
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 1

**
 16706 Sat Aug 18 10:48:41 2012
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c
*** NO COMMENTS ***
**
______unchanged_portion_omitted_

120 /*
121 * Purge all of the various data caches.
122 */
123 /*ARGSUSED*/
124 void
125 smbfs_purge_caches(struct vnode *vp)
126 {
127 #if 0 /* not yet: mmap support */
127 /*
128 * NFS: Purge the DNLC for this vp,
129 * Clear any readdir state bits,
130 * the readlink response cache, ...
131 */
132 smbnode_t *np = VTOSMB(vp);

134 /*
135 * Flush the page cache.
136 */
137 if (vn_has_cached_data(vp)) {
138 (void) VOP_PUTPAGE(vp, (u_offset_t) 0, 0, B_INVAL, np->r_cred, N
139 (void) VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
139 }
141 #endif /* not yet */
140 }

______unchanged_portion_omitted_
199 #endif /* not yet */

201 /*
202 * Set attributes cache for given vnode using SMB fattr
203 * and update the attribute cache timeout.
204 *
205 * From NFS: nfs_attrcache, nfs_attrcache_va
206 */
207 void
208 smbfs_attrcache_fa(vnode_t *vp, struct smbfattr *fap)
209 {
210 smbnode_t *np;
211 smbmntinfo_t *smi;
212 hrtime_t delta, now;
213 u_offset_t newsize;
214 vtype_t vtype, oldvt;
215 mode_t mode;

217 np = VTOSMB(vp);
218 smi = VTOSMI(vp);

220 /*
221 * We allow v_type to change, so set that here
222 * (and the mode, which depends on the type).
223 */
224 if (fap->fa_attr & SMB_FA_DIR) {
225 vtype = VDIR;
226 mode = smi->smi_dmode;
227 } else {
228 vtype = VREG;
229 mode = smi->smi_fmode;
230 }

232 mutex_enter(&np->r_statelock);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 2

233 now = gethrtime();

235 /*
236 * Delta is the number of nanoseconds that we will
237 * cache the attributes of the file. It is based on
238 * the number of nanoseconds since the last time that
239 * we detected a change. The assumption is that files
240 * that changed recently are likely to change again.
241 * There is a minimum and a maximum for regular files
242 * and for directories which is enforced though.
243 *
244 * Using the time since last change was detected
245 * eliminates direct comparison or calculation
246 * using mixed client and server times. SMBFS
247 * does not make any assumptions regarding the
248 * client and server clocks being synchronized.
249 */
250 if (fap->fa_mtime.tv_sec != np->r_attr.fa_mtime.tv_sec ||
251 fap->fa_mtime.tv_nsec != np->r_attr.fa_mtime.tv_nsec ||
252 fap->fa_size != np->r_attr.fa_size)
253 np->r_mtime = now;

255 if ((smi->smi_flags & SMI_NOAC) || (vp->v_flag & VNOCACHE))
256 delta = 0;
257 else {
258 delta = now - np->r_mtime;
259 if (vtype == VDIR) {
260 if (delta < smi->smi_acdirmin)
261 delta = smi->smi_acdirmin;
262 else if (delta > smi->smi_acdirmax)
263 delta = smi->smi_acdirmax;
264 } else {
265 if (delta < smi->smi_acregmin)
266 delta = smi->smi_acregmin;
267 else if (delta > smi->smi_acregmax)
268 delta = smi->smi_acregmax;
269 }
270 }

272 np->r_attrtime = now + delta;
273 np->r_attr = *fap;
274 np->n_mode = mode;
275 oldvt = vp->v_type;
276 vp->v_type = vtype;

278 /*
279 * Shall we update r_size? (local notion of size)
280 *
281 * The real criteria for updating r_size should be:
282 * if the file has grown on the server, or if
283 * the client has not modified the file.
284 *
285 * Also deal with the fact that SMB presents
286 * directories as having size=0. Doing that
287 * here and leaving fa_size as returned OtW
288 * avoids fixing the size lots of places.
289 */
290 newsize = fap->fa_size;
291 if (vtype == VDIR && newsize < DEV_BSIZE)
292 newsize = DEV_BSIZE;

294 if (np->r_size != newsize) {
295 if (!vn_has_cached_data(vp)
296 || (!(np->r_flags & RDIRTY)&& np->r_count == 0)) {
297 #if 0 /* not yet: mmap support */
298 if (!vn_has_cached_data(vp) || ...)

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 3

299 /* XXX: See NFS page cache code. */
300 #endif /* not yet */
297 /* OK to set the size. */
298 np->r_size = newsize;
299 }
300 }
301 #endif /* ! codereview */

303 /* NFS: np->r_flags &= ~RWRITEATTR; */
304 np->n_flag &= ~NATTRCHANGED;

306 mutex_exit(&np->r_statelock);

308 if (oldvt != vtype) {
309 SMBVDEBUG("vtype change %d to %d\n", oldvt, vtype);
310 }
311 }

313 /*
314 * Fill in attribute from the cache.
315 *
316 * If valid, copy to *fap and return zero,
317 * otherwise return an error.
318 *
319 * From NFS: nfs_getattr_cache()
320 */
321 int
322 smbfs_getattr_cache(vnode_t *vp, struct smbfattr *fap)
323 {
324 smbnode_t *np;
325 int error;

327 np = VTOSMB(vp);

329 mutex_enter(&np->r_statelock);
330 if (gethrtime() >= np->r_attrtime) {
331 /* cache expired */
332 error = ENOENT;
333 } else {
334 /* cache is valid */
335 *fap = np->r_attr;
336 error = 0;
337 }
338 mutex_exit(&np->r_statelock);

340 return (error);
341 }

343 /*
344 * Get attributes over-the-wire and update attributes cache
345 * if no error occurred in the over-the-wire operation.
346 * Return 0 if successful, otherwise error.
347 * From NFS: nfs_getattr_otw
348 */
349 int
350 smbfs_getattr_otw(vnode_t *vp, struct smbfattr *fap, cred_t *cr)
351 {
352 struct smbnode *np;
353 struct smb_cred scred;
354 int error;

356 np = VTOSMB(vp);

358 /*
359 * NFS uses the ACL rpc here (if smi_flags & SMI_ACL)
360 * With SMB, getting the ACL is a significantly more

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 4

361 * expensive operation, so we do that only when asked
362 * for the uid/gid. See smbfsgetattr().
363 */

365 /* Shared lock for (possible) n_fid use. */
366 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
367 return (EINTR);
368 smb_credinit(&scred, cr);

370 bzero(fap, sizeof (*fap));
371 error = smbfs_smb_getfattr(np, fap, &scred);

373 smb_credrele(&scred);
374 smbfs_rw_exit(&np->r_lkserlock);

376 if (error) {
377 /* NFS had: PURGE_STALE_FH(error, vp, cr) */
378 smbfs_attrcache_remove(np);
379 if (error == ENOENT || error == ENOTDIR) {
380 /*
381 * Getattr failed because the object was
382 * removed or renamed by another client.
383 * Remove any cached attributes under it.
384 */
385 smbfs_attrcache_prune(np);
386 }
387 return (error);
388 }

390 /*
391 * NFS: smbfs_cache_fattr(vap, fa, vap, t, cr);
392 * which did: fattr_to_vattr, nfs_attr_cache.
393 * We cache the fattr form, so just do the
394 * cache check and store the attributes.
395 */
396 smbfs_cache_check(vp, fap);
397 smbfs_attrcache_fa(vp, fap);

399 return (0);
400 }

402 /*
403 * Return either cached or remote attributes. If get remote attr
404 * use them to check and invalidate caches, then cache the new attributes.
405 *
406 * From NFS: nfsgetattr()
407 */
408 int
409 smbfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
410 {
411 struct smbfattr fa;
412 smbmntinfo_t *smi;
413 uint_t mask;
414 int error;

416 smi = VTOSMI(vp);

418 ASSERT(curproc->p_zone == smi->smi_zone_ref.zref_zone);

420 /*
421 * If asked for UID or GID, update n_uid, n_gid.
422 */
423 mask = AT_ALL;
424 if (vap->va_mask & (AT_UID | AT_GID)) {
425 if (smi->smi_flags & SMI_ACL)
426 (void) smbfs_acl_getids(vp, cr);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 5

427 /* else leave as set in make_smbnode */
428 } else {
429 mask &= ~(AT_UID | AT_GID);
430 }

432 /*
433 * If we’ve got cached attributes, just use them;
434 * otherwise go to the server to get attributes,
435 * which will update the cache in the process.
436 */
437 error = smbfs_getattr_cache(vp, &fa);
438 if (error)
439 error = smbfs_getattr_otw(vp, &fa, cr);
440 if (error)
441 return (error);

443 /*
444 * Re. client’s view of the file size, see:
445 * smbfs_attrcache_fa, smbfs_getattr_otw
446 */

448 error = smbfattr_to_vattr(vp, &fa, vap);
449 vap->va_mask = mask;

451 return (error);
452 }

455 /*
456 * Convert SMB over the wire attributes to vnode form.
457 * Returns 0 for success, error if failed (overflow, etc).
458 * From NFS: nattr_to_vattr()
459 */
460 int
461 smbfattr_to_vattr(vnode_t *vp, struct smbfattr *fa, struct vattr *vap)
462 {
463 struct smbnode *np = VTOSMB(vp);

465 /* Set va_mask in caller */

467 /*
468 * Take type, mode, uid, gid from the smbfs node,
469 * which has have been updated by _getattr_otw.
470 */
471 vap->va_type = vp->v_type;
472 vap->va_mode = np->n_mode;

474 vap->va_uid = np->n_uid;
475 vap->va_gid = np->n_gid;

477 vap->va_fsid = vp->v_vfsp->vfs_dev;
478 vap->va_nodeid = np->n_ino;
479 vap->va_nlink = 1;

481 /*
482 * Difference from NFS here: We cache attributes as
483 * reported by the server, so r_attr.fa_size is the
484 * server’s idea of the file size. This is called
485 * for getattr, so we want to return the client’s
486 * idea of the file size. NFS deals with that in
487 * nfsgetattr(), the equivalent of our caller.
488 */
489 vap->va_size = np->r_size;

491 /*
492 * Times. Note, already converted from NT to

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 6

493 * Unix form (in the unmarshalling code).
494 */
495 vap->va_atime = fa->fa_atime;
496 vap->va_mtime = fa->fa_mtime;
497 vap->va_ctime = fa->fa_ctime;

499 /*
500 * rdev, blksize, seq are made up.
501 * va_nblocks is 512 byte blocks.
502 */
503 vap->va_rdev = vp->v_rdev;
504 vap->va_blksize = MAXBSIZE;
505 vap->va_nblocks = (fsblkcnt64_t)btod(np->r_attr.fa_allocsz);
506 vap->va_seq = 0;

508 return (0);
509 }

512 /*
513 * SMB Client initialization and cleanup.
514 * Much of it is per-zone now.
515 */

518 /* ARGSUSED */
519 static void *
520 smbfs_zone_init(zoneid_t zoneid)
521 {
522 smi_globals_t *smg;

524 smg = kmem_alloc(sizeof (*smg), KM_SLEEP);
525 mutex_init(&smg->smg_lock, NULL, MUTEX_DEFAULT, NULL);
526 list_create(&smg->smg_list, sizeof (smbmntinfo_t),
527 offsetof(smbmntinfo_t, smi_zone_node));
528 smg->smg_destructor_called = B_FALSE;
529 return (smg);
530 }

532 /*
533 * Callback routine to tell all SMBFS mounts in the zone to stop creating new
534 * threads. Existing threads should exit.
535 */
536 /* ARGSUSED */
537 static void
538 smbfs_zone_shutdown(zoneid_t zoneid, void *data)
539 {
540 smi_globals_t *smg = data;
541 smbmntinfo_t *smi;

543 ASSERT(smg != NULL);
544 again:
545 mutex_enter(&smg->smg_lock);
546 for (smi = list_head(&smg->smg_list); smi != NULL;
547 smi = list_next(&smg->smg_list, smi)) {

549 /*
550 * If we’ve done the shutdown work for this FS, skip.
551 * Once we go off the end of the list, we’re done.
552 */
553 if (smi->smi_flags & SMI_DEAD)
554 continue;

556 /*
557 * We will do work, so not done. Get a hold on the FS.
558 */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 7

559 VFS_HOLD(smi->smi_vfsp);

561 mutex_enter(&smi->smi_lock);
562 smi->smi_flags |= SMI_DEAD;
563 mutex_exit(&smi->smi_lock);

565 /*
566 * Drop lock and release FS, which may change list, then repeat.
567 * We’re done when every mi has been done or the list is empty.
568 */
569 mutex_exit(&smg->smg_lock);
570 VFS_RELE(smi->smi_vfsp);
571 goto again;
572 }
573 mutex_exit(&smg->smg_lock);
574 }

576 static void
577 smbfs_zone_free_globals(smi_globals_t *smg)
578 {
579 list_destroy(&smg->smg_list); /* makes sure the list is empty */
580 mutex_destroy(&smg->smg_lock);
581 kmem_free(smg, sizeof (*smg));

583 }

585 /* ARGSUSED */
586 static void
587 smbfs_zone_destroy(zoneid_t zoneid, void *data)
588 {
589 smi_globals_t *smg = data;

591 ASSERT(smg != NULL);
592 mutex_enter(&smg->smg_lock);
593 if (list_head(&smg->smg_list) != NULL) {
594 /* Still waiting for VFS_FREEVFS() */
595 smg->smg_destructor_called = B_TRUE;
596 mutex_exit(&smg->smg_lock);
597 return;
598 }
599 smbfs_zone_free_globals(smg);
600 }

602 /*
603 * Add an SMBFS mount to the per-zone list of SMBFS mounts.
604 */
605 void
606 smbfs_zonelist_add(smbmntinfo_t *smi)
607 {
608 smi_globals_t *smg;

610 smg = zone_getspecific(smi_list_key, smi->smi_zone_ref.zref_zone);
611 mutex_enter(&smg->smg_lock);
612 list_insert_head(&smg->smg_list, smi);
613 mutex_exit(&smg->smg_lock);
614 }

616 /*
617 * Remove an SMBFS mount from the per-zone list of SMBFS mounts.
618 */
619 void
620 smbfs_zonelist_remove(smbmntinfo_t *smi)
621 {
622 smi_globals_t *smg;

624 smg = zone_getspecific(smi_list_key, smi->smi_zone_ref.zref_zone);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 8

625 mutex_enter(&smg->smg_lock);
626 list_remove(&smg->smg_list, smi);
627 /*
628 * We can be called asynchronously by VFS_FREEVFS() after the zone
629 * shutdown/destroy callbacks have executed; if so, clean up the zone’s
630 * smi_globals.
631 */
632 if (list_head(&smg->smg_list) == NULL &&
633 smg->smg_destructor_called == B_TRUE) {
634 smbfs_zone_free_globals(smg);
635 return;
636 }
637 mutex_exit(&smg->smg_lock);
638 }

640 #ifdef lint
641 #define NEED_SMBFS_CALLBACKS 1
642 #endif

644 #ifdef NEED_SMBFS_CALLBACKS
645 /*
646 * Call-back hooks for netsmb, in case we want them.
647 * Apple’s VFS wants them. We may not need them.
648 */
649 /*ARGSUSED*/
650 static void smbfs_dead(smb_share_t *ssp)
651 {
652 /*
653 * Walk the mount list, finding all mounts
654 * using this share...
655 */
656 }

658 /*ARGSUSED*/
659 static void smbfs_cb_nop(smb_share_t *ss)
660 {
661 /* no-op */
662 }

664 smb_fscb_t smbfs_cb = {
665 .fscb_disconn = smbfs_dead,
666 .fscb_connect = smbfs_cb_nop,
667 .fscb_down = smbfs_cb_nop,
668 .fscb_up = smbfs_cb_nop };

670 #endif /* NEED_SMBFS_CALLBACKS */

672 /*
673 * SMBFS Client initialization routine. This routine should only be called
674 * once. It performs the following tasks:
675 * - Initalize all global locks
676 * - Call sub-initialization routines (localize access to variables)
677 */
678 int
679 smbfs_clntinit(void)
680 {

682 zone_key_create(&smi_list_key, smbfs_zone_init, smbfs_zone_shutdown,
683 smbfs_zone_destroy);
684 #ifdef NEED_SMBFS_CALLBACKS
685 (void) smb_fscb_set(&smbfs_cb);
686 #endif /* NEED_SMBFS_CALLBACKS */
687 return (0);
688 }

690 /*

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 9

691 * This routine is called when the modunload is called. This will cleanup
692 * the previously allocated/initialized nodes.
693 */
694 void
695 smbfs_clntfini(void)
696 {
697 #ifdef NEED_SMBFS_CALLBACKS
698 (void) smb_fscb_set(NULL);
699 #endif /* NEED_SMBFS_CALLBACKS */
700 (void) zone_key_delete(smi_list_key);
701 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_node.h 1

**
 11749 Sat Aug 18 10:48:42 2012
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_node.h
*** NO COMMENTS ***
**
______unchanged_portion_omitted_

125 /*
126 * Below is the SMBFS-specific representation of a "node".
127 * This struct is a mixture of Sun NFS and Darwin code.
128 * Fields starting with "r_" came from NFS struct "rnode"
129 * and fields starting with "n_" came from Darwin, or
130 * were added during the Solaris port. We have avoided
131 * renaming fields so we would not cause excessive
132 * changes in the code using this struct.
133 *
134 * Now using an AVL tree instead of hash lists, but kept the
135 * "hash" in some member names and functions to reduce churn.
136 * One AVL tree per mount replaces the global hash buckets.
137 *
138 * Notes carried over from the NFS code:
139 *
140 * The smbnode is the "inode" for remote files. It contains all the
141 * information necessary to handle remote file on the client side.
142 *
143 * Note on file sizes: we keep two file sizes in the smbnode: the size
144 * according to the client (r_size) and the size according to the server
145 * (r_attr.fa_size). They can differ because we modify r_size during a
146 * write system call (smbfs_rdwr), before the write request goes over the
147 * wire (before the file is actually modified on the server). If an OTW
148 * request occurs before the cached data is written to the server the file
149 * size returned from the server (r_attr.fa_size) may not match r_size.
150 * r_size is the one we use, in general. r_attr.fa_size is only used to
151 * determine whether or not our cached data is valid.
152 *
153 * Each smbnode has 3 locks associated with it (not including the smbnode
154 * "hash" AVL tree and free list locks):
155 *
156 * r_rwlock: Serializes smbfs_write and smbfs_setattr requests
157 * and allows smbfs_read requests to proceed in parallel.
158 * Serializes reads/updates to directories.
159 *
160 * r_lkserlock: Serializes lock requests with map, write, and
161 * readahead operations.
162 *
163 * r_statelock: Protects all fields in the smbnode except for
164 * those listed below. This lock is intented
165 * to be held for relatively short periods of
166 * time (not accross entire putpage operations,
167 * for example).
168 *
169 * The following members are protected by the mutex smbfreelist_lock:
170 * r_freef
171 * r_freeb
172 *
173 * The following members are protected by the AVL tree rwlock:
174 * r_avl_node (r__hdr.hdr_avl_node)
175 *
176 * Note: r_modaddr is only accessed when the r_statelock mutex is held.
177 * Its value is also controlled via r_rwlock. It is assumed that
178 * there will be only 1 writer active at a time, so it safe to
179 * set r_modaddr and release r_statelock as long as the r_rwlock
180 * writer lock is held.
181 *
182 * 64-bit offsets: the code formerly assumed that atomic reads of
183 * r_size were safe and reliable; on 32-bit architectures, this is

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_node.h 2

184 * not true since an intervening bus cycle from another processor
185 * could update half of the size field. The r_statelock must now
186 * be held whenever any kind of access of r_size is made.
187 *
188 * Lock ordering:
189 * r_rwlock > r_lkserlock > r_statelock
190 */

192 typedef struct smbnode {
193 /* Our linkage in the node cache AVL tree (see above). */
194 smbfs_node_hdr_t r__hdr;

196 /* short-hand names for r__hdr members */
197 #define r_avl_node r__hdr.hdr_avl_node
198 #define n_rpath r__hdr.hdr_n_rpath
199 #define n_rplen r__hdr.hdr_n_rplen

201 smbmntinfo_t *n_mount; /* VFS data */
202 vnode_t *r_vnode; /* associated vnode */

204 /*
205 * Linkage in smbfreelist, for reclaiming nodes.
206 * Lock for the free list is: smbfreelist_lock
207 */
208 struct smbnode *r_freef; /* free list forward pointer */
209 struct smbnode *r_freeb; /* free list back pointer */

211 smbfs_rwlock_t r_rwlock; /* serialize write/setattr requests */
212 smbfs_rwlock_t r_lkserlock; /* serialize lock with other ops */
213 kmutex_t r_statelock; /* protect (most) smbnode fields */

215 /*
216 * File handle, directory search handle,
217 * and reference counts for them, etc.
218 * Lock for these is: r_lkserlock
219 */
220 int n_dirrefs;
221 struct smbfs_fctx *n_dirseq; /* ff context */
222 int n_dirofs; /* last ff offset */
223 int n_fidrefs;
224 uint16_t n_fid; /* file handle */
225 enum vtype n_ovtype; /* vnode type opened */
226 uint32_t n_rights; /* granted rights */
227 int n_vcgenid; /* gereration no. (reconnect) */

229 /*
230 * Misc. bookkeeping
231 */
232 cred_t *r_cred; /* current credentials */
233 u_offset_t r_nextr; /* next read offset (read-ahead) */
234 long r_mapcnt; /* count of mmapped pages */
235 uint_t r_count; /* # of refs not reflect in v_count */
236 uint_t r_awcount; /* # of outstanding async write */
237 uint_t r_gcount; /* getattrs waiting to flush pages */
238 u_offset_t r_modaddr; /* address for page in writenp */
239 #endif /* ! codereview */
240 uint_t r_flags; /* flags, see below */
241 uint32_t n_flag; /* NXXX flags below */
242 uint_t r_error; /* async write error */
243 kcondvar_t r_cv; /* condvar for blocked threads */
244 avl_tree_t r_dir; /* cache of readdir responses */
245 rddir_cache *r_direof; /* pointer to the EOF entry */
246 kthread_t *r_serial; /* id of purging thread */
247 list_t r_indelmap; /* list of delmap callers */

249 /*

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_node.h 3

250 * Attributes: local, and as last seen on the server.
251 * See notes above re: r_size vs r_attr.fa_size, etc.
252 */
253 smbfattr_t r_attr; /* attributes from the server */
254 hrtime_t r_attrtime; /* time attributes become invalid */
255 hrtime_t r_mtime; /* client time file last modified */
256 len_t r_size; /* client’s view of file size */

258 /*
259 * Security attributes.
260 */
261 vsecattr_t r_secattr;
262 hrtime_t r_sectime;

264 /*
265 * Other attributes, not carried in smbfattr_t
266 */
267 u_longlong_t n_ino;
268 uid_t n_uid;
269 gid_t n_gid;
270 mode_t n_mode;
271 } smbnode_t;

273 /*
274 * Flag bits in: smbnode_t .n_flag
275 */
276 #define NFLUSHINPROG 0x00001
277 #define NFLUSHWANT 0x00002 /* they should gone ... */
278 #define NMODIFIED 0x00004 /* bogus, until async IO implemented */
279 #define NREFPARENT 0x00010 /* node holds parent from recycling */
280 #define NGOTIDS 0x00020
281 #define NRDIRSERIAL 0x00080 /* serialize readdir operation */
282 #define NISMAPPED 0x00800
283 #define NFLUSHWIRE 0x01000
284 #define NATTRCHANGED 0x02000 /* kill cached attributes at close */
285 #define NALLOC 0x04000 /* being created */
286 #define NWALLOC 0x08000 /* awaiting creation */
287 #define N_XATTR 0x10000 /* extended attribute (dir or file) */

289 /*
290 * Flag bits in: smbnode_t .r_flags
291 */
292 #define RREADDIRPLUS 0x1 /* issue a READDIRPLUS instead of READDIR */
293 #define RDIRTY 0x2 /* dirty pages from write operation */
294 #define RSTALE 0x4 /* file handle is stale */
295 #define RMODINPROGRESS 0x8 /* page modification happening */
296 #define RTRUNCATE 0x10 /* truncating, don’t commit */
297 #define RHAVEVERF 0x20 /* have a write verifier to compare against */
298 #define RCOMMIT 0x40 /* commit in progress */
299 #define RCOMMITWAIT 0x80 /* someone is waiting to do a commit */
300 #define RHASHED 0x100 /* smbnode is in the "hash" AVL tree */
301 #define ROUTOFSPACE 0x200 /* an out of space error has happened */
302 #define RDIRECTIO 0x400 /* bypass the buffer cache */
303 #define RLOOKUP 0x800 /* a lookup has been performed */
304 #define RWRITEATTR 0x1000 /* attributes came from WRITE */
305 #define RINDNLCPURGE 0x2000 /* in the process of purging DNLC references */
306 #define RDELMAPLIST 0x4000 /* delmap callers tracking for as callback */

