * Several of these checks are done without holding the usual

871 * locks. This is safe because destroy_snbtabl e(), snbfs_addfree(),
872 * etc. will redo the necessary checks before actually destroying
873 * any snbnodes.

874 *

875 * NFS: nfs_subr.c:check_rtable

876 *

877 * Debuggi ng changes here relative to NFS.

878 * Relatively harnmless, so left "emin.

879 */

880 int

881 {snbfs_check_t abl e(struct vfs *vfsp, snbnode_t *rtnp)

882

883 smbmtinfo_t *m;

884 snbnode_t *np;

885 vnode_t *vp;

886 int busycnt = 0;

888 m = VFTOSM (vfsp);

889 rw_enter (& ->sm _hash_| k, RW READER);

890 for (np = avl _first(&m ->sm _hash_avl); np != NULL;

891 np = avl _wal k(&m ->smi _hash_avl, np, AVL_AFTER)) {

893 if (np == rtnp)

894 continue; /* skip the root */

895 vp = SMBTOV(np);

897 /* Now t he ’busy’ checks: */

898 /* Not on the free list? */

899 if (np->r_freef == NULL)

900 SMBVDEBUG "!'r _freef: node=0x%p, rpath=%\n",
901 (void *)np, np->n_rpath);

902 busycnt ++;

903 }

905 /* Has dirty pages? */

906 if (vn_has_cached_data(vp) &&

907 (np->r_flags & RDI RTY))

908 SMBVDEBUG "is dirty: node=0x%p, rpath=%\n",
909 (void *)np, np->n_rpath);

910 busycnt ++;

911 }

913 /* Other refs? (not reflected in v_count) */

914 if (np->r_count > 0)

915 SMBVDEBUG(" +r _count: node=0x%p, rpat h=%\n",
916 (void *)np, np->n_rpath);

917 busycnt ++;

918 }

14

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

920
921

923
924

926
927

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

952
953
954

956
957
958

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

976
977
978
979
980
981
982
983

if (busycnt && !snbfs_check_tabl e_debug)
br eak;

}
rw_exit(&m->sm _hash_Il k);

return (busycnt);

}
/*
* Destroy inactive vnodes fromthe AVL tree which belong to this
* vfs. It is essential that we destroy all inactive vnodes during a
* forced unnount as well as during a normal unnount.
*
* NFS: nfs_subr.c:destroy_rtable
*
* In here, we're nornally destrying all or nost of the AVL tree,
* so the natural choice is to use avl_destroy_nodes. However,
* there may be a few busy nodes that should remain in the AVL
* tree when we’'re done. The solution: use a tenporary tree to
* hold the busy nodes until we're done destroying the old tree,
* then copy the tenporary tree over the (now entpy) real tree.
*/
voi d
snbfs_destroy_tabl e(struct vfs *vfsp)
{
avl _tree_t tnp_avl;
smbmmtinfo_t *mi;
snbnode_t *np;
smbnode_t *rlist;
void *v;
m = VFTOSM (vfsp);
rlist = NULL;
snbf s_i nit _hash_avl (& np_avl);
rw_enter (& ->sm _hash_| k, RWWR TER);
Vv = NULL;
while ((np = avl _destroy_nodes(&m ->sm _hash_avl, &v)) != NULL) {

mut ex_ent er (&snbfreelist_| ock);
if (np->r_freef == NULL) {
/*

* Busy node (not on the free list).

* WII keep in the final AVL tree.
*

/
mut ex_exit (&snbfreelist_l ock);

avl _add(& np_avl,
} else {/

np);

* It'’s on the free list. Renpve and
* arrange for it to be destroyed.
*/

sn_rnfree(np);

mut ex_exit (&snbfreelist_| ock);

/*

* Last part of sn_rmhash_| ocked().
* NB: avl _destroy_nodes has al ready
* renoved this fromthe "hash" AVL.
*/

nut ex_ent er (&np- >r _st at el ock);
np->r_fl ags &= ~RHASHED;

nut ex_exi t (&p->r _st at el ock) ;

15

new usr/src/ uts/ comon/fs/snbcl nt/snbf s/ snbfs_subr2.c 16
985 /*
986 * Add to the list of nodes to destroy.

987 * Borrowing avl_child[0] for this list.
988 *

989 np->r_avl _node. avl _child[0] =

990 (struct avl_node *)rlist;

991 rlist = np;

992 }

993

994 avl _destroy(&m ->sni _hash_avl);

996 /*

997 * Repl ace the (now destroyed) "hash" AVL with the

998 * tenporary AVL, which restores the busy nodes.

999 */

1000 m ->sm _hash_avl = tnp_avl;

1001 rw_exit (&ni->smi _hash_TKk);

1003 /*

1004 * Now destroy the nodes on our tenporary list (rlist).
1005 * This call to snbfs_addfree will end up destroying the
1006 * snbnode, but in a safe way with the appropriate set
1007 * of checks done.

1008 */

1009 while ((np =rli st) I'= NULL) {

1010 rlist = (snbnode_t *)np->r_avl _node. avl _child[0];
1011 snmbf s_addf ree(np);

1012 }

1013 }

1015 /*

1016 * This routine destroys all the resources associated with the snbnode
1017 * and then the snbnode itself. Note: sn_inactive has been call ed.
1018 *

1019 * NFS: nfs_subr.c:destroy_rnode

1020

1021 static void

1022 sn_destroy_node(snbnode_t *np)

1023 {

1024 vnode_t *vp;

1025 vis_t *vfsp;

1027 vp = SMBTOV(np);

1028 vfsp = vp->v_vfsp;

1030 ASSERT(vp->v_count == 1);

1031 ASSERT(np- >r _count == 0)

1032 ASSERT(np->r _mapcnt ==

1033 ASSERT(np- >r secattr vsa acI entp == NULL);

1034 ASSERT(np->r_cred == NULL);

1035 ASSERT(np- >n_r path == NULL);

1036 ASSERT(! (np->r _f1 ags & RHASHED)) ;

1037 ASSERT(np->r _freef == NULL && np->r_freeb == NULL);
1038 atom c_add_|l ong((ul ong_t *)&snbnodenew, -1);

1039 vn_inval i d(vp);

1040 vn_free(vp);

1041 kmem cache free(srrbnode cache, np);

1042 VFS_RELE(vfsp);

1043 }

1045 /*

1046 * Correspond to rflush() in NFS.

1047 #endif /* | codereview */

1048 * Flush all vnodes in this (or every) vfs.

1049 * Used by snbfs_sync and by snbfs_unnount.

180 * Used by nfs_sync and by nfs_unnount.

new usr/src/ uts/ comon/ fs/snbcl nt/snbfs/snbfs_subr2.c 17

1050 */

1051 /* ARGSUSED*/

1052 voi d

1053 snbfs_rflush(struct vfs *vfsp, cred_t *cr) {

1055 smbmtinfo_t *m;

1056 snbnode_t *np;

1057 vnode_t *vp;

1059 long num cnt;

1061 vnode_t **vpli st;

1063 if(vfsp == NULL)

1064 return;

1066 m = VFTOSM (vfsp);

1068 cnt = 0;

1070 num = m - >sm _hash_avl . avl _numodes;

1072 vplist = knem all oc(num* sizeof (vnode_t*), KM SLEEP);
1074 rw_enter(&m->sm _hash_| k, RW READER) ;

1075 for (np = avl _first(&m ->sm _hash_avl); np !'= NULL;
1076 np = avl _wal k(&m ->sm _hash_avl, np, AVL_AFTER)) {
1077 vp = SMBTOV(np);

1078 if (vn_is_readonly(vp))

1079 conti nue;

1081 if (vn_has_cached_data(vp) && (np->r_flags & RDIRTY || np->r_mapcnt > 0)
1082 VN_HOLD(vp) ;

1083 vplist[cnt++] = vp;

1084 if (cnt == num

1085 br eak;

1086 }

1087 }

1088 rw_exit(&m->sm _hash_| k) ;

1090 while (cnt-- > 0) {

1091 vp = vplist[cnt];

1092 (void) VOP_PUTPAGE(vp, O, O, O, cr, NULL);

1093 VN_RELE(vp);

1094 }

1096 kmem free(vplist, num* sizeof (vnode_t*));

184 snbfs_rflush(struct vfs *vfsp, cred_t *cr)

185 {

186 /* Todo: mmap support. */

1097

____unchanged_portion_onitted_

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

R R R R

103466 Sat Aug 18 10:48:44 2012
new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_vnops. ¢
% NO COMVENTS *

R R R R R

1/*

2 * Copyright (c) 2000-2001 Boris Popov

3 * Al rights reserved.

4 *

5 * Redistribution and use in source and binary forms, with or w thout

6 * nodification, are pernitted provided that the follow ng conditions

7 * are net:

8 * 1. Redistributions of source code nust retain the above copyright

9 * notice, this list of conditions and the follow ng disclainer.

10 * 2. Redistributions in binary formnust reproduce the above copyright

11~ notice, this list of conditions and the follow ng disclainmer in the
12 * docunentation and/or other materials provided with the distribution.

13 * 3. Al advertising materials nentioning features or use of this software
14 = must di splay the foll ow ng acknow edgenent:

15 * Thi s product includes software devel oped by Boris Popov.

16 * 4. Neither the name of the author nor the names of any co-contributors

17 = may be used to endorse or pronote products derived fromthis software
18 * Wi t hout specific prior witten perm ssion.

19 =

20 * THI'S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRIBUTCRS ‘*AS IS’ AND

21 * ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

22 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
23 * ARE DI SCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
24 * FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
25 * DAMAGES (I NCLUDING BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)

27 * HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRICT
28 * LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY
29 * QUT OF THE USE OF THI S SOFTWARE, EVEN |F ADVI SED OF THE PGSSI BI LI TY OF
30 * SUCH DAMAGE.
31 *
32 */$I d: snbfs_vnops.c,v 1.128.36.1 2005/05/27 02:35:28 |indak Exp $
33 *

35 /*

39 #include <sys/systm h>

40 #include <sys/cred. h>

41 #i ncl ude <sys/vnode. h>

42 #include <sys/vfs.h>

43 #include <sys/filio.h>

44 #incl ude <sys/uio. h>

45 #incl ude <sys/dirent. h>

46 #incl ude <sys/errno. h>

47 #incl ude <sys/sunddi . h>

48 #include <sys/sysnacros. h>
49 #include <sys/kmem h>

50 #include <sys/cm_err. h>
51 #include <sys/vfs_opreg. h>
52 #include <sys/policy.h>

54 #incl ude <sys/param h>
55 #i nclude <sys/vm h>

56 #i nclude <vni seg_vn. h>
57 #include <vnl pvn. h>

58 #include <vnias. h>

59 #include <vni hat.h>

60 #i nclude <vnl page. h>
61 #i nclude <vniseg. h>

36 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. Al rights reserved.
*/

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

62
63
64

115

119
120
121
122
123
124
125
126
127

#i ncl ude <vm seg_nap. h>
#i ncl ude <vm seg_knem h>
#i ncl ude <vm seg_kpm h>

#endif /* ! codereview */

#i ncl ude <net snb/ snb_osdep. h>
#i ncl ude <net snb/ snb. h>

#i ncl ude <net snb/ snb_conn. h>
#i ncl ude <netsnb/snb_subr. h>

#i ncl ude <snbfs/snbfs. h>
#i ncl ude <snbfs/snbfs_node. h>
#i ncl ude <snbfs/snbfs_subr. h>

#i ncl ude <sys/fs/snbfs_ioctl.h>
#i nclude <fs/fs_subr.h>

/*
* W assign directory offsets |ike the NFS client, where the
* offset increnents by _one_ after each directory entry.
* Further, the entries "." and ".." are always at offsets
* zero and one (respectively) and the "real" entries from
* the server appear at offsets starting with two. This
* macro is used to initialize the n_dirofs field after
* setting n_dirseq with a _findopen call.
*/
#def i ne FI RST_DI ROFS 2
/*
These characters are illegal in NTFS file nanes.

ref: http://support. mcrosoft.com kb/ 147438

*

*

*

* Careful! The check in the XATTR case skips the
* first character to allow colon in XATTR nanes.
S
st

atic const char illegal _chars[] = {
/* colon - keep this first! */
A\ [* back slash */
N, /* slash */
Qo /* asterisk */
T, /* question mark */
/* doubl e quote */
< /* less than sign */
TS /* greater than sign */
N /* vertical bar */
0
§i5
/*
* Turning this on causes nodes to be created in the cache
* during directory listings, normally avoiding a second
* XWattribute fetch just after a readdir.
*
int snbfs_fastlookup = 1;
/* local static function defines */

static int snbf sl ookup_cache(vnode_t *, char *, int, vnode_t **,
cred_t *);

static int snbf sl ookup(vnode_t *dvp, char *nm vnode_t **vpp, cred_t *cr,
int cache_ok, caller_context_t *);

static int snbf srenane(vnode_t *odvp, char *onm vnode_t *ndvp, char *nnm
cred_t *cr, caller_context_t *);

static int snbf ssetattr(vnode_t *, struct vattr *, int, cred_t *);

static int snbf s_accessx(void *, int, cred_t *);

static int snbf s_readvdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

128 caller_context_t *);

129 static void smbfs_rele_fid(smbnode_t *, struct smb_cred *);

131 /*

132 * These are the vnode ops routines which inplenment the vnode interface to
133 * the networked file system These routines just take their paraneters,

134 * npeke them | ook networkish by putting the right info into interface structs,
135 * and then calling the appropriate renmpote routine(s) to do the work.

136 *

137 * Note on directory nanme | ookup cacheing: |If we detect a stale fhandl e,

138 * we purge the directory cache relative to that vnode. This way, the

139 * user won't get burned by the cache repeatedly. See <snbfs/snbnode. h> for
140 * nore details on snmbnode | ocking.

141 */

143 static int snbf s_open(vnode_t **, int, cred_t *, caller_context_t *);
144 static int smbfs_cl ose(vnode_t *, int, int, offset_t, cred_t *,

145 cal l er_context_t *);

146 static int snbf s_read(vnode_t *, struct uio *, int, cred_t *,

147 call er_context_t *);

148 static int snmbfs_wite(vnode_t *, struct uio *, int, cred_t *,

149 call er_context_t *);

150 static int smbfs_ioctl (vnode_t *, int, intptr_t, int, cred_t *, int *,
151 call er_context_t *);

152 static int smbfs_getattr(vnode_t *, struct vattr *, int, cred_t *,

153 cal ler_context_t *);

154 static int snbfs_setattr(vnode_t *, struct vattr *, int, cred_t *,

155 caller_context_t *);

156 static int snbfs_access(vnode_t *, int, int, cred_t *, caller_context_t *);
157 static int snbfs_fsync(vnode_t *, int, cred_t *, caller_context_t *);
158 static void snbf s_i nacti ve(vnode_t *, ed_t *, caller_context_t *);

159 static int snbf s_| ookup(vnode_t *, char *, vnode_t ** struct pathnarre *,
160 int, vnode t *, cred_t *, caller_context_t *,

161 int *, pathnane_t *);

162 static int snbfs_create(vnode_t *, char *, struct vattr *, enum vcexcl,
163 int, vnode_t **, cred_t *, int, caller_context_t *,
164 vsecattr_t *);

165 static int snbfs_renove(vnode_t *, char *, cred_t *, caller_context_t *,
166 int);

167 static int snbf s renane(vnodet *, char *, vnode_t *, char *, cred_t *,
168 caller_context_t *, int);

169 static int snmbfs_nkdir(vnode_t *, char *, struct vattr *, vnode_t **,
170 cred_t *, caller_context_t *, int, vsecattr_t *);
171 static int snbf s_rndir(vnode_t *, char *, vnode_t *, cred_t *,

172 caller_context_t *, int);

173 static int snbfs_readdir(vnode_t *, struct uio *, cred_t *, int *,

174 caller_context_t *, int);

175 static int snbf s_rw ock(vnode_t *, int, caller_context_t *);

176 static void smbf s_rwunl ock(vnode_t *, int, caller_context_t *);

177 static int snbfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
178 static int smbfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
179 struct flk_callback *, cred_t *, caller_context_t *);
180 static int snbf s_space(vnode_t *, int, struct flock64 *, int, offset_t,
181 cred_t *, caller_context_t *);

182 static int snmbf s_pat hconf (vnode_t *, int, ulong_t *, cred_t *,

183 cal l er_context_t *);

184 static int snbf s_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,

185 call er_context _t *);

186 static int snbfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,

187 cal l er_context_t *);

188 static int snbf s_shrl ock(vnode_t *, int, struct shrlock *, int, cred_t *,
189 call er_context _t *);

191 static int uio_page_mapin(uio_t *uiop, page_t *pp);

193 static void ui o_page_napout (ui o_t *uiop, page_t *pp);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 4
195 static int snbfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
196 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
197 caller_context_t *ct);

199 static int snbfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
200 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
201 caller_context_t *ct);

203 static int snbfs_del map(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
204 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
205 cal l er_context _t *ct);

207 static int snbfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags,
208 cred_t *cr, caller_context_t *ct);

210 static int snbfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *len
211 int flags, cred_t *cr);

213 static int snbfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
214 page_t *pl[], size_t plsz, struct seg *seg, caddr _t addr,

215 enumseg rwrw, cred_t *cr, caller_context_t *ct);

217 static int snrbfs _get apage(vnode_ *vp, u_offset_t off, size_t len,

218 uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
219 enum seg_rw rw, cred_t *cr);

221 static int witenp(snbnode_t *np, caddr_t base, int tcount, struct uio *uiop, in
223 #endif /* | codereview */

224 |/* Dummy function to use until correct function is ported in */

225 int noop_vnodeop() {

226 return (0);

227 }

229 struct vnodeops *snbfs_vnodeops = NULL;

231 [*

232 * Most uninplemented ops will return ENOSYS because of fs_nosys().

233 * The only ops where that won't work are ACCESS (due to open(2)

234 * failures) and ... (anything else left?)

235 */

236 const fs_operation_def_t snbfs_vnodeops_tenplate[] = {

237 VOPNAME_OPEN, .vop_open = snbfs_open } },

238 VOPNAME_CLCSE, .vop_close = snbfs_close } },

239 VOPNAME_READ, .vop_read = snbfs_read } },

240 VOPNAME_V\RI TE, .vop_wite = snbfs_wite } },

241 VOPNAME_| OCTL, .vop_ioctl = snbfs_ioctl } },

242 VOPNAME_GETATTR, .vop_getattr = snbfs_getattr } },

243 VOPNAME_SETATTR, .vop_setattr = snbfs_setattr } },

244 VOPNAME_ACCESS, .vop_access = snbfs_access } },

245 VOPNAME_ L OOKUP, .vop_| ookup = snbfs_| ookup } },

246 VOPNAME_CREATE, .vop_create = snbfs_create } },

247 VOPNAME_REMOVE, .vop_renove = snbfs_renove } },

248 VOPNAME_LI NK, .error = fs_nosys } }, /* snbfs_link, */
249 VOPNAME_RENAME, .vop_renane = snbfs_rename } },

250 VOPNAMVE_MKDI R, .vop_nkdir = snbfs_nkdir } },

251 VOPNAME_RMDI R, .vop_rndir = snbfs_rmdir } },

252 VOPNAME_READDI R, .vop_readdir = snbfs_readdir } },

253 VOPNAME_SYMLI NK, .error = fs_nosys } }, /* snbfs_symink, */
254 VOPNAME_READLI NK, .error = fs_nosys } }, /* snbfs_readlink, */
255 VOPNAME_FSYNC, .vop_fsync = snbfs_fsync } },

256 VOPNAME_| NACTI VE, .vop_i nactive = snbfs inactive } },

257 VOPNAME_FI D, .error = fs _nosys } }, /* snbfs_fid, */

258 VOPNAME_RW.OCK, .vop_ rvw ock = smbfs_rw ock } 1

259 VOPNAME_ RWUNL OCK, .vop_rwunl ock = snbfs_rwunl ock } },

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 5

260
261
262
263
264
265
266
267
268

277 }

VOPNAME_SEEK, .vop_seek = snbfs seek } },

VOPNAME_FRLOCK, .vop_frlock = snbfs_frlock } },
VOPNAME_SPACE, .vop_space = snbfs_space } },

VOPNAME_REAL VP, .error = fs_nosys } }, /* snbfs_realvp, */

VOPNAME_GETPAGE, .vop_get page = snbfs_getpage } }, /* snbfs_get
VOPNAME_PUTPAGE, . vop_put page = snbf s_put page } }, /* snbfs_put
VOPNAME_ VAP, .vop_map = snbfs_map } }, /* snbfs_map, */

VOPNAME_ADDNVAP, .vop_addmap = snbfs_addmap } }, /* snbfs_addma
VOPNAME_DEL VAP, .vop_del map = snbfs_delmap } }, /* snbfs_delm

VOPNAMVE_DI SPOSE,

= .vop_di spose = fs_dispose}},
VOPNAME_GETPAGE,

.error = fs_nosys } }, /* snbfs_getpage, */

VOPNAME_PUTPAGE, .error = fs_nosys } }, /* snbfs_putpage, */
VOPNAME_MAP, .error = fs_nosys } }, /* snbfs_map, */
VOPNAME_ADDVAP, .error = fs_nosys } }, /* snbfs_addmap, */
VOPNAME_DEL VAP, .error = fs_nosys } }, /* snbfs_del map, */
VOPNAME_DUMP, .error = fs _nosys } }, /* snbfs_dunmp, */
VOPNAME_ PATHCONF, .vop_ pat hconf = snbfs_pathconf } },

VOPNAME_PAGEI O
VOPNAME_SETSECATTR,
VOPNAME_GETSECATTR,
VOPNAME_SHRL COCK,
NULL, NULL }

.error = fs_nosys } }, /* snbfs_pageio, */
.vop_ setsecattr = srrbfs_setsecattr } 1
.vop_getsecattr = snbfs_getsecattr } },
.vop_shrlock = snbfs_shrliock } },

_hnchanged_port ion_omtted_

462 | * ARGSUSED* /
463 static int
464 snbfs_cl ose(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,

465
466 {
467
468
469

471
472

474
475
476
477

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

cal ler_context_t *ct)

smbnode_t *np;
smbmti nfo_t *sm ;
struct snb_cred scred;

np = VIOSMB(vp);
sm = VIOSM (vp);

/*
* Don't "bail out" for VFS_UNMOUNTED here,
* as we want to do cleanup, etc.

*/

/*

* zone_enter(2) prevents processes from changi ng zones with SMBFS files
* open; if we happen to get here fromthe wong zone we can’t do

* anything over the wre.

*/

if (sm->sm_zone_ref.zref_zone != curproc->p_zone) {
/*

We could attenpt to clean up | ocks, except we're sure

that the current process didn’'t acquire any |ocks on

the file: any attenpt to lock a file belong to another zone
will fail, and one can’'t lock an SMBFS file and then change
zones, as that fails too.

*
*
*
*
*
*
* Returning an error here is the sane thing to do. A
* subsequent call to VN _RELE() which translates to a
* snbfs_inactive() will clean up state: if the zone of the
* vnode’s originis still alive and kicking, an async worker
* thread will handle the request (fromthe correct zone), and
* everything (mnus the final snbfs_getattr_otw() call) should
* be OK. |If the zone is going away snbfs_async_inactive() wll
* throw away cached pages inline.
*
/

return (EIO;

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 6
504 I*

505 * |f we are using local locking for this filesystem then

506 * release all of the SYSV style record | ocks. Qherw se,

507 * we are doing network |ocking and we need to rel ease all

508 * of the network locks. Al of the locks held by this

509 * process on this file are released no matter what the

510 * 1ncom ng reference count is.

511 */

512 if (sm->sm_flags & SM _LLOCK) {

513 pid_t pid = ddi _get_pid();

514 cl eanl ocks(vp, pid, 0);

515 cl eanshares(vp, pi d)

516 }

518 /*

519 * This (passed in) count is the ref. count fromthe

520 * user’'s file_t before the closef call (fio.c).

521 * We only care when the reference goes away.

522 */

523 if (count > 1)

524 return (0);

526 /*

527 * Decrement the reference count for the FID

528 * and possibly do the O Wcl ose.

529 *

530 * Exclusive lock for nmodifying n_fid stuff.

531 * Don't want this one ever interruptible.

532 */

533 (void) snbfs_rw enter_sig(&p->r_I| kserlock, RWWRI TER, 0);

534 smb_credinit(&scred, cr);

536 I

537 * |If FIDref. count is 1 and count of nmmaped pages isn't O,

538 * we won't call snbfs_rele f|d() because it will result in the otWclo
539 * The count of mapped pages isn't 0, which nmeans the mapped pages

540 * possibly will be accessed after cl ose(), we should keep the FID valid
541 * |1.e., dont do the otWcl ose.

542 * Dont worry that FID will be |eaked, because when the

543 * vnode’s count beconmes 0, snbfs |nact|ve() will

544 * help us release FID and eventual |y do the otWcl ose.

545 */

546 if (np->n_fidrefs > 1) {

547 #endif /* | codereview */

548 smbfs_rele_fid(np, &scred);

549 } else if (np->r_mapcnt == 0) {

550 /*

551 */Bef ore otWcl ose, nake sure dirty pages witten back.

552

553 if ((flag & FWRITE) && vn_has_cached_data(vp)) {

554 /* snbfs putapage() wi Il acquire shared |ock, so rel ease
555 * exclusive lock tenporally.

556 */

557 snbfs_rw_exit (&np->r_| kser| ock);

559 (voi d) snbfs_put page(vp, (offset_t) 0, 0, B INVAL | B_AS
561 /* acquire exclusive |ock again. */

562 (void) snmbfs_rw enter_sig(&p->r_| kserl ock, RWWRI TER, O
563 }

564 snbfs_rele_fid(np, &scred);

565

566
568

}
#endi f /* | codereview */

snb_credrel e(&scred);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 7 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢
569 snmbf s_rw_exi t (&p->r_| kser| ock); 635 }
571 return (0); 637 /* Al ow next open to use any v_type. */
572 } 638 np->n_ovtype = VNON;
574 | * 640 /*
575 * Hel per for snbfs_close. Decrenent the reference count 641 * Other "last close" stuff.
576 * for an SMB-level file or directory ID, and when the |ast 642 */
577 * reference for the fid goes away, do the O Wcl ose. 643 nmut ex_ent er (&np->r _st at el ock) ;
578 * Also called in snbfs_inactive (defensive cleanup). 644 if (np->n_flag & NATTRCHANGED)
579 */ 645 snbf s_attrcache_rm | ocked(np);
580 static void 646 ol dcr = np- >r_cr ed;
581 snbfs_rele_fid(snmbnode_t *np, struct snb_cred *scred) 647 np->r_cred = NULL;
582 { 648 mut ex_exi t (&p->r _st at el ock) ;
583 snb_share_t *ssp; 649 if (older != NULL)
584 cred_t *ol der; 650 crfree(oldcr);
585 struct snmbfs_fctx *fctx; 651 }
586 int error;
587 uint16_t ofid; 653 /* ARGSUSED */
654 static int
589 ssp = np->n_nount->sm _share; 655 snbfs_read(vnode_t * vp, struct uio * uiop, int ioflag, cred_t * cr,
590 error = 0; 656 call er_context _t * ct)
325 snbfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
592 /* Make sure we serialize for n_dirseq use. */ 326 cal l er_context _t *ct)
593 ASSERT(snmbf s_rw_| ock_hel d(&p->r _| kserl ock, RWWRI TER)); 657 {
658 struct snmb_cred scred;
595 [659 struct vattr va;
596 * Note that vp->v_type may change if a renote node 660 snbnode_t *np;
597 * is deleted and recreated as a different type, and 661 smbmtinfo_t *sm ;
598 * our getattr may change v_type accordingly. 662 snmb_share_t *ssp;
599 * Now use n_ovtype to keep track of the v_type 663 of fset _t endof f;
600 * we had during open (see conments above). 664 ssize_t past _eof;
601 & 665 int error;
602 switch (np >n_ovtype) {
603 case VDI R 667 caddr _t base;
604 ASSERT(np >n_dirrefs > 0); 668 u_of fset _t bl k;
605 if (--np->n_dirrefs) 669 u_of fset_t bof f ;
606 return; 670 size_t bl en;
607 if ((fctx = np->n_dirseq) != NULL) { 671 uint_t fl ags;
608 np->n_di rseq = NULL;
609 np->n_dirofs = 0; 673 #endif /* | codereview */
610 error = snbfs_snb_findclose(fctx, scred); 674 np = VTOSMB(vp);
611 1 675 sm = VIOSM (vp);
612 br eak; 676 ssp = sm ->sm _share;
614 case VREG 678 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
615 ASSERT(np->n_fidrefs > 0); 679 return (EIO;
616 if (--np->n_fidrefs)
617 return; 681 if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
618 if ((ofid = np->n_fid) !'= SMB_FI D UNUSED) { 682 return (EIO;
619 np->n_fid = SMB_FI D_UNUSED,
620 /* After reconnect, n_fid is invalid */ 684 ASSERT(snbfs_rw_| ock_hel d(&np->r_rw ock, RW READER));
621 if (np->n_vcgenid == ssp->ss_vcgenid) {
622 error = snbfs_snb_cl ose(686 if (vp->v_type != VREG
623 ssp, ofid, NULL, scred); 687 return (EISDIR);
624 }
625 } 689 if (uiop->uio_resid == 0)
626 br eak; 690 return (0);
628 defaul t: 692 /*
629 SMBVDEBUGE "bad n_ovtype %\ n", np->n_ovtype); 693 * Like NFS3, just check for 63-bit overflow. Qur SMB | ayer takes
630 br eak; 694 * care to return EFBIG when it has to fallback to a 32-bit call.
631 } 337 * Like NFS3, just check for 63-bit overflow
632 i1f (error) { 338 * Qur SMB | ayer takes care to return EFBI G
633 SMBVDEBUG("error %l cl osi ng %\ n" 339 * when it has to fallback to a 32-bit call.
634 error, np->n_rpath); 695 */

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 9

696
697
698

700
701
702
703

705

707
708
709

711
712
713
357
358
359
714
715
716
362
717
718
719

721
722
723
724
725

727
728
729
730
731

733
734
735
736
737
738

740
741

743
745

endoff = ui op->uio_| offset + uiop->uio_resid;
if (uiop->uio_loffset < 0 || endoff < 0)
return (EINVAL);

/* get vnode attributes fromserver */

va.va_mask = AT_SI ZE | AT_MII ME;

if (error = snbfsgetattr(vp &va, cr))
return (error);

/* Update ntime with ntime fromserver here? */

/* if offset is beyond EOF, read nothing */
if (uiop->uio_|offset >= va.va_size)
return (0);

/*
* Limt the read to the remaining file size. Do this by tenporarily
* reducing uio_resid by the amount the |ies beyoned the ECF.

* Linit the read to the remaining file size.

* Do this by tenporarily reducing uio_resid

* by the anpunt the |ies beyoned the ECF.

*

/

if (endoff > va. va_ si ze)
past _eof = (ssize_t) (endoff - va.va_size);
past _eof = (ssize_t)(endoff - va.va_size);
ui op->ui o_resid -= past_eof;

} else

past_eof = 0;

/* Bypass the VMif vnode is non-cacheable. */
if ((vp->v_flag & VNOCACHE) ||
((np->r_flags & RDI RECTI O &&
np->r_mapcnt == 0 &&
1 (vn_has_cached_data(vp)))) {

#endi f /* | codereview */

/* Shared lock for n_fid use in snmb_rwiio */

if (snmbfs_rw enter_sig(&p->r_| kserlock, RWREADER, SMBINTR(vp))
return (EINTR);

snb_credinit(&scred, cr);

/* After reconnect, n_fid is invalid */
if (np->n_vcgenid ! = ssp->ss_vcgenid)
error = ESTALE;
el se
error = snb_rwui o(ssp, np->n_fid, U O READ,
ui op, &scred, snb_tino_read);

snb_credrel e(&scred);
snmbfs_rw_exi t (&p->r_| kser| ock);

} else {

/* Do I/ O through segmap. */

do {
bl k = uiop->uio_|l of fset & MAXBVASK;
bof f = ui op->ui o_| of fset & MAXBOFFSET;
bl en = M N(MAXBSI ZE - boff, uiop->uio_resid);
if (vpmenable) {

error = vpmdata_copy(vp, blk + boff, blen, uiop

} else {

base = segmap_get mapflt(segkmap, vp, blk + boff,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_vnops. ¢

759
760

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

781
782
783

785
786

788
789
790
791
370
371
792
793
794
795
796
797
798
799
800

802
803
804
805
806

808
809

811
812
813
814

816
817

819
820

error = uionove(base + boff, blen, U O READ, uio

}
if (terror) {
mut ex_ent er (&p- >r _st at el ock) ;
if ((blen + boff == MAXBSI ZE) || (uiop->uio_|off
flags SM_DO\I'I'NEED:
} else {
flags = 0;
}
mut ex_exi t (&p->r_st at el ock) ;
} else {

flags = 0;

if (vpm_enabl e)

(void) vpmsync_pages(vp, blk + boff, blen, flag

} else {
(voi d) segmap_rel ease(segkmap, base, flags);

}
} while (lerror && uiop->uio_resid > 0);

}

#endif /* | codereview */

/* undo adjustment of resid */
ui op->ui o_resid += past_eof;
return (error);

}

/* ARGSUSED */

static int

snbfs_write(vnode_t * vp, struct uio * uiop, int ioflag, cred_t * cr,
cal l er_context _t * ct)

snbfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,

(cal l er_context _t *ct)
struct snb_cred scred,
struct vattr va,;
snbnode_t *np;
smbmti nfo_t *sm ;
smb_share_t *ssp;
of fset _t endoff, limt;
ssize_t past_limt;
int error, tino;
caddr _t base;
u_of fset _t bl k;
u_of fset _t bof f ;
size_t bl en;
uint_t fl ags;
u_of fset _t | ast_off;
size_t | ast _resid;

#endif /* | codereview */
np = VTOSMB(vp);
sm = VIOSM (vp);
ssp = sm->smi _share;

if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
return (EIO;

if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (ElO;

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

822

824
825

827
828

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

848
849
850
851
852
853

855
856
857
858
859
860
861
862
391
392
393
394
395
396
397
398
399
863
864
865
866
867
868
869
870
407
871
872
873

875

ASSERT(snbfs_rw_| ock_hel d(&np->r_rw ock, RWWRI TER));
if (vp->v_type != VREQ
return (EISDIR);

if (uiop->uio_resid == 0)
return (0);

/*
* Handle ioflag bits:

*/
if (iofl ag & (FAPPEND | FSYNQO))
(np->n_flag & NMODI FI ED) {
snbf s_attrcache_renove(np);
/* XXX: smbfs_vinval buf 2 */

(FAPPEND| FSYNC| FDSYNC)

}
if (ioflag & FAPPEND) {
/*
* File size can be changed by another client
*/

va.va_mask = AT_SI ZE;

if (error = snbfsgetattr(vp, &a, cr))
return (error);

ui op->ui o_| of fset = va.va_si ze;

}

*

* Like NFS3, just check for 63-bit overflow
*

/
endof f = ui op->uio_| offset + uiop->uio_resid;
if (uiop->uio_loffset < 0 || endoff < 0)
return (EINVAL);

/*
* Check to nmake sure that the process will not exceed its limt on
* file size. It is okay to wite up to the limt, but not beyond.
* Thus, the wite which reaches the limt will be short and the next
* wite will return an error.
*
* So if we're starting at or beyond the limt, EFBIG Oherw se,
* tenporarily reduce resid to the amount the falls after the limt.
* Check to nake sure that the process will not exceed
* its limt on file size. It is okay to wite up to
* the limt, but not beyond. Thus, the wite which
* reaches the limt will be short and the next wite
* will return an error.
*
* So if we're starting at or beyond the linmt, EFBIG
* Otherwise, tenporarily reduce resid to the anmpunt
* the falls after the limt.
*
/
limt = UIOp >uio_llimt;
if (li == RLI M54 INFINITY|| limt > MAXOFFSET_T)
Ilmt = MAXOFFSET_T;
if (uiop->uio_loffset >= Iimt)
return (EFBIG);
if (endoff > limt) {
past_limt = (ssize_t) (endoff - limt);
past_limt = (ssize_t)(endoff - limt);
uiop->uio_resid -= past_limt;

past_limt = 0;