308 /*
309 * Convert between vnode and smbnode
310 */
311 #define VTOSMB(vp) ((smbnode_t *)((vp)->v_data))
312 #define SMBTOV(np) ((np)->r_vnode)

314 /*
315 * A macro to compute the separator that should be used for

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_node.h 4

316 * names under some directory. See smbfs_fullpath().
317 */
318 #define SMBFS_DNP_SEP(dnp) \
319 (((dnp->n_flag & N_XATTR) == 0 && dnp->n_rplen > 1) ? ’\\’ : ’\0’)

321 #ifdef __cplusplus
322 }
323 #endif

325 #endif /* _FS_SMBFS_NODE_H_ */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr.h 1

**
 10945 Sat Aug 18 10:48:43 2012
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr.h
*** NO COMMENTS ***
**
______unchanged_portion_omitted_
149 typedef struct smbfs_fctx smbfs_fctx_t;

151 #define f_rq f_urq.uf_rq
152 #define f_t2 f_urq.uf_t2

154 /*
155 * smb level (smbfs_smb.c)
156 */
157 int smbfs_smb_lock(struct smbnode *np, int op, caddr_t id,
158 offset_t start, uint64_t len, int largelock,
159 struct smb_cred *scrp, uint32_t timeout);
160 int smbfs_smb_qfsattr(struct smb_share *ssp, struct smb_fs_attr_info *,
161 struct smb_cred *scrp);
162 int smbfs_smb_statfs(struct smb_share *ssp, statvfs64_t *sbp,
163 struct smb_cred *scrp);
164 int smbfs_smb_setfsize(struct smbnode *np, uint16_t fid, uint64_t newsize,
165 struct smb_cred *scrp);

167 int smbfs_smb_getfattr(struct smbnode *np, struct smbfattr *fap,
168 struct smb_cred *scrp);

170 int smbfs_smb_setfattr(struct smbnode *np, int fid,
171 uint32_t attr, struct timespec *mtime, struct timespec *atime,
172 struct smb_cred *scrp);

174 int smbfs_smb_open(struct smbnode *np, const char *name, int nmlen,
175 int xattr, uint32_t rights, struct smb_cred *scrp,
176 uint16_t *fidp, uint32_t *rightsp, struct smbfattr *fap);
177 int smbfs_smb_tmpopen(struct smbnode *np, uint32_t rights,
178 struct smb_cred *scrp, uint16_t *fidp);
179 int smbfs_smb_close(struct smb_share *ssp, uint16_t fid,
180 struct timespec *mtime, struct smb_cred *scrp);
181 int smbfs_smb_tmpclose(struct smbnode *ssp, uint16_t fid,
182 struct smb_cred *scrp);
183 int smbfs_smb_create(struct smbnode *dnp, const char *name, int nmlen,
184 int xattr, uint32_t disp, struct smb_cred *scrp, uint16_t *fidp);
185 int smbfs_smb_delete(struct smbnode *np, struct smb_cred *scrp,
186 const char *name, int len, int xattr);
187 int smbfs_smb_rename(struct smbnode *src, struct smbnode *tdnp,
188 const char *tname, int tnmlen, struct smb_cred *scrp);
189 int smbfs_smb_t2rename(struct smbnode *np, struct smbnode *tdnp,
190 const char *tname, int tnmlen, struct smb_cred *scrp, int overwrite);
191 int smbfs_smb_move(struct smbnode *src, struct smbnode *tdnp,
192 const char *tname, int tnmlen, uint16_t flags, struct smb_cred *scrp);
193 int smbfs_smb_mkdir(struct smbnode *dnp, const char *name, int len,
194 struct smb_cred *scrp);
195 int smbfs_smb_rmdir(struct smbnode *np, struct smb_cred *scrp);
196 int smbfs_smb_findopen(struct smbnode *dnp, const char *wildcard, int wclen,
197 int attr, struct smb_cred *scrp, struct smbfs_fctx **ctxpp);
198 int smbfs_smb_findnext(struct smbfs_fctx *ctx, int limit,
199 struct smb_cred *scrp);
200 int smbfs_smb_findclose(struct smbfs_fctx *ctx, struct smb_cred *scrp);
201 int smbfs_fullpath(struct mbchain *mbp, struct smb_vc *vcp,
202 struct smbnode *dnp, const char *name, int nmlen, uint8_t sep);
203 int smbfs_smb_lookup(struct smbnode *dnp, const char **namep, int *nmlenp,
204 struct smbfattr *fap, struct smb_cred *scrp);
205 int smbfs_smb_hideit(struct smbnode *np, const char *name, int len,
206 struct smb_cred *scrp);
207 int smbfs_smb_unhideit(struct smbnode *np, const char *name, int len,
208 struct smb_cred *scrp);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr.h 2

209 int smbfs_smb_flush(struct smbnode *np, struct smb_cred *scrp);
210 int smbfs_0extend(vnode_t *vp, uint16_t fid, len_t from, len_t to,
211 struct smb_cred *scredp, int timo);

213 /* get/set security descriptor */
214 int smbfs_smb_getsec_m(struct smb_share *ssp, uint16_t fid,
215 struct smb_cred *scrp, uint32_t selector,
216 mblk_t **res, uint32_t *reslen);
217 int smbfs_smb_setsec_m(struct smb_share *ssp, uint16_t fid,
218 struct smb_cred *scrp, uint32_t selector, mblk_t **mp);

220 /*
221 * VFS-level init, fini stuff
222 */

224 int smbfs_vfsinit(void);
225 void smbfs_vfsfini(void);
226 int smbfs_subrinit(void);
227 void smbfs_subrfini(void);
228 int smbfs_clntinit(void);
229 void smbfs_clntfini(void);

231 void smbfs_zonelist_add(smbmntinfo_t *smi);
232 void smbfs_zonelist_remove(smbmntinfo_t *smi);

234 int smbfs_check_table(struct vfs *vfsp, struct smbnode *srp);
235 void smbfs_destroy_table(struct vfs *vfsp);
236 void smbfs_rflush(struct vfs *vfsp, cred_t *cr);

238 /*
239 * Function definitions - those having to do with
240 * smbfs nodes, vnodes, etc
241 */

243 void smbfs_attrcache_prune(struct smbnode *np);
244 void smbfs_attrcache_remove(struct smbnode *np);
245 void smbfs_attrcache_rm_locked(struct smbnode *np);
246 #ifndef DEBUG
247 #define smbfs_attrcache_rm_locked(np) (np)->r_attrtime = gethrtime()
248 #endif
249 void smbfs_attr_touchdir(struct smbnode *dnp);
250 void smbfs_attrcache_fa(vnode_t *vp, struct smbfattr *fap);
251 void smbfs_cache_check(struct vnode *vp, struct smbfattr *fap);

253 void smbfs_addfree(struct smbnode *sp);
254 void smbfs_rmhash(struct smbnode *);

256 void smbfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr);

258 #endif /* ! codereview */
259 /* See avl_create in smbfs_vfsops.c */
260 void smbfs_init_hash_avl(avl_tree_t *);

262 uint32_t smbfs_gethash(const char *rpath, int prlen);
263 uint32_t smbfs_getino(struct smbnode *dnp, const char *name, int nmlen);

265 extern struct smbfattr smbfs_fattr0;
266 smbnode_t *smbfs_node_findcreate(smbmntinfo_t *mi,
267 const char *dir, int dirlen,
268 const char *name, int nmlen,
269 char sep, struct smbfattr *fap);

271 int smbfs_nget(vnode_t *dvp, const char *name, int nmlen,
272 struct smbfattr *fap, vnode_t **vpp);

274 void smbfs_fname_tolocal(struct smbfs_fctx *ctx);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr.h 3

275 char *smbfs_name_alloc(const char *name, int nmlen);
276 void smbfs_name_free(const char *name, int nmlen);

278 int smbfs_readvnode(vnode_t *, uio_t *, cred_t *, struct vattr *);
279 int smbfs_writevnode(vnode_t *vp, uio_t *uiop, cred_t *cr,
280 int ioflag, int timo);
281 int smbfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr);

283 /* smbfs ACL support */
284 int smbfs_acl_getids(vnode_t *, cred_t *);
285 int smbfs_acl_setids(vnode_t *, vattr_t *, cred_t *);
286 int smbfs_acl_getvsa(vnode_t *, vsecattr_t *, int, cred_t *);
287 int smbfs_acl_setvsa(vnode_t *, vsecattr_t *, int, cred_t *);
288 int smbfs_acl_iocget(vnode_t *, intptr_t, int, cred_t *);
289 int smbfs_acl_iocset(vnode_t *, intptr_t, int, cred_t *);

291 /* smbfs_xattr.c */
292 int smbfs_get_xattrdir(vnode_t *dvp, vnode_t **vpp, cred_t *cr, int);
293 int smbfs_xa_parent(vnode_t *vp, vnode_t **vpp);
294 int smbfs_xa_exists(vnode_t *vp, cred_t *cr);
295 int smbfs_xa_getfattr(struct smbnode *np, struct smbfattr *fap,
296 struct smb_cred *scrp);
297 int smbfs_xa_findopen(struct smbfs_fctx *ctx, struct smbnode *dnp,
298 const char *name, int nmlen);
299 int smbfs_xa_findnext(struct smbfs_fctx *ctx, uint16_t limit);
300 int smbfs_xa_findclose(struct smbfs_fctx *ctx);

302 /* For Solaris, interruptible rwlock */
303 int smbfs_rw_enter_sig(smbfs_rwlock_t *l, krw_t rw, int intr);
304 int smbfs_rw_tryenter(smbfs_rwlock_t *l, krw_t rw);
305 void smbfs_rw_exit(smbfs_rwlock_t *l);
306 int smbfs_rw_lock_held(smbfs_rwlock_t *l, krw_t rw);
307 void smbfs_rw_init(smbfs_rwlock_t *l, char *name, krw_type_t type, void *arg);
308 void smbfs_rw_destroy(smbfs_rwlock_t *l);

310 #endif /* !_FS_SMBFS_SMBFS_SUBR_H_ */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 1

**
 29801 Sat Aug 18 10:48:43 2012
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c
*** NO COMMENTS ***
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
26 * All rights reserved.
27 */

29 /*
30 * Node hash implementation initially borrowed from NFS (nfs_subr.c)
31 * but then heavily modified. It’s no longer an array of hash lists,
32 * but an AVL tree per mount point. More on this below.
33 */

35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/time.h>
38 #include <sys/vnode.h>
39 #include <sys/bitmap.h>
40 #include <sys/dnlc.h>
41 #include <sys/kmem.h>
42 #include <sys/sunddi.h>
43 #include <sys/sysmacros.h>

45 #include <netsmb/smb_osdep.h>

47 #include <netsmb/smb.h>
48 #include <netsmb/smb_conn.h>
49 #include <netsmb/smb_subr.h>
50 #include <netsmb/smb_rq.h>

52 #include <smbfs/smbfs.h>
53 #include <smbfs/smbfs_node.h>
54 #include <smbfs/smbfs_subr.h>

56 /*
57 * The AVL trees (now per-mount) allow finding an smbfs node by its
58 * full remote path name. It also allows easy traversal of all nodes
59 * below (path wise) any given node. A reader/writer lock for each
60 * (per mount) AVL tree is used to control access and to synchronize
61 * lookups, additions, and deletions from that AVL tree.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 2

62 *
63 * Previously, this code use a global array of hash chains, each with
64 * its own rwlock. A few struct members, functions, and comments may
65 * still refer to a "hash", and those should all now be considered to
66 * refer to the per-mount AVL tree that replaced the old hash chains.
67 * (i.e. member smi_hash_lk, function sn_hashfind, etc.)
68 *
69 * The smbnode freelist is organized as a doubly linked list with
70 * a head pointer. Additions and deletions are synchronized via
71 * a single mutex.
72 *
73 * In order to add an smbnode to the free list, it must be linked into
74 * the mount’s AVL tree and the exclusive lock for the AVL must be held.
75 * If an smbnode is not linked into the AVL tree, then it is destroyed
76 * because it represents no valuable information that can be reused
77 * about the file. The exclusive lock for the AVL tree must be held
78 * in order to prevent a lookup in the AVL tree from finding the
79 * smbnode and using it and assuming that the smbnode is not on the
80 * freelist. The lookup in the AVL tree will have the AVL tree lock
81 * held, either exclusive or shared.
82 *
83 * The vnode reference count for each smbnode is not allowed to drop
84 * below 1. This prevents external entities, such as the VM
85 * subsystem, from acquiring references to vnodes already on the
86 * freelist and then trying to place them back on the freelist
87 * when their reference is released. This means that the when an
88 * smbnode is looked up in the AVL tree, then either the smbnode
89 * is removed from the freelist and that reference is tranfered to
90 * the new reference or the vnode reference count must be incremented
91 * accordingly. The mutex for the freelist must be held in order to
92 * accurately test to see if the smbnode is on the freelist or not.
93 * The AVL tree lock might be held shared and it is possible that
94 * two different threads may race to remove the smbnode from the
95 * freelist. This race can be resolved by holding the mutex for the
96 * freelist. Please note that the mutex for the freelist does not
97 * need to held if the smbnode is not on the freelist. It can not be
98 * placed on the freelist due to the requirement that the thread
99 * putting the smbnode on the freelist must hold the exclusive lock
100 * for the AVL tree and the thread doing the lookup in the AVL tree
101 * is holding either a shared or exclusive lock for the AVL tree.
102 *
103 * The lock ordering is:
104 *
105 * AVL tree lock -> vnode lock
106 * AVL tree lock -> freelist lock
107 */

109 static kmutex_t smbfreelist_lock;
110 static smbnode_t *smbfreelist = NULL;
111 static ulong_t smbnodenew = 0;
112 long nsmbnode = 0;

114 static struct kmem_cache *smbnode_cache;

116 static const vsecattr_t smbfs_vsa0 = { 0 };

118 /*
119 * Mutex to protect the following variables:
120 * smbfs_major
121 * smbfs_minor
122 */
123 kmutex_t smbfs_minor_lock;
124 int smbfs_major;
125 int smbfs_minor;

127 /* See smbfs_node_findcreate() */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 3

128 struct smbfattr smbfs_fattr0;

130 /*
131 * Local functions.
132 * SN for Smb Node
133 */
134 static void sn_rmfree(smbnode_t *);
135 static void sn_inactive(smbnode_t *);
136 static void sn_addhash_locked(smbnode_t *, avl_index_t);
137 static void sn_rmhash_locked(smbnode_t *);
138 static void sn_destroy_node(smbnode_t *);
139 void smbfs_kmem_reclaim(void *cdrarg);

141 static smbnode_t *
142 sn_hashfind(smbmntinfo_t *, const char *, int, avl_index_t *);

144 static smbnode_t *
145 make_smbnode(smbmntinfo_t *, const char *, int, int *);

147 /*
148 * Free the resources associated with an smbnode.
149 * Note: This is different from smbfs_inactive
150 *
151 * NFS: nfs_subr.c:rinactive
152 */
153 static void
154 sn_inactive(smbnode_t *np)
155 {
156 vsecattr_t ovsa;
157 cred_t *oldcr;
158 char *orpath;
159 int orplen;
160 vnode_t *vp;
161 #endif /* ! codereview */

163 /*
164 * Flush and invalidate all pages
160 * Flush and invalidate all pages (todo)
165 * Free any held credentials and caches...
166 * etc. (See NFS code)
167 */
168 mutex_enter(&np->r_statelock);

170 ovsa = np->r_secattr;
171 np->r_secattr = smbfs_vsa0;
172 np->r_sectime = 0;

174 oldcr = np->r_cred;
175 np->r_cred = NULL;

177 orpath = np->n_rpath;
178 orplen = np->n_rplen;
179 np->n_rpath = NULL;
180 np->n_rplen = 0;

182 mutex_exit(&np->r_statelock);

184 vp = SMBTOV(np);
185 if (vn_has_cached_data(vp)) {
186 smbfs_invalidate_pages(vp, (u_offset_t) 0, oldcr);
187 }

189 #endif /* ! codereview */
190 if (ovsa.vsa_aclentp != NULL)
191 kmem_free(ovsa.vsa_aclentp, ovsa.vsa_aclentsz);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 4

193 if (oldcr != NULL)
194 crfree(oldcr);

196 if (orpath != NULL)
197 kmem_free(orpath, orplen + 1);
198 }

200 /*
201 * Find and optionally create an smbnode for the passed
202 * mountinfo, directory, separator, and name. If the
203 * desired smbnode already exists, return a reference.
204 * If the file attributes pointer is non-null, the node
205 * is created if necessary and linked into the AVL tree.
206 *
207 * Callers that need a node created but don’t have the
208 * real attributes pass smbfs_fattr0 to force creation.
209 *
210 * Note: make_smbnode() may upgrade the "hash" lock to exclusive.
211 *
212 * NFS: nfs_subr.c:makenfsnode
213 */
214 smbnode_t *
215 smbfs_node_findcreate(
216 smbmntinfo_t *mi,
217 const char *dirnm,
218 int dirlen,
219 const char *name,
220 int nmlen,
221 char sep,
222 struct smbfattr *fap)
223 {
224 char tmpbuf[256];
225 size_t rpalloc;
226 char *p, *rpath;
227 int rplen;
228 smbnode_t *np;
229 vnode_t *vp;
230 int newnode;

232 /*
233 * Build the search string, either in tmpbuf or
234 * in allocated memory if larger than tmpbuf.
235 */
236 rplen = dirlen;
237 if (sep != ’\0’)
238 rplen++;
239 rplen += nmlen;
240 if (rplen < sizeof (tmpbuf)) {
241 /* use tmpbuf */
242 rpalloc = 0;
243 rpath = tmpbuf;
244 } else {
245 rpalloc = rplen + 1;
246 rpath = kmem_alloc(rpalloc, KM_SLEEP);
247 }
248 p = rpath;
249 bcopy(dirnm, p, dirlen);
250 p += dirlen;
251 if (sep != ’\0’)
252 *p++ = sep;
253 if (name != NULL) {
254 bcopy(name, p, nmlen);
255 p += nmlen;
256 }
257 ASSERT(p == rpath + rplen);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 5

259 /*
260 * Find or create a node with this path.
261 */
262 rw_enter(&mi->smi_hash_lk, RW_READER);
263 if (fap == NULL)
264 np = sn_hashfind(mi, rpath, rplen, NULL);
265 else
266 np = make_smbnode(mi, rpath, rplen, &newnode);
267 rw_exit(&mi->smi_hash_lk);

269 if (rpalloc)
270 kmem_free(rpath, rpalloc);

272 if (fap == NULL) {
273 /*
274 * Caller is "just looking" (no create)
275 * so np may or may not be NULL here.
276 * Either way, we’re done.
277 */
278 return (np);
279 }

281 /*
282 * We should have a node, possibly created.
283 * Do we have (real) attributes to apply?
284 */
285 ASSERT(np != NULL);
286 if (fap == &smbfs_fattr0)
287 return (np);

289 /*
290 * Apply the given attributes to this node,
291 * dealing with any cache impact, etc.
292 */
293 vp = SMBTOV(np);
294 if (!newnode) {
295 /*
296 * Found an existing node.
297 * Maybe purge caches...
298 */
299 smbfs_cache_check(vp, fap);
300 }
301 smbfs_attrcache_fa(vp, fap);

303 /*
304 * Note NFS sets vp->v_type here, assuming it
305 * can never change for the life of a node.
306 * We allow v_type to change, and set it in
307 * smbfs_attrcache(). Also: mode, uid, gid
308 */
309 return (np);
310 }

312 /*
313 * NFS: nfs_subr.c:rtablehash
314 * We use smbfs_hash().
315 */

317 /*
318 * Find or create an smbnode.
319 * NFS: nfs_subr.c:make_rnode
320 */
321 static smbnode_t *
322 make_smbnode(
323 smbmntinfo_t *mi,
324 const char *rpath,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 6

325 int rplen,
326 int *newnode)
327 {
328 smbnode_t *np;
329 smbnode_t *tnp;
330 vnode_t *vp;
331 vfs_t *vfsp;
332 avl_index_t where;
333 char *new_rpath = NULL;

335 ASSERT(RW_READ_HELD(&mi->smi_hash_lk));
336 vfsp = mi->smi_vfsp;

338 start:
339 np = sn_hashfind(mi, rpath, rplen, NULL);
340 if (np != NULL) {
341 *newnode = 0;
342 return (np);
343 }

345 /* Note: will retake this lock below. */
346 rw_exit(&mi->smi_hash_lk);

348 /*
349 * see if we can find something on the freelist
350 */
351 mutex_enter(&smbfreelist_lock);
352 if (smbfreelist != NULL && smbnodenew >= nsmbnode) {
353 np = smbfreelist;
354 sn_rmfree(np);
355 mutex_exit(&smbfreelist_lock);

357 vp = SMBTOV(np);

359 if (np->r_flags & RHASHED) {
360 smbmntinfo_t *tmp_mi = np->n_mount;
361 ASSERT(tmp_mi != NULL);
362 rw_enter(&tmp_mi->smi_hash_lk, RW_WRITER);
363 mutex_enter(&vp->v_lock);
364 if (vp->v_count > 1) {
365 vp->v_count--;
366 mutex_exit(&vp->v_lock);
367 rw_exit(&tmp_mi->smi_hash_lk);
368 /* start over */
369 rw_enter(&mi->smi_hash_lk, RW_READER);
370 goto start;
371 }
372 mutex_exit(&vp->v_lock);
373 sn_rmhash_locked(np);
374 rw_exit(&tmp_mi->smi_hash_lk);
375 }

377 sn_inactive(np);

379 mutex_enter(&vp->v_lock);
380 if (vp->v_count > 1) {
381 vp->v_count--;
382 mutex_exit(&vp->v_lock);
383 rw_enter(&mi->smi_hash_lk, RW_READER);
384 goto start;
385 }
386 mutex_exit(&vp->v_lock);
387 vn_invalid(vp);
388 /*
389 * destroy old locks before bzero’ing and
390 * recreating the locks below.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 7

391 */
392 smbfs_rw_destroy(&np->r_rwlock);
393 smbfs_rw_destroy(&np->r_lkserlock);
394 mutex_destroy(&np->r_statelock);
395 cv_destroy(&np->r_cv);
396 /*
397 * Make sure that if smbnode is recycled then
398 * VFS count is decremented properly before
399 * reuse.
400 */
401 VFS_RELE(vp->v_vfsp);
402 vn_reinit(vp);
403 } else {
404 /*
405 * allocate and initialize a new smbnode
406 */
407 vnode_t *new_vp;

409 mutex_exit(&smbfreelist_lock);

411 np = kmem_cache_alloc(smbnode_cache, KM_SLEEP);
412 new_vp = vn_alloc(KM_SLEEP);

414 atomic_add_long((ulong_t *)&smbnodenew, 1);
415 vp = new_vp;
416 }

418 /*
419 * Allocate and copy the rpath we’ll need below.
420 */
421 new_rpath = kmem_alloc(rplen + 1, KM_SLEEP);
422 bcopy(rpath, new_rpath, rplen);
423 new_rpath[rplen] = ’\0’;

425 /* Initialize smbnode_t */
426 bzero(np, sizeof (*np));

428 smbfs_rw_init(&np->r_rwlock, NULL, RW_DEFAULT, NULL);
429 smbfs_rw_init(&np->r_lkserlock, NULL, RW_DEFAULT, NULL);
430 mutex_init(&np->r_statelock, NULL, MUTEX_DEFAULT, NULL);
431 cv_init(&np->r_cv, NULL, CV_DEFAULT, NULL);
432 /* cv_init(&np->r_commit.c_cv, NULL, CV_DEFAULT, NULL); */

434 np->r_vnode = vp;
435 np->n_mount = mi;

437 np->n_fid = SMB_FID_UNUSED;
438 np->n_uid = mi->smi_uid;
439 np->n_gid = mi->smi_gid;
440 /* Leave attributes "stale." */

442 #if 0 /* XXX dircache */
443 /*
444 * We don’t know if it’s a directory yet.
445 * Let the caller do this? XXX
446 */
447 avl_create(&np->r_dir, compar, sizeof (rddir_cache),
448 offsetof(rddir_cache, tree));
449 #endif

451 /* Now fill in the vnode. */
452 vn_setops(vp, smbfs_vnodeops);
453 vp->v_data = (caddr_t)np;
454 VFS_HOLD(vfsp);
455 vp->v_vfsp = vfsp;
456 vp->v_type = VNON;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 8

458 /*
459 * We entered with mi->smi_hash_lk held (reader).
460 * Retake it now, (as the writer).
461 * Will return with it held.
462 */
463 rw_enter(&mi->smi_hash_lk, RW_WRITER);

465 /*
466 * There is a race condition where someone else
467 * may alloc the smbnode while no locks are held,
468 * so check again and recover if found.
469 */
470 tnp = sn_hashfind(mi, rpath, rplen, &where);
471 if (tnp != NULL) {
472 /*
473 * Lost the race. Put the node we were building
474 * on the free list and return the one we found.
475 */
476 rw_exit(&mi->smi_hash_lk);
477 kmem_free(new_rpath, rplen + 1);
478 smbfs_addfree(np);
479 rw_enter(&mi->smi_hash_lk, RW_READER);
480 *newnode = 0;
481 return (tnp);
482 }