/* Bypass the VMif vnode is non-cacheable. */

11

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

876 if ((vp->v_flag & VNOCACHE) ||

877 ((np->r_flags & RDIRECTIO) &&
878 np->r_mapcnt == 0 &&

879 I'(vn_has_cached_data(vp)))) {

881 #endif /* | codereview */

12

882 /* Timeout: |onger for append. */

883 tim = snb_tinmo_wite;

884 if (endoff > np >r_si ze)

885 tino = snmb_tino_append;

887 /* Shared lock for n_fid use in snmb_rwiio */

888 if (snbfs_rw enter_sig(&np->r_| kserTock, RW READER, SMBINTR(vp))
889 return (EINTR);

890 snb_credinit(&scred, cr);

892 /* After reconnect, n_fid is invalid */

893 if (np->n_vcgenid ! = ssp->ss_vcgenid)

894 error = ESTALE;

895 el se

896 error = snb_rwuii o(ssp, np->n_fid, U O W TE,

897 uiop, &scred, tino);

899 if (error == 0) {

900 nut ex_ent er (&np- >r _st at el ock);

901 np->n_flag |[= (NFLUSHW RE | NATTRCHANGED);

902 if (uiop->uio_loffset > (offset_t) np->r_size)
903 np->r_size = (len_t) uiop->uio_|offset;
412 if (uiop->uio_|loffset > (offset_t)np->r_size)

413 np->r_size = (len_t)uiop->uio_|loffset;

904 mut ex_exi t (&np- >r_st at el ock) ;

905 if (ioflag & (FSYNC | FDSYNO)) {

415 if (ioflag & (FSYNC| FDSYNC))

906 /* Don't error the I/Oif this fails. */
907 (void) snbfs_snb_flush(np, &scred);

908 }

909 }

910 snb_credrel e(&scred);

911 snmbf s_rw_exi t (&p->r_I| kserl ock);

913 } else {

915 /* Do I/0O through segmap. */

916 size_t bsize = vp->v_vfsp->vfs_bsize;

918 do {

919 bl k = ui op->ui o_| of fset & MAXBMASK;

920 bof f = ui op->ui o_| of fset & MAXBOFFSET;

921 bl en = M N(MAXBSI ZE - boff, uiop->uio_resid);
923 | ast _of f = uiop->uio_loffset;

924 | ast _resid = uiop->uio_resid;

926 ui o_prefaul t pages((ssize_t) blen, uiop);

928 if (vpmenable) {

930 error = writenp(np, NULL, blen, uiop, 0);
932 } else {

934 if (segrrap kpn) {

935 fset_t pof f = ui op->ui o_| of f set
936 S|zet pl en = M N(PAGESI ZE - po

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 13

938

940
941
942
943
944

946
947

949
950
951
952
953

955
956
957
958
959
960

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979

981
982
983
984
985
986
987
988
989
990

992
993

995
996
997

int pagecr eat €;

mut ex_ent er (&np->r _st at el ock) ;
pagecreate = (poff == 0) &&

((pl en == PAGESI ZE) ||

(ui op->uio_|l offset + plen >= np
mut ex_exi t (&p->r_st at el ock);

base = segmap_get mapflt(segkmap, vp, blk
error = witenp(np, base + poff, blen, u

} else {
base = segmap_get mapflt(segkmap, vp, blk
error = witenp(np, base + boff, blen, u

}

if (terror) {
if (uiop->uio_|loffset %bsize == 0) {
flags = SMWRI TE | SM _DONTNEED,
} else {
flags = O;
}

if (ioflag & (FSYNC | FDSYNC)) {
flags &= ~SM ASYNC,
flags | = SM WRI TE;

}
if (vpm.enabl e)

error = vpmsync_pages(vp, blk, blen, fl
} else {

error = segmap_rel ease(segknap, base, fl

} else {
if (vpmenable) {
(void) vpmsync_pages(vp, blk, blen, 0);
} else {
(voi d) segmap_rel ease(segkmap, base, 0);
}

}
} while ('error && uiop->uio_resid > 0);

}

#endi f /* | codereview */
/* undo adjustnent of resid */
if (error) {
uiop->uio_resid = last_resid + past_limt;
ui op->ui o_|l offset = |last_off;
} else {
#endif /* | codereview */
uiop->uio_resid += past_limt;

}
#endi f /* | codereview */

return (error);

}

/* correspond to witerp() in nfs_client.c */
static int
writenp(snbnode_t * np, caddr_t base, int tcount, struct uio * uiop, int pgcreat

998 {

999
1000
1001
1002
1003

int pagecreate;
int n;

int saved_n;
caddr _t saved_base;
u_of fset_t of f set;

new usr/src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 14
1004 int error;

1005 int smerror;

1007 vnode_t *vp = SMBTOV(np);

1009 ASSERT(t count <= MAXBSI ZE && tcount <= ui op->uio_resid);

1010 ASSERT(snmbf s_rw_| ock_hel d(&p->r_rw ock, RWWRI TER));

1011 if (!vpmenable) {

1012 ASSERT(((uintptr_t) base & MAXBOFFSET) + tcount <= MAXBSI ZE);
1013 }

1014 /*

1015 * Move bytes in at npst PAGESI ZE chunks. We nust avoi d spanni ng
1016 * pages I n uionmove() because page faults may cause the cache to be
1017 * Invalidated out fromunder us. The r_size is not updated until
1018 * after the uionpve. If we push the |last page of a file before
1019 * r_size is correct, we will lose the data witten past the current
1020 * (and invalid) r_size.

1021 */

1022 do {

1023 of fset = ui op->ui o_| of fset;

1024 pagecreate = 0;

1026 /*

1027 * nis the nunber of bytes required to satisfy the request
1028 * or the nunber of bytes to fill out the page.

1029 */

1030 n = (int) MN((PACESIZE - (offset & PAGEOFFSET)), tcount);
1032 /*

1033 * Check to see if we can skip reading in the page and just
1034 * allocate the nenory. We can do this if we are going to
1035 * rewite the entire mapping or if we are going to wite to
1036 * or beyond the current end of file fromthe begi nning of
1037 * the mappi ng.

1038 *

1039 * The read of r_size is now protected by r_statel ock.

1040 */

1041 mut ex_ent er (&np->r _st at el ock) ;

1042 /*

1043 * When pgcreated is nonzero the caller has al ready done a
1044 * segmap_getmapflt with forcefault 0 and S WRITE. Wth

1045 * segkpmthis nmeans we already have at | east one page

1046 * created and mapped at base.

1047 */

1048 pagecreate = pgcreated ||

1049 (of fset & PAGECFFSET) == 0 &&

1050 (n == PAGESIZE || ((offset + n) >= np->r_size)));
1052 mut ex_exi t (&p->r _st at el ock);

1054 if (!vpmenable & pagecreate) {

1055 I*

1056 * The last argunent tells segmap_pagecreate() to
1057 * always |ock the page, as opposed to sometines
1058 * returning with the page | ocked. This way we avoid
1059 * a fault on the ensuing uionobve(), but also nore
1060 * inportantly (to fix bug 1094402) we can call

1061 * segmap_fault() to unlock the page in all cases. An
1062 * alternative would be to nodify segnap_pagecreate()
1063 * to tell us when it is locking a page, but that’'s a
1064 * fairly nmajor interface change.

1065 */

1066 if (pgcreated ==

1067 (voi d) segmap_pagecr eat e(segkmap, base,

1068 (uint_t) n, 1);
1069 saved_base = base;

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 15

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109

1111
1112

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

1128
1129
1130
1131
1132
1133
1134
1135

saved_n = n;

—_——

* ok kb ok ok

The nunber of bytes of data in the |ast page can not be
accurately be determ ned while page is being uionpbve'd to
and the size of the file being updated. Thus, inform
threads which need to know accurately how much data is in
the |ast page of the file. They will not do the i/o
imedi ately, but will arrange for the i/o to happen |ater
* when this nodify operation will have finished.

*

/
ASSERT(! (np->r_flags & RMODI NPROGRESS)) ;
mut ex_ent er (&np->r _st at el ock) ;
np->r_flags | = NPROGRESS;
np->r_nodaddr = (of fset & MAXBVASK);
mut ex_exi t (&p->r _st at el ock);

if (vpmenable) {
/*

* Copy data. If new pages are created, part of the
* page that is not witten will be initizliazed with
* zeros.
*/
error = vpm.data_copy(vp, offset, n, uiop,
! pagecreate, NULL, 0, S VWRITE);
} else {
error = uionove(base, n, U O WRI TE, uiop);
}

/
r_size is the maxi mum nunber of bytes known to be in the
file. Make sure it is at least as high as the first
u

s
il
nwitten byte pointed to by uio_loffset.

R
-

mut ex_ent er (&p- >r _st at el ock) ;

if (np->r_size < uiop->uio_|offset)
np->r_si ze = uiop->uio_| of fset;

np->r_flags & ~RMODI NPROGRESS;

np->r_flags | = RDIRTY;

mut ex_exi t (&p->r _st at el ock);

/* n = # of bytes witten */
n = (int) (uiop->uio_|loffset - offset);

if (!vpmenable) {
base += n;

ount -= n;

c

*

* |f we created pages wo initializing themconpletely, we

* need to zero the part that wasn’t set up. This happens on

* a nost ECF wite cases and if we had some sort of error

* during the uionove.

*

/

if (!vpmenable && pagecreate) {

if ((uiop->uio_|offset & PAGEOFFSET) || n == 0)
(void) kzero(base, PAGESIZE - n);

if (pgcreated) {
/*

* Caller is responsible for this page, it
* was not created in this |oop.
*/
pgcreated = 0;
} else {

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

1150
1151
1152

1154
1155
1156
1157
1158
1159
1160

1162

1164
1165

1167
1168

1170
1171

1173
1174
1175

1177
1178
1179
1180
1181
1182
1183
1184

1186
1187
1188
1189

1191
1192
1193
1194
1195
1196
1197

1199
1200
1201

* For bug 1094402: segmap_pagecreate | ocks
* page. Unlock it. This also unlocks the

* pages allocated by page_create_va() in
*/ segnep_pagecreate().

*

smerror = segnmap_fault(kas.a_hat, segkmap,
saved_base, saved_n,
F_SOFTUNLOCK, S_WRI TE);
if (error ==
error = smerror;

}
}
} while (tcount > 0 && error == 0);

return (error);

}
#endif /* ! codereview */

/* ARGSUSED */
static int
snbfs_ioctl (vnode_t *vp, int cnd, intptr_t arg, int flag,

{

cred_t *cr, int *rvalp, caller_context_t *ct)

int error;
smbmti nfo_t *sm ;

sm = VIOSM (vp);

if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
return (EIO;

if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (E1O;

switch (cnd)

{
/* First three fromZFS. XXX - need these? */

case _FI OFFS:
error = snbfs_fsync(vp, O, cr, ct);
br eak;

/*

* The following two ioctls are used by bfu.
* Silently ignore to avoid bfu errors.

*/

case _FI OGO

case _FIOsSD O
error = 0;
br eak;

#ifdef NOT_YET /* XXX - fromthe NFS code. */

#endi f

case _FI ODI RECTI O
error = snbfs_directio(vp, (int)arg, cr);

/*
* Allow get/set with "raw' security descriptor (SD) data.
* Useful for testing, diagnosing idnmap problens, etc.
*
/
case SMBFSI O CETSD:
error = snbfs_acl _i ocget(vp, arg, flag, cr);
br eak;

case SMBFSI O SETSD:
error = snbfs_acl _i ocset(vp, arg, flag, cr);
br eak;

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 17

1203
1204
1205
1206

1208
1209

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

1228

1230
1231

1233
1234

1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

1261
1262

1264

1266
1267

defaul t:
error = ENOITY;
br eak;
}
return (error);
}
/*
* Return either cached or renpte attributes. If get renote attr
* use themto check and invalidate caches, then cache the new attributes.
*
* XXX
* This op should eventual |y support PSARC 2007/315, Extensible Attribute
* |Interfaces, for richer netadata.
*/
/* ARGSUSED */
static int

snbfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
cal | er_context_t *ct)
{

snbnode_t *np;
smbmtinfo_t *sm;

sm = VIOSM (vp);

if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
return (EIO;

if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (E1O;

~

=D * Kk ko ok ok ok *

If it has been specified that the return value will
just be used as a hint, and we are only being asked
for size, fsid or rdevid, then return the client’s
notion of these values w thout checking to nake sure
that the attribute cache is up to date.

The whole point is to avoid an over the wire GETATTR
call.

-~

VTOSMB(vp) ;
flags & ATTR_HINT) {
if (vap->va_mask ==
(vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
mut ex_ent er (&np- >r_st at el ock) ;
if (vap->va_mask | AT_SIZE)
vap- >va_si ze = np->r_si ze;
if (vap->va_mask | AT_FSI D)
vap->va_fsid = vp->v_vfsp->vfs_dey;
if (vap->va_mask | AT_RDEV)
vap->va_rdev = vp->v_rdev;
nut ex_exi t (&np->r_st at el ock) ;
return (0);

-5

=10

}

return (snbfsgetattr(vp, vap, cr));
}

/* snbfsgetattr() in snmbfs_client.c */

/*
* XXX

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 18

1268 * This op should eventual |y support PSARC 2007/ 315, Extensible Attribute
1269 * Interfaces, for richer netadata.

1270 */

1271 /* ARGSUSED4*/

1272 static int

1273 snbfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,

1274 caller_context_t *ct)

1275 {

1276 vfs_t *vf sp;

1277 smbmt i nf o_t *sm ;

1278 int error;

1279 uint_t mask;

1280 struct vattr ol dva;

1282 vfsp = vp->v_vfsp;

1283 sm = VFTOSM (vfsp);

1285 if (curproc->p_zone != sm->sni _zone_ref.zref_zone)

1286 return (ElO;

1288 if (sm->smi_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
1289 return (EIO;

1291 mask = vap->va_nask;

1292 if (mask & AT_NGOSET)

1293 return (EINVAL);

1295 if (vfsp->vfs_flag & VFS_RDONLY)

1296 return (ERCFS);

1298 /*

1299 * This is a _local _ access check so that only the owner of
1300 * this nmount can set attributes. Wth ACLs enabl ed, the
1301 * file owner can be different fromthe nmount owner, and we
1302 * need to check the _nount_ owner here. See _access_rwx
1303 */

1304 bzero(&ol dva, sizeof (oldva));

1305 ol dva. va_mask = AT_TYPE | AT_MODE;

1306 error = snbfsgetattr(vp, &oldva, cr);

1307 if (error)

1308 return (error);

1309 oldva.va_nask |= AT_UD | AT QD

1310 ol dva.va_uid = smi->sm _uid;

1311 ol dva.va_gid = smi->sm _gid;

1313 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
1314 snbf s_accessx, vp);

1315 if (error)

1316 return (error);

1318 if (mask & (AT_UD | AT _GD))

1319 if (sm->sm_flags & SM _ACL)

1320 error = snbfs_acl _setids(vp, vap, cr);
1321 el se

1322 error = ENOSYS;

1323 if (error 1= 0)

1324 SMBVDEBUG("error % seting UD @D on %",
1325 error, VTOSMB(vp)->n_rpath);

1326 /*

1327 * It might be nore correct to return the
1328 * error here, but that causes conplaints
1329 * when root extracts a cpio archive, etc.
1330 * So ignore this error, and go ahead with
1331 * the rest of the setattr work.

1332 */

1333 }

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 19 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢
1334 } 1400 * Only SIZE really requires a handle, but it’'s
1401 * sinpler and nore reliable to set via a handle.
1336 return (snbfssetattr(vp, vap, flags, cr)); 1402 * Sone servers |like NT4 won’t set times by path.
1337 } 1403 * Also, we're usually setting everything anyway.
1404 *
1339 /* 1405 if (mask & (AT_SIZE | AT _ATIME | AT_MIME))
1340 * Mostly from Darwi n snbfs_setattr() 1406 error = snbfs_snb_tmpopen(np, rights, &scred, &fid);
1341 * but then nodified a lot. 1407 if (error) {
1342 */ 1408 SMBVDEBUG("error % openl ng %\n",
1343 /* ARGSUSED */ 1409 error, np->n_rpath);
1344 static int 1410 goto out;
1345 snbfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1411 }
1346 { 1412 have_fid = 1;
1347 int error = 0; 1413 }
1348 snbnode_t *np = VTOSMB(vp);
1349 uint_t mask = vap->va_nask; 1415 7%
1350 struct tinespec *ntine, *atine; 1416 * |f the server supports the UNI X extensions, right here is where
1351 struct snb_cred scred,; 1417 * we'd support changes to uid, gid, node, and possi bly va_fl ags.
1352 int cerror, nodified = 0; 1418 * For now we claimto have made any such changes.
1353 unsi gned short fid; 1419 */
1354 int have fid = 0;
1355 uint32_t rights = 0; 1421 if (mask & AT_SI ZE) {
1422 /*
1357 ASSERT(cur proc->p_zone == VTOSM (vp)->sni _zone_ref.zref_zone); 1423 * |f the newfile size is | ess than what the client sees as
1424 * the file size, then just change the size and invalidate
1359 /* 1425 * the pages.
1360 * There are no settable attributes on the XATTR dir, 1426 * | amcomenting this code at present because the function
1361 * so just silently ignore these. On XATTR files, 1427 * snbfs_put apage() is not yet inplenented.
1362 * you can set the size but nothing else. 1428 */
1363 */
1364 if (vp->v_flag & V_XATTRDI R) 1430 i
1365 return (0); 1431 * Set the file size to vap->va_size.
1366 if (np->n_flag & N_XATTR) { 1432 *
1367 iT (mask & AT_TI I\/ES) 1433 ASSERT(have_fid);
1368 SMBVDEBUG("I gnore set time on xattr\n"); 1434 error = snbfs_snb_setfsize(np, fid, vap->va_size, &scred);
1369 mask &= AT_SI ZE; 1435 if (error) {
1370 } 1436 SMBVDEBUG "set size error % file %\n",
1437 error, np->n_rpath);
1372 /* 1438 } else {
1373 * If our caller is trying to set multiple attributes, they 1439 /*
1374 * can make no assunption about what order they are done i n. 1440 * Darwin had code here to zero-extend.
1375 * Here we try to do themin order of decreasing |ikelihood 1441 * Tests indicate the server will zero-fill,
1376 * of failure, just to minimze the chance we'll w nd up 1442 * so | ooks like we don't need to do this.
1377 * with a partially conplete request. 1443 * Good thing, as this could take forever.
1378 */ 1444 *
1445 * XXX: Reportedly, witing one byte of zero
1380 /* Shared |l ock for (possible) n_fid use. */ 1446 * at the end of fset avoids problems here.
1381 if (snmbfs_rw enter_sig(&p->r_| kserl ock, RW READER, SMBI NTR(vp))) 1447 */
1382 return (EINTR); 1448 nut ex_ent er(&np >r_statel ock);
1383 snmb_credinit(&scred, cr); 1449 np->r_si ze = vap->va_si ze;
1450 mut ex_exi t (&p->r_st atel ock) ;
1385 /* 1451 nodi fied = 1;
1386 * WIIl we need an open handle for this setattr? 1452 }
1387 * |f so, what rights will we need? 1453 }
1388 */
1389 if (mask & (AT ATIME | AT_MIIME)) { 1455 /*
1390 rights | = 1456 * XXX: When Sol aris has create_tinme, set that too.
1391 SA_RI GHT_FI LE_WRI TE_ATTRI BUTES; 1457 * Note: create_tine is different fromctine.
1392 } 1458 */
1393 i f (mask &AT_SIZE) { 1459 nime = ((mask & AT_MII ME) ? &ap->va_ntine : 0);
1394 rights | = 1460 atime = ((nmask & AT_ATIME) ? &ap->va_atinme : 0);
1395 SA Rl GHT_FI LE_WRI TE_DATA |
1396 SA_RI GHT_FI LE_APPEND_DATA; 1462 if (ntine || atine) {
1397 } 1463 /*
1464 * Always use the handl e-based set attr call now
1399 0% 1465 * Not trying to set DOS attributes here so pass zero.

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476

1478
1479
1480
1481
1482
1483
1484
1485

1487
1488
1489
1490
1491
1492

1494
1495

1497
1498

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529

*
/
ASSERT(have_fid);
error = snbfs_snb_setfattr(np, fid,
0, ntime, atime, &scred);
if (error) {
MBVDEBUG("set tinmes error % file %\n"
error, np->n_rpath);
} else {
nodi fied = 1;
}

out :

T I T T A T JE U

*/

if (nDdi;ied) {

* Invalidate attribute cache in case the server

* doesn’t set exactly the attributes we asked.
)

snbf s_attrcache_renove(np);

}

if (have_fid) {
cerror = snbfs_snb_tnpcl ose(np, fid, &scred);
if (cerror)
SMBVDEBUG("error %l closing %\n",
cerror, np->n_rpath);

}

snmb_credrel e(&scred);
snbfs_rw_exi t (&p->r_| kserl ock) ;

return (error);

snbf s_access_rwx()
Common function for snbfs_access, etc.

The security nodel inplenented by the FS is unusual
due to the current "single user nounts" restriction:
Al'l access under a given nount point uses the CIFS
credentials established by the owner of the nount.

Mbst access checking is handl ed by the CIFS server,
but we need sufficient Unix access checks here to
prevent other local Unix users from having access
to objects under this mount that the uid/gid/ node
settings in the nount would not allow.

Wth this nodel, there is a case where we need the
ability to do an access check before we have the
vnode for an object. This function takes advantage
of the fact that the uid/gid/ node is per nount, and
avoi ds the need for a vnode.

We still (sort of) need a vnode when we call
secpol i cy_vnode_access, but that only uses
the vtype field, so we can use a pair of fake
vnodes that have only v_type filled in.

XXX: Later, add a new secpolicy_vtype_access()
that takes the vtype instead of a vnode, and
get rid of the tnpl_vxxx fake vnodes bel ow.

1530 static int
1531 snbfs_access_rwx(vfs_t *vfsp, int vtype, int node, cred_t *cr)

21

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1532 {
1533
1534
1535
1536
1537
1538
1539

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552

1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564

1566
1567
1568
1569
1570
1571
1572
1573

(1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586

1588
1589
1590
1591
1592
1593
1594
1595

1597

/* See the secpolicy call below */

static const vnode_t tnpl_vdir ={ .v_type = VDIR };
static const vnode_t tnpl_vreg = { .v_type = VREG };
vattr_t va,;

vnode_t *tvp;

struct smbmmtinfo *smi = VFTOSM (vfsp);

int shift =0

/*

* Build our (fabricated) vnode attributes.
* XXX: Coul d nake these tenplates in the
* per-nmount struct and use them here.

*/

bzero(&va, sizeof (va));
va. va_nask AT_TYPE | AT MODE | AT_U D | AT_Q D
va.va_type = vtype;
va. va_node (vtype = VDIR) ?
sm ->sm _dnode : sni->sn _f node;
va.va_uid = sm->sm _uid;
va.va_gid = sm->sm _gid;

*

* Disallow wite attenpts on read-only file systens,

* unless the file is a device or fifo node. Note:

* Inline vn_is_readonly and |'S_DEVWP here because

* we may not have a vnode ptr. Original expr.

* (mode & VWARRITE) && vn_is_readonly(vp) && !1S DEWP(vp))
*
if

((rode & WARI TE) &&

(vfsp- >vfs _flag & VFS_RDONLY) &&

I(vtype == VCHR || vtype == VBLK || vtype == VFIFO)
return (ERCFS);

/*
* Disallow attenpts to access mandatory lock files.
* Simlarly, expand MANDLOCK here
* XXX: not sure we need this.
*/
if ((nde & (WWRITE | VREAD | VEXEC)) &&
va.va_type == VREG & MANDMODE(va. va_npde))
return (EACCES);

/*
* Access check is based on only
* one of owner, group, public.

* |f not owner, then check group.
* |f not a nenber of the group,
*/then check public access.

*

f

(crgetui d(cr) I'= va.va_uid) {
shift += 3;
if (lgroupmenber(va va_gid, cr))
shift += 3;
}
/*
* We need a vnode for secpolicy_vnode_access,
* but the only thing it looks at is v_type,
* so pass one of the tenpl ates above.
*
/

tvp = (va.va_type == VDIR) ?
(vnode_t *)& npl _vdir
(vnode_t *) &t npl _vreg;

return (secpolicy_vnode_access2(cr, tvp, va.va_uid,

22

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 23 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 24
1598 va.va_nmode << shift, node)); 1664 if ((syncflag & FNODSYNC) || | S_SWAPVP(vp))
1599 } 1665 return (0);
1601 /* 1667 if ((syncflag & (FSYNC| FDSYNC)) == 0)
1602 * See snbfs_setattr 1668 return (0);
1603 */
1604 static int 1670 /* Shared lock for n_fid use in _flush */
1605 snbfs_accessx(void *arg, int node, cred_t *cr) 1671 if (smbfs_rw enter_sig(&p->r_| kserlock, RWREADER, SMBINTR(vp)))
1606 { 1672 return (EINTR);
1607 vnode_t *vp = arg; 1673 smb_credinit(&scred, cr);
1608 I*
1609 * Note: The caller has checked the current zone, 1675 error = snbfs_snb_flush(np, &scred);
1610 * the SM _DEAD and VFS_UNMOUNTED f| ags, etc.
1611 */ 1677 smb_credrel e(&scred);
1612 return (snbfs_access_rwx(vp->v_vfsp, vp->v_type, node, cr)); 1678 snbf s_rw_exi t (&p->r _| kserl ock) ;
1613 }
1680 return (error);
1615 /* 1681 }
1616 * XXX
1617 * This op shoul d support PSARC 2007/ 403, Mbdified Access Checks for CFS 1683 /*
1618 */ 1684 * Last reference to vnode went away.
1619 /* ARGSUSED */ 1685 */
1620 static int 1686 /* ARGSUSED */
1621 snbfs_access(vnode_t *vp, int node, int flags, cred_t *cr, caller_context_t *ct) 1687 static void
1622 { 1688 snbfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1623 vfs_t *vfsp, 1689 {
1624 smbmt i nf o_t *smi; 1690 smbnode_t np;
1691 struct smb_cred scred
1626 vfs Sp = vp->v _vfsp;
1627 sm = VFTOSM (vfsp); 1693 /*
1694 * Don't "bail out" for VFS_UNMOUNTED here,
1629 if (curproc->p_zone != sm->sm _zone_ref.zref_zone) 1695 * as we want to do cleanup, etc.
1630 return (EIO; 1696 * See al so pcfs_inactive
1697 */
1632 if (sm->sm_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
1633 return (ElO; 1699 np = VTOSMB(vp);
1635 return (snbfs_access_rwx(vfsp, vp->v_type, node, cr)); 1701 /*
1636 } 1702 * If this is coming fromthe wong zone, we |et someone in the right
1703 * zone take care of it asynchronously. W can get here due to
1704 * VN_RELE() being called frompageout() or fsflush(). This call nmay
1639 /* 1705 * potentially turn into an expensive no-op if, for Instance, v_count
1640 * Flush local dirty pages to stable storage on the server. 1706 * gets increnented in the neantime, but it’s still correct.
1641 * 1707 */
1642 * |If FNODSYNC is specified, then there is nothing to do because
1643 * netadata changes are not cached on the client before being 1709 /*
1644 * sent to the server. 1710 * Defend against the possibility that higher-level callers
1645 */ 1711 * mght not correctly bal ance open and close calls. [If we
1646 /* ARGSUSED */ 1712 * get here with open references remaining, it nmeans there
1647 static int 1713 * was a mssing VOP_CLOSE sonewhere. |If that happens, do
1648 snbfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1714 * the close here so we don't "leak" FIDs on the server.
1649 { 1715 *
1650 int error = 0; 1716 * Exclusive lock for nmodifying n_fid stuff.
1651 snmbmti nfo_t *smi; 1717 * Don't want this one ever interruptible.
1652 snmbnode_t *np; 1718 */
1653 struct smb_cred scred; 1719 (void) snbfs_rw enter_sig(&p->r_I| kserl ock, RWWRI TER, 0);
1720 smb_credinit(&scred, cr);
1655 np = VTOSMB(vp);
1656 sm = VIOSM (vp); 1722 switch (np->n_ovtype) {
1723 case VNON:
1658 if (curproc->p_zone != sm->snm _zone_ref.zref_zone) 1724 /* not open (OK)
1659 return (ElO; 1725 br eak;
1661 if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED) 1727 case VDR
1662 return (ElO; 1728 if (np->n_dirrefs == 0)
1729 br eak;

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 25

1730
1731
1732
1733
1734
1735

1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

1751

1753
1754
1755
1756
1757
1758
1759
1760

1762
1763
1764
1765
1766

1768
1769

1771
1772

1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786

1788
1789

1791
1792

1794
1795

SMBVDEBUG(“open dir: refs % path %\n",
np->n_dirrefs, np->n_rpath);

/* Force last cl ose. */

np->n_dirrefs = 1;

snbfs rele fld(np|

break;

&scred);

case VREG

if (np- >n fldrefs == 0)
eak

SNBVDEBUG(open file: refs %@ id Ox% path %\n",
np->n_fidrefs, np->n_fid, np->n_rpath)
/*
* Before otWcl ose, nake sure dirty pages witten back.
*
/
if (vn_has_cached_data(vp)) {
/* snbfs_putapage() will acquire shared | ock,
* exclusive lock tenporally.
*
/

so rel ease

snbfs_rw exit (&p->r_| kserl ock);

(void) snbfs_putpage(vp, (offset_t) O, O, B_INVAL | B_AS
/* acquire exclusive |ock again. */

(void) snbfs_rw enter_sig(&p->r_| kserlock, RWWRI TER, 0

coder evi ew */

#endi f /* |

/* Force last close. */
np->n_fidrefs = 1;
snbfs rele fld(np| &scred);
break;

defaul t:
SMBVDEBUG(" bad n_ovtype %\ n", np->n_ovtype);
np->n_ovtype = VNON
br eak;

}

snmb_credrel e(&scred);

snbf s

smbf s_

}
| *

_rw_exit(&p->r_| kserl ock);

addfree(np);

* Renpte file system operations having to do with directory mani pul ation.

*/

/* ARGSUSED */

static int

snbf s_I ookup(vnode_t *dvp,

char *nm vnode_t **vpp, struct pathname *pnp,

int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
int *direntflags, pathname_t *real pnp)
{
vis_t *vfs;
smbmmti nfo_t *sm ;
smbnode_t *dnp;
int error;
vfs = dvp->v_vfsp;
sm = VFTOSM (vfs);
if (curproc->p_zone != sm->sm _zone_ref.zref_zone)

if (sm->sm_flags & SM _DEAD ||

return (EPERV;

vfs->vfs_flag & VFS_UNMOUNTED)
return (EIO;

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1797

1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810

1812
1813
1814

1816
1817

1819
1821

1823
1824

1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843

1845
1846

1848

1850
1851

1853
1854
1855
1856
1857

1859
1860
1861

dnp = VTOSMB(dvp);
/*
* Are we | ooking up extended attributes? |f so, "dvp" is
* the file or directory for which we want attributes, and
* we need a | ookup of the (faked up) attribute directory
* before we | ookup the rest of the path.
*/
if (flags & LOOKUP_XATTR) {
/*
* Require the xattr nmount option.
*
/
if ((vfs->vfs_flag & VFS_XATTR) == 0)
return (EINVAL);
error = snbfs_get_xattrdir(dvp, vpp, cr, flags);
return (error);
}
if (smbfs_rw enter_sig(&np->r_rw ock, RW READER, SMBINTR(dvp)))
return (EINTR);
error = snbfslookup(dvp, nm vpp, cr, 1, ct);
snbfs_rw_exi t (&np->r_rw ock);
return (error);
}
/* ARGSUSED */
static int
snbf sl ookup(vnode_t *dvp, char *nm vnode_t **vpp, cred_t *cr,
int cache_ok, caller_context_t *ct)
{
int error;
int suppl en; /* supported |length */
vnode_t *vp;
smbnode_t *np;
snbnode_t *dnp;
smbmti nfo_t *sm ;
/* struct snb_vc *vep; */
const char *ill;
const char *nane = (const char *)nm
int nmen = strlen(nm;
int rplen;
struct snmb_cred scred;
struct snbfattr fa;
sm = VIOSM (dvp);
dnp = VTOSMB(dvp);
ASSERT(cur proc->p_zone == sni->sni _zone_ref.zref_zone);
#i f def NOT_YET

#el se

#endi f

vcp = SSTOVC(sm ->sm _share);

/* XXX: Should conpute this once and store it in snmbmtinfo_t */
suppl en = (SMB_DI ALECT(vcp) >= SVMB_DI ALECT_LANVAN2_0) ? 255 : 12;

suppl en = 255;
/*

* RWock nmust be held, either reader or witer.
* XXX: Can we check without |ooking directly

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 27 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 28
1862 * inside the struct snmbfs_rw ock_t? 1928 * for ".." because we knowit's a directory,
1863 */ 1929 * and we can just |eave the rest "stale"
1864 ASSERT(dnp->r _rw ock. count != 0); 1930 */ sonmeone does a getattr.
1931 *
1866 /* 1932 if (nmMen == 2 & nang[0] == "'." && nane[l] ==".") {
1867 * |f lookup is for "", just return dvp. 1933 if (dvp->v_flag & VROOT) ({
1868 * No need to perform any access checks. 1934 /*
1869 */ 1935 * Already at the root. This can happen
1870 if (nmen == 0) { 1936 * with directory listings at the root,
1871 VN_HOLD(dvp) ; 1937 * which lookup "." and ".." to get the
1872 *vpp = dvp; 1938 * inode nunbers. Let ".." be the sane
1873 return (0); 1939 * as "." in the FS root.
1874 } 1940 *
1941 VN_HOLD(dvp) ;
1876 /* 1942 *vpp = dvp;
1877 * Can’'t do | ookups in non-directories. 1943 return (0);
1878 * 1944 }
1879 if (dvp->v_type !'= VDI R)
1880 return (ENOTDIR); 1946 /*
1947 * Special case for XATTR directory
1882 /* 1948 */
1883 * Need search permission in the directory. 1949 if (dvp->v_flag & V_XATTRDI R)
1884 */ 1950 error = snbfs_xa_parent (dvp, vpp);
1885 error = snbfs_access(dvp, VEXEC, 0, cr, ct); 1951 return (error);
1886 if (error) 1952 }
1887 return (error);
1954 /*
1889 * 1955 * Find the parent path |ength.
1890 * |f lookup is for ".", just return dvp. 1956 */
1891 * Access check was done above. 1957 rplen = dnp->n_rplen;
1892 */ 1958 ASSERT(rplen > 0);
1893 if (nmMen == 1 & nane[0] ==".") { 1959 while (--rplen >= 0) {
1894 VN_HOLD(dvp) ; 1960 if (dnp->n_rpath[rplen] == "\\")
1895 *vpp = dvp; 1961 br eak;
1896 return (0); 1962 1
1897 } 1963 if (rplen <= 0) {
1964 /* Found our way to the root. */
1899 /* 1965 vp = SMBTOV(smi ->smi _root);
1900 * Now sone sanity checks on the nane. 1966 VN_HOLD(vp) ;
1901 * First check the Iength. 1967 *vpp = vp;
1902 i 1968 return (0);
1903 if (nmen > supplen) 1969 }
1904 return (ENAMETOOLONG ; 1970 np = snbfs_node_findcreate(sm,
1971 dnp->n_rpath, rplen, NULL, O, O,
1906 * 1972 &nbfs_fattr0); /* force create */
1907 * Avoid surprises with characters that are 1973 ASSERT(np != NULL);
1908 * illegal in Wndows file nanes. 1974 vp = SMBTOV(np);
1909 * Todo: CATI A mappi ngs XXX 1975 vp->v_type = VDR
1910 */
1911 ill =illegal_chars; 1977 /* Success! */
1912 if (dnp->n_flag & N _XATTR) 1978 *vVpp = vp;
1913 ill++; /* allow colon */ 1979 return (0);
1914 if (strpbrk(nm ill)) 1980 }
1915 return (EINVAL);
1982 /*
1917 /* 1983 * Nornmal | ookup of a nanme under this directory.
1918 * Special handling for |ookup of 1984 * Note we handled "", ".", ".." above.
1919 * 1985 */
1920 * We keep full pathnames (as seen on the server) 1986 if (cache_ok) {
1921 * so we can just trimoff the |ast conponent to 1987 /*
1922 * get the full pathnane of the parent. Note: 1988 * The caller indicated that it’s OKto use a
1923 * We don’t actually copy and nodify, but just 1989 * cached result for this |ookup, so try to
1924 * conpute the trinmed length and pass that with 1990 * reclaima node fromthe snbfs node cache.
1925 * the current dir path (not null term nated). 1991 */
1926 * 1992 error = snbfsl ookup_cache(dvp, nm nnlen, &p, cr);
1927 * W don't go over-the-wire to get attributes 1993 if (error)

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1994
1995
1996
1997
1998
1999
2000

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

2022
2023
2024

2026
2027

2029
2030
2031
2032

2034
2035

2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053

2055
2056
2057
2058
2059

return (error);
if (vp !'= NULL)
/* hold taken in | ookup_cache */
*vpp = Vvp;
return (0);

}

/*

* OK, go over-the-wire to get the attributes,
* then create the node.