484 /*
485 * Hash search identifies nodes by the remote path
486 * (n_rpath) so fill that in now, before linking
487 * this node into the node cache (AVL tree).
488 */
489 np->n_rpath = new_rpath;
490 np->n_rplen = rplen;
491 np->n_ino = smbfs_gethash(new_rpath, rplen);

493 sn_addhash_locked(np, where);
494 *newnode = 1;
495 return (np);
496 }

498 /*
499 * smbfs_addfree
500 * Put an smbnode on the free list, or destroy it immediately
501 * if it offers no value were it to be reclaimed later. Also
502 * destroy immediately when we have too many smbnodes, etc.
503 *
504 * Normally called by smbfs_inactive, but also
505 * called in here during cleanup operations.
506 *
507 * NFS: nfs_subr.c:rp_addfree
508 */
509 void
510 smbfs_addfree(smbnode_t *np)
511 {
512 vnode_t *vp;
513 struct vfs *vfsp;
514 smbmntinfo_t *mi;

516 ASSERT(np->r_freef == NULL && np->r_freeb == NULL);

518 vp = SMBTOV(np);
519 ASSERT(vp->v_count >= 1);

521 vfsp = vp->v_vfsp;
522 mi = VFTOSMI(vfsp);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 9

524 /*
525 * If there are no more references to this smbnode and:
526 * we have too many smbnodes allocated, or if the node
527 * is no longer accessible via the AVL tree (!RHASHED),
528 * or an i/o error occurred while writing to the file,
529 * or it’s part of an unmounted FS, then try to destroy
530 * it instead of putting it on the smbnode freelist.
531 */
532 if (np->r_count == 0 && (
533 (np->r_flags & RHASHED) == 0 ||
534 (np->r_error != 0) ||
535 (vfsp->vfs_flag & VFS_UNMOUNTED) ||
536 (smbnodenew > nsmbnode))) {

538 /* Try to destroy this node. */

540 if (np->r_flags & RHASHED) {
541 rw_enter(&mi->smi_hash_lk, RW_WRITER);
542 mutex_enter(&vp->v_lock);
543 if (vp->v_count > 1) {
544 vp->v_count--;
545 mutex_exit(&vp->v_lock);
546 rw_exit(&mi->smi_hash_lk);
547 return;
548 /*
549 * Will get another call later,
550 * via smbfs_inactive.
551 */
552 }
553 mutex_exit(&vp->v_lock);
554 sn_rmhash_locked(np);
555 rw_exit(&mi->smi_hash_lk);
556 }

558 sn_inactive(np);

560 /*
561 * Recheck the vnode reference count. We need to
562 * make sure that another reference has not been
563 * acquired while we were not holding v_lock. The
564 * smbnode is not in the smbnode "hash" AVL tree, so
565 * the only way for a reference to have been acquired
566 * is for a VOP_PUTPAGE because the smbnode was marked
567 * with RDIRTY or for a modified page. This vnode
568 * reference may have been acquired before our call
569 * to sn_inactive. The i/o may have been completed,
570 * thus allowing sn_inactive to complete, but the
571 * reference to the vnode may not have been released
572 * yet. In any case, the smbnode can not be destroyed
573 * until the other references to this vnode have been
574 * released. The other references will take care of
575 * either destroying the smbnode or placing it on the
576 * smbnode freelist. If there are no other references,
577 * then the smbnode may be safely destroyed.
578 */
579 mutex_enter(&vp->v_lock);
580 if (vp->v_count > 1) {
581 vp->v_count--;
582 mutex_exit(&vp->v_lock);
583 return;
584 }
585 mutex_exit(&vp->v_lock);

587 sn_destroy_node(np);
588 return;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 10

589 }

591 /*
592 * Lock the AVL tree and then recheck the reference count
593 * to ensure that no other threads have acquired a reference
594 * to indicate that the smbnode should not be placed on the
595 * freelist. If another reference has been acquired, then
596 * just release this one and let the other thread complete
597 * the processing of adding this smbnode to the freelist.
598 */
599 rw_enter(&mi->smi_hash_lk, RW_WRITER);

601 mutex_enter(&vp->v_lock);
602 if (vp->v_count > 1) {
603 vp->v_count--;
604 mutex_exit(&vp->v_lock);
605 rw_exit(&mi->smi_hash_lk);
606 return;
607 }
608 mutex_exit(&vp->v_lock);

610 /*
611 * Put this node on the free list.
612 */
613 mutex_enter(&smbfreelist_lock);
614 if (smbfreelist == NULL) {
615 np->r_freef = np;
616 np->r_freeb = np;
617 smbfreelist = np;
618 } else {
619 np->r_freef = smbfreelist;
620 np->r_freeb = smbfreelist->r_freeb;
621 smbfreelist->r_freeb->r_freef = np;
622 smbfreelist->r_freeb = np;
623 }
624 mutex_exit(&smbfreelist_lock);

626 rw_exit(&mi->smi_hash_lk);
627 }

629 /*
630 * Remove an smbnode from the free list.
631 *
632 * The caller must be holding smbfreelist_lock and the smbnode
633 * must be on the freelist.
634 *
635 * NFS: nfs_subr.c:rp_rmfree
636 */
637 static void
638 sn_rmfree(smbnode_t *np)
639 {

641 ASSERT(MUTEX_HELD(&smbfreelist_lock));
642 ASSERT(np->r_freef != NULL && np->r_freeb != NULL);

644 if (np == smbfreelist) {
645 smbfreelist = np->r_freef;
646 if (np == smbfreelist)
647 smbfreelist = NULL;
648 }

650 np->r_freeb->r_freef = np->r_freef;
651 np->r_freef->r_freeb = np->r_freeb;

653 np->r_freef = np->r_freeb = NULL;
654 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 11

656 /*
657 * Put an smbnode in the "hash" AVL tree.
658 *
659 * The caller must be hold the rwlock as writer.
660 *
661 * NFS: nfs_subr.c:rp_addhash
662 */
663 static void
664 sn_addhash_locked(smbnode_t *np, avl_index_t where)
665 {
666 smbmntinfo_t *mi = np->n_mount;

668 ASSERT(RW_WRITE_HELD(&mi->smi_hash_lk));
669 ASSERT(!(np->r_flags & RHASHED));

671 avl_insert(&mi->smi_hash_avl, np, where);

673 mutex_enter(&np->r_statelock);
674 np->r_flags |= RHASHED;
675 mutex_exit(&np->r_statelock);
676 }

678 /*
679 * Remove an smbnode from the "hash" AVL tree.
680 *
681 * The caller must hold the rwlock as writer.
682 *
683 * NFS: nfs_subr.c:rp_rmhash_locked
684 */
685 static void
686 sn_rmhash_locked(smbnode_t *np)
687 {
688 smbmntinfo_t *mi = np->n_mount;

690 ASSERT(RW_WRITE_HELD(&mi->smi_hash_lk));
691 ASSERT(np->r_flags & RHASHED);

693 avl_remove(&mi->smi_hash_avl, np);

695 mutex_enter(&np->r_statelock);
696 np->r_flags &= ~RHASHED;
697 mutex_exit(&np->r_statelock);
698 }

700 /*
701 * Remove an smbnode from the "hash" AVL tree.
702 *
703 * The caller must not be holding the rwlock.
704 */
705 void
706 smbfs_rmhash(smbnode_t *np)
707 {
708 smbmntinfo_t *mi = np->n_mount;

710 rw_enter(&mi->smi_hash_lk, RW_WRITER);
711 sn_rmhash_locked(np);
712 rw_exit(&mi->smi_hash_lk);
713 }

715 /*
716 * Lookup an smbnode by remote pathname
717 *
718 * The caller must be holding the AVL rwlock, either shared or exclusive.
719 *
720 * NFS: nfs_subr.c:rfind

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 12

721 */
722 static smbnode_t *
723 sn_hashfind(
724 smbmntinfo_t *mi,
725 const char *rpath,
726 int rplen,
727 avl_index_t *pwhere) /* optional */
728 {
729 smbfs_node_hdr_t nhdr;
730 smbnode_t *np;
731 vnode_t *vp;

733 ASSERT(RW_LOCK_HELD(&mi->smi_hash_lk));

735 bzero(&nhdr, sizeof (nhdr));
736 nhdr.hdr_n_rpath = (char *)rpath;
737 nhdr.hdr_n_rplen = rplen;

739 /* See smbfs_node_cmp below. */
740 np = avl_find(&mi->smi_hash_avl, &nhdr, pwhere);

742 if (np == NULL)
743 return (NULL);

745 /*
746 * Found it in the "hash" AVL tree.
747 * Remove from free list, if necessary.
748 */
749 vp = SMBTOV(np);
750 if (np->r_freef != NULL) {
751 mutex_enter(&smbfreelist_lock);
752 /*
753 * If the smbnode is on the freelist,
754 * then remove it and use that reference
755 * as the new reference. Otherwise,
756 * need to increment the reference count.
757 */
758 if (np->r_freef != NULL) {
759 sn_rmfree(np);
760 mutex_exit(&smbfreelist_lock);
761 } else {
762 mutex_exit(&smbfreelist_lock);
763 VN_HOLD(vp);
764 }
765 } else
766 VN_HOLD(vp);

768 return (np);
769 }

771 static int
772 smbfs_node_cmp(const void *va, const void *vb)
773 {
774 const smbfs_node_hdr_t *a = va;
775 const smbfs_node_hdr_t *b = vb;
776 int clen, diff;

778 /*
779 * Same semantics as strcmp, but does not
780 * assume the strings are null terminated.
781 */
782 clen = (a->hdr_n_rplen < b->hdr_n_rplen) ?
783 a->hdr_n_rplen : b->hdr_n_rplen;
784 diff = strncmp(a->hdr_n_rpath, b->hdr_n_rpath, clen);
785 if (diff < 0)
786 return (-1);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 13

787 if (diff > 0)
788 return (1);
789 /* they match through clen */
790 if (b->hdr_n_rplen > clen)
791 return (-1);
792 if (a->hdr_n_rplen > clen)
793 return (1);
794 return (0);
795 }

797 /*
798 * Setup the "hash" AVL tree used for our node cache.
799 * See: smbfs_mount, smbfs_destroy_table.
800 */
801 void
802 smbfs_init_hash_avl(avl_tree_t *avl)
803 {
804 avl_create(avl, smbfs_node_cmp, sizeof (smbnode_t),
805 offsetof(smbnode_t, r_avl_node));
806 }

808 /*
809 * Invalidate the cached attributes for all nodes "under" the
810 * passed-in node. Note: the passed-in node is NOT affected by
811 * this call. This is used both for files under some directory
812 * after the directory is deleted or renamed, and for extended
813 * attribute files (named streams) under a plain file after that
814 * file is renamed or deleted.
815 *
816 * Do this by walking the AVL tree starting at the passed in node,
817 * and continuing while the visited nodes have a path prefix matching
818 * the entire path of the passed-in node, and a separator just after
819 * that matching path prefix. Watch out for cases where the AVL tree
820 * order may not exactly match the order of an FS walk, i.e.
821 * consider this sequence:
822 * "foo" (directory)
823 * "foo bar" (name containing a space)
824 * "foo/bar"
825 * The walk needs to skip "foo bar" and keep going until it finds
826 * something that doesn’t match the "foo" name prefix.
827 */
828 void
829 smbfs_attrcache_prune(smbnode_t *top_np)
830 {
831 smbmntinfo_t *mi;
832 smbnode_t *np;
833 char *rpath;
834 int rplen;

836 mi = top_np->n_mount;
837 rw_enter(&mi->smi_hash_lk, RW_READER);

839 np = top_np;
840 rpath = top_np->n_rpath;
841 rplen = top_np->n_rplen;
842 for (;;) {
843 np = avl_walk(&mi->smi_hash_avl, np, AVL_AFTER);
844 if (np == NULL)
845 break;
846 if (np->n_rplen < rplen)
847 break;
848 if (0 != strncmp(np->n_rpath, rpath, rplen))
849 break;
850 if (np->n_rplen > rplen && (
851 np->n_rpath[rplen] == ’:’ ||
852 np->n_rpath[rplen] == ’\\’))

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 14

853 smbfs_attrcache_remove(np);
854 }

856 rw_exit(&mi->smi_hash_lk);
857 }

859 #ifdef SMB_VNODE_DEBUG
860 int smbfs_check_table_debug = 1;
861 #else /* SMB_VNODE_DEBUG */
862 int smbfs_check_table_debug = 0;
863 #endif /* SMB_VNODE_DEBUG */

866 /*
867 * Return 1 if there is a active vnode belonging to this vfs in the
868 * smbnode cache.
869 *
870 * Several of these checks are done without holding the usual
871 * locks. This is safe because destroy_smbtable(), smbfs_addfree(),
872 * etc. will redo the necessary checks before actually destroying
873 * any smbnodes.
874 *
875 * NFS: nfs_subr.c:check_rtable
876 *
877 * Debugging changes here relative to NFS.
878 * Relatively harmless, so left ’em in.
879 */
880 int
881 smbfs_check_table(struct vfs *vfsp, smbnode_t *rtnp)
882 {
883 smbmntinfo_t *mi;
884 smbnode_t *np;
885 vnode_t *vp;
886 int busycnt = 0;

888 mi = VFTOSMI(vfsp);
889 rw_enter(&mi->smi_hash_lk, RW_READER);
890 for (np = avl_first(&mi->smi_hash_avl); np != NULL;
891 np = avl_walk(&mi->smi_hash_avl, np, AVL_AFTER)) {

893 if (np == rtnp)
894 continue; /* skip the root */
895 vp = SMBTOV(np);

897 /* Now the ’busy’ checks: */
898 /* Not on the free list? */
899 if (np->r_freef == NULL) {
900 SMBVDEBUG("!r_freef: node=0x%p, rpath=%s\n",
901 (void *)np, np->n_rpath);
902 busycnt++;
903 }

905 /* Has dirty pages? */
906 if (vn_has_cached_data(vp) &&
907 (np->r_flags & RDIRTY)) {
908 SMBVDEBUG("is dirty: node=0x%p, rpath=%s\n",
909 (void *)np, np->n_rpath);
910 busycnt++;
911 }

913 /* Other refs? (not reflected in v_count) */
914 if (np->r_count > 0) {
915 SMBVDEBUG("+r_count: node=0x%p, rpath=%s\n",
916 (void *)np, np->n_rpath);
917 busycnt++;
918 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 15

920 if (busycnt && !smbfs_check_table_debug)
921 break;

923 }
924 rw_exit(&mi->smi_hash_lk);

926 return (busycnt);
927 }

929 /*
930 * Destroy inactive vnodes from the AVL tree which belong to this
931 * vfs. It is essential that we destroy all inactive vnodes during a
932 * forced unmount as well as during a normal unmount.
933 *
934 * NFS: nfs_subr.c:destroy_rtable
935 *
936 * In here, we’re normally destrying all or most of the AVL tree,
937 * so the natural choice is to use avl_destroy_nodes. However,
938 * there may be a few busy nodes that should remain in the AVL
939 * tree when we’re done. The solution: use a temporary tree to
940 * hold the busy nodes until we’re done destroying the old tree,
941 * then copy the temporary tree over the (now emtpy) real tree.
942 */
943 void
944 smbfs_destroy_table(struct vfs *vfsp)
945 {
946 avl_tree_t tmp_avl;
947 smbmntinfo_t *mi;
948 smbnode_t *np;
949 smbnode_t *rlist;
950 void *v;

952 mi = VFTOSMI(vfsp);
953 rlist = NULL;
954 smbfs_init_hash_avl(&tmp_avl);

956 rw_enter(&mi->smi_hash_lk, RW_WRITER);
957 v = NULL;
958 while ((np = avl_destroy_nodes(&mi->smi_hash_avl, &v)) != NULL) {

960 mutex_enter(&smbfreelist_lock);
961 if (np->r_freef == NULL) {
962 /*
963 * Busy node (not on the free list).
964 * Will keep in the final AVL tree.
965 */
966 mutex_exit(&smbfreelist_lock);
967 avl_add(&tmp_avl, np);
968 } else {
969 /*
970 * It’s on the free list. Remove and
971 * arrange for it to be destroyed.
972 */
973 sn_rmfree(np);
974 mutex_exit(&smbfreelist_lock);

976 /*
977 * Last part of sn_rmhash_locked().
978 * NB: avl_destroy_nodes has already
979 * removed this from the "hash" AVL.
980 */
981 mutex_enter(&np->r_statelock);
982 np->r_flags &= ~RHASHED;
983 mutex_exit(&np->r_statelock);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 16

985 /*
986 * Add to the list of nodes to destroy.
987 * Borrowing avl_child[0] for this list.
988 */
989 np->r_avl_node.avl_child[0] =
990 (struct avl_node *)rlist;
991 rlist = np;
992 }
993 }
994 avl_destroy(&mi->smi_hash_avl);

996 /*
997 * Replace the (now destroyed) "hash" AVL with the
998 * temporary AVL, which restores the busy nodes.
999 */

1000 mi->smi_hash_avl = tmp_avl;
1001 rw_exit(&mi->smi_hash_lk);

1003 /*
1004 * Now destroy the nodes on our temporary list (rlist).
1005 * This call to smbfs_addfree will end up destroying the
1006 * smbnode, but in a safe way with the appropriate set
1007 * of checks done.
1008 */
1009 while ((np = rlist) != NULL) {
1010 rlist = (smbnode_t *)np->r_avl_node.avl_child[0];
1011 smbfs_addfree(np);
1012 }
1013 }

1015 /*
1016 * This routine destroys all the resources associated with the smbnode
1017 * and then the smbnode itself. Note: sn_inactive has been called.
1018 *
1019 * NFS: nfs_subr.c:destroy_rnode
1020 */
1021 static void
1022 sn_destroy_node(smbnode_t *np)
1023 {
1024 vnode_t *vp;
1025 vfs_t *vfsp;

1027 vp = SMBTOV(np);
1028 vfsp = vp->v_vfsp;

1030 ASSERT(vp->v_count == 1);
1031 ASSERT(np->r_count == 0);
1032 ASSERT(np->r_mapcnt == 0);
1033 ASSERT(np->r_secattr.vsa_aclentp == NULL);
1034 ASSERT(np->r_cred == NULL);
1035 ASSERT(np->n_rpath == NULL);
1036 ASSERT(!(np->r_flags & RHASHED));
1037 ASSERT(np->r_freef == NULL && np->r_freeb == NULL);
1038 atomic_add_long((ulong_t *)&smbnodenew, -1);
1039 vn_invalid(vp);
1040 vn_free(vp);
1041 kmem_cache_free(smbnode_cache, np);
1042 VFS_RELE(vfsp);
1043 }

1045 /*
1046 * Correspond to rflush() in NFS.
1047 #endif /* ! codereview */
1048 * Flush all vnodes in this (or every) vfs.
1049 * Used by smbfs_sync and by smbfs_unmount.
180 * Used by nfs_sync and by nfs_unmount.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 17

1050 */
1051 /*ARGSUSED*/
1052 void
1053 smbfs_rflush(struct vfs *vfsp, cred_t *cr) {

1055 smbmntinfo_t *mi;
1056 smbnode_t *np;
1057 vnode_t *vp;

1059 long num, cnt;

1061 vnode_t **vplist;

1063 if(vfsp == NULL)
1064 return;

1066 mi = VFTOSMI(vfsp);

1068 cnt = 0;

1070 num = mi->smi_hash_avl.avl_numnodes;

1072 vplist = kmem_alloc(num * sizeof (vnode_t*), KM_SLEEP);

1074 rw_enter(&mi->smi_hash_lk, RW_READER);
1075 for (np = avl_first(&mi->smi_hash_avl); np != NULL;
1076 np = avl_walk(&mi->smi_hash_avl, np, AVL_AFTER)) {
1077 vp = SMBTOV(np);
1078 if (vn_is_readonly(vp))
1079 continue;

1081 if (vn_has_cached_data(vp) && (np->r_flags & RDIRTY || np->r_mapcnt > 0)
1082 VN_HOLD(vp);
1083 vplist[cnt++] = vp;
1084 if (cnt == num)
1085 break;
1086 }
1087 }
1088 rw_exit(&mi->smi_hash_lk);

1090 while (cnt-- > 0) {
1091 vp = vplist[cnt];
1092 (void) VOP_PUTPAGE(vp, 0, 0, 0, cr, NULL);
1093 VN_RELE(vp);
1094 }

1096 kmem_free(vplist, num * sizeof (vnode_t*));
184 smbfs_rflush(struct vfs *vfsp, cred_t *cr)
185 {
186 /* Todo: mmap support. */
1097 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 1

**
 103466 Sat Aug 18 10:48:44 2012
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c
*** NO COMMENTS ***
**

1 /*
2 * Copyright (c) 2000-2001 Boris Popov
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.

10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Boris Popov.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $Id: smbfs_vnops.c,v 1.128.36.1 2005/05/27 02:35:28 lindak Exp $
33 */

35 /*
36 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
37 */

39 #include <sys/systm.h>
40 #include <sys/cred.h>
41 #include <sys/vnode.h>
42 #include <sys/vfs.h>
43 #include <sys/filio.h>
44 #include <sys/uio.h>
45 #include <sys/dirent.h>
46 #include <sys/errno.h>
47 #include <sys/sunddi.h>
48 #include <sys/sysmacros.h>
49 #include <sys/kmem.h>
50 #include <sys/cmn_err.h>
51 #include <sys/vfs_opreg.h>
52 #include <sys/policy.h>

54 #include <sys/param.h>
55 #include <sys/vm.h>
56 #include <vm/seg_vn.h>
57 #include <vm/pvn.h>
58 #include <vm/as.h>
59 #include <vm/hat.h>
60 #include <vm/page.h>
61 #include <vm/seg.h>

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 2

62 #include <vm/seg_map.h>
63 #include <vm/seg_kmem.h>
64 #include <vm/seg_kpm.h>

66 #endif /* ! codereview */
67 #include <netsmb/smb_osdep.h>
68 #include <netsmb/smb.h>
69 #include <netsmb/smb_conn.h>
70 #include <netsmb/smb_subr.h>

72 #include <smbfs/smbfs.h>
73 #include <smbfs/smbfs_node.h>
74 #include <smbfs/smbfs_subr.h>

76 #include <sys/fs/smbfs_ioctl.h>
77 #include <fs/fs_subr.h>

79 /*
80 * We assign directory offsets like the NFS client, where the
81 * offset increments by _one_ after each directory entry.
82 * Further, the entries "." and ".." are always at offsets
83 * zero and one (respectively) and the "real" entries from
84 * the server appear at offsets starting with two. This
85 * macro is used to initialize the n_dirofs field after
86 * setting n_dirseq with a _findopen call.
87 */
88 #define FIRST_DIROFS 2

90 /*
91 * These characters are illegal in NTFS file names.
92 * ref: http://support.microsoft.com/kb/147438
93 *
94 * Careful! The check in the XATTR case skips the
95 * first character to allow colon in XATTR names.
96 */
97 static const char illegal_chars[] = {
98 ’:’, /* colon - keep this first! */
99 ’\\’, /* back slash */
100 ’/’, /* slash */
101 ’*’, /* asterisk */
102 ’?’, /* question mark */
103 ’"’, /* double quote */
104 ’<’, /* less than sign */
105 ’>’, /* greater than sign */
106 ’|’, /* vertical bar */
107 0
108 };

110 /*
111 * Turning this on causes nodes to be created in the cache
112 * during directory listings, normally avoiding a second
113 * OtW attribute fetch just after a readdir.
114 */
115 int smbfs_fastlookup = 1;

117 /* local static function defines */

119 static int smbfslookup_cache(vnode_t *, char *, int, vnode_t **,
120 cred_t *);
121 static int smbfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
122 int cache_ok, caller_context_t *);
123 static int smbfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm,
124 cred_t *cr, caller_context_t *);
125 static int smbfssetattr(vnode_t *, struct vattr *, int, cred_t *);
126 static int smbfs_accessx(void *, int, cred_t *);
127 static int smbfs_readvdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 3

128 caller_context_t *);
129 static void smbfs_rele_fid(smbnode_t *, struct smb_cred *);

131 /*
132 * These are the vnode ops routines which implement the vnode interface to
133 * the networked file system. These routines just take their parameters,
134 * make them look networkish by putting the right info into interface structs,
135 * and then calling the appropriate remote routine(s) to do the work.
136 *
137 * Note on directory name lookup cacheing: If we detect a stale fhandle,
138 * we purge the directory cache relative to that vnode. This way, the
139 * user won’t get burned by the cache repeatedly. See <smbfs/smbnode.h> for
140 * more details on smbnode locking.
141 */

143 static int smbfs_open(vnode_t **, int, cred_t *, caller_context_t *);
144 static int smbfs_close(vnode_t *, int, int, offset_t, cred_t *,
145 caller_context_t *);
146 static int smbfs_read(vnode_t *, struct uio *, int, cred_t *,
147 caller_context_t *);
148 static int smbfs_write(vnode_t *, struct uio *, int, cred_t *,
149 caller_context_t *);
150 static int smbfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
151 caller_context_t *);
152 static int smbfs_getattr(vnode_t *, struct vattr *, int, cred_t *,
153 caller_context_t *);
154 static int smbfs_setattr(vnode_t *, struct vattr *, int, cred_t *,
155 caller_context_t *);
156 static int smbfs_access(vnode_t *, int, int, cred_t *, caller_context_t *);
157 static int smbfs_fsync(vnode_t *, int, cred_t *, caller_context_t *);
158 static void smbfs_inactive(vnode_t *, cred_t *, caller_context_t *);
159 static int smbfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *,
160 int, vnode_t *, cred_t *, caller_context_t *,
161 int *, pathname_t *);
162 static int smbfs_create(vnode_t *, char *, struct vattr *, enum vcexcl,
163 int, vnode_t **, cred_t *, int, caller_context_t *,
164 vsecattr_t *);
165 static int smbfs_remove(vnode_t *, char *, cred_t *, caller_context_t *,
166 int);
167 static int smbfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
168 caller_context_t *, int);
169 static int smbfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
170 cred_t *, caller_context_t *, int, vsecattr_t *);
171 static int smbfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
172 caller_context_t *, int);
173 static int smbfs_readdir(vnode_t *, struct uio *, cred_t *, int *,
174 caller_context_t *, int);
175 static int smbfs_rwlock(vnode_t *, int, caller_context_t *);
176 static void smbfs_rwunlock(vnode_t *, int, caller_context_t *);
177 static int smbfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
178 static int smbfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
179 struct flk_callback *, cred_t *, caller_context_t *);
180 static int smbfs_space(vnode_t *, int, struct flock64 *, int, offset_t,
181 cred_t *, caller_context_t *);
182 static int smbfs_pathconf(vnode_t *, int, ulong_t *, cred_t *,
183 caller_context_t *);
184 static int smbfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
185 caller_context_t *);
186 static int smbfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
187 caller_context_t *);
188 static int smbfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
189 caller_context_t *);

191 static int uio_page_mapin(uio_t *uiop, page_t *pp);

193 static void uio_page_mapout(uio_t *uiop, page_t *pp);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 4

195 static int smbfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
196 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
197 caller_context_t *ct);

199 static int smbfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
200 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
201 caller_context_t *ct);

203 static int smbfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
204 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
205 caller_context_t *ct);

207 static int smbfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags,
208 cred_t *cr, caller_context_t *ct);

210 static int smbfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *len
211 int flags, cred_t *cr);

213 static int smbfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
214 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
215 enum seg_rw rw, cred_t *cr, caller_context_t *ct);

217 static int smbfs_getapage(vnode_t *vp, u_offset_t off, size_t len,
218 uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
219 enum seg_rw rw, cred_t *cr);

221 static int writenp(smbnode_t *np, caddr_t base, int tcount, struct uio *uiop, in

223 #endif /* ! codereview */
224 /* Dummy function to use until correct function is ported in */
225 int noop_vnodeop() {
226 return (0);
227 }

229 struct vnodeops *smbfs_vnodeops = NULL;

231 /*
232 * Most unimplemented ops will return ENOSYS because of fs_nosys().
233 * The only ops where that won’t work are ACCESS (due to open(2)
234 * failures) and ... (anything else left?)
235 */
236 const fs_operation_def_t smbfs_vnodeops_template[] = {
237 { VOPNAME_OPEN, { .vop_open = smbfs_open } },
238 { VOPNAME_CLOSE, { .vop_close = smbfs_close } },
239 { VOPNAME_READ, { .vop_read = smbfs_read } },
240 { VOPNAME_WRITE, { .vop_write = smbfs_write } },
241 { VOPNAME_IOCTL, { .vop_ioctl = smbfs_ioctl } },
242 { VOPNAME_GETATTR, { .vop_getattr = smbfs_getattr } },
243 { VOPNAME_SETATTR, { .vop_setattr = smbfs_setattr } },
244 { VOPNAME_ACCESS, { .vop_access = smbfs_access } },
245 { VOPNAME_LOOKUP, { .vop_lookup = smbfs_lookup } },
246 { VOPNAME_CREATE, { .vop_create = smbfs_create } },
247 { VOPNAME_REMOVE, { .vop_remove = smbfs_remove } },
248 { VOPNAME_LINK, { .error = fs_nosys } }, /* smbfs_link, */
249 { VOPNAME_RENAME, { .vop_rename = smbfs_rename } },
250 { VOPNAME_MKDIR, { .vop_mkdir = smbfs_mkdir } },
251 { VOPNAME_RMDIR, { .vop_rmdir = smbfs_rmdir } },
252 { VOPNAME_READDIR, { .vop_readdir = smbfs_readdir } },
253 { VOPNAME_SYMLINK, { .error = fs_nosys } }, /* smbfs_symlink, */
254 { VOPNAME_READLINK, { .error = fs_nosys } }, /* smbfs_readlink, */
255 { VOPNAME_FSYNC, { .vop_fsync = smbfs_fsync } },
256 { VOPNAME_INACTIVE, { .vop_inactive = smbfs_inactive } },
257 { VOPNAME_FID, { .error = fs_nosys } }, /* smbfs_fid, */
258 { VOPNAME_RWLOCK, { .vop_rwlock = smbfs_rwlock } },
259 { VOPNAME_RWUNLOCK, { .vop_rwunlock = smbfs_rwunlock } },

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 5

260 { VOPNAME_SEEK, { .vop_seek = smbfs_seek } },
261 { VOPNAME_FRLOCK, { .vop_frlock = smbfs_frlock } },
262 { VOPNAME_SPACE, { .vop_space = smbfs_space } },
263 { VOPNAME_REALVP, { .error = fs_nosys } }, /* smbfs_realvp, */
264 { VOPNAME_GETPAGE, { .vop_getpage = smbfs_getpage } }, /* smbfs_get
265 { VOPNAME_PUTPAGE, { .vop_putpage = smbfs_putpage } }, /* smbfs_put
266 { VOPNAME_MAP, { .vop_map = smbfs_map } }, /* smbfs_map, */
267 { VOPNAME_ADDMAP, { .vop_addmap = smbfs_addmap } }, /* smbfs_addma
268 { VOPNAME_DELMAP, { .vop_delmap = smbfs_delmap } }, /* smbfs_delma
269 { VOPNAME_DISPOSE, { .vop_dispose = fs_dispose}},
54 { VOPNAME_GETPAGE, { .error = fs_nosys } }, /* smbfs_getpage, */
55 { VOPNAME_PUTPAGE, { .error = fs_nosys } }, /* smbfs_putpage, */
56 { VOPNAME_MAP, { .error = fs_nosys } }, /* smbfs_map, */
57 { VOPNAME_ADDMAP, { .error = fs_nosys } }, /* smbfs_addmap, */
58 { VOPNAME_DELMAP, { .error = fs_nosys } }, /* smbfs_delmap, */
270 { VOPNAME_DUMP, { .error = fs_nosys } }, /* smbfs_dump, */
271 { VOPNAME_PATHCONF, { .vop_pathconf = smbfs_pathconf } },
272 { VOPNAME_PAGEIO, { .error = fs_nosys } }, /* smbfs_pageio, */
273 { VOPNAME_SETSECATTR, { .vop_setsecattr = smbfs_setsecattr } },
274 { VOPNAME_GETSECATTR, { .vop_getsecattr = smbfs_getsecattr } },
275 { VOPNAME_SHRLOCK, { .vop_shrlock = smbfs_shrlock } },
276 { NULL, NULL }
277 };

______unchanged_portion_omitted_

462 /*ARGSUSED*/
463 static int
464 smbfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
465 caller_context_t *ct)
466 {
467 smbnode_t *np;
468 smbmntinfo_t *smi;
469 struct smb_cred scred;

471 np = VTOSMB(vp);
472 smi = VTOSMI(vp);

474 /*
475 * Don’t "bail out" for VFS_UNMOUNTED here,
476 * as we want to do cleanup, etc.
477 */

479 /*
480 * zone_enter(2) prevents processes from changing zones with SMBFS files
481 * open; if we happen to get here from the wrong zone we can’t do
482 * anything over the wire.
483 */
484 if (smi->smi_zone_ref.zref_zone != curproc->p_zone) {
485 /*
486 * We could attempt to clean up locks, except we’re sure
487 * that the current process didn’t acquire any locks on
488 * the file: any attempt to lock a file belong to another zone
489 * will fail, and one can’t lock an SMBFS file and then change
490 * zones, as that fails too.
491 *
492 * Returning an error here is the sane thing to do. A
493 * subsequent call to VN_RELE() which translates to a
494 * smbfs_inactive() will clean up state: if the zone of the
495 * vnode’s origin is still alive and kicking, an async worker
496 * thread will handle the request (from the correct zone), and
497 * everything (minus the final smbfs_getattr_otw() call) should
498 * be OK. If the zone is going away smbfs_async_inactive() will
499 * throw away cached pages inline.
500 */
501 return (EIO);
502 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 6

504 /*
505 * If we are using local locking for this filesystem, then
506 * release all of the SYSV style record locks. Otherwise,
507 * we are doing network locking and we need to release all
508 * of the network locks. All of the locks held by this
509 * process on this file are released no matter what the
510 * incoming reference count is.
511 */
512 if (smi->smi_flags & SMI_LLOCK) {
513 pid_t pid = ddi_get_pid();
514 cleanlocks(vp, pid, 0);
515 cleanshares(vp, pid);
516 }

518 /*
519 * This (passed in) count is the ref. count from the
520 * user’s file_t before the closef call (fio.c).
521 * We only care when the reference goes away.
522 */
523 if (count > 1)
524 return (0);

526 /*
527 * Decrement the reference count for the FID
528 * and possibly do the OtW close.
529 *
530 * Exclusive lock for modifying n_fid stuff.
531 * Don’t want this one ever interruptible.
532 */
533 (void) smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, 0);
534 smb_credinit(&scred, cr);

536 /*
537 * If FID ref. count is 1 and count of mmaped pages isn’t 0,
538 * we won’t call smbfs_rele_fid(), because it will result in the otW clo
539 * The count of mapped pages isn’t 0, which means the mapped pages
540 * possibly will be accessed after close(), we should keep the FID valid
541 * i.e., dont do the otW close.
542 * Dont worry that FID will be leaked, because when the
543 * vnode’s count becomes 0, smbfs_inactive() will
544 * help us release FID and eventually do the otW close.
545 */
546 if (np->n_fidrefs > 1) {
547 #endif /* ! codereview */
548 smbfs_rele_fid(np, &scred);
549 } else if (np->r_mapcnt == 0) {
550 /*
551 * Before otW close, make sure dirty pages written back.
552 */
553 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
554 /* smbfs_putapage() will acquire shared lock, so release
555 * exclusive lock temporally.
556 */
557 smbfs_rw_exit(&np->r_lkserlock);

559 (void) smbfs_putpage(vp, (offset_t) 0, 0, B_INVAL | B_AS

561 /* acquire exclusive lock again. */
562 (void) smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, 0
563 }
564 smbfs_rele_fid(np, &scred);
565 }
566 #endif /* ! codereview */

568 smb_credrele(&scred);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 7

569 smbfs_rw_exit(&np->r_lkserlock);

571 return (0);
572 }

574 /*
575 * Helper for smbfs_close. Decrement the reference count
576 * for an SMB-level file or directory ID, and when the last
577 * reference for the fid goes away, do the OtW close.
578 * Also called in smbfs_inactive (defensive cleanup).
579 */
580 static void
581 smbfs_rele_fid(smbnode_t *np, struct smb_cred *scred)
582 {
583 smb_share_t *ssp;
584 cred_t *oldcr;
585 struct smbfs_fctx *fctx;
586 int error;
587 uint16_t ofid;

589 ssp = np->n_mount->smi_share;
590 error = 0;

592 /* Make sure we serialize for n_dirseq use. */
593 ASSERT(smbfs_rw_lock_held(&np->r_lkserlock, RW_WRITER));

595 /*
596 * Note that vp->v_type may change if a remote node
597 * is deleted and recreated as a different type, and
598 * our getattr may change v_type accordingly.
599 * Now use n_ovtype to keep track of the v_type
600 * we had during open (see comments above).
601 */
602 switch (np->n_ovtype) {
603 case VDIR:
604 ASSERT(np->n_dirrefs > 0);
605 if (--np->n_dirrefs)
606 return;
607 if ((fctx = np->n_dirseq) != NULL) {
608 np->n_dirseq = NULL;
609 np->n_dirofs = 0;
610 error = smbfs_smb_findclose(fctx, scred);
611 }
612 break;

614 case VREG:
615 ASSERT(np->n_fidrefs > 0);
616 if (--np->n_fidrefs)
617 return;
618 if ((ofid = np->n_fid) != SMB_FID_UNUSED) {
619 np->n_fid = SMB_FID_UNUSED;
620 /* After reconnect, n_fid is invalid */
621 if (np->n_vcgenid == ssp->ss_vcgenid) {
622 error = smbfs_smb_close(
623 ssp, ofid, NULL, scred);
624 }
625 }
626 break;

628 default:
629 SMBVDEBUG("bad n_ovtype %d\n", np->n_ovtype);
630 break;
631 }
632 if (error) {
633 SMBVDEBUG("error %d closing %s\n",
634 error, np->n_rpath);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 8

635 }

637 /* Allow next open to use any v_type. */
638 np->n_ovtype = VNON;

640 /*
641 * Other "last close" stuff.
642 */
643 mutex_enter(&np->r_statelock);
644 if (np->n_flag & NATTRCHANGED)
645 smbfs_attrcache_rm_locked(np);
646 oldcr = np->r_cred;
647 np->r_cred = NULL;
648 mutex_exit(&np->r_statelock);
649 if (oldcr != NULL)
650 crfree(oldcr);
651 }

653 /* ARGSUSED */
654 static int
655 smbfs_read(vnode_t * vp, struct uio * uiop, int ioflag, cred_t * cr,
656 caller_context_t * ct)
325 smbfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
326 caller_context_t *ct)
657 {
658 struct smb_cred scred;
659 struct vattr va;
660 smbnode_t *np;
661 smbmntinfo_t *smi;
662 smb_share_t *ssp;
663 offset_t endoff;
664 ssize_t past_eof;
665 int error;

667 caddr_t base;
668 u_offset_t blk;
669 u_offset_t boff;
670 size_t blen;
671 uint_t flags;

673 #endif /* ! codereview */
674 np = VTOSMB(vp);
675 smi = VTOSMI(vp);
676 ssp = smi->smi_share;

678 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
679 return (EIO);

681 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
682 return (EIO);

684 ASSERT(smbfs_rw_lock_held(&np->r_rwlock, RW_READER));

686 if (vp->v_type != VREG)
687 return (EISDIR);

689 if (uiop->uio_resid == 0)
690 return (0);

692 /*
693 * Like NFS3, just check for 63-bit overflow. Our SMB layer takes
694 * care to return EFBIG when it has to fallback to a 32-bit call.
337 * Like NFS3, just check for 63-bit overflow.
338 * Our SMB layer takes care to return EFBIG
339 * when it has to fallback to a 32-bit call.
695 */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 9

696 endoff = uiop->uio_loffset + uiop->uio_resid;
697 if (uiop->uio_loffset < 0 || endoff < 0)
698 return (EINVAL);

700 /* get vnode attributes from server */
701 va.va_mask = AT_SIZE | AT_MTIME;
702 if (error = smbfsgetattr(vp, &va, cr))
703 return (error);

705 /* Update mtime with mtime from server here? */

707 /* if offset is beyond EOF, read nothing */
708 if (uiop->uio_loffset >= va.va_size)
709 return (0);

711 /*
712 * Limit the read to the remaining file size. Do this by temporarily
713 * reducing uio_resid by the amount the lies beyoned the EOF.
357 * Limit the read to the remaining file size.
358 * Do this by temporarily reducing uio_resid
359 * by the amount the lies beyoned the EOF.
714 */
715 if (endoff > va.va_size) {
716 past_eof = (ssize_t) (endoff - va.va_size);
362 past_eof = (ssize_t)(endoff - va.va_size);
717 uiop->uio_resid -= past_eof;
718 } else
719 past_eof = 0;

721 /* Bypass the VM if vnode is non-cacheable. */
722 if ((vp->v_flag & VNOCACHE) ||
723 ((np->r_flags & RDIRECTIO) &&
724 np->r_mapcnt == 0 &&
725 !(vn_has_cached_data(vp)))) {

727 #endif /* ! codereview */
728 /* Shared lock for n_fid use in smb_rwuio */
729 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp))
730 return (EINTR);
731 smb_credinit(&scred, cr);

733 /* After reconnect, n_fid is invalid */
734 if (np->n_vcgenid != ssp->ss_vcgenid)
735 error = ESTALE;
736 else
737 error = smb_rwuio(ssp, np->n_fid, UIO_READ,
738 uiop, &scred, smb_timo_read);

740 smb_credrele(&scred);
741 smbfs_rw_exit(&np->r_lkserlock);

743 } else {

745 /* Do I/O through segmap. */
746 do {
747 blk = uiop->uio_loffset & MAXBMASK;
748 boff = uiop->uio_loffset & MAXBOFFSET;
749 blen = MIN(MAXBSIZE - boff, uiop->uio_resid);

751 if (vpm_enable) {

753 error = vpm_data_copy(vp, blk + boff, blen, uiop

755 } else {

757 base = segmap_getmapflt(segkmap, vp, blk + boff,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 10

759 error = uiomove(base + boff, blen, UIO_READ, uio
760 }

762 if (!error) {
763 mutex_enter(&np->r_statelock);
764 if ((blen + boff == MAXBSIZE) || (uiop->uio_loff
765 flags = SM_DONTNEED;
766 } else {
767 flags = 0;
768 }
769 mutex_exit(&np->r_statelock);
770 } else {
771 flags = 0;
772 }
773 if (vpm_enable) {
774 (void) vpm_sync_pages(vp, blk + boff, blen, flag
775 } else {
776 (void) segmap_release(segkmap, base, flags);
777 }
778 } while (!error && uiop->uio_resid > 0);
779 }

781 #endif /* ! codereview */
782 /* undo adjustment of resid */
783 uiop->uio_resid += past_eof;

785 return (error);
786 }

788 /* ARGSUSED */
789 static int
790 smbfs_write(vnode_t * vp, struct uio * uiop, int ioflag, cred_t * cr,
791 caller_context_t * ct)
370 smbfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
371 caller_context_t *ct)
792 {
793 struct smb_cred scred;
794 struct vattr va;
795 smbnode_t *np;
796 smbmntinfo_t *smi;
797 smb_share_t *ssp;
798 offset_t endoff, limit;
799 ssize_t past_limit;
800 int error, timo;

802 caddr_t base;
803 u_offset_t blk;
804 u_offset_t boff;
805 size_t blen;
806 uint_t flags;

808 u_offset_t last_off;
809 size_t last_resid;

811 #endif /* ! codereview */
812 np = VTOSMB(vp);
813 smi = VTOSMI(vp);
814 ssp = smi->smi_share;

816 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
817 return (EIO);

819 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
820 return (EIO);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 11

822 ASSERT(smbfs_rw_lock_held(&np->r_rwlock, RW_WRITER));

824 if (vp->v_type != VREG)
825 return (EISDIR);

827 if (uiop->uio_resid == 0)
828 return (0);

830 /*
831 * Handle ioflag bits: (FAPPEND|FSYNC|FDSYNC)
832 */
833 if (ioflag & (FAPPEND | FSYNC)) {
834 if (np->n_flag & NMODIFIED) {
835 smbfs_attrcache_remove(np);
836 /* XXX: smbfs_vinvalbuf? */
837 }
838 }
839 if (ioflag & FAPPEND) {
840 /*
841 * File size can be changed by another client
842 */
843 va.va_mask = AT_SIZE;
844 if (error = smbfsgetattr(vp, &va, cr))
845 return (error);
846 uiop->uio_loffset = va.va_size;
847 }

848 /*
849 * Like NFS3, just check for 63-bit overflow.
850 */
851 endoff = uiop->uio_loffset + uiop->uio_resid;
852 if (uiop->uio_loffset < 0 || endoff < 0)
853 return (EINVAL);

855 /*
856 * Check to make sure that the process will not exceed its limit on
857 * file size. It is okay to write up to the limit, but not beyond.
858 * Thus, the write which reaches the limit will be short and the next
859 * write will return an error.
860 *
861 * So if we’re starting at or beyond the limit, EFBIG. Otherwise,
862 * temporarily reduce resid to the amount the falls after the limit.
391 * Check to make sure that the process will not exceed
392 * its limit on file size. It is okay to write up to
393 * the limit, but not beyond. Thus, the write which
394 * reaches the limit will be short and the next write
395 * will return an error.
396 *
397 * So if we’re starting at or beyond the limit, EFBIG.
398 * Otherwise, temporarily reduce resid to the amount
399 * the falls after the limit.
863 */
864 limit = uiop->uio_llimit;
865 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
866 limit = MAXOFFSET_T;
867 if (uiop->uio_loffset >= limit)
868 return (EFBIG);
869 if (endoff > limit) {
870 past_limit = (ssize_t) (endoff - limit);
407 past_limit = (ssize_t)(endoff - limit);
871 uiop->uio_resid -= past_limit;
872 } else
873 past_limit = 0;

875 /* Bypass the VM if vnode is non-cacheable. */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 12

876 if ((vp->v_flag & VNOCACHE) ||
877 ((np->r_flags & RDIRECTIO) &&
878 np->r_mapcnt == 0 &&
879 !(vn_has_cached_data(vp)))) {

881 #endif /* ! codereview */
882 /* Timeout: longer for append. */
883 timo = smb_timo_write;
884 if (endoff > np->r_size)
885 timo = smb_timo_append;

887 /* Shared lock for n_fid use in smb_rwuio */
888 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp))
889 return (EINTR);
890 smb_credinit(&scred, cr);

892 /* After reconnect, n_fid is invalid */
893 if (np->n_vcgenid != ssp->ss_vcgenid)
894 error = ESTALE;
895 else
896 error = smb_rwuio(ssp, np->n_fid, UIO_WRITE,
897 uiop, &scred, timo);

899 if (error == 0) {
900 mutex_enter(&np->r_statelock);
901 np->n_flag |= (NFLUSHWIRE | NATTRCHANGED);
902 if (uiop->uio_loffset > (offset_t) np->r_size)
903 np->r_size = (len_t) uiop->uio_loffset;
412 if (uiop->uio_loffset > (offset_t)np->r_size)
413 np->r_size = (len_t)uiop->uio_loffset;
904 mutex_exit(&np->r_statelock);
905 if (ioflag & (FSYNC | FDSYNC)) {
415 if (ioflag & (FSYNC|FDSYNC)) {
906 /* Don’t error the I/O if this fails. */
907 (void) smbfs_smb_flush(np, &scred);
908 }
909 }

910 smb_credrele(&scred);
911 smbfs_rw_exit(&np->r_lkserlock);

913 } else {

915 /* Do I/O through segmap. */
916 size_t bsize = vp->v_vfsp->vfs_bsize;

918 do {
919 blk = uiop->uio_loffset & MAXBMASK;
920 boff = uiop->uio_loffset & MAXBOFFSET;
921 blen = MIN(MAXBSIZE - boff, uiop->uio_resid);

923 last_off = uiop->uio_loffset;
924 last_resid = uiop->uio_resid;

926 uio_prefaultpages((ssize_t) blen, uiop);

928 if (vpm_enable) {

930 error = writenp(np, NULL, blen, uiop, 0);

932 } else {

934 if (segmap_kpm) {
935 u_offset_t poff = uiop->uio_loffset
936 size_t plen = MIN(PAGESIZE - po

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 13

938 int pagecreate;

940 mutex_enter(&np->r_statelock);
941 pagecreate = (poff == 0) &&
942 ((plen == PAGESIZE) ||
943 (uiop->uio_loffset + plen >= np
944 mutex_exit(&np->r_statelock);

946 base = segmap_getmapflt(segkmap, vp, blk
947 error = writenp(np, base + poff, blen, u

949 } else {
950 base = segmap_getmapflt(segkmap, vp, blk
951 error = writenp(np, base + boff, blen, u
952 }
953 }

955 if (!error) {
956 if (uiop->uio_loffset % bsize == 0) {
957 flags = SM_WRITE | SM_DONTNEED;
958 } else {
959 flags = 0;
960 }

962 if (ioflag & (FSYNC | FDSYNC)) {
963 flags &= ~SM_ASYNC;
964 flags |= SM_WRITE;
965 }
966 if (vpm_enable) {
967 error = vpm_sync_pages(vp, blk, blen, fl
968 } else {
969 error = segmap_release(segkmap, base, fl
970 }
971 } else {
972 if (vpm_enable) {
973 (void) vpm_sync_pages(vp, blk, blen, 0);
974 } else {
975 (void) segmap_release(segkmap, base, 0);
976 }
977 }
978 } while (!error && uiop->uio_resid > 0);
979 }