*

/
snmb_credinit(&scred, cr);
/* Note: this can allocate a new "name" */
error = snbfs_snb_I ookup(dnp, &nane, &nm en, &fa, &scred);
snb_credrel e(&scred);
if (error == ENOTDIR) {

/*

* Lookup failed because this directory was
* renoved or renaned by another client.

* Renpve any cached attributes under it.
*/

snbf s_attrcache_renove(dnp);

snmbf s_attrcache_prune(dnp);

}
if (error)
goto out;

error = snbfs_nget(dvp, name, nnlen, & a, &vp);
if (error)
goto out;

/* Success! */
*Vpp = vp;

out :
/* snbfs_snb_| ookup may have all ocated nane. */
if (name !'= nm
snbf s_nane_free(nane, nnlen);

return (error);

}
/
smbf sl ookup_cache

Try to reclaima node fromthe snbfs node cache.
Sone statistics for DEBUG

*

*

*

*

*

*

* This mechanismlets us avoid nmany of the five (or nore)
* W I ookup calls per file seen wth "lIs -1" if we search
* the snbfs node cache for recently inactive(ated) nodes.
*
i
n
n
n

f def DEBUG

t snbfs_| ookup_cache_cal |l's
t snbfs_| ookup_cache_error
t :

#
i 0
i 0
i snbf s_| ookup_cache_m ss = 0;
int snmbfs_| ookup_cache_stale = 0
int snmbfs_| ookup_cache_hits = 0;
#endi f /* DEBUG */

/* ARGSUSED */

static int

snbf sl ookup_cache(vnode_t *dvp, char *nm int nmen,
vnode_t **vpp, cred_t *cr)

{

29

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 30
2060 struct vattr va;

2061 smbnode_t *dnp;

2062 snbnode_t *np;

2063 vnode_t *vp;

2064 int error;

2065 char sep;

2067 dnp = VTCSMB(dvp);

2068 *vpp = NULL;

2070 #ifdef DEBUG

2071 snbf s_| ookup_cache_cal | s++;

2072 #endi f

2074 I*

2075 * First nake sure we can get attributes for the
2076 * directory. Cached attributes are OK here.
2077 * |If we renoved or renaned the directory, this
2078 * will return ENCENT. |f soneone el se renoved
2079 * this directory or file, we’ll find out when we
2080 * try to open or get attributes.

2081 */

2082 va.va_mask = AT_TYPE | AT_MODE;

2083 error = snbfsgetattr(dvp, &va, cr);

2084 if (error) {

2085 #ifdef DEBUG

2086 snbf s_| ookup_cache_error ++;

2087 #endi f

2088 return (error);

2089 }

2091 I*

2092 * Passing NULL snbfattr here so we will

2093 * just | ook, not create.

2094 */

2095 sep = SMBFS_DNP_SEP(dnp);

2096 np = snbfs_node_fi ndcreate(dnp->n_nount,

2097 dnp->n_rpath, dnp->n_rplen,

2098 nm nmen, sep, NULL);

2099 if (np == NULL) {

2100 #ifdef DEBUG

2101 smbf s_| ookup_cache_mi ss++;

2102 #endi f

2103 return (0);

2104 }

2106 /*

2107 * Found it. Attributes still valid?

2108 *

2109 vp = SMBTOV(np);

2110 if (np->r_attrtime <= gethrtinme()) {

2111 /* stale */

2112 #ifdef DEBUG

2113 smbf s_| ookup_cache_st al e++;

2114 #endi f

2115 VN_RELE(vp) ;

2116 return (0);

2117 }

2119 /*

2120 * Success!

2121 * Caller gets hold from snbfs_node_findcreate
2122 */

2123 #ifdef DEBUG

2124 snbf s_| ookup_cache_hi t s++;

2125 #endif

31

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2126 *vVpp = vp;

2127 return (0);

2128 }

2130 /*

2131 * XXX

2132 * vsecattr_t is newto build 77, and we need to eventually support
2133 * it in order to create an ACL when an object is created.

2134 *

2135 * This op should support the new FlI GNORECASE flag for case-insensitive
2136 * | ookups, per PSARC 2007/ 244.

2137 *

2138 /* ARGSUSED */

2139 static int

2140 snbfs_create(vnode_t *dvp, char *nm struct vattr *va, enum vcexcl exclusive,
2141 int node, vnode_t **vpp, cred_t *cr, int |faware, caller_context_t *ct,
2142 vsecattr_t *vsecp)

2143 {

2144 int error;

2145 int cerror;

2146 vfs_t *vf sp;

2147 vnode_t *vp;

2148 #ifdef NOT_YET

2149 snbnode_t *np;

2150 #endi f

2151 snmbnode_t *dnp,

2152 smbmt i nf o_t *sm ;

2153 struct vattr vatt r

2154 struct snbfattr fattr;

2155 struct snmb_cred scred;

2156 const char *nane = (const char *)nm

2157 int nmen = strlen(nn;

2158 ui nt32_t di sp;

2159 ui nt16_t fid;

2160 int xattr;

2162 visp = dvp->v_vfsp;

2163 sm = VFTOSM (vfsp);

2164 dnp = VTOSMB(dvp);

2165 vp = NULL;

2167 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)

2168 return (EPERM;

2170 if (sm->sm_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
2171 return (EIO;

2173 I*

2174 * Note: this may break nmknod(2) calls to create a directory,
2175 * but that's obscure use. Sone other filesystens do this.
2176 * XXX: Later, redirect VDIR type here to _nkdir.

2177 */

2178 if (va->va_type != VREQ

2179 return (EINVAL);

2181 /*

2182 * If the pathnane is "", just use dvp, no checks.

2183 * Do this outside of the rwock (like zfs).

2184 */

2185 if (nmMen == 0) {

2186 VN_HOLD(dvp) ;

2187 *vpp = dvp;

2188 return (0);

2189 }

2191 /* Don't allow"." or ".." through here. */

new usr/src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 32
2192 if ((nmMen ==1 & nane[0] == ".") ||

2193 (nmMen == 2 & nanme[0] ==" &% nanme[1] =="'."))
2194 return (EISDIR);

2196 /*

2197 * W nake a copy of the attributes because the caller does not
2198 * expect us to change what va points to.

2199 */

2200 vattr = *va;

2202 if (snmbfs_rw enter_sig(&np->r_rw ock, RWWRI TER, SMBI NTR(dvp)))
2203 return (EINTR);

2204 snmb_credinit(&scred, cr);

2206 I*

2207 * XXX: Do we need r_| kserlock too?

2208 * No use of any shared fid or fctx...

2209 */

2211 /*

2212 * NFS needs to go over the wire, just to be sure whether the
2213 * file exists or not. Using a cached result is dangerous in
2214 * this case when naking a decision regardi ng existence.
2215 *

2216 * The SMB protocol does NOT really need to go OTW here
2217 * thanks to the expressive NTCREATE di sposition val ues.
2218 * Unfortunately, to do Unix access checks correctly,
2219 * we need to know i f the object already exists.

2220 * When the object does not exist, we need VARI TE on
2221 * the directory. Note: srrbfslookup() checks VEXEC.
2222 */

2223 error = snbfslookup(dvp, nm &vp, cr, 0, ct);

2224 if (error == 0) {

2225 /*

2226 * The file already exists. FError?

2227 * NB: have a hold from snbfsl ookup

2228 */

2229 if (exclusive == EXCL)

2230 error = EEXI ST;

2231 VN_RELE(vp) ;

2232 goto out;

2233 }

2234 /*

2235 * Verify requested access.

2236 */

2237 error = snbfs_access(vp, node, 0, cr, ct);

2238 if (error) {

2239 VN_RELE(vp) ;

2240 goto out;

2241 }

2243 /*

2244 * Truncate (if requested).

2245 */

2246 if ((vattr.va_mask & AT_SI ZE) && vattr.va_size == 0) {
2247 vattr. va mask AT_SI ZE;

2248 error = srrbfssetattr(vp, &attr, 0, cr);
2249 if (error) {

2250 VN_RELE(vp);

2251 goto out;

2252 }

2253

2254 /* Success! */

2255 #ifdef NOT_YET

2256 vnevent _create(vp, ct);

2257 #endi f

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 33 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2258 *vVpp = vp; 2324 if (np->r_size > MAXOFF32_T)

2259 goto out; 2325 error = EOVERFLOW

2260 } 2326 nut ex_exi t (&np->r_st at el ock) ;
2327 }

2262 /* 2328 if (lerror) {

2263 * The file did not exist. Need WARITE in the directory. 2329 vattr.va_mask = AT_SI ZE;

2264 */ 2330 error = snbfssetattr(vp,

2265 error = snbfs_access(dvp, WARRITE, 0, cr, ct); 2331 &vattr, 0, cr);

2266 if (error) 2332 }

2267 goto out; 2333 }
2334 #endif /* XXX */

2269 /* 2335 /*

2270 * Now things get tricky. W also need to check the 2336 * Shoul d use the fid to get/set the size

2271 * requested open node against the file we may create. 2337 * while we have it opened here. See above.

2272 * See comments at snbfs_access_rwx 2338 */

2273 */

2274 error = snbfs_access_rwx(vfsp, VREG node, cr); 2340 cerror = snbfs_snb_cl ose(sm ->smi _share, fid, NULL, &scred);

2275 if (error) 2341 if (cerror)

2276 goto out; 2342 SMBVDEBUG("error %l cl osi ng %\\%\n",
2343 cerror, dnp->n_rpath, nane);

2278 /*

2279 * Now the code derived from Darwi n, 2345 s

2280 * but with greater use of NI_CREATE 2346 * In the open case, the nane may differ a little

2281 * di sposition options. Mich changed. 2347 * fromwhat we passed to create (case, etc.)

2282 * 2348 * so call |ookup to get the (opened) nane.

2283 * Create (or open) a new child node. 2349 *

2284 * Note we handled "." and ".." above. 2350 * XXX: Could avoid this extra | ookup if the

2285 */ 2351 * "createact" result from NT_CREATE says we
2352 * created the object.

2287 if (exclusive == EXCL) 2353 */

2288 di sp = NTCREATEX_DI SP_CREATE; 2354 error = snbfs_snb_| ookup(dnp, &nane, &men, &fattr, &scred);

2289 el se { 2355 if (error)

2290 /* Truncate regular files if requested. */ 2356 goto out;

2291 if ((va->va_type == VREQ &&

2292 (va->va_mask & AT_SI ZE) && 2358 /* update attr and directory cache */

2293 (va->va_size == 0)) 2359 snbfs_attr_touchdir(dnp);

2294 di sp = NTCREATEX_DI SP_OVERWRI TE_I F;

2295 el se 2361 error = snbfs_nget(dvp, name, nnlen, & attr, &p);

2296 di sp = NTCREATEX_DI SP_OPEN_I F; 2362 if (error)

2297 } 2363 goto out;

2298 xattr = (dnp->n_flag & N.XATTR) ? 1 : O;

2299 error = snbfs_snb_create(dnp, 2365 /* XXX invalidate pages if we truncated? */

2300 nane, nmen, xattr,

2301 di sp, &scred, &fid); 2367 /* Success! */

2302 if (error) 2368 *Vpp = vp;

2303 goto out; 2369 error = 0O;

2305 I* 2371 out:

2306 * XXX: M ssing sone code here to deal with 2372 snb_credrel e(&scred);

2307 * the case where we opened an existing file, 2373 snmbfs_rw_exi t (&Inp->r_rw ock);

2308 * it's size is larger than 32-bits, and we're 2374 if (name !'=n

2309 * setting the size froma process that’s not 2375 snbf s_nane_free(nane, nnlen);

2310 * aware of large file offsets. i.e. 2376 return (error);

2311 * fromthe NFS3 code: 2377 }

2312 */

2313 #if NOT_YET /* XXX */ 2379 /*

2314 if ((vattr.va_mask & AT _SIZE) && 2380 * XXX

2315 vp->v_type == VREG { 2381 * This op should support the new FI GNORECASE flag for case-insensitive

2316 np = VTOSMB(vp); 2382 * | ookups, per PSARC 2007/ 244.

2317 /* 2383 */

2318 * Check here for large file handl ed 2384 /* ARGSUSED */

2319 * by LF-unaware process (as 2385 static int

2320 * ufs_create() does) 2386 snbfs_renove(vnode_t *dvp, char *nm cred_t *cr, caller_context_t *ct,

2321 * 2387 int flags)

2322 if (I(Ifanare & FOFFMAX)) { 2388 {

2323 nmut ex_ent er (&np- >r _st at el ock); 2389 int error;

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 35 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢
2390 vnode_t *vp; 2456 error = snbfs_snb_del ete(np, &scred, NULL, O, 0);
2391 smbnode_t *np;
2392 snmbnode_t *dnp; 2458 /*
2393 struct snmb_cred scred; 2459 * |f the file should no I onger exist, discard
2394 /* enum snbf sstat status; */ 2460 * any cached attributes under this node.
2395 smbmt i nf o_t *sm ; 2461 */
2462 switch (error) {
2397 sm = VIOSM (dvp); 2463 case 0O:
2464 case ENOCENT:
2399 if (curproc->p_zone != sm->sni _zone_ref.zref_zone) 2465 case ENOTDI R:
2400 return (EPERM; 2466 snbf s_attrcache_prune(np);
2467 br eak;
2402 if (smi->snmi_flags & SM_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED) 2468 }
2403 return (EIO; 2469 }
2405 dnp = VTOSMB(dvp); 2471 VN_RELE(vp) ;
2406 if (smbfs_rw enter_sig(&np->r_rw ock, RWWRI TER, SMBI NTR(dvp)))
2407 return (EINTR); 2473 out:
2408 snb_credinit(&scred, cr); 2474 snb_credrel e(&scred);
2475 snmbfs_rw_exi t (&Inp->r_rw ock);
2410 /*
2411 * Verify access to the dirctory. 2477 return (error);
2412 */ 2478 }
2413 error = snbfs_access(dvp, VWRI TE| VEXEC, 0, cr, ct);
2414 if (error)
2415 goto out; 2481 | *
2482 * XXX
2417 I* 2483 * This op shoul d support the new FlI GNORECASE flag for case-insensitive
2418 * NOTE: the darwin code gets the "vp" passed in so it |ooks 2484 * | ookups, per PSARC 2007/ 244.
2419 * |like the "vp" has probably been "l ookup"ed by the VFS |ayer. 2485 */
2420 * It looks like we will need to | ookup the vp to check the 2486 /* ARGSUSED */
2421 * caches and check if the object being deleted is a directory. 2487 static int
2422 “f 2488 snbfs_renane(vnode_t *odvp, char *onm vnode_t *ndvp, char *nnm cred_t *cr,
2423 error = snbfsl ookup(dvp, nm &vp, cr, 0, ct); 2489 caller_context_t *ct, int flags)
2424 if (error) 2490 {
2425 goto out; 2491 /* vnode_t *real vp; */
2427 /* Never allow link/unlink directories on CIFS. */ 2493 if (curproc->p_zone != VTOSM (odvp)->smi _zone_ref.zref_zone ||
2428 if (vp->v_type == VDIR) { 2494 curproc->p_zone != VTOSM (ndvp)->sni _zone_ref. zref _zone)
2429 VN _RELE(vp) ; 2495 return (EPERM;
2430 error = EPERM
2431 goto out; 2497 if (VIOSM (odvp)->sm _flags & SM _DEAD | |
2432 } 2498 VTOSM (ndvp) - >sm _flags & SM _DEAD | |
2499 odvp->v_vfsp->vfs_flag & VFS_UNMOUNTED | |
2434 /* 2500 ndvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2435 * Now we have the real reference count on the vnode 2501 return (EIO;
2436 * Do we have the file open?
2437 i 2503 return (snbfsrenanme(odvp, onm ndvp, nnm cr, ct));
2438 np = VIOSMB(vp); 2504 }
2439 nmut ex_ent er (&np->r _st at el ock) ;
2440 if ((vp->v_count > 1) && (np->n_fidrefs > 0)) { 2506 /*
2441 /* 2507 * snbfsrenane does the real work of renam ng in SMBFS
2442 * NFS does a renane on renpve here. 2508 *
2443 * Probably not applicable for SMB. 2509 /* ARGSUSED */
2444 * Like Darwin, just return EBUSY. 2510 static int
2445 * 2511 snbf srenane(vnode_t *odvp, char *onm vnode_t *ndvp, char *nnm cred_t *cr,
2446 * XXX: Todo - Use Trans2renane, and 2512 cal l er_context _t *ct)
2447 * if that fails, ask the server to 2513 {
2448 * set the del ete-on-close flag. 2514 int error;
2449 */ 2515 int nvp_| ocked = 0;
2450 mut ex_exi t (&p->r_st at el ock); 2516 vnode_t *nvp = NULL,;
2451 error = EBUSY; 2517 vnode_t *ovp = NULL;
2452 } else { 2518 snmbnode_t *onp;
2453 snbf s_attrcache_rm | ocked(np); 2519 smbnode_t *nnp;
2454 mut ex_exi t (&p->r_st at el ock) ; 2520 smbnode_t *odnp;
2521 snbnode_t *ndnp;

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2522
2523

2525

2527
2528
2529

2531
2532
2533
2534
2535
2536
2537

2539
2540

2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569

2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582

2584
2585
2586
2587

struct snmb_cred scred;
/* enum snbf sst at status; */

ASSERT(cur proc->p_zone == VTOSM (odvp)->smi _zone_ref.zref_zone);

if (strcnp(onm ".") == 0 || strcnp(onm "..") ==0 ||
strenp(nnm ".") == 0 || strcnp(nnm "..") == 0)
return (EI N\/AL)

Check that everything is on the sane fil esystem
vn_renanme checks the fsid' s, but in case we don’t
fill those in correctly, check here too.