981 #endif /* ! codereview */
982 /* undo adjustment of resid */
983 if (error) {
984 uiop->uio_resid = last_resid + past_limit;
985 uiop->uio_loffset = last_off;
986 } else {
987 #endif /* ! codereview */
988 uiop->uio_resid += past_limit;
989 }
990 #endif /* ! codereview */

992 return (error);
993 }

995 /* correspond to writerp() in nfs_client.c */
996 static int
997 writenp(smbnode_t * np, caddr_t base, int tcount, struct uio * uiop, int pgcreat
998 {
999 int pagecreate;
1000 int n;
1001 int saved_n;
1002 caddr_t saved_base;
1003 u_offset_t offset;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 14

1004 int error;
1005 int sm_error;

1007 vnode_t *vp = SMBTOV(np);

1009 ASSERT(tcount <= MAXBSIZE && tcount <= uiop->uio_resid);
1010 ASSERT(smbfs_rw_lock_held(&np->r_rwlock, RW_WRITER));
1011 if (!vpm_enable) {
1012 ASSERT(((uintptr_t) base & MAXBOFFSET) + tcount <= MAXBSIZE);
1013 }
1014 /*
1015 * Move bytes in at most PAGESIZE chunks. We must avoid spanning
1016 * pages in uiomove() because page faults may cause the cache to be
1017 * invalidated out from under us. The r_size is not updated until
1018 * after the uiomove. If we push the last page of a file before
1019 * r_size is correct, we will lose the data written past the current
1020 * (and invalid) r_size.
1021 */
1022 do {
1023 offset = uiop->uio_loffset;
1024 pagecreate = 0;

1026 /*
1027 * n is the number of bytes required to satisfy the request
1028 * or the number of bytes to fill out the page.
1029 */
1030 n = (int) MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);

1032 /*
1033 * Check to see if we can skip reading in the page and just
1034 * allocate the memory. We can do this if we are going to
1035 * rewrite the entire mapping or if we are going to write to
1036 * or beyond the current end of file from the beginning of
1037 * the mapping.
1038 *
1039 * The read of r_size is now protected by r_statelock.
1040 */
1041 mutex_enter(&np->r_statelock);
1042 /*
1043 * When pgcreated is nonzero the caller has already done a
1044 * segmap_getmapflt with forcefault 0 and S_WRITE. With
1045 * segkpm this means we already have at least one page
1046 * created and mapped at base.
1047 */
1048 pagecreate = pgcreated ||
1049 ((offset & PAGEOFFSET) == 0 &&
1050 (n == PAGESIZE || ((offset + n) >= np->r_size)));

1052 mutex_exit(&np->r_statelock);

1054 if (!vpm_enable && pagecreate) {
1055 /*
1056 * The last argument tells segmap_pagecreate() to
1057 * always lock the page, as opposed to sometimes
1058 * returning with the page locked. This way we avoid
1059 * a fault on the ensuing uiomove(), but also more
1060 * importantly (to fix bug 1094402) we can call
1061 * segmap_fault() to unlock the page in all cases. An
1062 * alternative would be to modify segmap_pagecreate()
1063 * to tell us when it is locking a page, but that’s a
1064 * fairly major interface change.
1065 */
1066 if (pgcreated == 0)
1067 (void) segmap_pagecreate(segkmap, base,
1068 (uint_t) n, 1);
1069 saved_base = base;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 15

1070 saved_n = n;
1071 }
1072 /*
1073 * The number of bytes of data in the last page can not be
1074 * accurately be determined while page is being uiomove’d to
1075 * and the size of the file being updated. Thus, inform
1076 * threads which need to know accurately how much data is in
1077 * the last page of the file. They will not do the i/o
1078 * immediately, but will arrange for the i/o to happen later
1079 * when this modify operation will have finished.
1080 */
1081 ASSERT(!(np->r_flags & RMODINPROGRESS));
1082 mutex_enter(&np->r_statelock);
1083 np->r_flags |= RMODINPROGRESS;
1084 np->r_modaddr = (offset & MAXBMASK);
1085 mutex_exit(&np->r_statelock);

1087 if (vpm_enable) {
1088 /*
1089 * Copy data. If new pages are created, part of the
1090 * page that is not written will be initizliazed with
1091 * zeros.
1092 */
1093 error = vpm_data_copy(vp, offset, n, uiop,
1094 !pagecreate, NULL, 0, S_WRITE);
1095 } else {
1096 error = uiomove(base, n, UIO_WRITE, uiop);
1097 }

1099 /*
1100 * r_size is the maximum number of bytes known to be in the
1101 * file. Make sure it is at least as high as the first
1102 * unwritten byte pointed to by uio_loffset.
1103 */
1104 mutex_enter(&np->r_statelock);
1105 if (np->r_size < uiop->uio_loffset)
1106 np->r_size = uiop->uio_loffset;
1107 np->r_flags &= ~RMODINPROGRESS;
1108 np->r_flags |= RDIRTY;
1109 mutex_exit(&np->r_statelock);

1111 /* n = # of bytes written */
1112 n = (int) (uiop->uio_loffset - offset);

1114 if (!vpm_enable) {
1115 base += n;
1116 }
1117 tcount -= n;
1118 /*
1119 * If we created pages w/o initializing them completely, we
1120 * need to zero the part that wasn’t set up. This happens on
1121 * a most EOF write cases and if we had some sort of error
1122 * during the uiomove.
1123 */
1124 if (!vpm_enable && pagecreate) {
1125 if ((uiop->uio_loffset & PAGEOFFSET) || n == 0)
1126 (void) kzero(base, PAGESIZE - n);

1128 if (pgcreated) {
1129 /*
1130 * Caller is responsible for this page, it
1131 * was not created in this loop.
1132 */
1133 pgcreated = 0;
1134 } else {
1135 /*

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 16

1136 * For bug 1094402: segmap_pagecreate locks
1137 * page. Unlock it. This also unlocks the
1138 * pages allocated by page_create_va() in
1139 * segmap_pagecreate().
1140 */
1141 sm_error = segmap_fault(kas.a_hat, segkmap,
1142 saved_base, saved_n,
1143 F_SOFTUNLOCK, S_WRITE);
1144 if (error == 0)
1145 error = sm_error;
1146 }
1147 }
1148 } while (tcount > 0 && error == 0);

1150 return (error);
1151 }
1152 #endif /* ! codereview */

1154 /* ARGSUSED */
1155 static int
1156 smbfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag,
1157 cred_t *cr, int *rvalp, caller_context_t *ct)
1158 {
1159 int error;
1160 smbmntinfo_t *smi;

1162 smi = VTOSMI(vp);

1164 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1165 return (EIO);

1167 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1168 return (EIO);

1170 switch (cmd) {
1171 /* First three from ZFS. XXX - need these? */

1173 case _FIOFFS:
1174 error = smbfs_fsync(vp, 0, cr, ct);
1175 break;

1177 /*
1178 * The following two ioctls are used by bfu.
1179 * Silently ignore to avoid bfu errors.
1180 */
1181 case _FIOGDIO:
1182 case _FIOSDIO:
1183 error = 0;
1184 break;

1186 #ifdef NOT_YET /* XXX - from the NFS code. */
1187 case _FIODIRECTIO:
1188 error = smbfs_directio(vp, (int)arg, cr);
1189 #endif

1191 /*
1192 * Allow get/set with "raw" security descriptor (SD) data.
1193 * Useful for testing, diagnosing idmap problems, etc.
1194 */
1195 case SMBFSIO_GETSD:
1196 error = smbfs_acl_iocget(vp, arg, flag, cr);
1197 break;

1199 case SMBFSIO_SETSD:
1200 error = smbfs_acl_iocset(vp, arg, flag, cr);
1201 break;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 17

1203 default:
1204 error = ENOTTY;
1205 break;
1206 }

1208 return (error);
1209 }

1212 /*
1213 * Return either cached or remote attributes. If get remote attr
1214 * use them to check and invalidate caches, then cache the new attributes.
1215 *
1216 * XXX
1217 * This op should eventually support PSARC 2007/315, Extensible Attribute
1218 * Interfaces, for richer metadata.
1219 */
1220 /* ARGSUSED */
1221 static int
1222 smbfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1223 caller_context_t *ct)
1224 {
1225 smbnode_t *np;
1226 smbmntinfo_t *smi;

1228 smi = VTOSMI(vp);

1230 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1231 return (EIO);

1233 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1234 return (EIO);

1236 /*
1237 * If it has been specified that the return value will
1238 * just be used as a hint, and we are only being asked
1239 * for size, fsid or rdevid, then return the client’s
1240 * notion of these values without checking to make sure
1241 * that the attribute cache is up to date.
1242 * The whole point is to avoid an over the wire GETATTR
1243 * call.
1244 */
1245 np = VTOSMB(vp);
1246 if (flags & ATTR_HINT) {
1247 if (vap->va_mask ==
1248 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1249 mutex_enter(&np->r_statelock);
1250 if (vap->va_mask | AT_SIZE)
1251 vap->va_size = np->r_size;
1252 if (vap->va_mask | AT_FSID)
1253 vap->va_fsid = vp->v_vfsp->vfs_dev;
1254 if (vap->va_mask | AT_RDEV)
1255 vap->va_rdev = vp->v_rdev;
1256 mutex_exit(&np->r_statelock);
1257 return (0);
1258 }
1259 }

1261 return (smbfsgetattr(vp, vap, cr));
1262 }

1264 /* smbfsgetattr() in smbfs_client.c */

1266 /*
1267 * XXX

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 18

1268 * This op should eventually support PSARC 2007/315, Extensible Attribute
1269 * Interfaces, for richer metadata.
1270 */
1271 /*ARGSUSED4*/
1272 static int
1273 smbfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1274 caller_context_t *ct)
1275 {
1276 vfs_t *vfsp;
1277 smbmntinfo_t *smi;
1278 int error;
1279 uint_t mask;
1280 struct vattr oldva;

1282 vfsp = vp->v_vfsp;
1283 smi = VFTOSMI(vfsp);

1285 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1286 return (EIO);

1288 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
1289 return (EIO);

1291 mask = vap->va_mask;
1292 if (mask & AT_NOSET)
1293 return (EINVAL);

1295 if (vfsp->vfs_flag & VFS_RDONLY)
1296 return (EROFS);

1298 /*
1299 * This is a _local_ access check so that only the owner of
1300 * this mount can set attributes. With ACLs enabled, the
1301 * file owner can be different from the mount owner, and we
1302 * need to check the _mount_ owner here. See _access_rwx
1303 */
1304 bzero(&oldva, sizeof (oldva));
1305 oldva.va_mask = AT_TYPE | AT_MODE;
1306 error = smbfsgetattr(vp, &oldva, cr);
1307 if (error)
1308 return (error);
1309 oldva.va_mask |= AT_UID | AT_GID;
1310 oldva.va_uid = smi->smi_uid;
1311 oldva.va_gid = smi->smi_gid;

1313 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
1314 smbfs_accessx, vp);
1315 if (error)
1316 return (error);

1318 if (mask & (AT_UID | AT_GID)) {
1319 if (smi->smi_flags & SMI_ACL)
1320 error = smbfs_acl_setids(vp, vap, cr);
1321 else
1322 error = ENOSYS;
1323 if (error != 0) {
1324 SMBVDEBUG("error %d seting UID/GID on %s",
1325 error, VTOSMB(vp)->n_rpath);
1326 /*
1327 * It might be more correct to return the
1328 * error here, but that causes complaints
1329 * when root extracts a cpio archive, etc.
1330 * So ignore this error, and go ahead with
1331 * the rest of the setattr work.
1332 */
1333 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 19

1334 }

1336 return (smbfssetattr(vp, vap, flags, cr));
1337 }

1339 /*
1340 * Mostly from Darwin smbfs_setattr()
1341 * but then modified a lot.
1342 */
1343 /* ARGSUSED */
1344 static int
1345 smbfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1346 {
1347 int error = 0;
1348 smbnode_t *np = VTOSMB(vp);
1349 uint_t mask = vap->va_mask;
1350 struct timespec *mtime, *atime;
1351 struct smb_cred scred;
1352 int cerror, modified = 0;
1353 unsigned short fid;
1354 int have_fid = 0;
1355 uint32_t rights = 0;

1357 ASSERT(curproc->p_zone == VTOSMI(vp)->smi_zone_ref.zref_zone);

1359 /*
1360 * There are no settable attributes on the XATTR dir,
1361 * so just silently ignore these. On XATTR files,
1362 * you can set the size but nothing else.
1363 */
1364 if (vp->v_flag & V_XATTRDIR)
1365 return (0);
1366 if (np->n_flag & N_XATTR) {
1367 if (mask & AT_TIMES)
1368 SMBVDEBUG("ignore set time on xattr\n");
1369 mask &= AT_SIZE;
1370 }

1372 /*
1373 * If our caller is trying to set multiple attributes, they
1374 * can make no assumption about what order they are done in.
1375 * Here we try to do them in order of decreasing likelihood
1376 * of failure, just to minimize the chance we’ll wind up
1377 * with a partially complete request.
1378 */

1380 /* Shared lock for (possible) n_fid use. */
1381 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
1382 return (EINTR);
1383 smb_credinit(&scred, cr);

1385 /*
1386 * Will we need an open handle for this setattr?
1387 * If so, what rights will we need?
1388 */
1389 if (mask & (AT_ATIME | AT_MTIME)) {
1390 rights |=
1391 SA_RIGHT_FILE_WRITE_ATTRIBUTES;
1392 }
1393 if (mask & AT_SIZE) {
1394 rights |=
1395 SA_RIGHT_FILE_WRITE_DATA |
1396 SA_RIGHT_FILE_APPEND_DATA;
1397 }

1399 /*

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 20

1400 * Only SIZE really requires a handle, but it’s
1401 * simpler and more reliable to set via a handle.
1402 * Some servers like NT4 won’t set times by path.
1403 * Also, we’re usually setting everything anyway.
1404 */
1405 if (mask & (AT_SIZE | AT_ATIME | AT_MTIME)) {
1406 error = smbfs_smb_tmpopen(np, rights, &scred, &fid);
1407 if (error) {
1408 SMBVDEBUG("error %d opening %s\n",
1409 error, np->n_rpath);
1410 goto out;
1411 }
1412 have_fid = 1;
1413 }

1415 /*
1416 * If the server supports the UNIX extensions, right here is where
1417 * we’d support changes to uid, gid, mode, and possibly va_flags.
1418 * For now we claim to have made any such changes.
1419 */

1421 if (mask & AT_SIZE) {
1422 /*
1423 * If the new file size is less than what the client sees as
1424 * the file size, then just change the size and invalidate
1425 * the pages.
1426 * I am commenting this code at present because the function
1427 * smbfs_putapage() is not yet implemented.
1428 */

1430 /*
1431 * Set the file size to vap->va_size.
1432 */
1433 ASSERT(have_fid);
1434 error = smbfs_smb_setfsize(np, fid, vap->va_size, &scred);
1435 if (error) {
1436 SMBVDEBUG("setsize error %d file %s\n",
1437 error, np->n_rpath);
1438 } else {
1439 /*
1440 * Darwin had code here to zero-extend.
1441 * Tests indicate the server will zero-fill,
1442 * so looks like we don’t need to do this.
1443 * Good thing, as this could take forever.
1444 *
1445 * XXX: Reportedly, writing one byte of zero
1446 * at the end offset avoids problems here.
1447 */
1448 mutex_enter(&np->r_statelock);
1449 np->r_size = vap->va_size;
1450 mutex_exit(&np->r_statelock);
1451 modified = 1;
1452 }
1453 }

1455 /*
1456 * XXX: When Solaris has create_time, set that too.
1457 * Note: create_time is different from ctime.
1458 */
1459 mtime = ((mask & AT_MTIME) ? &vap->va_mtime : 0);
1460 atime = ((mask & AT_ATIME) ? &vap->va_atime : 0);

1462 if (mtime || atime) {
1463 /*
1464 * Always use the handle-based set attr call now.
1465 * Not trying to set DOS attributes here so pass zero.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 21

1466 */
1467 ASSERT(have_fid);
1468 error = smbfs_smb_setfattr(np, fid,
1469 0, mtime, atime, &scred);
1470 if (error) {
1471 SMBVDEBUG("set times error %d file %s\n",
1472 error, np->n_rpath);
1473 } else {
1474 modified = 1;
1475 }
1476 }

1478 out:
1479 if (modified) {
1480 /*
1481 * Invalidate attribute cache in case the server
1482 * doesn’t set exactly the attributes we asked.
1483 */
1484 smbfs_attrcache_remove(np);
1485 }

1487 if (have_fid) {
1488 cerror = smbfs_smb_tmpclose(np, fid, &scred);
1489 if (cerror)
1490 SMBVDEBUG("error %d closing %s\n",
1491 cerror, np->n_rpath);
1492 }

1494 smb_credrele(&scred);
1495 smbfs_rw_exit(&np->r_lkserlock);

1497 return (error);
1498 }

1500 /*
1501 * smbfs_access_rwx()
1502 * Common function for smbfs_access, etc.
1503 *
1504 * The security model implemented by the FS is unusual
1505 * due to the current "single user mounts" restriction:
1506 * All access under a given mount point uses the CIFS
1507 * credentials established by the owner of the mount.
1508 *
1509 * Most access checking is handled by the CIFS server,
1510 * but we need sufficient Unix access checks here to
1511 * prevent other local Unix users from having access
1512 * to objects under this mount that the uid/gid/mode
1513 * settings in the mount would not allow.
1514 *
1515 * With this model, there is a case where we need the
1516 * ability to do an access check before we have the
1517 * vnode for an object. This function takes advantage
1518 * of the fact that the uid/gid/mode is per mount, and
1519 * avoids the need for a vnode.
1520 *
1521 * We still (sort of) need a vnode when we call
1522 * secpolicy_vnode_access, but that only uses
1523 * the vtype field, so we can use a pair of fake
1524 * vnodes that have only v_type filled in.
1525 *
1526 * XXX: Later, add a new secpolicy_vtype_access()
1527 * that takes the vtype instead of a vnode, and
1528 * get rid of the tmpl_vxxx fake vnodes below.
1529 */
1530 static int
1531 smbfs_access_rwx(vfs_t *vfsp, int vtype, int mode, cred_t *cr)

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 22

1532 {
1533 /* See the secpolicy call below. */
1534 static const vnode_t tmpl_vdir = { .v_type = VDIR };
1535 static const vnode_t tmpl_vreg = { .v_type = VREG };
1536 vattr_t va;
1537 vnode_t *tvp;
1538 struct smbmntinfo *smi = VFTOSMI(vfsp);
1539 int shift = 0;

1541 /*
1542 * Build our (fabricated) vnode attributes.
1543 * XXX: Could make these templates in the
1544 * per-mount struct and use them here.
1545 */
1546 bzero(&va, sizeof (va));
1547 va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID;
1548 va.va_type = vtype;
1549 va.va_mode = (vtype == VDIR) ?
1550 smi->smi_dmode : smi->smi_fmode;
1551 va.va_uid = smi->smi_uid;
1552 va.va_gid = smi->smi_gid;

1554 /*
1555 * Disallow write attempts on read-only file systems,
1556 * unless the file is a device or fifo node. Note:
1557 * Inline vn_is_readonly and IS_DEVVP here because
1558 * we may not have a vnode ptr. Original expr. was:
1559 * (mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp))
1560 */
1561 if ((mode & VWRITE) &&
1562 (vfsp->vfs_flag & VFS_RDONLY) &&
1563 !(vtype == VCHR || vtype == VBLK || vtype == VFIFO))
1564 return (EROFS);

1566 /*
1567 * Disallow attempts to access mandatory lock files.
1568 * Similarly, expand MANDLOCK here.
1569 * XXX: not sure we need this.
1570 */
1571 if ((mode & (VWRITE | VREAD | VEXEC)) &&
1572 va.va_type == VREG && MANDMODE(va.va_mode))
1573 return (EACCES);

1575 /*
1576 * Access check is based on only
1577 * one of owner, group, public.
1578 * If not owner, then check group.
1579 * If not a member of the group,
1580 * then check public access.
1581 */
1582 if (crgetuid(cr) != va.va_uid) {
1583 shift += 3;
1584 if (!groupmember(va.va_gid, cr))
1585 shift += 3;
1586 }

1588 /*
1589 * We need a vnode for secpolicy_vnode_access,
1590 * but the only thing it looks at is v_type,
1591 * so pass one of the templates above.
1592 */
1593 tvp = (va.va_type == VDIR) ?
1594 (vnode_t *)&tmpl_vdir :
1595 (vnode_t *)&tmpl_vreg;

1597 return (secpolicy_vnode_access2(cr, tvp, va.va_uid,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 23

1598 va.va_mode << shift, mode));
1599 }

1601 /*
1602 * See smbfs_setattr
1603 */
1604 static int
1605 smbfs_accessx(void *arg, int mode, cred_t *cr)
1606 {
1607 vnode_t *vp = arg;
1608 /*
1609 * Note: The caller has checked the current zone,
1610 * the SMI_DEAD and VFS_UNMOUNTED flags, etc.
1611 */
1612 return (smbfs_access_rwx(vp->v_vfsp, vp->v_type, mode, cr));
1613 }

1615 /*
1616 * XXX
1617 * This op should support PSARC 2007/403, Modified Access Checks for CIFS
1618 */
1619 /* ARGSUSED */
1620 static int
1621 smbfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1622 {
1623 vfs_t *vfsp;
1624 smbmntinfo_t *smi;

1626 vfsp = vp->v_vfsp;
1627 smi = VFTOSMI(vfsp);

1629 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1630 return (EIO);

1632 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
1633 return (EIO);

1635 return (smbfs_access_rwx(vfsp, vp->v_type, mode, cr));
1636 }

1639 /*
1640 * Flush local dirty pages to stable storage on the server.
1641 *
1642 * If FNODSYNC is specified, then there is nothing to do because
1643 * metadata changes are not cached on the client before being
1644 * sent to the server.
1645 */
1646 /* ARGSUSED */
1647 static int
1648 smbfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1649 {
1650 int error = 0;
1651 smbmntinfo_t *smi;
1652 smbnode_t *np;
1653 struct smb_cred scred;

1655 np = VTOSMB(vp);
1656 smi = VTOSMI(vp);

1658 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1659 return (EIO);

1661 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1662 return (EIO);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 24

1664 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1665 return (0);

1667 if ((syncflag & (FSYNC|FDSYNC)) == 0)
1668 return (0);

1670 /* Shared lock for n_fid use in _flush */
1671 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
1672 return (EINTR);
1673 smb_credinit(&scred, cr);

1675 error = smbfs_smb_flush(np, &scred);

1677 smb_credrele(&scred);
1678 smbfs_rw_exit(&np->r_lkserlock);

1680 return (error);
1681 }

1683 /*
1684 * Last reference to vnode went away.
1685 */
1686 /* ARGSUSED */
1687 static void
1688 smbfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1689 {
1690 smbnode_t *np;
1691 struct smb_cred scred;

1693 /*
1694 * Don’t "bail out" for VFS_UNMOUNTED here,
1695 * as we want to do cleanup, etc.
1696 * See also pcfs_inactive
1697 */

1699 np = VTOSMB(vp);

1701 /*
1702 * If this is coming from the wrong zone, we let someone in the right
1703 * zone take care of it asynchronously. We can get here due to
1704 * VN_RELE() being called from pageout() or fsflush(). This call may
1705 * potentially turn into an expensive no-op if, for instance, v_count
1706 * gets incremented in the meantime, but it’s still correct.
1707 */

1709 /*
1710 * Defend against the possibility that higher-level callers
1711 * might not correctly balance open and close calls. If we
1712 * get here with open references remaining, it means there
1713 * was a missing VOP_CLOSE somewhere. If that happens, do
1714 * the close here so we don’t "leak" FIDs on the server.
1715 *
1716 * Exclusive lock for modifying n_fid stuff.
1717 * Don’t want this one ever interruptible.
1718 */
1719 (void) smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, 0);
1720 smb_credinit(&scred, cr);

1722 switch (np->n_ovtype) {
1723 case VNON:
1724 /* not open (OK) */
1725 break;

1727 case VDIR:
1728 if (np->n_dirrefs == 0)
1729 break;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 25

1730 SMBVDEBUG("open dir: refs %d path %s\n",
1731 np->n_dirrefs, np->n_rpath);
1732 /* Force last close. */
1733 np->n_dirrefs = 1;
1734 smbfs_rele_fid(np, &scred);
1735 break;

1737 case VREG:
1738 if (np->n_fidrefs == 0)
1739 break;
1740 SMBVDEBUG("open file: refs %d id 0x%x path %s\n",
1741 np->n_fidrefs, np->n_fid, np->n_rpath);
1742 /*
1743 * Before otW close, make sure dirty pages written back.
1744 */
1745 if (vn_has_cached_data(vp)) {
1746 /* smbfs_putapage() will acquire shared lock, so release
1747 * exclusive lock temporally.
1748 */
1749 smbfs_rw_exit(&np->r_lkserlock);

1751 (void) smbfs_putpage(vp, (offset_t) 0, 0, B_INVAL | B_AS

1753 /* acquire exclusive lock again. */
1754 (void) smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, 0
1755 }
1756 #endif /* ! codereview */
1757 /* Force last close. */
1758 np->n_fidrefs = 1;
1759 smbfs_rele_fid(np, &scred);
1760 break;

1762 default:
1763 SMBVDEBUG("bad n_ovtype %d\n", np->n_ovtype);
1764 np->n_ovtype = VNON;
1765 break;
1766 }

1768 smb_credrele(&scred);
1769 smbfs_rw_exit(&np->r_lkserlock);

1771 smbfs_addfree(np);
1772 }

1774 /*
1775 * Remote file system operations having to do with directory manipulation.
1776 */
1777 /* ARGSUSED */
1778 static int
1779 smbfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1780 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1781 int *direntflags, pathname_t *realpnp)
1782 {
1783 vfs_t *vfs;
1784 smbmntinfo_t *smi;
1785 smbnode_t *dnp;
1786 int error;

1788 vfs = dvp->v_vfsp;
1789 smi = VFTOSMI(vfs);

1791 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1792 return (EPERM);

1794 if (smi->smi_flags & SMI_DEAD || vfs->vfs_flag & VFS_UNMOUNTED)
1795 return (EIO);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 26

1797 dnp = VTOSMB(dvp);

1799 /*
1800 * Are we looking up extended attributes? If so, "dvp" is
1801 * the file or directory for which we want attributes, and
1802 * we need a lookup of the (faked up) attribute directory
1803 * before we lookup the rest of the path.
1804 */
1805 if (flags & LOOKUP_XATTR) {
1806 /*
1807 * Require the xattr mount option.
1808 */
1809 if ((vfs->vfs_flag & VFS_XATTR) == 0)
1810 return (EINVAL);

1812 error = smbfs_get_xattrdir(dvp, vpp, cr, flags);
1813 return (error);
1814 }

1816 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_READER, SMBINTR(dvp)))
1817 return (EINTR);

1819 error = smbfslookup(dvp, nm, vpp, cr, 1, ct);

1821 smbfs_rw_exit(&dnp->r_rwlock);

1823 return (error);
1824 }

1826 /* ARGSUSED */
1827 static int
1828 smbfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
1829 int cache_ok, caller_context_t *ct)
1830 {
1831 int error;
1832 int supplen; /* supported length */
1833 vnode_t *vp;
1834 smbnode_t *np;
1835 smbnode_t *dnp;
1836 smbmntinfo_t *smi;
1837 /* struct smb_vc *vcp; */
1838 const char *ill;
1839 const char *name = (const char *)nm;
1840 int nmlen = strlen(nm);
1841 int rplen;
1842 struct smb_cred scred;
1843 struct smbfattr fa;

1845 smi = VTOSMI(dvp);
1846 dnp = VTOSMB(dvp);

1848 ASSERT(curproc->p_zone == smi->smi_zone_ref.zref_zone);

1850 #ifdef NOT_YET
1851 vcp = SSTOVC(smi->smi_share);

1853 /* XXX: Should compute this once and store it in smbmntinfo_t */
1854 supplen = (SMB_DIALECT(vcp) >= SMB_DIALECT_LANMAN2_0) ? 255 : 12;
1855 #else
1856 supplen = 255;
1857 #endif

1859 /*
1860 * RWlock must be held, either reader or writer.
1861 * XXX: Can we check without looking directly

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 27

1862 * inside the struct smbfs_rwlock_t?
1863 */
1864 ASSERT(dnp->r_rwlock.count != 0);

1866 /*
1867 * If lookup is for "", just return dvp.
1868 * No need to perform any access checks.
1869 */
1870 if (nmlen == 0) {
1871 VN_HOLD(dvp);
1872 *vpp = dvp;
1873 return (0);
1874 }

1876 /*
1877 * Can’t do lookups in non-directories.
1878 */
1879 if (dvp->v_type != VDIR)
1880 return (ENOTDIR);

1882 /*
1883 * Need search permission in the directory.
1884 */
1885 error = smbfs_access(dvp, VEXEC, 0, cr, ct);
1886 if (error)
1887 return (error);

1889 /*
1890 * If lookup is for ".", just return dvp.
1891 * Access check was done above.
1892 */
1893 if (nmlen == 1 && name[0] == ’.’) {
1894 VN_HOLD(dvp);
1895 *vpp = dvp;
1896 return (0);
1897 }

1899 /*
1900 * Now some sanity checks on the name.
1901 * First check the length.
1902 */
1903 if (nmlen > supplen)
1904 return (ENAMETOOLONG);

1906 /*
1907 * Avoid surprises with characters that are
1908 * illegal in Windows file names.
1909 * Todo: CATIA mappings XXX
1910 */
1911 ill = illegal_chars;
1912 if (dnp->n_flag & N_XATTR)
1913 ill++; /* allow colon */
1914 if (strpbrk(nm, ill))
1915 return (EINVAL);

1917 /*
1918 * Special handling for lookup of ".."
1919 *
1920 * We keep full pathnames (as seen on the server)
1921 * so we can just trim off the last component to
1922 * get the full pathname of the parent. Note:
1923 * We don’t actually copy and modify, but just
1924 * compute the trimmed length and pass that with
1925 * the current dir path (not null terminated).
1926 *
1927 * We don’t go over-the-wire to get attributes

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 28

1928 * for ".." because we know it’s a directory,
1929 * and we can just leave the rest "stale"
1930 * until someone does a getattr.
1931 */
1932 if (nmlen == 2 && name[0] == ’.’ && name[1] == ’.’) {
1933 if (dvp->v_flag & VROOT) {
1934 /*
1935 * Already at the root. This can happen
1936 * with directory listings at the root,
1937 * which lookup "." and ".." to get the
1938 * inode numbers. Let ".." be the same
1939 * as "." in the FS root.
1940 */
1941 VN_HOLD(dvp);
1942 *vpp = dvp;
1943 return (0);
1944 }

1946 /*
1947 * Special case for XATTR directory
1948 */
1949 if (dvp->v_flag & V_XATTRDIR) {
1950 error = smbfs_xa_parent(dvp, vpp);
1951 return (error);
1952 }

1954 /*
1955 * Find the parent path length.
1956 */
1957 rplen = dnp->n_rplen;
1958 ASSERT(rplen > 0);
1959 while (--rplen >= 0) {
1960 if (dnp->n_rpath[rplen] == ’\\’)
1961 break;
1962 }
1963 if (rplen <= 0) {
1964 /* Found our way to the root. */
1965 vp = SMBTOV(smi->smi_root);
1966 VN_HOLD(vp);
1967 *vpp = vp;
1968 return (0);
1969 }
1970 np = smbfs_node_findcreate(smi,
1971 dnp->n_rpath, rplen, NULL, 0, 0,
1972 &smbfs_fattr0); /* force create */
1973 ASSERT(np != NULL);
1974 vp = SMBTOV(np);
1975 vp->v_type = VDIR;

1977 /* Success! */
1978 *vpp = vp;
1979 return (0);
1980 }

1982 /*
1983 * Normal lookup of a name under this directory.
1984 * Note we handled "", ".", ".." above.
1985 */
1986 if (cache_ok) {
1987 /*
1988 * The caller indicated that it’s OK to use a
1989 * cached result for this lookup, so try to
1990 * reclaim a node from the smbfs node cache.
1991 */
1992 error = smbfslookup_cache(dvp, nm, nmlen, &vp, cr);
1993 if (error)

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 29

1994 return (error);
1995 if (vp != NULL) {
1996 /* hold taken in lookup_cache */
1997 *vpp = vp;
1998 return (0);
1999 }
2000 }

2002 /*
2003 * OK, go over-the-wire to get the attributes,
2004 * then create the node.
2005 */
2006 smb_credinit(&scred, cr);
2007 /* Note: this can allocate a new "name" */
2008 error = smbfs_smb_lookup(dnp, &name, &nmlen, &fa, &scred);
2009 smb_credrele(&scred);
2010 if (error == ENOTDIR) {
2011 /*
2012 * Lookup failed because this directory was
2013 * removed or renamed by another client.
2014 * Remove any cached attributes under it.
2015 */
2016 smbfs_attrcache_remove(dnp);
2017 smbfs_attrcache_prune(dnp);
2018 }
2019 if (error)
2020 goto out;

2022 error = smbfs_nget(dvp, name, nmlen, &fa, &vp);
2023 if (error)
2024 goto out;

2026 /* Success! */
2027 *vpp = vp;

2029 out:
2030 /* smbfs_smb_lookup may have allocated name. */
2031 if (name != nm)
2032 smbfs_name_free(name, nmlen);

2034 return (error);
2035 }

2037 /*
2038 * smbfslookup_cache
2039 *
2040 * Try to reclaim a node from the smbfs node cache.
2041 * Some statistics for DEBUG.
2042 *
2043 * This mechanism lets us avoid many of the five (or more)
2044 * OtW lookup calls per file seen with "ls -l" if we search
2045 * the smbfs node cache for recently inactive(ated) nodes.
2046 */
2047 #ifdef DEBUG
2048 int smbfs_lookup_cache_calls = 0;
2049 int smbfs_lookup_cache_error = 0;
2050 int smbfs_lookup_cache_miss = 0;
2051 int smbfs_lookup_cache_stale = 0;
2052 int smbfs_lookup_cache_hits = 0;
2053 #endif /* DEBUG */

2055 /* ARGSUSED */
2056 static int
2057 smbfslookup_cache(vnode_t *dvp, char *nm, int nmlen,
2058 vnode_t **vpp, cred_t *cr)
2059 {

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 30

2060 struct vattr va;
2061 smbnode_t *dnp;
2062 smbnode_t *np;
2063 vnode_t *vp;
2064 int error;
2065 char sep;

2067 dnp = VTOSMB(dvp);
2068 *vpp = NULL;

2070 #ifdef DEBUG
2071 smbfs_lookup_cache_calls++;
2072 #endif

2074 /*
2075 * First make sure we can get attributes for the
2076 * directory. Cached attributes are OK here.
2077 * If we removed or renamed the directory, this
2078 * will return ENOENT. If someone else removed
2079 * this directory or file, we’ll find out when we
2080 * try to open or get attributes.
2081 */
2082 va.va_mask = AT_TYPE | AT_MODE;
2083 error = smbfsgetattr(dvp, &va, cr);
2084 if (error) {
2085 #ifdef DEBUG
2086 smbfs_lookup_cache_error++;
2087 #endif
2088 return (error);
2089 }

2091 /*
2092 * Passing NULL smbfattr here so we will
2093 * just look, not create.
2094 */
2095 sep = SMBFS_DNP_SEP(dnp);
2096 np = smbfs_node_findcreate(dnp->n_mount,
2097 dnp->n_rpath, dnp->n_rplen,
2098 nm, nmlen, sep, NULL);
2099 if (np == NULL) {
2100 #ifdef DEBUG
2101 smbfs_lookup_cache_miss++;
2102 #endif
2103 return (0);
2104 }

2106 /*
2107 * Found it. Attributes still valid?
2108 */
2109 vp = SMBTOV(np);
2110 if (np->r_attrtime <= gethrtime()) {
2111 /* stale */
2112 #ifdef DEBUG
2113 smbfs_lookup_cache_stale++;
2114 #endif
2115 VN_RELE(vp);
2116 return (0);
2117 }

2119 /*
2120 * Success!
2121 * Caller gets hold from smbfs_node_findcreate
2122 */
2123 #ifdef DEBUG
2124 smbfs_lookup_cache_hits++;
2125 #endif

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 31

2126 *vpp = vp;
2127 return (0);
2128 }

2130 /*
2131 * XXX
2132 * vsecattr_t is new to build 77, and we need to eventually support
2133 * it in order to create an ACL when an object is created.
2134 *
2135 * This op should support the new FIGNORECASE flag for case-insensitive
2136 * lookups, per PSARC 2007/244.
2137 */
2138 /* ARGSUSED */
2139 static int
2140 smbfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2141 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
2142 vsecattr_t *vsecp)
2143 {
2144 int error;
2145 int cerror;
2146 vfs_t *vfsp;
2147 vnode_t *vp;
2148 #ifdef NOT_YET
2149 smbnode_t *np;
2150 #endif
2151 smbnode_t *dnp;
2152 smbmntinfo_t *smi;
2153 struct vattr vattr;
2154 struct smbfattr fattr;
2155 struct smb_cred scred;
2156 const char *name = (const char *)nm;
2157 int nmlen = strlen(nm);
2158 uint32_t disp;
2159 uint16_t fid;
2160 int xattr;

2162 vfsp = dvp->v_vfsp;
2163 smi = VFTOSMI(vfsp);
2164 dnp = VTOSMB(dvp);
2165 vp = NULL;

2167 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2168 return (EPERM);

2170 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
2171 return (EIO);

2173 /*
2174 * Note: this may break mknod(2) calls to create a directory,
2175 * but that’s obscure use. Some other filesystems do this.
2176 * XXX: Later, redirect VDIR type here to _mkdir.
2177 */
2178 if (va->va_type != VREG)
2179 return (EINVAL);

2181 /*
2182 * If the pathname is "", just use dvp, no checks.
2183 * Do this outside of the rwlock (like zfs).
2184 */
2185 if (nmlen == 0) {
2186 VN_HOLD(dvp);
2187 *vpp = dvp;
2188 return (0);
2189 }

2191 /* Don’t allow "." or ".." through here. */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 32

2192 if ((nmlen == 1 && name[0] == ’.’) ||
2193 (nmlen == 2 && name[0] == ’.’ && name[1] == ’.’))
2194 return (EISDIR);

2196 /*
2197 * We make a copy of the attributes because the caller does not
2198 * expect us to change what va points to.
2199 */
2200 vattr = *va;

2202 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_WRITER, SMBINTR(dvp)))
2203 return (EINTR);
2204 smb_credinit(&scred, cr);

2206 /*
2207 * XXX: Do we need r_lkserlock too?
2208 * No use of any shared fid or fctx...
2209 */

2211 /*
2212 * NFS needs to go over the wire, just to be sure whether the
2213 * file exists or not. Using a cached result is dangerous in
2214 * this case when making a decision regarding existence.
2215 *
2216 * The SMB protocol does NOT really need to go OTW here
2217 * thanks to the expressive NTCREATE disposition values.
2218 * Unfortunately, to do Unix access checks correctly,
2219 * we need to know if the object already exists.
2220 * When the object does not exist, we need VWRITE on
2221 * the directory. Note: smbfslookup() checks VEXEC.
2222 */
2223 error = smbfslookup(dvp, nm, &vp, cr, 0, ct);
2224 if (error == 0) {
2225 /*
2226 * The file already exists. Error?
2227 * NB: have a hold from smbfslookup
2228 */
2229 if (exclusive == EXCL) {
2230 error = EEXIST;
2231 VN_RELE(vp);
2232 goto out;
2233 }
2234 /*
2235 * Verify requested access.
2236 */
2237 error = smbfs_access(vp, mode, 0, cr, ct);
2238 if (error) {
2239 VN_RELE(vp);
2240 goto out;
2241 }

2243 /*
2244 * Truncate (if requested).
2245 */
2246 if ((vattr.va_mask & AT_SIZE) && vattr.va_size == 0) {
2247 vattr.va_mask = AT_SIZE;
2248 error = smbfssetattr(vp, &vattr, 0, cr);
2249 if (error) {
2250 VN_RELE(vp);
2251 goto out;
2252 }
2253 }
2254 /* Success! */
2255 #ifdef NOT_YET
2256 vnevent_create(vp, ct);
2257 #endif

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 33

2258 *vpp = vp;
2259 goto out;
2260 }

2262 /*
2263 * The file did not exist. Need VWRITE in the directory.
2264 */
2265 error = smbfs_access(dvp, VWRITE, 0, cr, ct);
2266 if (error)
2267 goto out;

2269 /*
2270 * Now things get tricky. We also need to check the
2271 * requested open mode against the file we may create.
2272 * See comments at smbfs_access_rwx
2273 */
2274 error = smbfs_access_rwx(vfsp, VREG, mode, cr);
2275 if (error)
2276 goto out;

2278 /*
2279 * Now the code derived from Darwin,
2280 * but with greater use of NT_CREATE
2281 * disposition options. Much changed.
2282 *
2283 * Create (or open) a new child node.
2284 * Note we handled "." and ".." above.
2285 */

2287 if (exclusive == EXCL)
2288 disp = NTCREATEX_DISP_CREATE;
2289 else {
2290 /* Truncate regular files if requested. */
2291 if ((va->va_type == VREG) &&
2292 (va->va_mask & AT_SIZE) &&
2293 (va->va_size == 0))
2294 disp = NTCREATEX_DISP_OVERWRITE_IF;
2295 else
2296 disp = NTCREATEX_DISP_OPEN_IF;
2297 }
2298 xattr = (dnp->n_flag & N_XATTR) ? 1 : 0;
2299 error = smbfs_smb_create(dnp,
2300 name, nmlen, xattr,
2301 disp, &scred, &fid);
2302 if (error)
2303 goto out;

2305 /*
2306 * XXX: Missing some code here to deal with
2307 * the case where we opened an existing file,
2308 * it’s size is larger than 32-bits, and we’re
2309 * setting the size from a process that’s not
2310 * aware of large file offsets. i.e.
2311 * from the NFS3 code:
2312 */
2313 #if NOT_YET /* XXX */
2314 if ((vattr.va_mask & AT_SIZE) &&
2315 vp->v_type == VREG) {
2316 np = VTOSMB(vp);
2317 /*
2318 * Check here for large file handled
2319 * by LF-unaware process (as
2320 * ufs_create() does)
2321 */
2322 if (!(lfaware & FOFFMAX)) {
2323 mutex_enter(&np->r_statelock);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 34

2324 if (np->r_size > MAXOFF32_T)
2325 error = EOVERFLOW;
2326 mutex_exit(&np->r_statelock);
2327 }
2328 if (!error) {
2329 vattr.va_mask = AT_SIZE;
2330 error = smbfssetattr(vp,
2331 &vattr, 0, cr);
2332 }
2333 }
2334 #endif /* XXX */
2335 /*
2336 * Should use the fid to get/set the size
2337 * while we have it opened here. See above.
2338 */

2340 cerror = smbfs_smb_close(smi->smi_share, fid, NULL, &scred);
2341 if (cerror)
2342 SMBVDEBUG("error %d closing %s\\%s\n",
2343 cerror, dnp->n_rpath, name);

2345 /*
2346 * In the open case, the name may differ a little
2347 * from what we passed to create (case, etc.)
2348 * so call lookup to get the (opened) name.
2349 *
2350 * XXX: Could avoid this extra lookup if the
2351 * "createact" result from NT_CREATE says we
2352 * created the object.
2353 */
2354 error = smbfs_smb_lookup(dnp, &name, &nmlen, &fattr, &scred);
2355 if (error)
2356 goto out;

2358 /* update attr and directory cache */
2359 smbfs_attr_touchdir(dnp);

2361 error = smbfs_nget(dvp, name, nmlen, &fattr, &vp);
2362 if (error)
2363 goto out;

2365 /* XXX invalidate pages if we truncated? */

2367 /* Success! */
2368 *vpp = vp;
2369 error = 0;

2371 out:
2372 smb_credrele(&scred);
2373 smbfs_rw_exit(&dnp->r_rwlock);
2374 if (name != nm)
2375 smbfs_name_free(name, nmlen);
2376 return (error);
2377 }

2379 /*
2380 * XXX
2381 * This op should support the new FIGNORECASE flag for case-insensitive
2382 * lookups, per PSARC 2007/244.
2383 */
2384 /* ARGSUSED */
2385 static int
2386 smbfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct,
2387 int flags)
2388 {
2389 int error;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 35

2390 vnode_t *vp;
2391 smbnode_t *np;
2392 smbnode_t *dnp;
2393 struct smb_cred scred;
2394 /* enum smbfsstat status; */
2395 smbmntinfo_t *smi;

2397 smi = VTOSMI(dvp);

2399 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2400 return (EPERM);

2402 if (smi->smi_flags & SMI_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2403 return (EIO);

2405 dnp = VTOSMB(dvp);
2406 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_WRITER, SMBINTR(dvp)))
2407 return (EINTR);
2408 smb_credinit(&scred, cr);

2410 /*
2411 * Verify access to the dirctory.
2412 */
2413 error = smbfs_access(dvp, VWRITE|VEXEC, 0, cr, ct);
2414 if (error)
2415 goto out;

2417 /*
2418 * NOTE: the darwin code gets the "vp" passed in so it looks
2419 * like the "vp" has probably been "lookup"ed by the VFS layer.
2420 * It looks like we will need to lookup the vp to check the
2421 * caches and check if the object being deleted is a directory.
2422 */
2423 error = smbfslookup(dvp, nm, &vp, cr, 0, ct);
2424 if (error)
2425 goto out;

2427 /* Never allow link/unlink directories on CIFS. */
2428 if (vp->v_type == VDIR) {
2429 VN_RELE(vp);
2430 error = EPERM;
2431 goto out;
2432 }

2434 /*
2435 * Now we have the real reference count on the vnode
2436 * Do we have the file open?
2437 */
2438 np = VTOSMB(vp);
2439 mutex_enter(&np->r_statelock);
2440 if ((vp->v_count > 1) && (np->n_fidrefs > 0)) {
2441 /*
2442 * NFS does a rename on remove here.
2443 * Probably not applicable for SMB.
2444 * Like Darwin, just return EBUSY.
2445 *
2446 * XXX: Todo - Use Trans2rename, and
2447 * if that fails, ask the server to
2448 * set the delete-on-close flag.
2449 */
2450 mutex_exit(&np->r_statelock);
2451 error = EBUSY;
2452 } else {
2453 smbfs_attrcache_rm_locked(np);
2454 mutex_exit(&np->r_statelock);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 36

2456 error = smbfs_smb_delete(np, &scred, NULL, 0, 0);

2458 /*
2459 * If the file should no longer exist, discard
2460 * any cached attributes under this node.
2461 */
2462 switch (error) {
2463 case 0:
2464 case ENOENT:
2465 case ENOTDIR:
2466 smbfs_attrcache_prune(np);
2467 break;
2468 }
2469 }

2471 VN_RELE(vp);

2473 out:
2474 smb_credrele(&scred);
2475 smbfs_rw_exit(&dnp->r_rwlock);

2477 return (error);
2478 }

2481 /*
2482 * XXX
2483 * This op should support the new FIGNORECASE flag for case-insensitive
2484 * lookups, per PSARC 2007/244.
2485 */
2486 /* ARGSUSED */
2487 static int
2488 smbfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2489 caller_context_t *ct, int flags)
2490 {
2491 /* vnode_t *realvp; */

2493 if (curproc->p_zone != VTOSMI(odvp)->smi_zone_ref.zref_zone ||
2494 curproc->p_zone != VTOSMI(ndvp)->smi_zone_ref.zref_zone)
2495 return (EPERM);

2497 if (VTOSMI(odvp)->smi_flags & SMI_DEAD ||
2498 VTOSMI(ndvp)->smi_flags & SMI_DEAD ||
2499 odvp->v_vfsp->vfs_flag & VFS_UNMOUNTED ||
2500 ndvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2501 return (EIO);

2503 return (smbfsrename(odvp, onm, ndvp, nnm, cr, ct));
2504 }

2506 /*
2507 * smbfsrename does the real work of renaming in SMBFS
2508 */
2509 /* ARGSUSED */
2510 static int
2511 smbfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2512 caller_context_t *ct)
2513 {
2514 int error;
2515 int nvp_locked = 0;
2516 vnode_t *nvp = NULL;
2517 vnode_t *ovp = NULL;
2518 smbnode_t *onp;
2519 smbnode_t *nnp;
2520 smbnode_t *odnp;
2521 smbnode_t *ndnp;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 37

2522 struct smb_cred scred;
2523 /* enum smbfsstat status; */

2525 ASSERT(curproc->p_zone == VTOSMI(odvp)->smi_zone_ref.zref_zone);

2527 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
2528 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
2529 return (EINVAL);

2531 /*
2532 * Check that everything is on the same filesystem.
2533 * vn_rename checks the fsid’s, but in case we don’t
2534 * fill those in correctly, check here too.
2535 */
2536 if (odvp->v_vfsp != ndvp->v_vfsp)
2537 return (EXDEV);

2539 odnp = VTOSMB(odvp);
2540 ndnp = VTOSMB(ndvp);