R

if (odvp->v_vfsp !'= ndvp->v_vfsp)

return (EXDEV);
odnp = VTOSMB(odvp);
ndnp = VTOSMB(ndvp);
/*

* Avoi d deadl ock here on old vs new directory nodes
* by always taking the | ocks in order of address.
* The order is arbitrary, but nust be consistent.

|f (odnp < ndnp) {
if (snmbfs_rw enter_sig(&dnp->r_rw ock, RWWRI TER,
SMBI NTR(odvp)))
return (EINTR);
if (smbfs_rw enter S|g(&ndnp >r_rw ock, RWWR TER,
SMBI NTR(ndvp))) {
snbf s_rw_exi t (&dnp->r _rw ock) ;
return (EINTR);

} else {
if (snbfs_rw enter_sig(&dnp->r_rw ock, RWWRI TER,
SMBI NTR(ndvp)))
return (EINTR);
if (snmbfs_rw enter_sig(&dnp->r_rw ock, RWWRI TER,
SMBI NTR(odvp))) {
snbfs_rw_exi t (&dnp->r_rw ock) ;
return (EINTR);
}

}
}snb_cr edinit(&scred, cr);

* No returns after this point (goto out)
&/

/*
* Need wite access on source and target.
* Server takes care of npst checks.
*
error = snbfs_access(odvp, WARI TE| VEXEC, 0, cr, ct);
if (error)

goto out;
if (odvp != ndvp) {

error = snbfs_access(ndvp, VWRITE, 0, cr, ct);

if (error)

goto out;

}

/*
* Lookup the source nane. Mist already exist.
*/

error = snbfsl ookup(odvp, onm &ovp, cr, 0, ct);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2588
2589

2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614

2616
2617
2618
2619
2620
2621
2622
2623
2624

2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638

2640
2641
2642
2643
2644
2645
2646
2647
2648
2649

2651
2652
2653

if (error)
goto out;
/*
* Lookup the target file. |If it exists, it needs to be

* checked to see whether it is a mount point and whether
* it is active (open).
*
/
error = snbfsl ookup(ndvp, nnm &nvp, cr, 0, ct);
if (terror) {
/*

* Target (nvp) already exists. Check that it
* has the same type as the source. The server
* will check this also, (and nore reliably) but
* this lets us return the correct error codes.
*
/
if (ovp->v_type == VDIR) {
if (nvp->v_type !'= VDIR) {
error = ENOTDI R;
goto out;

} else {
if (nvp->v_type == VDIR)
error = EISDIR;
goto out;

}

*

* POSI X dictates that when the source and target
* entries refer to the sane file object, renane
* must do nothing and exit without error.

if (ovp == nvp) {
error = O;
goto out;

/*

* Also nust ensure the target is not a nount point,
* and keep nount/unount away until we’'re done.

*/

if (vn_vfsrlock(nvp)) {
error = EBUSY;

goto out;
}
nvp_| ocked =
if (vn_nount edvfs(nvp) I'= NULL) {
error = EBUSY;
goto out;
}
/*
* CIFS gives a SHARI NG VI OLATION error when
* trying to renane onto an exising object,
* so try to renpve the target first.
* (Only for files, not directories.)
*

if (nvp->v type == VDIR) {
error = EEXI ST;
got o out

}

/*
* Nodes that are "not active" here have v_count =2
* because vn_renaneat (our caller) did a |ookup on

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 39 new usr/src/ uts/ comon/fs/snbcl nt/snbf s/ snbfs_vnops. c 40

2654 * both the source and target before this call. 2720 }

2655 * Oherwise this simlar to snbfs_renove. 2721 if (ovp)

2656 & 2722 VN_RELE(ovp) ;

2657 nnp = VTOSMB(nvp);

2658 nmut ex_ent er (&nnp- >r _st at el ock) ; 2724 snmb_credrel e(&scred);

2659 if ((nvp->v_count > 2) && (nnp->n_fidrefs > 0)) { 2725 snmbf s_rw_exi t (&odnp->r _rw ock) ;

2660 /* 2726 snmbfs_rw_exit (&dnp->r_rw ock);

2661 * The target file exists, is not the same as

2662 * the source file, and is active. Qher FS 2728 return (error);

2663 * inplenentations unlink the target here. 2729 }

2664 * For SMB, we don’t assume we can renobve an

2665 * open file. Return an error instead. 2731 | *

2666 */ 2732 * XXX

2667 mut ex_exi t (&np- >r_st at el ock) ; 2733 * vsecattr_t is newto build 77, and we need to eventual |y support

2668 error = EBUSY; 2734 * it in order to create an ACL when an object is created.

2669 goto out; 2735 *

2670 } 2736 * This op shoul d support the new FI GNORECASE flag for case-insensitive
2737 * | ookups, per PSARC 2007/ 244.

2672 /* 2738 */

2673 * Target file is not active. Try to renove it. 2739 /* ARGSUSED */

2674 */ 2740 static int

2675 snbf s_attrcache_rm | ocked(nnp); 2741 snbfs_nkdir(vnode_t *dvp, char *nm struct vattr *va, vnode_t **vpp,

2676 mut ex_exi t (&np->r _st at el ock) ; 2742 cred_t *cr, caller_context_t *ct, int flags, vsecattr_t *vsecp)
2743 {

2678 error = snbfs_snb_del ete(nnp, &scred, NULL, 0, 0); 2744 vnode_t *vp;
2745 struct snmbnode *dnp = VTOSMB(dvp);

2680 /* 2746 struct snmbmtinfo *snmi = VIOSM (dvp);

2681 * Simlar to snbfs_renove 2747 struct snmb_cred scred;

2682 * 2748 struct snbfattr fattr;

2683 switch (error) { 2749 const char *nane = (const char *) nm

2684 case 0: 2750 i nt nm en = strlen(nane);

2685 case ENCENT: 2751 int error, hiderr;

2686 case ENOTDI R:

2687 snbfs_attrcache_prune(nnp); 2753 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)

2688 break; 2754 return (EPERM;

2689 }
2756 if (smi->snmi_flags & SM_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)

2691 if (error) 2757 return (EIO;

2692 goto out;

2693 /* 2759 if ((nmMen == 1 & nanme[0] ==".") ||

2694 * OK, renpved the target file. Continue as if 2760 (nmen == 2 & nanme[0] =="." && nane[l] == "."))

2695 * | ookup target had failed (nvp == NULL). 2761 return (EEXI ST);

2696 */

2697 vn_vf sunl ock(nvp); 2763 /* Only plain files are allowed in V_XATTRDIR */

2698 nvp_l ocked = 0; 2764 if (dvp->v_flag & V_XATTRDI R)

2699 VN_RELE(nvp); 2765 return (EINVAL);

2700 nvp = NULL;

2701 } I* nvp */ 2767 if (snmbfs_rw enter_sig(&np->r_rw ock, RWWRI TER, SMBI NTR(dvp)))
2768 return (EINTR);

2703 onp = VTOSMB(ovp); 2769 snmb_credinit(&scred, cr);

2704 snmbfs_attrcache_renove(onp);
2771 /*

2706 error = snbfs_snb_renane(onp, ndnp, nnm strlen(nnn), &scred); 2772 * XXX: Do we need r_| kserlock too?
2773 * No use of any shared fid or fctx...

2708 /* 2774 */

2709 * |If the old nane should no |onger exist,

2710 * discard any cached attributes under it. 2776 I*

2711 */ 2777 * Require wite access in the containing directory.

2712 if (error == 0) 2778 */

2713 snbf s_at trcache_prune(onp); 2779 error = snbfs_access(dvp, VWRITE, 0, cr, ct);
2780 if (error)

2715 out: 2781 goto out;

2716 if (nvp) {

2717 if (nvp_l ocked) 2783 error = snbfs_snb_nkdir(dnp, nanme, nmlen, &scred);

2718 vn_vf sunl ock(nvp) ; 2784 if (error)

2719 VN_RELE(nvp) ; 2785 goto out;

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2787
2788
2789

2791

2793
2794
2795

2797
2798
2799

2801
2802
2803
2804
2805
2806

2808
2809

2811
2812

2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830

2832
2833

2835
2836

2838
2839
2840

2842
2843
2844
2845
2846
2847
2848

2850
2851

out :

}
/

/

*
*
*
*

*

error = snbfs_snb_| ookup(dnp, &nane, &men, &fattr, &scred);
if (error)
goto out;

snbf s_attr_touchdir(dnp);

error = snbfs_nget(dvp, name, nnlen, &attr, &vp);
if (error)
goto out;
if (name[0] == ".
if ((hiderr = snbfs_snb_hideit(VTICSMB(vp), NULL, O, &scred)))
SMBVDEBUG " hi de failure %\ n", hiderr);

/* Success! */
*vpp = vp
error = 0;

snb_credrel e(&scred);
snmbfs_rw_exi t (&np->r_rw ock);

if (name = n
snbf s_nane_free(nane, nnlen);

return (error);

his op shoul d support the new FI GNORECASE flag for case-insensitive
ookups, per PSARC 2007/ 244.

ARGSUSED */

static int
snbfs_rndir(vnode_t *dvp, char *nm vnode_t *cdir, cred_t *cr,

{

cal l er_context _t *ct, int flags)

vnode_t *vp = NULL;

int vp_|l ocked = 0;

struct snmbmtinfo *sm = VIOSM (dvp);
struct snmbnode *dnp = VTOSMB(dvp);
struct snbnode *np;

struct snb_cred scred;

int error;

if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
return (EPERM;

if (sm->sm_flags & SM_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO;

if (smbfs_rw enter_sig(&np->r_rw ock, RWWRI TER, SMBI NTR(dvp)))
return (EINTR);
snmb_credinit(&scred, cr);

/*
* Require w x access in the containing directory.
* Server handles all other access checks.

*/
error = snbfs_access(dvp, VEXEC|VWRI TE, 0, cr, ct);
if (error)
goto out;
/*

* First |ookup the entry to be renopved.

41

new usr/

2852
2853
2854
2855
2856

2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879

2881
2882

2884
2885
2886
2887
2888
2889
2890
2891
2892
2893

2895
2896

2898
2899
2900
2901
2902

src/ uts/ common/ f s/ snbel nt/ snbf s/ snbf s_vnops. ¢
*/
error = snbfslookup(dvp, nm &vp, cr, 0, ct);
if (error)

goto out;
np = VTOSMB(vp);

/
Disallow rndir of "." or current dir, or the FS root.
Al so meke sure it's a directory, not a nount point,

and | ock to keep nount/unount away until we’'re done.

if ((vp == dvp) || (vp == cdir) || (vp->v_flag & VROOT)) {
error = ElI NVAL;
goto out;

* ok ok ok ¥

}

if (vp->v_type != VDIR) {
error = ENOTDI R;
goto out;

if (vn_vfsrlock(vp)) {
error = EBUSY;
goto out;

}

vp_l ocked = 1;

if (vn_nountedvfs(vp) != NULL) {
error = EBUSY;
goto out;

}

snmbfs_attrcache_renove(np);
error = snbfs_snb_rndir(np, &scred);

*

* Simlar to snbfs_renove
&/

switch (error) {

case O:

case ENCENT:

case ENOTDI R
snbf s_attrcache_prune(np);
br eak;

}

if (error)
goto out;

nmut ex_ent er (&np->r _st at el ock) ;
dnp->n_flag | = NMODI FI ED;

nmut ex_exi t (&p->r _st at el ock);
snmbfs_attr_touchdir(dnp);

snbf s_r mhash(np);

2904 out:

2905
2906
2907
2908
2909
2910
2911

2913
2914 }

2917 /*

if (vp) {
if (vp_l ocked)

vn_vf sunl ock(vp);
VN_RELE(vp);

}
smb_credrel e(&scred);
smbf s_rw_exi t (&np->r _rw ock) ;

return (error);

ARGSUSED */

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2918
2919
2920
2921
2922
2923
2924

2926

2928
2929

2931
2932

2934
2935
2936
2937
2938
2939

2941

2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953

2955
2957

2959
2960

2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983

static int
snbf s_readdi r(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,

caller_context_t *ct, int flags)
{
struct snmbnode *np = VTOSMB(vp);
int error = 0;
snmbmti nfo_t *sm ;
sm = VIOSM (vp);
if (curproc->p_zone != sm->snm _zone_ref.zref_zone)
return (EIO;
if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO;
/*
* Require read access in the directory.
*/
error = snbfs_access(vp, VREAD, 0, cr, ct);
if (error)
return (error);
ASSERT(snmbf s_rw_| ock_hel d(&p->r _rw ock, RW READER));
/*
* XXX: Todo readdir cache here
* Note: NFS code is just below this.
*
* | amserializing the entire readdir opreation
* now since we have not yet inplenented readdir
* cache. This fix needs to be revisited once
* we inplenent readdir cache.
*
if (smbfs_rw enter_sig(&p->r_| kserlock, RWWR TER, SMBI NTR(vp)))
return (EINTR);
error = snbfs_readvdir(vp, uiop, cr, eofp, ct);
snbf s_rw_exi t (&p->r _| kserl ock) ;
return (error);
}
/* ARGSUSED */
static int

snbfs_readvdi r(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
cal l er_context _t *ct)
{

/
Note: "limit" tells the SMB-1evel FindFirst/FindNext
functions how many directory entries to request in
each G Wcall. It needs to be |arge enough so that
we don’t make lots of tiny G Wrequests, but there's
no point making it larger than the maxi num nunber of
QWentries that would fit in a maxi num sized trans2
response (64k / 48). Beyond that, it’s just tuning.
W nNT used 512, Wn2k used 1366. W use 1000.

* ok ok ok ok ok Kk ok ¥

*/

static const int limt = 1000;

/* Largest possible dirent size. */

static const size_t dbufsiz = DI RENT64_RECLEN(SMB_MAXFNAMELEN) ;
struct snmb_cred scred

vnode_t neva

struct smbnode *np = VTOSMB(vp);

struct snbfs_fctx *ctx;

43

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2984
2985
2986
2987
2988
2989

2991

2993
2994

2996
2997
2998
2999
3000

3002
3003
3004
3005

3007
3008
3009

3011
3012
3013

3015
3016
3017
3018
3019
3020

3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049

struct dirent64 *dp;

ssize_t save_resid;

of fset _t save_offset /* 64 bits */
int offset; /* yes, 32 bits */
int nm en, error;

ushort _t recl en;

ASSERT(cur proc->p_zone == VTOSM (vp)->sm _zone_ref.zref_zone);

/* Make sure we serialize for n_dirseq use. */
ASSERT(snbfs_rw_| ock_hel d(&np->r_| kserl ock, RWWRI TER)) ;

/*
* Make sure snbfs_open filled in n_dirseq
*
/
if (np->n_dirseq == NULL)
return (EBADF);

/* Check for overflow of (32-bit) directory offset. */
if (uio->uio_|loffset < O || uio->uio_|loffset > INT32_MAX ||
(uio->uio_loffset + uio->uio_resid) > | NT32_MAX)
return (EINVAL);

/* Require space for at |least one dirent. */
if (uio->uio_resid < dbufsiz)
return (EINVAL);

SMBVDEBUG "di r name=" %'\ n",
snmb_credinit(&scred, cr);
dp = krmem al | oc(dbufsiz, KM SLEEP);

np->n_rpath);

save_resid = uio->uio_resid;
save_of f set = ui o->ui o_| of f set;
of fset = ui 9—>ui o_offset;

SMBVDEBUG(" of fset =9, resid=%\n",

(|nt)U|o >u|o of fset, (int)uio->uio_resid);
error = 0;
/*
* Cenerate the "." and " entries here so we can
* (1) neke sure they appear (but only once), and
* (2) deal with getting their | nunmbers which the
* findnext bel ow does only for normal nanes.
*/

whil e (offset < FIRST_DI ROFS) {

* Tricky bit filling in the first two:
* offset 0 is ".", offset 1 is ".."

* so strlen of these is offset+1.

*/

recl en = DI RENT64_RECLEN(of f set + 1);
if (uio->uio_resid < reclen)
goto out;
bzero(dp, reclen);
dp->d_reclen = reclen;
dp- >d_nane[0] R
dp->d_nane[1] = "'.";
;Jp >d nama[offset + 1] ='\0";

* Want the real |-nunbers for the "." and ".."

* entries. For these two nanmes, we know that

* snbf sl ookup can get the nodes efficiently.