2542 /*
2543 * Avoid deadlock here on old vs new directory nodes
2544 * by always taking the locks in order of address.
2545 * The order is arbitrary, but must be consistent.
2546 */
2547 if (odnp < ndnp) {
2548 if (smbfs_rw_enter_sig(&odnp->r_rwlock, RW_WRITER,
2549 SMBINTR(odvp)))
2550 return (EINTR);
2551 if (smbfs_rw_enter_sig(&ndnp->r_rwlock, RW_WRITER,
2552 SMBINTR(ndvp))) {
2553 smbfs_rw_exit(&odnp->r_rwlock);
2554 return (EINTR);
2555 }
2556 } else {
2557 if (smbfs_rw_enter_sig(&ndnp->r_rwlock, RW_WRITER,
2558 SMBINTR(ndvp)))
2559 return (EINTR);
2560 if (smbfs_rw_enter_sig(&odnp->r_rwlock, RW_WRITER,
2561 SMBINTR(odvp))) {
2562 smbfs_rw_exit(&ndnp->r_rwlock);
2563 return (EINTR);
2564 }
2565 }
2566 smb_credinit(&scred, cr);
2567 /*
2568 * No returns after this point (goto out)
2569 */

2571 /*
2572 * Need write access on source and target.
2573 * Server takes care of most checks.
2574 */
2575 error = smbfs_access(odvp, VWRITE|VEXEC, 0, cr, ct);
2576 if (error)
2577 goto out;
2578 if (odvp != ndvp) {
2579 error = smbfs_access(ndvp, VWRITE, 0, cr, ct);
2580 if (error)
2581 goto out;
2582 }

2584 /*
2585 * Lookup the source name. Must already exist.
2586 */
2587 error = smbfslookup(odvp, onm, &ovp, cr, 0, ct);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 38

2588 if (error)
2589 goto out;

2591 /*
2592 * Lookup the target file. If it exists, it needs to be
2593 * checked to see whether it is a mount point and whether
2594 * it is active (open).
2595 */
2596 error = smbfslookup(ndvp, nnm, &nvp, cr, 0, ct);
2597 if (!error) {
2598 /*
2599 * Target (nvp) already exists. Check that it
2600 * has the same type as the source. The server
2601 * will check this also, (and more reliably) but
2602 * this lets us return the correct error codes.
2603 */
2604 if (ovp->v_type == VDIR) {
2605 if (nvp->v_type != VDIR) {
2606 error = ENOTDIR;
2607 goto out;
2608 }
2609 } else {
2610 if (nvp->v_type == VDIR) {
2611 error = EISDIR;
2612 goto out;
2613 }
2614 }

2616 /*
2617 * POSIX dictates that when the source and target
2618 * entries refer to the same file object, rename
2619 * must do nothing and exit without error.
2620 */
2621 if (ovp == nvp) {
2622 error = 0;
2623 goto out;
2624 }

2626 /*
2627 * Also must ensure the target is not a mount point,
2628 * and keep mount/umount away until we’re done.
2629 */
2630 if (vn_vfsrlock(nvp)) {
2631 error = EBUSY;
2632 goto out;
2633 }
2634 nvp_locked = 1;
2635 if (vn_mountedvfs(nvp) != NULL) {
2636 error = EBUSY;
2637 goto out;
2638 }

2640 /*
2641 * CIFS gives a SHARING_VIOLATION error when
2642 * trying to rename onto an exising object,
2643 * so try to remove the target first.
2644 * (Only for files, not directories.)
2645 */
2646 if (nvp->v_type == VDIR) {
2647 error = EEXIST;
2648 goto out;
2649 }

2651 /*
2652 * Nodes that are "not active" here have v_count=2
2653 * because vn_renameat (our caller) did a lookup on

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 39

2654 * both the source and target before this call.
2655 * Otherwise this similar to smbfs_remove.
2656 */
2657 nnp = VTOSMB(nvp);
2658 mutex_enter(&nnp->r_statelock);
2659 if ((nvp->v_count > 2) && (nnp->n_fidrefs > 0)) {
2660 /*
2661 * The target file exists, is not the same as
2662 * the source file, and is active. Other FS
2663 * implementations unlink the target here.
2664 * For SMB, we don’t assume we can remove an
2665 * open file. Return an error instead.
2666 */
2667 mutex_exit(&nnp->r_statelock);
2668 error = EBUSY;
2669 goto out;
2670 }

2672 /*
2673 * Target file is not active. Try to remove it.
2674 */
2675 smbfs_attrcache_rm_locked(nnp);
2676 mutex_exit(&nnp->r_statelock);

2678 error = smbfs_smb_delete(nnp, &scred, NULL, 0, 0);

2680 /*
2681 * Similar to smbfs_remove
2682 */
2683 switch (error) {
2684 case 0:
2685 case ENOENT:
2686 case ENOTDIR:
2687 smbfs_attrcache_prune(nnp);
2688 break;
2689 }

2691 if (error)
2692 goto out;
2693 /*
2694 * OK, removed the target file. Continue as if
2695 * lookup target had failed (nvp == NULL).
2696 */
2697 vn_vfsunlock(nvp);
2698 nvp_locked = 0;
2699 VN_RELE(nvp);
2700 nvp = NULL;
2701 } /* nvp */

2703 onp = VTOSMB(ovp);
2704 smbfs_attrcache_remove(onp);

2706 error = smbfs_smb_rename(onp, ndnp, nnm, strlen(nnm), &scred);

2708 /*
2709 * If the old name should no longer exist,
2710 * discard any cached attributes under it.
2711 */
2712 if (error == 0)
2713 smbfs_attrcache_prune(onp);

2715 out:
2716 if (nvp) {
2717 if (nvp_locked)
2718 vn_vfsunlock(nvp);
2719 VN_RELE(nvp);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 40

2720 }
2721 if (ovp)
2722 VN_RELE(ovp);

2724 smb_credrele(&scred);
2725 smbfs_rw_exit(&odnp->r_rwlock);
2726 smbfs_rw_exit(&ndnp->r_rwlock);

2728 return (error);
2729 }

2731 /*
2732 * XXX
2733 * vsecattr_t is new to build 77, and we need to eventually support
2734 * it in order to create an ACL when an object is created.
2735 *
2736 * This op should support the new FIGNORECASE flag for case-insensitive
2737 * lookups, per PSARC 2007/244.
2738 */
2739 /* ARGSUSED */
2740 static int
2741 smbfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp,
2742 cred_t *cr, caller_context_t *ct, int flags, vsecattr_t *vsecp)
2743 {
2744 vnode_t *vp;
2745 struct smbnode *dnp = VTOSMB(dvp);
2746 struct smbmntinfo *smi = VTOSMI(dvp);
2747 struct smb_cred scred;
2748 struct smbfattr fattr;
2749 const char *name = (const char *) nm;
2750 int nmlen = strlen(name);
2751 int error, hiderr;

2753 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2754 return (EPERM);

2756 if (smi->smi_flags & SMI_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2757 return (EIO);

2759 if ((nmlen == 1 && name[0] == ’.’) ||
2760 (nmlen == 2 && name[0] == ’.’ && name[1] == ’.’))
2761 return (EEXIST);

2763 /* Only plain files are allowed in V_XATTRDIR. */
2764 if (dvp->v_flag & V_XATTRDIR)
2765 return (EINVAL);

2767 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_WRITER, SMBINTR(dvp)))
2768 return (EINTR);
2769 smb_credinit(&scred, cr);

2771 /*
2772 * XXX: Do we need r_lkserlock too?
2773 * No use of any shared fid or fctx...
2774 */

2776 /*
2777 * Require write access in the containing directory.
2778 */
2779 error = smbfs_access(dvp, VWRITE, 0, cr, ct);
2780 if (error)
2781 goto out;

2783 error = smbfs_smb_mkdir(dnp, name, nmlen, &scred);
2784 if (error)
2785 goto out;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 41

2787 error = smbfs_smb_lookup(dnp, &name, &nmlen, &fattr, &scred);
2788 if (error)
2789 goto out;

2791 smbfs_attr_touchdir(dnp);

2793 error = smbfs_nget(dvp, name, nmlen, &fattr, &vp);
2794 if (error)
2795 goto out;

2797 if (name[0] == ’.’)
2798 if ((hiderr = smbfs_smb_hideit(VTOSMB(vp), NULL, 0, &scred)))
2799 SMBVDEBUG("hide failure %d\n", hiderr);

2801 /* Success! */
2802 *vpp = vp;
2803 error = 0;
2804 out:
2805 smb_credrele(&scred);
2806 smbfs_rw_exit(&dnp->r_rwlock);

2808 if (name != nm)
2809 smbfs_name_free(name, nmlen);

2811 return (error);
2812 }

2814 /*
2815 * XXX
2816 * This op should support the new FIGNORECASE flag for case-insensitive
2817 * lookups, per PSARC 2007/244.
2818 */
2819 /* ARGSUSED */
2820 static int
2821 smbfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
2822 caller_context_t *ct, int flags)
2823 {
2824 vnode_t *vp = NULL;
2825 int vp_locked = 0;
2826 struct smbmntinfo *smi = VTOSMI(dvp);
2827 struct smbnode *dnp = VTOSMB(dvp);
2828 struct smbnode *np;
2829 struct smb_cred scred;
2830 int error;

2832 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2833 return (EPERM);

2835 if (smi->smi_flags & SMI_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2836 return (EIO);

2838 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_WRITER, SMBINTR(dvp)))
2839 return (EINTR);
2840 smb_credinit(&scred, cr);

2842 /*
2843 * Require w/x access in the containing directory.
2844 * Server handles all other access checks.
2845 */
2846 error = smbfs_access(dvp, VEXEC|VWRITE, 0, cr, ct);
2847 if (error)
2848 goto out;

2850 /*
2851 * First lookup the entry to be removed.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 42

2852 */
2853 error = smbfslookup(dvp, nm, &vp, cr, 0, ct);
2854 if (error)
2855 goto out;
2856 np = VTOSMB(vp);

2858 /*
2859 * Disallow rmdir of "." or current dir, or the FS root.
2860 * Also make sure it’s a directory, not a mount point,
2861 * and lock to keep mount/umount away until we’re done.
2862 */
2863 if ((vp == dvp) || (vp == cdir) || (vp->v_flag & VROOT)) {
2864 error = EINVAL;
2865 goto out;
2866 }
2867 if (vp->v_type != VDIR) {
2868 error = ENOTDIR;
2869 goto out;
2870 }
2871 if (vn_vfsrlock(vp)) {
2872 error = EBUSY;
2873 goto out;
2874 }
2875 vp_locked = 1;
2876 if (vn_mountedvfs(vp) != NULL) {
2877 error = EBUSY;
2878 goto out;
2879 }

2881 smbfs_attrcache_remove(np);
2882 error = smbfs_smb_rmdir(np, &scred);

2884 /*
2885 * Similar to smbfs_remove
2886 */
2887 switch (error) {
2888 case 0:
2889 case ENOENT:
2890 case ENOTDIR:
2891 smbfs_attrcache_prune(np);
2892 break;
2893 }

2895 if (error)
2896 goto out;

2898 mutex_enter(&np->r_statelock);
2899 dnp->n_flag |= NMODIFIED;
2900 mutex_exit(&np->r_statelock);
2901 smbfs_attr_touchdir(dnp);
2902 smbfs_rmhash(np);

2904 out:
2905 if (vp) {
2906 if (vp_locked)
2907 vn_vfsunlock(vp);
2908 VN_RELE(vp);
2909 }
2910 smb_credrele(&scred);
2911 smbfs_rw_exit(&dnp->r_rwlock);

2913 return (error);
2914 }

2917 /* ARGSUSED */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 43

2918 static int
2919 smbfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
2920 caller_context_t *ct, int flags)
2921 {
2922 struct smbnode *np = VTOSMB(vp);
2923 int error = 0;
2924 smbmntinfo_t *smi;

2926 smi = VTOSMI(vp);

2928 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2929 return (EIO);

2931 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2932 return (EIO);

2934 /*
2935 * Require read access in the directory.
2936 */
2937 error = smbfs_access(vp, VREAD, 0, cr, ct);
2938 if (error)
2939 return (error);

2941 ASSERT(smbfs_rw_lock_held(&np->r_rwlock, RW_READER));

2943 /*
2944 * XXX: Todo readdir cache here
2945 * Note: NFS code is just below this.
2946 *
2947 * I am serializing the entire readdir opreation
2948 * now since we have not yet implemented readdir
2949 * cache. This fix needs to be revisited once
2950 * we implement readdir cache.
2951 */
2952 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, SMBINTR(vp)))
2953 return (EINTR);

2955 error = smbfs_readvdir(vp, uiop, cr, eofp, ct);

2957 smbfs_rw_exit(&np->r_lkserlock);

2959 return (error);
2960 }

2962 /* ARGSUSED */
2963 static int
2964 smbfs_readvdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2965 caller_context_t *ct)
2966 {
2967 /*
2968 * Note: "limit" tells the SMB-level FindFirst/FindNext
2969 * functions how many directory entries to request in
2970 * each OtW call. It needs to be large enough so that
2971 * we don’t make lots of tiny OtW requests, but there’s
2972 * no point making it larger than the maximum number of
2973 * OtW entries that would fit in a maximum sized trans2
2974 * response (64k / 48). Beyond that, it’s just tuning.
2975 * WinNT used 512, Win2k used 1366. We use 1000.
2976 */
2977 static const int limit = 1000;
2978 /* Largest possible dirent size. */
2979 static const size_t dbufsiz = DIRENT64_RECLEN(SMB_MAXFNAMELEN);
2980 struct smb_cred scred;
2981 vnode_t *newvp;
2982 struct smbnode *np = VTOSMB(vp);
2983 struct smbfs_fctx *ctx;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 44

2984 struct dirent64 *dp;
2985 ssize_t save_resid;
2986 offset_t save_offset; /* 64 bits */
2987 int offset; /* yes, 32 bits */
2988 int nmlen, error;
2989 ushort_t reclen;

2991 ASSERT(curproc->p_zone == VTOSMI(vp)->smi_zone_ref.zref_zone);

2993 /* Make sure we serialize for n_dirseq use. */
2994 ASSERT(smbfs_rw_lock_held(&np->r_lkserlock, RW_WRITER));

2996 /*
2997 * Make sure smbfs_open filled in n_dirseq
2998 */
2999 if (np->n_dirseq == NULL)
3000 return (EBADF);

3002 /* Check for overflow of (32-bit) directory offset. */
3003 if (uio->uio_loffset < 0 || uio->uio_loffset > INT32_MAX ||
3004 (uio->uio_loffset + uio->uio_resid) > INT32_MAX)
3005 return (EINVAL);

3007 /* Require space for at least one dirent. */
3008 if (uio->uio_resid < dbufsiz)
3009 return (EINVAL);

3011 SMBVDEBUG("dirname=’%s’\n", np->n_rpath);
3012 smb_credinit(&scred, cr);
3013 dp = kmem_alloc(dbufsiz, KM_SLEEP);

3015 save_resid = uio->uio_resid;
3016 save_offset = uio->uio_loffset;
3017 offset = uio->uio_offset;
3018 SMBVDEBUG("in: offset=%d, resid=%d\n",
3019 (int)uio->uio_offset, (int)uio->uio_resid);
3020 error = 0;

3022 /*
3023 * Generate the "." and ".." entries here so we can
3024 * (1) make sure they appear (but only once), and
3025 * (2) deal with getting their I numbers which the
3026 * findnext below does only for normal names.
3027 */
3028 while (offset < FIRST_DIROFS) {
3029 /*
3030 * Tricky bit filling in the first two:
3031 * offset 0 is ".", offset 1 is ".."
3032 * so strlen of these is offset+1.
3033 */
3034 reclen = DIRENT64_RECLEN(offset + 1);
3035 if (uio->uio_resid < reclen)
3036 goto out;
3037 bzero(dp, reclen);
3038 dp->d_reclen = reclen;
3039 dp->d_name[0] = ’.’;
3040 dp->d_name[1] = ’.’;
3041 dp->d_name[offset + 1] = ’\0’;
3042 /*
3043 * Want the real I-numbers for the "." and ".."
3044 * entries. For these two names, we know that
3045 * smbfslookup can get the nodes efficiently.
3046 */
3047 error = smbfslookup(vp, dp->d_name, &newvp, cr, 1, ct);
3048 if (error) {
3049 dp->d_ino = np->n_ino + offset; /* fiction */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 45

3050 } else {
3051 dp->d_ino = VTOSMB(newvp)->n_ino;
3052 VN_RELE(newvp);
3053 }
3054 /*
3055 * Note: d_off is the offset that a user-level program
3056 * should seek to for reading the NEXT directory entry.
3057 * See libc: readdir, telldir, seekdir
3058 */
3059 dp->d_off = offset + 1;
3060 error = uiomove(dp, reclen, UIO_READ, uio);
3061 if (error)
3062 goto out;
3063 /*
3064 * Note: uiomove updates uio->uio_offset,
3065 * but we want it to be our "cookie" value,
3066 * which just counts dirents ignoring size.
3067 */
3068 uio->uio_offset = ++offset;
3069 }

3071 /*
3072 * If there was a backward seek, we have to reopen.
3073 */
3074 if (offset < np->n_dirofs) {
3075 SMBVDEBUG("Reopening search %d:%d\n",
3076 offset, np->n_dirofs);
3077 error = smbfs_smb_findopen(np, "*", 1,
3078 SMB_FA_SYSTEM | SMB_FA_HIDDEN | SMB_FA_DIR,
3079 &scred, &ctx);
3080 if (error) {
3081 SMBVDEBUG("can not open search, error = %d", error);
3082 goto out;
3083 }
3084 /* free the old one */
3085 (void) smbfs_smb_findclose(np->n_dirseq, &scred);
3086 /* save the new one */
3087 np->n_dirseq = ctx;
3088 np->n_dirofs = FIRST_DIROFS;
3089 } else {
3090 ctx = np->n_dirseq;
3091 }

3093 /*
3094 * Skip entries before the requested offset.
3095 */
3096 while (np->n_dirofs < offset) {
3097 error = smbfs_smb_findnext(ctx, limit, &scred);
3098 if (error != 0)
3099 goto out;
3100 np->n_dirofs++;
3101 }

3103 /*
3104 * While there’s room in the caller’s buffer:
3105 * get a directory entry from SMB,
3106 * convert to a dirent, copyout.
3107 * We stop when there is no longer room for a
3108 * maximum sized dirent because we must decide
3109 * before we know anything about the next entry.
3110 */
3111 while (uio->uio_resid >= dbufsiz) {
3112 error = smbfs_smb_findnext(ctx, limit, &scred);
3113 if (error != 0)
3114 goto out;
3115 np->n_dirofs++;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 46

3117 /* Sanity check the name length. */
3118 nmlen = ctx->f_nmlen;
3119 if (nmlen > SMB_MAXFNAMELEN) {
3120 nmlen = SMB_MAXFNAMELEN;
3121 SMBVDEBUG("Truncating name: %s\n", ctx->f_name);
3122 }
3123 if (smbfs_fastlookup) {
3124 /* See comment at smbfs_fastlookup above. */
3125 if (smbfs_nget(vp, ctx->f_name, nmlen,
3126 &ctx->f_attr, &newvp) == 0)
3127 VN_RELE(newvp);
3128 }

3130 reclen = DIRENT64_RECLEN(nmlen);
3131 bzero(dp, reclen);
3132 dp->d_reclen = reclen;
3133 bcopy(ctx->f_name, dp->d_name, nmlen);
3134 dp->d_name[nmlen] = ’\0’;
3135 dp->d_ino = ctx->f_inum;
3136 dp->d_off = offset + 1; /* See d_off comment above */
3137 error = uiomove(dp, reclen, UIO_READ, uio);
3138 if (error)
3139 goto out;
3140 /* See comment re. uio_offset above. */
3141 uio->uio_offset = ++offset;
3142 }

3144 out:
3145 /*
3146 * When we come to the end of a directory, the
3147 * SMB-level functions return ENOENT, but the
3148 * caller is not expecting an error return.
3149 *
3150 * Also note that we must delay the call to
3151 * smbfs_smb_findclose(np->n_dirseq, ...)
3152 * until smbfs_close so that all reads at the
3153 * end of the directory will return no data.
3154 */
3155 if (error == ENOENT) {
3156 error = 0;
3157 if (eofp)
3158 *eofp = 1;
3159 }
3160 /*
3161 * If we encountered an error (i.e. "access denied")
3162 * from the FindFirst call, we will have copied out
3163 * the "." and ".." entries leaving offset == 2.
3164 * In that case, restore the original offset/resid
3165 * so the caller gets no data with the error.
3166 */
3167 if (error != 0 && offset == FIRST_DIROFS) {
3168 uio->uio_loffset = save_offset;
3169 uio->uio_resid = save_resid;
3170 }
3171 SMBVDEBUG("out: offset=%d, resid=%d\n",
3172 (int)uio->uio_offset, (int)uio->uio_resid);

3174 kmem_free(dp, dbufsiz);
3175 smb_credrele(&scred);
3176 return (error);
3177 }

3180 /*
3181 * The pair of functions VOP_RWLOCK, VOP_RWUNLOCK

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 47

3182 * are optional functions that are called by:
3183 * getdents, before/after VOP_READDIR
3184 * pread, before/after ... VOP_READ
3185 * pwrite, before/after ... VOP_WRITE
3186 * (other places)
3187 *
3188 * Careful here: None of the above check for any
3189 * error returns from VOP_RWLOCK / VOP_RWUNLOCK!
3190 * In fact, the return value from _rwlock is NOT
3191 * an error code, but V_WRITELOCK_TRUE / _FALSE.
3192 *
3193 * Therefore, it’s up to _this_ code to make sure
3194 * the lock state remains balanced, which means
3195 * we can’t "bail out" on interrupts, etc.
3196 */

3198 /* ARGSUSED2 */
3199 static int
3200 smbfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
3201 {
3202 smbnode_t *np = VTOSMB(vp);

3204 if (!write_lock) {
3205 (void) smbfs_rw_enter_sig(&np->r_rwlock, RW_READER, FALSE);
3206 return (V_WRITELOCK_FALSE);
3207 }

3210 (void) smbfs_rw_enter_sig(&np->r_rwlock, RW_WRITER, FALSE);
3211 return (V_WRITELOCK_TRUE);
3212 }

3214 /* ARGSUSED */
3215 static void
3216 smbfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
3217 {
3218 smbnode_t *np = VTOSMB(vp);

3220 smbfs_rw_exit(&np->r_rwlock);
3221 }

3224 /* ARGSUSED */
3225 static int
3226 smbfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
3227 {
3228 smbmntinfo_t *smi;

3230 smi = VTOSMI(vp);

3232 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3233 return (EPERM);

3235 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3236 return (EIO);

3238 /*
3239 * Because we stuff the readdir cookie into the offset field
3240 * someone may attempt to do an lseek with the cookie which
3241 * we want to succeed.
3242 */
3243 if (vp->v_type == VDIR)
3244 return (0);

3246 /* Like NFS3, just check for 63-bit overflow. */
3247 if (*noffp < 0)

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 48

3248 return (EINVAL);

3250 return (0);
3251 }

3254 /*
3255 * XXX
3256 * This op may need to support PSARC 2007/440, nbmand changes for CIFS Service.
3257 */
3258 static int
3259 smbfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
3260 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
3261 caller_context_t *ct)
3262 {
3263 if (curproc->p_zone != VTOSMI(vp)->smi_zone_ref.zref_zone)
3264 return (EIO);

3266 if (VTOSMI(vp)->smi_flags & SMI_LLOCK)
3267 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
3268 else
3269 return (ENOSYS);
3270 }

3272 /*
3273 * Free storage space associated with the specified vnode. The portion
3274 * to be freed is specified by bfp->l_start and bfp->l_len (already
3275 * normalized to a "whence" of 0).
3276 *
3277 * Called by fcntl(fd, F_FREESP, lkp) for libc:ftruncate, etc.
3278 */
3279 /* ARGSUSED */
3280 static int
3281 smbfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
3282 offset_t offset, cred_t *cr, caller_context_t *ct)
3283 {
3284 int error;
3285 smbmntinfo_t *smi;

3287 smi = VTOSMI(vp);

3289 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3290 return (EIO);

3292 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3293 return (EIO);

3295 /* Caller (fcntl) has checked v_type */
3296 ASSERT(vp->v_type == VREG);
3297 if (cmd != F_FREESP)
3298 return (EINVAL);

3300 /*
3301 * Like NFS3, no 32-bit offset checks here.
3302 * Our SMB layer takes care to return EFBIG
3303 * when it has to fallback to a 32-bit call.
3304 */

3306 error = convoff(vp, bfp, 0, offset);
3307 if (!error) {
3308 ASSERT(bfp->l_start >= 0);
3309 if (bfp->l_len == 0) {
3310 struct vattr va;

3312 /*
3313 * ftruncate should not change the ctime and

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 49

3314 * mtime if we truncate the file to its
3315 * previous size.
3316 */
3317 va.va_mask = AT_SIZE;
3318 error = smbfsgetattr(vp, &va, cr);
3319 if (error || va.va_size == bfp->l_start)
3320 return (error);
3321 va.va_mask = AT_SIZE;
3322 va.va_size = bfp->l_start;
3323 error = smbfssetattr(vp, &va, 0, cr);
3324 } else
3325 error = EINVAL;
3326 }