*/

error = snbfsl ookup(vp, dp->d_nane, &newp, cr, 1, ct);
if (error)

dp->d_ino = np->n_ino + offset; /* fiction */

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069

3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091

3093
3094
3095
3096
3097
3098
3099
3100
3101

3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115

} else {
dp->d_i no = VTOSMB(newp) - >n_i no;
VN_RELE(newp) ;
}
/*
* Note: d_off is the offset that a user-I|evel program
* shoul d seek to for reading the NEXT directory entry.
* See libc: readdir, telldir, seekdir
*
dp->d_of f = offset + 1;
error = ui omove(dp, reclen, U O READ, uio);
if (error)
goto out;
/*
* Note: uionove updates uio->uio_offset,
* but we want it to be our "cookie" val ue,
* which just counts dirents ignoring size.
*/

ui 0->ui o_of fset = ++of fset;

}

/*
* |f there was a backward seek, we have to reopen.
*
/
if (offset < np->n_dirofs)
SMBVDEBUG(" Reopeni ng search %d: %\ n",
of fset, np->n_dirofs);
error = snbfs_snb_findopen(np, "*", 1,
SMB_FA SYSTEM | SMB_FA HI DDEN | SMB_FA DI R
&scred, &ctx);
if (error) {
SMBVDEBUG "can not open search, error = %", error);
goto out;

/* free the old one */
(void) snbfs_snb_findcl ose(np->n_dirseq, &scred);
/* save the new one */
np->n_dirseq = ctx;
np->n_di rof s = FI RST_DI RCFS;
} else {
) ctx = np->n_dirseq;

/*
* Skip entries before the requested of fset.
*/

while (np->n_dirofs < offset)
error = snbfs_snb_findnext(ctx, limt, &scred);
if (error 1=0)
goto out;
np->n_di r of s++;

}

/*

* While there’s roomin the caller’s buffer:

* get a directory entry from SMB,

* convert to a dirent, copyout.

* We stop when there is no longer roomfor a

* maxi mum si zed dirent because we nust decide
* pefore we know anyt hi ng about the next entry.
*/

whil e (uio->uio_resid >= dbufsiz) {
error = snbfs_snb_findnext(ctx, limt, &scred);
if (error 1= 0)
goto out;
np->n_di r of s++;

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

3117 /* Sanity check the nane | ength. */

3118 nmen = ctx->f_nnlen;

3119 if (nmen > SMB_VAXFNAMELEN) {

3120 nm en = SMB_MAXFNAMELEN,

3121 SMBVDEBUG " Truncati ng nane: %\n", ctx->f_nane);
3122 }

3123 1f (snbfs_fastlookup) {

3124 /* See comment at snbfs_fastl ookup above. */
3125 if (snmbfs_nget(vp, ctx->f_nanme, nnlen,
3126 &t x->f _attr, &ewp) == 0)
3127 VN_RELE(newp)

3128 }

3130 recl en = DI RENT64_RECLEN(nni en) ;

3131 bzero(dp, reclen);

3132 dp->d_reclen = reclen;

3133 bcopy(ct x->f _name, dp->d_nane, nnien);
3134 dp->d_nanme[nm en] = '\0";

3135 dp->d_ino = ctx->f _i num

3136 dp->d_off = offset + 1; /* See d_off comment above */
3137 error = ui onove(dp, reclen, U O READ, uio);
3138 if (error)

3139 goto out;

3140 /* See comment re. uio_offset above. */
3141 ui o->ui o_of fset = ++of fset;

3142 }

3144 out:

3145 /*

3146 * When we cone to the end of a directory, the
3147 * SMB-1evel functions return ENOENT, but the

3148 * caller is not expecting an error return.

3149 *

3150 * Also note that we nust delay the call to

3151 * snbfs_snb_findcl ose(np->n_dirseq, ...)

3152 * until snbfs_close so that all reads at the

3153 * end of the directory will return no data.

3154 */

3155 if (error == ENCENT) {

3156 error = 0;

3157 if (eofp)

3158 *eofp = 1,

3159 1

3160 /*

3161 * |f we encountered an error (i.e. "access denied")
3162 * fromthe FindFirst call, we will have copied out
3163 * the "." and ".." entries |leaving offset == 2.
3164 * In that case, restore the original offset/resid
3165 * so the caller gets no data with the error.

3166 */

3167 if (error =0 & offset == FIRST_DI ROFS) {

3168 ui o->ui o_| of fset = save_offset;

3169 ui 0->uio_resid = save_resid;

3170 }

3171 SMBVDEBUG "out : of f set =%, resid=%\n",

3172 (int)uio->uio_offset, (int)uio->uio_resid);
3174 kmem free(dp, dbufsiz);

3175 smb_credrel e(&scred);

3176 return (error);

3177 }

3180 /*

3181 * The pair of functions VOP_RALOCK, VOP_RWINLOCK

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 47

3182 * are optional functions that are called by:

3183 * getdents, before/after VOP_READDI R

3184 * pread, before/after VOP_READ

3185 * pwite, before/after VOP_WRI TE

3186 * (ot her places)

3187 *

3188 * Careful here: None of the above check for any

3189 * error returns from VOP_RW.OCK / VOP_RWINLOCK!

3190 * In fact, the return value from _rw ock is NOT

3191 * an error code, but V_WR TELOCK TRUE / _FALSE.

3192 *

3193 * Therefore, it’s up to _this_ code to make sure

3194 * the |ock state remai ns_ bal anced, which neans

3195 * we can’'t "bail out" on interrupts, etc.

3196 */

3198 /* ARGSUSED2 */

3199 static int

3200 snbfs_rw ock(vnode_t *vp, int wite_lock, caller_context_t *ctp)
3201 {

3202 smbnode_t *np = VTOSMB(vp);

3204 if ('wite_lock) {

3205 (void) snbfs_rw enter_sig(&p->r_rw ock, RWREADER, FALSE);
3206 return (V_WRI TELOCK_FALSE) ;

3207 }

3210 (void) snbfs_rw enter SI g(&np->r_rw ock, RWWRI TER, FALSE);
3211 return (V_WRI TELOCK_TRUE) ;

3212 }

3214 /* ARGSUSED */

3215 static void

3216 snbfs_rwunl ock(vnode_t *vp, int wite_|lock, caller_context_t *ctp)
3217 {

3218 snmbnode_t *np = VIOSMB(vp);

3220 smbf s_rw_exi t (&p->r _rw ock);

3221 }

3224 | * ARGSUSED */

3225 static int

3226 snbfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
3227 {

3228 snmbmmti nfo_t *sm ;

3230 sm = VIOSM (vp);

3232 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)

3233 return (EPERM ;

3235 if (smi->snmi_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3236 return (EIO;

3238 I*

3239 * Because we stuff the readdir cookie into the offset field
3240 * soneone may attenpt to do an | seek with the cookie which
3241 * we want to succeed.

3242 */

3243 if (vp->v_type == VDIR)

3244 return (0)

3246 /* Like NFS3, just check for 63-bit overflow */

3247 if (*noffp < 0)

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

3248

3250
3251

3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264

3266
3267
3268
3269
3270

3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285

3287

3289
3290

3292
3293

3295
3296
3297
3298

3300
3301
3302
3303
3304

3306
3307
3308
3309
3310

3312
3313

return (EINVAL);
return (0);
}
/*
* XXX
* This op nmay need to support PSARC 2007/ 440, nbmand changes for CIFS Service.
*
/
static int
snbfs_frlock(vnode_t *vp, int cnd, struct flock64 *bfp, int flag,
of fset _t offset, struct flk_callback *flk_cbp, cred_t *cr,
caller_context_t *ct)
{
if (curproc->p_zone != VIOSM (vp)->sm _zone_ref.zref_zone)
return (EIO;
if (VIOSM (vp)->sm _flags & SM _LLQOCK)
return (fs_frlock(vp, cnd, bfp, flag, offset, flk_cbp, cr, ct));
el se
return (ENOSYS);
}
/*
* Free storage space associated with the specified vnode. The portion
* to be freed is specified by bfp->_start and bfp->l_len (already
* nornalized to a "whence" of 0).
*
* Called by fentl (fd, F_FREESP, |kp) for libc:ftruncate, etc.
*
/
/* ARGSUSED */
static int
snbf s_space(vnode_t *vp, int cnd, struct flock64 *bfp, int flag,
of fset _t offset, cred_t *cr, caller_context_t *ct)
{
int error;
smbmti nfo_t *sm ;
sm = VIOSM (vp);
if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
return (ElIO;
if (smi->snmi_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (ElO;
/* Caller (fcntl) has checked v_type */
ASSERT(vp->v_type == VREG;
if (cmd |= F_FREESP)
return (EINVAL);
/*
* Like NFS3, no 32-bit offset checks here.
* Qur SMB Iayer takes care to return EFBIG
* when it has to fallback to a 32-bit call.
*
/
error = convoff(vp, bfp, 0, offset);
if (terror) {
ASSERT(bf p->I _start >= 0);
if (bfp->l_len == 0) {
struct vattr va;
/*
* ftruncate should not change the ctinme and

48

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 49 new usr/src/uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 50

3314 * nminme if we truncate the file to its 3380 br eak;
3315 * previous size. 3381 }
3316 */ 3382 return (EINVAL);
3317 va.va_mask = AT_SI ZE;
3318 error = snbf sget attr(vp, &a, cr); 3384 case _PC _TI MESTAMP_RESOLUTI ON:
3319 if (error || va.va_size == bfp->|_start) 3385 I
3320 return (error); 3386 * Wndows tinmes are tenths of nicroseconds
3321 va.va_mask = AT_SI ZE; 3387 * (nul tiples of 100 nanoseconds).
3322 va.va_si ze = bfp->l _start; 3388 */
3323 error = smbfssetattr(vp, &a, 0, cr); 3389 *val p = 100L;
3324 } else 3390 br eak;
3325 error = EI NVAL;
3326 } 3392 defaul t:
3393 return (fs_pathconf(vp, cnd, valp, cr, ct));
3328 return (error); 3394 }
3329 } 3395 return (0);
3396 }
3331 /* ARGSUSED */
3332 static int 3398 /* ARGSUSED */
3333 snbfs_pat hconf (vnode_t *vp, int cnd, ulong_t *valp, cred_t *cr, 3399 static int
3334 caller_context_t *ct) 3400 snbfs_getsecattr(vnode_t *vp, vsecattr_t *vsa, int flag, cred_t *cr,
3335 { 3401 cal | er_context_t *ct)
3336 vfs_t *vfs; 3402 {
3337 smbmtinfo_t *sm; 3403 vfs_t *vfsp;
3338 struct snmb_share *ssp; 3404 snbmtinfo_t *smi;
3405 int error;
3340 vfs = vp->v_vfsp; 3406 uint_t mask;
3341 sm = VFTOSM (vfs);
3408 vfs Sp = vp->v _vfsp;
3343 if (curproc->p_zone != sm->sm _zone_ref.zref_zone) 3409 sm = VFTOSM (vfsp);
3344 return (ElO;
3411 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
3346 if (smi->snmi_flags & SM _DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED) 3412 return (EIO;
3347 return (EIO;
3414 if (sm->sm_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
3349 switch (cnd) { 3415 return (EIO;
3350 case _PC _FI LESI ZEBI TS:
3351 Ssp = sm ->smi _share; 3417 /*
3352 if (SSTOJC(ssp) >vc_sopt.sv_caps & SMB_CAP_LARGE_FI LES) 3418 * Qur _pathconf indicates _ACL_ACE ENABLED,
3353 *valp = 64; 3419 * so we should only see VSA ACE, etc here.
3354 el se 3420 * Note: vn_create asks for VSA DFACLCNT,
3355 *val p = 32; 3421 * and it expects ENOSYS and enpty dat a.
3356 br eak; 3422 &
3423 mask = vsa->vsa_mask & (VSA_ACE | VSA ACECNT |
3358 case _PC_LI NK_MAX: 3424 VSA_ACE_AOLFLAGS | VSA_ACE - ALLTYPES) ;
3359 7* e onIy ever report one link to an object */ 3425 if (mask == 0)
3360 *valp = 1; 3426 return (ENOSYS);
3361 br eak;
3428 if (sm->sni_flags & SM _ACL)
3363 case _PC_ACL_ENABLED: 3429 error = snbfs_acl _getvsa(vp, vsa, flag, cr);
3364 [* 3430 el se
3365 * Always indicate that ACLs are enabl ed and 3431 error = ENOSYS;
3366 * that we support ACE.T format, otherw se
3367 * libsec will ask for ACLENT_ T format data 3433 if (error == ENOSYS)
3368 * which we don’t support. 3434 error = fs_fab_acl (vp, vsa, flag, cr, ct);
3369 */
3370 *val p = _ACL_ACE_ENABLED; 3436 return (error);
3371 br eak; 3437 }
3373 case _PC_SYM.I NK_NAX: /* No syminks until we do Unix extensions */ 3439 /* ARGSUSED */
3374 *valp = 0; 3440 static int
3375 br eak; 3441 snbfs_setsecattr(vnode_t *vp, vsecattr_t *vsa, int flag, cred_t *cr,
3442 caller_context_t *ct)
3377 case _PC_XATTR EXI STS: 3443 {
3378 if (vfs->vfs_ flag & VFS XATTR) { 3444 vis_t *vfsp;

3379 *val p = snbfs_xa_exists(vp, cr); 3445 smbmtinfo_t *smi;

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 51

3446 int error;

3447 uint_t mask;

3449 vfsp = vp->v_vfsp;

3450 sm = VFTOSM (vfsp);

3452 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
3453 return (EIO;

3455 if (sm->sm_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
3456 return (EIO;

3458 /*

3459 * Qur _pathconf indicates _ACL_ACE ENABLED,

3460 * so we should only see VSA ACE, etc here.

3461 */

3462 mask = vsa->vsa_mask & (VSA ACE | VSA_ACECNT);

3463 if (mask == 0

3464 return (ENOSYS);

3466 if (vfsp->vfs_flag & VFS_RDONLY)

3467 return (EROFS);

3469 /*

3470 * Allow only the nount owner to do this.

3471 * See comments at snbfs_access_rwx.

3472 */

3473 error = secpolicy_vnode_setdac(cr, sm->sm _uid);
3474 if (error = 0)

3475 return (error);

3477 if (sm->sm_flags & SM _ACL)

3478 error = snbfs_acl _setvsa(vp, vsa, flag, cr);
3479 el se

3480 error = ENOSYS;

3482 return (error);

3483 }

3486 /*

3487 * XXX

3488 * This op should eventual |y support PSARC 2007/ 268.

3489 */

3490 static int

3491 snbfs_shrlock(vnode_t *vp, int cnd, struct shrlock *shr, int flag, cred_t *cr,
3492 caller_context_t *ct)

3493 {

3494 if (curproc->p_zone != VTIOSM (vp)->sm _zone_ref.zref_zone)
3495 return (EIO;

3497 if (VIOSM (vp)->sni_flags & SM _LLOCK)

3498 return (fs_shrlock(vp, cnd, shr, flag, cr, ct));
3499 el se

3500 return (ENOSYS);

3501 }

3503 /* correspond to bp_mapin() in bp_map.c */

3504 static int

3505 ui o_page_napi n(uio_t * uiop, page_t * pp)

3506 {

3507 u_of fset_t of f;

3508 size_t si ze;

3509 pgcent _t npages;

3510 caddr _t kaddr ;

3511 pfn_t pf num

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

52

HAT

3513 of f = (uintptr_t) uiop->uio_|offset & PAGEOFFSET;
3514 si ze = P2ROUNDUP(ui op->ui o_resid + off, PAGESIZE);
3515 npages = btop(size);

3517 ASSERT(pp != NULL)

3519 if (npages == 1 && kpm enabl e) {

3520 ka ddr = hat kpm mapi n(pp, NULL);

3521 if (kaddr == NULL)

3522 return (EFAULT) ;

3524 ui op- >ui o_i ov- >i ov_base = kaddr + off;

3525 ui op->ui o_i ov->i ov_| en = PACESI ZE - off;

3527 } else {

3528 kaddr = vmem xal | oc(heap_arena, size, PAGESIZE, 0, 0, NULL, NULL
3529 if (kaddr == NULL)

3530 return (EFAULT);

3532 ui op- >ui o_i ov- >i ov_base = kaddr + off;

3533 ui op->ui o_iov->iov_len = size - off;

3535 /* map pages into kaddr */

3536 uint_t attr = PROT_READ | PROT_WRI TE | HAT_NOSYNG;
3537 whil e (npages-- > 0) {

3538 pf num = pp->p_pagenum

3539 pp = pp->p_next;

3541 hat _devl oad(kas. a_hat, kaddr, PAGESIZE, pfnum attr,
3542 kaddr += PAGESI ZE;

3543 }

3544

3545 return (0);

3546 }

3548 /* correspond to bp_mapout () in bp_map.c */

3549 static void

3550 ui o_page_napout (ui o_t * uiop, page_t * pp)

3551 {

3552 u_of fset _t of f;

3553 size_t si ze;

3554 pgent _t npages;

3555 caddr _t kaddr ;

3557 kaddr = ui op->ui o_i ov->i ov_base;

3558 off = (u| ntptr_t) kaddr & PAGEO:FSET

3559 si ze = P2ROUNDUP(ui op->ui o_i ov->i ov_ len + of f, PAGESI ZE) ;
3560 npages = btop(size);

3562 ASSERT(pp != NULL);

3564 kaddr = (caddr_t) ((uintptr_t) kaddr & MMJ_PAGEMVASK) ;
3566 if (npages == 1 && kpm enabl e) {

3567 hat _kpm mapout (pp, NULL, kaddr);

3569 } else {

3570 hat _unl oad(kas. a_hat, (void *) kaddr, size,
3571 HAT_UNLOAD_NOSYNC | HAT UNLOAD) UNLOCK) ;
3572 vieem free(heap_arena, (void *) kaddr, size);
3573

3574 ui op- >ui o_i ov- >i ov_base = 0;

3575 ui op->ui o_iov->iov_len = 0;

3576 }

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 53 new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 54