3328 return (error);
3329 }

3331 /* ARGSUSED */
3332 static int
3333 smbfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
3334 caller_context_t *ct)
3335 {
3336 vfs_t *vfs;
3337 smbmntinfo_t *smi;
3338 struct smb_share *ssp;

3340 vfs = vp->v_vfsp;
3341 smi = VFTOSMI(vfs);

3343 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3344 return (EIO);

3346 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3347 return (EIO);

3349 switch (cmd) {
3350 case _PC_FILESIZEBITS:
3351 ssp = smi->smi_share;
3352 if (SSTOVC(ssp)->vc_sopt.sv_caps & SMB_CAP_LARGE_FILES)
3353 *valp = 64;
3354 else
3355 *valp = 32;
3356 break;

3358 case _PC_LINK_MAX:
3359 /* We only ever report one link to an object */
3360 *valp = 1;
3361 break;

3363 case _PC_ACL_ENABLED:
3364 /*
3365 * Always indicate that ACLs are enabled and
3366 * that we support ACE_T format, otherwise
3367 * libsec will ask for ACLENT_T format data
3368 * which we don’t support.
3369 */
3370 *valp = _ACL_ACE_ENABLED;
3371 break;

3373 case _PC_SYMLINK_MAX: /* No symlinks until we do Unix extensions */
3374 *valp = 0;
3375 break;

3377 case _PC_XATTR_EXISTS:
3378 if (vfs->vfs_flag & VFS_XATTR) {
3379 *valp = smbfs_xa_exists(vp, cr);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 50

3380 break;
3381 }
3382 return (EINVAL);

3384 case _PC_TIMESTAMP_RESOLUTION:
3385 /*
3386 * Windows times are tenths of microseconds
3387 * (multiples of 100 nanoseconds).
3388 */
3389 *valp = 100L;
3390 break;

3392 default:
3393 return (fs_pathconf(vp, cmd, valp, cr, ct));
3394 }
3395 return (0);
3396 }

3398 /* ARGSUSED */
3399 static int
3400 smbfs_getsecattr(vnode_t *vp, vsecattr_t *vsa, int flag, cred_t *cr,
3401 caller_context_t *ct)
3402 {
3403 vfs_t *vfsp;
3404 smbmntinfo_t *smi;
3405 int error;
3406 uint_t mask;

3408 vfsp = vp->v_vfsp;
3409 smi = VFTOSMI(vfsp);

3411 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3412 return (EIO);

3414 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
3415 return (EIO);

3417 /*
3418 * Our _pathconf indicates _ACL_ACE_ENABLED,
3419 * so we should only see VSA_ACE, etc here.
3420 * Note: vn_create asks for VSA_DFACLCNT,
3421 * and it expects ENOSYS and empty data.
3422 */
3423 mask = vsa->vsa_mask & (VSA_ACE | VSA_ACECNT |
3424 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
3425 if (mask == 0)
3426 return (ENOSYS);

3428 if (smi->smi_flags & SMI_ACL)
3429 error = smbfs_acl_getvsa(vp, vsa, flag, cr);
3430 else
3431 error = ENOSYS;

3433 if (error == ENOSYS)
3434 error = fs_fab_acl(vp, vsa, flag, cr, ct);

3436 return (error);
3437 }

3439 /* ARGSUSED */
3440 static int
3441 smbfs_setsecattr(vnode_t *vp, vsecattr_t *vsa, int flag, cred_t *cr,
3442 caller_context_t *ct)
3443 {
3444 vfs_t *vfsp;
3445 smbmntinfo_t *smi;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 51

3446 int error;
3447 uint_t mask;

3449 vfsp = vp->v_vfsp;
3450 smi = VFTOSMI(vfsp);

3452 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3453 return (EIO);

3455 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
3456 return (EIO);

3458 /*
3459 * Our _pathconf indicates _ACL_ACE_ENABLED,
3460 * so we should only see VSA_ACE, etc here.
3461 */
3462 mask = vsa->vsa_mask & (VSA_ACE | VSA_ACECNT);
3463 if (mask == 0)
3464 return (ENOSYS);

3466 if (vfsp->vfs_flag & VFS_RDONLY)
3467 return (EROFS);

3469 /*
3470 * Allow only the mount owner to do this.
3471 * See comments at smbfs_access_rwx.
3472 */
3473 error = secpolicy_vnode_setdac(cr, smi->smi_uid);
3474 if (error != 0)
3475 return (error);

3477 if (smi->smi_flags & SMI_ACL)
3478 error = smbfs_acl_setvsa(vp, vsa, flag, cr);
3479 else
3480 error = ENOSYS;

3482 return (error);
3483 }

3486 /*
3487 * XXX
3488 * This op should eventually support PSARC 2007/268.
3489 */
3490 static int
3491 smbfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
3492 caller_context_t *ct)
3493 {
3494 if (curproc->p_zone != VTOSMI(vp)->smi_zone_ref.zref_zone)
3495 return (EIO);

3497 if (VTOSMI(vp)->smi_flags & SMI_LLOCK)
3498 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
3499 else
3500 return (ENOSYS);
3501 }

3503 /* correspond to bp_mapin() in bp_map.c */
3504 static int
3505 uio_page_mapin(uio_t * uiop, page_t * pp)
3506 {
3507 u_offset_t off;
3508 size_t size;
3509 pgcnt_t npages;
3510 caddr_t kaddr;
3511 pfn_t pfnum;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 52

3513 off = (uintptr_t) uiop->uio_loffset & PAGEOFFSET;
3514 size = P2ROUNDUP(uiop->uio_resid + off, PAGESIZE);
3515 npages = btop(size);

3517 ASSERT(pp != NULL);

3519 if (npages == 1 && kpm_enable) {
3520 kaddr = hat_kpm_mapin(pp, NULL);
3521 if (kaddr == NULL)
3522 return (EFAULT);

3524 uiop->uio_iov->iov_base = kaddr + off;
3525 uiop->uio_iov->iov_len = PAGESIZE - off;

3527 } else {
3528 kaddr = vmem_xalloc(heap_arena, size, PAGESIZE, 0, 0, NULL, NULL
3529 if (kaddr == NULL)
3530 return (EFAULT);

3532 uiop->uio_iov->iov_base = kaddr + off;
3533 uiop->uio_iov->iov_len = size - off;

3535 /* map pages into kaddr */
3536 uint_t attr = PROT_READ | PROT_WRITE | HAT_NOSYNC;
3537 while (npages-- > 0) {
3538 pfnum = pp->p_pagenum;
3539 pp = pp->p_next;

3541 hat_devload(kas.a_hat, kaddr, PAGESIZE, pfnum, attr, HAT
3542 kaddr += PAGESIZE;
3543 }
3544 }
3545 return (0);
3546 }

3548 /* correspond to bp_mapout() in bp_map.c */
3549 static void
3550 uio_page_mapout(uio_t * uiop, page_t * pp)
3551 {
3552 u_offset_t off;
3553 size_t size;
3554 pgcnt_t npages;
3555 caddr_t kaddr;

3557 kaddr = uiop->uio_iov->iov_base;
3558 off = (uintptr_t) kaddr & PAGEOFFSET;
3559 size = P2ROUNDUP(uiop->uio_iov->iov_len + off, PAGESIZE);
3560 npages = btop(size);

3562 ASSERT(pp != NULL);

3564 kaddr = (caddr_t) ((uintptr_t) kaddr & MMU_PAGEMASK);

3566 if (npages == 1 && kpm_enable) {
3567 hat_kpm_mapout(pp, NULL, kaddr);

3569 } else {
3570 hat_unload(kas.a_hat, (void *) kaddr, size,
3571 HAT_UNLOAD_NOSYNC | HAT_UNLOAD_UNLOCK);
3572 vmem_free(heap_arena, (void *) kaddr, size);
3573 }
3574 uiop->uio_iov->iov_base = 0;
3575 uiop->uio_iov->iov_len = 0;
3576 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 53

3578 static int
3579 smbfs_map(vnode_t * vp, offset_t off, struct as * as, caddr_t * addrp,
3580 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t * cr,
3581 caller_context_t * ct)
3582 {
3583 smbnode_t *np;
3584 smbmntinfo_t *smi;
3585 struct vattr va;
3586 segvn_crargs_t vn_a;
3587 int error;

3589 np = VTOSMB(vp);
3590 smi = VTOSMI(vp);

3592 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3593 return (EIO);

3595 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3596 return (EIO);

3598 if (vp->v_flag & VNOMAP || vp->v_flag & VNOCACHE)
3599 return (EAGAIN);

3601 if (vp->v_type != VREG)
3602 return (ENODEV);

3604 va.va_mask = AT_ALL;
3605 if (error = smbfsgetattr(vp, &va, cr))
3606 return (error);

3608 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, SMBINTR(vp)))
3609 return (EINTR);

3611 if (MANDLOCK(vp, va.va_mode)) {
3612 error = EAGAIN;
3613 goto out;
3614 }
3615 as_rangelock(as);
3616 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);

3618 if (error != 0) {
3619 as_rangeunlock(as);
3620 goto out;
3621 }
3622 vn_a.vp = vp;
3623 vn_a.offset = off;
3624 vn_a.type = flags & MAP_TYPE;
3625 vn_a.prot = prot;
3626 vn_a.maxprot = maxprot;
3627 vn_a.flags = flags & ~MAP_TYPE;
3628 vn_a.cred = cr;
3629 vn_a.amp = NULL;
3630 vn_a.szc = 0;
3631 vn_a.lgrp_mem_policy_flags = 0;

3633 error = as_map(as, *addrp, len, segvn_create, &vn_a);

3635 as_rangeunlock(as);

3637 out:
3638 smbfs_rw_exit(&np->r_lkserlock);

3640 return (error);
3641 }

3643 static int

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 54

3644 smbfs_addmap(vnode_t * vp, offset_t off, struct as * as, caddr_t addr,
3645 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t * cr,
3646 caller_context_t * ct)
3647 {
3648 atomic_add_long((ulong_t *) & VTOSMB(vp)->r_mapcnt, btopr(len));
3649 return (0);
3650 }

3652 static int
3653 smbfs_delmap(vnode_t * vp, offset_t off, struct as * as, caddr_t addr,
3654 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t * cr,
3655 caller_context_t * ct)
3656 {

3658 smbnode_t *np;

3660 atomic_add_long((ulong_t *) & VTOSMB(vp)->r_mapcnt, -btopr(len));

3662 /*
3663 * mark RDIRTY here, will be used to check if a file is dirty when
3664 * unmount smbfs
3665 */
3666 if (vn_has_cached_data(vp) && !vn_is_readonly(vp) && (maxprot & PROT_WRI
3667 && (flags == MAP_SHARED)) {
3668 np = VTOSMB(vp);
3669 mutex_enter(&np->r_statelock);
3670 np->r_flags |= RDIRTY;
3671 mutex_exit(&np->r_statelock);
3672 }
3673 return (0);
3674 }

3676 static int
3677 smbfs_putpage(vnode_t * vp, offset_t off, size_t len, int flags,
3678 cred_t * cr, caller_context_t * ct)
3679 {

3681 smbnode_t *np;
3682 size_t io_len;
3683 u_offset_t io_off;
3684 u_offset_t eoff;
3685 int error = 0;
3686 page_t *pp;
3687 int rdirty;

3689 np = VTOSMB(vp);

3691 if (len == 0) {

3693 /* will flush the whole file, so clear RDIRTY */
3694 if (off == (u_offset_t) 0 && (np->r_flags & RDIRTY)) {
3695 mutex_enter(&np->r_statelock);
3696 rdirty = np->r_flags & RDIRTY;
3697 np->r_flags &= ~RDIRTY;
3698 mutex_exit(&np->r_statelock);
3699 } else
3700 rdirty = 0;

3702 error = pvn_vplist_dirty(vp, off, smbfs_putapage, flags, cr);

3704 /*
3705 * if failed and the vnode was dirty before and we aren’t
3706 * forcibly invalidating pages, then mark RDIRTY again.
3707 */
3708 if (error && rdirty &&
3709 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 55

3710 mutex_enter(&np->r_statelock);
3711 np->r_flags |= RDIRTY;
3712 mutex_exit(&np->r_statelock);
3713 }
3714 } else {

3716 eoff = off + len;

3718 mutex_enter(&np->r_statelock);
3719 if (eoff > np->r_size)
3720 eoff = np->r_size;
3721 mutex_exit(&np->r_statelock);

3723 for (io_off = off; io_off < eoff; io_off += io_len) {
3724 if ((flags & B_INVAL) || (flags & B_ASYNC) == 0) {
3725 pp = page_lookup(vp, io_off,
3726 (flags & (B_INVAL | B_FREE) ? S
3727 } else {
3728 pp = page_lookup_nowait(vp, io_off,
3729 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
3730 }

3732 if (pp == NULL || !pvn_getdirty(pp, flags))
3733 io_len = PAGESIZE;
3734 else {
3735 error = smbfs_putapage(vp, pp, &io_off, &io_len,
3736 }
3737 }

3739 }

3741 return (error);
3742 }

3744 static int
3745 smbfs_putapage(vnode_t * vp, page_t * pp, u_offset_t * offp, size_t * lenp,
3746 int flags, cred_t * cr)
3747 {

3749 struct smb_cred scred;
3750 smbnode_t *np;
3751 smbmntinfo_t *smi;
3752 smb_share_t *ssp;
3753 uio_t uio;
3754 iovec_t uiov, uiov_bak;

3756 size_t io_len;
3757 u_offset_t io_off;
3758 size_t limit;
3759 size_t bsize;
3760 size_t blksize;
3761 u_offset_t blkoff;
3762 int error;

3764 np = VTOSMB(vp);
3765 smi = VTOSMI(vp);
3766 ssp = smi->smi_share;

3768 /* do block io, get a kluster of dirty pages in a block. */
3769 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3770 blkoff = pp->p_offset / bsize;
3771 blkoff *= bsize;
3772 blksize = roundup(bsize, PAGESIZE);

3774 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, blkoff, blksize, flags)

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 56

3776 ASSERT(pp->p_offset >= blkoff);

3778 if (io_off + io_len > blkoff + blksize) {
3779 ASSERT((io_off + io_len) - (blkoff + blksize) < PAGESIZE);
3780 }

3782 /* Don’t allow put pages beyond EOF */
3783 mutex_enter(&np->r_statelock);
3784 limit=MIN(np->r_size, blkoff + blksize);
3785 mutex_exit(&np->r_statelock);

3787 if (io_off >= limit) {
3788 error = 0;
3789 goto out;
3790 } else if (io_off + io_len > limit) {
3791 int npages = btopr(limit - io_off);
3792 page_t *trunc;
3793 page_list_break(&pp, &trunc, npages);
3794 if (trunc)
3795 pvn_write_done(trunc, flags);
3796 io_len = limit - io_off;
3797 }

3799 /*
3800 * Taken from NFS4. The RMODINPROGRESS flag makes sure that
3801 * smbfs_putapage() sees a consistent value of r_size. RMODINPROGRESS
3802 * is set in writenp(). When RMODINPROGRESS is set it indicates that
3803 * a uiomove() is in progress and the r_size has not been made
3804 * consistent with the new size of the file. When the uiomove()
3805 * completes the r_size is updated and the RMODINPROGRESS flag is
3806 * cleared.
3807 *
3808 * The RMODINPROGRESS flag makes sure that smbfs_putapage() sees a
3809 * consistent value of r_size. Without this handshaking, it is
3810 * possible that smbfs_putapage() picks up the old value of r_size
3811 * before the uiomove() in writenp() completes. This will result in
3812 * the write through smbfs_putapage() being dropped.
3813 *
3814 * More precisely, there is a window between the time the uiomove()
3815 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
3816 * operation intervenes in this window, the page will be picked up,
3817 * because it is dirty (it will be unlocked, unless it was
3818 * pagecreate’d). When the page is picked up as dirty, the dirty bit
3819 * is reset (pvn_getdirty()). In smbfs_putapage(), r_size is checked.
3820 * This will still be the old size. Therefore the page will not be
3821 * written out. When segmap_release() calls VOP_PUTPAGE(), the page
3822 * will be found to be clean and the write will be dropped.
3823 */
3824 if (np->r_flags & RMODINPROGRESS) {

3826 mutex_enter(&np->r_statelock);
3827 if ((np->r_flags & RMODINPROGRESS) &&
3828 np->r_modaddr + MAXBSIZE > io_off &&
3829 np->r_modaddr < io_off + io_len) {
3830 page_t *plist;
3831 /*
3832 * A write is in progress for this region of the
3833 * file. If we did not detect RMODINPROGRESS here,
3834 * the data beyond the file size won’t be write out.
3835 * We end up losing data. So we decide to set the
3836 * modified bit on each page in the page list and
3837 * mark the smbnode with RDIRTY. This write will be
3838 * restarted at some later time.
3839 */
3840 plist = pp;
3841 while (plist != NULL) {

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 57

3842 pp = plist;
3843 page_sub(&plist, pp);
3844 hat_setmod(pp);
3845 page_io_unlock(pp);
3846 page_unlock(pp);
3847 }
3848 np->r_flags |= RDIRTY;
3849 mutex_exit(&np->r_statelock);
3850 if (offp)
3851 *offp = io_off;
3852 if (lenp)
3853 *lenp = io_len;
3854 return (0);
3855 }
3856 mutex_exit(&np->r_statelock);
3857 }

3859 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
3860 return (EINTR);
3861 smb_credinit(&scred, cr);

3863 if (np->n_vcgenid != ssp->ss_vcgenid)
3864 error = ESTALE;
3865 else {
3866 /* just use uio instead of buf, since smb_rwuio need uio. */
3867 uiov.iov_base = 0;
3868 uiov.iov_len = 0;
3869 uio.uio_iov = &uiov;
3870 uio.uio_iovcnt = 1;
3871 uio.uio_loffset = io_off;
3872 uio.uio_resid = io_len;
3873 uio.uio_segflg = UIO_SYSSPACE;
3874 uio.uio_llimit = MAXOFFSET_T;
3875 /* map pages into kernel address space, and setup uio. */
3876 error = uio_page_mapin(&uio, pp);
3877 if (error == 0) {
3878 uiov_bak.iov_base = uiov.iov_base;
3879 uiov_bak.iov_len = uiov.iov_len;
3880 error = smb_rwuio(ssp, np->n_fid, UIO_WRITE, &uio, &scre
3881 if (error == 0) {
3882 mutex_enter(&np->r_statelock);
3883 np->n_flag |= (NFLUSHWIRE | NATTRCHANGED);
3884 mutex_exit(&np->r_statelock);
3885 (void) smbfs_smb_flush(np, &scred);
3886 }
3887 /* unmap pages from kernel address space. */
3888 uio.uio_iov = &uiov_bak;
3889 uio_page_mapout(&uio, pp);
3890 }
3891 }

3893 smb_credrele(&scred);
3894 smbfs_rw_exit(&np->r_lkserlock);

3896 out:
3897 pvn_write_done(pp, ((error) ? B_ERROR : 0) | B_WRITE | flags);

3899 if (offp)
3900 *offp = io_off;
3901 if (lenp)
3902 *lenp = io_len;

3904 return (error);
3905 }

3907 static int

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 58

3908 smbfs_getpage(vnode_t * vp, offset_t off, size_t len, uint_t * protp,
3909 page_t * pl[], size_t plsz, struct seg * seg, caddr_t addr,
3910 enum seg_rw rw, cred_t * cr, caller_context_t * ct)
3911 {

3913 smbnode_t *np;
3914 int error;

3916 /* these pages have all protections. */
3917 if (protp)
3918 *protp = PROT_ALL;

3920 np = VTOSMB(vp);

3922 /* Don’t allow get pages beyond EOF, unless it’s segkmap. */
3923 mutex_enter(&np->r_statelock);
3924 if (off + len > np->r_size + PAGESIZE && seg != segkmap){
3925 mutex_exit(&np->r_statelock);
3926 return (EFAULT);
3927 }
3928 mutex_exit(&np->r_statelock);

3930 if (len <= PAGESIZE) {
3931 error = smbfs_getapage(vp, off, len, protp, pl, plsz, seg, addr,
3932 cr);
3933 } else {
3934 error = pvn_getpages(smbfs_getapage, vp, off, len, protp, pl, pl
3935 addr, rw, cr);
3936 }

3938 return (error);
3939 }

3941 static int
3942 smbfs_getapage(vnode_t * vp, u_offset_t off, size_t len,
3943 uint_t * protp, page_t * pl[], size_t plsz, struct seg * seg, caddr_t addr,
3944 enum seg_rw rw, cred_t * cr)
3945 {

3947 smbnode_t *np;
3948 smbmntinfo_t *smi;
3949 smb_share_t *ssp;
3950 smb_cred_t scred;

3952 page_t *pp;
3953 uio_t uio;
3954 iovec_t uiov, uiov_bak;

3956 u_offset_t blkoff;
3957 size_t bsize;
3958 size_t blksize;

3960 u_offset_t io_off;
3961 size_t io_len;
3962 size_t pages_len;

3964 int error = 0;

3966 np = VTOSMB(vp);
3967 smi = VTOSMI(vp);
3968 ssp = smi->smi_share;

3970 /* if pl is null,it’s meaningless */
3971 if (pl == NULL)
3972 return (EFAULT);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 59

3974 again:
3975 if (page_exists(vp, off) == NULL) {
3976 if (rw == S_CREATE) {
3977 /* just return a empty page if asked to create. */
3978 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT | PG
3979 goto again;
3980 pages_len = PAGESIZE;
3981 } else {

3983 /*
3984 * do block io, get a kluster of non-exist pages in a
3985 * block.
3986 */
3987 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3988 blkoff = off / bsize;
3989 blkoff *= bsize;
3990 blksize = roundup(bsize, PAGESIZE);

3992 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, &io_l

3994 if (pp == NULL)
3995 goto again;

3997 pages_len = io_len;

3999 /* Don’t need to get pages from server if it’s segkmap
4000 * that reads beyond EOF. */
4001 mutex_enter(&np->r_statelock);
4002 if (io_off >= np->r_size && seg == segkmap) {
4003 mutex_exit(&np->r_statelock);
4004 error = 0;
4005 goto out;
4006 } else if (io_off + io_len > np->r_size) {
4007 int npages = btopr(np->r_size - io_o
4008 page_t *trunc;

4010 page_list_break(&pp, &trunc, npages);
4011 if (trunc)
4012 pvn_read_done(trunc, 0);
4013 io_len = np->r_size - io_off;
4014 }
4015 mutex_exit(&np->r_statelock);

4017 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBI
4018 return EINTR;
4019 smb_credinit(&scred, cr);

4021 /*
4022 * just use uio instead of buf, since smb_rwuio need
4023 * uio.
4024 */
4025 uiov.iov_base = 0;
4026 uiov.iov_len = 0;
4027 uio.uio_iov = &uiov;
4028 uio.uio_iovcnt = 1;
4029 uio.uio_loffset = io_off;
4030 uio.uio_resid = io_len;
4031 uio.uio_segflg = UIO_SYSSPACE;
4032 uio.uio_llimit = MAXOFFSET_T;

4034 /*
4035 * map pages into kernel address space, and setup
4036 * uio.
4037 */
4038 error = uio_page_mapin(&uio, pp);
4039 if (error == 0) {

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 60

4040 uiov_bak.iov_base = uiov.iov_base;
4041 uiov_bak.iov_len = uiov.iov_len;
4042 error = smb_rwuio(ssp, np->n_fid, UIO_READ, &uio
4043 /* unmap pages from kernel address space. */
4044 uio.uio_iov = &uiov_bak;
4045 uio_page_mapout(&uio, pp);
4046 }
4047 smb_credrele(&scred);
4048 smbfs_rw_exit(&np->r_lkserlock);
4049 }
4050 } else {
4051 se_t se = rw == S_CREATE ? SE_EXCL : SE_SHARED;
4052 if ((pp = page_lookup(vp, off, se)) == NULL) {
4053 goto again;
4054 }
4055 }

4057 out:
4058 if (pp) {
4059 if (error) {
4060 pvn_read_done(pp, B_ERROR);
4061 } else {
4062 /* init page list, unlock pages. */
4063 pvn_plist_init(pp, pl, plsz, off, pages_len, rw);
4064 }
4065 }
4066 return (error);
4067 }

4069 /* correspond to nfs_invalidate_pages() in nfs_client.c */
4070 void
4071 smbfs_invalidate_pages(vnode_t * vp, u_offset_t off, cred_t * cr)
4072 {

4074 smbnode_t *np;

4076 np = VTOSMB(vp);
4077 /* will flush the whole file, so clear RDIRTY */
4078 if (off == (u_offset_t) 0 && (np->r_flags & RDIRTY)) {
4079 mutex_enter(&np->r_statelock);
4080 np->r_flags &= ~RDIRTY;
4081 mutex_exit(&np->r_statelock);
4082 }
4083 (void) pvn_vplist_dirty(vp, off, smbfs_putapage, B_INVAL | B_TRUNC, cr);
4084 }
4085 #endif /* ! codereview */