3578 static int 3644 snbfs_addmap(vnode_t * vp, offset_t off, struct as * as, caddr_t addr,
3579 snbfs_map(vnode_t * vp, offset_t off, struct as * as, caddr_t * addrp, 3645 size_t len, uchar_t prot, uchar_t nexprot, uint_t flags, cred_t * cr,
3580 size_t len, uchar_t prot, uchar_t nexprot, uint_t flags, cred_t * cr, 3646 caller_context_t * ct)
3581 cal ler_context_t * ct) 3647 {
3582 { 3648 atomi c_add_l ong((ulong_t *) & VTGSMB(vp)->r_mapcnt, btopr(len));
3583 smbnode_t *np; 3649 return (0);
3584 smbmti nfo_t *sm ; 3650 }
3585 struct vattr va;
3586 segvn_crargs_t vn_a; 3652 static int
3587 int error; 3653 snbf s_del map(vnode_t * vp, offset_t off, struct as * as, caddr_t addr,
3654 size_t len, uint_t prot, uint_t naxprot, uint_t flags, cred_t * cr,
3589 np = VIGSMB(vp); 3655 caller_context _t * ct)
3590 sm = VIOSM (vp); 3656 {
3592 if (curproc->p_zone != sm->sni _zone_ref.zref_zone) 3658 snmbnode_t *np;
3593 return (EIO;
3660 atomi c_add_l ong((ulong_t *) & VTOSMB(vp)->r_mapcnt, -btopr(len));
3595 if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3596 return (EIO; 3662 /*
3663 * mark RDIRTY here, will be used to check if a file is dirty when
3598 if (vp->v_flag & VNOVAP || vp->v_flag & VNOCACHE) 3664 * unnount snbfs
3599 return (EAGAIN); 3665 */
3666 if (vn_has_cached_data(vp) && !vn_is_readonly(vp) && (maxprot & PROT_VRI
3601 if (vp->v_type != VREG 3667 && (flags == MAP_SHARED)) {
3602 return (ENCDEV); 3668 np = VICSMB(vp);
3669 mut ex_ent er (&np->r _st at el ock);
3604 va.va_mask = AT_ALL; 3670 np->r_flags | = RDIRTY;
3605 if (error = snbfsgetattr(vp, &va, cr)) 3671 mut ex_exi t (&p->r _st at el ock);
3606 return (error); 3672 }
3673 return (0);
3608 if (smbfs_rw enter_sig(&p->r_| kserlock, RWWR TER, SMBI NTR(vp))) 3674 }
3609 return (EINTR);
3676 static int
3611 if (MANDLOCK(vp, va.va_node)) { 3677 snbfs_put page(vnode_t * vp, offset_t off, size_t len, int flags,
3612 error = EAGAIN 3678 cred_t * cr, caller_context_t * ct)
3613 goto out; 3679 {
3614
3615 as_rangel ock(as); 3681 snmbnode_t *np;
3616 error = choose_addr(as, addrp, len, off, ADDR VACALIGN, flags); 3682 size_t io_len;
3683 u_of fset_t io_off;
3618 if (error '=0) { 3684 u_of fset_t eof f;
3619 as_rangeunl ock(as); 3685 int error = 0;
3620 goto out; 3686 page_t *pp;
3621 1 3687 int rdirty;
3622 vn_a.vp = vp;
3623 vn_a.of fset = off; 3689 np = VTOSMB(vp);
3624 vn_a.type = flags & MAP_TYPE;
3625 vn_a.prot = prot; 3691 if (len == 0) {
3626 vn_a. maxprot = maxprot;
3627 vn_a.flags = flags & ~MAP_TYPE; 3693 /* will flush the whole file, so clear RDIRTY */
3628 vn_a.cred = cr; 3694 if (off == (u_offset_t) 0 && (np->r_flags & RDIRTY)) {
3629 vn_a.anp = NULL; 3695 mut ex_ent er (&np- >r_st at el ock) ;
3630 vn_a.szc = 0; 3696 rdirty = np->r_flags & RDI RTY;
3631 vn_a. |l grp_rmem policy_flags = 0; 3697 np->r_flags & ~RDI RTY;
3698 nut ex_exi t (&np->r_st at el ock) ;
3633 error = as_nap(as, *addrp, |en, segvn_create, &vn_a); 3699 } else
3700 rdirty = 0;
3635 as_rangeunl ock(as);
3702 error = pvn_vplist_dirty(vp, off, snbfs_putapage, flags, cr);
3637 out:
3638 snbf s_rw_exi t (&p->r _| kserl ock) ; 3704 /*
3705 * if failed and the vnode was dirty before and we aren’'t
3640 return (error); 3706 * forcibly invalidating pages, then mark RDI RTY again.
3641 } 3707 */
3708 if (error & rdirty &&

3643 static int 3709 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 55

3710
3711
3712
3713
3714

3716

3718
3719
3720
3721

3723
3724
3725
3726
3727
3728
3729
3730

3732
3733
3734
3735
3736
3737

3739

3741
3742

3744
3745
3746
3747

3749
3750
3751
3752
3753
3754

3756
3757
3758
3759
3760
3761
3762

3764
3765
3766

3768
3769
3770
3771
3772

3774

nut ex_ent er (&np- >r _st at el ock);
np- >r flags | = RDIRTY;
nut ex_exi t (&np->r_st at el ock) ;

} else {
eof f = off + len;

nmut ex_ent er (&np->r _st at el ock);
if (eoff > np- >r_si ze)

eof f = np->r_size;
mut ex_exi t (&p->r_st at el ock);

for (io_off = off; io_off < eoff;
if ((flags & B_INVAL) ||

i
(flags & B , ASYNC) == 0) {

pp = page_l ookup(vp
(f

io_off += io_len)
|
, 1o_
| ags &(B INVAL | B_FREE) ? S
} else {

pp = page_l ookup_nowai t (vp, io_off,

(flags & B_FREE) ? SE_EXCL : SE_SHARED);

}
if (pp == NULL || Ipvn getdlrty(pp, flags))
io_len = PAGESI
el se {
error = snbfs_putapage(vp, pp, & o_off, & o_len,
}
}
}
return (error);
}
static int

snbf s_put apage(vnode_t * vp, page_t * pp, u_offset_t * offp, size_t * lenp,
int

{

flags, cred_t * cr)

struct snb_cred scred;

smbnode_t *np;
smbmti nfo_t *sm ;
smb_share_t *ssp;

ui o_t ui o;

i ovec_t ui ov, uiov_bak;
size t io_len;
u_offset_t io_off;
size_t limt;
size_t bsi ze;
size_t bl ksi ze;
u_of fset _t bl kof f;
int error;

np = VTOSMB(vp);
sm VTOSM (vp)
ssp smi - >smi _share;

/* do block io, get a kluster of dirty pages in a block. */
bsi ze = MAX(vp->v_vfsp->vfs_bsize, PACESIZE);

bl kof f = pp->p_offset / bsize;

bl kof f *= bsi ze;

bl ksi ze = roundup(bsi ze, PAGESI ZE);

pp = pvn_wite_kluster(vp, pp, & o_off, & o_len, blkoff, blksize, flags)

new usr/src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 56
3776 ASSERT(pp- >p_of f set >= bl koff);

3778 if (io_off + io_len > blkoff + blksize)

3779 ASSERT((i o_off + io_len) (bl kof f + bl ksize) < PAGESI ZE);
3780 }

3782 /* Don’t allow put pages beyond EOF */

3783 nut ex_ent er (&np- >r _st at el ock) ;

3784 l'imt=M N(np->r_size, blkoff + blksize);

3785 mut ex_exi t (&p->r_st at el ock) ;

3787 if (io_off >=1linmt) {

3788 error = 0;

3789 goto out;

3790 } else if (io_off +io_len >1limt) {

3791 int npages = btopr(limt - io_off);

3792 age *trunc;

3793 page._| Ilst _break(&pp, &t runc, npages);

3794 if (trunc)

3795 pvn_write_done(trunc, flags);

3796 iolen =1limt - io_off;

3797 }

3799 /*

3800 * Taken from NFS4. The RMODI NPROGRESS flag nakes sure that

3801 * snbfs_putapage() sees a consistent value of r_size. RMODI NPROGRESS
3802 * is set in witenp(). Wien RMODI NPROGRESS is set it indicates that
3803 * a uionopve() is in progress and the r_size has not been nade
3804 * consistent with the new size of the file. Wien the ui onpbve()
3805 * conpletes the r_size is updated and the RMODI NPROGRESS flag is
3806 * cleared.

3807 *

3808 * The RMODI NPROGRESS flag makes sure that snbfs_putapage() sees a
3809 * consistent value of r_size. Wthout this handshaking, it is
3810 * possible that snbfs put apage() picks wup the old value of r_size
3811 * before the uionpbve() in witenp() conpletes. This will result in
3812 * the wite through snbfs_putapage() being dropped.

3813 *

3814 * More precisely, there is a wi ndow between the tinme the ui onove()
3815 * conpletes and the tine the r_size is updated. If a VOP_PUTPAGE()
3816 * operation intervenes in this window, the page will be picked up,
3817 * because it is dirty (it will be unlocked, unless it was

3818 * pagecreate’ d). Wen the page is picked up as dirty, the dirty bit
3819 * Is reset (pvn_getdirty()). In snbfs_putapage(), r_size is checked.
3820 * This will still be the old size. Therefore the page will not be
3821 * written out. When segmap_rel ease() calls VOP_PUTPACGE(), the page
3822 * will be found to be clean and the wite will be dropped.

3823 *

3824 if (np->r_flags & RMODI NPROGRESS) {

3826 mut ex_ent er (&np->r _st at el ock) ;

3827 if ((np->r_flags & RMODI NPROGRESS) &&

3828 np->r _nodaddr + MAXBSI ZE > io_off &&

3829 np->r_nodaddr < io_off + io_len) {

3830 page_t *plist;

3831 /*

3832 * Awite is in progress for this region of the
3833 * file. If we did not detect RMODI NPROGRESS here,
3834 * the data beyond the file size won't be wite out.
3835 * W end up losing data. So we decide to set the
3836 * nodified bit on each page in the page |list and
3837 * mark the snbnode with RDIRTY. This wite will be
3838 * restarted at sone later tine.

3839 */

3840 plist =

3841 whi | (pI i st I'= NULL) {

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 57

3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857

3859
3860
3861

3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891

3893
3894

3896 out:

3897

3899
3900
3901
3902

3904
3905 }

pp = plist;
page_sub(&plist, pp);
hat _set nod(pp) ;

page_i o_unl ock(pp);
page_unl ock(pp);

}

np->r_flags | = RDIRTY,

nut ex_exi t (&np->r_st at el ock) ;

if (offp)
*of

fp = io_off;
if (lenp)
*lenp = io_len;
return (0);

mut ex_exi t (&p->r _st at el ock);

}

if (smbfs_rw enter_sig(&p->r_| kserl ock, RW READER, SMBI NTR(vp)))
return (EINTR);
snb_credinit(&scred, cr);

if (np->n_vcgenid ! = ssp->ss_vcgenid)
error = ESTALE;
el se {
/* just use uio instead of buf, since smb_rwuio need uio. */
ui ov. i ov_base = 0;
uiov.iov_len = 0;
ui 0.ui 0o_iov = &uiov;
ui 0.ui o_iovent = 1;
uio.uio_|offset = io_off;
uio.uio_resid = io_len;
ui 0. ui o_segfl g = U O _SYSSPACE;
uio.uio_Ilimt = MAXOFFSET_T;
/* map pages into kernel address space, and setup uio. */
error = ul o_page_mapi n(&ui o, pp);
if (error == 0
ui ov_bak. i ov_base = uiov.iov_base;
ui ov_bak.iov_len = uiov.iov_|en;
error = snb_rwui o(ssp, np->n_fid, UOWRITE, &uio, &scre
if (error ==
mut ex_ent er (&np- >r _st at el ock) ;
np->n_flag | = (NFLUSHW RE | NATTRCHANGED) ;
mut ex_exi t (&p->r_st at el ock) ;
(void) snbfs_snb_flush(np, &scred);
/* unmap pages from kernel address space. */
ui 0.uio_iov = &ui ov_bak;
ui o_page_mapout (&ui 0, pp);
}
}

snb_credrel e(&scred);
snbfs_rw exit(&p->r_| kserl ock);

pvn_write_done(pp, ((error) ? B.ERROR: 0) | B WITE | flags);
if (offp)
*offp = io_off;
if (lenp)
*lenp = io_len;

return (error);

3907 static int

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 58
3908 snbfs_get page(vnode_t * vp, offset_t off, size_t len, uint_t * protp,

3909 page_t * pl[], size_t plsz, struct seg * seg, caddr_t addr,

3910 enumseg_rw rw, cred_t * cr, caller_context_t * ct)

3911 {

3913 smbnode_t *np;

3914 int error;

3916 /* these pages have all protections. */

3917 if (protp)

3918 *protp = PROT_ALL

3920 np = VTOSMB(vp);

3922 /* Don’t allow get pages beyond EOF, unless it’'s segkmap. */

3923 nmut ex_ent er (&np->r_st at el ock) ;

3924 if (off + len > np->r_size + PAGESI ZE && seg ! = segkmap){

3925 mut ex_exi t (&p->r_st at el ock);

3926 return (EFAULT);

3927 }

3928 mut ex_exi t (&p->r_st at el ock);

3930 if (len <= PAGESI ZE)

3931 error = snbfs_getapage(vp, off, len, protp, pl, plsz, seg, addr,
3932 cr);

3933 } else {

3934 error = pvn_get pages(snbfs_get apage, vp, off, len, protp, pl, pl
3935 addr, rw, cr);

3936 }

3938 return (error);

3939 }

3941 static int
3942 snbfs_get apage(vnode_t * vp, u_offset_t off, size_t len,
3943 wuint_t * protp, page t * pl[], size t plsz,

3944 enum seg_rw rw, cred_t * cr)
3945 {

3947 snbnode_t *np;

3948 smbmti nfo_t *sm ;

3949 smb_share_t *ssp;

3950 smb_cred_t scred;

3952 page_t *pp;

3953 uio_t ui o;

3954 i ovec_t ui ov, uiov_bak;
3956 u_of fset _t bl kof f;

3957 size_t bsi ze;

3958 size_t bl ksi ze;

3960 u_of fset _t io_off;

3961 size_t io_len;

3962 size_t pages_| en;

3964 int error = 0;

3966 np = VTOSMB(vp);

3967 sm = VIOSM (vp);

3968 ssp = smi->sni_share;

3970 /* if pl is null,it’s neaningless */
3971 if (pl == NULL)

3972 return (EFAULT);

struct seg * seg, caddr_t addr,

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 59

3974 again:

3975 if (page_exists(vp, off) == NULL) {

3976 if (rw==S _CREATE) {

3977 /* just return a enpty page if asked to create. */
3978 if ((pp = page_create_va(vp, off, PAGESIZE, PGWAIT | PG
3979 got o agai n;

3980 pages_| en = PACESI ZE;

3981 } else {

3983 /*

3984 * do block io, get a kluster of non-exist pages in a
3985 * bl ock.

3986 */

3987 bsi ze = MAX(vp->v_vfsp->vfs_bsize, PACESIZE);

3988 bl kof f = off / bsize;

3989 bl kof f *= bsi ze;

3990 bl ksi ze = roundup(bsi ze, PAGESI ZE);

3992 pp = pvn_read_kluster(vp, off, seg, addr, & o_off, & o_l
3994 if (pp == NULL)

3995 got o agai n;

3997 pages_len = io_len;

3999 /* Don't need to get pages fromserver if it's segkmap
4000 * that reads beyond ECF. */

4001 nmut ex_ent er (&np- >r _st at el ock) ;

4002 if (io_off >= np->r_size && seg == segkmap) {

4003 mut ex_exi t (&p->r _st at el ock);

4004 error = 0;

4005 goto out;

4006 }eISE|f(|ooff+|oIen>np>r _size) {

4007 int npages = btopr(np->r_size - io_o
4008 page_t *trunc;

4010 page_l i st_break(&p, & runc, npages);

4011 i1f (trunc)

4012 pvn_read_done(trunc, 0);

4013 io_len = np->r_size - io_off;

4014 }

4015 nut ex_exi t (&np->r_st at el ock) ;

4017 if (smbfs_rw enter_sig(&p->r_| kserl ock, RW READER, SMBI
4018 return ElNTR;

4019 snb_credinit(&scred, cr);

4021 /*

4022 * just use uio instead of buf, since snb_rwio need
4023 * uio.

4024 */

4025 ui ov.iov_base = 0;

4026 uiov.iov_len = 0;

4027 uio.uio_iov = &ui ov;

4028 ui 0. uio_iovent = 1;

4029 uio.uio_loffset = io_off;

4030 uio.uio_resid = io_len;

4031 ui 0. uio_segflg = UTO_ SYSSPACE

4032 uio.uio_|linit = MAXOFFSET_T;

4034 /*

4035 * map pages into kernel address space, and setup
4036 * uio.

4037 */

4038 error = ui o_page_mapi n(&ui o, pp);

4039 if (error == 0) {

new usr/src/uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 60

4040 ui ov_bak. i ov_base = uiov.iov_base;

4041 ui ov_bak.iov_len = uiov.iov_Ten;

4042 error = smb_rwui o(ssp, np->n f|d U O READ, &uio
4043 /* unmap pages from kernel addr ess space. */
4044 ui 0.ui 0_i ov = &ui ov_bak;

4045 ui o_page_mapout (&ui 0, pp);

4046 }

4047 snb_credrel e(&scred);

4048 snbfs_rw exit (&p->r_| kserl ock);

4049 }

4050 } else {

4051 se_t = = S_CREATE ? SE EXCL : SE_SHARED,
4052 if ((pp = page Iookup(vp, off se)) == NULL) {

4053 got o agai n;

4054 }

4055 }

4057 out:

4058 if (pp) {

4059 if (error) {

4060 pvn_read_done(pp, B_ERROR);

4061 } else {

4062 /* init page list, unlock pages. */
4063 pvn_plist_init(pp, pl, plsz, off, pages_len, rw;
4064 }

4065

4066 return (error);

4067 }

4069 /* correspond to nfs_invalidate_pages() in nfs_client.c */

4070 void

4071 snbfs_inval i dat e_pages(vnode_t * vp, u_offset_t off, cred_t * cr)
4072 {

4074 smbnode_t *np;

4076 np = VTIOSMB(vp);

4077 /* will flush the whole file, so clear RDIRTY */

4078 if (off == (u_offset_t) 0 & (np->r_flags & RDIRTY)) {

4079 mut ex_ent er (&p- >r _st at el ock) ;

4080 np->r_flags & ~RDIRTY;

4081 mut ex_exi t (&p->r _st at el ock);

4082 }

4083 (void) pvn_vplist_dirty(vp, off, snbfs_putapage, B_INVAL | B_TRUNC, cr);
4084 }

4085 #endif /* ! codereview */

